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Abstract. We consider the problem of counting the number of varieties in a family over a number
field which contain a rational point. In particular, for products of Brauer–Severi varieties and closely
related counting functions associated to Brauer group elements. Using harmonic analysis on toric
varieties, we provide a positive answer to a question of Serre on such counting functions in some
cases. We also formulate some conjectures on generalisations of Serre’s problem.
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1. Introduction

Given a variety over a number field F , a fundamental problem in number theory is to
determine whether or not it contains a rational point. More generally one may consider a
family of varieties over F , given as the fibres of some morphism π : Y → X, for which
we have the following fundamental questions.

1. Is there a member of this family which contains a rational point?
2. Is the set of fibres which contain a rational point infinite, or even Zariski dense?
3. Can one give precise quantitative estimates for the distribution of such fibres?

The focus of this paper will be on families of Brauer–Severi varieties, i.e. varieties which
become isomorphic to a projective space over an algebraic closure F of F . The simplest
example of a Brauer–Severi variety is a smooth conic, and already here the problem is

D. Loughran; School of Mathematics, University of Manchester,
Oxford Road, Manchester, M13 9PL, UK; e-mail: daniel.loughran@manchester.ac.uk

Mathematics Subject Classification (2010): Primary 14G05; Secondary 11D45, 14F22, 14M25



2540 Daniel Loughran

non-trivial. Indeed, it is unknown whether an arbitrary conic bundle over P1
F with at least

one rational point necessarily has a Zariski dense set of rational points (see [16] for recent
results on this). To make Question 3 more precise, we shall use height functions. To any
embedding X ⊂ Pn of X over F and any x = (x0 : · · · : xn) ∈ X(F), we may associate
a height function via

H(x) =
∏

v∈Val(F )

max{|x0|v, . . . , |xn|v}. (1.1)

More generally, there is a theory of height functions associated to adelically metrised line
bundles (see §4.6). We define the associated counting function to be

N(X,H, π,B) = #{x ∈ X(F) : H(x) ≤ B, x ∈ π(Y (F ))}. (1.2)

A point x ∈ X(F) is counted by this only if the fibre π−1(x) contains a rational point.
If every variety in the family contains a rational point, then the counting function

N(X,H, π,B) = N(X,H,B) is independent of π and simply counts the rational points
of bounded height on X. Manin and others [28, 2] have formulated conjectures on the
asymptotic behaviour of such counting functions in special cases (e.g. Fano varieties). It
is conjectured that if X is Fano with X(F) Zariski dense in X and H is an anticanonical
height function, then there exists U ⊂ X open and cU,H > 0 such that

N(U,H,B) ∼ cU,HB(logB)ρ(X)−1, as B →∞, (1.3)

where ρ(X) = rank PicX. One considers open subsets to avoid “accumulating subvari-
eties” whose contribution may dominate the counting problem (e.g. lines on cubic sur-
faces). This conjecture has been proven for various Fano varieties (e.g. flag varieties [28],
certain del Pezzo surfaces [11] and certain complete intersections [7]) and for other vari-
eties with sufficiently positive anticanonical bundle (e.g. toric varieties [5]). Nevertheless
this conjecture is false as stated and there are now counter-examples over any number
field [4, 42]. One of the aims of this paper is to try to generalise Manin’s conjecture to the
counting functions (1.2).

Such counting functions (1.2) have been considered before. For example, let Yd,n
denote the total space of the family of all smooth hypersurfaces over Q of degree d in PnQ
with n, d ≥ 2. There is a natural projection πd,n : Yd,n→ PNQ given by the coefficients of
each hypersurface, whereN =

(
n+d
d

)
−1. Under the assumptions that d ≤ n, that (d, n) 6=

(2, 2) and that the Brauer–Manin obstruction is the only one to the Hasse principle for
such hypersurfaces, Poonen and Voloch [48] have shown that

N(PNQ , H, πd,n, B) ∼ cd,nB, as B →∞,

for some constant cd,n > 0. Here H denotes the anticanonical height function on PNQ
given by the (N + 1)-st power of the height function (1.1). Note that this result implies
that a positive proportion of all such hypersurfaces contain a rational point. Other fami-
lies have also recently been considered (e.g. Châtelet surfaces [12] and certain principal
homogeneous spaces under coflasque tori [13]), where it was again shown that a positive
proportion of the varieties under consideration contain a rational point.
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Results of this type do not hold in the case where (d, n) = (2, 2), i.e. the case of
conics. Serre [50] has shown that for the family of all plane conics we have

N(P5
Q, H, π2,2, B)�

B

(logB)1/2
.

In particular “almost all” plane conics do not contain a rational point. Serre in fact proved
a more general result about counting functions associated to Brauer group elements,
which we now introduce. Let X be a smooth variety over F equipped with a choice of
height function H and let B ⊂ BrX be a finite subset. Let

X(F)B = {x ∈ X(F) : b(x) = 0 ∈ BrF for all b ∈ B}

denote the “zero-locus” of B. Without loss of generality one may assume that B is a
finite subgroup, as X(F)B = X(F)〈B〉. Define the associated counting function to be

N(X,H,B, B) = #{x ∈ X(F)B : H(x) ≤ B}. (1.4)

At first glance it might not be clear how (1.2) and (1.4) are related. However, this rela-
tionship becomes immediately clear once one is acquainted with the dictionary between
Brauer group elements and families of Brauer–Severi varieties. For example, to any conic
bundle π : Y → X one may associate a quaternion algebra over F(X), giving rise to an
element Qπ ∈ BrU , where U ⊂ X is the open subset given by removing those x ∈ X
whose fibre π−1(x) is singular. If the generic fibre of π has the shape

ax2
+ by2

= z2
⊂ P2

F(X),

with a, b ∈ F(X)∗, then the associated quaternion algebra is simply (a, b). Moreover,
given x ∈ U(F), we have Qπ (x) = 0 ∈ BrF if and only if the fibre over x con-
tains a rational point. In this case, we therefore have an equality N(U,H,Qπ , B) =

N(U,H, π,B) of counting functions. Finite collections of Brauer group elements corre-
spond to products of Brauer–Severi varieties (see §2.3 for further details).

Serre [50] only considered the case where X = Pn, F = Q and B = {b} is a single
element of order two. For any open subset U ⊂ Pn where b is defined, he showed that

N(U,H, b, B)�
B

(logB)1Pn (b)
, as B →∞, (1.5)

where H is an anticanonical height function on Pn and

1Pn(b) =
∑

D∈(Pn)(1)

(
1−

1
|∂D(b)|

)
.

Here, for any variety X, we denote by X(1) the set of codimension one points of X. Also
∂D(b) denotes the residue of b at D, which detects whether or not b admits a singularity
along D. In [50], Serre asked whether the bounds given in (1.5) were sharp. To the au-
thor’s knowledge, the corresponding lower bounds have only been shown in two cases:
For the family of all plane conics over Q [39] and the family of all plane diagonal conics
over Q [38, 34]. Moreover no asymptotic formulae have been achieved for the problem as
stated here (there are however results for related problems on integral points, for example
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classical work of Landau [41] on the number of integers which may be written as a sum
of two squares).

1.1. Statement of results

The main result of this paper concerns the counting functions (1.4) for toric varieties.
Recall that an algebraic torus T over a field k is an algebraic group over k which becomes
isomorphic to Gnm over an algebraic closure of k, for some n ∈ N. We say that such a
torus is anisotropic if it has trivial character group over k, i.e. Hom(T ,Gm) = 0. In this
paper, a toric variety for T will be a smooth projective variety with a faithful action of T
that has an open dense orbit which contains a rational point. Here Manin’s conjecture is
known by work of Batyrev and Tschinkel [5]. They constructed a special anticanonical
height function on toric varieties which is particularly well-behaved (see §4.6). In the
case of Gnm ⊂ Pn, this height function is simply the (n+ 1)-th power of the usual height
function (1.1).

Theorem 1.1. Let F be a number field and let T be an anisotropic torus over F . Let X
be a toric variety over F with respect to T and let U ⊂ X denote the open dense orbit.
Let B ⊂ Br1 U be a finite subgroup and suppose that the zero-locus U(F)B of B is
non-empty. If H denotes the Batyrev–Tschinkel anticanonical height function on X, then
there exists a constant cX,B,H > 0 such that

N(U,H,B, B) ∼ cX,B,HB
(logB)ρ(X)−1

(logB)1X(B)
, as B →∞,

where

1X(B) =
∑

D∈X(1)

(
1−

1
|∂D(B)|

)
, ρ(X) = rank PicX.

Here ∂D denotes the residue map associated to D and Br1 U = ker(BrU → BrUF ) de-
notes the algebraic Brauer group ofU . Note that the theorem implies the non-obvious fact
that ifU(F)B 6= ∅ thenU(F)B is infinite, and moreover we shall even show thatU(F)B
is Zariski dense inU . To prove Theorem 1.1 we first choose an embedding T ⊂ X to iden-
tify T ∼= U in such a way that B ⊂ Br1 T and b(1) = 0 for each b ∈ B. A result of
Sansuc [49, Lem. 6.9] states that as each b ∈ B is algebraic, the associated evaluation
map T (F ) → BrF is a group homomorphism. In particular, the zero-locus T (F )B of
B is a subgroup of T (F ), hence has a rich structure. This is one of the main reasons
why we focus on algebraic Brauer group elements, as Sansuc’s result does not hold for
transcendental Brauer group elements and other methods will be required to handle these.
We then proceed by introducing a height zeta function

Z(s) =
∑

t∈T (F )B

1
H(t)s

,

in a complex variable s. The analytic properties of Z(s) can be related to the original
counting problem via a Tauberian theorem. We study Z(s) using harmonic analysis (in
particular Poisson summation) to obtain a continuation of Z(s) to the line Re s = 1,
away from s = 1. The fact that T is anisotropic greatly simplifies the Poisson summation
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formula, as the quotient T (AF )/T (F ) is compact in this case. This harmonic analysis
approach is based on the works [3], [5] and [19], which study rational and integral points
of bounded height on toric varieties. A detailed treatment of this approach can be found
in [10], which also handles the function field case.

It would be interesting to remove the anisotropic assumption from Theorem 1.1, how-
ever our methods do not give this. Batyrev and Tschinkel also dealt with the anisotropic
case first [3], and to take care of the integral which arises in the Poisson formula in the
case of arbitrary tori, they had to prove a certain technical integration theorem in complex
analysis [5, Thm. 6.19]. Their Fourier transforms were meromorphic, so this integration
could be achieved using the residue theorem. This method breaks down in our case, as our
Fourier transforms have branch point singularities. Further technicalities arise from the
fact that current zero-free regions for HeckeL-functions are not strong enough to allow us
to obtain any kind of continuation of Z(s) to the half-plane Re s < 1 (see Remark 5.13).
Therefore, a fundamentally new idea will be required to perform this generalisation to
arbitrary tori.

Specialising Theorem 1.1 to the caseX = Pn, we provide a positive answer to Serre’s
question on the sharpness of (1.5) in some cases (see §1.2 for explicit examples). More-
over, not only is it the first result for which an asymptotic formula is achieved, rather than
simply a lower bound, it is also the first result which applies to varieties other than Pn and
to number fields other than Q.

Our next result is an application of Theorem 1.1 to the counting functions (1.2) for
families of products of Brauer–Severi varieties. We also give an interpretation of the ex-
ponent 1X(B) appearing in Theorem 1.1, purely in terms of the geometry of the family.
For technical reasons we work with special morphisms which we call almost smooth (see
Definition 2.1). Any dominant morphism between non-singular varieties over a field of
characteristic zero is automatically almost smooth, so this condition is weaker than being
non-singular.

Theorem 1.2. Let F be a number field and let T be an anisotropic torus over F . Let X
be a toric variety over F with respect to T and let U ⊂ X denote the open dense orbit.
Let Y be a variety over F equipped with a proper surjective almost smooth morphism
π : Y → X such that Y (F ) 6= ∅. Suppose that
• π admits a rational section over F ,
• π−1(U)→ U is isomorphic to a product of Brauer–Severi schemes over U .
For each D ∈ X(1), choose an irreducible component D′ of π−1(D) of multiplicity one
such that [F(D)D′ : F(D)] is minimal amongst all irreducible components of π−1(D) of
multiplicity one, where F(D)D′ denotes the algebraic closure of F(D) inside F(D′). If
H denotes the Batyrev–Tschinkel anticanonical height function on X, then there exists a
constant cX,π,H > 0 such that

N(U,H, π,B) ∼ cX,π,HB
(logB)ρ(X)−1

(logB)1X(π)
, as B →∞,

where

1X(π) =
∑

D∈X(1)

(
1−

1
[F(D)D′ : F(D)]

)
, ρ(X) = rank PicX.



2544 Daniel Loughran

We emphasise that Theorem 1.2 is in many respects just a reformulation of Theorem 1.1;
its primary purpose is to give a geometric interpretation of the factor1X(π). Theorem 1.2
gives an answer to Question 3, as posed at the beginning of the introduction. Moreover, we
see that as soon as there exists some D′ in the theorem with [F(D)D′ : F(D)] > 1, then
“almost all” of the varieties in the family do not contain a rational point. As an application,
if π : Y → X is a conic bundle which satisfies the conditions of Theorem 1.2, then one
can easily show that

1X(π) =
1
2 · #{D ∈ X

(1)
: π−1(D) is non-split}.

Here we say that a reduced conic over a perfect field is non-split if it is isomorphic to
two intersecting lines which are conjugate over a quadratic extension. The assumptions
of the theorem imply that there is always an irreducible component of multiplicity one
above each point of codimension one, in particular non-reduced conics do not occur (see
Lemma 2.4). In general, only the “non-split” fibres contribute to 1X(π) (see §1.3).

We also calculate the leading constant cX,B,H appearing in Theorem 1.1. This for-
mally resembles the leading constant cX,H,Peyre conjectured to appear by Peyre [47] in
the context of Manin’s conjecture. In Lemma 5.17 we give examples where 1X(B) = 0
and cX,B,H = cX,H,Peyre yet B 6= 0, and also examples where again 1X(B) = 0 but
0 < cX,B,H < cX,H,Peyre (such phenomenon does not occur in the case of projective
space considered by Serre in [50]). To assist with the calculation of cX,B,H we prove the
following result, which should be of independent interest.

Theorem 1.3. Let U be a principal homogeneous space under an algebraic torus over a
number field F . Let V → U be a product of Brauer–Severi schemes over U that admits a
rational section over F . Then the Brauer–Manin obstruction is the only one to the Hasse
principle and weak approximation for any smooth proper model of V .

The Brauer groups of the smooth proper models occurring in Theorem 1.3 are finite (mod-
ulo constants). Therefore Theorem 1.3 allows one, at least theoretically, to answer Ques-
tion 1 for such families. Moreover as soon as there is a rational point on V , we see that
V (F) is Zariski dense in V , which answers Question 2 (this also shows that U(F)B is
Zariski dense in U , in the notation of Theorem 1.1).

