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Abstract. We prove that the derived category of a Grothendieck abelian category has a unique
dg enhancement. Under some additional assumptions, we show that the same result holds true
for its subcategory of compact objects. As a consequence, we deduce that the unbounded derived
category of quasi-coherent sheaves on an algebraic stack and the category of perfect complexes
on a noetherian concentrated algebraic stack with quasi-finite affine diagonal and enough perfect
coherent sheaves have a unique dg enhancement. In particular, the category of perfect complexes
on a noetherian scheme with enough locally free sheaves has a unique dg enhancement.
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Introduction

The relation between triangulated categories and higher categorical structures is highly
non-trivial, very rich in nature and with various appearances in the recent developments
of derived algebraic geometry. The easiest thing we can do is to produce a triangulated
category T out of a pretriangulated dg category C by taking the homotopy category of C.
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Roughly speaking, a pretriangulated dg category C whose homotopy category is equiva-
lent to a triangulated category T is called a dg enhancement (or enhancement, for short)
of T.

Now, there exist triangulated categories with no enhancements at all. For example,
this happens to some triangulated categories naturally arising in topology (see [36] or
[17, Section 3.6] for a discussion). Triangulated categories admitting an enhancement are
called algebraic (as is explained, for example, in [36, Section 3], algebraic triangulated
categories are often defined in other equivalent ways). In practice, all triangulated cate-
gories one usually encounters in algebra or algebraic geometry are algebraic. For instance,
the derived category of a Grothendieck category, as well as its full subcategory of com-
pact objects, are algebraic. Recall that a Grothendieck category is an abelian category G
which is closed under small coproducts, has a small set S of generators, and the direct
limits of short exact sequences are exact. The objects in S are generators in the sense that,
for any C in G, there exists an epimorphism S — C in G, where S is a small coproduct
of objects in S.

In particular, if X is a scheme or, more generally, an algebraic stack, it is not difficult to
construct explicit enhancements of the derived category D (Qcoh(X)) of the Grothendieck
category of quasi-coherent sheaves on X, of the bounded derived categories D?(X) of co-
herent sheaves and of the category Perf(X) of perfect complexes on X. For example, this
can be achieved either by taking complexes of injective sheaves or, under mild assump-
tions, Cech resolutions or chain complexes of sheaves in the corresponding categories or
perfect complexes (see [3] and [25]).

Even when we know that an enhancement exists, one may wonder whether it is
unique. Roughly, we say that a triangulated category T has a unique enhancement C if
any other enhancement is related to C by a sequence of quasi-equivalences. These are the
analogue, at the dg level, of the exact equivalences in the triangulated setting. Actually, at
this level of generality, we cannot expect a positive answer to the above question. Indeed,
the result of Dugger and Shipley [11] easily yields an example of two Z-linear pretrian-
gulated dg categories which are not quasi-equivalent but whose homotopy categories are
equivalent. Finding a similar example over a field rather than a commutative ring is still a
challenge.

Again, if we move to the geometric setting, then for a long while it was expected that
any of the three triangulated categories D (Qcoh(X)), D?(X) and Perf(X) should have
unique enhancements, when X is a (quasi-)projective scheme. This was formally stated
as a conjecture (even in a stronger form) by Bondal, Larsen and Lunts [3].

As we will explain later, this conjecture was confirmed by Lunts and Orlov in their
seminal paper [24]. It should be noted that the quest for uniqueness of enhancements
has a foundational relevance that cannot be overestimated by the ‘working algebraic geo-
meter’. Let us just mention an instance where the fact of having a unique enhancement
has interesting consequences. The homological version of the so called Mirror Symmetry
Conjecture by Kontsevich [18] predicts the existence of an Axo-equivalence between a dg
enhancement of D?(X), for X a smooth projective scheme, and the Fukaya category of
the mirror Y of X, which is actually an A-category. The fact that the dg enhancements
are unique allows us to conclude that finding an A,-equivalence (or rather a sequence of
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them) is the same as finding an exact equivalence between the corresponding homotopy
categories. More generally, several geometric problems can be lifted to the dg level and
treated there in a universal way (e.g. moduli problems or the characterization of exact
functors). Having bridges between the different dg incarnations of the same triangulated
or geometric problem is then crucial.

Let us now explain the contributions of this paper to the problem of showing the
uniqueness of dg enhancements in geometric settings. The first point to make, which
should be clear from now on, is that the analysis of these questions about D(Qcoh(X))
or Perf(X) (or D?(X)) follows slightly different paths. In particular, they can be deduced
from two different general criteria whose statements are similar but whose proofs are
rather different in nature.

We first consider the case of D(Qcoh(X)) and, setting the problem at a more abstract
level, we first prove the following general result.

Theorem A. If G is a Grothendieck category, then D(G) has a unique enhancement.

We will later explain some key features in the proof. For the moment, we just recall that
the main geometric applications are the following:

e If X is an algebraic stack, D(Qcoh(X)) has a unique enhancement (Corollary 5.4).
e If X is scheme and « is an element in the Brauer group Br(X) of X, then the twisted
derived category D (Qcoh(X, «)) has a unique enhancement (Corollary 5.7).

Now, if we want to study the enhancements of Perf(X) (and consequently of Db (X)),
we should keep in mind that if X is a quasi-compact and semi-separated scheme, then
Perf(X) is the triangulated subcategory of D(Qcoh(X)) consisting of compact objects.
Our general result in this direction is then the following.

Theorem B. Let G be a Grothendieck category with a small set A of generators such
that

(1) A is closed under finite coproducts;

(2) every object of A is a noetherian object in G;

(3) if f: A” — A is an epimorphism of G with A, A’ € A, thenker f € A;

(4) for every A € A there exists N(A) > 0 such that D(G)(A, A'[N(A)]) = 0 for every
A e A

Then D(G)€ has a unique enhancement.

Here D(G)“ denotes the subcategory of compact objects in D(G). One may wonder why
the result above is conditional while Theorem A does not include any specific assumptions
on G. We will try to explain later that this is, in a sense, unavoidable but to reassure the
reader about the mildness of (1)-(4), let us now discuss some geometric cases where
Theorem B applies:

e If X is a noetherian concentrated algebraic stack with quasi-finite affine diagonal and
with enough perfect coherent sheaves, then Perf(X) has a unique enhancement (Propo-
sition 6.10).
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e As a special (but maybe easier to understand) instance of the above case, if X is a
noetherian scheme with enough locally free sheaves, then Perf(X) has a unique en-
hancement (Corollary 6.11).

e Under the same assumptions on the scheme X, the category D?(X) has a unique en-
hancement (Corollary 7.2).

The (more or less) standard terminology involved in the above statements will be
briefly recalled in Section 6.3.

It is very likely that Theorems A and B may be used in other geometric contexts.
One direct application of the circle of ideas appearing in the proofs of these two results
concerns the existence of exact equivalences. In particular, if X and X, are noetherian
schemes with enough locally free sheaves then the set of equivalences between Perf(X)
and Perf(X;) is not empty if and only if the same is true for the set of equivalences
between D(Qcoh(X)) and D(Qcoh(X>)) (Proposition 7.4).

The strategy of the proof

Before entering into some details of the proof it is worth pointing out the general approach
to Theorems A and B. Even if these results have a dg flavour, the idea is to reduce them
to questions about Verdier quotients of triangulated categories. Unfortunately, some of
these latter questions are highly non-trivial and involve deep problems concerning the
description of the subcategory of compact objects of a quotient. This is the reason why
our proofs, which are conceptually quite simple, become technically rather involved.

Let us try to make this more precise and consider first Theorem A. The key observa-
tion is that the derived category D (G) of a Grothendieck category G is well generated in
the sense of Neeman [30]. Thus one can choose a small set A of generators for G such that
D(G) is naturally equivalent to the quotient D(A)/L, where D(A) is the derived category
of A, seen as a dg category, and L is an appropriate localizing subcategory of D(A).

This is carried out in Section 5.1, where we also explain that Theorem A follows
easily once we prove the following general criterion.

Theorem C. Let A be a small category considered as a dg category concentrated in
degree 0 and let L be a localizing subcategory of D(A) such that

(a) the quotient D(A)/L is a well generated triangulated category;
(b) DA)/L(QYA(A)), [Lic; QYAANIK]) = 0 forall A, A; € A (with I a small
set) and all integers k; < 0.

Then D(A)/L has a unique enhancement.

Here YA: A — D(A) denotes the Yoneda functor, Q: D(A) — D(A) /L is the natural
quotient functor, while D(A)/L (—, —) denotes the Hom-space in the category D(A)/L.
We will give the precise definition of a well generated triangulated category in Section 1.
For the moment, it is enough to keep in mind that it is a natural generalization of the usual
notion of compactly generated triangulated category. The idea of the proof, which occu-
pies the whole of Section 4, is very much inspired by the proof of [24, Theorem 2.7] but
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it differs at some technical steps. We will try to clarify them in a while when comparing
our results to those in [24]. The geometric applications mentioned above and discussed
in Section 5.2 can be deduced easily from the fact that, in all those cases, the category of
quasi-coherent sheaves is a Grothendieck category, under our assumptions on X.

Once we have the equivalence D(G) = D(A)/L as above, it is clear that to prove
Theorem B we have to show that the triangulated subcategory (D(A)/L)¢ of compact
objects in D(A)/L has a unique enhancement, for a smart choice of A (see Section 6.1).
For this, one may hope to use Theorem 6.1 which was proved by Lunts and Orlov [24].
Indeed, this criterion for uniqueness asserts that if we change (a) in Theorem C to

(@) L =L ND(A)“ and L is generated by L€,

and we keep (b), then we can deduce that (D(A)/L)¢ has a unique enhancement as well.
In this case, the proof is not too difficult, as we can use the fact that (D(A)/L)¢ and
D(A)“ /L€ are nicely related, as explained in [28] (see Theorem 1.5).

The issue here is that (a’) is not easily verified. Indeed, if L satisfies (a’), then the
inclusion functor L < T has a right adjoint which preserves small coproducts. In general,
given a compactly generated triangulated category T closed under small coproducts, a
localizing subcategory L of T such that the inclusion L < T has the above property is
called a smashing subcategory.

