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Abstract. We propose to grok Lipschitz stratifications from a non-archimedean point of view and
thereby show that they exist for closed definable sets in any power-bounded o-minimal structure on
areal closed field. Unlike the previous approaches in the literature, our method bypasses resolution
of singularities and Weierstraf3 preparation altogether; it transfers the situation to a non-archimedean
model, where the quantitative estimates appearing in Lipschitz stratifications are sharpened into
valuation-theoretic inequalities. Applied to a uniform family of sets, this approach automatically
yields a family of stratifications which satisfy the Lipschitz conditions in a uniform way.
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In this paper we prove the existence of Lipschitz stratifications for any closed definable set
in a polynomially bounded o-minimal structure on R, and, in fact, even more generally, in
a power-bounded o-minimal structure on a real closed field R. The notion of a Lipschitz
stratification was introduced by Mostowski in his dissertation [Mos]. It is much stronger
than Whitney’s conditions or Verdier’s condition (w) formulated in [Ver]; it imposes a
global condition and ensures that the Lipschitz type of the stratified set is locally constant
along each stratum.

Throughout this paper, R is a power-bounded real closed field. A classical example
of such a structure is Ry,: the reals with restricted analytic functions as described in
[DMM]; beyond this (subanalytic) level, there is e.g. the class of quasianalytic structures
(see [Rol]). If the field R is just R, then power-bounded is equivalent to polynomially
bounded. In other real closed fields, power-boundedness is more general and more natu-
ral; we recall that notion in Definition 1.1.1.

Here is a first version of our main result.

Theorem 1 (Lipschitz stratifications). Let X € R" be a closed definable subset in a
power-bounded real closed field R. Then there exists a definable Lipschitz stratification
of X.

I. Halupczok (corresponding author): Heinrich-Heine-Universitit Diisseldorf,
Universitétsstr. 1, 40225 Diisseldorf, Germany; e-mail: math@karimmi.de

Y. Yin: 607 Xi Chang Hall, Department of Philosophy, Sun Yat-sen University,
135 Xingang Road West, Guangzhou, China, 510275; e-mail: yimu.yin@hotmail.com

Mathematics Subject Classification (2010): 03C64; 03C60, 32C07, 32B20, 32560, 58A35



2718 Immanuel Halupczok, Yimu Yin

The notion of Lipschitz stratification is recalled in Definition 1.2.4, and Subsection 1.1
clarifies how the terminology should be adapted in the case R # R. For compact sets X
and in the case R = R, the semi-analytic case of this theorem was established in [Parl]
and the subanalytic case in [Par2]. Recently, Nguyen and Valette [NV] generalized Paru-
sinski’s proof to polynomially bounded structures on R. (In [NV] the result is stated for
compact X, but their proof also goes through for arbitrary closed X; see [Ngu].)

A main motivation for Lipschitz stratifications is that one has local bilipschitz trivial-
ity along strata, which in turn implies that any two points within the same stratum have
neighborhoods which are in bilipschitz bijection. The proof of this result is rather easy
in R, but the argument uses integration along vector fields; this is highly non-definable,
and it does not generalize to other real closed fields. We believe that local bilipschitz
triviality (along strata of a Lipschitz stratification) can also be obtained in R # R, but
the argument might be much more involved. More precisely, a proof of the existence
of definable local bilipschitz trivializations within R would probably directly generalize
to R. Some results in that direction exist. For example, Valette [Val] proved the existence
of definable bilipschitz trivializations in polynomially bounded o-minimal structures, but
using certain triangulations instead of Lipschitz stratifications.

Using the existence of Skolem functions and the Compactness Theorem, one easily
deduces that Theorem 1 also works uniformly in families, in the sense that given a uni-
formly definable family of sets, one finds a uniformly definable family of Lipschitz strati-
fications. However, the notion of Lipschitz stratifications involves a constant C (a stratifi-
cation is Lipschitz if some conditions hold for sufficiently large C), and a natural question
is whether that C can be chosen to be the same for an entire family. In this paper, we ob-
tain uniform Lipschitz stratifications in families in this strong sense; the precise statement
is Theorem 1.3.5.

Our approach to the construction of Lipschitz stratifications is quite different from all
previous ones. The main difference is that we use the technique from non-standard analy-
sis of replacing R by a bigger real closed field R’ (an elementary extension). The infinite
and infinitesimal elements in R’ make it possible to simplify the formulation of statements
involving limits. In particular, we obtain simpler characterizations of Lipschitz stratifica-
tions: Whereas the original definition of a Lipschitz stratification uses subtle inequalities
depending on two different constants ¢ and C, we obtain an equivalent definition, formu-
lated using R’, which needs neither ¢ nor C (see Definition 1.6.5 and Proposition 1.6.11).
The aforementioned strong uniformity in families is obtained as a side effect of using
that approach: We prove that Lipschitz stratifications exist in families within R’. The fact
that the parameters of the family are allowed to run over the bigger field R’ allows us to
deduce the strong uniformity result within R.

On our way, we also obtain various other equivalent characterizations of Lipschitz
stratifications: Proposition 1.2.5 provides some characterizations purely within the stan-
dard model, where ¢ and C are used in a less subtle way, and Proposition 1.8.3 provides a
new characterization of Lipschitz stratifications in terms of partial flags, which is invariant
under GL,,. (To our knowledge, the only previously known GL,,-invariant characterization
was the one in terms of vector bundles given e.g. in [Parl, Proposition 1.5].)
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Typically, proofs carried out using non-standard analysis in an elementary exten-
sion R’ can be translated back to “classical” proofs within R (at the cost of making them
much less readable). However, for one key ingredient in our proof—a precise estimate of
the gradient of functions near a singular locus, in Corollary 2.2.2 and Remark 2.2.3—we
use some deeper model-theoretic results. More precisely, R’ naturally carries a valua-
tion, which specifies the order of magnitude of elements. The proof of our estimate builds
on model theory of R’ as a valued field, i.e., we consider definable sets in a language
including the valuation. This setting has been studied by van den Dries and Lewenberg
[DL, Dril] under the name of “T-convex fields”. In that setting, the second author of
the present paper obtained a result which is somewhat related to Weierstral3 Preparation
in valued fields (Proposition 2.2.1), and that in turn implies the above-mentioned Corol-
lary 2.2.2.

In Section 1 we recall the notion of Lipschitz stratifications and prove the equivalence
of its various characterizations. We also give an overview of the proof of existence of
Lipschitz stratifications (in Subsection 1.9). The entire remainder of the paper is devoted
to the details of that proof. Section 2 discusses the various ingredients and Section 3
contains the proof itself.

1. Characterizations of Lipschitz stratifications

In this section, we recall the definition of Lipschitz stratifications, we formulate several
alternative definitions and we prove that all those definitions are equivalent. This does not
yet use any deep model theory; the only model-theoretic ingredient we use is the notion
of elementary extensions (and their existence).

1.1. Basic notation

We fix some notation which will be used throughout this paper.

Recall that an o-minimal structure on R is polynomially bounded if every definable
function R — R is ultimately bounded by a polynomial. One essential aspect of this no-
tion is the dichotomy obtained by Miller [Mil2]: In any structure that is not polynomially
bounded, one can already define exponentiation. To obtain a similar dichotomy for other
real closed fields R, one needs a generalization of polynomially bounded [Mill]: a defin-
able function only needs to be bounded by a kind of generalized power function. Here is
the precise definition.

Definition 1.1.1 (Power bounded). Suppose that R is an o-minimal real closed field.
A power function in R is a definable endomorphism of the multiplicative group R*. We
call R power bounded if for every definable function f: R — R, there exists a power
function g such that | f(x)| < g(x) for all sufficiently large x.

There is a precise sense in which a power function is of the form x — x*, where A is an
element of a certain subfield of R. Since we will use power-boundedness only indirectly,
we do not elaborate on this; see [Mill] for details.
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Notation 1.1.2 (Structures and language). Throughout this paper, we fix a power-
bounded o-minimal real closed field R in a language £ expanding the ring language.
(At some point we will require, without loss of generality, that R is sufficiently big).

By definable we mean definable with arbitrary parameters; in contrast, £-definable
means definable without parameters (apart from those which are constants in the lan-

guage).

Remark 1.1.3. It is somewhat customary, in o-minimal geometry, not to specify a lan-
guage and to only work with the notion of definable sets. However, specifying a language
allows us to keep track of the parameters needed to define sets, and this will be needed
for some model-theoretic arguments. For the moment, the reader unfamiliar with our ap-
proach may assume that £ contains a constant for each element of R, so that £-definable
means the same as definable.

Notation 1.1.4 (Coordinate projections). Given d < n, we write pr;: R* — R for
the projection to the d-th coordinate, pr_,;: R" — R for the projection to the first d
coordinates and pr_,: R" — R~ the for projection to the last n — d coordinates.

We use the usual notation and conventions for o-minimal expansions of real closed fields
(see e.g. [Dri2]). We quickly recall the most important ones.

Notation 1.1.5 (Infima and suprema). By o-minimality, any definable subset X € R
has an infimum and a supremum (which may be 00); we denote them by inf(X) and
sup(X).

Notation 1.1.6 (Norms and distances). We write | - | for the absolute value on R, ||a||
for the Euclidean norm of a € R” (||a|| is an element of R>¢) and || M || for the operator
norm of a matrix M, i.e., || M| = sup{||Mal|| : |la]| = 1}. Given a pointa € R" and a

definable set X € R", we write dist(a, X) = inf{|la — x| : x € X} for the distance
from a to X; we define that distance to be oo if X is empty.