As a special case of Theorem 1.3, we obtain a new proof of the following fact: Let
U ⊂ P1 be the complement of two rational points or a closed point of degree two. Then
the Brauer–Manin obstruction is the only one to the Hasse principle and weak approxima-
tion for any smooth proper model X of a product of Brauer–Severi schemes over U (see
e.g. [53, Thm. 0.4]). Indeed, here U may be given the structure of an algebraic torus and
moreover Tsen’s theorem implies that X obtains a rational section over F . Our proof of
this fact is different from previous proofs, as we do not need to construct explicit models
of X over P1, nor do we use descent, the fibration method nor tools from analytic num-
ber theory. We obtain similar results for products of Brauer–Severi schemes defined over
certain open subsets of higher-dimensional projective spaces (e.g. complements of n+ 1
general Galois conjugate hyperplanes in Pn), provided there is a rational section over F .
To the author’s knowledge, all previous results of this latter type have been conditional
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on Schinzel’s hypothesis (e.g. [58, Cor. 3.6]). We prove Theorem 1.3 by showing that V
itself is stably birational to a principal homogeneous space under an algebraic torus. This
reduces the problem to the work of Sansuc [49], who has already shown that the Brauer–
Manin obstruction is the only one to the Hasse principle and weak approximation in this
case.

To also aid with the calculation of the leading constant in Theorem 1.1, we prove
a result (Theorem 2.11) which calculates the unramified Brauer group of a product of
Brauer–Severi schemes, generalising a result of Colliot-Thélène and Swinnerton-Dyer
[25, Thm. 2.2.1] (which only applies when the base is an open subset of P1). To do this
we introduce “subordinate” Brauer group elements, which were also considered by Serre
in the case of P1 in the appendix of [51, Ch. II]. In §2.6 we perform a detailed study of the
theory of subordinate Brauer group elements, as the author expects that they shall feature
heavily in the analysis of counting functions of the type (1.4).

1.2. An application

We now show that Theorem 1.1 is non-empty by giving some explicit families of varieties
to which it applies. Let n ∈ N and let F ⊂ E be a field extension of degree n + 1. The
Weil restriction RE/F Gm of Gm is an algebraic torus over F which may be identified
with the subset NE/F (t) 6= 0 in An+1

F (see [9, Ch. 7.6]). Hence, we may realise Pn as a
toric variety with respect to the anisotropic torus TE/F = RE/F Gm/Gm, whose boundary
is the irreducible divisor DE/F = {NE/F (t) = 0}. Let r ∈ N and let F ⊂ Ei be cyclic
field extensions of degree ni for each i = 1, . . . , r , with associated norm forms NEi/F .
Let

Zi : NEi/F (x1, . . . , xni ) = NE/F (1, t1, . . . , tn) ⊂ Ani × An, (1.6)

with associated projections πi : Zi → An. The smooth fibres of πi are principal homoge-
neous spaces under the norm one torus R1

Ei/F
Gm. Let π : Z = Z1×An · · ·×AnZr → An.

We now introduce the Brauer group elements which control the arithmetic of π . Let
χi : Gal(Ei/F ) ∼= Z/niZ be a choice of isomorphism and let

bi = (χi,NE/F (1, t1, . . . , tn))

be the associated cyclic algebra over F(t1, . . . , tn) (see [32, §2.5]). If ni | (n+ 1), then bi
is unramified at t0 = 0 and hence bi ∈ Br TE/F . Given a point t ∈ TE/F (F ) with t0 = 1,
we have bi(t) = 0 if and only if NE/F (1, t1, . . . , tn) is a norm of some element in Ei ,
i.e. if and only if the fibre π−1

i (t) contains a rational point. A similar property holds when
t0 = 0, hence we obtain an equality

N(TE/F , H, π, B) = N(TE/F , H, {b1, . . . , br}, B),

for each height function H on Pn. The residue of bi at DE/F is exactly the element
of Hom(Gal(F/E),Z/niZ) induced by χi via the maps Gal(F/E) ⊂ Gal(F/F ) →
Gal(Ei/F ). Finally, as bi(1) = 0 and bi ⊗F Ei = 0 for each i = 1, . . . , r , we see that
Theorem 1.1 applies. For sufficiently general Ei , we obtain the following.
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Corollary 1.4. LetEi, E, F and π be as above with ni | (n+1) for each i = 1, . . . , r . As-
sume that E,E1, . . . , Er are linearly disjoint over F . IfH denotes the Batyrev–Tschinkel
anticanonical height function for TE/F ⊂ Pn, then there exists a constant cTE/F ,π,H > 0
such that

N(TE/F , H, π, B) ∼ cTE/F ,π,H
B

(logB)1−1/n1···nr
, as B →∞.

Similar examples are given by replacing the right-hand side of (1.6) with a product of
norm forms. When r = 1 and F ⊂ E1 is quadratic, the equation (1.6) becomes

x2
1 − ax

2
2 = NE/F (1, t1, . . . , tn),

for some a ∈ F ∗ which is not a square inE. In particular Corollary 1.4 provides a positive
answer to Serre’s question in such cases when 2 | n+ 1.

1.3. Conjectures

We now speculate about generalisations of Theorems 1.1 and 1.2. In what follows we
only consider the following varieties.

Assumption. X is a smooth projective variety over a number field F such that:

1. The anticanonical bundle of X is big, PicX is torsion free and

H1(X,OX) = H2(X,OX) = 0.

2. There exists U ⊂ X open such that for every anticanonical height function H on X
we have

N(U,H,B) ∼ cX,H,PeyreB(logB)ρ(X)−1.

For example, Fano varieties and equivariant compactifications of connected linear alge-
braic groups and their homogeneous spaces [30, Thm. 1.2] satisfy condition 1. Condi-
tion 2 says that the rational points on X are equidistributed (see [47, §3]). This property
is known to hold for toric varieties [19, Thm. 3.10.3], for example.

1.3.1. Zero-loci of Brauer group elements. For zero-loci of Brauer group elements, our
conjecture is as follows.

Conjecture 1.5. Let X satisfy the above assumptions and let H be an anticanonical
height function on X. Let B ⊂ BrF(X) be a finite subgroup and suppose that there
exists x ∈ X(F) such that all b ∈ B are defined at x and b(x) = 0. Then there exists
U ⊂ X open with B ⊂ BrU and cU,B,H > 0 such that

N(U,H,B, B) ∼ cU,B,HB
(logB)ρ(X)−1

(logB)1X(B)
, as B →∞,

where

1X(B) =
∑

D∈X(1)

(
1−

1
|∂D(B)|

)
.
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Note that in the case where X = Pn, we conjecture a positive answer to the question
posed by Serre in [50]. One can prove this conjecture in some simple cases.

Theorem 1.6. Conjecture 1.5 holds if B ⊂ BrX.

Proof. As B ⊂ BrX, there exists a finite set S of places of F such thatX(Fv)B = X(Fv)
for all v 6∈ S. Moreover, 1X(B) = 0 and X(Fv)B ⊂ X(Fv) is open and closed for all
v ∈ S. Our assumptions on X imply that its rational points are equidistributed. As we
are simply counting those rational points on X which satisfy a finite list of well-behaved
v-adic conditions, the asymptotic formula follows from [47, Prop. 3.3]. ut

The language of virtual Artin representations (see §5.7.1) provides a useful formalism to
describe the factors appearing in this conjecture. Namely in the setting of Conjecture 1.5,
the virtual Artin representation of interest is

PicB(X)C = Pic(X)C −
∑

D∈X(1)

(
1−

1
|∂D(B)|

)
IndFFD C,

where FD denotes the algebraic closure of F in F(D) (note that rank PicB(X)
GF
C =

ρ(X)−1X(B)). We also have a good idea of what shape the leading constant in Conjec-
ture 1.5 should take (see §5.7). It should involve the size of a group of subordinate Brauer
group elements, which in special cases can be related to the size of the unramified Brauer
group of the associated product of Brauer–Severi varieties. In §5.7 we also construct a
Tamagawa measure, whose convergence factors are provided by the local factors of the
virtual Artin L-function L(PicB(X)C, s). Our proof that these are indeed a family of con-
vergence factors in our case hinges on the calculation of the local Fourier transforms of
the height functions. It would be interesting if one could prove that these provide a family
of convergence factors in general.

1.3.2. Examples. We now give some simple examples for which Conjecture 1.5 is not
known. Let F be a number field and let H be an anticanonical height function on P1. Let
f0, f1, f2 ∈ F [t] have degrees d0, d1, d2 and let f = f0f1f2. Consider the variety

Y : f0(t)x
2
0 + f1(t)x

2
1 + f2(t)x

2
2 = 0 ⊂ A1

× P2.

This corresponds to the class b of the quaternion algebra (−f1(t)/f0(t),−f2(t)/f0(t)) in
BrF(t). The natural projection π : Y → A1 realises Y as a conic bundle over A1. We
may modify any finite collection of fibres of π without changing the asymptotic formula
obtained, in particular we may assume that f is separable. Also by contracting Galois
orbits of disjoint (−1)-curves, we may assume that −fj (αi)/fk(αi) is not a square in the
field F(αi), for each root αi of fi over F and {i, j, k} = {0, 1, 2}. We also assume that
d0 ≡ d1 ≡ d2 mod 2 (this corresponds to asking that the fibre at infinity be smooth).
Under these assumptions, if Y (F ) 6= ∅ then Conjecture 1.5 predicts

N(A1, H, π, B) ∼
cA1,π,HB

(logB)m/2
, as B →∞, (1.7)
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where m is the number of irreducible factors of f over F . If (d0, d1, d2) = (2, 0, 0)
there are two cases. If f is irreducible, then (1.7) follows from Corollary 1.4, whereas
if f is reducible then this follows from [15, Thm. 1.3]. The next simplest cases where
(d0, d1, d2) = (1, 1, 1), (0, 2, 2) or (4, 0, 0) are wide open (in this last case one obtains a
Châtelet surface).

1.3.3. Families of varieties. We now consider generalisations of Theorem 1.2 to the case
where the generic fibre is no longer a product of Brauer–Severi varieties. Suppose that X
satisfies the above assumptions and let H be an anticanonical height function on X. Let
π : Y → X be a proper surjective almost smooth morphism with geometrically integral
generic fibre (see Definition 2.1 for the definition of almost smooth). At the moment it
seems quite naive to hope for a conjectural framework for the counting functions (1.2) in
general, due to complications arising from the possible failure of the Hasse principle (see
for example [6] for some recent spectacular work in a special case). More realistic is to
study the counting functions

Nloc(U,H, π, B) = #{x ∈ U(F) : H(x) ≤ B, x ∈ π(Y (AF ))} (1.8)

for U ⊂ X open, which count the number of varieties in the family which are everywhere
locally soluble. Here our investigations suggest the following philosophy.

Philosophy. For sufficiently small U , the asymptotic behaviour of Nloc(U,H, π, B) is
controlled by those fibres over codimension one points D ∈ X(1) for which π−1(D) is
non-split.

Here, following Skorobogatov [53, Def. 0.1], we say that a scheme over a perfect field k
is split if it contains a geometrically integral open subscheme. We now offer conditions
which guarantee that a positive proportion of the varieties in the family are everywhere
locally soluble.

Conjecture 1.7. Let π : Y → X be as above with Y (AF ) 6= ∅. Assume that π−1(D) is
split for all D ∈ X(1) and that π(Y (AF )) ∩ X(F) 6= ∅. Then there exists U ⊂ X open
such that

lim
B→∞

Nloc(U,H, π, B)

N(U,H,B)
> 0.

We also naturally conjecture that the limit in Conjecture 1.7 exists. Conjecture 1.7 holds,
for example, if Y → X is a product of Brauer–Severi schemes (this follows from The-
orem 1.6). Its validity in the special case X = Pn is a recent theorem of the author,
in joint work with Bright and Browning [14, Thm. 1.3]. Unfortunately the converse of
Conjecture 1.7 does not hold; consider the family of varieties

(x2
1 − ay

2
1)(x

2
2 − by

2
2)(x

2
3 − aby

2
3) = t ⊂ A6

× A1, (1.9)

for a, b ∈ F ∗, viewed as a fibration over A1. If a, b, ab 6∈ F ∗2, then the fibres over t = 0
and t = ∞ are non-split, however Colliot-Thélène [21, Prop. 5.1(a)] has shown that every
smooth member of this family is everywhere locally soluble.
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Of course there are many interesting families of varieties for which π−1(D) can be
non-split for some D ∈ X(1) (families of Brauer–Severi varieties, quadric bundles of
relative dimension two [52], multinorm equations, elliptic fibrations,. . . ), and one would
also like a conjectural framework in this case. However here much subtleties arise as (1.9)
illustrates. For simplicity we therefore assume that the fibre π−1(D) over each D ∈ X(1)

is integral and that the algebraic closure F(D)π of F(D) in F(π−1(D)) is Galois. Our
investigations suggest that when π(Y (AF )) ∩ X(F) 6= ∅, there exists an open subset
U ⊂ X and cU,π,H > 0 such that

Nloc(U,H, π, B) ∼ cU,π,HB
(logB)ρ(X)−1

(logB)1X(π)
(1.10)

as B →∞, where

1X(π) =
∑

D∈X(1)

(
1−

1
[F(D)π : F(D)]

)
. (1.11)

If the generic fibre of π is a product of Brauer–Severi varieties, then (1.10) is compatible
with Conjecture 1.5 (this follows from the results of §2.4).

If F(D)π/F (D) is not Galois or π−1(D) is not integral, then [F(D)π : F(D)] in
(1.11) should be replaced by the density of an appropriate Frobenian set of primes. The
example (1.9) is compatible with this philosophy; indeed, almost all places of F are split
in at least one of F(

√
a), F (

√
b) or F(

√
ab) (these being the algebraic closures of F in

the irreducible components of the non-split fibres of (1.9)). A special case of such a result
was also recently obtained in [15, Thm. 1.3]. Further examples involving Frobenian sets
are investigated in great generality in joint work [43] of the author and Smeets.

Outline of the paper

In §2 we begin by recalling various facts on Brauer groups, Brauer–Severi varieties and
the Brauer–Manin obstruction. We then prove Theorem 1.2 (assuming Theorem 1.1) fol-
lowed by Theorem 1.3. Next we introduce the notion of subordinate Brauer group ele-
ments and study some of their basic properties. Our main theorem on subordinate Brauer
group elements concerns their use in calculating unramified Brauer groups of products of
Brauer–Severi schemes, which generalises a result of Colliot-Thélène and Swinnerton-
Dyer [25, Thm. 2.2.1]. We also prove an analogue for subordinate Brauer group elements
of a result of Harari [35, Thm. 2.1.1], which makes clear their relevance in the study of
zero-loci of Brauer group elements.

In §3 we gather various results on Hecke L-functions and certain partial Euler prod-
ucts which shall naturally appear in the proof of Theorem 1.1. We also state here the
version of Delange’s Tauberian theorem which we shall use.

In §4 we begin with some results on the adelic spaces and Brauer groups of alge-
braic tori, in particular we calculate their algebraic Brauer group in terms of automorphic
characters. We then study toric varieties and their Brauer groups over number fields, and
derive an analogue for subordinate Brauer group elements of an exact sequence of Voskre-
senskiı̆ [56] on the unramified Brauer groups of algebraic tori.
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In §5 we bring together all the work in the previous sections to prove Theorem 1.1,
and also give a description of the leading constant.

Notation

Algebra. Given a ring R, we denote by R∗ the group of units of R. For a subset A ⊂ G
of a group G we denote by 〈A〉 the subgroup generated by A. For any element g ∈ G of
finite order, we denote by |g| its order. Given a topological group G, we denote by G∧ =
Hom(G, S1) the group of continuous characters of G, and by G∼ = Hom(G,Q/Z) the
continuous Q/Z-dual of G. We fix an embedding Q/Z ⊂ S1 so that G∼ ⊂ G∧. We
denote by Ĝ the completion of G with respect to the normal open subgroups of finite
index. We make frequent use of the following version of character orthogonality: LetG be
a compact Hausdorff topological group with a Haar measure dg. Then for any character χ
of G we have ∫

G

χ(g) dg =

{
vol(G), χ = 1,
0, otherwise.

