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Abstract. We prove a conjecture of Gross regarding the “order of vanishing” of Stickelberger ele-
ments relative to an abelian tower of fields and give a cohomological construction of the conjectural
Gross–Stark units. This is achieved by introducing an integral version of the Eisenstein cocycle.
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1. Introduction

Let F be a totally real number field of degree n over Q and let K/F be a finite abelian
extension with Galois group G. Let S be the set of finite places of F that are ramified
in K . For σ ∈ G the partial zeta function

ζS(σ, s) =
∑
a

N(a)−s, s ∈ C, Re(s) > 1,

has a meromorphic continuation to the whole complex plane. Here a ranges through all
nonzero ideals of OF that are relatively prime to S and are mapped to σ under the Artin
map. By a theorem of Siegel and Klingen the values ζS(σ, k) at integers k ≤ 0 are rational.
Furthermore by a result of Cassou-Noguès and Deligne–Ribet [3, 11] a certain slight
modification ζS,T (σ, s) of ζS(σ, s) has integral values at nonpositive integers s = k (here
T is a finite set of prime numbers satisfying certain properties; see Section 5.2 for the
definition of ζS,T (σ, s) and further details).

Consider the Stickelberger element

ζS,T (K/F, k) =
∑
σ∈G

ζS,T (σ, k)[σ
−1
] ∈ Z[G].

Our main result concerns the “order of vanishing” of ζS,T (K/F, 0) with respect to
an intermediate field E of K/F . Let I denote the kernel of the projection Z[G] →
Z[Gal(E/F)]. Let S∞ be the set of archimedean places of F and let r denote the number
of places in S ∪ S∞ that split completely in E. Our first main result (see Cor. 5.10) is

Theorem 1. We have
ζS,T (K/F, 0) ∈ I r

unless E is totally real, in which case

ζS,T (K/F, 0) ∈ I r−1 and 2ζS,T (K/F, 0) ∈ I r .

This settles a conjecture of Gross except in the case that E is totally real, where Gross
predicts the slightly stronger statement ζS,T (K/F, 0) ∈ Imin{r,]S∪S∞−1} (see the remarks
following Cor. 5.10). In fact, in Theorem 5.9(a) below we obtain a strengthening of The-
orem 1 and also obtain some related statements for ζS,T (K/F, k) when k is negative.

Theorem 1 is proved through a study of an integral version of the Eisenstein co-
cycle. The Eisenstein cocycle is a certain element of the (n − 1)st group cohomology
of GLn(Q). Variants of it as well as its relation to partial zeta-values have been studied by
several authors [22, 18, 16, 14, 21, 5]. Our framework differs slightly from e.g. [5], [21].
Let n ≥ 2 be an integer and let T be a finite set of prime numbers containing at least
two elements. Denote by 0T the subgroup of GLn(Q) that stabilizes the lattices Znp and
pZp ⊕ Zn−1

p for all p ∈ T . In Section 4 we define the integral Eisenstein cocycle

Eis ∈ H n−1(0T ,M (Pc(Qn,Z)L ,Z)(ε)).
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The coefficients consists roughly of the dual of Z-valued locally polynomial functions
on AnQ with compact support, where AQ is the adele ring of Q (see Section 4.3 for the
precise definition of M (Pc(Qn,Z)L ,Z)(ε)).

By taking the cap-product of the Eisenstein cocycle with certain homology classes
in degree n − 1 one recovers the values of partial zeta functions of totally real fields at
nonpositive integers. To state this precisely, let A = AF denote the ring of adeles of F
and let US denote the subgroup of A∗ of ideles (xv)v with local components xv = 1 if
v ∈ S, xv > 0 if v |∞ and xv a local unit if v 6∈ S ∪ S∞. We construct natural pairings

H n−1(0T ,M (Pc(Qn,Z)L ,Z)(ε))×Hn−1(F
∗, C0

c (A
∗/US,Z[G])) ∩k−→ Z[G] (1)

for all k ∈ Z≤0, where C0
c denotes the space of locally constant functions with compact

support. Moreover there exists a canonical element ρK/F ∈Hn−1(F
∗, C0

c (A∗/US,Z[G]))
defined in terms of the reciprocity map of class field theory for the extension K/F . We
then show (see Prop. 5.6) that ζS,T (K/F, k) = Eis ∩k ρK/F for all k ∈ Z≤0.

The proof of Theorem 1 is based on the key vanishing results, Props. 3.6 and 3.8 in
Section 3. To explain our method in more detail assume for simplicity that E is totally
imaginary and that S1 ⊆ S is the set of places in S that split completely in E. Since
A∗ ⊆

∏
v∈S1

Fv × (AS1)∗ we obtain a map

ι : C0
c (A
∗,Z[G])→ C0

c

(∏
v∈S1

Fv × (AS1)∗,Z[G]/I r
)

given by first extending a locally constant function with compact support f : A∗→ Z[G]
by zero to f! :

∏
v∈S1

Fv × (AS1)∗ → Z[G] and then reducing its values modulo I r .
Prop. 3.6 implies that ρK/F lies in the kernel of the induced map

ι∗ : Hn−1(F
∗, C0

c (A
∗,Z[G]))→ Hn−1

(
F ∗, C0

c

(∏
v∈S1

Fv × (AS1)∗,Z[G]/I r
))
.

Moreover it is not hard to see that the map

Hn−1(F
∗, C0

c (A
∗/US,Z[G]))→ Z[G]/I r , x 7→ Eis ∩0 x mod I r ,

factors through ι∗. Combining these facts gives the desired result ζS,T (K/F, 0) ∈ I r .
Prop. 3.6 is a refinement of [20, Prop. 4.6]. Our proof of Prop. 3.6 is simpler and

conceptually more satisfactory than the proof in loc. cit. as we are able to avoid the com-
binatorial arguments given there altogether.

Our next main application of the Eisenstein cocycle is a conjectural construc-
tion of Gross–Stark units related to the “leading term” of the Stickelberger element
ζS,T (K/F, 0). To explain this construction let K/F be as above and assume that p is
a nonarchimedean place of F that splits completely in K . Let Fp denote the completion
of F at p and let Op be its valuation ring. We define u = uK/F,p ∈ Kp = K ⊗F Fp by

u = {uσ }σ∈G = Eis ∩ (c ∩ ρpK/F ) ∈
∏
σ∈G

Fp ∼=
∏
P|p

KP
∼= Kp.
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Here the class ρpK/F ∈ Hn(F
∗, C0

c ((A{p})∗/U {p}∪S,Z[G])) is defined similarly to
ρK/F in terms of the reciprocity map for the extension K/F . The class c = cid ∈

H 1(F ∗, Cc(Fp, F
∗
p )) is the class of the 1-cocycle x 7→ (1 − x)(1Op · idF ∗p ) (see (14)

for details). The first cap-product is a variant of the pairing (1) above for k = 0 (however,
it should be mentioned that in contrast to (1) it involves a form of p-adic integration). We
conjecture (see Conj. 6.1) that u is a global p-unit of K , i.e. it lies in K ⊆ Kp and is a
unit at all finite places v - p. Proposition 6.3(a)(e) implies that this conjecture is a fur-
ther refinement of Gross’s strengthening of the Brumer–Stark conjecture [13, Conj. 7.6].
The element u has been previously constructed in [8] in a complicated but rather explicit
form in terms of values of Shintani zeta functions at s = 0. The construction given here
is simpler, conceptually more satisfactory and the proofs of the main properties (Prop.
6.3(a)(b)(e)) of u are easier than those of the corresponding statements in loc. cit. Fur-
thermore we show that u is trivial if K has a real archimedean place (see Prop. 6.3(d)), a
fact which was not known before and which provides further evidence for the validity of
Conj. 6.1. Note that Prop. 6.3(e) again rests on Prop. 3.6.

Remark 1.1. (a) Burns has proven in [2, Cor. 4.1] that Gross’s conjecture follows from
the Equivariant Tamagawa Number Conjecture (ETNC). As a result, for F = Q one de-
duces the full conjecture including results relating the image of ζS,T (K/Q, 0) in I r/I r+1

to circular units, since ETNC for Dirichlet motives is known over Q.
(b) Assume thatK is totally complex (i.e. s = 0) and S ⊇ Sp where p is an odd prime.

Greither and Popescu [17] have previously shown that the p-part of Gross’s conjecture
holds, i.e. 2S,T (K/F, 0) ∈ I r ⊗ Zp.

(c) An alternative, more geometric construction of the Eisenstein cocycle has been
recently given by Beilinson, Kings, and Levin [1]. It is interesting to consider whether the
methods of this paper can be combined with their construction to yield further results.

Notation. Throughout this paper all rings are commutative and have an identity element
unless specified otherwise. Given a ring R and an abelian group 3 we denote by R[3]
the group ring of3 with coefficients in R. For λ ∈ 3 we denote by [λ] the corresponding
element in R[3]. We denote by aug : R[3] → R, [λ] 7→ 1, the augmentation map and
by R[[3]] the completion of R[3] with respect to the augmentation ideal

I = I (3) = IR(3) = Ker(aug : R[3] → R),

i.e.
R[[3]] = lim

←−
n

R[3]/In.

By abuse of notation the augmentation ideal of R[[3]], i.e. the completion lim
←−n

I/In, will
be denoted by I (3) as well.

For a group G and a subgroup H there exist morphisms of δ-functors

resGH : H
•(G, ·)→ H •(H, ·), corGH : H•(H, ·)→ H•(G, ·)

which in degree 0 for a G-module M are the canonical inclusion MG ↪→ MH and pro-
jection MH → MG respectively.
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Throughout the paper, F denotes a totally real number field of degree n over Q with
ring of integers OF . Let EF = O∗F denote the group of global units. More generally,
for a finite set S of nonarchimedean places of F we denote by ES = EF,S the group
of S-units of F . For a nonzero ideal a ⊆ OF we set N(a) = ](OF /a). For a prime
number q we shall write Sq = Sq(F ) for the set of places above q. We denote by S∞
the set of archimedean places of F . We denote by σ1, . . . , σd the different embeddings
of F into R. Places of F will be denoted by v,w or also by p, q if they are finite. If p
is a finite place of F we denote the corresponding prime ideal of OF also by p. For a
place v of F we denote by Fv the completion of F at v. If v is finite then Ov denotes the
valuation ring of Fv and ordv the corresponding the normalized (additive) valuation on Fv
(so ordv($) = 1 if$ ∈ Ov is a local uniformizer at v). Also we let | · |v be the associated
normalized multiplicative valuation on Fv . Thus if v ∈ S∞ corresponds to the embedding
σ : F → R then |x|v = |σ(x)| and if v = q is finite then |x|q = N(q)− ordq(x). For a
place v of F we set Uv = R+ = {x ∈ R | x > 0} if v | ∞ and Uv = O∗v if v is finite.

Let A = AF be the adele ring of F . For a set S of places of F we let AS denote the S-
adeles. We also define US =

∏
v 6∈S Uv and US =

∏
v∈S Uv . If S contains all archimedean

places then the factor group (AS)∗/US is canonically isomorphic to the group IS of
fractional OF -ideals that are relatively prime to all places in S. We sometimes view F as
a subring of AS via the diagonal embedding.

If T is a subset of {2, 3, 5, . . . ,∞} and S is the set of places of F which lie above an
element of T then we often write AT , AT etc. for AS , AS etc. We also write Uq , Uq , Uq,S ,
Uq,∞ etc. for U {q}, U{q}, USq∪S , USq∪S∞ etc. and use a similar notation for adeles. Thus
for example AS,∞ denotes the ring S∪S∞-adeles of F where S is a set of nonarchimedean
places of F . For ` ∈ {2, 3, 5, . . . ,∞} we also write F` = F ⊗ Q` =

∏
v∈S`

Fv . More
generally, for an abelian group A we set A` = A ⊗ Q`. We shall denote by F ∗+, E+ =
EF,+, ES,+ etc. the totally positive elements in F , EF , ES etc.

2. Functions and measures on totally disconnected locally compact spaces

If X and Y are topological spaces then C(X, Y ) denotes the set of continuous maps
X→ Y . If R is a topological ring we let Cc(X,R) denote the subset of C(X,R) of con-
tinuous maps with compact support. If we consider Y (resp. R) with the discrete topology
then we shall also write C0(X, Y ) (resp. C0

c (X,R)) instead of C(X, Y ) (resp. Cc(X,R)).
Assume now that X is a totally disconnected topological Hausdorff space and A a lo-

cally profinite group (the examples we have in mind for X are the additive or multiplica-
tive group of a nonarchimedean local field, or the group of (S-)ideles or adeles, or spaces
of the form

∏
v∈S Fv×

∏
′

v 6∈T F
∗
v where S ⊂ T are finite sets of places of a number field F ;

the group A is typically either discrete or the multiplicative or additive group of a finite
Qp-algebra). We define subgroups C�(X,A) ⊆ C(X,A) and C�c (X,A) ⊆ Cc(X,A) by

C�(X,A) = C0(X,A)+
∑
K

C(X,K),

C�c (X,A) = C
0
c (X,A)+

∑
K

Cc(X,K)
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where the sums are taken over all compact open subgroups K of A. So C�c (X,A) is the
subgroup of Cc(X,A) generated by locally constant maps X→ A with compact support
and by continuous maps X → K ⊆ A with compact support for some compact open
subgroup K ⊆ A. Similarly, C�(X,A) is the subgroup of C(X,A) generated by locally
constant maps X→ A and by continuous maps X→ K ⊆ A for some K .

If A discrete then obviously C�(X,A) = C(X,A) and C�c (X,A) = Cc(X,A). Also
if A is the additive group of a finite Qp-algebra then A can be written as a union of
compact open subgroups, hence C�c (X,A) = Cc(X,A). On the other hand, if A = Q∗p
we have C�(X,A) 6= Cc(X,A) in general.

Remark 2.1. If A is either the multiplicative group of a nonarchimedean local field or the
group of S-ideles of a number field F (where S is a finite set of places) and if χ : A→ A

is continuous homomorphism then χ ∈ C�(A, A).