Notation 1.1.7 (Topology). The real closed field R comes with a natural topology in-
duced by the order on R; this also induces a topology on R”. Given a definable set
X C R", we write cl(X) for its topological closure, int(X) for its interior, and X =
cl(X) \ X for its frontier (not to be mixed up with the boundary, which is also some-
times denoted by 0X). We call X definably connected if X is not the disjoint union of
two relatively closed (in X) definable subsets. The definable connected components of X
are defined accordingly. (Any definable set in an o-minimal structure has finitely many
definable connected components.)

The topology on R might be totally disconnected, so the usual notion of connectedness
does not behave as desired. However, in the case R = R, definably connected is the same
as connected.

Notation 1.1.8 (Derivatives). For an open set X C 7R”, derivatives of functions
f: X — R™ are defined as the usual limits. By o-minimality, derivatives exist almost
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everywhere. For functions f: X — R, we write 9; f for the derivative with respect to the
i-th variable (1 <i <n),and for f = (f1,..., fm): X > R™ and a € X, we write

o fi(@) -+ dpfi(a)
Jac, f = : :
a]fm(a) anfm(a)

for the Jacobian matrix of f at the point a. In the case m = 1, we also write V f(a)
instead of Jac, f. We define the class C? of p-fold continuously differentiable functions
in the usual way.

The notion of manifolds makes sense over (o-minimal) fields R # R only if one restricts
to definable manifolds. All manifolds we will encounter will moreover be embedded.

Notation 1.1.9 (Manifolds and tangent spaces). A d-dimensional definable C? subman-
ifold of R" (ford < n and p > 1) is a definable set X C R" such that there exists a finite
definable open cover of X by sets U;, each of which is in definable C?-bijection with an
open set V; € R?. The tangent space of X at some a € X is denoted by T, (X). (We
consider T, (X) as a subspace of R".)

Note that T, (X) is definable uniformly in a.

1.2. Various definitions of Lipschitz stratifications

We use the following notation and conventions for stratifications:

Definition 1.2.1 (Stratifications). Let X € R" be a definable subset of dimension d.
A definable stratification of X is a family X = (X° € X! € ... € X4 = X) of
closed definable subsets of X satisfying the properties below. We set X! := . For
0 < i < d, the set X = Xt \ X'—1 is called the i-th skeleton, and each definably
connected component of each skeleton is called a stratum. We call X" a stratification if
the following conditions hold:

e foreachi,dim X! <i;

e foreach i, X' is either empty or a definable C' submanifold of R” of dimension i (not
necessarily connected);

o for each stratum S, the topological closure cl(S) is a union of strata.

(Note that in the generality of power-bounded o-minimal structures, one cannot expect to
obtain smooth strata.)

Mostowski’s original definition of when a stratification is a Lipschitz stratification
uses the notion of a chain: a sequence of points (a@)ofgfm that starts with an arbitrary
point a® € X, and where the remaining points lie in lower-dimensional skeletons, but
“not too far from a7, and only in “those skeletons X’ which are much closer to a°
than X'~1”. The precise inequalities specifying these distances are quite subtle. There
exists an equivalent definition involving Lipschitz vector fields [Parl, Proposition 1.5],
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which avoids the subtleties of bounding the aforementioned distances. However, that def-
inition quantifies over vector fields, which makes it less suitable for our model-theoretic
approach. Therefore, in this paper, we use the original definition in terms of chains. (More
precisely, we use the simplified variant of that original definition, given in [Par1].)

As already mentioned in the introduction, we will use methods from non-standard
analysis to simplify the definition of Lipschitz stratifications: After having replaced R by
an elementary extension, we will define a valuation on R, which will allow us to replace
the subtle bounds on distances by simple valuative inequalities. However, that valuative
definition is not a straightforward translation of Mostowski’s definition in the usual non-
standard analysis way. To make such a translation possible, one needs to first modify
Mostowski’s definition in such a way that certain quantifiers become simpler.

To prove that our new definition is equivalent to the old one, our strategy is as follows.
We introduce two new variants of Mostowski’s definition: one of them a priori weaker
and one of them a priori stronger. Both variants have simpler quantifiers, so that they can
be translated to valuative versions. For those valuative versions, it will not be very hard
to prove that the weak one implies the strong one, hence implying that all definitions are
equivalent.

In the following, we start by giving all those definitions of Lipschitz stratifications
which do not use the valuation. The valuative versions are stated in Subsection 1.6, and
the proofs of the equivalences are given in Subsection 1.7.

Lipschitz stratifications are defined in terms of projections to the tangent spaces of the
skeletons X'; we first fix notation for those projection maps.

Definition 1_.2.2. Given a definable stratification X’ of a definable subset X € R”" and a
pointa € X', let
P,:R" —> T, X'

be the orthogonal projection onto the tangent space of X' at a, considered as a map
R" —- R"

The various definitions of Lipschitz stratifications only differ in the way that certain con-
stants are treated. To avoid writing almost the same definition three times (and to make
it clear how exactly the definitions differ), we introduce a general notion of a stratifica-
tion X “satisfying the Mostowski Conditions for given constants”. For readers who just
want to understand one single definition of Lipschitz stratifications, one possible defini-
tion is encoded in the notation used for the constants: Increasing lowercase constants and
decreasing uppercase constants both makes the Mostowski Conditions more restrictive;
and X is a Lipschitz stratification if no matter how large the lowercase constants are cho-
sen, one can find values for the uppercase constants such that the Mostowski Conditions
are satisfied (see Proposition 1.2.5(2)).

Note: The Mostowski Conditions impose conditions on all chains, so a more restric-
tive notion of chains yields a less restrictive notion of Mostowski Conditions.

Definition 1.2.3 (Chains and Mostowski Conditions). Let X = (X’); be a definable
stratification (of a definable set X € R"), and let ¢, ¢/, C’, C”, C"" € R be given.
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A plain chain (in X) is a sequence of points a’, a', ..., a™ (m > 0) with a® € Xee,
ey > ey > --- > ey, satisfying the following conditions.

(1) For¢ =1, ...,m, we have
la® — a®| < ¢ - dist(a®, X¢).

(2) For eachi with e, < i < eg, we have one of two different conditions (which should
be considered as specifying which i should be among the e; and which should not):

dist(a®, X'=1) > €’ - dist(a®, X') ifi € {e1, ..., em},
dist(a®, X'~1) < ¢/ - dist(a®, X)) ifi ¢ {e1, ..., em}.

An augmented chain (in X) consists of a plain chain ao, a’ a3, ... ,a™ (m>1, ate )0(6’5)
together with an additional point a' € X!, where e; := e, satisfying

dist(a®, X1~ 1
0 1 >
la” —a'll = —F=—

We say that X satisfies the Mostowski Conditions for (c, ¢’, C', C”, C") if the following
two conditions hold:

(1.

e For every plain chain (ai)osifm with m > 1, we have

C"lla’ —a'|

(1 = Puo)Pyi Pz ... Pom]| <W, (ml)
e For every augmented chain (@ )o<i<m (withm > 1), we have
C///”aO _ al I
I(Pyo — P)PpaPys... Pyl < (m2)

dist(a0, Xem—1y’

We use the convention that if X¢»~! is empty, then in (m1) and (m2), we require the left
hand side to be 0.

Concerning nomenclature, note that what Parusifiski calls a c-chain in [Parl] is what we
would call a plain chain of maximal length, using the same constant ¢ and ¢’ = C’ =
2¢%. Also, we use different conventions regarding the case when X! is empty. (Our
convention seems more natural to us, though it almost implies X # ¢.)

Parusiriski’s version of the definition of a Lipschitz stratification is the following:

Definition 1.2.4 (Lipschitz stratifications). Let ¢ > 1 (¢ € R) be given. A definable
stratification X is a Lipschitz stratification if there exists a C € R such that X" satisfies
the Mostowski Conditions for (c, 2¢2,2¢2,2¢, C ).

A priori, this notion seems to depend on the choice of c. However, it turns out that different
choices of ¢ yield equivalent notions; this follows e.g. from [Par1, Proposition 1.5].

That ¢’ = C’ in Definition 1.2.4 means that condition (2) in Definition 1.2.3 uniquely
specifies the set {ey, ..., e, } in terms of the initial point a® and the length m of the chain.
However, a side effect of identifying ¢’ with C’ is that the strength of the condition is
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not a monotone function of the constant: a chain for some ¢/ = C’ might neither stay
a chain when making ¢/ = C’ larger, nor when making them smaller. This has various
disadvantages, the main one for us being that only monotone conditions can be nicely
simplified by reformulating them in an elementary extension. Another consequence is that
one has to be quite precise about the relations between the various constants: ¢ vs. 2¢2
vs. 2c.

In contrast, the following two equivalent characterizations are monotone in ¢ and C
in the above sense, and they are much more robust with respect to small modifications of
Definition 1.2.3.

Proposition 1.2.5 (Characterizations of Lipschitz stratifications). The following condi-
tions on an L-definable stratification X are equivalent:

(1) X is a Lipschitz stratification (in the sense of Definition 1.2.4).

(2) Foreveryc € R, there exists a C € R such that X satisfies the Mostowski Conditions
for (c,c,C,C,C).

(3) Foreveryc € R, there exists a C € R such that X satisfies the Mostowski Conditions
for (c,c,1,1/c, C).

The monotonicity in ¢ and C means that both (2) and (3) in the proposition can be consid-
ered as statements about large ¢ and C, namely: “No matter how large c is, the Mostowski
Conditions hold for all sufficiently large C.”

Characterization (2) imposes conditions only on very few chains: since C can be
assumed to be large compared to ¢, for most points ® € X, neither of the two inequalities
in Definition 1.2.3(2) holds, hence forbidding those a® as starting points of chains. In
contrast, every sequence of points in decreasing skeletons is relevant in (3) for some c.
(Note that putting C’ = 1 makes the first condition of Definition 1.2.3(2) trivially true.)
For these reasons, the implications (3)=>(1)=-(2) are very easy to prove, assuming that
we read Definition 1.2.4 as “for every ¢ > 1 there exists C” (which we can, using the
result that it is independent of c). The proof (2)=-(3) is harder; this will follow from
Proposition 1.6.11. In fact, this is a good example of a proof which becomes much easier
after translating the statements to valuative ones in an elementary extension.