Number theory. We denote by OF the ring of integers of a number field F and by Val(F )
its set of valuations. For any v ∈ Val(F ), we denote by Fv the completion of F at v and
by Ov its maximal compact subgroup. Given a non-archimedean place v of F , we denote
by qv the size of the residue field of Fv , and by πv a choice of uniformiser. We choose
absolute values on each Fv such that |x|v = |NFv/Qp (x)|p, where v|p ∈ Val(Q) and | · |p
is the usual absolute value on Qp. We normalise our Haar measures dxv on each Fv à
la Tate [17, Ch. XV]. We have vol(Ov) = 1 for almost all v and vol(AF /F ) = 1 with
respect to the associated Haar measure on the adele group AF of F .

Geometry. For a field k, we denote by Pnk and Ank projective n-space and affine n-space
over k respectively. We sometimes omit the subscript k if the field is clear. A variety over
k is a separated geometrically integral scheme of finite type over k. For every perfect
field k, we fix a choice of algebraic closure k and we denote by Gk the absolute Galois
group of k with respect to k. Given a variety X over k, we denote X = X×k k, and if k is
a number field and v is a place of k then we set Xv = X ×k kv . All cohomology will be
taken with respect to the étale topology.

2. Brauer groups and Brauer–Severi schemes

In this section we collect various facts on Brauer groups of algebraic varieties and the
Brauer–Manin obstruction, before proving Theorems 1.2 and 1.3. We then move on to a
detailed study of the theory of subordinate Brauer group elements.

2.1. Brauer groups of varieties

We now recall some standard facts on Brauer groups, as can be found in [33], [25, §1] and
[32]. Let X be a smooth variety over a field k of characteristic zero, with Brauer group
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BrX = H2(X,Gm). We let Br0X = Im(Br k→ BrX), Br1X = ker(BrX→ BrX) and
Bra X = Br1X/Br0X.

2.1.1. The Brauer pairing. Fundamental to this paper is the pairing

BrX ×X(k)→ Br k, (b, x) 7→ b(x). (2.1)

Here b(x) denotes the evaluation of b at x, namely the pull-back of b via the morphism
Spec k → X associated to the rational point x. This pairing is additive on the left and
functorial. Given a subset B ⊂ BrX, we denote its “zero-locus” by

X(k)B = {x ∈ X(k) : b(x) = 0 for all b ∈ B}. (2.2)

We denote by þB the indicator function of the set X(k)B (or simply þ if B is clear).

2.1.2. Residues. For any discrete valuation v on the function field k(X) of X there is a
residue map

∂v : Br k(X)→ H1(k(v),Q/Z),

where k(v) denotes the residue field of v. If R ⊂ k(X) is the associated discrete valuation
ring R, we shall sometimes denote this by ∂R . If D ∈ X(1), we shall also denote by ∂D
the residue map associated to the corresponding discrete valuation.

2.1.3. Purity and the unramified Brauer group. If U ⊂ X is a dense open subset, then
by Grothendieck’s purity theorem the residue maps give rise to exact sequences

0→ BrX→ BrU →
⊕

D∈X(1)\U (1)

H1(k(D),Q/Z), (2.3)

and

0→ Br1X→ Br1 U →
⊕

D∈X(1)\U (1)

H1(kD,Q/Z), (2.4)

where kD = k ∩ k(D) ⊂ k(D) (see [24, Lem. 14] for this last sequence). We also have

BrX = {b ∈ Br k(X) : ∂v(b) = 0 for all v ∈ X(1)}.

The unramified Brauer group Brnr(k(X)/k) is defined to be the group formed by those
b ∈ Br k(X) for which ∂v(b) = 0 for all discrete valuations v of k(X) which are trivial
on k. We write this as BrnrX if k is clear. It is isomorphic to the Brauer group of any
smooth proper model of X (see [25, Thm. 1.3.2]).
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2.2. Brauer groups over number fields

Let F be a number field. The sum of the invariant maps invv gives rise to the following
fundamental short exact sequence from class field theory:

0→ BrF →
⊕

v∈Val(F )

BrFv → Q/Z→ 0. (2.5)

If X is a smooth variety over F , we let

B(X) = ker
(

Br1X→
∏

v∈Val(F )

Br1Xv

)
. (2.6)

For all v ∈ Val(F ) the local pairings

BrXv ×X(Fv)→ Q/Z

are locally constant on the right. Moreover, for b ∈ BrX and a model X for X over OF ,
the induced map X (Ov)→ Q/Z is trivial for almost all v (i.e. only takes the value 0 for
almost all v). In particular, the sum of the local pairings gives rise to well-defined pairings

BrX ×X(AF )→ Q/Z, BrnrX ×
∏

v∈Val(F )

X(Fv)→ Q/Z,

which are locally constant on the right and trivial on X(F). For any B ⊂ BrX we let

X(AF )B = {(xv) ∈ X(AF ) : b(xv) = 0 for all v ∈ Val(F ) and all b ∈ B}

denote the “adelic zero-locus” of B. The left-exactness of (2.5) implies that X(F)B =
X(AF )B ∩X(F). Moreover

X(AF )→ {0, 1}, (xv) 7→
∏

v∈Val(F )

þBv
(xv),

is a continuous extension of þB to X(AF ), which by abuse of notation we shall also
denote by þB . For any subset Z ⊂ X(AF ), we shall write ZB = Z ∩X(AF )B .

2.2.1. The Brauer–Manin obstruction. We now recall some facts about the Brauer–
Manin obstruction as can be found in [54, §5]. We denote by X(F) (resp. X(F)

w
) the

closure of X(F) in X(AF ) with respect to the adelic (resp. product) topology. Given a
subset B ⊂ BrX we let

X(AF )B =
{
(xv) ∈ X(AF ) :

∑
v∈Val(F )

invv b(xv) = 0 for all b ∈ B
}
.

We shall combine this notation with the notation for zero-loci of Brauer group elements.
Namely for any B1,B2 ⊂ BrX and any subset Z ⊂ X(AF ) the notation ZB2

B1
means

Z
B2
B1
=

{
(xv) ∈ Z :

b1(xv) = 0 for all b1 ∈ B1 and all v ∈ Val(F ),∑
v∈Val(F ) invv b2(xv) = 0 for all b2 ∈ B2

}
.
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If B ⊂ BrnrX, we let( ∏
v∈Val(F )

X(Fv)
)B
=

{
(xv) ∈

∏
v∈Val(F )

X(Fv) :
∑

v∈Val(F )

invv b(xv) = 0 for all b ∈ B
}
.

We say that the Brauer–Manin obstruction is the only obstruction to the Hasse princi-
ple and weak approximation for X if X(F) is dense in (

∏
v∈Val(F )X(Fv))

Brnr X. When
BrnrX/Br0X is finite, the Brauer–Manin obstruction is the only one to the Hasse prin-
ciple and weak approximation for X if and only if X(F) = X(AF )Brnr X.

2.3. Brauer–Severi schemes and their products

LetX be a smooth variety over a field k of characteristic zero. A Brauer–Severi scheme of
relative dimension n over X is a scheme Y over X which is étale locally on X isomorphic
to PnX. This corresponds to an element of H1(X,PGLn+1). Consider the exact sequence

H1(X,GLn+1)→ H1(X,PGLn+1)→ BrX (2.7)

of pointed sets. Denote by [Y ] the corresponding element of BrX. IfX is quasi-projective,
then a theorem of Gabber [31] states that every element of BrX is of the form [Y ] for some
Brauer–Severi scheme Y over X.

The exactness of (2.7) implies that [Y ] = 0 if and only if Y is Zariski locally on X
isomorphic to PnX. In particular, a Brauer–Severi variety over k has trivial class in Br k
if and only if it is isomorphic to Pnk , which occurs if and only if it has a rational point.
Hence the inclusion BrX ⊂ Br k(X) implies that [Y ] = 0 if and only if the morphism
Y → X has a rational section. In particular [Y ] ∈ Br1X if and only if Y → X admits a
rational section over k. Similar remarks apply to products of Brauer–Severi schemes. For
example, if Y = Y1 ×X · · · ×X Yr is a product of Brauer–Severi schemes over X, then
Y → X has a rational section if and only if [Yi] = 0 for each i = 1, . . . , r .

2.4. Proof of Theorem 1.2

We now begin the proof of Theorem 1.2 (assuming Theorem 1.1). Let π : Y → X and
U ⊂ X be as in Theorem 1.2. Let B ⊂ BrU denote the subgroup corresponding to the
product of Brauer–Severi schemes given by π−1(U)→ U . The remarks in the previous
section immediately imply that

N(U,H,B, B) = N(U,H, π,B),

in the notation of Theorems 1.1 and 1.2. Therefore to prove the result, it suffices to show
that 1X(B) = 1X(π). To do this we may work locally around each divisor, so we begin
with some results on schemes over discrete valuation rings. Throughout this section we
let R be a discrete valuation ring with field of fractions K and perfect residue field k. We
shall work with the following types of schemes.
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Definition 2.1. Let X be a finite type separated scheme over R. We say that X is almost
smooth over R if its generic fibre is smooth and the smooth locus Xsm of X over R is a
weak Néron model [9, Def. 3.5.1] for X, i.e., for any étale R-algebra R′, each R′-point
of X lies in the smooth locus Xsm of X.

We say that a scheme X over a normal scheme Y is almost smooth if it is almost
smooth over the local ring of every codimension one point of Y .

Examples of almost smooth schemes include smooth schemes and regular schemes (see
[9, p. 61]). The proof of the following result is based on the proof of [58, Lem. 3.8] (see
also [53, Lem. 1.1]). For an integral scheme X of finite type over k, we denote by kX the
algebraic closure of k in k(X), which is a finite field extension of k.

Lemma 2.2. Let πi : Xi → SpecR be flat proper almost smooth integral schemes
over R for i = 1, 2. Assume that the generic fibres of π1 and π2 are isomorphic. Then for
each irreducible component D1 of multiplicity one of the special fibre of π1 there exists
an irreducible component D2 of multiplicity one of the special fibre of π2 such that

kD2 ⊂ kD1 .

Choose such a component D1 (if it exists) for which [k : kD1 ] is minimal amongst the
irreducible components of multiplicity one of the special fibre of π1. Then there exists an
irreducible component D2 of multiplicity one of the special fibre of π2 such that

kD1
∼= kD2 as k-algebras.

Proof. Let d1 be the generic point of D1 and let R1 be the local ring at d1; this is a
discrete valuation ring by flatness. Let K1 = k(X1) be the field of fractions of R1. The
inclusion SpecK1 ↪→ X1 yields aK1-point ofX1, hence aK1-point ofX2 which extends
to a unique morphism f1 : SpecR1 → X2 by properness. Let c2 = f1(d1). Then the
residue field k(c2) of c2 embeds k-linearly in the residue field k(d1) of d1. Moreover
since R ⊂ R1 has ramification index one and π1 is almost smooth, we see that c2 lies
in the smooth locus of π2 (see [9, Lem. 3.6.5]). Hence c2 lies in a unique irreducible
component D2 of multiplicity one of the special fibre of π2. Let d2 denote the generic
point of D2. Note that the local rings of d2 and c2 have the same field of fractions and
moreover the local ring at c2 is integrally closed as it is a regular local ring. It follows
that kD2 embeds k-linearly into the local ring of c2 and we obtain a k-linear embedding
kD2 ↪→ k(c2). We have constructed a sequence of inclusions

k ⊂ kD2 ⊂ k(c2) ⊂ k(d1).

As k ⊂ kD2 has finite degree, we see that it lies inside the algebraic closure kD1 of k inside
k(d1) = k(D1), which proves the first part of the lemma. To prove the second part of the
lemma, choose some D2 such that kD2 ⊂ kD1 . Choose also an irreducible component D′1
of multiplicity one of the special fibre of π1 such that kD′1 ⊂ kD2 . As [kD′1 : k] ≥ [kD1 : k]

by assumption, we find that kD′1 = kD1 , and the result follows. ut

The next result, which is a simple application of the work of Artin [1] and Frossard [29],
shows the existence of particularly well-behaved almost smooth models for products of
Brauer–Severi schemes.
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Lemma 2.3. Let V = V1 ×K · · · ×K Vr be a product of Brauer–Severi varieties over K .
Then there exists a flat proper almost smooth integral scheme V → SpecR whose generic
fibre is isomorphic to V and whose special fibre is reduced, such that the algebraic closure
of k in the function field of each irreducible component of the special fibre is the composi-
tum of the cyclic field extensions determined by the residues ∂R([V1]), . . . , ∂R([Vr ]).

Proof. Artin [1, Thm. 1.4] has constructed regular flat proper integral schemes Vi →
SpecR whose generic fibres are isomorphic to Vi and whose special fibres are integral,
for each i = 1, . . . , r . Frossard [29, Prop. 2.3] has shown that the algebraic closure of k
inside the function field of the special fibre of Vi is exactly the cyclic field extension of k
determined by the residue ∂R([Vi]). We now take V = V1×R · · ·×R Vr . This is obviously
flat and proper over R and integral. Moreover, it is easy to see that it is almost smooth
and that the special fibre is reduced as k is perfect. The result therefore follows from the
fact that the tensor product of Galois field extensions is isomorphic to a direct power of
the compositum of those field extensions. ut

One cannot in general use the fact that the Vi are regular to deduce that V itself is regular
(regularity can fail to hold even for the fibre product of a conic bundle with itself). It is
for this reason that we have introduced the notion of “almost smooth”, as it allows us to
avoid the need to construct an explicit desingularisation of V .

Lemma 2.4. Let X be a smooth variety over a field k of characteristic zero. Let Y be an
integral scheme together with a proper surjective almost smooth morphism π : Y → X.
Suppose that the generic fibre of π is isomorphic to a product of Brauer–Severi varieties
V1, . . . , Vr over k(X). Then the fibre over each point of codimension one contains an
irreducible component of multiplicity one.

For each D ∈ X(1), choose an irreducible component D′ of π−1(D) of multiplicity
one such that [k(D)D′ : k(D)] is minimal amongst all irreducible components of π−1(D)

of multiplicity one. Then for any D ∈ X(1) we have

[k(D)D′ : k(D)] = |〈∂D(B)〉|, where B = {[V1], . . . , [Vr ]} ⊂ Br k(X).

Proof. To prove the result, we may work locally near each point D ∈ X(1). The result
therefore follows from applying Lemma 2.2 to the models given in Lemma 2.3. ut

This shows that 1X(π) = 1X(B), hence completes the proof of Theorem 1.2. ut

2.5. Proof of Theorem 1.3

We begin the proof of Theorem 1.3 with some results on Brauer–Severi schemes which
correspond to algebraic Brauer group elements.

Let U be a smooth variety over a field k of characteristic zero and let V =
V1 ×U · · · ×U Vr be a product of Brauer–Severi schemes over U , with [Vi] ∈ Br1 U

for each i. Fix a finite field extensionK of k such that [Vi]⊗kK = 0 ∈ BrUK for each i.
We define S to be the algebraic torus over k given by the exact sequence

1→ Grm → (RK/k Gm)
r
→ S → 1. (2.8)
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Note that S is rational since it may be embedded as an open subset of a product of pro-
jective spaces. Applying étale cohomology we obtain an exact sequence

(PicUK)r → H1(U, S)
δ
→ (BrU)r → (BrUK)r . (2.9)

Here we have used the isomorphisms Hj (U,RK/k Gm) ∼= Hj (UK ,Gm) for j = 1, 2,
from Shapiro’s lemma. As ([V1], . . . , [Vr ]) lies in the kernel of the last map in (2.9),
there exists a (non-unique) U -torsor W under S whose class [W ] ∈ H1(U, S) maps to
([V1], . . . , [Vr ]). The specialisation maps for the Vi and W are very closely related.