For a while, it was conjectured that all smashing subcategories L of a triangulated cat-
egory T as above should verify (a’). This goes under the name of the Telescope Conjecture
(see [33, 1.33] and [5, 3.4]). Unfortunately, the Telescope Conjecture is known to be false
in this generality [15] and to be true in very few examples (see, for example, [29]). This
shows that we cannot expect that (a’) holds true in general or easily.

In view of this discussion, the main task, which is carried out in Section 6.2, is to
identify the correct choice for A such that (a’) holds for the corresponding localizing
subcategory L. To get this, one has to impose some additional assumptions on G and A.
This is the reason why the hypotheses (1)—(4) appear in Theorem B. Assuming this, the
proof of Theorem B is contained in Section 6.2 and the core of the argument is then
Theorem 6.6.

The applications concerning the uniqueness of enhancements for Perf(X) (Proposi-
tion 6.10 and Corollary 6.11) and D? (X) (Corollary 7.2) are rather easy consequences
once Theorem B and, more precisely, Theorem 6.6 are established.

Related work

As we recalled before, Bondal, Larsen and Lunts [3] first conjectured that all enhance-
ments of D?(X), for X a smooth projective scheme, should be unique. In the same paper,
they show that all ‘standard’ enhancements are related by quasi-equivalences, giving the
first evidence to their conjecture.

After that, the main reference is [24] which is certainly the principal source of inspi-
ration for this paper as well. Let us briefly summarize the results contained in that paper
and compare them to ours. For A a small category as in Theorem C, Lunts and Orlov
show that D(A)/L has a unique enhancement if (b) holds and (a) is replaced by
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(a.1) Q sends D(A)C to (D(A)/L)¢, where (—)¢ denotes the full subcategory of compact
objects;
(a.2) Q has a right adjoint.

This is [24, Theorem 2.7]. It should be noted that (a.1) and (a.2) together imply that
D(A)/L is compactly generated. This is a special instance of our assumption (a) in Theo-
rem C. Moreover, by [27], there are examples of Grothendieck categories whose derived
category is not compactly generated but is well generated. Hence Theorem C is certainly
a generalization of [24, Theorem 2.7]. The geometric consequences of [24, Theorem 2.7],
which are discussed in the same paper, are then:

e For a Grothendieck category G, the derived category D (G) has a unique enhancement,
if G has a small set of generators which are compact in D(G) (see [24, Theorem 2.9]).

e This implies that if X is a quasi-compact and separated scheme that has enough locally
free sheaves, then D(Qcoh(X)) has a unique enhancement (see [24, Theorem 2.10]).

As a second step, Lunts and Orlov deduce from [24, Theorem 2.8] that if X is a quasi-
projective scheme, then both Perf(X) and D”(X) have unique enhancements. A strong
version of uniqueness is then discussed. Namely, they prove that these two categories have
strongly unique enhancements when X is projective and another technical assumption is
satisfied. This is out of the scope of this paper but we believe that the techniques discussed
here might have applications to show the strong uniqueness of dg enhancements in new
cases. Indeed, Theorem 6.6 has already been applied to prove the strong uniqueness of
the category of perfect supported complexes (see [8, Theorem 1.2]).

New interesting enhancements of geometric nature have recently been introduced by
Lunts and Schniirer [25]. Roughly speaking, they were used to show that the dg notion
of Fourier—Mukai functor and the triangulated one agree, under some assumptions on the
schemes. This important result was previously stated in [39] but without a rigorous proof.

Plan of the paper

This paper starts with a quick recollection of results about localizations of triangulated
categories and of some properties of well generated triangulated categories (see Sec-
tion 1).

Sections 2 and 3 have a rather abstract nature. They cover some basic material about
dg categories and dg enhancements with an emphasis on the case of enhancements of well
generated triangulated categories. Section 3 provides some properties of special functors
which are used in the proof of Theorem C.

In Section 4 we prove Theorem C, while Theorem A, together with its geometric
applications, is proved in Section 5. The proofs of Theorem B, of Proposition 6.10 and of
Corollary 6.11 are the contents of Section 6.

Section 7 contains two further applications. The first one, concerning the uniqueness
of enhancements for D?(X), is proved in Section 7.1. The second one, about Fourier—
Mukai functors, is explained in Section 7.2.
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Notation

All categories and functors are assumed to be k-linear, for a fixed commutative ring k. By
a k-linear category we mean a category whose Hom-spaces are k-modules and composi-
tions are k-bilinear, without assuming that finite coproducts exist.

Throughout the paper, we assume that a universe containing an infinite set is fixed.
Several definitions concerning dg categories need special care because they may, in prin-
ciple, require a change of universe. All possible subtle logical issues in this sense can be
overcome in view of [24, Appendix A]. A careful reader should have a look at it. After
these warnings and to simplify the notation, throughout the rest of the paper we will not
explicitly mention the universe we are working in, as it should be clear from the con-
text. The members of this universe will be called small sets. For example, when we speak
about small coproducts in a category, we mean coproducts indexed by a small set. If not
stated otherwise, we always assume that the Hom-spaces in a category form a small set.
A category is called small if the isomorphism classes of its objects form a small set.

If T is a triangulated category and S a full triangulated subcategory of T, we denote
by T/S the Verdier quotient of T by S. In general, T/S is not a category according to
our convention (namely, the Hom-spaces in T/S need not be small sets), but it is in many
common situations, for instance when T is small.

Given a category C and two objects C; and C; in C, we denote by C(Cq, C») the
Hom-space between C and Co. If F: C — D is a functor and C; and C; are objects
of C, then we denote by F¢, ¢, the induced map C(Cy, C2) — D(F(Cy), F(C3)).

If 1 is a set, |I| denotes its cardinality.

1. Well generated triangulated categories and localizations

In this section we use Krause’s equivalent treatment (see [20]) of Neeman’s notion of
well generated triangulated category (see [30]). For a very clear survey of this subject, the
reader can look up [21].

From now on, we assume that T is a triangulated category with small coproducts.
Given a cardinal «, an object S of T is a-small if every map S — [];.; X; in T (where
I is a small set) factors through [ [;; X; for some J C [ with [J/| < «. Recall that
a cardinal « is called regular if it is not the sum of fewer than « cardinals, all of them
smaller than «.

Definition 1.1. The category T is well generated if there exists a small set S of objects
in T satisfying the following properties:

(G1) Anobject X € T is isomorphic to 0 if and only if T(S, X[j]) = 0 forall S € S and
all j € Z.

(G2) For every small set {X; — Y;};e; of maps in T, the induced map T(S, [[; X;) —
T(S, ]_L- Y;) is surjective for all § € S if T(S, X;) — T(S, Y;) is surjective for all
ielandall S €8.

(G3) There exists a regular cardinal « such that every object of S is o-small.
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When the category T is well generated and we want to put emphasis on the cardinal o
in (G3), we say that T is a-well generated by the set S. In this situation, following [20],
we denote by T* the smallest «-localizing subcategory of T containing S. Recall that
a full triangulated subcategory L of T is «-localizing if it is closed under «-coproducts
and under direct summands (the latter condition is actually redundant if « > Rg). By
definition, an a-coproduct is a coproduct of strictly less than « summands. On the other
hand, L is localizing if it is closed under small coproducts in T. The objects in T* are
called a-compact. Thus we will sometimes say that T is a-compactly generated by the
set S of a-compact generators.

Remark 1.2. (i) It is easy to observe that the objects in T are w-small (see, for example,
[20, Lemma 5]).

(ii) As alluded by the notation and explained in [20, 30], the subcategory T* does not
depend on the choice of the set S of o-compact generators. Moreover, for any well gener-
ated triangulated category T, one has T = J B T?, where 8 runs through all sufficiently
large regular cardinals.

(iii)) When ¢ = R, then T* = T¢, the full triangulated subcategory of compact
objects in T. Notice that, in this case, T is Ro-compactly generated by S C T¢ if (G1)
holds (indeed, (G3) holds by definition of compact object, whereas (G2) is automatically
satisfied). Following the usual convention, we simply say that T is compactly generated
by S.

Example 1.3. Let G be a Grothendieck category. Then the derived category D(G) is well
generated (see [27, Theorem 0.2] and [21, Example 7.7]).

Given a small set S of objects in T, we say that S generates T if T is the smallest localizing
subcategory of T containing S.

Proposition 1.4 ([32, Proposition 5.1]). Let T be a well generated triangulated cate-
gory. Then a small set S of objects in T satisfies (G1) if and only if S generates T.

Let us investigate a bit more when quotients by localizing subcategories can be well
generated. When o = 8, we have the following result which we will need later.

Theorem 1.5 ([28, Theorem 2.1]). Let T be a compactly generated triangulated cate-
gory and let L be a localizing subcategory which is generated by a small set of compact
objects. Then

(1) T/L has small Hom-sets and it is compactly generated;
(i) L =LNT¢
(iii) the quotient functor Q: T — T/L sends T¢ to (T/L)¢;
@iv) the induced functor T¢ /L — (T /L)€ is fully faithful and identifies (T /L) with the
idempotent completion of T¢ /L°.

Recall that the fact that (T /L) is the idempotent completion of T¢/L¢ simply means that
any object in (T /L)€ is isomorphic to a summand of an object in T¢/L¢. A similar result
holds for well generated triangulated categories (see, for example, [21, Theorem 7.2.1]).
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In general, assume that T is well generated by a small set S. Let L. be a localizing
subcategory of T such that the quotient T /L is well generated. Denote by

Q: T— T/L
the quotient functor.

Remark 1.6. As we assume that T /L is well generated, in particular, it has small Hom-
sets. Moreover, T/L has small coproducts and the quotient functor Q commutes with
them by [30, Corollary 3.2.11]. Then it follows from [21, Theorem 5.1.1 and Proposition
2.3.1] that the functor Q has a fully faithful right adjoint QR (hence Q o QR = id).

Although in general T/L is not well generated by the set Q(S) because (G2) does not
hold, we have the following result.

Proposition 1.7. For T, S and L as above, the set Q(S) satisfies (G1) and (G3) in T/L.

Proof. Let X € T/L be such that T/L (Q(S), X[j]) = Oforall S € Sand all j € Z.
Denoting by QX the right adjoint of Q (see Remark 1.6), we have

T/L (Q(S), X[j1) = T(S, Q¥X)[j]).