Proof of Proposition 1.2.5, (3) = (1). Let ¢ > 1 be given (from Definition 1.2.4). Then
(3) yields a C such that the Mostowski Conditions hold for (2¢Z, 2¢?, 1, 1/(2¢?), C).
Thus they also hold for (c, 2¢%, 2¢2, 2¢, C). o

Proof of Proposition 1.2.5, (1) = (2). Let ¢ be given (from (2)); without loss of gen-
erality, c > 1. By Definition 1.2.4, there exists C such that the Mostowski Conditions
hold for (c, 2¢?, 2¢?, 2¢, C). Hence they also hold for (c, c, C’, C’, C’), where C' =
max{C, 2c2}. ]

Remark 1.2.6. It is possible to translate the valuative proof of (2)=>(3) given in Subsec-
tion 1.7 into a “conventional” proof within the original field R; we leave the details of this
to the interested reader as an exercise. Such a translation in particular shows how, given a
function f(): ¢ > C witnessing (2), one obtains a function f(3): ¢ > C witnessing (3).
Roughly, fi3) = (fo)0g) o--- o (f(2) o g) (dim X times) for some simple function g.
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1.3. Uniform families of Lipschitz stratifications

As mentioned in the introduction, we will obtain Lipschitz stratifications uniformly in
families, in a very strong sense. We now make this precise.

Notation 1.3.1 (Definable families). For the whole subsection, we fix a definable set Q
(say, a subset of R™); all definable families are parametrized by Q: a definable family of
subsets of R” is simply a definable subset X € R" x Q, where we write

Xy ={xeR":(x,q9 € X}
for the fiberat g € Q.
We also define families of stratifications in the obvious way:

Definition 1.3.2. Suppose that X is a definable family of d-dimensional subsets of R"
(for some fixed d < n). A definable family of stratifications of X is a tuple X =
(X")o<i<q of families of definable sets such that for each ¢ € Q, &, = (X;)()Sisd
is a stratification of X ; X is a definable family of Lipschitz stratifications if each X is a
Lipschitz stratification.

The more interesting concept is that of a family of stratifications that are uniformly Lip-
schitz; this says that the constant C appearing in the definition of Lipschitz stratifications
can be chosen uniformly for the entire family. Here is the precise definition.

Definition 1.3.3 (Uniformly Lipschitz stratifications). A definable family X" of stratifi-
cations (of a definable family X of sets) is a family of uniformly Lipschitz stratifications
if one of the following equivalent conditions holds:

(1) For every ¢ € R there exists a C € R such that for every g € Q, & satisfies the
Mostowski Conditions for (c, 2¢?, 2¢2, 2¢, C).

(2) For every ¢ € R there exists a C € R such that for every g € O, & satisfies the
Mostowski Conditions for (c, ¢, C, C, C).

(3) For every ¢ € R there exists a C € R such that for every g € Q, A} satisfies the
Mostowski Conditions for (c, c, 1, 1/c, C).

The above proofs of the non-uniform implications (3)=-(1)=-(2) (of Proposition 1.2.5)
also work without modification in the uniform case. The implication (2)=>(3) is restated
as (a part of) Proposition 1.6.11 and will be proved in Subsection 1.7.

Remark 1.3.4. The reader may have noticed that in Definition 1.3.3(1), we wrote “for
every ¢”, instead of fixing a ¢ > 1, as in Definition 1.2.4. We believe that also the a priori
weaker versions with fixed ¢ are equivalent, but we have not checked that carefully.

Now we can finally state the full version of the main result of this paper.

Theorem 1.3.5 (Uniformly Lipschitz stratifications). Fix a power-bounded real closed
field R in a language L. Suppose that X is an L-definable family of closed, d-dimensional
subsets of R" (i.e., X is an L-definable subset of R" x Q, whose fibers X, € R" are
closed and d-dimensional, for q € Q). Then there exists an L-definable family X =
(X")o<i<a of uniformly Lipschitz stratifications of X (in the sense of Definition 1.3.3).
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1.4. Enlarging the model

The conditions in Definition 1.3.3 are clearly first order properties. Therefore, when prov-
ing the implication (2)=-(3) and the existence of uniformly Lipschitz stratifications, we
may work in an elementary extension. More precisely, we will take the point of view
that without loss of generality, R itself is already large, so that in particular, it possesses
an elementary substructure Ro 2 R. It is not difficult to check that the convex closure
of R within R is a (non-trivial) valuation ring of R; we denote it by O . Intuitively, ele-
ments of R \ Or may be regarded as “infinite” and elements in the maximal ideal of O
as “infinitesimal”’; more generally, greater valuation means smaller order of magnitude,
where two elements are considered as having the same order of magnitude if they differ
at most by a factor from Rg (Note that even if Rq is non-archimedean, we consider all
its elements as having the same order of magnitude.)

It is a standard technique to study R by passing to an elementary extension. This
implicitly uses the above valuation, but one usually considers definability only in the
original language L. In contrast, in this paper, we will explicitly consider R as a structure
in the language expanded by a predicate for O . The model theory of such structures has
been studied by van den Dries and Lewenberg [DL, Dril], and a key ingredient in our
proof of existence of Lipschitz stratifications builds on those results.

Notation 1.4.1 (Valuation). For the remainder of Section 1, we suppose that we have
two L-structures Rg = R. We write Og C R for the valuation ring obtained as the
convex closure of Rgin R, i.e.,

Or ={aeR:—b <a < bforsomeb e Ry}.

We write I' :== R* /Oy for the value group and val: R — T U {oo} for the valuation.
Let Ly, be the expansion of the language £ by a predicate for OR.

In [DL, Dril], the language Ly is denoted by Lconvex and an Ly, -structure obtained
from o-minimal structures Ry 3 R as in Notation 1.4.1 is called “T-convex”, where T
is the theory of R as an L-structure. It has been proved in [DL] that being T'-convex is an
elementary property, i.e., for any Ly, -structure R’ which is elementarily equivalent to R,
the valuation ring O/ C R’ is also the convex closure of an £-elementary substructure

o 2 R'.In particular, we can assume that R is sufficiently saturated as an Ly, -structure
(by possibly further enlarging both Rg and R); this will be useful for (model-theoretic)
compactness arguments.

Assumption 1.4.2. For the remainder of the paper, we assume that R is sufficiently sat-
urated, as a structure in the language Ly, .

(To be precise, we will need R to be | Ly, | -saturated.)

Remark 1.4.3. The result that being 7-convex is an elementary property is only used
for convenience, to be able to fix R once and for all. In reality, in those parts of the
paper where we do need to consider elementary extensions of R as an Ly, -structure
(namely Theorem 1.6.7 and its proof), we do not need Op to be the convex closure of an
elementary substructure.
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1.5. Valuative notation

We fix some notation related to the newly introduced valuation. First of all, note that even
when working with the language Ly, , all stratifications we consider are £-definable (in-
stead of L, -definable), and the notions of definable connectedness and definable mani-
folds still refer to the language L.

Now that we have a valuation, it is useful to also have valuative versions of norms and
distances; we use the following notation. Note that by [Dril, Proposition 4.3], the value
group I' (with the induced structure) is o-minimal. In particular, suprema and infima of
definable subsets of I" exist.

Notation 1.5.1 (Valuative norms and distances). For a = (ai,...,a,) € R", we set
val(a) := min; val(a;) = val(||a]|). If in addition, we have a definable set X C R", we
set valdist(a, X) = sup,y val(a — x) = val(dist(a, X)), where valdist(a, ¥) = —oo.
For a matrix M = (m;;);;, we set val(M) := min; ; val(m;;).

We recall some facts about those definitions.

Lemma 1.5.2. Let M and N be matrices with coefficients in R. Then we have the follow-

ing (Where some statements implicitly impose conditions on the numbers of rows/columns
of M and N):

(1) val(MN) > val(M) + val(N) (and in particular val(Ma) > val(M) + val(a) for
aeRM.

(2) The matrix M lies in GL,(OR) iff M € GL,,(R) and we have both val(M) > 0 and
val(M~1) > 0.

3) If M € GL,(OR), then val(M N) = val(N) (and in particular val(Ma) = val(a) for
aeRM.

4) val(M) = val(||M||), where | M || is the operator norm of M (o, in fact, any other of
the usual norms).

Proof. (1) is an easy computation; (2) is clear; (3) follows from (1) and (2).
(4) We have

() (%)
val(|M|]) + val(llall) = val(|[Mal) = val(M) + val(llal) (1.2)

(using the definition of the operator norm to get (x), and using (1) to get (xx)). By choos-
ing a such that |[Ma| = ||[M]| - ||a||, we obtain equality at (x) and hence val(]|M]) >
val(M). To obtain val(||M||) < val(M), we choose an a which yields equality at (xx): if
the j-th column of M has an entry m;; satisfying val(M) = val(m;;), then we can take a
to be the j-th standard basis vector. O

All balls we consider in this paper are valuative balls. We use the following notation.
Notation 1.5.3 (Balls). Givena € R" and A € I", we write

B.)(a) ={x e R" :val(x —a) > A} and
B>y(a) :={x € R" : val(x —a) > A}

for the open and closed ball of valuative radius A.
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1.6. Valuative Lipschitz stratifications

The valuation allows us to simplify conditions (2) and (3) of Definition 1.3.3 in the “usual
non-standard analysis way”. This leads to a valuative version of chains and Lipschitz
stratifications, which we now introduce.