If f : X → Y is a continuous map between totally disconnected topological Hausdorff
spaces then C(Y,A) → C(X,A), g 7→ g ◦ f , maps C�(Y,A) into C�(X,A), i.e. f in-
duces a homomorphism

f ∗ : C�(Y,A)→ C�(X,A), f 7→ f ∗(g) = g ◦ f. (2)

Also if U ⊆ X is an open subset then Cc(U,A) → Cc(X,A), f 7→ f!, (where f! :
X → A is the extension by zero of f : U → A) maps C�c (U,A) into C�c (X,A), so we
get a monomorphism

C�c (U,A)→ C�c (X,A), f 7→ f!. (3)

If A1, A2, A are locally profinite groups and β : A1 ×A2 → A, (a1, a2) 7→ β(a1, a2), is
a continuous bilinear map then it induces a pairing

C(X,A1)× C(X,A2)→ C(X,A), (f, g) 7→ β(f, g), (4)

given by β(f, g)(x) = β(f (x), g(x)) for all x ∈ X. It is easy to see that for f ∈
C�(X,A1) (resp. f ∈ C�c (X,A1)) and g ∈ C�(X,A2) we have β(f, g) ∈ C�(X,A)
(resp. β(f, g) ∈ C�c (X,A)), i.e. (4) induces pairings

C�c (X,A1)× C
�(X,A2)→ C�c (X,A), (5)

C�(X,A1)× C
�(X,A2)→ C�(X,A). (6)

In particular, ifX = X1×X2 whereX1,X2 are totally disconnected topological Hausdorff
spaces then β induces a map

C�(X1, A1)⊗ C
�(X2, A2)→ C�(X1 ×X2, A), f ⊗ g 7→ f �β g, (7)

where (f �β g)(x1, x2) = β(f (x1), g(x2)) for all (x1, x2) ∈ X1 × X2. It is easy to see
that (7) maps C�c (X1, A1)⊗ C

�
c (X2, A2) into C�c (X1 ×X2, A), so we have a pairing

C�c (X1, A1)⊗ C
�
c (X2, A2)→ C�c (X1 ×X2, A). (8)
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We will consider particularly the case where X1 is discrete, A1 = Z, A2 = A and β :
Z × A → A is the map β(n, a) = n · a. In this case it is easy to see that (8) is an
isomorphism

Cc(X1,Z)⊗ C�c (X2, A)→ C�c (X1 ×X2, A). (9)

Next we attach to a homomorphismµ : Cc(X,Z)→ Z anA-valued measure onX for
any abelian group A. Firstly, by tensoring µ with the identity we obtain a homomorphism
µG : Cc(X,Z) ⊗ G = C0

c (X,G) → G for any abelian group G. Thus if A is profinite
we can consider the homomorphism

lim
←−
K

µA/K : lim
←−
K

Cc(X,A/K)→ lim
←−
K

A/K = A

where K ranges over the open subgroups of A. Since Cc(X,A) ⊆ lim
←−K

Cc(X,A/K)

we see that µA extends canonically to a homomorphism Cc(X,A) → A (which we
denote by µA as well). For a general A (not necessarily profinite) we have seen that µ
induces a homomorphism Cc(X,K) → K for every compact open subgroup K ⊂ A

and we still have a homomorphism C0
c (X,A) → A. Combining these maps we see that

µ induces a canonical homomorphism µA : C
�(X,A) → A. We set Meas(X,A) =

Hom(C�c (X,A),A). An element of Meas(X,A) is called an A-valued measure on X.
Thus we obtain a homomorphism

Hom(Cc(X,Z),Z)→ Meas(X,A), µ 7→ µA. (10)

3. Homology and cohomology classes associated with Hecke characters

Let F be a totally real number field of degree n over Q. We choose an ordering of the
characters σ1, . . . , σn of the embeddings F ↪→ R. Given two arbitrary finite, disjoint sets
61, 62 of places of F and a locally profinite group A we set

C?(61, A)
62 = C?((A62

F )
∗/U61∪62 , A) (11)

for ? ∈ {∅,�, c}. Also we sometimes write C0
? (61, A)

62 if A is equipped with the dis-
crete topology. These groups carry an (A62

F )
∗-action given by (αφ)(x) = φ(α−1x). As a

special case of the map (5) of the previous section we have an (A62
F )
∗-equivariant pairing

Cc(∅,Z)62 × C(61, A)
62 → C(61, A)

62 , (φ, ψ) 7→ φ · ψ, (12)

where φ · ψ denotes the function xU61∪62 7→ φ(xU61∪62)ψ(xU62).

3.1. The classes ϑ and ϑS

Next we construct a canonical class ϑ ∈ Hn−1(F
∗, Cc(∅,Z)). By Dirichlet’s unit theo-

rem the homology group Hn−1(E+,Z) is free of rank one. Due to the chosen ordering of
the embeddings F ↪→ R there is a canonical choice of generator η of Hn−1(E+,Z)
(see e.g. [21]). Let F ⊆ A∗F /U be a fundamental domain for the action of F ∗/E+
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on A∗F /U . We have

Cc(∅,Z) = Cc(A∗F /U,Z) = IndA
∗

U Z ∼= IndF
∗

E+
C(F ,Z)

as F ∗-modules, hence

Hn−1(E+, C(F ,Z)) ∼= Hn−1(F
∗, Cc(∅,Z))

by Shapiro’s Lemma. We define ϑ corresponding to 1F ∩η ∈ Hn−1(E+, C(F ,Z)) under
this isomorphism. It is easy to see that we have xϑ = ϑ for all x ∈ A∗F .

More generally, let S be a finite set of nonarchimedean places of F of cardinality r .
The group ES,+ is free-abelian of rank n + r − 1, hence Hn+r−1(ES,+,Z) ∼= Z. We
choose an ordering p1, . . . , pr of the primes in S which provides us with a distinguished
generator ηS of Hn+r−1(ES,+,Z) ∼= Z. Let F be a fundamental domain for the action of
F ∗/ES,+ on (ASF )

∗/US . We define ϑS ∈ Hn+r−1(F
∗, Cc(∅,Z)S) as the homology class

corresponding to 1F ∩ ηS under the isomorphism

Hn+r−1(ES,+, C(F ,Z)) ∼= Hn+r−1(F
∗, Cc((ASF )

∗/US,Z))

induced by Cc((ASF )
∗/US,Z) ∼= IndF

∗

ES,+
C(F ,Z).

We want to establish the relation between ϑ and ϑS . For that we construct a certain
cohomology class cp ∈ H 1(F ∗, Cc(F

∗
p/Up,Z)) associated to a given nonarchimedean

place p of F . Consider the short exact sequence of F ∗p -modules

0→ Cc(F
∗
p ,Z)

(3)
−→ Cc(Fp,Z)

g 7→g(0)
−−−−→ Z→ 0. (13)

Upon taking Up-invariants, this sequence remains exact. Using the associated long exact
sequence in F ∗-cohomology, we define cp ∈ H 1(F ∗, Cc(F

∗
p/Up,Z)) to be the image of

1 ∈ Z under the connecting homomorphism Z → H 1(F ∗, Cc(F
∗
p/Up,Z)). Thus cp is

the cohomology class of the 1-cocycle zp : F ∗→ Cc(F
∗
p/Up,Z) given by

zp(x)(y) = ((1− x)1Op)(y) = 1Op(y)− 1xOp(y)

for x ∈ F ∗ and y ∈ Fp. The proof of the following lemma is straightforward and will be
left to the reader.

Lemma 3.1. For S′ = {p2, . . . , pr} we have ϑS
′

= cp1 ∩ ϑ
S . In particular,

ϑ = (cpr ∪ · · · ∪ cp1) ∩ ϑ
S .

Here the cap-product is induced by the canonical map

Cc(F
∗
p1
/Up1 ,Z)× Cc((A

S
F )
∗/US,Z)→ Cc((AS

′

F )
∗/US

′

,Z)

(compare (9)).
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3.2. 1-cocycles attached to homomorphisms

Let ψ : F ∗p → A be a continuous homomorphism where p is a nonarchimedean place
of F and A is a locally profinite group (the group law of A will be written additively).
Note that ψ ∈ C�(F ∗p , A) ⊆ C(Fp, A). We generalize the construction of cp above by
attaching a cohomology class cψ ∈ H 1(F ∗p , C

�(Fp, A)) to the homomorphism ψ . We
let cψ be the class of the cocycle zψ : F ∗p → C�(Fp, A) defined in [20], i.e. zψ (x) =
(1− x)(1Op · ψ), or more precisely

zψ (x)(y) = 1xOp(y) · ψ(x)+ ((1Op − 1xOp) · ψ)!(y) (14)

for x ∈ F ∗p and y ∈ Fp. By abuse of notation, for a subgroup H of F ∗p we shall write cψ

also for res
F ∗p
H (cψ ) ∈ H

1(H,C�(Fp, A)).

Remark 3.2. If ψ = ordp : F ∗p → Z is the normalized valuation on Fp, then the class
cordp ∈ H

1(F ∗, Cc(Fp,Z)) is the image of cp under the homomorphism

H 1(F ∗p , Cc(F
∗
p/Up,Z))→ H 1(F ∗p , Cc(Fp,Z))

induced by the F ∗p -equivariant map

Cc(F
∗
p/Up,Z)→ Cc(Fp,Z), 1xUp 7→ 1xOp .

Let us now give a more conceptual definition of the cohomology class cψ attached to a
homomorphism ψ : F ∗p → A. Consider the short exact sequence of F ∗p -modules

0→ C�c (Fp, A)
β
−→ Ẽ

γ
−→ C�(F ∗p , A)→ 0. (15)

given by the push-out of the sequence (13)—tensored by C�(F ∗p , A)—with respect to the
homomorphism

Cc(F
∗
p ,Z)⊗ C

�(F ∗p , A)
(5)
−→ C�c (F

∗
p , A)

(3)
−→ C�c (Fp, A) (16)

(as usual we define a F ∗p -action on C(Fp, A) by (xf )(y) = f (x−1y)). We have a com-
mutative diagram

Cc(F
∗
p ,Z)⊗ C�(F ∗p , A)

(16)
��

(3)⊗id
// Cc(Fp,Z)⊗ C�(F ∗p , A)

α

��

C�c (Fp, A)
β

// Ẽ

where the horizontal maps are injective and their cokernels are isomorphic to C�(F ∗p , A).
We identify A with the F ∗p -submodule of C�(F ∗p , A) of constant maps F ∗p → A and set
C
�
(F ∗p , A) = C

�(F ∗p , A)/A. Define

s : A→ Ẽ, a 7→ α(1Op ⊗ a)− β(1Op · a). (17)
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A simple calculation shows that (17) is F ∗p -equivariant (i.e. the image of s is F ∗p -invari-
ant). Also, the composition γ ◦ s is equal to the inclusion A → C�(F ∗p , A). Hence the
pull-back of (15) to A ⊆ C�(F ∗p , A) has a canonical splitting. Consequently, (15) induces
a short exact sequence of F ∗p -modules

0→ C�c (Fp, A)→ E→ C
�
(F ∗p , A)→ 0 (18)

where E = Ẽ/s(A).

Remark 3.3. Note that (18) splits as a sequence of abelian groups (but not as F ∗p -mod-
ules). In fact, (13), hence (15), and 0 → A → C�(F ∗p , A) → C

�
(F ∗p , A) → 0 are split

exact. So if σ1 : C
�
(F ∗p , A) → C�(F ∗p , A) and σ2 : C

�(F ∗p , A) → Ẽ are respective
splittings and if π : Ẽ→ E is the projection then π ◦ σ2 ◦ σ1 is a splitting of (18).

Now we return to the homomorphism ψ : F ∗p → A. Since the function xψ − ψ for
x ∈ F ∗p is equal to the constant map y 7→ −ψ(x), the class ψ of ψ in C

�
(F ∗p , A) is

F ∗p -invariant. Then applying the connecting homomorphism δ : H 0(F ∗p , C
�
(F ∗p , A))→

H 1(F ∗p , C
�
c (Fp, A)) induced by (18), we have

cψ = δ(ψ) ∈ H
1(F ∗p , C

�
c (Fp, A)). (19)

3.3. Two commutative diagrams

Let H be a subgroup of F ∗p , and M an H -module. Tensoring (18) with M yields a short
exact sequence of H -modules

0→ C�c (Fp, A)⊗M → E ⊗M → C
�
(F ∗p , A)⊗M → 0 (20)

(since (18) splits as a sequence of abelian groups). Consider the following diagram:

H i(H,C�(F ∗p , A)⊗M)

��

x 7→cp∪x
// H i+1(H,C�c (F

∗
p , A)⊗M)

��

H i(H,C
�
(F ∗p , A)⊗M)

δ // H i+1(H,C�c (Fp, A)⊗M)

(21)

Here the cup-product is induced by the pairing (5), i.e. by

Cc(F
∗
p ,Z)× C

�(F ∗p , A)→ C�c (F
∗
p , A).

The left vertical map is induced by the projection C�(F ∗p , A) → C
�
(F ∗p , A), the right

one by C�c (F
∗
p , A) → C�c (Fp, A), f 7→ f!, and δ is the connecting homomorphism

associated to (20). The following result follows immediately from the definitions and
standard functorial properties of the cup-product.
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Lemma 3.4. (a) The diagram (21) commutes.
(b) Let ψ : F ∗p → A be a continuous homomorphism and let ψ ∈ H 0(H,C

�
(F ∗p , A))

be as above. Then δ(ψ ∪ x) = cψ ∪ x for all x ∈ H i(H,M).

Assume now that S is an arbitrary finite set of nonarchimedean places of F . The pairing
(12) induces a cap-product pairing

∩ : H i(F ∗, C�(S,A))×Hj (F ∗, Cc(∅,Z))→ Hj−i(F
∗, C�c (S,A))

for j ≥ i ≥ 0. In particular, taking the cap-product with ϑ yields a map

H 0(F ∗, C�(S,A)) · ∩ϑ−−→ Hn−1(F
∗, C�c (S,A)). (22)

It is A∗F /U
S-equivariant since ϑ is A∗F -invariant.

More generally, let S1 and S2 be disjoint subsets of S with S = S1 ∪ S2. Let r be the
cardinality of S1 and choose an ordering p1, . . . , pr of the elements of S1. Again we have
a canonical cap-product pairing

H i(F ∗, C�(S2, A)
S1)×Hj (F

∗, Cc(∅,Z)S1)
∩
−→ Hj−i(F

∗, C�c (S2, A)
S1)

for j ≥ i ≥ 0, so we get a map

H 0(F ∗, C�(S2, A)
S1)→ Hn+r−1(F

∗, C�c (S2, A)
S1), ϕ 7→ ϕ ∩ ϑS1 . (23)

We introduce the following generalizations of (11):

C]?(S1, S2, A) = C
]
?