Lemma 2.5. Let k ⊂ L be a field extension and let u ∈ U(L). Then

[W ](u) = 0 ∈ H1(L, SL) if and only if ([V1](u), . . . , [Vr ](u)) = 0 ∈ (BrL)r .

Proof. The exact sequence (2.8) yields a commutative diagram with exact top row

0 = Pic(K ⊗k L)r // H1(L, SL)

��

// (BrL)r

��
H1(UL, SL) // (BrUL)r

The top right arrow maps W(u) to ([V1](u), . . . , [Vr ](u)), hence the result. ut

Next, recall that a variety V1 is said to be stably birational to a variety V2 if there exist n1
and n2 such that V1 × Pn1 is birational to V2 × Pn2 .

Lemma 2.6. V is stably birational to W .

Proof. Let η denote the generic point of U . As Vη has a k(Vη)-point, Lemma 2.5 implies
that Wη has a k(Vη)-point. However Wη is a k(U)-torsor under Sk(U), hence, since Sk(U)
is rational, we see that Wη ×k(U) k(Vη) is birational to Pw ×k(U) k(Vη) for some w ∈ N.
This implies thatWη×k(U) Vη is birational to Pw×k(U) Vη. As Vη is a product of Brauer–
Severi varieties, we may apply a similar argument to deduce thatWη×k(U)Vη is birational
to Wη ×k(U) Pv for some v ∈ N, which completes the proof. ut

We now specialise to the case where U is a principal homogeneous space under some
algebraic torus over k (keeping all previous notations).

Lemma 2.7. W is a principal homogeneous space under some algebraic torus.

Proof. As U and S are algebraic tori and W is a U -torsor under S, it follows from [20,
Thm. 5.6] that W admits the structure of an algebraic group together with a short exact
sequence

1→ S → W → U → 1. (2.10)

By (2.10), we see that W is solvable and contains no non-trivial unipotent elements.
Therefore by the structure theorem for solvable algebraic groups [8, Thm. III.10.6], we
see that W is a torus. The fact that this implies that W is itself a principal homogeneous
space under some algebraic torus is well-known: see e.g. [54, Lem. 2.4.4]. ut



Number of varieties which contain a rational point 2557

Now let k be a number field. It follows from [49] and Lemma 2.7 that the Brauer–Manin
obstruction is the only obstruction to the Hasse principle and weak approximation for
any smooth proper model of W . We deduce the same for V , on applying Lemma 2.6 and
a minor modification of [23, Prop. 6.1] (BrnrW/Br0W is finite as W is geometrically
rational [25, Prop. 1.3.1]). This completes the proof of Theorem 1.3. ut

2.6. Subordinate Brauer group elements

In the appendix of [51, Ch. II], Serre defined the notion of subordinate Brauer group
elements for P1. In this section, we consider generalisations of this to other varieties.
Such Brauer group elements naturally arise in the calculation of the leading constant in
Theorem 1.1, and also assist in the calculation of the unramified Brauer group of products
of Brauer–Severi schemes.

Definition 2.8. Let X be a smooth proper variety over a field k of characteristic zero and
let B ⊂ Br k(X) be a finite subset. Then we say that b ∈ Br k(X) is subordinate to B
with respect to X if for each D ∈ X(1) the residue ∂D(b) lies in 〈∂D(B)〉. Let

Sub(X,B) = {b ∈ Br k(X) : ∂D(b) ∈ 〈∂D(B)〉 for all D ∈ X(1)}

denote the group of all such elements.

By (2.3) this is a subgroup of BrU for any open subset U ⊂ X for which B ⊂ BrU .
Note that BrX = Sub(X, 0) is a subgroup of Sub(X,B) of finite index, as B is finite. It
is important to note that Sub(X,B) depends on the choice of model for k(X) in general,
as the next example shows.

Example 2.9. Consider A2
⊂ P2 and A2

⊂ P1
× P1 embedded as a usual affine patch

with coordinate functions x and y. Suppose that k contains a non-square α ∈ k∗. Let
b ∈ Br k(x, y) be the class of the quaternion algebra (xy, α). A simple residue calculation
shows that (x, α) is subordinate to b with respect to P1

× P1, but not with respect to P2.
In particular Sub(P2, b) 6= Sub(P1

× P1, b). In fact one can show that

Sub(P2, b) = 〈Br k, (xy, α)〉, Sub(P1
× P1, b) = 〈Br k, (x, α), (y, α)〉.

We therefore also consider another definition which does not depend on the model.

Definition 2.10. LetU be a smooth variety over k and let B ⊂ Br k(U) be a finite subset.
We say that an element b ∈ Br k(U) is subordinate to B with respect to k(U)/k if for
each discrete valuation v of k(U) which is trivial on k the residue ∂v(b) lies in 〈∂v(B)〉.
We let Sub(k(U)/k,B) denote the group of all such elements.

If k is clear, we shall denote this by Sub(k(U),B). If U = X is proper, then there is an
inclusion Sub(k(X),B) ⊂ Sub(X,B) and

BrnrX = Sub(k(X), 0) = Sub(X, 0) = BrX,

but however Sub(k(X),B) 6= Sub(X,B) in general, as Example 2.9 shows.
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As P1 is the unique smooth projective variety with function field k(t), we see that
for all finite subsets B ⊂ Br k(t) we have Sub(k(t),B) = Sub(P1,B). Colliot-Thélène
and Swinnerton-Dyer [25, Thm. 2.2.1] considered groups of this type in the case of P1. If
V1, . . . , Vr are Brauer–Severi varieties over k(t), then they showed that (in our notation)
there is a short exact sequence

0→ 〈B〉 → Sub(k(t),B)→ Brnr(k(V )/k)→ 0,

where B = {[V1], . . . , [Vr ]} ⊂ Br k(t) and V = V1 ×k(t) · · · ×k(t) Vr . Note that
Brnr(k(V )/k) is isomorphic to the Brauer group of any smooth proper model of V over k.
The following theorem is a generalisation of this result.

Theorem 2.11. Let U be a smooth variety over a field k of characteristic 0 and let
V1, . . . , Vr be a Brauer–Severi varieties over k(U). Let B = {[V1], . . . , [Vr ]} ⊂ Br k(U)
and V = V1 ×k(U) · · · ×k(U) Vr . Then the composed morphism

Sub(k(U),B) ⊂ Br k(U)→ BrV ⊂ Br k(U)(V ) = Br k(V )

has image Brnr(k(V )/k) and induces a short exact sequence

0→ 〈B〉 → Sub(k(U),B)→ Brnr(k(V )/k)→ 0. (2.11)
Proof. Our proof is based on the proof of [25, Thm. 2.2.1]. Let bi = [Vi]. A minor
modification of a classical theorem of Amitsur (see e.g. [32, Thm. 5.4.1]) yields a short
exact sequence

0→ 〈B〉 → Br k(U)
γ
→ BrV → 0, (2.12)

where γ denotes the usual restriction map. This shows that the sequence (2.11) is exact
on the left and in the middle. Fix some b ∈ Sub(k(U),B). We now show that γ (b) ∈
Brnr(k(V )/k). For all discrete valuation rings k ⊂ R with field of fractions k(U) and
each i = 1, . . . , r , there exists some mi,R ∈ Z such that

∂R(b) =

r∑
i=1

mi,R∂R(bi). (2.13)

Let k ⊂ R′ be a discrete valuation ring with field of fractions k(V ). If k(U) ⊂ R′, then
∂R′(γ (b)) = 0. Otherwise R = k(U) ∩ R′ is a discrete valuation ring containing k with
field of fractions k(U). Let e(R′/R) denote the ramification degree of R′ over R. As
γ (bi) = 0 for each i = 1, . . . , r by (2.12), we have

∂R′(γ (b)) = ∂R′(γ (b))−

r∑
i=1

mi,R∂R′(γ (bi)) = e(R
′/R)∂R

(
b −

r∑
i=1

mi,Rbi

)
= 0,

on using [25, Prop. 1.1.1] followed by (2.13). Hence γ (b) ∈ Brnr(k(V )/k).
To finish the proof, it suffices to show that Sub(k(U),B) → Brnr(k(V )/k) is sur-

jective. Note that (2.12) shows that every element of Brnr(k(V )/k) has the form γ (b) for
some b ∈ Br k(U). So let b ∈ Br k(U) and suppose that b 6∈ Sub(k(U),B), i.e. there ex-
ists a discrete valuation ring k ⊂ R with field of fractions k(U) such that ∂R(b) does
not lie in 〈∂R(B)〉. In order to show that γ (b) does not lie in Brnr(k(V )/k), it suf-
fices to construct a discrete valuation ring k ⊂ R′ with field of fractions k(V ) such that
∂R′(γ (b)) 6= 0. To do this, we shall use a model V → SpecR for V from Lemma 2.3. Let
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D denote one of the irreducible components of the special fibre of V and denote by R′

the corresponding discrete valuation ring. Let v (resp. v′) denote the discrete valuation
on R (resp. R′). Applying the residue maps to the exact sequence (2.12) we obtain a
commutative diagram

0 // 〈B〉 //

∂R

��

Br k(U)
γ //

∂R
��

BrV //

∂R′

��

0

0 // 〈∂R(B)〉 // H1(k(v),Q/Z) // H1(k(v′),Q/Z)

with exact rows. Here the map H1(k(v),Q/Z) → H1(k(v′),Q/Z) is the natural restric-
tion map as R ⊂ R′ has ramification index one, sinceD is integral (this follows from [25,
Prop. 1.1.1]). The exactness of the bottom row follows from a simple application of the
inflation-restriction exact sequence, on noting that by Lemma 2.3, the algebraic closure
of k(v) in k(v′) is exactly the compositum of the field extensions given by the ∂R(bi).
By assumption ∂R(b) does not lie in 〈∂R(B)〉, hence we see that ∂R′(γ (b)) 6= 0. This
completes the proof. ut

Next recall the following theorem of Harari [35, Thm. 2.1.1].

Theorem 2.12 (Harari). Let U be a smooth quasi-projective variety over a number
field F and let b ∈ BrU . Then b ∈ Brnr U if and only if the map U(Fv) → BrFv
induced by b is trivial for all but finitely many places v of F .

It is the “if” part of this theorem which is non-trivial; the “only if” part is classical, as
explained in Section 2.2. We now give a generalisation of Harari’s theorem to subordinate
Brauer group elements, which makes clear their relevance to the study of zero-loci of
Brauer group elements.

Theorem 2.13. Let U be a smooth quasi-projective variety over a number field F , let
B ⊂ BrU be a finite subset and let b ∈ BrU . Then b ∈ Sub(F (U),B) if and only if the
map U(Fv)B → BrFv induced by b is trivial for all but finitely many places v of F .
Proof. Let π : V → U be the product of Brauer–Severi schemes corresponding to the
elements of B. For any place v of F we have a commutative diagram

V (Fv)

��

// BrFv

U(Fv)B

::

given by pairing with π∗b and b, respectively. Note that, by definition, the map V (Fv)→
U(Fv)B is surjective. By Theorem 2.12 we have π∗b ∈ Brnr(F (V )/F ) if and only if the
evaluation map V (Fv)→ BrFv induced by π∗b is trivial for all but finitely many places
v of F . However by Theorem 2.11, we also know that π∗b ∈ Brnr(F (V )/F ) if and only
if b ∈ Sub(F (U),B). This proves the required equivalence. ut

We next show that under suitable conditions, Brauer group elements which are subordi-
nate to algebraic Brauer group elements are themselves algebraic.
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Lemma 2.14. Let X be a smooth proper variety over a field k of characteristic zero and
let U ⊂ X be a dense open subset. Let B ⊂ Br1 U be a finite subset and suppose that
BrX = 0. Then Sub(X,B) ⊂ Br1 U .

Proof. Let b ∈ Sub(X,B). As B ⊂ Br1 U , each element of B has trivial residues over k,
so the same holds for b = b⊗k k (this follows from [25, Prop. 1.1.1], for example). Hence
by purity b ∈ BrX = 0, as required. ut

We finish by giving some necessary conditions for the group Sub(X,B)/Br0X to be
finite.

Lemma 2.15. Let X be a smooth proper geometrically rational variety over a field k of
characteristic zero. Let B ⊂ Br k(X) be finite. Then Sub(X,B)/Br0X is finite.

Proof. As BrX ⊂ Sub(X,B) is a subgroup of finite index, it suffices to show that the
group BrX/Br0X is finite. This follows from the assumption that X is geometrically
rational (see e.g. [25, Prop. 1.3.1]). ut

Note that if U and V are as in Theorem 2.11 and U is geometrically rational, then
Lemma 2.15 implies that Brnr(k(V )/k)/Br0 V is finite.

3. Hecke L-functions and Delange’s Tauberian theorem

In this section we gather various analytic results on virtual L-functions and certain partial
Euler products which will arise in the proof of Theorem 1.1, together with a Tauberian
theorem due to Delange [27].

3.1. Hecke L-functions

Let F be a number field. Recall (see e.g. [17] or [57]) that a Hecke character for F is a
character A∗F → S1

⊂ C∗ which is trivial on F ∗ ⊂ A∗F . Each Hecke character χ may be
decomposed as a product of local characters χv : F ∗v → S1 for each place v of F . We
say that χ is unramified at v if the character χv is trivial on O∗v . Each Hecke character
has a conductor q(χ) ∈ N, which measures the ramification of χ at the finite places. The
L-function of χ is defined to be

L(χ, s) =
∏
v

(
1−

χv(πv)

qsv

)−1

,

where the Euler product is taken over those non-archimedean places v of F for which χv
is unramified. We denote by ζF (s) = L(1, s) the Dedekind zeta function of F .

These L-functions admit a meromorphic continuation to C, and are holomorphic if
χ is non-principal (we say that a Hecke character is principal if its restriction to the
collection A∗1F of norm one ideles is trivial). The principal characters are exactly those of
the form ‖ · ‖iθ for some θ ∈ R, where

‖ · ‖ : A∗F → S1, (tv) 7→
∏

v∈Val(F )

|tv|v,

is the adelic norm map, and L(‖ · ‖iθ , s) admits a single pole of order 1 at s = 1+ iθ .
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We now state bounds for the growth rate of Hecke L-functions. Let χ be a character
of
∏
v|∞ F

∗
v (e.g. χ could come from a Hecke character). Let v be an archimedean place

of F . Restricting χ to the obvious subgroup R>0 ⊂ F
∗
v (as F ∗v ∼= R∗ or C∗), we obtain

a continuous homomorphism R>0 → S1. Such a homomorphism must be of the form
x 7→ |x|iκv for some κv ∈ R. We then define

‖χ‖ = max
v|∞
|κv|. (3.1)

Lemma 3.1. Let ε > 0, let C be a compact subset of the half-plane Re s ≥ 1, and let χ
be a non-principal Hecke character of F . Then

L(χ, s)�ε,C q(χ)
ε(1+ ‖χ‖)ε, (s − 1)ζF (s)�ε,C 1, s ∈ C.

Proof. The first bound follows from [40, (5.20) p. 100]. The second is trivial. ut

Note that the non-trivial principal Hecke characters were overlooked in the statement of
[3, Thm. 3.2.3].