Definition 1.6.1 (val-chains). Fix a definable stratification X = (X?); of a definable set
X C R". A plain val-chain (in X) is a sequence of points a°,...,a” (m > 0) with
a e X ey >e; > --- > ey suchthat forall 1 < £ < m, we have

Ao :=val(@® — a%) > valdist(a®, X471, 1.3)
val(@® — a*) = valdist(a?, X171, (1.4)
An augmented val-chain (in X) is a sequence of points a*, ..., a™ (m>1) with a’ e Xee,

ey = ey > --- > e, such that (1.3) holds for 1 < £ < m and (1.4) holds for2 < ¢ < m.
By a val-chain, we mean either a plain one or an augmented one.

The numbers e¢; (for 0 < £ < m) are the dimensions of the val-chain, and its distances
are the valuations Ay (1 < ¢ < m) together with A4 = valdist(a®, X¢»~1) (which
might be —o00).

Remark 1.6.2. An equivalent way of characterizing a plain val-chain is the follow-
ing. Choose any point a° in any skeleton X¢. Then choose the remaining points a*
(1 < ¢ < m) in skeletons X? as close as possible to ¢ in the valuative sense,
where {eq, ..., ey} consists of the m largest elements of {j < ¢ : Valdist(ao, Xj) >
valdist(a®, X/~ 1)}.

Remark 1.6.3. By (1.3), we have A; > --- > Aj,4+1. This implies
val(ak — a@) = val(a0 — az) forO <k <€ <m,

valdist(ak, X/ = valdist(ao, X7/)  for0 <k <m and j < e.

In particular, if (a[)ofgfm is a val-chain, then any subsequence of the form (az)kfgim/
for 0 < k < m’ < m is also a val-chain (which is always plain if k& > 1). Moreover, if
(ae)ofgfm is an augmented val-chain, then a® a%,a3,...,am is a plain val-chain (for

1 <m' <m).

Definition 1.6.4 (valuative Mostowski Conditions). Let X be a definable stratification
and (a[)osgfm a val-chain with distances A¢. By the valuative Mostowski Condition at
(a%)¢, we mean one of the following two properties of X'. If (@ isa plain val-chain, the
condition is

val((1 — P,o) Py ... Pym) > A1 — At (vmml)

if (a®), is an augmented val-chain, the condition is
val((Pyo — Pi)Pypa ... Pym) > A1 — Ayt (vim2)

In the case A,,+1 = —00, the conditions are supposed to be read as “val(...) = o0”, i.e.,
the composition of the maps is 0. If X© # 4, then A,,+1 = —oo implies ” € X?, and we
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anyway have P,» = 0. However, if X 0 — @, then this is a very strong condition, so as for
classical Lipschitz stratifications, one can almost never have X° = ¢.

Deﬁnition 1.6.5 (valuative Lipschitz stratifications). A definable stratification X =
(X"); (of a definable set X C R") is a valuative Lipschitz stratification if it satisfies
the valuative Mostowski Conditions at every val-chain.

Remark 1.6.6. Whether or not in Definition 1.6.5 one considers val-chains consisting of
a single point (i.e., with m = 0) does not make a difference, since in that case, (vml) is
trivially true (since the right hand side is 0).

This is the notion of stratification we will use in the main proof in this paper, i.e., we
will prove the existence of valuative Lipschitz stratifications. We will do this not only
for L-definable sets X, but also for sets definable with additional parameters from R.
By usual compactness arguments, this implies a family version of the result, and that in
turn implies Theorem 1.3.5 about the existence of uniformly Lipschitz stratifications. The
details of these implications are given at the end of this subsection.

Theorem 1.6.7 (valuative Lipschitz stratifications). Suppose that R is a real closed field
which is o-minimal and power-bounded as a structure in a language L, and suppose
that Lya is an expansion of L by a predicate for the convex closure of an elementary
substructure Rog 2 R (so R is T-convex in the sense of [DL]). Suppose that X < R"
is a closed, L(A)-definable set for some parameter set A C R. Then there exists an
L(A)-definable valuative Lipschitz stratification of X.

The notion of a valuative Lipschitz stratification is just a reformulation of Proposi-
tion 1.2.5(2) using the valuation, as we shall see below. To provide a similar reformulation
of Proposition 1.2.5(3), we introduce “weak val-chains”. (Those are only used here and
in the next subsection.) Roughly, a weak val-chain is the same as a val-chain, except that
additional intermediate points in skeletons of intermediate dimensions are allowed.

Definition 1.6.8. A weak val-chain (plain or augmented) is the same as a val-chain, ex-
cept that the (strict) inequality (1.3) is replaced by a weak one:

val(a® — a*) > valdist(a®, X~ 1). (1.5)

The val-chains from Definition 1.6.1 will sometimes be called strict val-chains, to em-
phasize the difference. The dimensions ey, the distances A, and the valuative Mostowski
Conditions are defined in the same way as for strict val-chains.

Remark 1.6.9. In fact, imposing (1.5) is necessary only for £ = 1 in augmented val-
chains; in all other cases, (1.5) follows from (1.4) and xee-1—1 o yee—l

Remark 1.6.10. For weak val-chains, we only have weak inequalities A} > --- > A, 41,
and a weak val-chain is strict iff all those inequalities between the A; are strict.
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Proposition 1.6.11. Suppose that X is an L-definable family of stratifications (of an
L-definable family X of subsets of R"), parametrized by q € Q for some L-definable
Q C RN. Then the following conditions are equivalent:

(2) Condition (2) of Definition 1.3.3.

(3) Condition (3) of Definition 1.3.3.

(2") Foreach q, X, is a valuative Lipschitz stratification (in the sense of Definition 1.6.5).
(3') Foreach q, X, satisfies the valuative Mostowski Conditions at every weak val-chain.

Note that for the implications (x)=>(x’) to hold (x = 2, 3), it is essential that X is L-
definable without parameters outside of Rq (cf. Remark 1.7.2 below). However, the im-
plications (x")=>(x) seem to hold even for £ (A)-definable X', where A C R. (We did not
check the details.)

Example 1.6.12. If X C R? is the cone defined by r?x*> = y? + z? for some r € R of
strictly positive valuation, then X 0 — x! = {(0,0,0)} defines a Lipschitz stratification
of X, but not a valuative Lipschitz stratification (see Figure 1.1).
z
0

Xoi/v/l X ﬁ | 6—”
/‘[

Fig. 1.1. This is a Lipschitz stratification but not a valuative Lipschitz stratification, since the two

tangent spaces of the augmented val-chain a® = (1,0,r), al = (1, r, 0) are too far apart from each
other; see Example 1.6.12.

As promised, here is the precise argument to deduce Theorem 1.3.5 from Theorem 1.6.7
and Proposition 1.6.11.

Proof of Theorem 1.3.5. Let an L-definable family X of closed d-dimensional subsets
of R" be given (parametrized by ¢ € Q); we would like to find a family X of uniformly
Lipschitz stratifications (Definition 1.3.3) of X. By Proposition 1.6.11, this is equivalent
to X being a valuative Lipschitz stratification for each g € Q.

For each g € Q, Theorem 1.6.7 provides an L (g)-definable valuative Lipschitz strat-
ification X of X,. By a standard compactness argument, we may assume that those X,
are definable uniformly in g, i.e., they are the fibers of an £-definable family X" of strati-
fications, as desired.

The details of the compactness argument are as follows. For each ¢ € Q, there exist
L-formulas (])3 (x,y) (0 <i < d) such that the (])3 (x, @) define a valuative Lipschitz strat-

ification of X;. Fix one g and consider the set U; of those g € O such that (qbé (x,q))i
defines a valuative Lipschitz stratification of X,. Since being a valuative Lipschitz stratifi-
cation is a first order property, U is L-definable. Finitely many sets Uy, . . ., Ug, suffice
to cover Q, since otherwise, the complements Q \ U; would form a partial type, which is
satisfied by some gg € Q (since R is sufficiently saturated by Assumption 1.4.2), contra-
dicting go € Uy,. Now use the formulas ¢>él x,y),..., %« (x, y) to define X’; more pre-

cisely, giveng € Q, let X f] be defined by qﬁé (x, g), where j is minimal with g € Ug. O
J
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1.7. Equivalence of various definitions

We will now prove Proposition 1.6.11. More precisely, we will prove the following im-
plications:

2 & 2)

[ (1.6)

3) & 3)
Note that the right {} is trivial, and anyway, we already proved 1| on the left hand side.
Both horizontal < are simple applications of a standard method from non-standard anal-
ysis which we recall now:

Lemma 1.7.1 (Translating: with/without valuation). Suppose that Z is L-definable and
f» 81 Z — Rx>o are L-definable functions. Then the following are equivalent:

(1) Forevery c € Rx, there exists C € R>q such that for every z € Z, f(z) < c implies
g(z) = C.
(2) Foreveryz € Z, val(f(z)) = 0 implies val(g(z)) > 0.

Proof. Statement (1) is an L£-sentence in R, so it is equivalent to the same sentence in Ry;
we will use this version of (1). For the proof of this lemma, we assume without loss of
generality that all elements of R are constants of L.

(H)=(2): Let zp € Z be given such that val(f(zp)) > 0. Then f(z9) < c for some
¢ € Ry (by definition of the valuation). By (1) in Ry, there exists a C € (Rg)>¢ such that
RoEVze Z:(f(z) <c— g(z) < C). This sentence also holds in R (where ¢, C
are considered as constants from L), hence f(z9) < ¢ implies g(zg) < C. This in turn
implies val(g(zp)) > 0.