As S satisfies (G1), it follows that Q& (X) = 0. Since QX is fully faithful, this implies that
X = 0. Therefore Q(S) satisfies (G1).

Observe moreover that, by Remark 1.2(ii), the (small) set Q(S) is contained in (T /L)*
for some regular cardinal . Hence it satisfies (G3), by Remark 1.2(i). m]

2. Dg categories and dg enhancements

In this section, we recall some general facts about dg categories and stick to the descrip-
tion of dg enhancements for well generated triangulated categories.

2.1. A quick tour of dg categories

An excellent survey of dg categories is [17]. Nevertheless, we briefly summarize here
what we need in the rest of the paper.

First of all, recall that a dg category is a k-linear category C such that the morphism
spaces C(A, B) are Z-graded k-modules with a differential d: C(A, B) — C(A, B) of
degree 1 and the composition maps C(B, C) ®x C(A, B) — C(A, C) are morphisms
of complexes for all A, B, C in C. By definition, the identity of each object is a closed
morphism of degree 0.

Example 2.1. (i) Any k-linear category has a (trivial) structure of dg category, with mor-
phism spaces concentrated in degree 0.

(i1) For a dg category C, one defines the opposite dg category C° with the same ob-
jects as C while C°(A, B) := C(B, A). One should notice that, given two homogeneous
elements f € C°(A, B) and g € C°(B, C), the composition g o f in C° is defined as the
composition (—1)d¢e(f)dee(®) £ o o in C.
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(iii) Following [10], given a dg category C and a full dg subcategory B of C, one can
take the quotient C/B, which is again a dg category.

Given a dg category C we denote by H(C) its homotopy category. To be precise, the
objects of H(C) are the same as those of C while the morphisms from A to B are obtained
by taking the 0-th cohomology H(C(A, B)) of the complex C(A, B).

A dg functor F: C; — C; between two dg categories is the datum of a map Ob(Cy)
— Ob(C;) and of morphisms of complexes of k-modules C;(A, B) — C,(F(A), F(B)),
for A, B € Cy, which are compatible with the compositions and the units. Clearly, a dg
functor F: C; — C; induces a functor HO(F): H(C;) — H(Cy).

A dg functor F: C; — C; is a quasi-equivalence if the maps C{(A, B) —
C>(F(A), F(B)) are quasi-isomorphisms for every A, B € Cy, and H°(F) is an equiv-
alence.

One can consider the localization Hqe of the category of (small) dg categories with
respect to quasi-equivalences. Given a dg functor F, we will denote by the same symbol
its image in Hqge. A morphism in Hqe is called a quasi-functor. By the general theory of
localizations and model categories (see, for example, [17, 39]), a quasi-functor between
two dg categories C; and C; can be represented by a roof

Cl/ XCz

where C is a (cofibrant) dg category, | is a quasi-equivalence and F is a dg functor. A quasi-
functor F in Hqe between the dg categories C; and C» induces a functor H(F): HO(C)
— HY(Cy), well defined up to isomorphism.

Given a small dg category C, one can consider the dg category dgMod(C) of right dg
C-modules. A right dg C-module is a dg functor M: C° — dgMod(k), where dgMod(k)
is the dg category of dg k-modules. It is known that H’(dgMod(C)) is, in a natural way,
a triangulated category with small coproducts (see, for example, [17]).

The full dg subcategory of acyclic right dg modules is denoted by Ac(C), and
H(Ac(C)) is a localizing subcategory of the homotopy category H®(dgMod(C)). The
objects of Ac(C) are the dg C-modules M such that the complex M(C) of k-modules is
acyclic for all C in C. A right dg C-module is representable if it is contained in the image
of the Yoneda dg functor

Y, : C— dgMod(C), A > C(—, A).
The derived category of the dg category C is the Verdier quotient
D(C) := H’(dgMod(C))/H’(Ac(C)),

which turns out to be a triangulated category with small coproducts. Following [10], one
could first take the quotient dgMod(C)/Ac(C) of the corresponding dg categories. Again
by [10], there is a natural exact equivalence

D(C) = H(dgMod(C))/H’(Ac(C)) = H(dgMod(C) /Ac(C)). (2.1)
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A right dg C-module is free if it is isomorphic to a small coproduct of dg modules of
the form Y((fg(A)[m], where A € C and m € Z. A right dg C-module M is semi-free if it
has a filtration

0=MocMc---cM 2.2

such that M; is a dg C-module, M;/M;_; is free for all j > 0, and M is the colimit of
the M;’s. We denote by SF(C) the full dg subcategory of dgMod(C) consisting of semi-
free dg modules. Obviously the image of Y((fg: C — dgMod(C) is contained in SF(C).

Remark 2.2. (i) It is easy to see that, for a dg category C, the homotopy category
HO(SF(C)) is a full triangulated subcategory of H°(dgMod(C)). The dg category C
is called pretriangulated if the essential image of the functor HO(Ygg): H(C) —
HO(SF(C)) is a triangulated subcategory.

(i1) Given a quasi-functor F: C; — C; between two pretriangulated dg categories,
the induced functor HO(F): HY(C;) — HY(C,) is an exact functor between triangulated
categories.

(iii) By [10, Lemma B.3], there is a natural equivalence of triangulated categories
HO(SF(C)) = D(C). We can actually be more precise about it. Indeed, the composition
of natural dg functors

H: SF(C) — dgMod(C) — dgMod(C)/Ac(C)

is a quasi-equivalence. So, up to composing with (2.1), H(H) provides the exact equiva-
lence H2(SF(C)) = D(C) mentioned above.

If we are given a dg functor F: C; — C,, there exist dg functors
Ind(F): dgMod(C;) — dgMod(C;), Res(F): dgMod(C,) — dgMod(Cy).

While Res(F) is simply defined by M — M o F°, the reader can look up [10, Sect. 14]
for the explicit definition and properties of Ind(F). Let us just observe that Ind(F) pre-
serves semi-free dg modules and Ind(F): SF(C;) — SF(C,) is a quasi-equivalence if
F: C; — C; is. Moreover, Ind(F) commutes with the Yoneda embeddings up to dg iso-
morphism.

Example 2.3. Let C be a dg category and B a full dg subcategory of C. Denote by
I: B < C the inclusion dg functor. Then the composition of dg functors
Y§, Res(l)
C — dgMod(C) —— dgMod(B) — dgMod(B)/Ac(B)
yields, in view of Remark 2.2(iii), a natural quasi-functor C — SF(B).

Let us now give the key definition for this paper.

Definition 2.4. A dg enhancement (or simply an enhancement) of a triangulated cate-
gory T is a pair (C, E), where C is a pretriangulated dg category and E: HY(C) — T is
an exact equivalence.

A priori, one may have ‘different’ enhancements for the same triangulated category. To
make this precise, we need the following.
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Definition 2.5. A triangulated category T has a unique enhancement if, given two en-
hancements (C, E) and (C’, E’) of T, there exists a quasi-functor F: C — C’ such that
HO(F) is an exact equivalence.

More concisely, a triangulated category T has a unique enhancement if, for any two en-
hancements (C, E) and (C’, E’) of T, the dg categories C and C’ are isomorphic in Hqe.
It is clear that the notion of uniqueness of dg enhancements forgets about part of the data
in the definition of enhancement. In particular, the equivalence E does not play a role.
So, by abuse of notation, we will often simply say that C is an enhancement of T if there
exists an exact equivalence H(C) = T.

Nevertheless, there are stronger versions of the notion of uniqueness of dg enhance-
ments. Indeed, we say that T has a strongly unique (respectively, semi-strongly unique)
enhancement if moreover F can be chosen so that there is an isomorphism of exact func-
tors E = E o HO(F) (respectively, there is an isomorphism E(C) = E’ (H°(F)(C)) in T
for every C € C).

Example 2.6. (i) If C is a dg category, SF(C) is an enhancement of D(C).

(ii) Let C be a pretriangulated dg category and let B be a full pretriangulated dg
subcategory of C. We have already mentioned that, by the main result of [10], we have
a natural exact equivalence between the Verdier quotient H%(C)/H°(B) and H(C/B).
Hence C/B, with the above equivalence, is an enhancement of H’(C)/H’(B).

2.2. Dg enhancements for well generated triangulated categories

If C is a small dg category such that H°(C) has a-coproducts, we denote by D, (C) the
a-continuous derived category of C, which is defined as the full subcategory of D(C)
with objects those M € dgMod(C) such that the natural map

oy (L] ) - [T ome

iel iel

(where the coproduct is intended in H%(C)) is an isomorphism for all objects C; € C,
where |I| < «. It is useful to know that D, (C) is also equivalent to a quotient of D(C).
More precisely, there is a localizing subcategory N of D(C) such that the quotient functor
D(C) — D(C)/N restricts to an exact equivalence D, (C) — D(C)/N (see [32, Sect. 6]
for details). By [32, Theorem 6.4], the triangulated category D, (C) is «-compactly gen-
erated.

Remark 2.7. The triangulated category D, (C) has an obvious enhancement SF, (C)
given as the full dg subcategory of SF(C) whose objects correspond to those in D, (C),
under the equivalence HO(SF(C)) = D(C) (see Remark 2.2(iii)). On the other hand, in a
similar way, there is a an enhancement N’ of N and, by Example 2.6(ii), the composition
of dg functors

SF,(C) < SF(C) — SF(C)/N’

is a quasi-equivalence inducing the exact equivalence D, (C) — D(C)/N. It follows that
there is a natural quasi-functor SF(C) — SF,(C).
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The essential step in the proof of [32, Theorem 7.2] can be reformulated (with a slight
modification) as follows.

Theorem 2.8. Let C be a pretriangulated dg category such that H(C) is well generated
and let Bo be a small set of objects in C. Then there exist a regular cardinal o and a
small and full dg subcategory B of C containing Bq such that HO(B) is closed under
a-coproducts and the natural quasi-functor C — SF(B) (see Example 2.3) induces an
exact equivalence Y': HY(C) — D, (B).