(∏
p∈S1

Fp × (AS1
F )
∗/US1∪S2 , A

)
(24)

for ? ∈ {∅, c} and ] ∈ {∅,�}. Also we sometimes write C0
? (S1, S2, A) to stress that A is

equipped with the discrete topology. Again the groups (24) carry a canonical A∗F -action.
We have the inclusion C?

c(S,A) ⊆ C?
c(S1, S2, A) for ? ∈ {∅,�} (the map (3)) and we have

equality if S1 = ∅.
Consider the following diagram:

H 0(F ∗, C�(S2, A)
S1)

(23)
//

��

Hn+r−1(F
∗, C�c (S2, A)

S1)

��

H 0(F ∗, C�(S2, A)) // Hn−1(F
∗, C�c (S1, S2, A))

(25)

Here the left vertical map is induced by π∗ : C�(S2, A)
S1 → C�(S,A), where

π : A∗F /U
S2 =

r∏
i=1

F ∗pi/Upi × (A
S1
F )
∗/US → (AS1

F )
∗/US
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denotes the projection. The right vertical map is given by

α 7→ (−1)r(r−1)/2(cordp1
∪ · · · ∪ cordpr ) ∩ α

and the lower horizontal map is the composite

Hn−1(F
∗, C�(S2, A))

(22)
−−→ Hn−1(F

∗, C�c (S2, A))
g∗
−→ Hn−1(F

∗, C�c (S1, S2, A)).

Here g : C�c (S2, A)→ C�c (S1, S2, A) is defined by noting that we have canonical isomor-
phisms

C�c (S2, A) ∼=

r⊗
i=1

Cc(F
∗
pi
/Upi ,Z)⊗ C�c (S2, A)

S1 ,

C�c (S1, S2, A) ∼=

r⊗
i=1

Cc(Fpi ,Z)⊗ C�c (S2, A)
S1 ,

and letting g be the tensor product of the maps Cc(F ∗pi/Upi ,Z)→ Cc(Fpi ,Z) defined in
Remark 3.2 with the identity on C�c (S2, A)

S1 . The following result follows immediately
from Lemma 3.1 and Remark 3.2.

Lemma 3.5. The diagram (25) commutes.

3.4. Homology classes associated to idele class characters

Let R be a locally profinite ring and let χ : A∗F → R∗ be a continuous homomorphism. In
our applications, R will be a quotient of the group ring associated to the Galois group of
a finite extension of F , and χ will be the Artin reciprocity map attached to the extension.

For a place v of F we denote by χv : F ∗v → R∗ the local components of χ , i.e. the
restriction to the subgroup F ∗v ∼= {(xw) ∈ A∗F | xw = 1 for all w 6= v}. If 6 is a finite
set of places of F we also denote the restriction of χ to (A6F )

∗
= {(xw) ∈ A∗F | xw = 1

for all w ∈ 6} by χ6 . We assume that χ is unramified outside some finite set of nonar-
chimedean places S of F , i.e. the kernel of χv contains Uv for all v 6∈ S. Therefore we
have χ((xv)v) =

∏
v χv(xv) for all (xv)v ∈ A∗F . Furthermore we assume that χ is trivial

on principal ideles so that we can view χ as a homomorphism χ : A∗F /F
∗US → R∗ or

as an element of H 0(F ∗, C�(S, R)).
Assume now that a is a closed ideal of R and set R = R/a. Also for any R-moduleM

we writeM = R⊗RM . We denote by χ : A∗F → R∗
pr
−→ R

∗
the reduction of χ modulo a.

Let S1, S2 be disjoint subsets of S with S1 ∪ S2 = S. For v ∈ S1 let av be a closed ideal
of R contained in a such that χv(x) ≡ 1 mod av for all x ∈ F ∗v and v ∈ S1. In particular,
χv = 1 for all v ∈ S1, hence χS1 factors through (AS1

F )
∗/F ∗US → R

∗
. Thus we can

view χS1 as an element of H 0(F ∗, C�(S2, R)
S1).

Suppose that S1 = {v1, . . . , vr} and write ai = avi for i = 1, . . . , r . Since the image
of χvi is contained in 1+ ai , we can consider the homomorphism

dχvi : F
∗
vi
→ ai, x 7→ χvi (x)− 1 mod aai,

and the associated cohomology class cdχvi ∈ H
1(F ∗v , Cc(Fvi , ai)).
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Suppose now that a · a1 · . . . · ar = 0. Multiplication in R induces an r+ 1-multilinear
map

mult : R × a1 × · · · × ar → a1 . . . ar = a1 . . . ar ,

hence a homomorphism (compare (7))

r⊗
i=1

C�c (Fvi , ai)⊗ C�c (S2, R)
S1 → C�c (S1, S2, a1 . . . ar).

This map induces a cap-product, so we obtain a map

Hn+r−1(F
∗, Cc(S2, R)

S1)→ Hn−1(F
∗, Cc(S1, S2, a1 . . . ar)),

α 7→ (cdχv1 ∪ · · · ∪ cdχvr ) ∩ α.

Let ι : Cc(S1, S2, a1 . . . ar) ↪→ Cc(S1, S2, R) denote the inclusion.

Proposition 3.6. Let κ ∈ Hn−1(F
∗, C�c (S1, S2, R)) denote the image of χ under

H 0(F ∗, C�(S, R)) (22)
−−→ Hn−1(F

∗, C�c (S, R))
(3)∗
−−→ Hn−1(F

∗, C�c (S1, S2, R))

and let κ ∈ Hn+r−1(F
∗, Cc(S2, R)

S1) be the image of χS1 under (23). Then

κ = ι∗((cdχv1 ∪ · · · ∪ cdχvr ) ∩ κ).

In particular, κ = 0 if a1 . . . ar = 0 in R.

Proof. The proof is based on the commutativity of a large diagram

H 0(F ∗, C1)
1 //

3
��

H r(F ∗, C2)
2 //

4
��

Hn−1(F
∗, C3)

5
��

H 0(F ∗, C4)
6 // H r(F ∗, C5)

7 // Hn−1(F
∗, C6)

H 0(F ∗, C7)
11 //

8

OO

13
��

H r(F ∗, C8)
12 //

9

OO

14
��

Hn−1(F
∗, C9)

10

OO

=

��

H 0(F ∗, C10)
15 // H r(F ∗, C11)

16 // Hn−1(F
∗, C12)

(26)

We are going to introduce the groups and maps involved. The F ∗-modules in the first two
columns are

C1 =
( r⊗
i=1

C�(F ∗vi , R)
)
⊗ C�(S2, R)

S1 , C2 =
( r⊗
i=1

C�c (F
∗
vi
, R)

)
⊗ C�(S2, R)

S1 ,

C4 =
( r⊗
i=1

C
�
(F ∗vi , R)

)
⊗ C�(S2, R)

S1 , C5 =
( r⊗
i=1

C�c (Fvi , R)
)
⊗ C�(S2, R)

S1 ,
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C7 =
( r⊗
i=1

C
�
(F ∗vi , ai)

)
⊗ C�(S2, R)

S1 , C8 =
( r⊗
i=1

C�c (Fvi , ai)
)
⊗ C�(S2, R)

S1 ,

C10 =
( r⊗
i=1

C
�
(F ∗vi , ai)

)
⊗ C�(S2, R)

S1 , C11 =
( r⊗
i=1

C�c (Fvi , ai)
)
⊗ C�(S2, R)

S1

(all tensor products over R). For the third column we set C3 = C�c (S, R), C6 =

C�c (S1, S2, R) and C9 = C�c (S1, S2, a1 . . . ar) = C12.
The map 3 is induced by the projections C�(F ∗vi , R) → C

�
(F ∗vi , R) and the maps

4 and 5 by C�c (F
∗
vi
, R) ↪→ C�c (Fvi , R), f 7→ f!, for i = 1, . . . , r . The maps 8, 9 are

induced by the inclusions ai ↪→ R, i = 1, . . . , r , and 10 by a1 . . . ar ↪→ R. Sim-
ilarly, the maps 13 and 14 are induced by the projections ai → ai , R → R. The
first horizontal map is given by an iterated cup-product x 7→ cv1 ∪ · · · ∪ cvr ∪ x and
the maps 6, 11 and 15 are compositions of connection homomorphisms δv1 ◦ . . . ◦ δvr
as defined in Lemma 3.4(a). Finally, the maps 2, 7, 12 and 16 are all given by tak-
ing the cap-product with the ϑS1 ∈ Hn+r−1(F

∗, Cc(∅,Z)S1). For example the pairing
Cc(∅,Z)S1 × C�(S2, R)

S1 → C�c (S2, R)
S1 induces Cc(∅,Z)S1 × C2 → C3, hence

∩ : H r(F ∗, C2)×Hn+r−1(F
∗, Cc(∅,Z)S1)→ Hn−1(F

∗, C3).

The commutativity of the upper left square in (26) follows from Lemma 3.4 (a). All other
squares are commutative for obvious reasons.

Set χi = χvi , φi = χi − 1 and ψi = dχvi = φi mod aai for i = 1, . . . , r . By
assumption we have φi ∈ C�(Fvi , ai). Let φi and ψ i be the classes of φi and ψi in
C
�
(F ∗vi , ai) and C

�
(F ∗vi , ai), respectively. We can view χ as an element of H 0(F ∗, C1)

(by identifying χ with
⊗r

i=1 χi ⊗ χ
S1 ∈ C1). By Lemma 3.1 the image of χ under the

composition of the maps 1, 2 and 5 in (26) is κ .
Consider the element η =

⊗r
i=1 φi ⊗ χ

S1 ∈ C7. We show that η is F ∗-invariant.
For x ∈ F ∗ we have x · χi = χi(x)−1χi , hence x · φi = χi(x)−1φi since χi(x)−1φi =

χi(x)
−1χi −χi(x)

−1
≡ x ·χi − 1 modulo constants, and the last term is x ·φi . It follows

that

x · η =

r⊗
i=1

(x · φi)⊗ (x · χ
S1) =

( r∏
i=1

χi(x
−1) · χS1(x−1)

)
· η = η

for all x ∈ F ∗. Therefore η defines an element ofH 0(F ∗, C7), and it is clear that its image
under 8 equals the image of χ under 3. By the commutativity of the upper two squares in
(26) the image of η under the composite of the maps 8, 6 and 7 is therefore κ .

On the other hand, η is mapped under 13 to
⊗r

i=1 ψ i ⊗χ
S1 , so we can apply Lemma

3.4(b) to compute the image of η under the composite of 11, 12 and 10. Indeed, we have
ψ i ∈ H

0(F ∗, C
�
(F ∗vi , ai)) for i = 1, . . . , r and χS1 ∈ H 0(F ∗, C�(S2, R)

S1), so by
Lemma 3.4(b), η is mapped to

((cψ1 ∪ · · · ∪ cψr ) ∪ χ
S1) ∩ ϑS1 = (cψ1 ∪ · · · ∪ cψr ) ∩ ∂

S1(χS1)

under the composite of 13, 15 and 16. ut
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Remark 3.7. We point out that Prop. 3.6 generalizes [20, Prop. 4.6] (also the proof given
above is simpler and more transparent than in [20]). To see this, let p be a prime and
choose a decomposition Sp = S1∪S2 into disjoint subsets. Let F cycl/F be the cyclotomic
Zp-extension of F . We view Gal(F cycl/F ) as a subgroup of 0 = 1 + 2pZp ⊆ Z∗p.
Let Can(Zp,Zp) be the Zp-algebra of locally analytic functions Zp → Zp. An element
γ ∈ 0 defines a function ι(γ ) ∈ Can(Zp,Zp) given by ι(γ )(s) = γ s = exp(s logp(γ ))
for s ∈ Zp. Set R = Qp[X]/(X)r+1, a = a1 = · · · = ar = (X)/(Xr+1) and X =
X + (Xr+1) ∈ R (where r = ](S1)). Define a ring homomorphism

Ta≤r : Can(Zp,Zp)→ R, f 7→ Ta≤r f =
r∑
k=0

f (k)(0)
k!

X
k
.

If we apply Prop. 3.6 to S = Sp and the homomorphism

A∗F /F
∗Up

rec
−→ Gal(F cycl/F ) ⊆ 0

ι
−→ Can(Zp,Zp)∗

Ta≤r
−−→ R∗

then it is easy to see that we essentially recover [20, Prop. 4.6].

3.5. Archimedean places

Next we formulate and prove a variant of Prop. 3.6 that takes into account the infinite
places of F . For this we fix a subset S3 of S∞ of cardinality ≥ 1 and continuous homo-
morphisms εv : F ∗v → {±1} = Z∗ for every v ∈ S3. We also set FS3 =

∏
v∈S3

Fv and
define

ε = εS3 : F
∗

S3
→ {±1}, (xv)v∈S3 7→

∏
v∈S3

εv(xv).

For a subgroup H ⊆ F ∗S3
and an H -moduleM we setM(ε) = M ⊗Z(ε), i.e.M(ε) = M

as an abelian group and the H -action is given by x ·m = ε(x)xm for x ∈ H and m ∈ M .
Let S be a finite set of nonarchimedean places and let S1 and S2 be disjoint subsets

of S with S = S1 ∪ S2. As before we write S1 = {v1, . . . , vr}. Moreover let A be a

locally profinite abelian group. Since C(F ∗S3
/US3 ,Z) = Ind

F ∗S3
US3

Z, we have isomorphisms

of (AS1
F )
∗-modules

C�(S2, A)
S1 ∼= C(F

∗

S3
/US3 ,Z)⊗ C�(S2, A)

S1∪S3 ,

C�c (S2, A)
S1 ∼= C(F

∗

S3
/US3 ,Z)⊗ C�c (S2, A)

S1∪S3 .