(2)=(1): Let ¢ € (Rp)=0 be given. We consider “3C : Vz € Z : (f(z) < ¢ —
g(z) < C)” as a sentence where ¢ is a constant from L£; it suffices to prove that this
sentence holds in R. But indeed: since f(z) < c¢ implies val(f(z)) > 0, we have
val(g(z)) > 0, so we can take any C € R>¢ of negative valuation. m]

Remark 1.7.2. For this lemma to be true, it is important that Z, f and g are definable
using parameters only from R.

Remark 1.7.3. An easy special case of Lemma 1.7.1 is the one with f = 0: An L-defin-
able function g: Z — R is bounded iff it satisfies val(g(z)) > Oforall z € Z.

Proof of Proposition 1.6.11, (2) < (2'). This is just a straightforward application of Lem-
ma 1.7.1. The details are as follows.

Let the family X = (X?); of stratifications be fixed (parametrized by ¢ € Q), and
let Z be the set of all tuples z of the form (g, (a*)o<¢<m) With ¢ € Q, a* € X',
ep > e >e > --- > ¢y, and m > 1. (We consider Z as an L-definable set.) Given
¢, C € R, such a z € Z witnesses that our family X’ violates the Mostowski Conditions
for (c,c,C, C, C) if

° (ag)ofgfm is a chain in X} (either plain or augmented), i.e.

la® — a||
dist(a®, X

L....om if :
<c¢ fort= mote=el (1.7)
2,....,m ifey=ey,
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dist(a®, X;~1) {el,....em} ifey > el,

———— >(C forie ) (1.8)
dist(aY, X5) {ea, ..., em) ifeg =eq,
dist(a®, Xi7) . .
W<C foremft 560,l¢{€0,...,€m}, (19)
dist(@®, X2 ,
—————— > C inthecaseey =ey; (1.10)
la® —al|l
e cither (m1) or (m2) is violated:
1= Po)P,i ...Pm|dist(a®, X!
I = Foo) Pyt - ParlldiSUaT, Xg" ) 4 the case eg > e (1.11)
la® —al||
Po—P,)Py ... Pum|dist(a®, X!
I(Pa0 = Pat) “|2| . “1|||| @ X" )2 ¢ inthecaseeo=er.  (112)
a%—a

Define f(z) to be the maximum of all the left hand sides of (1.7) and (1.9) (for all £
and i), and g(z) to be the minimum of all the (relevant) left hand sides of (1.8), (1.10),
(1.11) and (1.12). Then condition (2) of Definition 1.3.3 is exactly (1) of Lemma 1.7.1,
and (2) of Lemma 1.7.1 says that there is no z € Z satisfying the following modification
of (1.7)—(1.12): replace “x < ¢” by “val(x) > 0” and “x > C” by “val(x) < 0”.

In this modified version, (1.7)—(1.10) state that (a'); is a val-chain and (1.11),
(1.12) state that the corresponding valuative Mostowski Condition is violated. Thus
Lemma 1.7.1(2) expresses that X is a valuative Lipschitz stratification. m]

Proof of Proposition 1.6.11, (3) < (3'). The proof is almost the same as for (2)<(2').
The only differences are that (1.8) disappears and (1.10) is replaced by

la® — al||

— < (1.13)
dist(a®, X5 ")

Lemma 1.7.1 turns (1.13) into (1.5) for £ = 1, so we obtain exactly weak val-chains (see
also Remark 1.6.9). O

Proof of Proposition 1.6.11, (2') = (3'). We assume that every strict val-chain satisfies
the valuative Mostowski Conditions, and we have to prove the same for weak val-chains.
Leta?, ..., a™ be a weak val-chain with dimensions ¢; and distances A;. We use induction
on m. If this is already a strict val-chain, there is nothing to prove. Otherwise, choose
any £ such that Ly = Ag41 (1 < € < m). Let us first suppose that (@) is a plain (weak)
val-chain. Set

Q=0-Pp)P,i...Pe1 and 0 = b+l oo Py

a
we need to show that
val(Q P 0> Al — Ama1- (1.14)
The subsequence a® .. at et g™ s still a weak val-chain, and by induction,
it satisfies the Mostowski Conditions, i.e.

Val(QQ/) = )"1 - )\m+1~
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Moreover, we have val(Q) > A1 — Ay (by the inductive hypothesis for a, ..., az_l)
and val((1 — P,)Q") > Ag+1 — Am+1 (by the inductive hypothesis for at,....a™).
Combining these three inequalities (and using Ag = A¢41) yields (1.14), since QP Q' =
o1 —-P)Q" - Q0"

Now suppose thata”, ..., a™ is an augmented val-chain. If £ > 2, then the argument
is exactly the same as for plain val-chains, with

0

0= (PaO — Pal)Paz o Pl

In the case £ = 1, define Q' = Pp... P, (as before). The Mostowski Condi-
tions for a®, a2, ..., a™ and a', a?, ..., a™ imply val((1 — P0)0") > A — Ap1 and
val((1 — P,1) Q') > A1 — Ap1; this implies

val((Pyo — P,1) Q") = At — hmt1,

which is what we had to show. O

1.8. A GL, -invariant definition

To prove the existence of valuative Lipschitz stratifications, we will use yet another
(equivalent) definition, which is more natural in the sense that it is clearly invariant under
GL, (OR). Note that Definition 1.6.5 (the definition of valuative Lipschitz stratifications)
is already pretty close to GL, (Op)-invariant, since GL,(OR) preserves valuations (by
Lemma 1.5.2). To make it entirely GL,, (O )-invariant, one only needs to get rid of the
orthogonal projections used to express that certain tangent spaces are close to each other;
this is what we will do now.

That valuative Lipschitz stratifications are GL, (Ox)-invariant directly implies that
classical Lipschitz stratifications are GL, (R)-invariant; even though this is not a new
result, we formulate it as Corollary 1.8.7.

There exists a natural valuative metric on the Grassmannians. It can be defined in
many equivalent ways, some of which use orthogonal projections, whereas others are
clearly GL, (O )-invariant. We leave the proof of the equivalences to the reader.

Definition 1.8.1. For subspaces Wi, W, € R" of the same dimension, set A(W1, W) =
val(P) — P»), where P; is the orthogonal projection onto W;.

Lemma 1.8.2. For subspaces W1, Wo C R", both of dimension d, and for any ) € T,
the following are equivalent:

(D AWy, W) = A
(2) There exist g1, ¢po € Hom(R?, R™) with val(¢1 — ¢2) > A and im ¢; = W;.
(3) Forevery wy € Wy there exists wy € Ws such that val(wy — wy) > val(wi) + A

The Mostowski Condition bounding val((1 — P,0) P,1) can be considered as the statement
that T 0 X° contains a subspace which is a good approximation of 7, X!, The following
characterization of valuative Lipschitz stratifications is a generalization of this point of
view to arbitrary val-chains; see Figure 1.2 for an overview over all subspaces.
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! <

VO m < VO,m—l - - V(),l - V(),o
M= Apt1 M = Am A =22

Vim € Vim—1 S...S Vi1
A2 = At A2 = Am
An—1 *}Lm+l Am—1—*m

Vm—l,m - Vm—l,m—l
Y

Am *)Lm-H k

Vin,m

Fig. 1.2. Diagramatic representation of the vector spaces appearing in Proposition 1.8.3 (and
Lemma 1.8.5); the labels of the vertical lines indicate the distance between the two correspond-
ing spaces.

Proposition 1.8.3 (Valuative Lipschitz stratifications using flags). The following condi-
tions on a definable stratification X = (X"); are equivalent:

(1) &' is a valuative Lipschitz stratification (in the sense of Definition 1.6.5).
(2) For every val-chain (a')i<m (plain or augmented) with dimensions e; and distances
Ai, there exist vector spaces Vi ¢ for 0 < k < £ < m with the following properties:

Vien S Vim—1 S -+ € Vi1 © Vix = T X% for 0 <k <m, (1.15)
dim Vi = e for 0 <k<f<m, (1.16)
A(Vies Vir1,0) > A1 — Aert for0<k <t€<m, (1.17)

Remark 1.8.4. As in Definition 1.6.5, the above condition (2) is trivial for val-chains
consisting of a single point.

The proof of (1)=(2) is easy:

Proof of Proposition 1.8.3, (1) = (2). Given a val-chain (ab);, we set Ve = 1m(Qk.¢),
where

Orys = P Pyir1 ... Pye if (a')r<i<¢ is a plain val-chain, (1.18)
ST P Pu2Puis... Py if (a')g<i<¢ is an augmented val-chain. '

Note that (ai)ksi <¢ is an augmented val-chain iff the entire sequence (ai)osi <m 1s aug-
mented, k = 0 and £ > 1. In particular, if (ai)ofifm is augmented, then Qg1 = Po.

Condition (1.15) follows directly from this definition of Vi ;. Now fix0 < k < £ < m.
Then the valuative Mostowski Conditions for the subchain (ai)kiiff imply

val(Qk.¢ — Ok+1,6) = Akl — Aot 1 (1.19)
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indeed, we have

0 0 —(1 = Py)Pys1 ... Py if (a')g<i<¢ is plain,
kot — Lk+1,0 =

(Py — Pyr1) Pyiya ... Pye if (a')g<j<¢ is augmented.

From (1.19), we first deduce (1.16): On the one hand, (1.18) directly implies
dim Vi ¢ < eg. (Note that in the above case where Qo1 = P,0, we have ey = e1.) On the
other hand, repeatedly using (1.19) yields val(Qg ¢ — Qr.¢) > ming<j<¢(Aj41—Ags1) > 0,
so since Qg ¢ = P, is the identity on V, , = Taz)ofz, we have ker Q¢ ¢ N V¢ = 0 and
hence dim Vi ¢ =1k Ok ¢ > ey.

Finally, (1.19) implies (1.17) using Lemma 1.8.2, (2)=(1). O

We formulate the main part of the proof of the other direction as a general lemma about
flags.