Proof. 1t is shown in the proof of [32, Theorem 7.2] that all the required properties are
satisfied, except possibly By C B, if we take « such that HO(C) is a-compactly generated
and B such that H'(B) € HY(C) is a small subcategory and this inclusion is an equiva-
lence. The conclusion then follows from Remark 1.2(ii). O

3. Some abstract results about exact functors

In this section, we go back to the triangulated setting and prove some abstract results
about exact functors which will be crucial in the rest of the paper. This should be thought
of as a rather technical but essential interlude towards the proof of Theorem C.

Let A be a small category which we see here as a dg category sitting all in degree 0
(see Example 2.1(i)). With a slight abuse of notation, we will identify D(A) with the
homotopy category HO(SF(A)) (see Remark 2.2(iii)).

The fact that A is in degree O implies that an object of dgMod(A) can be regarded as
a complex

. Jj—1 . J .
C={..—>ci 14, ¢ i .

in the abelian category Mod(A) of (k-linear) functors A° — Mod(k) (where Mod(k)
is the abelian category of k-modules). Moreover, there is a natural exact equivalence
D(A) = D(Mod(A)) (see, for example, the beginning of [24, Section 7] for a brief dis-
cussion). Under this natural identification, HO(YA) A =H%A) > DA) is actually the

composition of the usual Yoneda functor YA A — Mod(A) with the natural inclusion
Mod(A) < D(Mod(A)) = D(A). Therefore, for simplicity, we denote by

YA A —> D(A)

the functor H? (Y(‘?g).

As a consequence of the discussion above, it makes sense to say that C € dgMod(A)
is bounded (above or below), and for every integer n we can define the stupid truncations
0<(C), 0=,(C) as

. j . n—1
o§n<C):={---ec1d—’>c1+1 BN o d_>cn%0+..},

0=n(C) = > 0 " Lot ol Dot sy,

It is easy to see that if C € SF(A), then each C/ is a free A-module and 0<n(C), 05,(C)
are in SF(A). Now we can prove the following results, which should be compared to
Lemma 3.2, Corollary 3.3 and Proposition 3.4 of [24].
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Lemma 3.1. Let T be a triangulated category with small coproducts and let F: D(A)
— T be an exact functor which preserves small coproducts. Assume moreover that

T(For* ., [ TR amtil) =0 (3.1
iel
forall A, A; € A (with I a small set) and all integers ki < 0. Then, given A € A and
C € DA),
T(F(YA(A)). F(o=x(C)[Kk]) =0 (3.2)

for all integers k < n — 1, and also for k = n — 1 if C is bounded above.

Proof. 1If C € SF(A) has a filtration {C;}, the induced filtration {C j’.} of 0>,(C) has
clearly the property that each quotient C ]’./C ]/._1 is isomorphic to a small coproduct of

objects of the form % (A)[s] for A € A and s < —n. As F preserves small coproducts
and satisfies (3.1), it follows immediately that

T(F(YA(A)), F(C]/C]_Ik]) =0

for k < n. Applying the cohomological functor T(F(YA(A)), F(—)) to the distinguished
triangle C;_l - C ]’ - C j’ /C J’._ 1 of D(A), we deduce by induction that

T(F(YA(A)), F(C)Ik]) =0 (3.3)

for every j > 0 and for k < n.

Now we use the fact that 0>,(C) = hocolim (Cj/.). Recall that if we denote by
s5j: C ]/ —- C j/ .1 the inclusion morphisms, then hocolim (C ]/.) is, by definition, the cone
in D(A) of the morphism

2 (ide; —sp: L]~ 11 €.

j=0 j=0 j=0
As F preserves small coproducts, we have an isomorphism in T
F(o>,(C)) = F(hocolim (CJ/-)) = hocolim F(CJ/-),
hence a distinguished triangle

[IFc)h — [[FC) = Flo=(O)).

j=0 j=0

Applying the cohomological functor T(F(YA(A)), —) to it and using (3.3), we conclude
that (3.2) holds for k < n — 1.

If C is bounded above, we can take C; = 0>, ;(C) for some integer . Then o>, (C)
= Cy—p = C;_, (meaning 0 if 7 — n < 0), so (3.2) also holds fork =n — 1 by (3.3). O
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Corollary 3.2. Let F: D(A) — T be an exact functor satisfying the same assumptions
as in Lemma 3.1. Then, given A € A and C € D(A), the map (induced by the natural
morphism C — o<, (C))

T(F(YA(A)), F(©)) = T(F(YA(4)), Flo<n(C)))
is injective for every integer m > 0, and also for m = 0 if C is bounded above. Moreover,
the map is an isomorphism for m > 1, and also for m = 1 if C is bounded above.

Proof. For every integer m we have a distinguished triangle
O>m+1(C) > C — o< (C)

in D(A). It is then enough to apply the cohomological functor T(F(YA(A)), F(—)) to it,
taking into account that, by Lemma 3.1,

T(F(YA(4)). F(ozm+1(C))) = 0
for m > 0 (also for m = 0 if C is bounded above) and
T(FYA(A), F(@=m+1(ONI1]) = 0
for m > 1 (also for m = 1 if C is bounded above). O

Proposition 3.3. Let T be a triangulated category with small coproducts and let
Fi,F2: D(A) — T be exact functors which preserve small coproducts. Assume more-
over that Fy and Fy both satisfy (3.1) and that there is an isomorphism of functors
6:Fo YA Fs o YA, Then, for every C € D(A) bounded above, there exists an
isomorphism 0°c : F1(C) — F2(C) such that, for every A € A, every k € 7Z and every
f € DAA)YA(A)[K], C), the diagram

F
FLYAA)KD) —Y  Fi() (3.4)
QA[k]l/ j@’c
Fa(f)

F2(YA(A)[k]) ———— F2(C)

commutes in'T.

Proof. The proof proceeds verbatim as the proof of [24, Proposition 3.4]. Indeed, it is
enough to observe that [24, Corollary 3.3] can be replaced by Corollary 3.2 for C € SF(A)
bounded above. It should be noted that in [24] the authors assume further that F; (YA (A))
is a compact object for all A € A and i = 1, 2. But this hypothesis is never used in the
proof of [24, Proposition 3.4]. O

4. Uniqueness of enhancements: a general criterion

This section is completely devoted to the proof of Theorem C. Hence, let A be a small cat-
egory, which we see here as a dg category sitting all in degree 0, and let L be a localizing
subcategory of D(A). We will always assume that
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(a) the quotient D(A)/L is a well generated triangulated category;
(b) D(A)/L (Q(YA(A)), [ies QYA(A))[ki]) = O for all A, A; € A (with I a small
set) and all integers k; < 0,

as in the hypotheses of Theorem C.

4.1. The quasi-functor

Assume that there exists an exact equivalence E: D(A)/L — H(C) for some pretrian-
gulated dg category C. Notice that (a) clearly implies that H’(C) is also a well generated
triangulated category. Consider the composition of functors

H: A S DAy & payL S w).

Remark 4.1. As YA(A) is a small set of compact generators of D(A) (see [24, Ex-
ample 1.9]), it follows from Proposition 1.7 that Q o YA(A) satisfies (G1) in D(A)/L.
Since E is an exact equivalence, also H(A) satisfies (G1) in H(C).

Denoting by By the full dg subcategory of C such that H*(Bg) = H(A), we can clearly
regard H as a functor A — HO(By).
Let <o(Bo) be the dg category with the same objects as By and with

7<0(Bo)(B1, B2) := 1<0(Bo(B1, B2))

for all By and B; in By. Here, for a complex of k-modules (or, more generally, of objects
in an abelian category)

. j—1 . j .
C={--oci 2, il citt ..,

and for every integer n, we define

ten(C) = L oI L0 S kerd” > 0 1),
Ty (C) :={--- = 0 — cokerd" ! - "' — ... - ¢/ L, citl )

There are obvious dg functors t<o(Bg) — HY(By) and 7<0(Bg) — Byo, and the former
is a quasi-equivalence thanks to (b) (taking into account that E is an exact equivalence).
Thus we obtain a quasi-functor H(By) — By.

By Theorem 2.8 there exist a regular cardinal « and a small and full dg subcategory B
of C containing By such that HO(B) is closed under a-coproducts and the natural quasi-
functor C — SF(B) induces an exact equivalence Y': HO(C) — D, (B).

If we compose H: A — HO(B) with the quasi-functor H’(By) — By and the natural
inclusion By < B, we get a quasi-functor H': A — B. From it we finally obtain a
quasi-functor

G,: SFA) M, sE®) - SF, B).
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where the arrow on the right denotes the natural quasi-functor described in Remark 2.7.
By passing to the homotopy categories, we also have the exact functor

Fi :=H%G)): D(A) > Dy (B).

On the other hand, we can proceed differently and take the exact functor

F: DA 3 AL E HW©) Y D, B).
The following results will be used later.

Lemma 4.2. The functors F| and F; satisfy the assumptions of Proposition 3.3.

Proof. Tt is clear from the definitions and from (b) that both functors preserve small co-
products. Indeed, it is obvious that F) commutes with small coproducts if and only if Q
does. But this last fact was already observed in Remark 1.6. Moreover, F» satisfies (3.1)
and F; o YA = F, o YA. This last fact then clearly implies that also Fy satisfies (3.1). O
Corollary 4.3. The set F1 o YA(A) satisfies (G1) in Dy (B).

Proof. AsF1oYA = FyoYA, itis enough to show that F; oYA(A) satisfies (G1) in Dy (B).
Since F» 0 YA = Y’ oH and Y’ is an exact equivalence, this follows from Remark 4.1. O

4.2. The proof of Theorem C

Let C and E: D(A)/L — HY(C) be as in Section 4.1. Denote by L' the full dg subcate-
gory of SF(A) such that HO(L') & L under the equivalence HY(SF(A)) = D(A).
Lemma 4.4. The quasi-functor Gy factors through the quotient dg functor SF(A) —
SF(A) /L.

Proof. The proof is very similar to the one of [24, Lemma 5.2] with the required adjust-
ments due to the more general setting we are working in. More precisely, in view of the
main result of [10], it is enough to show that F; factors through the quotient D(A)/L, i.e.
Fi(L) = 0forall LinL.