Thus by tensoring the (F ∗S3
-equivariant) homomorphism

C(F ∗S3
/US3 ,Z)→ Z(ε), f 7→

∑
x∈F ∗S3

/US3

ε(x)f (x), (27)

with idC�(S2,A)
S1∪S3 and idC�c (S2,A)

S1∪S3 respectively we obtain (AS1
F )
∗-equivariant maps

C�(S2, A)
S1 → C�(S2, A)

S1∪S3(ε), (28)
C�c (S2, A)

S1 → C�c (S2, A)
S1∪S3(ε). (29)
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For ε = 1 the map (27) induces a homomorphism

Hn+r−1(F
∗, Cc(∅,Z)S1)→ Hn+r−1(F

∗, Cc(∅,Z)S1∪S3) (30)

and we denote the image of ϑS1 under (30) by ϑS1∪S3 . Again the pairing

Cc(∅,Z)S1∪S3 × C�(S2, A)
S1∪S3(ε)→ C�c (S2, A)

S1∪S3(ε)

induces a cap-product pairing, so in particular a map

H 0(F ∗, C�(S2, A)
S1∪S3(ε))

· ∩ϑS1∪S3
−−−−−−→ Hn+r−1(F

∗, C�c (S2, A)
S1∪S3(ε)). (31)

As before, we consider a locally profinite ring R together with closed ideals avi =
ai ⊆ a ⊆ R for i = 1, . . . , r and a continuous homomorphism χ : A∗F /F

∗US → R∗

such that χvi ≡ 1 mod ai for all = 1, . . . , r . Moreover assume that for every v ∈ S3 we
have a closed ideal av ⊆ a such that χv(−1) ≡ −εv(−1) mod av for all v ∈ S3. This
implies that

ψv = εv(1)χv(1)+ εv(−1)χv(−1) = 1+ εv(−1)χv(−1)

lies in av for all v ∈ S3. We denote by ψv ∈ av the residue class of ψv modulo aav . Here,
as before, we write R = R/a, ai = ai/aai , av = av/aav etc.

Multiplication in R induces a map⊗
v∈S3

av ⊗R C�(S2, R)
S1∪S3 → C�

(
S2,

∏
v∈S3

av

)S1∪S3
. (32)

We let χ̃S1 be the image of
⊗

v∈S3
ψv ⊗ χ

S1∪S3 under (32). Since χv(x)ψv = εv(x)ψv ,
we also have

χv(x)ψv = εv(x)ψv (33)

for all x ∈ F ∗v and v ∈ S3. Therefore a simple computation shows that

χ̃S1 ∈ H 0
(
F ∗, C�

(
S2,

∏
v∈S3

av

)S1∪S3
(ε)
)
.

Assume that a ·
∏
v∈S1∪S3

av = 0. Let κ ∈ Hn−1(F
∗, C�c (S1, S2, R)

S3(ε)) denote the
image of χ under the composite map

H 0(F ∗, C�(S, R)) (22)
−−→ Hn−1(F

∗, C�c (S, R))
(29)∗
−−−→ Hn−1(F

∗, C�c (S, R)S3(ε))

(3)∗
−−→ Hn−1(F

∗, C�c (S1, S2, R)
S3(ε))

and let κ ∈ Hn+r−1(F
∗, Cc(S2,

∏
v∈S3

av)
S1∪S3(ε)) be the image of χ̃S1 under (31). Let

ι : Cc
(
S1, S2,

∏
v∈S1∪S3

av

)S3
↪→ Cc(S1, S2, R)

S3

denote the inclusion.
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Proposition 3.8. We have

κ = ι∗((cdχv1 ∪ · · · ∪ cdχvr ) ∩ κ). (34)

In particular, κ = 0 if
∏
v∈S1∪S3

av = 0 in R.

Proof. Let χ̃ be the image of
⊗

v∈S3
ψv ⊗ χ

S3 under the canonical map⊗
v∈S3

av ⊗R C�(S, R)S3(ε)→ C�
(
S,
∏
v∈S3

av

)S3
(ε).

Again using (33) we obtain χ̃ ∈ H 0(F ∗, C�(S,
∏
v∈S3

av)
S3(ε)). We have a commutative

diagram

H 0(F ∗, C�(S, R))
(22)

//

(28)∗
��

Hn−1(F
∗, C�c (S, R))

(29)∗
��

H 0(F ∗, C�(S, R)S3(ε))
(31)

// Hn−1(F
∗, C�c (S, R)S3(ε))

H 0(F ∗, C�(S,
∏
v∈S3

av)
S3(ε))

(31)
//

incl

OO

Hn−1(F
∗, C�c (S,

∏
v∈S3

av)
S3(ε))

OO
(35)

where the lower vertical maps are induced by the inclusion
∏
v∈S3

av ⊆ R. The image of
χ under (28)∗ is equal to χ̃ ∈ H 0(F ∗, C(S,

∏
v∈S3

av)
S3(ε)). Thus it suffices to show that

the image of χ̃ under the composition of the bottom horizontal map in (35) with

Hn−1

(
F ∗, C�c

(
S,
∏
v∈S3

av

)S3
(ε)
) (3)∗
−−→ Hn−1

(
F ∗, C�c

(
S1, S2,

∏
v∈S3

av

)S3
(ε)
)

agrees with the right hand side of (34). For that we can follow the proof of Prop. 3.6. We
just have to modify diagram (26) accordingly. For example C1 should be replaced by

C′1 =
r⊗
i=1

C�(F ∗vi , R)⊗ C�c
(
S,
∏
v∈S3

av

)S1∪S3
(ε),

C2 by

C′2 =
( r⊗
i=1

C�c (F
∗
vi
, R)

)
⊗ C�c

(
S,
∏
v∈S3

av

)S1∪S3
(ε),

etc. The details will be left to the reader. ut

4. Integrality properties of the Eisenstein cocycle

4.1. Shintani cocycle

We recall briefly the construction of the Shintani cocycle as defined in [5]. Let V be an
n-dimensional Q-vector space. Given linearly independent vectors v1, . . . , vm ∈ V we
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define the rational open cone C(v1, . . . , vm) ⊆ V∞ = V ⊗Q R as

C(v1, . . . , vm) =
{ m∑
i=1

tivi

∣∣∣ ti ∈ R+ ∀i = 1, . . . , m
}
.

Let V be the GL(V )-stable subset of V∞ consisting of vectors w that are not contained
in any rational hyperplane of V∞ (i.e. w ∈ V iff v∗(w) 6= 0 for any nonzero linear form
v∗ : V → Q).

Let K = KV denote the subgroup of the space of functions f : V∞ → Z generated
by the characteristic functions 1C of rational open cones. The group GL(V ) acts on K via
(g · f )(v) = f (g−1v) for g ∈ GL(V ) and v ∈ V∞. We also consider subsets of V∞ of
the form

L =
{ m∑
i=1

tivi

∣∣∣ t1 ∈ R, ti ∈ R+ ∀i = 2, . . . , m
}

= C(v1, v2, . . . , vm) ∪ C(−v1, v2, . . . , vm) ∪ C(v2, . . . , vm)

(called wedges) where the vectors v1, . . . , vm ∈ V are again linearly independent. Note
that 1L(v + v1) = 1L(v) for all v ∈ V . The GL(V )-stable subgroup of K generated by
characteristic functions of wedges will be denoted by L.

Given v1, . . . , vn ∈ V and w ∈ V the function cw(v1, . . . , vn) : V∞ → Z is defined
as cw(v1, . . . , vn) ≡ 0 if v1, . . . , vn are linearly dependent and as

cw(v1, . . . , vn)(v) = lim
ε→0+

1C(v1,...,vn)(v + εw)

otherwise. In the latter case cw(v1, . . . , vn) is the characteristic function of the union
of C(v1, . . . , vn) with some of its boundary cones (more precisely, if we write w =∑n
i=1 tivi and if 60 ⊆ {v1, . . . , vn} is the set of vi with ti < 0 then cw(v1, . . . , vn)

is the characteristic function of the union of all cones generated by subsets 6 of
{v1, . . . , vn} containing 60). Note that cgw(gv1, . . . , gvn)(gv) = cw(v1, . . . , vn)(v) for
all g ∈ GL(V ). Also cw(v1, . . . , vn) = ctw(v1, . . . , vn) for any t ∈ R+ so cw(v1, . . . , vn)

depends only on the ray R+w. We denote the set of rays generated by elements of V by R
and define cQ(v1, . . . , vn) = cw(v1, . . . , vn) ifQ ∈ R andw ∈ Q. The GL(V )-operation
on V induces a GL(V )-operation on R.

Let N = K/L and let Hom(R,N ) be the abelian group of maps f : R → N
endowed with the GL(V )-action (gf )(Q) = gf (g−1Q). We also need to introduce the
sign character ε : R∗ → {±1} = Z∗, x 7→ ε(x). By abuse of notation we denote the
homomorphism ε ◦ det by ε as well,

ε = ε ◦ det : GL(VR)→ Z∗. (36)

Similarly for a subgroup 0 of GL(VR), we denote the restriction of (36) to 0 simply by ε.
As usual for a 0-module M we define the twist M(ε) := M ⊗ Z(ε), i.e. M(ε) is the
abelian group M endowed with the 0-action (g,m) 7→ ε(g)gm.
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Fix a nonzero vector v of V and a determinant form ω on V . The Shintani cocycle is
the homogeneous cocycle

4Sh,v : GL(V )n→ Hom(R,N )(ε),
4Sh,v(g1, . . . , gn)(Q) = ε(ω(g1v, . . . , gnv))cQ(g1v, . . . , gnv)

(for the proof of the cocycle relation see [5, Thms. 1.1 and 1.6]). Since

4Sh,gv(g1, . . . , gn) = g4Sh,v(g
−1g1g, . . . , g

−1gng),

we see that the cohomology class of4Sh,v is independent of the choice of v ∈ V . We will
denote this class simply by 4Sh ∈ H

n−1(GL(V ),Hom(R,N )(ε)). This construction
is functorial in the following sense: if V ′ is another n-dimensional Q-vector space and
if K′, L′, N ′, 4′Sh etc. denote the same objects as above for V ′ then an isomorphism
ψ : V → V ′ induces an isomorphism ψ∗ between the cohomology groups and we have
ψ∗(4′Sh) = 4Sh.

4.2. Solomon–Hu pairing and Eisenstein cocycle

Let Z{V } be the abelian group of maps V → Z. We have Z[V ] ⊆ Z{V } and the mul-
tiplication of Z[V ] extends to a Z[V ]-module structure on Z{V }. Consider the pairing

〈〈 , 〉〉 : K × Cc(VẐ,Z)→ Z{V } (37)

given by 〈〈f,8〉〉(v) = f (v)8(v). Let S denote the multiplicative subset of Z[V ] gen-
erated by the set {[v] − [0] | v ∈ V, v 6= 0}. The image of (37) composed with the
localization map Z{V } → S−1Z{V } is contained in S−1Z[V ] ⊆ S−1Z{V }. In fact, if
C ⊆ V∞ is a rational cone and 8 ∈ Cc(VẐ,Z) we may choose linearly independent
vectors v1, . . . , vm ∈ V with C = C(v1, . . . , vm) so that 8 is periodic with respect to
v1, . . . , vm, i.e. 8(x + vi) = 8(x) for all i = 1, . . . , m and x ∈ VẐ. Then we have

〈〈1C,8〉〉 =
m∏
i=1

([0] − [vi])−1
∑

v∈V∩P(v1,...,vm)

8(v)[v]

where P(v1, . . . , vm) is the “half-open” parallelepiped

P(v1, . . . , vm) =
{ m∑
i=1

tivi

∣∣∣ 0 < ti ≤ 1 ∀i = 1, . . . , m
}
.

Also if L is a wedge we can choose linearly independent v1, . . . , vm ∈ V with

L = C(v1, v2, . . . , vm) ∪ C(−v1, v2, . . . , vm) ∪ C(v2, . . . , vm)

and so that 8 is periodic with respect to v1, . . . , vm. Then [v1] · 〈〈1L,8〉〉 = 〈〈1L,8〉〉
since both 1L and 8 are periodic with respect to v1. Therefore (37) induces a pairing

〈〈 , 〉〉 : N × Cc(VẐ,Z)→ S−1Z[V ]. (38)
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By composing (38) with the canonical map S−1Z[V ] → S−1Z[[V ]] we obtain a pairing

〈〈 , 〉〉 : N × Cc(VẐ,Z)→ S−1Z[[V ]]. (39)

We denote by RV the algebra
∏
n≥0 Symn V and let QV be its quotient field. A choice of a

basis (e1, . . . en) of V induces isomorphisms between RV resp. QV and the power series
ring Q[[z1, . . . , zn]] resp. the field of Laurent series Q((z1, . . . , zm)). The group homo-
morphism exp : V → R∗V , v 7→ exp(v) =

∑
∞

i=0 v
n/n!, induces ring homomorphisms

exp : Z[[V ]] → RV , exp : S−1Z[[V ]] → QV , (40)

and by composing (39) with (40) we obtain the Solomon–Hu pairing

〈〈 , 〉〉 : N × Cc(VẐ,Z)→ QV . (41)

The GL(V )-action on V induces a GL(V )-action on Z[V ], Z{V }, S−1Z[V ], RV and QV ,
and the pairings (37), (39) and (41) are GL(V )-equivariant.

Given abelian groups A and B we denote by M (A,B) the abelian group of maps

β : R × A→ B, (Q, a) 7→ β(Q, a),

that are linear in the second component a ∈ A. If 0 ⊆ GL(V ) is a subgroup and
A and B are 0-modules then we define a 0-action on M (A,B) by (γβ)(Q, a) =
γ (β(γ−1Q, γ−1a)).

The pairing (41) induces a homomorphism of GL(V )-modules

Hom(R,N )→M (Cc(VẐ,Z),QV ), f 7→ ((Q,8) 7→ 〈〈f (Q),8〉〉) . (42)

The image of the Shintani cocycle 4Sh under the map

H n−1(GL(V ),Hom(R,N )(ε))→ H n−1(GL(V ),M (Cc(VẐ,Z),QV )(ε)) (43)

induced by (42) is what is usually called the Eisenstein cocycle (see e.g. [18, 16, 4, 5]).
In the following we introduce an “integral” variant of it.

4.3. Integrality properties

We get rid of the denominators in S by smoothing (also called the Cassou-Noguès trick).
We fix a triple (`, L,L′) consisting of a prime number ` and Z`-sublattices L′ ⊆ L of V`
with [L : L′] = `. Let 0L

⊆ GL(V ) be the subgroup of γ ∈ GL(V ) with γL = L and
γL′ = L′. We consider the subgroup KL of K generated by the characteristic functions
of cones C of the form C(v1, . . . , vm) with vi ∈ V ∩L and vi 6∈ L′ for i = 1, . . . , m, and
define LL accordingly. These are 0L -stable subgroups of K, so NL

= KL /LL is a
0L -module as well. For v ∈ (V ∩ L)− L′ the Shintani cocycle 4Sh,v—when restricted
to 0L —-takes values in NL , so we obtain a homogeneous cocycle

4Sh,L ,v ∈ Z
n−1(0L ,Hom(R,NL )(ε))
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and a cohomology class

4Sh,L ∈ H
n−1(0L ,Hom(R,NL )(ε))

as before.
We define φL ∈ Cc(V`,Z) by φL = 1L − `1L′ , i.e.