Lemma 1.8.5. Fixm > land *; > --- > Apyy1 € I'. Suppose that for each 0 < k < m,
we have a (partial) flag

Viomn S Vim=1S - € Vikt1 S Vik SR (1.20)
satisfying
A(Vie, Vig1,6) = dkr1 — Ao for 0 <k <€ <m. 1.21)

(In particular, we assume dim Vi, = dim Vi41¢.) Let Py o: R" — R" denote the or-
thogonal projection onto Vi 4. Under those assumptions,

val((1 = Po,0) P1,1P2o ... Pum) = A1 — Ayt (1.22)

If moreover dim V1,1 = dim Vy,o (Which in particular implies dim Vp,; = dim Vp o and
hence Vo1 = Vp.0), then

val((Po,o — P1,1) P22 P33 ... Puym) = At — Ayt (1.23)
Before proving that lemma, we quickly check that it indeed implies the other direction of
the proposition.

Proof of Proposition 1.8.3, (2) = (1). Let (a'); be a val-chain. By (2) of the proposi-
tion, we have vector spaces Vi, for 0 < k < £ < m satisfying the prerequisites of
Lemma 1.8.5. If (a'); is plain, then the Mostowski Condition (vml1) is (1.22); if (ah); is
augmented, then dim V; 1 = dim Vj ¢ and the Mostowski Condition (vmm2) is (1.23). O

Proof of Lemma 1.8.5. We will prove the following two inequalities by downward induc-
tion on k:

val((1 = Pri) Pet1,k+1 - -« Pum) = Mgt — A1 for0 <k <m, (1.24)
val((Pr,i — Prit D) Prt1.k+1 -+ Pm) = Aigl —Amy1 forO <k <i <m. (1.25)
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Note that (1.25) will be needed in the inductive proof of (1.24). Before we carry out this
induction, let us already check that (1.24) implies the lemma: (1.22) is just (1.24) for
k = 0. To get (1.23), we plug in

Poo—P1,1=Poo-(1—Py1)+(Poo—1)- Pr1. (1.26)

The second summand obtained in this way is just (1.22) (up to sign) and hence has valu-
ation as required. In the first summand, we repeat the factor (1 — Py 1) twice (which we
may, since it is a projection), so it is equal to

Poo-(1—=P11)- (1 =P 1))P22P33... Py (1.27)
(@ (b

By (1.24), (b) has valuation at least A; — X, 11 so it suffices to show that (a) has valuation
at least A1 — A. But indeed, val(P;,1 — Po,1) > A1 — Az and Py - (1 — Po,1) = O since
Vo.1 = Vo0 (by the assumption dim V;,; = dim Vp o). Thus it remains to prove (1.24)
and (1.25).
For k = m, (1.24) is trivial (since Ay+1 — Ap+1 = 0) and (1.25) is void, so suppose
k < m. We give the details for (1.25); the proof of (1.24) works analogously (see below).
We will prove

val((Pi — Pri+1) - Q- Prgo k42 - Pum) = Xig1 — A (1.28)

for Q = Pry1,j — Pry1,j+1 (G =k+1,...,m—1)and for Q = P41 . The sum of
all those Q is equal to Pxyj k+1, so taking the sum of (1.28) for all those Q then yields
(1.25).

Case Q = Pry1,m: Since val(Prm — Pit1m) = Mkl — Amtl = Aitl — Amtts
we can replace Q by Py, in (1.28). Now (1.28) follows, since (Pk,i — Pk,i+1) Px.m =
Pk,m - Pk,m =0.

Case Q = Pi11,j — Prt1,j+1: By induction, we have

val(Q - Prvokv2 -+ Pom) = Ajr1 — A1 (1.29)

If j < i, we are done, since Aj 1 — Ay > Ajt1 — Ay, SO suppose now j > i. In that
case, we have the following (“~” is explained below):

(Pri— Priv1) Q- Pryogk+2--- Pum
= (Pri— Pri+1) Q-0 Pry2k+2--- Pum
RN (Pri — Priv1) - (Prj — Prj+1) - Q- Prt2k+2 - Puom.
Since i # j, we have (Py; — Pr i+1)(Px,j — Pk, j+1) = 0, so to obtain (1.28), it remains to
verify that the difference between the two sides of “~” has valuation at least A; 1 —Ap41.
This follows from (1.29) and the following:
val(Q — (Px,j — Py, j1+1)) = min{val(Pry1,j — P, j), val(Pry1,jr1 — Pr jr1))

> min{Agr1 — Aj1, A1 — Aja2} = Aipr — Ajgre
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This finishes the proof of (1.25). The proof of (1.24) is exactly the same: just replace
(Px.i — P i+1) by (1 — Py ) everywhere in the proof and then plug in k for the remaining
i’s in the proof. (Concerning the case Q = Pyy1,j — Pry1,j+1, note that one then auto-
matically has j > i = k.) O

From Proposition 1.8.3, one can easily deduce that the notion of Lipschitz stratifications
is invariant under GL,,. More precisely, we obtain the following.

Corollary 1.8.6 (GL,(Or)-invariance). If X = (X'); is a valuative Lipschitz stratifi-
cation of a definable set X € R" and M € GL,(OR), then M(X) = (M(X")); is a
valuative Lipschitz stratification of M (X).

Proof. We use the characterization of valuative Lipschitz stratification from Proposi-
tion 1.8.3(2). By Lemma 1.5.2, M preserves valuations, so applying M to a val-chain
(a'); for X yields a val-chain for M (X). Moreover, if Vi, are vector spaces satisfying
the conditions (1.15)—(1.17) with Vi x = T )O(ek, then the spaces M (V) satisfy the
same conditions with M (Vy x) = TM(ak)M(}c(ek). ]

Corollary 1.8.7. If X = (X!); isa Lipschitz stratification of a definable set X C R" and
M € GL,(R), then M(X) = (M(X")); is a Lipschitz stratification of M (X).

Proof. We may assume that X and M are L-definable. (This works in the same way as
in the proof of Theorem 1 from Theorem 1.6.7: We first choose a language containing all
the constants we need, and then we choose the models Ry = R.)

By Proposition 1.6.11, X is a valuative Lipschitz stratification; by Corollary 1.8.6,
M (X) is a valuative Lipschitz stratification (which is still £-definable, since M is), and
finally, using Proposition 1.6.11 again, we deduce that M (X) is a Lipschitz stratifica-
tion. O

1.9. Overview of the main proof

Here is an overview of the proof of Theorem 1.6.7, describing the main ideas in an infor-
mal way. Several technicalities are omitted.

We can easily stratify the given set X € R” in such a way that each stratum is the
graph of a function. More precisely, given a d-dimensional stratum S, after a suitable
coordinate transformation, S is the graph of some function p: S — R”_d, where § =
pr,(S) < R4 Our final goal is to obtain bounds on valuative distances A(Vy, V») (see
Definition 1.8.1) between certain subspaces V; of tangent spaces. To be able to easily
express those distances in terms of the functions p, we need that p satisfies

val(Jacz p) > 0 foreverya € S. (1.30)
Indeed, for instance, under this assumption we have, for a;, a; € S,
A(T,, S, Ty, S) = val(Jacg, p — Jacg, p),

where a; = pr.,(a;).



2738 Immanuel Halupczok, Yimu Yin

Most of the bounds of the form A(V7, V;,) we aim for involve more than one stratum:
Given a val-chain a°, ..., a™ with a* € S, we need to relate the tangent spaces of all
those strata S, ..., $™. To be able to apply the above approach (of considering strata as
graphs of functions and expressing distances of spaces in terms of Jacobians), we need
to find a single coordinate transformation such that after applying this transformation,
each S is the graph of a function p’ satisfying (1.30). (We call such a coordinate trans-
formation an “aligner” of §O....8™.) In Subsection 2.1 (Proposition 2.1.5), we obtain
stratifications admitting aligners for any choice of n + 2 strata. This is enough, since a
val-chain consists of at most n + 2 points.

To illustrate the remainder of the proof, we start by considering a plain val-chain
consisting of only two points a” € S°, a' € S'. We suppose that we have already applied
an aligner, so that St ¢ =1,2,is the graph of some function pz on 8¢ = pre,, S¢, where
e; = dim S¢.

The next step in the proof consists in reducing the case of arbitrary plain val-chains
(of length 2) to plain val-chains satisfying pr_,, @) = Pr—, (a'); in the following, we
assume this. In particular, this means that a° determines a' (assuming that S° and S' are
fixed).

To establish the conditions from Proposition 1.8.3 concerning the val-chain a al, we
need to find a subspace V C T o SO that is sufficiently close to 7,1 S 1 (see Figure 1.3(a)).
We choose V to be the subspace of T 0 SY satisfying pre,, (V) = prSeO(TalSl). (From
(1.30), one can deduce that this is a best possible approximation to 7,1 S 1) The distance
AWV, TS l) can be directly expressed in terms of Jacobians of the functions ,00 and ,01,
but this becomes simpler if we first apply a “rectilinearization”: a transformation which
translates the coordinates e; + 1, ..., eg in such a way that Prg, S 1) is sent to a subset
of R¢! x {0}°~°! and which preserves all the other coordinates (see Figure 1.3(b)). After
the rectilinearization has been applied, V is determined by the first e; derivatives of ,00,
and we obtain

A(V, TalSl) = val((Jacg, 8) [ R®' x {0}0~°1) = 1min val(9;8(agp)),
<iZel

where @° = Pre,, (@) and §: SY — R~ is the difference of p° and the last n — e
coordinates of p!.

The desired bound on A(V, T,1 S B depends on the valuative distance of al to alower-
dimensional stratum. We ensure that this bound holds by removing a lower-dimensional
subset from S'. In terms of the function § defined above, this means that we need to find
aset Z C R of dimension less than e such that the first e partial derivatives of § at
x € S are bounded in terms of the distance of pr—,, (x) to Z. More precisely, the bound
we end up needing is

val(9;8(x)) > min{val(pr>el (x)), val(6(x))} — valdist(prfel (x),Z) forl <i<e.