3.2. Analytic properties of certain partial Euler products

Let F be a number field and fix a finite group R of Hecke characters for F . For each
place v of F , let

þv : F
∗
v → {0, 1}, þv : tv 7→

{
1 if ρv(tv) = 1 for all ρ ∈ R,

0 otherwise,

be the indicator function of
⋂
ρ∈R ker ρv . By character orthogonality we have

þv =
1
|R|

∑
ρ∈R

ρv. (3.2)

Let χ be a Hecke character of F . The partial Euler product of interest to us is

LR(χ, s) =
∏
v

(
1−

þv(πv)χv(πv)
qsv

)−1

=

∏
v

ρv(πv)=1
∀ρv∈R

(
1−

χv(πv)

qsv

)−1

, (3.3)

where the products are taken over those non-archimedean places v ∈ Val(F ) for which
χv and ρv are unramified for all ρ ∈ R. Note that if R = {1} then we have L{1}(χ, s) =
L(χ, s). For general R, the right-hand Euler product in (3.3) is over a certain collection of
places of density 1/|R|. It is clear that the products in (3.3) are absolutely convergent for
Re s > 1 and define a holomorphic function without zeros on this domain. The analytic
properties of functions of this type have been studied by numerous authors (see e.g. [37]).
We shall content ourselves with the following.
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Lemma 3.2. Let ε > 0 and let χ be a Hecke character for F . Then there exists a function
G(R, χ, s) which is holomorphic, uniformly bounded with respect to χ and non-zero on
the domain Re s ≥ 1/2+ ε such that

LR(χ, s)
|R|
= G(R, χ, s)

∏
ρ∈R

L(ρχ, s) for Re s > 1.

If χ is not of the form ‖ · ‖iθρ for some θ ∈ R and some ρ ∈ R, then LR(χ, s)

admits a holomorphic continuation to the line Re s = 1. If ρ ∈ R, then LR(ρ, s) admits
a holomorphic continuation to the line Re s = 1, away from s = 1. Here we have

LR(ρ, s) =
cR,ρ

(s − 1)1/|R|
+O

(
1

(s − 1)1/|R|−1

)
, as s → 1,

where cR,ρ 6= 0.
Proof. To prove the first equality, it suffices to compare the Euler products. For Re s ≥
1/2+ ε and unramified v ∈ Val(F ), the Euler factor at v in the product of L-functions on
the right-hand side is∏

ρ∈R

(
1−

ρv(πv)χv(πv)

qsv

)−1

= 1+
χv(πv)

qsv

∑
ρ∈R

ρv(πv)+O(q
−1−ε
v ).

The first part therefore follows by (3.2). The second part of the lemma follows from
the analytic properties of the functions L(ρχ, s)1/|R|, which one obtains from the an-
alytic properties of Hecke L-functions stated in §3.1, together with the fact that Hecke
L-functions do not vanish for Re s ≥ 1 [40, Thm. 5.10] (the reader who is unfamiliar
with rational powers of L-functions is advised to consult [55, Ch. II.5.1]). ut

3.3. Delange’s Tauberian theorem

We now state the version of Delange’s Tauberian theorem which shall be used in the proof
of Theorem 1.1.

Theorem 3.3. Let f (s) =
∑
∞

n=1 an/n
s be a Dirichlet series with real non-negative coef-

ficients which converges for Re s > 1. Suppose that there exists some real number ω > 0
and some δ > 0 such that the function g(s) = f (s)(s − 1)ω admits an extension to an
infinitely differentiable function on the line Re s = 1 with g(1) 6= 0 and that

f (s) =
g(1)

(s − 1)ω
+O

(
1

(s − 1)ω−δ

)
, as s → 1.

Then ∑
n≤x

an ∼
g(1)
0(ω)

x(log x)ω−1, as x →∞.

Proof. This is almost the statement of [27, Thm. III], however there Delange assumes
moreover that f be holomorphic on the line Re s = 1. However the proof follows with
minor modifications to the proof of [27, Thm. III], as a standard application of the more
general Tauberian theorem [27, Thm. I]. The details are left to the reader (Delange takes
9(u) = 1 and the exact same proof works in our case on taking 9(u) = uδ−1.) ut
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4. Algebraic tori, toric varieties and their Brauer groups

In this section we gather various facts about algebraic tori and toric varieties over number
fields. The main results here are a description of algebraic Brauer groups of algebraic tori
over number fields and an analogue for subordinate Brauer group elements of a theorem
of Voskresenskiı̆ [56]. We finish by studying heights on toric varieties.

4.1. Algebraic tori over perfect fields

Let k be a perfect field. Recall that an algebraic torus over k is an algebraic group T over
k such that T = T ×k k is isomorphic to Gnm, for some n ∈ N. We denote by 1 ∈ T (k)
the identity element of T .

The category of algebraic tori is dual to the category of free Z-modules with contin-
uous Gk-action. This is given by associating to an algebraic torus T its character group
X∗(T ) = Hom(T ,Gm). Note that X∗(T ) = X∗(T )Gk is the collection of characters
of T which are defined over k. We denote by X∗(T ) = Hom(X∗(T ),Z) the collection of
cocharacters of T and also let X∗(T )R = X∗(T )⊗Z R and X∗(T )R = X∗(T )⊗Z R. The
splitting field of T is the fixed field of the kernel of the representationGk → GL(X∗(T ));
it is the smallest Galois extension of k over which T becomes isomorphic to Gnm.

4.2. Algebraic tori over number fields

The standard references for this section are the papers [45] and [46]. Many of the facts
presented here are natural generalisations of the case of Gm studied in Tate’s thesis [17,
Ch. XV].

4.2.1. The local points. Let T be an algebraic torus over a number field F . For any place
v of F we shall denote by T (Ov) the maximal compact subgroup of T (Fv). For non-
archimedean v, we have a bilinear pairing

T (Fv)×X
∗(Tv)→ Z, (t, m) 7→

log |m(t)|v
log qv

.

This pairing induces an exact sequence

0→ T (Ov)→ T (Fv)→ X∗(Tv). (4.1)

The image of T (Fv) → X∗(Tv) is open of finite index, and this map is surjective if v is
unramified in the splitting field of T . For archimedean v we have a similar pairing

T (Fv)×X
∗(Tv)R→ R, (t, m) 7→ log |m(t)|v,

which induces a short exact sequence

0→ T (Ov)→ T (Fv)→ X∗(Tv)R→ 0. (4.2)
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For archimedean v, the maps T (Fv)→ X∗(Tv)R and T (Fv)→ X∗(T )R admit canonical
sections. The section to the first map is constructed in [10, Lem. 2.18]. For the second
map, it suffices to construct a canonical section of the map X∗(Tv)R → X∗(T )R. This
may be given by the dual of the map

X∗(Tv)R→ X∗(T )R, m 7→
1
|0|

∑
γ∈0

mγ ,

where 0 is the Galois group of the splitting field of T . We also let T∞ =
∏
v|∞ Tv .

4.2.2. The adelic space. The local pairings give rise to an adelic pairing

T (AF )×X∗(T )R→ R, ((tv),m) 7→
∑

v∈Val(F )

log |m(t)|v
log qv

,

where we take log qv = 1 if v is archimedean. If we denote by T (AF )1 the left kernel of
this pairing, we have a short exact sequence

0→ T (AF )1 → T (AF )→ X∗(T )R→ 0. (4.3)

Under the diagonal embedding, T (F ) is a discrete and cocompact subgroup of T (AF )1.
The sequence (4.3) admits a splitting which is natural in the sense of category theory,
though a choice still needs to be made. As explained in the previous section, for v
archimedean we may canonically identify X∗(T )R with a subgroup of T (Fv). We there-
fore choose the section given by

X∗(T )R→ T (AF ), n 7→ (εvn/[F : Q])v|∞ × (1)v-∞,

where εv = 1 if v is real and εv = 2 is v is complex. This choice gives a functorial
isomorphism

T (AF ) ∼= T (AF )1 ×X∗(T )R. (4.4)

4.2.3. The Hasse principle and weak approximation. Let

X(T ) = ker
(

H1(F, T )→
∏

v∈Val(F )

H1(Fv, T )
)

denote the Tate–Shafarevich group of T . This is finite and Sansuc [49, Prop. 8.3] con-
structed a canonical isomorphism

X(T ) ∼= B(T )∼, (4.5)

where B(T ) is given by (2.6). Next let

A(T ) = T (AF )/T (F )
w
, (4.6)
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where T (F )
w

denotes the closure of T (F ) in T (AF )with respect to the product topology.
This is finite and by a theorem of Voskresenskiı̆ [56] (see also [49, Thm. 9.2]) there is a
short exact sequence

0→ B(T )→ Brnr T/BrF → A(T )∼→ 0, (4.7)

where B(T ) is given by (2.6). Here we have used the isomorphisms Brnr T/BrF ∼=
H1(F,PicX) ∼= Bra X, which hold for any smooth proper model X of T (see e.g. [49,
Lem. 6.3(iii)]).

4.2.4. Characters. Given a place v of F and a character χv of T (Fv), we shall say that χv
is unramified if it is trivial on T (Ov). We say that a character χ of T (AF ) is automorphic
if it is trivial on T (F ). Note that the automorphic characters of Gm(AF ) = A∗F are
exactly the Hecke characters of F . The canonical sections of the composition T (AF )→∏
v|∞ T (Fv)→ X∗(T∞)R explained in Section 4.2.1 give rise to a “type at infinity” map

T (AF )∧→ X∗(T∞)R. (4.8)

If we let KT =
∏
v∈Val(F ) T (Ov) ⊂ T (AF )1, then the splitting (4.4) induces a map(

T (AF )1/T (F )KT
)∧
→ X∗(T∞)R.

This has finite kernel and moreover its image is a lattice of codimension rankX∗(T ) [10,
Lem. 4.52] (this may be viewed as a generalisation of finiteness of the class number and
Dirichlet’s unit theorem).

4.2.5. The Haar measure and the Tamagawa number. Let ω be an invariant differential
form on T . By a classical construction (see e.g. [18, §2.1.7]), for each place v of F we
obtain a measure (denoted |ω|v) on T (Fv), which is a Haar measure on T (Fv). Let

µv = c
−1
v |ω|v, cv =

{
Lv(X

∗(T ), 1)−1, v non-archimedean,
1, v archimedean,

whereL(X∗(T ), s) is the associated ArtinL-function. The product of the µv converges to
yield a Haar measure µ on T (AF ) (see [45, §3.3]). By the product formula, this measure
is independent of the choice of ω. By the splitting (4.4) we obtain a Haar measure µ1

on T (AF )1, on equipping X∗(T )R with the unique Haar measure such that X∗(T ) ⊂
X∗(T )R has covolume one. Ono’s works [45, 46] imply that

vol(T (AF )1/T (F )) = L∗(X∗(T ), 1) ·
|Pic T |
|X(T )|

, (4.9)

where
L∗(X∗(T ), 1) = lim

s→1
(s − 1)rankX∗(T )L(X∗(T ), s).
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4.3. Algebraic Brauer groups of algebraic tori

4.3.1. Brauer groups over perfect fields. Let T be an algebraic torus over a perfect
field k. In this paper, we shall be particularly interested in the group

Bre T = {b ∈ Br1 T : b(1) = 0}. (4.10)

There are canonical isomorphisms Br1 T ∼= Br0 T ⊕ Bre T and Bre T ∼= Bra T .

Lemma 4.1. There are natural isomorphisms

Pic T ∼= H1(k,X∗(T )), Bre T ∼= H2(k,X∗(T )).

In particular Pic T is finite.

Proof. This is a standard application of the Hochshild–Serre spectral sequence (see e.g.
[49, Lem. 6.9(ii)]). ut

Our interest in Bre T stems from the following result of Sansuc, which is one of the key
reasons why we focus on algebraic Brauer group elements only in Theorem 1.1.

Lemma 4.2. The pairing

Bre T × T (k)→ Br k, (b, t) 7→ b(t),

is bilinear.

Proof. This is a special case of [49, Lem. 6.9]. ut

There is another description of this pairing which we shall need. Namely, as noted by
Sansuc [49, top of p. 65], we have a commutative diagram

Bre T

��

× T (k)

��

// Br k

H2(k,X∗(T )) × H0(k, T (k))
^ // H2(k, k

∗
)

(4.11)

where ^ denotes the cup product and the map Bre T → H2(k,X∗(T )) is the natural
isomorphism from Lemma 4.1.

4.3.2. Brauer groups over number fields. We now give a description of the algebraic
Brauer groups of tori over number fields and their completions, via the Brauer pairing.
We begin with an elementary lemma on Q/Z-duality and completions.

Lemma 4.3. Let G be a topological group. Assume that every element of G∼ has finite
order. Then the natural map

(Ĝ)∼→ G∼

is an isomorphism.

Proof. This follows from the observation that the map G → Ĝ has dense image and
induces a quotient-preserving bijection between the finite-index normal open subgroups
of G and Ĝ. ut



Number of varieties which contain a rational point 2567

The assumptions of Lemma 4.3 hold if G is Hausdorff and an extension of a compact
group by a finite rank Z- or R-module. In particular, let T be an algebraic torus over
a number field F . Then the sequences (4.1)–(4.3) imply that T (AF )/T (F ) and T (Fv)
satisfy the assumptions of Lemma 4.3 for all v ∈ Val(F ).

Theorem 4.4. For any place v of F , the bilinear pairing

Bre Tv × T (Fv)→ BrFv ⊂ Q/Z

induces an isomorphism
Bre Tv ∼= T (Fv)∼

of abelian groups.

Proof. It follows from local Tate duality that the pairing

H2(Fv, X
∗(T ))× T̂ (Fv)→ Q/Z

is perfect (see [44, Cor. I.2.4] for the non-archimedean case and [44, Thm. I.2.13] for the
archimedean case). In the light of (4.11), the result follows from Lemma 4.3. ut

Theorem 4.5. The pairing

Bre T × T (AF )→ Q/Z

is bilinear and induces a short exact sequence

0→ B(T )→ Bre T → (T (AF )/T (F ))∼→ 0,

where B(T ) is given by (2.6).

Proof. Bilinearity follows from applying Lemma 4.2 to the local pairings. To derive the
exact sequence, we shall use Nakayama duality [44, Cor. I.4.7]. Let

CF = lim
−→
F⊂E

A∗E/E
∗, T (CF ) = Hom(X∗(T ), CF ), G(T ) = H0(F, T (CF )).

Then Nakayama duality implies that the pairing

H2(F,X∗(T ))× Ĝ(T )→ Q/Z,

given by composing the cup product with the natural surjection H2(F, CF ) → Q/Z,
is perfect. Next, as the natural inclusion A∗F /F

∗
⊂ CF has Galois invariant image, we

deduce from (4.11) a commutative diagram

Bre T

��

× T (AF )/T (F )

��

// Q/Z

H2(F,X∗(T )) × G(T ) // Q/Z

(4.12)

Let us now use Lemma 4.3 to show that

(Ĝ(T ))∼ ∼= G(T )
∼. (4.13)
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To see this, note that T (AF )/T (F ) satisfies the assumptions of Lemma 4.3 and that
T (AF )/T (F ) is a closed subgroup of G(T ) of finite index (see [10, eq. (2.3.5)]). From
this it follows that G(T ) also satisfies the assumptions of Lemma 4.3, as required.