By Corollary 4.3, we have just to show that

Do (B)(F1(YA(A)), F1(L)) =0

forall A € A and L € L (since L is closed under shifts).
By Lemma 4.2, we can apply the results of Section 3 to the functors F; and F»>. In
particular, by Corollary 3.2, there are isomorphisms (for i = 1, 2)

Do (B)(F; (YA(A)), Fi(L)) = Dy (B) (Fi (YA(A)), Fi(0<m(L)))

for m > 1. On the other hand, by Proposition 3.3, there is an isomorphism F{ (o<, (L)) =
Fa(o<m(L)). It follows that

Do (B)(F1(YA(A)), FI(L)) = Dy (B)(F2(YA(A)), F2(L)),

and the latter Hom-space is naturally isomorphic to 0, since F(L) = 0. O
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Hence G; factors through a quasi-functor G: SF(A)/L/ — SF,(B). If we show that it
defines an isomorphism in Hqe, Theorem C would follow immediately if we take into
account Theorem 2.8. This is the content of the next proposition.

Proposition 4.5. In the above situation, G: SF(A)/L’ — SF,(B) defines an isomor-
phism in Hqe.
Proof. Set F := HO(G): D(A)/L — D, (B). It is enough to show that F is an equiva-
lence. Notice that F preserves small coproducts, since the same is true for F o Q = F; by
Lemma 4.2.

We first prove that F is fully faithful, namely that the map

Fp.c: D(A)/L (B, C) — Du(B)(F(B), F(C))

is an isomorphism for all B, C € D(A)/L. Now, it is easy to see that the full subcategory
S of D(A)/L which consists of the objects S for which Fg ¢ is an isomorphism for every
C € D(A)/L is a localizing subcategory of D(A)/L. In view of Remark 4.1 and Proposi-
tion 1.4, it is therefore enough to prove that Fqya4)) ¢ is an isomorphism for all A € A
and C € D(A)/L. The proof proceeds as in [24, Lemma 5.3]. Let us outline the argument
for the convenience of the reader.

Setting P := QR(C), we have Q(P) = C, and so FQ(YA(A))’C is an isomorphism if
and only if Fqya(4)) Q(p) 1s- Moreover, as the map

Qvaca) p: DAYYA(A), P) > D(A)/L(Q(YA(A)), Q(P))

is an isomorphism by adjunction (since Q¥ (Q(P)) = P) and F; = F o Q, we can just
prove that

(FDya).p: DAYYA(A), P) — Do (B)(F1(YA(A)), Fi(P))

is an isomorphism.
By Lemma 4.2 the functors F| and F; satisfy the hypotheses of Corollary 3.2, and the
same is clearly true of Q. In particular, there is an isomorphism

D(A)/L(QYA(A)), Q(P)) = D(A)/L (QYA(A)), Qo< (P))),
for m > 1. Moreover, this is compatible with the natural isomorphism
D(A)(YA(A), P) = DA)(YA(A), 0<m(P)).

As Qya(y), p is an isomorphism, s0 is Qya(4) 4_,. (p)-
The same argument applies to the functor Fy, and then it is enough to check that
(F1)vA (4.6, (p) is an isomorphism. To this end, consider the commutative diagram

(Fl)YA<A>,a§m(P>

D(A)(YA(A), o< (P)) Dy (B)(F1(YA(A)), Fi(o<m(P)))

14
m l’

Do (B)(F2(YA(A)), Fa(0<m(P)))
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where the existence of an isomorphism y is ensured by Proposition 3.3 (which again
applies due to Lemma 4.2). Since F = Y’ o E o Q, the fact that Qya 4 ,_, (p) is an
isomorphism implies that so is (F2)ya(4) ., (p)- by taking into account that Y’ o Eis an
equivalence. In conclusion, (F1)ya4) ,_, (py is an isomorphism as well.

Finally, the essential image of F is a localizing subcategory of D, (B) (because F
preserves small coproducts) which contains Y oH(A) (as Y oH = F, oYA X FoQoYA).
Since Y’ is an exact equivalence, it follows from Remark 4.1 and Proposition 1.4 that F
is essentially surjective. o

5. The case of the derived category of a Grothendieck category

In this section, we prove Theorem A and discuss some geometric applications of this
abstract criterion for Grothendieck categories.

5.1. The abstract result

Let G be a Grothendieck category and let A be a full subcategory of G whose objects form
a small set of generators of G. Setting M := Mod(A), we will denote by S: G — M the
natural functor defined by

S(C)(A) :=G(A,C) forCeGand A € A.
We can first prove the following result which should be compared to [24, Theorem 7.4].

Proposition 5.1. The functor S: G — M admits a left adjoint T: M — G. Moreover, T
is exact, T oS = idg, N := ker T is a localizing Serre subcategory of M, and T induces
an equivalence T': M/N — G such that T = T’ o 1, where I1: M — M/N is the
projection functor.

Proof. In [9, Theorem 2.2] the analogous statement is proved for the functor S': G —
MOD-R, which we are going to define. Consider the object U := [[,., A of G and
denote, for every A € A, by t4: A < U and pg: U — A the natural inclusion and
projection morphisms, respectively. Let S be the ring (with unit) G(U, U) and R the
subring of S consisting of those s € S for which s o t4 # 0 only for a finite number of
A € A. Notice that R is a ring with unit if and only if A has a finite number of objects, in
which case obviously R = S. Let moreover MOD-R be the full subcategory of Mod(R)
having as objects those P € Mod(R) for which PR = P (clearly MOD-R = Mod(R) =
Mod(S) if A has a finite number of objects). Then S’ is simply given as the composition of
G(U, —): G — Mod(S) with the natural functor Mod(S) — MOD-R defined on objects
by P +— PR. To deduce our statement from [9, Theorem 2.2] it is therefore enough to
show that there is an equivalence of categories E: M — MOD-R such that S’ = E o S.
In order to define E, consider first an object M of M, namely a (k-linear) func-
tor M: A° — Mod(k). As a k-module, E(M) is just ]_[AeA M (A), whereas the R-
module structure is defined as follows. Given r € R and m € E(M) with components
my € M(A) for every A € A, the element mr € E(M) has components (mr)s =
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ZBEA M(pp or otp)(mp). It is easy to prove that this actually defines an object E(M)
of MOD-R. As for morphisms, given M, M’ € Mod(A) and a natural transformation
y: M — M’, the morphism of R-modules E(y): E(M) — E(M’) sends m to m’, where
m'y = y(A)(my) for every A € A. It is not difficult to check that this really defines a
functor E: M — MOD-R and that S’ = E o S.

It remains to prove that E is an equivalence. It is clear by definition that E is faithful.
As for fullness, given M, M’ € Mod(A) and a morphism ¢: E(M) — E(M’) in MOD-R,
it is easy to see that ¢ = E(y), where y : M — M’ is the natural transformation defined
as follows. For every A € A and for every a € M (A), denoting by m the element of E(M)
such that my = aand mp = 0for A # B € A, we set y(A)(a) := ¢(m)4. Finally, E
is essentially surjective because it is not difficult to prove that for every P € MOD-R we
have P = E(M) with M € M defined in the following way. Setting ry :=1go fopa € R
for every morphism f: A — B of A, we define M(A) := Priq, for every A € A,
whereas M (f): M(B) = Priaqz — M(A) = Priq, for every morphism f: A — Bof A
is given by priqy > pry = (pry)ria, forevery p € P. O

Remark 5.2. It should be noted that while, by Proposition 5.1, the functor T is exact, S
is only left-exact in general. On the other hand, the fact that T o S = idg implies that S
is fully faithful and that T o YA is isomorphic to the inclusion A < G (since S|y = YA
by definition). Here, as in the previous sections, YA: A < M < D(M) is the Yoneda
embedding.

Passing from G to its derived category D(G), we observe that the functors T, T" and T
being exact, we can denote by the same letters the corresponding derived functors.

Denote by Dy (M) the full triangulated subcategory of D (M) consisting of complexes
with cohomology in N. Let moreover Q: D(M) — D(M) /Dxn(M) be the projection
functor.

Corollary 5.3. The functor Tl induces an exact equivalence T1': D(M)/Dy(M) —
D(M/N) such that T1 = IT" o Q. Moreover, T' o TI' o Q o YA is isomorphic to the in-
clusion A — G — D(G).

Proof. By Proposition 5.1, IT: M — M/N admits a right adjoint, so the first part of the
statement follows from [19, Lemma 5.9]. Hence the diagram

D(M)

S

D(M)/Dy(M) — = D(M/N) —— = D(G)

commutes up to isomorphism. By the above commutativity, the second part of the state-
ment follows from the fact that the inclusion A < G is isomorphic to T o YA (see
Remark 5.2). m]

We are now ready to prove our first result.
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Proof of Theorem A. Given a Grothendieck category G, by Proposition 5.1 and Corol-
lary 5.3 we know that D(G) = D(M)/Dy(M) for M = Mod(A) and N defined as above.
Consider A, consisting of a small set of generators of G, as a small dg category all
sitting in degree 0. As noted at the beginning of Section 3, there is a natural exact equiv-
alence D(M) = D(A). By setting L to be the full localizing subcategory of D(A) which
is the image of Dy (M) under the above equivalence, we see that D(G) = D(A)/L.
Let us observe the following:

(a) The quotient D(A)/L is a well generated triangulated category. This is because D (G),
which is naturally equivalent to D(A)/L, is well generated by Example 1.3, and well
generation is obviously preserved under exact equivalences.

(b) Consider the objects Q(YA(A)) for A in A. By Corollary 5.3, they are mapped to
objects in the abelian category G by the composition of the equivalences D(A)/L =
D(M)/Dy(M) = D(G) described above. This implies that

p@A/L(QYA (), [ Jaer* (anikil) =0

iel
for all A, A; € A (with I a small set) and all integers k; < 0.

In particular, the assumptions of Theorem C are satisfied and so the triangulated category
D(A)/L (and hence D(G)) has a unique enhancement. m]

5.2. The geometric examples

We now discuss some geometric incarnations of Theorem A. There are certainly many
interesting geometric triangulated categories which are equivalent to the derived category
of a Grothendieck category and which are not considered here. So we do not claim that
our list of applications is complete. Notice that, beyond the geometric situations studied
in [24] and described in the introduction, the uniqueness of enhancements has been inves-
tigated in other cases, e.g. for the derived categories of supported quasi-coherent sheaves
in special situations (see [8, Lemma 4.6]).