=val(a—a) (1.31)

The heart of the construction of valuative Lipschitz stratifications is Proposition 2.3.6,
which provides such a lower-dimensional set Z for arbitrary functions 8.



Lipschitz stratifications in power-bounded o-minimal fields 2739

(a)

(b)

al st
Fig. 1.3. In this example, we consider a plain val-chain a®, a! with dimensions eg=2ande; = 1.
We assume that Pr<,, (ao) = Pr<g, (al). (a) We need to find a subspace of the tangent plane
T, (SO) which is close to the tangent line 7,1 (S 1). (b) To simplify this, we first deform the whole

picture in such a way that the projection pr<, (S 1) becomes a straight line.

For longer val-chains, the arguments are similar: Given a plain val-chain ¢’ € 9, ...,
a™ € S™ (with dim S¢ = ¢;), we rectilinearize with respect to some of the coordi-
nates of S¢ for £ = 1,...,m and we obtain a function § on (a certain subset of) S0
whose first e;,, derivatives need to be bounded by removing a lower-dimensional subset Z
from S™. Together with an inductive assumption that everything already works well for
the subchain aY, ..., a™~!, we obtain the subspaces Vi ¢ needed in Proposition 1.8.3.

For augmented val-chains, the outline of the argument is the same; the biggest dif-
ferences arise when the two first points ao, a! lie in the same stratum SO, which, say, is
the graph of p°. In that case, instead of bounding first derivatives, we need to bound the
second derivatives of p° to obtain a bound A(T, 0 9, T, 59). Those bounds are obtained
in essentially the same way as (1.31), namely by applying Proposition 2.3.6 to all first
derivatives of p.

We end this overview by mentioning an issue related to aligners (i.e., the coordinate
transformation ensuring (1.30)). Given a sequence SO, ..., 8™ of strata, the set Z to be
removed from S™ according to the above procedure may depend on the chosen aligner.
When inductively assuming that this has already been done for SO ..., 8" we need
that it has been done using the same aligner as the one we use for SO ..., 8™ However,
an aligner for S°, ..., $”~! might not be suitable for $™. The solution is that Proposi-
tion 2.1.5 states that all aligners can be found in a finite set C, of coordinate transfor-
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mations (depending only on the ambient dimension n). By applying the above procedure
to every possible aligner of SO ...,8" Yin C,, we in particular ensure that we have
included aligners working for S, ..., §™.

2. Ingredients of the main proof

The remainder of the article is devoted to the proof of Theorem 1.6.7. We continue to
use the notation introduced in Subsections 1.1, 1.4 and 1.5, though we make a slight
change concerning the language: to avoid having to mention the parameters A from The-
orem 1.6.7 everywhere, we now allow L to contain additional constants from R. Thus the
general assumptions for the remainder of the paper are the following.

Assumption 2.0.1. We assume that R is a real closed field which is power-bounded and
o-minimal as an £°-structure and T-convex as an Cgul -structure. Moreover, we set £ :=
£0(A) and Lyq = Lgal (A) for some finite set of parameters A C R, and we assume

(without loss of generality) that R is sufficiently saturated.

Note that there is a hidden quantifier here: We will prove everything for every finite set
A of parameters. This in particular means that we can use previously proved results for
different A.

2.1. Alignable bradycell decompositions

The first step in the construction of a valuative Lipschitz stratification of a set X consists
in partitioning X into pieces that can be “aligned”: After a suitable transformation of
the coordinate system, they are graphs of functions whose derivatives have non-negative
valuation.

Definition 2.1.1 (Aligned sets). Let S be an L-definable subset of R". We say that S is
aligned if, for d := dim S, the set § := pr_,(S) is open in R¢ and S is the graph of an
L-definable C! function f: § — R~ satisfying

val(Jac, f) >0 foralla € S. 2.1

The open set S is referred to as the base of S. We say that k¥ € GL,(Ox) is an aligner of
an L-definable set S € R" if «(S) is aligned.

Remark 2.1.2. If such an aligned set S is a lowest-dimensional stratum of a stratification
of a closed definable set X € R”, then S is both open and closed and hence § = RdimS
This fits together with the fact that Lipschitz stratifications almost never have X% =
and it will also fit together with the convention that in val-chains, we set A,,4+; = —o0 if
xem=l =9,

Remark 2.1.3. These aligned sets are somewhat related to the L-regular cells of
[KP, §1], to the regular M -cells of [Paw, §1], and to the A" -regular cells of [Fis, Defini-
tion 1.2], though the latter are more sophisticated and control more derivatives, and all of
these notions impose additional conditions on the base.
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It will not be enough to partition our given set X into sets which can be aligned using
some arbitrary k € GL,(Or); we will also need some good control of these «:

(1) We need to find a finite set C, € GL,(Ogr), depending only on n, such that all
aligners « can be taken from C,. The precise set C,, does not matter, so we postpone
choosing it to Definition 2.1.10.

(2) We need all « to be L-definable without additional parameters. To ensure this, we
will choose C,, € GL,(Q).

(3) We need that a single « works for several (given) pieces of the partition at once. More
precisely, any n + 2 pieces should have a common aligner in C,,. (This number n + 2
is what we need for the proof of existence of Lipschitz stratifications. The proofs in
Subsection 2.1 would work equally well for any other fixed number.)

It is problematic that item (3) above is not a condition on individual pieces, but on the
partition as a whole: This makes it unclear whether, given a partition S = (S;); sat-
isfying (3), one can refine parts of S in a way that (3) is preserved without modifying
the remainder of S. To solve this problem, we will introduce the notion of “bradycells”
(Definition 2.1.11). Bradycells will have the property that n + 2 of them always have a
common aligner. Using that notion, we can state the main result of this subsection, which
provides the desired partitions. Since the precise notion of bradycells is irrelevant for the
remainder of the article, we postpone it.

Definition 2.1.4. A bradycell decomposition is a partition of R" into bradycells (see
Definition 2.1.11).

Proposition 2.1.5 (Bradycell decompositions). (1) Every finite partition of R" into
L-definable sets can be refined to a bradycell decomposition.

(2) For any set of at most n + 2 bradycells Sy, ..., Sy C R", there exists a common
aligner k € C,.

Remark 2.1.6. This entire subsection would become much simpler if all Sy, ..., S in
Proposition 2.1.5(2) could be assumed to have different dimension; in particular, one
could then choose C, to consist only of the coordinate permutations. In applications of
the proposition, this will almost be the case: at most two of the bradycells will have the
same dimension. It would probably be possible to also get rid of this (an approach like
this has been used in [Hal]), but this would require considerably more work.

For the remainder of this subsection, we fix the following notation.

Notation 2.1.7. For d < n, we write Gr, 4(R) for the Grassmannian variety, i.e., the
space of d-dimensional vector subspaces of R".

Definition 2.1.8. For d < n, let Gr;’ 4(R) € Gr, 4(R) be the open subset of those
V. € R" such that pr_,(V) = R4, i.e., which project surjectively onto the first d
coordinates. Such a V€ Gr, ;(R) can be considered as the graph of a linear map
My: R — R"™4; we set J(V) = ||My]|| (the operator norm of the matrix); for
V € Grp,a(R)\ Gr, ,(R), we set J(V) = oo.
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The following lemma is the main tool to find the finitely many transformations
k € GL,(Q). It is a purely geometrical-combinatorial result, closely related to [KP,
Lemma 1.8]. Even though formulated in R, it is just a statement about R (as will be-
come visible in the proof). Note also that the transformations k provided by the lemma
are even elements of O, (Q) (and not just in GL, (Q)).

Lemma 2.1.9. Fix arbitrary natural numbers n and £. Then we can find, for each d < n,
a finite open covering of Grp 4(R) by L-definable sets @ff such that for any choice of €

of these sets, @fi, e, G)f,lﬁ, there exists an orthogonal transformation k € O, (Q) such

thate val(J(x@ff)) > 0 foreveryi < L.

(Here, val(o0) := —o0, and val(J (k @fff )) > 0is a shorthand notation for val(J (¢ V)) > 0
for every V € @fj )

Proof of Lemma 2.1.9. We will prove the stronger claim that the sets @f can be taken
definable in the pure ring language. In that case, to get val(J (k @,‘fj )) > 0, it suffices to
prove that the map V +— J (V) is bounded on K@']fjf (by Remark 1.7.3). This boundedness
is also a statement in the ring language, so we may as well assume R = R. In particular,
any closed subset of Gr, 4, (R) is compact, so we can obtain boundedness of V — J (V)
by proving

cl(x©) € Gry , (R).

Given a subset & C Gr,, 4(R) (for any d < n), we write Fo(E) for the set of orthogo-
nal transformations « “forbidden by a space in cl(E)”, i.e.:

Fo(E) = {x € 0,(R) : cl(kE)  Gr% 4(R)}.

Intuitively, we just need to choose the sets ©¢ so small that no £ of the sets Fo := Fo(0%)
cover all of O,(Q). To make this argument precise, let ; be the Haar measure on the
compact group O, (R), normalized so that u(O,(R)) = 1. It is enough to ensure that
,u(Foff) < 1/¢ for each v and d. (Then O, (R) \ Ule Fo‘,fjf is non-empty and open, and
hence contains a k € O,,(Q), as desired.)

To find finitely many sets ®g with that property covering Gr, 4(R), we fix any de-
finable metric on Gr, 4(R) inducing the usual topology. Moreover, we fix any element
Vo € Gr,,.4(Q). Since the set Fo({Vp}) € O, (R) is a compact subset of lower dimension,
we can find an open ball & C Gr, 4(R) around Vp such that u(Fo(8)) < 1/£. (First
choose any open set U 2 Fo({Vp}) with u(Uf) < 1/¢€, and then, using compactness of
Fo({Wy}), choose the radius of & small enough to ensure Fo(E) C U/.) We may moreover
assume that E has rational radius.