φL (v) =


1 if v ∈ L− L′,
1− ` if v ∈ L′,
0 if v ∈ V` − L.

(44)

Note that in Z[µ`] we have

φL (v) = −
∑
ψ

ψ(v) for all v ∈ L (45)

where the sum extends over the `−1 charactersψ : L→ µ` ⊆ Z[µ`]∗ with Ker(ψ) = L′

(here µ` ⊆ Q denotes the group of `-th roots of unity).
Since φL is fixed under the action of 0L , the map

Cc(VẐ` ,Z)→ Cc(VẐ` ,Z)⊗ Cc(V`,Z) ∼= Cc(VẐ,Z), φ 7→ φ ⊗ φL , (46)

is a homomorphism of 0L -modules. Hence we obtain a 0L -equivariant pairing

〈〈 , 〉〉L : NL
× Cc(VẐ` ,Z)→ N × Cc(VẐ,Z)

(39)
−−→ S−1Z[V ] (47)

where the first map is induced by the inclusion KL ↪→ K in the first component and
by (46) in the second.

In order to get rid of denominators in (41) we first look at the pairing at the level of
lattices, i.e. we consider a Z-lattice 3 in V with 3` = L. When we restrict the second
component in (47) to Cc(3Ẑ` ,Z) ⊆ Cc(VẐ` ,Z) we obtain a 0L

3 = 0L
∩ GL(3)-

equivariant pairing

〈〈 , 〉〉 : NL
× Cc(3Ẑ` ,Z)→ S−1Z[3], (48)

where now S denotes the multiplicative subset of Z[3] generated by the set

{[λ] − [0] | λ ∈ 3, λ 6= 0}.

After embedding S−1Z[3] into the quotient field of Q[[3]] we will show that the image
of (48) is contained in Z[1/`][[3]].

Proposition 4.1. Let φ ∈ Cc(3Ẑ` ,Z) and let C = C(v1, . . . , vm) be a cone with vi ∈
V ∩ L and vi 6∈ L′ for i = 1, . . . , m. Then

〈〈1C, φ ⊗ φL 〉〉 ∈ Z[1/`][[3]].

Moreover if ` ≥ m+ 2 then the constant term of 〈〈1C, φ ⊗ φL 〉〉 lies in Z (i.e. the image
under aug : Z[1/`][[3]] → Z[1/`]).
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Proof. Write 8 = φ ⊗ φL and 80 = φ ⊗ 1L ∈ Cc(3Ẑ,Z). By (45) we get in
Cc(3Ẑ,Z[ζ`])

8(v) = −
∑
ψ

ψ(v)80(v) (49)

for all v ∈ 3. There exists a sublattice 31 ⊆ 3 such that 80 is periodic with respect
to31. Since the local component of80 at ` is 1L, we may assume that (31)` = 3` = L,
hence ` - [3 : 31]. By multiplying v1, . . . , vm with some integer k prime to ` if nec-
essary, we can also assume that v1, . . . , vm ∈ 31 (hence 8 is periodic with respect to
`
∑m
i=1 Zvi). Since vi 6∈ L′, we note that ψ(vi) is a primitive `th root of unity for all

characters ψ : L→ µ` as above and i = 1, . . . , m.
Note that the parallelepiped P̃ = P(`v1, . . . , `vm) is the disjoint union of sets of the

form (
∑m
i=1 nivi) + P with P = P(v1, . . . , vm) and 0 ≤ n1, . . . , nm ≤ ` − 1. Because

80 is periodic with respect to
∑m
i=1 Zvi , by (49) we have∑

v∈V∩P̃

8(v)[v] = −
∑
ψ

∑
v∈3∩P̃

ψ(v)80(v)[v]

= −

∑
ψ

∑
v∈3∩P

ψ(v)80(v)[v]

`−1∑
n1,...,nm=0

m∏
i=1

ψ(vi)
ni [vi]

ni

= −

m∏
i=1

(1− [`vi]) ·
∑
ψ

∑
v∈3∩P ψ(v)80(v)[v]∏m
i=1(1− ψ(vi)[vi])

.

This equality holds in the quotient field of Z[µ`][[3]]. Note however that for v ∈ 3 and
ζ` ∈ µ`, ζ` 6= 1, we have

1− ζ`[v] = (1− ζ`)
(

1+
ζ`

1− ζ`
(1− [v])

)
= (1− ζ`)(1+ x)

with x = ζ`
1−ζ`

(1 − [v]). Since x lies in the augmentation ideal of Z[1/`, µ`][3], the
element 1+ x and therefore also 1− ζ`[v] is invertible in Z[1/`, µ`][[3]]. It follows that

〈〈1C,8〉〉 =
m∏
i=1

(1− [`vi])−1
∑

v∈V∩P̃

8(v)[v] = −
∑
ψ

∑
v∈3∩P ψ(v)80(v)[v]∏m
i=1(1− ψ(vi)[vi])

(50)

lies in Z[1/`, µ`][[3]]. On the other hand, 〈〈1C,8〉〉 lies in the quotient field of
Z[1/`][[3]], hence it lies in Z[1/`][[3]].

For the second assertion note that aug(〈〈1C,8〉〉) ∈ (1 − ζ`)−mZ[µ`] by the above
computation and (1− ζ`)−mZ[µ`] ∩Q = Z if m ≤ `− 2. ut

4.4. Puiseux series valued pairing

According to Prop. 4.1 the pairing (48) takes the form

〈〈 , 〉〉 : NL
× Cc(3Ẑ` ,Z)→ Z[1/`][[3]]. (51)
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In order to pass from the level of lattices to V we introduce a certain type of Puiseux series
ring. Let R be any ring. For a lattice3 in V the inclusion3 ↪→ V induces an embedding
R[3] ↪→ R[V ] and R[[3]] ↪→ R[[V ]] (to see that R[[3]] → R[[V ]] is injective, it is
enough to see that I (V )n ∩ R[3] = I (3)n for all n or that I (3′)n ∩ R[3] = I (3)n for
any lattice3′ containing3; the latter can be easily seen by induction on n). We define the
subringR{{V }}L ofR[[V ]] as the union of allR[[3]]where3 ranges over lattices such that
3` = L. The group GL(V ) acts onR[[V ]] as a group of ring automorphisms andR{{V }}L

is a 0L -stable subring. The pairing (51) is compatible with monomorphisms that are
induced by inclusions of lattices. Hence the image of (47) is contained in Z[1/`]{{V }}L .

We can get rid of denominators altogether by applying smoothing twice. More pre-
cisely, let L = {Li}i∈I be a collection of triples Li = (`i, Li, L

′

i) as above. We assume
that the index set I is finite and has at least two elements and that `i 6= `i′ for i 6= i′.
Let T = {`i | i ∈ I } and define 0L , KL , LL as the intersection of 0Li , KLi , LLi

respectively. To define R{{V }}L we now take lattices 3 with 3`i = Li for all i ∈ I .
Using the 0L -equivariant map

Cc(VẐT ,Z)→ Cc(VẐ,Z), φ 7→ φ ⊗
⊗
i∈I

φLi
,

instead of (46) we obtain as before a 0L -equivariant pairing

〈〈 , 〉〉 : NL
× Cc(VẐT ,Z)→ S−1Z[V ]. (52)

We obtain

Corollary 4.2. The image of (52) lies in Z{{V }}L .

Summarizing, if L consists of just one triple (`, L,L′), the pairing (47) takes the form

〈〈 , 〉〉L : NL
× Cc(VẐ` ,Z)→ Z[1/`]{{V }}L .

If L involves more than one prime, the pairing is of the form

〈〈 , 〉〉 : NL
× Cc(VẐT ,Z)→ Z{{V }}L . (53)

By passing to the constant term (i.e. by composing it with the augmentation map) we get
a pairing

〈〈 , 〉〉 : NL
× Cc(VẐT ,Z)→ Z. (54)

This holds even if L consists of a single triple (`, L,L′) provided that ` ≥ n+ 2.

4.5. Locally polynomial functions

We now introduce another variant of the Solomon–Hu pairing. We denote by PolV the
ring of polynomials on V . More precisely, PolV is the symmetric algebra Sym• V ∨ =⊕

n∈N Symn V ∨ of the dual V ∨ of V . Any P ∈ PolV induces a polynomial function
V → Q, v 7→ P(v). In fact, a choice of a basis (v1, . . . , vn) induces an isomorphism



2666 Samit Dasgupta, Michael Spieß

PolV ∼= Q[X1, . . . , Xn], P 7→ P̃ , such that P(
∑n
i=1 xivi) = P̃ (x1, . . . , xn). We let

GL(V ) act on V ∨ via (g · λ)(v) = λ(g−1v) for all λ ∈ V ∨, v ∈ V and g ∈ GL(V ). This
induces a GL(V )-action on PolV by (g · P)(v) = P(g−1v).

Given P ∈ PolV the map V → Q, v 7→ P(v), extends to a homomorphism of abelian
groups

P : Q[V ] → Q, P
( r∑
i=1

ai[vi]
)
=

r∑
i=1

aiP(vi). (55)

Lemma 4.3. (a) For P ∈ PolV the homomorphism (55) extends uniquely to a continuous
homomorphism of abelian groups

Q[[V ]] → Q, x 7→ P(x). (56)

Here Q[[V ]] is equipped with the I (V )-adic topology, and Q with the discrete topol-
ogy.

(b) The pairing PolV ×Q[[V ]] → Q, (P, x) 7→ P(x), is GL(V )-equivariant.

Proof. We show that I (V )m lies in the kernel of (55) for m ≥ degP + 1. Define

DP : Q[V ] → Q[V ],
r∑
i=1

ai[vi] 7→ DP

( r∑
i=1

ai[vi]
)
=

r∑
i=1

aiP(vi)[vi].

Then aug ◦ DP equals (55) and we have DP1 ◦ DP2 = DP1P2 . Also if P = λ ∈ V ∨

is a linear form then Dλ is a derivation, so that Dλ(I (V )m+1) ⊆ I (V )m. Combining
these facts we see that DP maps I (V )degP+1 into I (V ), so (55) maps I (V )m to 0 for
m ≥ degP + 1. This proves (a). The second statement is obvious. ut

We define the ring Pc(V ,Q) of locally polynomial functions on VẐ by

Pc(V ,Q) = Cc(VẐ,Z)⊗ PolV .

Every element h ∈ Pc(V ,Q) induces a function V → Q, v 7→ h(v). Indeed, if h is
of the form h =

∑m
i 8i ⊗ Pi ∈ Cc(VẐ,Z) ⊗ PolV then v 7→ h(v) is given by h(v) =∑m

i 8i(v)·Pi(v). For a lattice3 ⊆ V we let PolV (3) be the subring of PolV consisting of
polynomials P ∈ PolV with P(v) ∈ Z for all v ∈ 3. We can view Cc(3Ẑ,Z)⊗ PolV (3)
as a subring of Pc(V ,Q) and we define Pc(V ,Z) to be the smallest subring containing
Cc(3Ẑ,Z)⊗ PolV (3) for all 3, i.e.

Pc(V ,Z) = Im
(⊕
3

Cc(3Ẑ,Z)⊗ PolV (3)→ Pc(V ,Q)
)
.

It is a GL(V )-stable subring of Pc(V ,Q). We remark that for h ∈ Pc(V ,Z) we have
h(v) ∈ Z for all v ∈ V . Note also that Pc(V ,Q) = Pc(V ,Z)Q. For an arbitrary ring R
we write Pc(V , R) = Pc(V ,Z)R .

Now we turn to the Solomon–Hu pairing. Let L = {Li}i∈I = {(`i, Li, L
′

i)}i∈I be a
collection of triples as above involving a set T = {`i | i ∈ I } of prime elements such that
`i 6= `i′ for i 6= i′ (T consisting of a single prime ` is allowed). We define

Pc(V ,Q)T = Cc(VẐT ,Z)⊗ PolV ,
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and more generally for a Q-algebra R we set Pc(V , R)T = Cc(VẐT , R) ⊗ PolV . For
f ∈ NL , φ ∈ Cc(VẐT ,Z) and P ∈ PolV we can evaluate P at 〈〈f, φ〉〉L ∈ Z{{V }}L ⊆
Q[[V ]] (i.e. we can apply (56) to 〈〈f, φ〉〉L ). In this way we obtain for any Q-algebra R an
0L -equivariant pairing

〈〈 , 〉〉 : NL
× Pc(V , R)T → R, 〈〈f, φ ⊗ P 〉〉 = P(〈〈f, φ〉〉L ). (57)

Let Pc(V ,Z)L denote the smallest subring of Pc(V ,Q)T containing all Cc(3ẐT ,Z) ⊗
PolV (3) where 3 runs through all lattices of V with 3`i = Li for all i ∈ I . The 0L -
equivariant embedding

Pc(V ,Q)T → Pc(V ,Q), φ ⊗ P 7→
(
φ ⊗

⊗
i∈I

φLi

)
⊗ P,

maps Pc(V ,Z)L into Pc(V ,Z).

Lemma 4.4. For f ∈ NL and h ∈ Pc(V ,Z)L we have 〈〈f, h〉〉 ∈ Z (resp. 〈〈f, h〉〉 ∈
Z[1/`]) if T has at least two elements (resp. T = {`}).