Algebraic stacks. Let X be an algebraic stack. For general facts about these geometric
objects, we refer to [22] and [37].

We can consider the abelian categories Mod(Oyx) of Ox-modules on X and Qcoh(X)
of quasi-coherent Ox-modules on X. The fact that Qcoh(X) is a Grothendieck cate-
gory is proved in [37, Tag 06WU]. Passing to the derived categories, we can consider
D(Qcoh(X)) and the full triangulated subcategory Dgc(X) of D(Mod(Ox)) consisting
of complexes with quasi-coherent cohomology. The relation between these two triangu-
lated categories is delicate, as pointed out in [13, Theorem 1.2].

We then have the following.

Corollary 5.4. If X is an algebraic stack, then D(Qcoh(X)) has a unique enhancement.
If X is also quasi-compact and with quasi-finite affine diagonal, then Dy (X) has a unique
enhancement.
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Proof. The first part of the statement is an obvious consequence of Theorem A. For the
second part, observe that, by [14, Theorem A], the category Dqc(X) is compactly gener-
ated by a single object. Hence, by [13, Theorem 1.1], the natural functor D (Qcoh(X)) —
Dgc(X) is an exact equivalence. m]

Remark 5.5. The above result specializes to the case of schemes. In particular,
D(Qcoh(X)) has a unique enhancement for any scheme X. If X is quasi-compact and
semi-separated (i.e. the diagonal is affine or, equivalently, the intersection of two open
affine subschemes in X is affine), then D(Qcoh(X)) = Dy (X) (see [2, Corollary 5.5])
and the same uniqueness result holds for Dgc(X). This extends vastly the results in [24],
where the uniqueness results for both categories are proved only for quasi-compact, semi-
separated schemes with enough locally free sheaves. This last condition means that for
any finitely presented sheaf F there is an epimorphism £ — F in Qcoh(X), where E is
locally free of finite type.

As in [24, Remark 7.7], we should observe here that we can take X to be a semi-
separated scheme rather than separated, because the proof of [2, Corollary 5.5] works for
a semi-separated scheme as well.

Twisted sheaves. Let X be a scheme and pick o € Hézt(X , O%), i.e. an element in
the Brauer group Br(X) of X. We may represent o by a Cech 2-cocycle {ajjx €
L'(U;NU;NUy, O%)} with X = |J;¢; Ui an appropriate open cover in the étale topology.
An a-twisted quasi-coherent sheaf E consists of pairs ({E;}ier, {¢ij}i, jer) such that the
E; are quasi-coherent sheaves on U; and ¢;; : E j|U,«mUj — Ei|U,ﬂUj are isomorphisms
satisfying the following conditions:

® @i =id;

® Yji =@ !

® ¥ij O Qjk © Yki = Ajjk - id.

We denote by Qcoh(X, «) the abelian category of such a-twisted quasi-coherent sheaves
on X. It is proved in [23, Proposition 2.1.3.3] that this definition coincides with the al-

ternative one in terms of quasi-coherent sheaves on the gerbe X — X on X associated
to .

Proposition 5.6. If X is a scheme and o € Br(X), then Qcoh(X, «) is a Grothendieck
abelian category.

Proof. The same argument used in the proof of [1, Proposition 3.2] (where X is assumed
to be quasi-compact and quasi-separated) works in this greater generality.! Indeed, de-
noting by X — X the gerbe associated to «, one just needs to know that Qcoh(&X) is a
Grothendieck category, which is true because in any case X is an algebraic stack. O

It is then clear from Theorem A that we can deduce the following.

Corollary 5.7. If X is a scheme and a € Br(X), then the triangulated category
D(Qcoh(X, @)) has a unique enhancement.

' We thank Benjamin Antieau for pointing this out.
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6. The case of the category of compact objects

In this section we prove Theorem B. This needs some preparation. In particular, using the
arguments in Section 5.1, we construct an exact equivalence D(A)/L = D(G) for some
localizing subcategory L of D(A) and reduce to the criterion for uniqueness due to Lunts
and Orlov (see [24, Theorem 2]). Verifying that the assumptions of Lunts—Orlov’s result
are satisfied is the main and most delicate task of this section.

6.1. The first reduction

If G is a Grothendieck category and A is a small set of generators of G which we think
of as a full subcategory of G, we know from Section 5.1 that there is a pair of adjoint
functors

TM—->G, S:G—-M

where M := Mod(A).

As already explained in the proof of Theorem A, the quotient D(M)/Dy (M) (where
N := ker T) is naturally equivalent to D(A) /L. For this, we think of A as a dg category
sitting in degree 0 and we take L to be the localizing subcategory corresponding to Dy (M)
under the natural equivalence D(M) = D(A). Moreover, there is an exact equivalence
D(G) - D(A)/L such that A in A, seen as a subcategory of G, is mapped to Q(YA(A)),
where Q: D(A) — D(A)/L is the quotient functor. As a consequence,

DA)/L (QIYA (A1), QYA (A)[i]) = 0

for all Ay, Ay € A and all integers i < 0.
Consider now the following result.

Theorem 6.1 ([24, Theorem 2]). Let A be a small category and let L be a localizing
subcategory of D(A) such that

(a) L = LNDA) and L€ satisfies (G1) in L;
(b) DA)/L (QYA(AD)), QIYA(A))[i]) = 0 forall Ay, Ay € A and all integers i < 0.

Then (D(A)/L)¢ has a unique enhancement.

By the discussion above, (b) holds. If we could prove (a), then this theorem would imme-
diately imply that D(G)€ has a unique enhancement. Thus, in order to prove Theorem B,
it is enough to show that the assumptions (1)—(4) in the statement imply that (a) holds.
This delicate check will be the content of the next section.

6.2. Verifying assumption (a) in Theorem 6.1

In the following we need to know the precise definition of T: M — G. To this end, we
first fix some notation. For M € M, let (YA | M) be the comma category whose objects
are pairs (A, a) with A € A and a € M(YA(A), M), and whose morphisms are given by

(YA L MY(A',d), (A, a)) == {f € A(A", A) :d' =a o YA(S)).
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Observe that, by Yoneda’s lemma, M(YA(A), M) can be identified with M(A) and that,
in this way, the above equality @’ = a o YA( f) becomes a’ = M(f)(a); in what follows
we will freely use these identifications. Denote by Fys: (YA | M) — A the forgetful
functor. It is well known (see, for instance, [26, Section II1.7]) that

A
MEIE)n((YALM)M»AY—»M),

where the colimit is taken over the composition YA o Fy;. Since T (being a left adjoint)
preserves colimits and T o YA is isomorphic to the inclusion A < G (see Remark 5.2),
we obtain

T(M) = Lim((YA | M) LN Y

More explicitly, consider the objects of G

Yy = ]_[ A, Xy = ]_[ A,

(A,a)e(YA M) (f:(A’,a")—(A,a))eMor(YA | M)

and denote by ¢(4 4): A < Y (for every object (A, a) of (YA { M))and if: A= Xy
(for every morphism f: (A’,a’) — (A, a) of (YA | M)) the natural morphisms. Then,
by (the dual version of) [26, Theorem 2, p. 113], we have

Lemma 6.2. There is a natural isomorphism
T(M) = coker(apy: Xy — Yu),
where, for every morphism f: (A’,a’) — (A, a) of (YA | M),
apyolf =l q) = LAa O f- 6.1)

Let us now move to the core of the proof that assumption (a) in Theorem 6.1 holds in our
situation. As explained in the introduction, we do not expect it to hold true in general.
This is the reason why we need the further assumptions (1)—(4) in Theorem B. For the
convenience of the reader, we list them again here:

(1) A is closed under finite coproducts;

(2) every object of A is noetherian in G;

(3) if f: A” — A is an epimorphism of G with A, A’ € A, then ker f € A;

(4) for every A € A there exists N(A) > 0 such that D(G)(A, A'[N(A)]) = O for every
A € A.

Remark 6.3. If f: |[,.; C; — C (with I a small set) is a morphism in G and B is a
noetherian subobject of C such that B C im f, then there exists a finite subset I’ of [
such that B C f(]_[ie,/ C;) (for otherwise we could find elements iy, iz, ... in I such
that f (]_[;‘:1 Ci;) N B for n > 0 form a strictly increasing sequence of subobjects of B).

Lemma 6.4. Assume that conditions (1) and (2) above are satisfied. If f: C — Ais an
epimorphism of G with A € A, then there exists a morphism g: A’ — C with A’ € A
such that f o g: A" — A is again an epimorphism of G.
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Proof. Given f as in the statement, there exist a small set / and an epimorphism
gt [lje; Ai — C (sothat f o g’ is also an epimorphism) with A; € A for every i € I
(because the objects of A form a small set of generators of G). As A is noetherian in G
by condition (2), Remark 6.3 implies that there exists a finite subset I’ of I such that if
we set A’ := [ [, A; (which is an object of A thanks to condition (1)) and g := g’|,
the composition f o g: A" — A is an epimorphism of G. O

Proposition 6.5. If conditions (1) and (2) are satisfied, then N coincides with the full
subcategory N’ of M having as objects those M € M satisfying the following property:
for every object (A, a) of (YA | M) there exists an epimorphism f: A" — A of G with
A’ € A such that a o YA(f) = 0.

Proof. Given M € N’, we have to prove that T(M) = 0. By Lemma 6.2, this is true if and
only if apy is an epimorphism. So, given a morphism g: Yy — C in G such that goayy =
0, we need to show that g = 0. Now, if g is given by morphisms g(4,4): A — C for every
(A,a) € (YA J M), then g o apy = 0 is equivalent, by (6.1), t0 ga.a'y = &A.a) © f
for every morphism f: (A’,a’) — (A,a) of (YA | M). Since M € N/, for every
(A, a) € (YA | M) there exists an epimorphism f: A’ — A of G with A’ € A such that
aoYA(f) =0.Then f,0: (A’,0) — (A, a) are morphisms of (YA | M), whence

gAa o f =8u,0 = 8&4a00=0.

As f is an epimorphism, we conclude that g4 4) = 0, thus proving that g = 0.