Combining (4.12) with (4.13), Nakayama duality and the fact that T (AF )/T (F ) ⊂
G(T ) is closed of finite index, we deduce that the map ε : Bre T → (T (AF )/T (F ))∼
is surjective. Next let b ∈ ker ε, so that its induced character of T (AF ) is trivial. Then
Theorem 4.4 implies that b ⊗ Fv = 0 for each v ∈ Val(F ), i.e. b ∈ B(T ). As clearly
B(T ) ⊂ ker ε, the result is proved. ut

Corollary 4.6. Suppose that T is rational. Then B(T ) = 0 and the Brauer pairing in-
duces an isomorphism

Bre T ∼= (T (AF )/T (F ))∼.

Proof. As B(T ) is a birational invariant [49, Lem. 6.1], we have B(T ) = B(PnF ) =
B(F ) = 0. The result then follows from Theorem 4.5. ut

4.4. Toric varieties

Let T be an algebraic torus over a perfect field k. In this paper a toric variety for T is a
smooth projective varietyX with a faithful action of T that has an open dense orbit which
contains a rational point. The complement of this orbit is a divisor, whose irreducible
components we call the boundary components of X. We follow the approach to toric
varieties taken in [19].

4.4.1. The boundary components. Fix a toric variety X for an algebraic torus T over
a number field F . Let A denote the set of boundary components of X and similarly
define A (resp. Av) to be the set of boundary components of X (resp. Xv for a place v
of F ). Given α ∈ A , we let Dα denote the corresponding irreducible divisor in X, we
define Fα = F ∩ F(Dα) ⊂ F(Dα) and let fα = [Fα : F ]. For α ∈ A and αv ∈ Av ,
we define Dα,Dαv , Fαv and fαv similarly. Given a place v of F , we say that an element
αv ∈ Av divides an element α ∈ A (written αv |α) if Dαv ⊂ Dα . Note that for v non-
archimedean and α ∈ A , there is a bijective correspondence between those αv ∈ Av such
that αv |α and those places w of Fα such that w | v. There is an isomorphism

ωX ∼=
⊗
α∈A

OX(−Dα), (4.14)

where ωX denotes the canonical bundle ofX (over C this is [26, Thm. 8.2.3], and a similar
proof works in our setting).

4.4.2. The Picard group and the Brauer group. Associated to each toric variety X, we
have the following fundamental short exact sequence of Galois modules (see e.g. [26,
Thm. 4.2.1]):

0→ X∗(T )→ ZA
→ PicX→ 0, (4.15)
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where ZA denotes the free abelian group generated by the elements of A . By duality for
tori, we deduce from (4.15) the following short exact sequence:

0→ TNS →
∏
α∈A

Tα → T → 0. (4.16)

Here TNS denotes the Néron–Severi torus ofX and Tα = RFα/F Gm is the Weil restriction
of Gm with respect to F ⊂ Fα . Given an element b ∈ Br T , we may pull it back to obtain
an element bα ∈ Br Tα . Also, for a character χ ∈ T (AF )∧ we denote by χα its image
in Tα(AF )∧. If χ is automorphic, then we will often identify χα with a Hecke character
of Fα via the canonical isomorphism Tα(AF ) = A∗Fα . Applying Galois cohomology to
(4.15) we obtain a long exact sequence, the first part of which reads

0→ X∗(T )→ ZA
→ PicX→ Pic T → 0. (4.17)

Here we have used the isomorphisms

PicX ∼= (PicX)GF , H1(F,X∗(T )) ∼= Pic T , H1(F,ZA ) = 0,

which follow from X(F) 6= ∅, Lemma 4.1, Shapiro’s lemma and H1(Fα,Z) = 0. Next
fix an equivariant embedding T ⊂ X and define

Bre X = {b ∈ Br1X : b(1) = 0}.

Then the long exact sequence associated to (4.15) continues as

0→ Bre X→ Bre T →
⊕
α∈A

Bre Tα, (4.18)

where we have used the isomorphism Bre T ∼= H2(F,X∗(T )) of Lemma 4.1 and the
isomorphism Bre X ∼= Bra X ∼= H1(F,PicX) of [49, Lem. 6.3(iii)].

4.4.3. Weak approximation. A result due to Voskresenskiı̆ [56] (see also [10, Prop. 2.34])
implies that the sequence (4.16) gives rise to an exact sequence∏

α∈A

Tα(AF )/Tα(F )→ T (AF )/T (F )→ A(T )→ 0, (4.19)

where A(T ) is given by (4.6). From this we obtain the following exact sequence:

0→ A(T )∧→ (T (AF )/T (F ))∧→
∏
α∈A

(Tα(AF )/Tα(F ))∧. (4.20)
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4.4.4. Purity. The Grothendieck purity sequence (2.3) here reads

0→ Br1X→ Br1 T →
⊕
α∈A

H1(Fα,Q/Z). (4.21)

Note that the sequences (4.18), (4.20) and (4.21) formally resemble each other. The
following lemma shows that these sequences are indeed compatible.

Lemma 4.7. The Brauer pairing yields a commutative diagram

0 // B(T ) //

��

Bre T //

��

(T (AF )/T (F ))∼

��

// 0

0 //⊕
α∈A Bre Tα // ∏

α∈A (Tα(AF )/Tα(F ))
∼ // 0

with exact rows. Moreover, the diagram

Bre T

��

//⊕
α∈A Bre Tα

��
Br1 T //⊕

α∈A H1(Fα,Q/Z)

commutes up to sign (the maps are explained in the proof ).

Proof. First note that each Tα is rational, being an open subset of affine space. Hence
the first commutative diagram follows from the functoriality of the Brauer pairing, Theo-
rem 4.5 and Corollary 4.6. In the second diagram, the top and bottom rows come from the
exact sequences (4.18) and (4.21) respectively. The maps between them are the obvious
inclusion combined with the isomorphism Bre Tα ∼= H2(F,X∗(Tα)) of Lemma 4.1 and
the isomorphism H2(F,X∗(Tα)) ∼= H1(Fα,Q/Z) given by Shapiro’s lemma and the def-
inition of Tα . The fact that this diagram commutes up to sign is proven in [49, Lem. 9.1].

ut

4.5. Subordinate Brauer group elements on algebraic tori

In this section we study subordinate Brauer group elements on algebraic tori (see §2.6
for definitions). Let T be an algebraic torus over a number field F and let X be a toric
variety for T together with a choice of an equivariant embedding T ⊂ X. Fix a finite
subset B ⊂ Br T . Let Sube(X,B) = Bre T ∩ Sub(X,B) and let Sube(F (T ),B) =
Bre T ∩ Sub(F (T ),B).

Our first result is an analogue for algebraic subordinate Brauer group elements of
the fact that the Brauer–Manin obstruction is the only obstruction to the Hasse principle
and weak approximation for T . To state this, let T (F )B denote the zero-locus of B
(see (2.2)), and let T (F )

w

B denote the closure of T (F )B in T (AF )B with respect to the
product topology.
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Theorem 4.8. Assume that B ⊂ Br1 T . Then

T (AF )Sub(F (T ),B)

B = T (F )
w

B . (4.22)

Moreover, there exists a finite set S of places of F such that

T (F )
w

B =

(
T (F )

w

B ∩
∏
v∈S

T (Fv)B

)
×

(
T (AF )B ∩

∏
v 6∈S

T (Fv)B

)
.

Proof. We shall prove the result using Theorem 1.3 and the tools developed in §2.6. First
note that by Theorem 2.13, the pairing

T (AF )B × Sub(F (T ),B)→ Q/Z

is continuous with respect to the product topology. Hence

T (F )
w

B ⊂ T (AF )
Sub(F (T ),B)

B . (4.23)

Let π : V → T be the product of Brauer–Severi schemes associated to B. Note that

π(V (F )) = T (F )B and π(V (AF )) = T (AF )B . (4.24)

Moreover, by Theorem 2.11 we know that the pull-back of Sub(F (T ),B) to V is exactly
Brnr V . Hence the functoriality of the Brauer pairing and (4.24) implies that

π(V (AF )Brnr V ) = T (AF )Sub(F (T ),B)

B . (4.25)

Next, by continuity and (4.24) we have π(V (F )
w
) ⊂ T (F )

w

B . However, by Theorem 1.3,
we know that V (F)

w
= V (AF )Brnr V . Combining this with (4.25) and (4.23) proves the

first part of the lemma. The second part then follows from (4.22), Theorem 2.13 and
Lemma 2.15. ut

Assume now that B ⊂ Bre T . Note that in the classical case where B = 0, the
group A(T ) has an alternative description given by (4.20). This description was cru-
cial in [3] when calculating the leading constant in the asymptotic formula (see the
proof of [3, Thm. 3.4.6]). For subordinate Brauer group elements, however, the analo-
gous group A(T ,B) = T (AF )B/T (F )

w

B does not play this rôle. To state the result let
R ⊂ (T (AF )/T (F ))∼ denote the collection of characters obtained from B via Theo-
rem 4.5. Let Bα ⊂ Bre Tα and Rα ⊂ (Tα(AF )/Tα(F ))∼ for α ∈ A denote the corre-
sponding elements obtained via pull-back in the sequence (4.16).

Theorem 4.9. Assume that B ⊂ Bre T . Let

C(T ,R) = {χ ∈ (T (AF )/T (F ))∧ : χα ∈ Rα for all α ∈ A }.

Then C(T ,R) is finite and the Brauer pairing induces a short exact sequence

0→ B(T )→ Sube(X,B)→ C(T ,R)→ 0.
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Proof. First note that, by (4.19), the image of the natural map∏
α∈A

Tα(AF )/Tα(F )→ T (AF )/T (F )

is closed of finite index. As each Rα is contained in (Tα(AF )/Tα(F ))∼, we deduce that
C(T ,R) ⊂ (T (AF )/T (F ))∼. Therefore, by Theorem 4.5, we know that C(T ,R) lies
in the image of the map ε : Bre T → (T (AF )/T (F ))∼. We claim that ε restricts to a
surjection Sube(X,B) → C(T ,R). Let b ∈ Bre T with corresponding character χ ∈
(T (AF )/T (F ))∼. Then Lemma 4.7 implies that

b ∈ Sube(X,B) ⇔ ∂Dα (b) ∈ 〈∂Dα (B)〉 for all α ∈ A

⇔ bα ∈ Bα for all α ∈ A

⇔ χα ∈ Rα for all α ∈ A

⇔ χ ∈ C(T ,R),

thus proving the claim. The finiteness of C(T ,R) therefore follows from Lemma 2.15.
The equality ker(Sube(X,B)→ C(T ,R)) = B(T ) now follows from Theorem 4.5. ut

Note that we recover (4.7) from Theorem 4.9 on taking B = 0 and using (4.20).

4.6. Heights

Let X be a projective variety over a number field F and let L be a line bundle on X. For
a place v ∈ Val(F ), a v-adic metric ‖ · ‖v on L is a continuously varying family of v-adic
norms on the fibres of L. An adelic metric on L is a collection ‖ · ‖ = (‖ · ‖v) of v-adic
metrics on L for each place v ∈ Val(F ), such that almost all of these v-adic metrics are
defined by a fixed model of X over OF (see e.g. [18]). We call the data L = (L, ‖ · ‖)

an adelically metrised line bundle. Given a rational point x ∈ X(F), we define the height
of x with respect to L to be

HL(x) =
∏

v∈Val(F )

‖`(x)‖−1
v ,

where ` is any local section of L defined at x such that `(x) 6= 0.

4.6.1. Heights on toric varieties. Now suppose that X is a toric variety for an algebraic
torus T with a fixed equivariant embedding T ⊂ X. We shall extend the previous con-
struction in two ways; namely we define the “height” of an adelic point and form a system
of complex height functions on every line bundle of T in a compatible manner. Choose
adelic metrics ‖ · ‖α on the line bundles OX(Dα) for each α ∈ A (see §4.4). Let dα
denote the global section of OX(Dα) corresponding to the divisorDα . We then define the
following local height pairing:

Hv : T (Fv)× CA
→ C∗, (tv; s) 7→

∏
α∈A

‖dα(tv)‖
−sα
α,v ,
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and also the following global height pairing:

H : T (AF )× CA
→ C∗, ((tv); s) 7→

∏
v∈Val(F )

Hv((tv); s).

Here we write s = (sα)α∈A . As an example, from (4.14) the adelic metrics on OX(Dα)

induce an adelic metric on ω−1
X , and on taking sα = s for each α ∈ A we have

H(t; (s)α∈A ) = Hω−1
X
(t)s,

for each t ∈ T (F ). Batyrev and Tschinkel [3, Def. 2.1.5] constructed “canonical” adelic
metrics on the line bundles OX(Dα). In this paper we shall focus on these adelic metrics,
as it greatly simplifies the harmonic analysis in the proof of Theorem 1.1. The key prop-
erty of these metrics is that the corresponding local height functions are T (Ov)-invariant
and trivial on T (Ov) for every place v of F [3, Thm. 2.16].

5. Counting functions associated to Brauer group elements

5.1. The set-up

We now begin the proof of Theorem 1.1. Throughout this section,X is a toric variety over
a number field F with respect to an algebraic torus T , with set of boundary components A
(see §4.4). We only specialise to the case where T is anisotropic just before we apply the
Poisson summation formula in §5.4.1. We fix a finite subgroup B ⊂ Br1 U of the open
dense orbit U ⊂ X such that U(F)B 6= ∅. We fix a choice of equivariant embedding
T ⊂ X such that 1 ∈ U(F)B . In particular we may identify B with a finite subgroup of
Bre T (see (4.10)). We also equip the line bundles OX(Dα) with the canonical Batyrev–
Tschinkel adelic metrics (see §4.6).

Let þ : T (F )→ {0, 1} be the indicator function of the zero-locus T (F )B of B. This
extends to a locally constant function (also denoted þ) on T (AF ), given as a product of
local indicator functions þv (see §2.2). Let R be the group of automorphic characters of
T (AF ) associated to B via Theorem 4.5. By character orthogonality we have

þv =
1
|R|

∑
ρ∈R

ρv, (5.1)

as þv is the indicator function for
⋂
ρ∈R ker ρv . Note that þ is not the indicator function of⋂

ρ∈R ker ρ ⊂ T (AF ) in general; indeed T (F ) ⊂
⋂
ρ∈R ker ρ, as each ρ is automorphic.

Using (4.16), we may pull back B to obtain a collection of Brauer group elements
Bα ∈ Bre Tα for each α ∈ A . Let þα : Tα(AF ) → {0, 1} denote the indicator function
of Tα(AF )Bα

. We denote the residue map associated to the divisor Dα by ∂α . We may
pull back characters χ of T (AF ) to obtain characters χα of Tα(AF ). For automorphic χ ,
we identify these with Hecke characters of Fα using the identification Tα(AF ) = A∗Fα .
We let Rα denote the collection of characters on Tα(AF ) induced by the Bα via Theo-
rem 4.5. These coincide with the pull-back of R to Tα(AF ), as the Brauer pairing is func-
torial. We identify those places of Fα which lie above a fixed non-archimedean place v
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of F with those elements αv ∈ Av such that αv |α. With respect to the identification
Tα(AF ) = A∗Fα , we may therefore write each þα (resp. χα) as a product of local fac-
tors þαv (resp. χαv ) for each place v of F and each αv |α.

We fix a finite set S ⊂ Val(F ) containing all archimedean places, all places which are
ramified in the splitting field of T , all places v for which ρv is ramified for some ρ ∈ R
and all places v for which vol(Ov) 6= 1 with respect to our Haar measure on Fv .