Proof. We assume that T contains at least two primes and leave the case T = {`} to the
reader. Let 3 ⊆ V be a lattice with 3`i = Li for all i ∈ I and let φ ∈ Cc(3ẐT ,Z) and
P ∈ P(3). Since 〈〈f, φ〉〉L ∈ Z[[3]], we have 〈〈f, φ ⊗ P 〉〉 = P(〈〈f, φ〉〉L ) ∈ Z. In fact,
we can approximate 〈〈f, φ〉〉L by an element of the group ring Z[3] modulo any power
of the augmentation ideal and by assumption P maps Z[3] to Z. ut

Thus if ](T ) ≥ 2, by restricting (57) to the submodule Pc(V ,Z)L of Pc(V ,Q)T we
obtain a 0L -equivariant pairing

〈〈 , 〉〉 : NL
× Pc(V ,Z)L → Z. (58)

More generally, if R is a ring we set Pc(V , R)L = Pc(V ,Z)L ⊗ R, so we obtain a
pairing

〈〈 , 〉〉 : NL
× Pc(V , R)L → R. (59)

Note that Pc(V , R)L = Pc(V , R)T if R is a Q-algebra.
Analogously to (42) the pairings (54), (58) induce homomorphisms of 0L -modules

Hom(R,NL )(ε)→M (Cc(VẐT ,Z),Z)(ε), (60)

Hom(R,NL )(ε)→M (Pc(V ,Z)L ,Z)(ε). (61)

Definition 4.5. Let L = {Li}i∈I = {(`i, Li, L
′

i)}i∈I be a collection of triples as before
involving a finite set T = {`i | i ∈ I } of prime numbers.
(a) Assume that T contains at least two elements. The integral Eisenstein cocycle

EisL ∈ H
n−1(0L ,M (Pc(V ,Z)L ,Z)(ε))

is defined as the image of 4Sh,L under the map induced by (61).
(b) Assume either ]T ≥ 2, or T = {`} and ` ≥ n+ 2. The truncated integral Eisenstein

cocycle
Eis0

L ∈ H
n−1(0L ,M (Cc(VẐT ,Z),Z)(ε))

is defined as the image of 4Sh,L under the map induced by (60).
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More generally, by using the pairing (59) for an arbitrary ring R we can define the R-
valued Eisenstein cocycle

EisL ,R ∈ H
n−1(0L ,M (Pc(V , R)L , R)(ε)).

5. Specialization to totally real fields

5.1. Integral values of Shintani zeta function

We keep the notation of the previous section and fix a basis j1, . . . , jn : VR → R of the
dual of VR. We assume that the restriction of jν to V has trivial kernel for all ν = 1, . . . , n.
A vector v ∈ VR is called totally positive (with respect to j1, . . . , jn) if jν(v) > 0 for
all ν = 1, . . . , n. We denote by VR,+ the set of totally positive vectors. A rational open
cone C = C(v1, . . . , vm) contained in VR,+ will be called positive. We denote by K+
the abelian group of functions VR → Z generated by the characteristic functions of all
positive rational open cones. Note that K+ ∩ L = {0} so that we can view K+ as a
subgroup of N = K/L.

Given f ∈ K+ and 8 ∈ Cc(VẐ,Z) we consider the Dirichlet series

L(f,8; s) =
∑
v∈V

f (v)8(v)N(v)−s (62)

where N(v) =
∏n
ν=1 jν(v). It is known to converge absolutely for Re(s) > 1 and extend

to the whole complex plane holomorphically except for a simple pole at s = 0. Moreover,
if C and 8 are as in Prop. 4.1 then L(1C,8, s) is holomorphic and its values at s =
0,−1,−2, . . . can be expressed in terms of the pairing (57). In fact, we have

Lemma 5.1. Let L = (`, L,L′) be a triple as in Section 4.3, let C = C(v1, . . . , vm)

with vi ∈ (V ∩ L)− L′ and let 8 = φ ⊗ φL with φ ∈ Cc(VẐ` ,Z) and φLi
∈ Cc(V`,Z)

given by (44). Then the function L(1C,8; s) extends holomorphically to the whole com-
plex plane. Its values at integers s = k, k ∈ Z≤0, are given by

L(1C,8; k) = 〈〈1C,8⊗ N−k 〉〉.

Proof. With the notation and assumption as in the proof of Prop. 4.1 and an appropriate
choice of a lattice 3 with 3` = L and supp(80) ⊆ 3Ẑ, it follows from (50) that

〈〈1C,8⊗ Nk 〉〉 = −
∑
ψ

∑
v∈3∩P

ψ(v)80(v)
N(v)k∏m

i=1(1− ψ(vi)N(vi)k)
.

On the other hand, for L(1C,8; s) we have

L(1C,8; s) = −
∑
ψ

∑
v∈3∩C

ψ(v)80(v)N(v)−s

= −

∑
ψ

∑
v∈3∩P

ψ(v)80(v)

∞∑
n1,...,nm=0

ψ
( m∑
i=1

nivi

)
N
(
v +

m∑
i=1

nivi

)−s
.
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Thus it is enough to show that for every unitary character ψ : 3→ C∗ with ψ(vi) 6= 1
for all i = 1, . . . , m the Dirichlet series

∞∑
n1,...,nm=0

ψ
( m∑
i=1

nivi

)
N
(
v +

m∑
i=1

nivi

)−s
extends to a holomorphic function on the whole complex plane and its value at s = k is

N(v)−k∏m
i=1(1− ψ(vi)N(vi)−k)

.

This is a well-known result of Shintani [19, Prop. 9]. ut

5.2. Zeta functions of totally real fields

We now fix a totally real number field F of degree n over Q and let K/F be a finite
abelian extension with Galois group G. Let S be a finite set of nonarchimedean places of
F containing all places which are ramified in K . For σ ∈ G we recall the definition of
the partial zeta function

ζS(σ, s) =
∑

(a,S)=1, σa=σ

N(a)−s .

Here the sum is taken over all ideals a ⊆ OF that are relatively prime to the elements
in S and such that their image σa ∈ G under the Artin map is equal to σ . The series is
absolutely convergent for Re(s) > 1 and extends to a meromorphic function on the whole
complex plane with a single pole at s = 1.

By a theorem of Siegel and Klingen the values of ζS(σ, s) at nonpositive integers
s = k are rational numbers. They can be expressed in terms of the Eisenstein co-
cycle [18, 5]. In this section we describe this relation within our framework (as it differs
from [5]). We choose an auxiliary finite nonempty set T of primes of F disjoint from S

and define the C[G]-valued zeta function ζS,T (K/F, s) by the identity

ζS,T (K/F, s) =
∏
q∈T

(1− N(q)1−s[σ−1
q ])

∑
σ∈G

ζS(σ, s)[σ
−1
].

The partial zeta functions ζS,T (σ, s) are defined as the different components of
ζS,T (K/F, s), i.e. we have the following identity in C[G]:

ζS,T (K/F, s) =
∑
σ∈G

ζS,T (σ, s)[σ
−1
].

A character χ : G → C∗ induces a ring homomorphism χ : C[G] → C and we obtain
the usual L-functions by LS,T (χ, s) = χ−1(ζS,T (K/F, s)).

We denote by TQ = {q | q ∈ q for some q ∈ T } the set of prime numbers that
underlie T , and by T the set of places of F that lie above a prime in TQ. We consider the
following conditions on T :
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(A1) Over every q ∈ TQ lies exactly one q ∈ T and we have N(q) = q.
(A2) T and S are disjoint.
(A3) T has at least two elements.

(A3a) T has at least two elements or T = {q} and q = N(q) ≥ n+ 2.

In order to express the relation between the value of ζS,T (K/F, s) at k ∈ Z≤0 we intro-
duce some notation. We choose an isomorphism F ∼= V of Q-vector spaces which allows
us to identify F with V in the following (so the reader may think of V = F considered
just as a Q-vector space). Therefore we can view the torus ResF/QGm as an algebraic
subgroup of GL(V ). Also we associate to every prime q with underlying prime number q
the triple Lq = (OF⊗Zq , q⊗Zq). Thus we have a collection of triples L = {Lq}q∈T as

in Section 4. We also identify Cc(A∞F ,Z), Cc(A
T ,∞
F ,Z) etc. with Cc(VẐ,Z), Cc(VẐT ,Z)

etc. (here and in the following we write ẐT for ẐTQ ). Note that F T ⊆ 0L
∩ F ∗.

The isomorphism F ∼= V provides V with the structure of an F -vector space, hence
induces an F ∗-action on R (recall that R was defined in §4.1). For v ∈ S∞ we denote
by σv : F → Fv = R the corresponding embedding and by εv : F ∗v → {±1} the sign
character. There exists a unique {±1}-orbit Fv ⊆ R such that

x ·Q = εv(x)Q

for all x ∈ F ∗ andQ ∈ Fv . In fact, if {ev}v∈S∞ is a basis of VR such that x ·ev = σv(x)ev
for all v ∈ S∞ and x ∈ F ∗ then Fv consists of the two rays ±R+ev . The embedding
σv : F ∼= V → R can be extended to a linear form jv : VR ∼= FR→ R and we use the set
{jv}v∈S∞ to define the notion of totally positive elements in VR. Note that the restriction
of N =

∏
v jv to F ∼= V is the usual norm NF/Q of the extension F/Q.

For v ∈ S∞, Q ∈ Fv , a 0L -module A and abelian group B, the “evaluation at Q”
map

evQ :M (A,B)→ Hom(A,B), β 7→ β(Q, ·),

is F T ,v-equivariant. Hence the pair (F T ,v ↪→ 0L , evQ) induces a homomorphism

H n−1(0L ,M (A,B)(ε))→ H n−1(F T ,v,Hom(A,B)(ε)). (63)

Definition 5.2. (a) Assume that (A1), (A2) and (A3) hold. We define the cohomology
class

EisF,T ,Q ∈ H n−1(F T ,v,Hom(Pc(V ,Z)L ,Z)(ε))

as the image of the Eisenstein cocycle EisL under the homomorphism (63) for A =
Pc(V ,Z)L .

(b) Assume that (A1), (A2) and (A3a) hold. The cohomology class

Eis0
F,T ,Q ∈ H

n−1(F T ,v,Hom(Cc(VẐT ,Z),Z)(ε))

is defined as the image of Eis0
L under the homomorphism (63) for A = Cc(VẐT ,Z).
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In order to define the Eisenstein cocycle on the full group F T rather than the sub-
group F T ,v , we note that evQ+ ev−Q is F T -equivariant and hence induces a homomor-
phism

H n−1(0L ,M (A,B)(ε))→ H n−1(F T ,Hom(A,B)(ε)). (64)

Parallel to Definition 5.2 above, we define

EisF,T ,v ∈ H n−1(F T ,Hom(Pc(V ,Z)L ,Z)(ε)),

Eis0
F,T ,v ∈ H

n−1(F T ,Hom(Cc(VẐT ,Z),Z)(ε))
(65)

as the image of EisL under (64) in the cases (a) and (b), respectively.
If H is a subgroup of F T ,v then (by abuse of notation) we shall denote the restriction

of EisF,T ,Q and Eis0
F,T ,Q to H -cohomology also simply by EisF,T ,Q. In fact, for most of

our applications it is enough to consider the restriction of Eis0
F,T ,Q to the group of totally

positive elements in F T , i.e. we can work with the class

Eis0
F,T ,Q ∈ H

n−1(F T+ ,Hom(Cc(VẐT ,Z),Z)). (66)

5.3. The homomorphism ∂

Let A be a locally profinite abelian group. We construct an (AT ,∞F )∗-equivariant map

1TS : C
�
c (S,A)

T
→ C�c (A

T ,∞
F , A) ∼= C

�
c (VẐT , A). (67)

as follows. There exist canonical homomorphisms

C�c

(∏
v∈S

F ∗v , A
)
⊗ Cc(∅,Z)S∪T ,∞→ C�c (S,A)T ,∞,

C�c

(∏
v∈S

Fv, A
)
⊗ Cc(AS∪T ,∞F ,Z)→ C�c (A

T ,∞
F , A)

(see (8), (9)). In fact, the first map is an isomorphism. Since (AS∪T ,∞F )∗/US∪T ,∞ is iso-
morphic to the group of fractional ideals IS∪T of F that are relatively prime to S ∪T , the
ring C0

c (∅,Z)S∪T ,∞ can be identified with the group ring Z[IS∪T ]. We define (67) as the
tensor product 1TS = δS ⊗ δ

S∪T where δS : C�c (
∏
v∈S F

∗
v , A)→ C�c (

∏
v∈S Fv, A) is the

inclusion (3) and δS∪T maps a fractional ideal a ∈ IS∪T to the characteristic function of
âS∪T = a(

∏
p 6∈S∪T Op).

Given a decomposition S∞ = S3 ∪ S4 into disjoint subsets consider the composition

1∗ : Hn−1(F
∗, C�c (S,A))

(28)∗
−−−→ Hn−1(F

∗, C�c (S,A)S3(εS3))

(∗)
∼= Hn−1(F

T∪S4 , C�c (S,A)T ,∞(ε))
(67)∗
−−−→ Hn−1(F

T∪S4 , C�c (VẐT , A)(ε)). (68)
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For the isomorphism (∗) note that C�c (S,A)S3 = IndF
∗

F T∪S4
C�c (S,A)T ,∞. We define

∂ = ∂S,S3,S4 : H
0(F ∗, C�(S,A))→ Hn−1(F

T∪S4 , C�c (VẐT , A)(ε)) (69)

as the composition of (22) with (68).
For later use we remark that for a decomposition S = S1 ∪S2 into disjoint subsets the

map (68) can be defined for the larger group of coefficients C�c (S1, S2, A) as well, i.e. we
obtain a map

1∗ : Hn−1(F
∗, C�c (S1, S2, A))→ Hn−1(F

T∪S4 , C�c (VẐT , A)(ε)) (70)

by replacing C�c (S,A) by C�c (S1, S2, A) everywhere in the definition of (68) above. For
that we only need to remark that the map (67) can be extended to C�c (S1, S2, A)

T by

replacing δS with the inclusion C�c (
∏
v∈S1

Fv ×
∏
v∈S2

F ∗v , A)
(3)
−→ C�c (

∏
v∈S Fv, A).

We now consider the case where A = R is a ring equipped with the discrete topology
so that (69) is the map

∂ : H 0(F ∗, C0(S, R))→ Hn−1(F
T∪S4 , C0

c (VẐT , R)(ε)).

We need certain “k-twisted” variants of ∂ , i.e. we define maps

∂k = ∂kS,S3,S4
: H 0(F ∗, C0(S, R))→ Hn−1(F

T∪S4 ,Pc(V , R)L (ε)) (71)

for every k ∈ Z≤0. For this we first introduce “k-twisted” versions 1(k)TS of (67) for
k ∈ Z≤0. Define the “idele norm character” N : A∗F → Q∗, (xv)v 7→

∏
v Nv(xv), by

Nv(x) =

{
|x|−1

v if v is nonarchimedean,
ε(x) if v is archimedean.