Conversely, assume that N € N, and fix an object (A, a) of (YA | N). Since ay is an
epimorphism (again by Lemma 6.2) and A is a noetherian object of G, by Remark 6.3 we
can find a finite number of distinct morphisms of (YA | N), say fi: (A;, alf) — (A;, a;)
fori =1, ..., n, such that, setting

n
Ay=]]4; c x.
i=1

we have 1(4,4)(A) C ay (A6). Moreover,
an(Ap) S Ao:= [[ A cw,
(A',a")el

where [ is the (finite) subset of the objects of (YA | N) consisting of those (A’, a’) which
are equal to (A?, a)) or (A;, a;) for some i = 1, ..., n. Note that Ag, A; € A by (1). In
the cartesian diagram in G

B—A

g’j tlm,a)
o
NlAEJ

Ay ———— Ag

the morphism f’ is an epimorphism because ¢(4,4)(A) < aN(Aé)). So, by Lemma 6.4,
there exists a morphism k: A” — B with A’ € A such that f := f'ok: A’ - Aisan
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epimorphism of G. Set also g := g’ o k: A" — A() and denote by
ao: YA(Ag) = ]_[ YAA) > N
(A',a")el
the morphism of M whose components are given by a’ for every (A’, a’) € I. Then the
diagram
YA(S)

YA(A) YAA) —L SN
YA(g)l YA(!(A.m)l a0
YA<aN|A6>
YA(AY) YA (Ao)

commutes in M. As YA(A6) =1[, YA(A;) and
aooYA(am% o) =al —aioYA(fi) =0

foreveryi =1, ..., n (by (6.1) and by definition of morphism in (YA J N)), we see that
apgo YA (05N|A6) = 0. This clearly implies a o YA(f) = 0, which proves N € N'. m]

Theorem 6.6. Assume that conditions (1)—(4) are satisfied. Then Dy(M) N D(M)€ satis-
fies (G1) in Dy(M).

Proof. In the triangulated category Dy (M), consider an object

0
M=(C-—->M2 M > ...

such that M 22 0. We must find a morphism 0 # x: P — M with P in Dy(M) ND(M)“.
Set N' := H'(M); by definition N’ € N for every i € Z and N* # 0 for at least one i.
Without loss of generality we can assume that N0 = 0, hence there exists (A%, a°) in
(YA | N9 with a® # 0.
We claim that we can find a complex

A= A2 2 400
of A € G with n = N(A®) such that H'(A) = 0 for every i # —n. Here N(A?)
is the integer whose existence is prescribed by (4) applied to A°. Furthermore, we will
show that there is a morphism a: YA(A) — M of complexes of M (with components
a': YA(A") — M?) such that, with p’: kerm! — N denoting the natural projection
morphism for every i € Z, we have po 0 a® = a°. Notice that since m° o a® = 0, we can
regard a” as a morphism YA(A%) — kerm". Moreover, observe that for such a complex
A the objects K I .= kerd! of G are actually in A. Indeed, this is clear for i > 0 or
i < —n, whereas for —n < i < 0 there is a short exact sequence

O—>KiL>Ai—>Ki+]—>0

in G (because H'*t!(A) = 0), hence one can prove that K’ € A by descending induction
on i using condition (3).
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In order to prove the claim, we define the morphisms a’ and d' again by descending
induction on i. For i = 0, we can find a°: YA(AO) — kerm® € M9 such that po oda®
= a° because p is an epimorphism in M. For the inductive step, assume that —n < i < 0
and that suitable @’ and d”’ have already been defined for i’ > i. There exists a (unique)
ki1 YA(KI!) — kerm!™! such that the diagram
YA(di+1)

YA(Ki+1) YA(jiH) YA(Ai+1) YA(Ai+2)

l/kH—l lai+l lai+2

. . i+1 .
kermit! C Mit! 't Mit2?

commutes (because d’ +‘1 o j *_‘1 = 0 and the square on the right commutes by induction).
Consider the object (K't!, pitl o k’*‘_l) of (YA XS Nith, Since_N”‘1 € N, by Proposi-
tion 6.5 there exists an epimorphism ¢’ : A" — K'*! such that p'T! o kiT!1 0 YA(4?) = 0.
So

Kt o YA : YA(A) — kerm!™!
factors through im m? < kerm!*!, and there exists a morphism @’ such that the diagram
YA

. . YA Ji+1 .
YA(AZ) YA(K1+1) g™ YA(A1+1)

Mi immi C kermi+1 o Mi+1
W
commutes. Then, setting d = j i+l 4 qi, we clearly have

H7'(A)=0 and a'TloYAW) =m'od,

thus completing the proof of the inductive step.

Since A = K7"[n] in D(G) and K" € A, the natural morphism of complexes [ :
AY — A defined by 1° = idy, is 0 in D(G) (A", A) = D(G)(A°, K ~"[n]) by condition
(4). Thus we can find a complex C of G and a quasi-isomorphism r: C — A° such
that [ o » ~ 0, where ~ denotes homotopy of morphisms of complexes. As H(C) is
isomorphic to an object of A for every i € Z and is O for i > 0, there exists a quasi-
isomorphism s: B — C with B’ € A forevery i € Z and B = 0 for i > 0: this
follows for instance from [38, Lemma 1.9.5] (applied with F the inclusion of A in G and
C the full subcategory of the category of complexes in G having as objects the complexes
whose cohomologies are bounded above and isomorphic to objects of A), whose key
condition 1.9.5.1 is satisfied due to Lemma 6.4. Then 7 := ros: B — A% is also a
quasi-isomorphism and / o ¢ ~ 0. It is straightforward to check that ¢ factors through a
quasi-isomorphism 7: B := 7=_,(B) — A” and that [ o 7 ~ 0, too. Indeed, the same
maps B/ — A~! which provide the homotopy / o  ~ 0 and are necessarily zero for
i < —n yield the desired homotopy [ o f ~ 0.
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Hence, if we denote by A the mapping cone of 7 and by u: A — A the natural
inclusion, there exists a morphism of complexes f: A — A such that fou~11Ttis
easy to prove, applying (3) and the same argument used above to show that K € A, that
B’ € A for every integer i. It follows from (1) that the same is true for A’

Now we can take P := YA(A) and x := a o YA(f): P — M (or, better, its image in
D(M)). Indeed, x o YA(u) ~ a o YA(l) = a°, which implies

Hx o YA)) = H(d%) =a° #0.

Therefore xo YA (1) # 0, whence x # 0in D(M). Moreover, P € D(M)€ because D (M)©
is a triangulated subcategory of D(M) containing the image of YA (see Remark 4.1), and
A is a bounded complex of objects of A. Finally, we have T(P) = A by Remark 5.2. Re-
membering that T is exact and observing that A is an acyclic complex (being the mapping
cone of the quasi-isomorphism 7), we conclude that

T(H (P)) = H(T(P)) = H'(A) =0

for every i € Z, which means that P € Dy(M). m]

An easy application of the above result is the following.

Corollary 6.7. Assume that conditions (1)—(4) are satisfied. Then

(i) Dy(M)® = Dy(M) N DM)*;
(ii) the quotient functor D(M) — D (M) /Dy (M) sends D(M)€ to (D(M) /Dy (M))¢;
(iii) the induced functor D(M)“/Dy(M)¢ — (D(M)/Dy(M))€ is fully faithful and iden-
tifies (D(M)/Dy(M))€ with the idempotent completion of D(M) /Dy (M)°“.

Proof. The triangulated category D(M) is compactly generated by Remark 4.1, and so
the isomorphism classes of objects in D(IM)¢ form a small set (for this use, for example,
[20, Lemma 5]). Thus we can choose a small set S of representatives of the isomorphism
classes of objects in Dy (M) N D(M)¢, and Theorem 6.6 clearly implies that S satisfies
(G1) in Dy(M). Since D(M)/Dy(M) = D(G) is well generated (see Example 1.3), the
localizing subcategory Dy (M) is well generated as well (see, for example, [21, Theorem
7.4.1]). Hence, by Proposition 1.4, the category Dy (M) is generated by S. Now we just
apply Theorem 1.5. O

Theorem 6.6 and Corollary 6.7(i) imply that the assumption (a) of Theorem 6.1 is
satisfied in our specific situation (i.e. when (1)—(4) are satisfied). Hence the proof of
Theorem B is complete.

Remark 6.8. It should be noted that, under the same assumptions (1)—(4) of Theorem B,
one can actually prove that the triangulated category D(G)¢ has a semi-strongly unique
enhancement. This result follows again from Theorem 6.6 and Corollary 6.7(i) by using
[24, Theorem 6.4], rather than Theorem 6.1.
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6.3. The geometric examples

In this section we describe an easy geometric application of Theorem B in the case of
perfect complexes on some algebraic stacks. For this we need to recall some definitions.

Let R be a commutative ring. A complex P € D(Mod(R)) is perfect if it is quasi-
isomorphic to a bounded complex of projective R-modules of finite presentation. Follow-
ing [14], if X is an algebraic stack, a complex P € Dgyc(X) is perfect if for any smooth
morphism Spec(R) — X, where R is a commutative ring, the complex of R-modules
RI'(Spec(R), Plspec(r)) is perfect. We denote by Perf(X) the full subcategory of Dgc (X)
consisting of perfect complexes.

A quasi-compact and quasi-separated algebraic stack X is concentrated if Perf(X) C
Dyc(X)€. On the other hand, if X has also quasi-finite affine diagonal, then the other in-
clusion Dgc(X)“ € Perf(X) holds as well, as a direct consequence of [14, Theorem A].
Moreover, we already observed in the proof of Corollary 5.4 that, under the same assump-
tions, the natural functor D(Qcoh(X)) — Dy (X) is an exact equivalence.

Summing up, if X is a concentrated algebraic stack with quasi-finite affine diagonal,
then there is a natural exact equivalence

Perf(X) = D(Qcoh(X))“. (6.2)

When a stack X has the property that Qcoh(X) is generated, as a Grothendieck cate-
gory, by a small set of objects contained in Coh(X) NPerf(X), we say that X has enough
perfect coherent sheaves.