5.2. The height zeta function and the Poisson summation formula

Throughout, s = (sα) ∈ CA denotes a complex variable. Given c ∈ R, we write Re s > c

if s lies in the complex tube domain {s ∈ CA
: Re sα > c for all α ∈ A }. The generating

series for the rational points of interest is the following height zeta function:

Z(s) =
∑
t∈T (F )

þ(t)H(t;−s) =
∑

t∈T (F )B

H(t;−s). (5.2)

We shall often be able to reduce the study of this zeta function to the works of [3]
and [5]. For example since |þ(t)| ≤ 1 for each t ∈ T (F ), we deduce immediately from
[5, Thm. 4.2] that the sum in (5.2) converges absolutely on the tube domain Re s > 1, and
hence defines a holomorphic function on this domain.

The key tool in the study of Z(s) is the Poisson summation formula. Let f :
T (AF ) → C be a continuous function which is given as a product of local factors fv
such that fv(Ov) = 1 for almost all places v of F . We define the Fourier transform of a
character χ ∈ T (AF )∧ with respect to f to be

Ĥ (f, χ;−s) =
∫
T (AF )

f (t)χ(t)H(t;−s) dµ,

for those s ∈ CA for which the integral exists. Our assumptions on f imply that the
Fourier transform decomposes as a product of local Fourier transforms

Ĥ (f, χ;−s) =
∏

v∈Val(F )

Ĥv(fv, χv;−s),

where

Ĥv(fv, χv;−s) =
∫
T (Fv)

fv(tv)χv(tv)Hv(tv;−s) dµv.

A formal application of the Poisson summation formula (see [5, Thm. 4.4], [10, §3.5])
gives

Z(s) =
1

(2π)rankX∗(T ) vol(T (AF )1/T (F ))

∫
χ∈(T (AF )/T (F ))∧

Ĥ (þ, χ;−s) dχ. (5.3)

Note that T (AF ) = T (AF )1 when T is anisotropic by (4.3), hence T (AF )/T (F ) is
compact. Thus in this case (T (AF )/T (F ))∧ is discrete and therefore the above integral
is really a sum over characters.
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5.3. The local Fourier transforms

We begin by studying the local Fourier transforms. By (5.1), for any place v of F we have

Ĥv(þv, χv;−s) =
1
|R|

∑
ρ∈R

Ĥv(1, ρvχv;−s). (5.4)

We shall use this to reduce the study of the local Fourier transforms to the work of Batyrev
and Tschinkel [3, 5], which corresponds to the case R = 1.

Lemma 5.1. Let v ∈ Val(F ) and let ε > 0. Let χv be a character of T (Fv). Then the
local Fourier transform Ĥv(þv, χv;−s) converges absolutely and is uniformly bounded
(in terms of ε and v) on the tube domain Re s ≥ 1/2+ ε.

Proof. By (5.4) it suffices to prove the corresponding result for Ĥv(1, ρvχv;−s). This is
the content of [3, Rem. 2.2.8 and Prop. 2.3.2]. ut

We also show that the local Fourier transform of the trivial character does not vanish.

Lemma 5.2. Let v ∈ Val(F ). Then Ĥv(þv, 1;−s) is non-zero for any s ∈ RA
>1/2.

Proof. As þv is locally constant with þv(1) = 1 and T (Fv) is locally compact, there
exists a compact neighbourhood Cv of 1 such that þv(Cv) = 1. For s ∈ RA

>1/2, we have

Ĥv(þv, 1;−s) ≥
∫
Cv

Hv(tv;−s) dµv > 0. ut

5.3.1. The non-archimedean places. We now show that the height functions and þ are
well-behaved from a harmonic analysis perspective at the non-archimedean places.

Lemma 5.3. Let v ∈ Val(F ) be non-archimedean. Let Kv ⊂ T (Ov) be the maximal
subgroup for which Hv(·; −s) and þv are both Kv-invariant and trivial on Kv . Then Kv
is compact, open and of finite index. Moreover when v 6∈ S, one has Kv = T (Ov).

Proof. The result for þv follows from (5.1). The result for Hv(·; −s) follows from our
choice of height functions (see §4.6). ut

Lemma 5.4. Let v ∈ Val(F ) be non-archimedean and let χv be a character of T (Fv)
which is non-trivial on Kv . Then

Ĥv(þv, χv;−s) = 0.

Proof. Applying character orthogonality, we obtain

Ĥv(þv, χv;−s) =
∑

nv∈T (Fv)/Kv

þv(nv)χv(nv)Hv(nv;−s)
∫
Kv

χv(tv) dµv = 0. ut
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Remark 5.5. Lemma 5.4 plays a key rôle in showing the convergence of the Poisson
integral. This is an important part of the paper where we use the fact that our Brauer group
elements are algebraic, as the conclusion of Lemma 5.3 does not hold for transcendental
Brauer group elements in general. For example, consider the quaternion algebra (x, y)
on G2

m ⊂ A2 over Q. A simple Hilbert symbol computation shows that for p > 2, the
corresponding indicator function is (1+ pZp)2-invariant, but not (Z∗p × Z∗p)-invariant.

We now obtain more explicit information about the local Fourier transforms for places
not in S. In what follows, for s ∈ CA and αv ∈ Av , the symbol sαv denotes the complex
number sα , where α ∈ A is the unique element such that αv |α (see §4.4).

Lemma 5.6. Let ε > 0, let v 6∈ S be a place of F and let χv be an unramified character
of T (Fv). Then on the tube domain Re s ≥ 1/2+ ε we have

Ĥv(þv, χv;−s) =
∏
αv∈Av

(
1−

þαv (παv )χαv (παv )

q
fαv sαv
v

)−1(
1+Oε

(
1

q1+ε
v

))
.

Proof. The proof of [3, Thm. 3.1.3] shows that

Ĥv(1, χv;−s) =
∏
αv∈Av

(
1−

χαv (παv )

q
fαv sαv
v

)−1(
1+Oε

(
1

q1+ε
v

))
.

Combining this with (5.4) we obtain

Ĥv(þv, χv;−s) = 1+
1
|R|

∑
ρ∈R

∑
αv∈Av

ραv (παv )χαv (παv )

q
fαv sαv
v

+Oε

(
1

q1+ε
v

)
.

The result then follows from character orthogonality, which implies that

1
|R|

∑
ρ∈R

ραv (παv ) = þαv (πv). ut

5.3.2. The archimedean places. If v ∈ Val(F ) is archimedean, then þv is very easy to
describe. Namely, if v is complex then þv = 1 as BrC = 0. If v is real, then it is well-
known that we have an isomorphism

T (Fv) ∼= (R∗)r1 × (R>0)
r2 × (S1)r3

of topological groups, for some r1, r2, r3 ≥ 0. On noting that þv is locally constant and
using (5.1), we see that þv is simply the indicator function of an open and closed sub-
group of T (Fv) whose index divides 2r1 . These remarks easily allow us to prove the
archimedean analogues of Lemmas 5.3 and 5.4.

Lemma 5.7. Let v ∈ Val(F ) be archimedean and let Kv ⊂ T (Ov) be the maximal
subgroup for which Hv(·; −s) and þv are both Kv-invariant and trivial on Kv . Then Kv
is compact, open and of finite index.
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Proof. The required property for Hv(·; −s) follows as we are using the Batyrev–
Tschinkel height (see §4.6). The statement for þv follows from the above remarks. ut

Lemma 5.8. Let v ∈ Val(F ) be archimedean and let χv be a character of T (Fv) which
is non-trivial on Kv . Then

Ĥv(þv, χv;−s) = 0.

Proof. EquipKv with a Haar measure κv and denote by µv the induced quotient measure
on T (Fv)/Kv . Then we have

Ĥv(þv, χv;−s) =
∫
nv∈T (Fv)/Kv

þv(nv)χv(nv)Hv(nv;−s) dµv

∫
Kv

χv(tv) dκv = 0. ut

The following will be used to handle the sum appearing in the Poisson formula (5.3).

Lemma 5.9. Choose an R-vector space norm ‖ · ‖ on X∗(T∞)R and let L ⊂ X∗(T∞)R
be a lattice. Let C be a compact subset of Re s ≥ 1 and let g : X∗(T∞)R × C → C be a
function. Suppose there exists some 0 ≤ δ < 1/dimX such that

|g(ψ, s)| �C (1+ ‖ψ‖)δ

for all ψ ∈ X∗(T∞)R and all s ∈ C. Then the sum∑
ψ∈L

g(ψ, s)
∏
v|∞

Ĥv(þv, ψv;−s)

is absolutely and uniformly convergent on C, where we write ψ = (ψv)v|∞.

Proof. By (5.4) we obtain similar bounds for Ĥv(þv, ψv;−s) to those given in [3, Prop.
2.3.2]. Hence the result follows from [3, Cor. 2.3.4]. ut

5.4. The global Fourier transform

We now move to the global Fourier transforms. We shall relate these to the partial Euler
products considered in §3.2.

Lemma 5.10. Let ε > 0 and let χ be an automorphic character of T (AF ). Then there
exists a function ϕ(χ; s) which is holomorphic and uniformly bounded with respect to χ
on Re s ≥ 1/2+ ε, such that

Ĥ (þ, χ;−s) =
∏
v|∞

Ĥv(þv, χv;−s)
∏
α∈A

LRα
(χα, sα)ϕ(χ; s) for Re s > 1.

Proof. Recalling the definition of the partial Euler product (3.3), this follows from Lem-
ma 5.1, Lemma 5.6 and the fact that for non-archimedean places v, we have identified
those elements αv |α with those places w of Fα such that w | v. ut
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5.4.1. The anisotropic case. So far, all our arguments have applied to arbitrary tori. From
now on we assume that T is anisotropic. We also restrict to the complex line s = (s)α∈A
in CA . As explained in §4.6, the resulting height function H(·; −s) is a complex power
of the anticanonical height function.

Lemma 5.11. Let χ be an automorphic character of T (AF ). Then Ĥ (þ, χ;−s) admits
a holomorphic continuation to the line Re s = 1, apart from possibly at s = 1. Here

Ĥ (þ, χ;−s) =
∏
α∈A
χα∈Rα

(
cR,χ,α

(s − 1)1/|Rα |
+O

(
1

(s − 1)1/|Rα |−1

))
, as s → 1,

for some constants cR,χ,α which are non-zero if χ = 1.

Proof. By Lemmas 5.1 and 5.10, it suffices to study the partial Euler products
LRα

(χα, s). By Lemma 3.2, we know that LRα
(χα, s) has a singularity on the line

Re s = 1 if and only if χα = mαρα for some ρα ∈ Rα and some mα ∈ X∗(Tα)R.
As T is anisotropic however, we have X∗(T ) = 0. It follows from the functorial isomor-
phism (4.4) that for any such character we have mα = 0, in particular χα ∈ Rα . Hence
Lemma 3.2 implies that the singularity of LRα

(χα, s) occurs at s = 1. The non-vanishing
of the constants cR,1,α follows from Lemmas 3.2 and 5.2. ut

5.5. The asymptotic formula

We now apply the Poisson formula (5.3) to obtain the following.

Theorem 5.12. Let
�(s) = Z(s)(s − 1)

∑
α∈A 1/|Rα |.

Then �(s) admits an extension to an infinitely differentiable function on Re s ≥ 1. More-
over we have

Z(s) = �(1)(s − 1)−
∑
α∈A 1/|Rα | +O

(
(s − 1)1−

∑
α∈A 1/|Rα |

)
, as s → 1.

Proof. As T is anisotropic, the Poisson formula (5.3) reads

Z(s) =
1

vol(T (AF )/T (F ))

∑
χ∈(T (AF )/T (F ))∧

Ĥ (þ, χ;−s). (5.5)

To show that the application of the Poisson formula is valid, we shall use the criterion
given by Bourqui [10, Cor. 3.36]: it suffices to show that the sum in (5.5) is absolutely
convergent for Re s > 1, and that there exists an open neighbourhood � ⊂ T (AF ) of the
origin and strictly positive constants C1 and C2 such that for all ω ∈ � and all t ∈ T (AF )
we have

C1|þ(t)H(t;−s)| ≤ |þ(ωt)H(ωt;−s)| ≤ C2|þ(t)H(t;−s)|. (5.6)

We take�v = Kv for v non-archimedean, so that þ(ωvtv)H(ωvtv;−s) = þ(tv)H(tv;−s)
for all ωv ∈ �v and all tv ∈ T (Fv), by Lemma 5.3. For archimedean v, we take �v
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to be the intersection of T (Fv)B with the inverse image in T (Fv) of an open ball in
X∗(Tv). By (5.1) we see that �v is open and that þ(ωvtv) = þ(tv) for all ωv ∈ �v and
all tv ∈ T (Fv). Hence on taking � =

∏
v∈Val(F )�v , the claim (5.6) follows as in [10,

Lem. 3.22, Lem. 3.23].
For absolute convergence on Re s > 1, let A =

∑
α∈A 1/|Rα|. We will show the

stronger claim that the sum ∑
χ∈(T (AF )/T (F ))∧

Ĥ (þ, χ;−s)(s − 1)A (5.7)

is absolutely and uniformly convergent on any compact subset C of the half-plane
Re s ≥ 1. This will show the validity of (5.5) and, on applying Lemma 5.11, also complete
the proof of the theorem.

Let K =
∏
v∈Val(F )Kv and denote by U the group of automorphic characters of T

which are trivial on K . Note that by Lemmas 5.4 and 5.8, the sum in (5.7) may be taken
only over those characters which lie in U . As K ⊂ KT is a subgroup of finite index, it
follows that the type at infinity map (4.8) yields a homomorphism

U → X∗(T∞)R, χ 7→ χ∞,

which has finite kernel K and whose image L is a lattice of full rank. We obtain∑
χ∈U

Ĥ (þ, χ;−s)(s− 1)A =
∑
ψ∈L

∏
v|∞

Ĥv(þv, ψv;−s)
∑
χ∈U
χ∞=ψ

∏
v-∞

Ĥv(þv, χv;−s)(s− 1)A.

Therefore by Lemma 5.10, for s ∈ C we have∑
χ∈U

Ĥ (þ, χ;−s)(s−1)A �
∑
ψ∈L

∏
v|∞

|Ĥv(þv, ψv;−s)|
∑
χ∈U
χ∞=ψ

∏
α∈A

|LRα
(χα, s)(s−1)A|.

As K ⊂ KT has finite index, there exists Q > 0 such that q(χα) < Q for all χ ∈ U
and all α ∈ A . Therefore Lemmas 3.1 and 3.2 and the finiteness of K imply that for any
ε > 0 and s ∈ C we have∑

χ∈U
χ∞=ψ

∏
α∈A

|LRα
(χα, s)(s − 1)A| �ε,C |K| ·Qε

·

(
1+ max

α∈A
‖ψα‖

)ε

for each ψ ∈ L. Here (ψα) denotes the image of ψ under the map X∗(T∞) →∏
α∈A X∗(Tα,∞) and ‖ψα‖ is defined as in (3.1). The result therefore follows from

Lemma 5.9. ut

Remark 5.13. We are unable to prove that Z(s) admits a holomorphic extension to the
line Re s = 1, away from s = 1. To get such a result one requires uniform zero-free
regions for Hecke L-functions, in order to obtain uniform holomorphic continuations of
the partial Euler products. The generalised Riemann hypothesis would show that Z(s)
admits a holomorphic continuation to a half-plane Re s > 1 − δ, away from the branch
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cut at s = 1. Unfortunately, current zero-free regions for Hecke L-functions (see [40,
Thm. 5.10]) approach the line Re s = 1 as one varies the infinity type of the character.
Hence it does not seem possible with current technology to obtain any kind of continua-
tion of Z(s) in the half-plane Re s < 1.