Note that for a ∈ F ∗ we have N(a) = NF/Q(a) =: N(a). Hence

1(k)TS : C
0
c (S,Z)

T ,∞(εk)→ Pc(V ,Q)T , φ 7→ 1TS (N
k
· φ)⊗ N−k, (72)

is F T -equivariant (recall that ε denotes the character (36); we view it as a character of F ∗

via the embedding F ∗ ↪→ GL(V )). Here Nk · φ denotes the function

(AT ,∞F )∗→ Q, x = (xv)v 6∈T , v-∞ 7→
∏

v 6∈T , v-∞

Nkv(xv)φ(x).

Lemma 5.3. The image of the map (72) is contained in Pc(V ,Z)L .
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Proof. As an F T -module, Cc(S,Z)T ,∞ is generated by functions of the type
1U ′ ⊗ 1

aUS∪T ,∞
where U ′ is an open subgroup of US and a = (av) ∈ (AS∪T ,∞F )∗. There-

fore it suffices to show that1TS (1U ′⊗1
aUS∪T ,∞

) is contained in Pc(V ,Z)L . Let a ∈ IS∪T
be the fractional ideal corresponding to a. We have

1(k)TS (1U ′ ⊗ 1
aUS∪T ,∞

) = (1U ′ ⊗ 1âT∪S )⊗ (N(a)
k N−k). (73)

If3 ⊆ V corresponds to a under the identification V ∼= F then (N(a)k N−k) ∈ PolV (3),
and therefore (73) is contained in Cc(3ẐT ,Z)⊗ PolV (3) ⊆ Pc(V ,Z)L . ut

The lemma shows that (72) can be viewed as a map Cc(S,Z)T ,∞ → Pc(V ,Z)L . Hence
for any ring R we can define

1(k)TS : C
0
c (S, R)

T ,∞(εk+1)→ Pc(V , R)L (ε) (74)

by taking the tensor product of (72) with idR . We define (71) as the composite map

∂k = ∂kS,S3,S4
: H 0(F ∗, C0(S, R))

(22)
−−→ Hn−1(F

∗, C0
c (S, R))

(28)∗
−−−→ Hn−1(F

∗, C0
c (S, R)

S3(εk+1
S3
))
(∗)
∼= Hn−1(F

T∪S4 , C0
c (S, R)

T ,∞(εk+1))

(74)∗
−−−→ Hn−1(F

T∪S4 ,Pc(V , R)L (ε)).

For v ∈ S∞ consider the cap-product pairing

H n−1(F T ,v,Hom(Pc(V ,Z)L ,Z)(ε))×Hn−1(F
T ,v,Pc(V , R)L (ε))→ R

induced by the canonical map Hom(Pc(V ,Z)L ,Z)× Pc(V , R)L → R. Using (69) for
S3 = S∞ − {v} and S4 = {v} we obtain a pairing

H n−1(F T ,v,Hom(Pc(V ,Z)L ,Z)(ε))×H 0(F ∗, C0(S, R))→ R

given by (x, y) 7→ x ∩ ∂k(y). Next we apply this pairing with the Eisenstein cocycle to
deduce integrality results on partial zeta functions of totally real fields.

5.4. Stickelberger elements and Shintani zeta functions

Let

recK/F : A∗F → G ⊆ Z[G]∗, x = (xv)v 7→ rec(x) =
∏
v

(xv,K/F)v,

be the global reciprocity map. Here (x,K/F)v denotes the local norm residue sym-
bol for every place v of F and x ∈ F ∗v . We can view recK/F as an element of
H 0(F ∗, C0(S,Z[G])) so we can make the following definition.
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Definition 5.4. Assume that (A1), (A2) and (A3) hold. For k ∈ Z≤0 and Q ∈ Fv the
Stickelberger element is defined by

2S,T (K/F, k) = EisF,T ,Q ∩ ∂k(recK/F ) ∈ Z[G].

If only (A3a) holds instead of (A3) then we define 2S,T (K/F, 0) by

2S,T (K/F, 0) = Eis0
F,T ,Q ∩ ∂(recK/F ) ∈ Z[G].

Remark 5.5. (a) Using the fact that ∂kS,S3,S4
= cor ◦∂k

S,S′3,S
′

4
if S4 ⊇ S′4 (where cor de-

notes the corestriction from F T∪S
′

4 - to F T∪S4 -homology) one shows that 2S,T (K/F, k)
does not depend on the choice of the decomposition S∞ = S3 ∪ S4. The choice of S3, S4
will be important in the proof of Thm. 5.9 however.

(b) Let L/F be an abelian extension with L ⊇ K and write G̃ = Gal(L/F). Assume
that L/F is unramified outside S and let π : Z[G̃] → Z[G] be the canonical projection.
Since π ◦ recL/F = recK/F , we have

π(2S,T (L/F, k)) = 2S,T (K/F, k).

(c) If v is a nonarchimedean place of F with v 6∈ S ∪ T and we set S′ = S ∪ {v} then

2S′,T (K/F, k) = (1− N(v)−k[σ−1
v ])2S,T (K/F, k). (75)

In fact,
∂kS′(recK/F ) = (1− N(v)−k[σ−1

v ])∂
k
S(recK/F ),

which can be easily deduced from the commutativity of the diagram

Cc(S,Z)T ,∞
φ 7→φ−N(v)−k[$v]φ //

incl
��

Cc(S,Z)T ,∞

1(k)TS
��

Cc(S′,Z)T ,∞
1(k)T

S′ // Pc(V ,Z)L

(76)

and the fact that [$v] recK/F = [σ−1
v ] recK/F . Here [$v] ∈ (ATF )

∗ denotes the idele
whose component at v is the uniformizer $v ∈ Fv and whose other components are = 1.

Of course (b) and (c) also follow immediately from

Proposition 5.6. For k ∈ Z≤0 we have 2S,T (K/F, k) = ζS,T (K/F, k).

Remark 5.7. In particular, ζS,T (K/F, k) ∈ Z[G] and also 2S,T (K/F, k) does not de-
pend on the choices of v and Q.

In order to prove Prop. 5.6 we first recall how to express ζS,T (K/F, s) in terms of
Shintani zeta functions. The definition (62) can be extended naturally to functions 8 ∈
Pc(VẐ,Z[G]) (in this caseL(f,8, s) has values in C[G]). For a fractional ideal a ∈ IS∪T
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we consider the function φa ∈ Pc(VẐT ,Z[G]) defined by

φa(x) = [recS(x)σa](1âT∪S ⊗ 1US )(x)

where recS : (ATF )
∗
→ G is given by recS((xv)v 6∈T ) =

∏
v∈S(xv,K/F)v ∈ G, i.e.

recS((xv)v 6∈T ) is the product of the local norm residue symbols (xv,K/F)v at places
in S. Note that for y ∈ ES∪T ,+ we have φya = yφa because of recS(y)σ(y) = 1. We also
define 8a ∈ Pc(VẐ,Z[G]) by

8a = φa ⊗
⊗
q∈T

φLq
.

Let A ⊆ VR,+ be a Shintani decomposition for F . Recall that this means that A can
be written as a finite disjoint union of rational open cones and that VR,+ =

⋃̇
ε∈E+

εA.
We fix representatives a1, . . . , ah of the different ideal classes in the narrow class group
Cl+(F ) that are relatively prime to S ∪ T .

Lemma 5.8. We have ζS,T (K/F, s) =
∑h
i=1 N(ai)sL(1A,8ai , s).

Proof. This is a well-known computation (see e.g. [21]). Let a ∈ IS and let A be its class
in Cl+(F ). The map x 7→ xa−1 induces a bijection between the set

{x ∈ a ∩A |ordv(x) = 0 ∀v ∈ S, v -∞}

and the set I S
A−1 of integral ideals b relatively prime to S and contained in A−1. Define

the Dirichlet series

ζ̃S(a, s) = N(a)s[σa]
∑

x∈a∩A∩US
[recS(x)]N(x)−s =

∑
b∈I S

A−1

[σ−1
b ]N(b)

−s .

For L(1A,8a, s) we obtain

N(a)sL(1A,8a, s) =
∑
T ′⊆T

(−1)](T
′)
(∏
q∈T ′

N(q)1−s[σ−1
q ]

)̃
ζS

(
a
∏
q∈T ′

q, s
)
.

For a fixed subset T ′ of T , the fractional ideals a1
∏

q∈T ′ q, . . . , ah
∏

q∈T ′ q are represen-
tatives of the different classes in Cl+(F ) as well, so we get

h∑
i=1

ζ̃S

(
ai
∏
q∈T ′

q, s
)
=

∑
b

[σ−1
b ]N(b)

−s
=

∑
σ∈G

ζS(σ, s)[σ
−1
]

where in the second sum, b is taken over all integral ideals of OF that are relatively prime
to S. We deduce

ζS,T (K/F, s) =
∑
T ′⊆T

(−1)](T
′)
(∏
q∈T ′

N(q)1−s[σ−1
q ]

)∑
σ∈G

ζS(σ, s)[σ
−1
]

=

h∑
i=1

N(ai)sL(1A,8ai , s). ut
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Proof of Prop. 5.6. As explained in Remark 5.5(a), we can choose S3 = ∅, S4 = S∞ in
the definition of 2S,T (K/F, k).

Choose ideles a1, . . . , ah ∈ (AT ,∞F )∗ whose components at places in S are 1
and whose associated fractional ideals are a1, . . . , ah. Then F =

⋃h
i=1 aiU

T ,∞
⊆

(AT ,∞F )∗/UT ,∞ is a fundamental domain for the action of F T /E+. Since C(S,Z[G]) ∼=
CoindF

∗

F T
C(S,Z[G])T ,∞, we have

H 0(F ∗, C(S,Z[G])) ∼= H 0(F T+ , C(S,Z[G])T ,∞). (77)

Consider the pairing C(S,Z[G])T ,∞ × Cc(S,Z)T ,∞→ Cc(S,Z[G])T ,∞. Passing to E+-
invariants and evaluating at 1F ∈ H 0(E+, Cc(S,Z)T ,∞) yields a map

H 0(E+, C(S,Z[G])T ,∞)→ H 0(E+, Cc(S,Z[G])T ,∞). (78)

The image of recK/F under the composition of (77), (78) and (74),

H 0(F ∗, C(S,Z[G]))→ Pc(V ,Z[G])L , (79)

is easily computed to be

8K/F,k =

h∑
i=1

N(ai)kφai ⊗ N−k .

Using the compatibility of the cap-product with restrictions and corestrictions one checks
that the diagram

H 0(F ∗, C(S,Z[G])) ∂k //

(79)
��

Hn−1(F
T ,Pc(V ,Z[G])L )

H 0(E+,Pc(V ,Z[G])L )
∩ η
// Hn−1(E+,Pc(V ,Z[G])L )

corA

OO

commutes. In particular, ∂k(recK/F ) = cor(8K/F,k ∩ η).
The specialization at Q map sp : Hom(R,NL )→ NL , f 7→ f (Q), together with

the inclusion E+ ↪→ 0L induces a homomorphism

sp∗ : H
n−1(0L ,Hom(R,NL ))→ H n−1(E+,NL ).

Moreover (58) induces a pairing

∩ : H n−1(E+,Hom(Pc(V ,Z)L ,Z))×Hn−1(E+,NL )→ R

and it is easy to see that

EisF ∩ cor(z) = sp∗(4Sh,L ) ∩ z

for all z ∈ Hn−1(E+,Pc(V , R)L ). It follows that

EisF ∩ ∂k(recK/F ) = EisF ∩ cor(8K/F,k ∩ η) = (sp∗(4Sh,L ) ∪8K/F,k) ∩ η

= 8K/F,k ∩ (sp∗(4Sh,L ) ∩ η).
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By [5, Thm. 1.5] there exists a Shintani decomposition A such that 1A ∈ KL represents
the class η ∩ ev∗(4Sh,L ) ∈ H0(E+,NL ). The assertion follows now from Lemmas 5.1
and 5.8. ut

5.5. Gross’s tower of fields conjecture

As before let K/F be a finite abelian extension with Galois group G and let S be a finite
set of nonarchimedean places of F containing all finite places that are ramified in K . For
any place v of F we denote by Gv ⊆ G the decomposition group at v. For v ∈ S write
Iv = Ker(Z[G] → Z[G/Gv]). Also for v ∈ S∞ let σv be a generator of Gv and define
ideals I±v ⊆ Z[G] as follows:

I±v = 〈[σv] ∓ 1〉

(so in particular I+v = 0 and I−v = 2Z[G] if the places of K above v are real).

Theorem 5.9. Let v0 be a fixed archimedean place of F .

(a) Assume that (A1), (A2) and (A3a) hold. Then

2S,T (K/F, 0) ∈
∏
v∈S

Iv ·
∏

v|∞,v 6=v0

I+v , 22S,T (K/F, 0) ∈
∏
v∈S

Iv ·
∏
v|∞

I+v .

(b) Let k ∈ Z<0 and assume that (A1), (A2) and (A3) hold. If k is even (resp. odd) then

2S,T (K/F, k) ∈
∏

v|∞,v 6=v0

I+v (resp. 2S,T (K/F, k) ∈
∏

v|∞,v 6=v0

I−v ),

22S,T (K/F, k) ∈
∏
v|∞

I+v (resp. 2S,T (K/F, k) ∈
∏
v|∞

I−v ).

Proof. (a) Set S1 = S, S2 = ∅, S3 = S∞ − {v0} and S4 = {v0}. Let ρK/F be the image
of recK/F under the composition

H 0(F ∗, C(S,Z[G])) (22)
−−→ Hn−1(F

∗, Cc(S,Z[G]))
(29)∗
−−−→ Hn−1(F

∗, Cc(S,Z[G])S3(εS3))
(3)∗
−−→ Hn−1(F

∗, Cc(S1, S2,Z[G])S3(εS3)). (80)

Choose Q ∈ Fv0 and let

1∗ : Hn−1(F
∗, Cc(S1, S2,Z[G])S3(εS3))→ Hn−1(F

T∪S4 , C�c (VẐT ,Z[G])(ε))

be the map (70) (for A = Z[G]). Then

2S,T (K/F, 0) = Eis0
F,T ,Q ∩1∗(ρK/F ).