Example 6.9. Suppose that a scheme X has enough locally free sheaves, according to
the definition given in Remark 5.5. This yields a small set of generators of Qcoh(X)
contained in Coh(X) N Perf(X). Indeed, we can take a set of representatives for the iso-
morphism classes of locally free sheaves, as every sheaf in Qcoh(X) is a filtered colimit
of finitely presented Ox-modules (see [12, 9.4.9]). Hence a scheme with enough locally
free sheaves has enough perfect coherent sheaves as well.

As an application of Theorem B, we get the following.

Proposition 6.10. Let X be a noetherian concentrated algebraic stack with quasi-finite
affine diagonal and enough perfect coherent sheaves. Then Perf(X) has a unique en-
hancement.

Proof. Consider the isomorphism classes of objects in Coh(X) NPerf(X). It is clear that
they form a small set. Define then A to be the full subcategory of Qcoh(X) whose set
of objects is obtained by taking a representative in each isomorphism class of objects
in Coh(X) N Perf(X). Since, by assumption, a subset of Coh(X) N Perf(X) generates
Qcoh(X), so does A.

Let us now observe that A satisfies (1)—(4) in Theorem B. Indeed, (1) is obvious and
(2) holds true because X is noetherian. To prove (3), observe that the kernel is defined in
Coh(X) up to isomorphism, and moreover the kernel of an epimorphism A — A’ in A
is isomorphic to the shift of the cone of f in Perf(X). Hence it is (up to isomorphism)
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an object in A. Finally, since X is concentrated, (4) is verified as well. Indeed, in view of
[14, Remark 4.12], a concentrated scheme has finite homological dimension, and then (4)
follows from the fact that the objects of A are in Coh(X) N Perf(X) rather than just in
Coh(X).

At this point, the result follows directly from Theorem B and (6.2). ]

As a direct consequence, we get the following.

Corollary 6.11. If X is a noetherian scheme with enough locally free sheaves, then
Perf(X) has a unique enhancement.

Proof. A scheme that is noetherian is concentrated (see [4, Theorem 3.1.1]). Moreover,
by [40, Proposition 1.3], any noetherian scheme with enough locally free sheaves is semi-
separated. By Example 6.9 and Proposition 6.10, the result is then clear. O

7. Applications

In this section we discuss two easy applications of the circle of ideas concerning the
uniqueness of enhancements for the category of perfect complexes. The first one is about
a uniqueness result for the enhancements of the bounded derived category of coherent
sheaves. The second one concerns some basic questions related to exact functors between
the categories of perfect complexes or complexes of quasi-coherent sheaves.

7.1. The bounded derived category of coherent sheaves

Assume again that X is a noetherian scheme with enough locally free sheaves (which
is again automatically semi-separated in view of [40, Proposition 1.3]). Let A be a full
subcategory of Qcoh(X) whose objects are obtained by picking a representative in each
isomorphism class of the objects in Coh(X) N Perf(X). As we observed in the proof
of Corollary 6.11, A is a small set of generators of Qcoh(X). Hence, we can apply the
discussion in Section 5.1, getting a natural exact equivalence

D(Qcoh(X)) = D(A)/L, (7.1)

where L is an explicit localizing subcategory of D(A). Remember that, under this equiva-
lence, every object A € A is mapped to Q(YA(A)), where, as usual, Q: D(A) — D(A)/L
denotes the quotient functor (see the discussion in Section 6.1). Since A € D(Qcoh(X))*¢
in view of (6.2), it follows from [24, Remark 1.20] that S := Q o YA(A) is a small set of
compact generators of D(A)/L.

Following [24, Section 8], we say that an object B in D(A)/L is compactly approxi-
mated by the objects in S if

(1) there is m € Z such that, for any S € S, we have D(A)/L (S, B[i]) = 0wheni < m;
(2) for any k € Z, there are Py in (D(A)/L)¢ and a morphism f: Py — B such that,
for every S € S, the canonical map

D(A)/L (S, Pli]) — D(A)/L (S, Bli])

is an isomorphism when i > k.
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We denote by (D(A)/L)“ the full subcategory of D(A)/L consisting of the objects
which are compactly approximated by S. It must be noted that this definition actually
depends on the choice of S.

Denote by D?(X) the bounded derived category of the abelian category Coh(X) of
coherent sheaves on X. We now show that the equivalence (7.1) induces an exact equiva-
lence

D’(X) = (D(A)/L)““. (7.2)

Indeed, the proof of [24, Proposition 8.9] can be repeated line by line and the same
argument applies in our setting. The only delicate issue is that [24, Lemma 8.10] has to
be replaced by the following statement: Let X be a scheme as above and let E be the
image under (7.1) of an object in S. Then there exists an integer N (E) such that, for all
k > N(E) and all quasi-coherent sheaves F, we have Ext*(E, F) = 0. This follows
easily from the fact that E is, by definition, a coherent sheaf in Perf(X). Thus the results
of [38, Sections B.11 and B.12] apply.

Consider now the following result.

Theorem 7.1 ([24, Theorem 8.8]). Let A be a small category and let L be a localizing
subcategory of D(A) such that

(a) L = LN D(A) and L€ satisfies (G1) in L;
(b) DA)/L (Q(YA(Al)), QYA (AI]) = 0 forall A1, Ay € A and all integersi < 0.

Then (D(A)/L)? has a unique enhancement.
This has the following easy consequence.

Corollary 7.2. If X is a noetherian scheme with enough locally free sheaves, then D? (X)
has a unique enhancement.

Proof. The proofs of Proposition 6.10 and Corollary 6.11 actually show that, with these
assumptions on X and our choice of A, hypotheses (a) and (b) of Theorem 6.1 are satis-
fied. As they coincide with (a) and (b) of Theorem 7.1, we conclude by (7.2). ]

7.2. Fourier—Mukai functors

Assume that X; and X, are noetherian schemes. Given £ € D(Qcoh(X; x X»)), we
define the exact functor ®.: D(Qcoh(X;)) — D(Qcoh(X>)) as

L
Qg (—) = R(p2)«(€ ® pi(—)),
where p;: X1 x X2 — X; is the natural projection.

Definition 7.3. An exact functor F: D(Qcoh(X{)) — D(Qcoh(X3)) (G: Perf(X;) —
Perf(X»), respectively) is a Fourier—Mukai functor (or of Fourier—Mukai type) if there
exists an object £ € D(Qeoh(X; x X»)) and an isomorphism of exact functors F = &,
(G = &, respectively).
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These functors are ubiquitous in algebraic geometry (see [7] for a survey) and for a long
while it was believed by some people that all exact functors between Db (X1) and Db (X»),
with X; a smooth projective scheme, had to be of Fourier—Mukai type. A beautiful coun-
terexample by Rizzardo and Van den Bergh [34] showed this to be false. Moreover, if X
and X, are not smooth projective it is not even clear if the celebrated result of Orlov [31]
asserting that all exact equivalences between D?(X ) and D?(X>) are of Fourier—Mukai
type holds true.

A much weaker question can now be formulated as follows. For two triangulated
categories T and T,, we denote by Eq (T, T;) the set of isomorphism classes of exact
equivalences between T and T,. When T; is either D(Qcoh(X;)) or Perf(X;), for X;
a noetherian scheme, we can further define the subset Eq"™ (T, T,) consisting of all
equivalences of Fourier—Mukai type.

As an application of the results in the previous section, we get the following.

Proposition 7.4. Let X and X> be noetherian schemes with enough locally free sheaves.
Then Eq(Perf(X1), Perf(X»>)) #0 if and only if Eq(D(Qcoh(X1)), D(Qcoh(X3))) #0.
Moreover, in that case Eq (D (X)), D?(X2)) #= 0.

Proof. In view of (6.2), an exact equivalence D(Qcoh(X)) — D(Qcoh(X>)) restricts to
an exact equivalence Perf(X;) — Perf(X>), since the subcategories of compact objects
are clearly preserved. Hence, Eq(D(Qcoh(X)), D(Qcoh(X>))) # @ implies that the
same is true for the categories of perfect complexes.

On the other hand, assume that Eq(Perf(X), Perf(X»)) # #. Denote by Perf dg(x;)
a dg enhancement of Perf(X;), fori = 1, 2. By Corollary 6.11, Perf98(X ) = Perf9¢(X5)
in Hqe. This clearly implies that there is an exact equivalence between D(Perf9 (X))
and D(Perfdg(Xz)). By [24, Proposition 1.16] (see also [24, proof of Corollary 9.13]),
there is an exact equivalence between D(Perf de (X;)) and D(Qcoh(X;)) fori = 1,2.
Thus Eq(D(Qcoh(X 1)), D(Qcoh(X3))) # @.

As for the last statement, assume (without loss of generality by the previous part)
that there is F in Eq(D(Qcoh(X1)), D(Qcoh(X>))). By [35, Proposition 6.9], the func-
tor F sends the subcategory D?(Qcoh(X1)) of cohomologically bounded complexes to
D?(Qcoh(X»)). By using the same argument as above, we see that F induces an exact
equivalence

D”(Qeoh(X1))* — D”(Qeoh(X2))*.

Then we conclude that Eq(D?(X 1), D?(X3)) # #, since D?(Qcoh(X;))¢ = D?(X;) for
i = 1,2 by [35, Corollary 6.16]. O

Notice that if we assume further that X; x X5 is noetherian and that any complex in
Perf(X;) is isomorphic to a bounded complex of vector bundles, then [39, Corollary 8.12]
and [25, Theorem 1.1] imply that

Eq(Perf(X 1), Perf(X)) # @ iff Eq™@Perf(X), Perf(X»)) # ¢}
and

Eq(D(Qcoh(X1)), D(Qeoh(X2))) # ¢ iff Eq™(D(Qeoh(X1)), D(Qeoh(X2))) # 0.
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Hence Proposition 7.4 can be reformulated in terms of the sets of Fourier—Mukai equiva-
lences.

Remark 7.5. By using the observation in Remark 6.8 and the strategy in the proof of
[24, Corollary 9.12], we can make the above remarks more precise when dealing with
perfect complexes. Indeed, pick F € Eq(Perf(X), Perf(X>)) for X; noetherian with
enough locally free sheaves and such that X; x X, is noetherian and any complex in
Perf(X;) is isomorphic to a bounded complex of vector bundles. Then there exists G in
Eq™ (Perf(X), Perf(X»)) such that F(C) = G(C) for any C in Perf(X}).
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