In order to apply Theorem 3.3 to deduce Theorem 1.1, we need to know that

�(1) = lim
s→1

Z(s)(s − 1)
∑

α∈A 1/|Rα | 6= 0. (5.8)

It should be emphasised that (5.8) does not follow from what we have shown so far; since
more than one character may give rise to the singularity of highest order, it is theoretically
possible that cancellation may occur. We postpone the proof of (5.8) for now. As T is
anisotropic, by (4.17) we have #A = ρ(X). Lemma 4.7 also implies that

|Rα| = |∂α(B)| for all α ∈ A .

Hence we deduce that ∑
α∈A

1
|Rα|

= ρ(X)−1X(B), (5.9)

where1X(B) is as in Theorem 1.1. Therefore assuming (5.8), we may apply Theorem 3.3
and use Theorem 5.12 to find that

N(T ,H,B, B)∼
�(1)

0(ρ(X)−1X(B))
B(logB)ρ(X)−1X(B)−1, as B→∞, (5.10)

as required for Theorem 1.1.

5.6. Non-vanishing of the leading constant

We now verify (5.8). It is here where subordinate Brauer group elements appear, and
hopefully it should soon become clear to the reader that the study performed earlier in
§2.6 and §4.5 was worth the effort.

By Lemma 5.11, the characters which give rise to the singularity of Z(s) of highest
order are exactly the finite collection C(T ,R), as defined in Theorem 4.9. Given (5.5),
applying Theorem 4.9 we see that we need to consider the sum∑

χ∈Sube(X,B)/B(T )

Ĥ (þ, χ;−s).

Note that it follows from character orthogonality that∑
χ∈Sube(X,B)/B(T )

Ĥ (þ, χ;−s) =
|Sube(X,B)|
|B(T )|

∫
T (AF )

Sub(X,B)
B

H(t;−s) dµ.

Therefore in order to show (5.8), by (5.9) it suffices to prove that

lim
s→1

(s − 1)ρ(X)−1X(B)

∫
T (AF )

Sub(X,B)
B

H(t;−s) dµ 6= 0. (5.11)
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If Sub(X,B) 6= Sub(F (X),B), then Theorem 2.13 implies that T (AF )Sub(X,B)

B ⊂

T (AF )B is neither open nor closed for the product topology and can be quite compli-
cated. Therefore rather than dealing with it directly, we shall show that the analogue of
(5.11) holds for a certain subspace.

Lemma 5.14. The limit

lim
s→1

(s − 1)ρ(X)−1X(B)

∫
T (AF )Sube(X,B)

H(t;−s) dµ

exists and is non-zero.

Proof. First note that T (AF )Sube(X,B) 6= ∅: indeed, 1 ∈ T (AF )Sube(X,B) as b(1) = 0 for
all b ∈ Sube(X,B), by definition. Moreover Sube(X,B) is finite by Lemma 2.15. The
integral in the lemma is simply the Fourier transform Ĥ (þSube(X,B), 1;−s), so applying
Lemma 5.11 and (5.9) to Sube(X,B) we deduce that

lim
s→1

(s − 1)ρ(X)−1X(Sube(X,B))

∫
T (AF )Sube(X,B)

H(t;−s) dµ 6= 0.

The lemma is proved on noting that 1X(Sube(X,B)) = 1X(B), since by definition
Sube(X,B) generates the same group of residues as B. ut

As B ⊂ Sube(X,B), we obviously have T (AF )Sube(X,B) ⊂ T (AF )
Sub(X,B)

B . Hence for
σ ∈ R>1 we obtain

lim
σ→1+

(σ − 1)ρ(X)−1X(B)

∫
T (AF )

Sub(X,B)
B

H(t;−σ) dµ

≥ lim
σ→1+

(σ − 1)ρ(X)−1X(B)

∫
T (AF )Sube(X,B)

H(t;−σ) dµ,

and this latter limit is non-zero by Lemma 5.14. This shows (5.11) and hence (5.8), which
completes the proof of Theorem 1.1. ut

5.7. Calculation of the leading constant

We now calculate the leading constant in Theorem 1.1. Peyre [47] has formulated a con-
jectural expression for the leading constant in the classical case of Manin’s conjecture
where B = 0. This expression was confirmed for anisotropic tori [3, Cor. 3.4.7] and
takes the shape

α(X)β(X)τ(X)

(ρ(X)− 1)!
. (5.12)

Here α(X) is a certain rational number defined in terms of the cone of effective divisors
of X. For anisotropic tori we have α(X) = 1/|Pic T | by [3, Ex. 2.4.9]. Also β(X) =
|BrX/BrF | and τ(X) is the Tamagawa number of X, defined as the volume of X(F)
insideX(AF )with respect to a certain Tamagawa measure (the factor β(X) first appeared
in [3]). In what follows the reader should keep the expression (5.12) in mind, as the
expression which we will derive shall bear a striking resemblance to it.
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5.7.1. Virtual Artin L-functions. To deal with the leading constant, we shall use the for-
malism of virtual Artin L-functions. For a number field F , a virtual Artin representation
over F is a formal finite sum V =

∑n
i=1 ziVi where zi ∈ C and the Vi are Artin rep-

resentations. We define rankV =
∑n
i=1 zi rankVi and let VGF =

∑n
i=1 ziV

GF
i . The

L-function of V is defined to be

L(V, s) =

n∏
i=1

L(Vi, s)
zi ,

where L(Vi, s) is the usual Artin L-function associated to Vi (see [40, Ch. 5.13]). Note
that L(V, s) is not an L-function in the traditional sense (as in [40, §5]), as in general it
does not admit a meromorphic continuation to C. However, standard properties of Artin
L-functions imply that L(V, s) admits a holomorphic continuation with no zeros to the
region Re s ≥ 1, apart from possibly at s = 1 (the reader who is unfamiliar with complex
powers of L-functions is advised to consult [55, Ch. II.5.1]). We have

L(V, s) =
cV

(s − 1)r
+O

(
1

(s − 1)r−1

)
, as s → 1,

where r = rankVGF and cV 6= 0. In this notation we shall write

L∗(V , 1) = cV .

5.7.2. A Tamagawa measure. We now define a Tamagawa measure, which may be
viewed as a generalisation of Peyre’s Tamagawa measure [47] to our setting. This measure
is closely related to the measure constructed in §4.2.5, though here we choose different
convergence factors and also take into account the adelic metric on ωX.

Let ω be an invariant differential form on T . For any place v of F , we define the
associated local Tamagawa measure to be

τv = |ω|v/‖ω‖v.

This definition is independent of the choice of ω, though depends on the choice of adelic
metric on ωX. Recalling the construction of µv given in §4.2.5, we see that

τv =
cv · µv

Hv(·)
. (5.13)

In particular we have

τv(T (Fv)) = cv · Ĥv(1, 1;−1), τv(T (Fv)B) = cv · Ĥv(þv, 1;−1). (5.14)

For the convergence factors, consider the following virtual Artin representation:

PicB(X)C = Pic(X)C −
∑
α∈A

(
1−

1
|∂α(B)|

)
IndFFα C. (5.15)

Here Pic(X)C = Pic(X) ⊗Z C and IndFFα denotes the induced representation. Note

that when B = 0, then (5.15) is simply Pic(X)C. Next let PicB(X)C = PicB(X)
GF
C .
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By (4.15), we may write the corresponding virtual Artin L-function as

L(PicB(X)C, s) =
L(Pic(X)C, s)∏

α∈A ζFα (s)
(1−1/|∂α(B)|)

=

∏
α∈A ζFα (s)

1/|∂α(B)|

L(X∗(T )C, s)
. (5.16)

For each place v ∈ Val(F ) we define

λv =

{
Lv(PicB(X)C, 1), v non-archimedean,
1, v archimedean.

In the light of (5.14), Lemma 5.11 implies that these are a family of convergence factors,
i.e. the measure

∏
v λ
−1
v τv converges to a measure on T (AF )B . We define the Tamagawa

measure on T (AF )B associated to B to be

τB = L
∗(PicB(X)C, 1)

∏
v∈Val(F )

λ−1
v τv. (5.17)

Note that we have not included a discriminant factor as in Peyre [47, Def. 2.1], since we
have normalised our Haar measure on AF so that vol(AF /F ) = 1.

5.7.3. The leading constant. We now calculate the leading constant in Theorem 1.1.

Theorem 5.15. Under the same assumptions of Theorem 1.1 we have

N(U,H,B, B) ∼ cX,B,HB(logB)ρB(X)−1, as B →∞,

where ρB(X) = rank PicB(X)C and

cX,B,H =
α(X) · |Sub(X,B)/BrF | · τB

(
T (AF )Sub(X,B)

B

)
0(ρB(X))

.

Proof. The above asymptotic formula follows from inserting the definition (5.15) of
PicB(X)C into Theorem 1.1. For cX,B,H , first note that as T is anisotropic, we see that
L(X∗(T ), s) is holomorphic and non-zero on the half-plane Re s ≥ 1. By (5.5), (5.10)
and the work in §5.6, the leading constant cX,B,H is non-zero and takes the form

|Sube(X,B)|
0(ρB(X)) vol(T (AF )/T (F ))|B(T )|

lim
s→1

(s−1)ρ(X)−1X(B)

∫
T (AF )

Sub(X,B)
B

H(t;−s) dµ.

Therefore, on using (5.13), (5.16) and (5.17) we see that

lim
s→1

(s − 1)ρ(X)−1X(B)

∫
T (AF )

Sub(X,B)
B

H(t;−s) dµ

= lim
s→1

(s − 1)ρB(X)L(PicB(X)C, s)

L(PicB(X)C, s)

∫
T (AF )

Sub(X,B)
B

dµ
H(t)s

= L(X∗(T ), 1)

× lim
s→1

(s − 1)ρB(X) L(PicB(X)C, s)∏
α∈A ζFα (s)

1/|∂α(B)|

∫
T (AF )

Sub(X,B)
B

∏
v

Lv(X
∗(T ), 1) dτv

Hv(tv)s−1

= L(X∗(T ), 1)τB
(
T (AF )Sub(X,B)

B

)
.
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Sansuc’s duality (4.5), Ono’s formula (4.9) and the equality α(X) = 1/|Pic T | (see [3,
Ex. 2.4.9]) now imply the result. ut

5.7.4. The case where Sub(X,B) = Sub(F (X),B). If Sub(X,B) 6= Sub(F (X),B),
then Theorem 2.13 implies that T (AF )Sub(X,B)

B can be quite complicated. In particular,
the volume appearing in Theorem 5.15 can be difficult to calculate in general. When this
equality holds however, the leading constant takes a more pleasing form.

Lemma 5.16. Suppose that Sub(X,B) = Sub(F (X),B). Let V = V1 ×T · · · ×T Vr be
a product of Brauer–Severi schemes over T such that 〈[V1], . . . , [Vr ]〉 = B. Then

cX,B,H =
α(X) · |B| · |Brnr(F (V )/F )/BrF | · τB(T (F )

w

B)

0(ρB(X))
,

where T (F )
w

B denotes the closure of T (F )B in T (AF )B for the product topology.

Proof. Theorem 4.8 implies that T (AF )Sub(F (X),B)

B = T (F )
w

B , whereas the equality

|Sub(F (X),B)/BrF | = |B| · |Brnr(F (V )/F )/BrF |

follows from Theorem 2.11. Combining these, we obtain the result. ut

Theorem 4.8 implies that there exists a finite subset S ⊂ Val(F ) such that

τB(T (F )
w

B) = L
∗(PicB(X)C, 1)

∏
v∈S

τv

(
T (F )

w

B ∩
∏
v∈S

T (Fv)B

)∏
v 6∈S

τv(T (Fv)B).

Hence τB(T (F )
w

B) is a product of “local densities” over almost all places, together with
a factor which measures the failure of weak approximation for V (in the classical case the
corresponding factor measures the failure of weak approximation for T itself).

5.7.5. The case where B ⊂ BrX. We finish with the special case where B ⊂ BrX (in
the notation of Theorem 1.1). Note that Br1X = BrX asX is smooth projective and geo-
metrically rational. Here1X(B) = 0, in particular Sub(X,B) = Sub(F (X),B) = BrX
and the measure τB is the Tamagawa measure τ defined by Peyre [47]. The asymptotic
formula in Theorem 1.1 now has the same order of magnitude as in Manin’s conjecture,
so one may wonder how the constant cX,B,H compares with cX,H,Peyre. In such cases, a
simple application of Theorem 5.15 yields

lim
B→∞

N(U,H,B, B)

N(U,H,B)
=
τ(X(AF )BrX

B )

τ (X(AF )BrX)
. (5.18)

Note however that (5.18) does not require the full force of Theorem 5.15: it follows from
Theorem 1.6 and holds for toric varieties with respect to not necessarily anisotropic tori,
as explained in Section 1.3.

We give two types of phenomenon that occur for toric varieties which cannot occur in
the case of projective space considered by Serre [50]. Namely, letU ⊂ Pn be a non-empty
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open and let B ⊂ BrU be a finite subgroup. We claim that

lim
B→∞

N(U,H,B, B)

N(U,H,B)
=

{
1, B = 0,
0, B 6= 0.

(5.19)

If B = 0, this is clear. Otherwise, there are two cases. Either B contains a non-trivial
constant Brauer class, in which case U(F)B = ∅, or B contains a ramified Brauer class.
In this latter case when F = Q and #B = 2 the vanishing (5.19) follows from [50,
Thm. 2]; the result for general F and B follows from [43, Thm. 2.4].

For toric varieties however, we obtain a much wider range of behaviour than (5.19),
as (5.18) and following lemma demonstrate.

Lemma 5.17. (1) There exist T and B ⊂ BrX over F with B 6= 0 such that

τ(X(AF )BrX
B )

τ (X(AF )BrX)
= 1.

(2) There exist T and B ⊂ BrX over F such that

0 <
τ(X(AF )BrX

B )

τ (X(AF )BrX)
< 1.

Proof. For the proof, we use the well-known fact that any torus T over any field admits a
smooth projective equivariant compactification X (see [22, Cor. 1]).

For (1), choose T such that B(T ) 6= 0 and take B = B(T ). We have B ⊂ BrX by
(4.7). Note that by (4.5), the condition B(T ) 6= 0 is equivalent to X(T ) 6= 0. This occurs,
for example, for the norm one torus over Q for the field extension Q(

√
13,
√

17)/Q [24,
p. 224]. Similar examples over every number field can be constructed using Chebotarev’s
density theorem. By (2.5) and (2.6) we have X(F)B = X(F), hence τ(X(AF )BrX

B ) =

τ(X(AF )BrX). Geometrically, we obtain a product of Brauer–Severi schemes over X
which is Zariski locally trivial over each Fv , yet not over F .

For (2), we choose T and B such that X(F)B 6= X(F) but X(F)B 6= ∅. Over Q,
one may take the norm one torus for the field extension Q(

√
2,
√

3)/Q, as here not every
rational point is Brauer equivalent to 1 ∈ T (Q) (see [24, p. 224] for this example and [24,
§7] for definitions—as before, similar examples exist over any number field). Note that
such a T must necessarily fail weak approximation. As B ⊂ BrX, there exists a finite
set S of places such that X(Fv)B = X(Fv) for all v 6∈ S. Moreover, as B is finite, the
complement of X(AF )BrX

B in X(AF )BrX is open and closed, hence has positive measure
with respect to τ . This gives the required example. ut
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