Let R = Z[G]/
∏
v∈S Iv ·

∏
v|∞,v 6=v0

I+v and let π : Z[G] → R be the projection. Since
the local components (·,K/F)v of recK/F are trivial modulo Iv (resp. modulo I+v ) for all
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v ∈ S (resp. v ∈ S∞), we can apply Prop. 3.8 to find that ρK/F is mapped to 0 under the
induced map

π∗ : Hn−1(F
∗, Cc(S1, S2,Z[G])S3(εS3))→ Hn−1(F

∗, Cc(S1, S2, R)
S3(εS3)). (81)

Hence
π(2S,T (K/F, 0)) = EisF,T ,Q ∩1∗(π∗(ρK/F )) = 0,

i.e. 2S,T (K/F, 0) ∈
∏
v∈S Iv ·

∏
v|∞,v 6=v0

I+v .
For the second assertion set S3 = S∞, S4 = ∅ and let v be any archimedan place.

We now work with the class Eis0
F,T ,v (see (65); note that it is a cohomology class for the

group F T and not just F T ,v). We have

22S,T (K/F, 0) = Eis0
F,T ,v ∩1∗(ρK/F ),

and therefore we can conclude as above that 22S,T (K/F, 0) ∈ I :=
∏
w∈S Iw

∏
w|∞ I

+
w

since ρK/F ≡ 0 mod I .
The proof of (b) is similar. Let S3, S4 be as above but we now take S1 = ∅, S2 = S.

Moreover we set R = Z[G]/
∏
v|∞,v 6=v0

I+v if k is even and R = Z[G]/
∏
v|∞,v 6=v0

I−v
if k is odd and we let π : Z[G] → R be the projection. Again ρK/F denotes the image
of recK/F under (80). Since (−1,K/F)v = σv ≡ 1 = − εv(−1)k+1 modulo I+v if k is
even (resp. (−1,K/F)v ≡ − εv(−1)k+1 modulo I−v if k is odd), by applying Prop. 3.8
we see that ρK/F is mapped to 0 under (81). Since the map (69) factors through (80), we
conclude

π(2S,T (K/F, k)) = EisF,T ,Q ∩ ∂k(π∗(recK/F )) = 0,
hence 2S,T (K/F, k) ∈

∏
v|∞, v 6=v0

I+v . ut

Assume now that L ⊇ K ⊇ F is a tower of finite abelian extensions (i.e. L/F is abelian).
Let G, G̃ and H be the Galois groups of K/F , L/F and L/K respectively and let I be
the kernel of the canonical projection Z[G̃] → Z[G]. We assume that L/F is unramified
outside S and denote by r the number of places in S that split completely in K . Let s be
the number of archimedean places in F that split completely in K . Since Iv ⊆ I (resp.
I+v ⊆ I ) if v ∈ S (resp. v ∈ S∞) splits completely in K , we obtain in particular

Corollary 5.10. (a) Assume that (A1), (A2) and (A3a) hold. Then

2S,T (L/F, 0) ∈ I r+min(s,n−1) and 22S,T (L/F, 0) ∈ I r+s .

(b) Let k ∈ Z<0 be even and assume that (A1), (A2) and (A3) hold. Then

2S,T (L/F, k) ∈ I
min(s,n−1) and 22S,T (L/F, k) ∈ I s .

Remark 5.11. In [13] Gross conjectured that 2S,T (L/F, 0) ∈ Im with

m = min(r + s, ](S ∪ S∞)− 1).

In fact, if r ≥ 2 then [13, Conj. 7.6] predicts 2S,T (L/F, 0) ∈ I 2 and the strengthening
2S,T (L/F, 0) ∈ Im was formulated as a “guess” in [13, top of p. 195]. Therefore our
result implies Gross’s conjecture unless K is totally real and not all the places of S split
completely in K; in this case, our exponent is one less than what Gross predicts for the
“2-part” of the conjecture.
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6. Conjectural construction of Gross–Stark units

In this section we give a cohomological interpretation of the Gross–Stark units introduced
in [8].

Let F again denote a totally real number field of degree n over Q, let K/F be a finite
abelian extension with Galois group G and let S denote a set of nonarchimedean places
of F containing all places that are ramified inK . Let p 6∈ S be a nonarchimedean place of
F that splits completely in K . We let T , T be as at the beginning of Section 5.2 such that
p 6∈ T and T satisfies assumptions (A1), (A2) and (A3a). Since the local norm residue
symbol for K/F at p is trivial, we omit it from the reciprocity map, i.e. we consider the
homomorphism

recpK/F : (A
p
F )
∗
→ Z[G]∗, x = (xv)v 6=p 7→

∏
v 6=p

(x,K/F)v.

We view it as an element of H 0(F ∗, C(S,Z[G])p) and denote by

ρK/F ∈ Hn(F
∗, Cc(S,Z[G])p)

its image under (23).
For a locally profinite abelian group A the bilinear map ⊗ : A× Z[G] → A⊗ Z[G]

induces a bilinear map

C�c (Fp, A)⊗ Cc(S,Z[G])p→ C�c ({p}, S,A⊗ Z[G])

(compare (8)), hence induces a pairing

H i(F ∗, C�c (Fp, A))×Hj (F
∗, Cc(S,Z[G])p)→ Hj−i(F

∗, C�c ({p}, S,A⊗ Z[G])).

In particular, we can consider

cuniv ∩ ρK/F ∈ Hn−1(F
∗, C�c ({p}, S,Z[G] ⊗ F ∗p ))

where cuniv = cid ∈ H
1(F ∗, C�c (Fp, F

∗
p )) is the class (19) attached to the identity id :

F ∗p → F ∗p . Choose v ∈ S∞ and Q ∈ Fv . Applying the map induced by (70) we get a
class

1∗(cuniv ∩ ρK/F ) ∈ Hn−1(F
T ,v, C�c (VẐT , F

∗
p ⊗ Z[G])(ε)).

Now the canonical pairing (set A = F ∗p ⊗ Z[G])

Hom(Cc(VẐT ,Z),Z)× C
�
c (VẐT , A)→ A, (µ, f ) 7→ µA(f ),

induces via cap-product a pairing

∩ : H n−1(F T ,v,Hom(Cc(VẐT ,Z),Z)(ε))×Hn−1(F
T ,v, C�c (VẐT , A)(ε))→ A. (82)

Applying (82) with the Eisenstein cocycle Eis0
F = Eis0

F,T ,Q and 1∗(cuniv ∩ ρK/F ) we
obtain an element uK/F = uK/F,S,T ∈ F ∗p ⊗ Z[G]:

uK/F,S,T =
∑
σ∈G

uS,T ,σ ⊗ [σ
−1
] = Eis0

F ∩1∗(cuniv ∩ ρK/F ). (83)
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Let Ep denote the subgroup

Ep = {x ∈ K
∗
| |x|w = 1 for all places w of H with w - p}

ofK∗ and choose a prime P ofK above p. Since Fp = KP, we can viewK as a subfield
of Fp. The following conjecture is a strengthening of the Brumer–Stark conjecture, as
formulated by Tate, and a conjecture of Gross (see [24], [13]; compare also [8, Section 2]).

Conjecture 6.1. (i) uS,T ,σ ∈ Ep for all σ ∈ G.
(ii) uS,T ,σ ≡ 1 mod T , i.e. uS,T ,σ ≡ 1 mod qOH for all σ ∈ G and all q ∈ T .

(iii) τ(uS,T ,σ ) = uS,T ,τσ for all σ, τ ∈ G.

Remark 6.2. Conditions (i) and (iii) may be rephrased by conjecturing that uK/F,S,T lies
in the image of the diagonal embedding

Ep→

∏
σ∈G

K∗σP =
∏
σ∈G

F ∗p .

Hence Conjecture 6.1 is independent of the choice of P.

Proposition 6.3. (a) ordp(uS,T ,σ ) = ζS,T (σ, 0) for σ ∈ G.
(b) Let L/F be an abelian extension with L ⊇ K and set G̃ = Gal(L/F). Assume that

L/F is unramified outside S, and p splits completely in L. Then

uS,T ,σ =
∏

τ∈G̃, τ |K=σ

uS,T ,τ .

(c) Let q be a nonarchimedean place of F with q 6∈ S ∪ T ∪ {p} and set S′ = S ∪ {q}.
Then uS′,T ,σ = uS,T ,σu

−1
S,T ,σqσ

.
(d) Assume that K has a real archimedean place w with w - v. Then uS,T ,σ = 1 for all

σ ∈ G.
(e) Let L/F be an abelian extension with Galois group G̃ and assume K ⊆ L and L/F

is unramified outside S′ = S ∪ {p}. Let

recp = (·, L/F)p : F ∗p → Gal(L/K) ⊆ G̃

be the p-component of the reciprocity map. Then

recp(uS,T ,σ ) =
∏

τ∈G̃, τ |H=σ

τ ζS′,T (τ,0).

Proof. (a) This follows from Lemma 3.5 and Prop. 5.6. Indeed, using Lemma 3.5 it is
easy to see that the image of uK/F,S,T under the map ordp⊗ idZ[G] : F ∗p⊗Z[G] → Z[G]
is 2S,T (K/F, 0), i.e. the element we obtain by replacing cuniv by cordp in (83) above.

(b) is obvious and (c) can be deduced from the commutativity of diagram (76) in the
same way as the formula (75) in Remark 5.5(c).

(d) Set v′ = v|F . It is easy to see that the map

Hn(F
∗, Cc(S,Z[G])p)→ Hn−1(F

T ,v, C�c (VẐT , F
∗
p⊗Z[G])(ε)), x 7→ 1∗(cuniv∩x),
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factors through the right vertical map of the diagram

H 0(F ∗, C�(S,Z[G])p)
(23)

//

(28)∗
��

Hn(F
∗, C�c (S,Z[G])p)

(29)∗
��

H 0(F ∗, C�(S,Z[G])p,v′(εv′))
(31)
// Hn(F

∗, C�c (S,Z[G])p,v
′

(εv′))

Since (·,K/F)v′ = 1, the homomorphism recpK/F lies in the kernel of the left vertical
map. Consequently, 1∗(cuniv ∩ ρK/F ) = 0, hence uK/F,S,T is trivial.

(e) Let I be the kernel of the canonical projection π : Z[G̃] → Z[G] and let H =
Gal(L/K). The homomorphism

Z[G̃] → G̃⊗ Z[G],
∑
τ∈G̃

nτ [τ ] 7→
∑
σ∈G

( ∏
τ∈G̃,τ |H=σ

τnτ
)
⊗ [σ ],

maps I into H ⊗ Z[G] ⊆ G̃⊗ Z[G] and induces an isomorphism

I/I 2
→ H ⊗ Z[G]. (84)

Thus the assertion will follow once we show that the image of uK/F,S,T under

recp⊗ idZ[G] : F ∗p ⊗ Z[G] → H ⊗ Z[G]

is equal to the image of 2L/F,S′,T mod I 2 under the isomorphism (84). Firstly, note

(recp⊗ idZ[G])(uK/F,S,T ) = Eis0
F ∩1∗(crecp ∩ ρK/F ).

In order to compute the right hand side we apply Prop. 3.6 to the ring R = Z[G̃]/I 2, the
ideal a = I/I 2 and the character

χ : A∗F /U
S′F ∗→ R∗, x 7→ recL/F (x) mod I 2.

Note that χ mod a = recK/F , so in the notation of Prop. 3.6 we have κχ,{p} = cdχp∩ρK/F .
Consider the commutative diagram

H × Z[G] ⊗
//

��

H ⊗ Z[G]

I/I 2
× R/I

mult // I/I 2

(84)

OO

where the left vertical arrow is given on the first factor by H → I/I 2, τ 7→
[τ ] − 1 mod I 2, and by R/I ∼= Z[G] on the second factor. Note that the image of crecp
under the map H 1(F ∗p , Cc(Fp, H)) → H 1(F ∗p , Cc(Fp, I/I

2)) induced by H → I/I 2

as above is cdχp . The functorial properties of the cap- and cup-product yield κχ,{p} =
crecp ∩ ρK/F . Applying 1∗ to both sides and taking the cap-product with Eis0

F completes
the proof. ut
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Remarks 6.4. (a) As mentioned in the introduction, elements uS,T ,σ ∈ F ∗p for which
Conjecture 6.1 is expected to hold have been introduced previously in [8, Def. 3.18].
The definition given there is a rather elaborate construction in terms of a certain p-adic
measure involving Shintani zeta functions (it does not make use of group homology and
cohomology). We suspect that one can show that our cohomological construction coin-
cides with the one in loc. cit.

(b) Of course we expect uS,T ,σ to be independent of the choice of v and Q. In partic-
ular we expect that uS,T ,σ = 1 for all σ ∈ G if K has a real place; indeed, this follows
from Conjecture 6.1(i) since Ep = 1 unless K/F is totally imaginary.

(c) Following the arguments of [8, pp. 262–264] one can show that the properties
of Prop. 6.3 determine the elements uS,T ,σ “almost” uniquely. More precisely, assume
that K/F is totally imaginary and choose an archimedean place v′ of F with v′ 6= v.
Let τ ∈ Gv′ ⊆ G denote the complex conjugation associated to v′. If q1, . . . , qm are
nonarchimedan places of F with qi 6= S ∪ T and σqi = τ for all i = 1, . . . , m then by
Prop. 6.3(b)(c)(d) we have, for S′ = S ∪ {q1, . . . , qm},

uS′,T ,σ = u
2m
S,T ,σ .

As in [8], it follows that by enlarging S further and further with primes q as above (using
Lemma 5.17 of loc. cit.) the element uS,T ,σ is uniquely determined up to a root of unity
by the properties (a) and (e) of Prop. 6.3.

(d) Assume that p lies over a prime number p such that S contains all other primes
of F above p. It is easy to show (see e.g. the forthcoming work [10]) that

logp(NFp/Qp (uS,T ,σ )) = ζ
′

S,T ,p(σ, 0) (85)

where ζS,T ,p(σ, s) for s ∈ Zp is the partial p-adic zeta function (it satisfies the interpo-
lation property ζS,T ,p(σ, n) = ζS,T (σ, n) for all n ∈ Z≤0 such that n ≡ 0 mod p − 1).
Assume now that p ≥ 3, Fp = Qp, and p is the only prime in Sp that splits completely
inK . Combining (85) with the main results of [9] and [25] we conclude that at least some
power of uS,T ,σ is contained in K .

(e) Because of the expected consistency of Conjecture 6.1 with the constructions of [6]
and [8], numerical evidence obtained in those settings can be viewed as support for our
present conjecture. In particular, supportive numerical data is presented in [7] and [8, §4].
We hope to provide more concrete data pertaining directly to Conjecture 6.1 in future
work.
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