Now choose finitely many «, € O,(Q) such that the sets @‘,f = Kk, (E) cover
Gr, ¢(R). Then indeed pL(Fo“f) = u(Fo(ky(E))) < 1/¢. O

Using Lemma 2.1.9, we can now choose our finite set C,, € GL,(Q) and introduce the
notion of bradycells.
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Definition 2.1.10 (The set C,). For the remainder of this subsection, fix subsets @f -
Gr, 4(R) as provided by Lemma 2.1.9 using £ = n + 2. Moreover, let C, € GL,(Q)

. . . d d,
be a finite subset containing, for each choice of n + 2 sets Oy, . .., @,,;’E,

satisfying val(J (k @‘,fjf)) >0@G =1,...,n+2). (For any n+2 of those sets, the existence
of such a k¥ € GL,,(Q) is asserted by the lemma, and there are only finitely many choices
of n + 2 sets.)

an element k

Definition 2.1.11 (Bradycells). A bradycell is an L-definable set S € R” such that for
(at least) one of the sets ®ff chosen in Definition 2.1.10 (where d = dim §), we have the
following:

(1) Forevery x € S, the tangent space T, S is an element of ®ff.
(2) Forevery k € C, satisfying Val(J(KG“f)) > 0, «(S) is aligned.

The content of condition (2) is just that the projection pr_,(«(S)) is open and « (S) is
the graph of a function on that projection; the bound on the derivatives of the function is
automatic by val(J (k®%)) > 0 and (1).

Now that C, and bradycells are defined, we can finally prove the main result of this
subsection.

Proof of Proposition 2.1.5. (1) We repeatedly refine the partition, ensuring that each piece
of dimension d becomes a bradycell, proceeding from d = n downwards to d = 0. Thus
fix d < n, and fix any d-dimensional piece S. It suffices to check that we can subdivide S
into (finitely many) d-dimensional bradycells and an arbitrary lower-dimensional set.

After a first partitioning, we may assume that S is a definable C! manifold and satisfies
condition (1) from Definition 2.1.11 for some set @g. To obtain condition (2), we further
partition S for each of those ¥ € C,, for which val(J (x @‘3)) > 0: By a first partition, we
ensure that « (S) is the graph of a function f: pr_,;(«(S)) — R"4_ Then we remove a
lower-dimensional set to ensure that pr_,(«(S)) is open and f is cl.

(2) Consider bradycells S, ..., Sy for some k < n + 2; for each i < k, let (H)'vlj be a
corresponding set provided by Definition 2.1.11. By our choice of C,, (Definition 2.1.10),
there exists a k € C, such that for each i, we have val(J (k @ffj )) > 0. By Defini-
tion 2.1.11(2), «(S;7) is aligned. O

We end this subsection by proving a useful property of aligned sets.

Lemma 2.1.12. Let S € R" be a d-dimensional aligned set, and suppose that B < R"
is a valuative ball (open or closed) with BN S # () but BN 3S = (. Then B = pr_,(B)

is a subset of the base S = pr<y(S) of S.

Proof. Suppose that B & S. Choose a € BN S, set a = prey(a) € B N S and choose
beB\S.LetL :={(1—1t)a+1th|0 <t < 1} be the open line segment connecting
a and b. We may assume L C S: otherwise, replace b by the point of L N 9S which is
closest to a. (Such a point exists by o-minimality, and since 8 is £-definable.)
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Let f be the function whose graph is S, and consider the function g: [0, 1) — §
sending ¢ to f((1 — t)a + tb). Using val(Jac f) > 0, we obtain val(g’(¢)) > val(b — a),
so using the Mean Value Theorem, we deduce that, for any ¢, > € [0, 1),

val(g(t2) — g(t1)) > val(t — t1) + val(b — a) > rad(B),

where the last inequality is strict if B is an open ball. This implies that b" := lim,, 1 g(7)
exists and b := (b, b’) satisfies val(b — a) > val(b — a). In particular, » € B N S,
contradicting the assumption that this intersection is empty. O

Remark 2.1.13. Given an £-definable C! function f: X — R"~¢ on an L-definable
set X € R4, a similar Mean Value Theorem argument on a line segment allows us to
bound val(f (a1) — f(az)) by val(a; — az) + val(Jac f) under suitable assumptions: If a;
and a; both lie in a valuative ball B that is entirely contained in X, and val(Jac, f) > X
for all a € B, then

val(f(a1) — f(a2)) = val(a; —a2) + 4.

In particular, for § and B as in Lemma 2.1.12, the entire preimage pr;ll (B) N S is con-
tained in B. -

2.2. Bounding derivatives using power-boundedness

A key ingredient in our proof of the existence of Lipschitz stratifications is the following
proposition, which has been proved in [Yin]. This is the only (but crucial) place in the
present paper where power-boundedness is used.

Proposition 2.2.1 ([Yin, Corollary 2.17]). Suppose that f: R" — R is an L-definable
function. Then there exists a finite L-definable partition of R" into sets Y, such that if B
is an open valuative ball entirely contained in one of the sets Y., then either f(B) = {0}
or f(B) is an open valuative ball not containing 0.

Note that if f(B) is an open valuative ball not containing 0, then for any y;, y» € B, we
have val(f(y1)) = val(f(y2)), and even val(f (y1) — f(y2)) > val(f (y1)).

Here, we have rewritten Proposition 2.2.1 in the language of the present paper; the
map rv appearing in [Yin] is defined in such a way that rv(a) = rv(a’) iff either a =
a’ = 0orval(a — a’) > val(a) for a,a’ € R (and a valuative polydisc is just a product
of valuative balls of possibly different radii). Note that the language used in [Yin] is, up
to interdefinability, the same as ours; see [Yin, Definition 1.2 and Convention 1.11].

Instead of using Proposition 2.2.1 directly, we will use the following corollary:

Corollary 2.2.2. Suppose that f: R" — R is an L-definable function. Then there exists
an L-definable set Z C R" of dimension less than n such that for every y € R" \ Z,
0; f (y) exists and we have

val(d; £ () = val(f(v)) — valdist(y, Z) fori=1,...,n. 2.2)
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Proof. Apply Proposition 2.2.1 to f, d1 f, ..., d, f, where the partial derivatives are ex-
tended by O to those points of R" where they do not exist; then set Z := Zy U Ul-,v aY; v,
where (Y; ), is the partition obtained for the i-th of the above functions i =1, ...,n+1)
and Zj is the set of points where f is not differentiable; we claim that this set Z works.

Fixay € R"\ Z and set ¢ := valdist(y, Z) and B := B~ (y). Then for each i, there
exists a v such that B C Y; , for some v; in particular, val(f(B)) and val(9; f (B)) are
singletons.

To prove (2.2), we use a Mean Value Theorem argument similar to the one in Re-
mark 2.1.13, but in the opposite direction: Suppose for contradiction that y is a witness to
the failure of (2.2), i.e., val(f(B)) — val(d; f (B)) > ¢ for some i. We choose y, y2 € B
differing only in the i-th coordinate with val(y; — y2) = val(f(B)) — val(9; f(B)). The
Mean Value Theorem yields a y3 € B such that

FOD =02 =01 —y2) -0 f(y3).

This leads to a contradiction: On the one hand, we have val(f (y1) — f(32)) > val(f(B))
(by our application of Proposition 2.2.1 to f); on the other hand,

val((y1 — y2) - 9; f (y3)) = val(f (B)) — val(9; f(B)) + val(9; f(B)) = val(f(B)). O

Remark 2.2.3. Using Remark 1.7.3, Corollary 2.2.2 may be reformulated without mak-
ing reference to the valuation. Since Remark 1.7.3 only applies to functions defined with-
out parameters outside of Ry (but we have made the change at the beginning of this
section so that £ now might contain such parameters), one first needs to formulate the
corollary for families of functions. In this way, one finds that Corollary 2.2.2 is equivalent
to the following statement: For any £-definable family of functions f; : R" — R (where
g runs over some L-definable set Q), there exists a constant ¢ € R (not depending on ¢)
and an L£-definable family of sets Z, € R" of dimension less than # such that

clfg|

19; fa(M)I < dist(y, Z4)

foralli <m,allqg € Qandally € R" \ Z,. (2.3)
Note that this bears some similarities to the AlL-regular functions in [Fis, Definition 1.1]
(though (2.3) is false in, e.g., structures with exponential function). One has the feeling
that there should be a more direct proof of (2.3), avoiding the machinery of T-convexity.
For n = 1 and when Q is a singleton, it is not too difficult to deduce it from power-
boundedness. However, we do not know how to prove the general case more directly.

Here is another lemma, which does not really have anything to do with the previous results
of this subsection, but which will be useful in conjunction with them.

Lemma 2.2.4. Suppose that X C R" is a non-empty L-definable set and f: X — R is
an L-definable function such that | f| is bounded (by an element of R). Then there exists
an L-definable element xo € X such that val(f(xg)) = min{val(f(x)) : x € X}. In
particular, the minimum exists.

Proof. Sets = sup, | f(x)|. The set X' := {x € X : |f(x)| > s/2} is L-definable and
non-empty, and every x € X' satisfies val(x) = val(s). Using definable choice (in the
o-minimal language L), we find an £-definable xo € X'. O
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2.3. Sedating functions

To construct Lipschitz stratifications, we will need precise bounds on the valuations of
the first derivatives of certain functions. The goal of this subsection it to prove the key
tool for this: Proposition 2.3.6, which will allow us to obtain the desired bounds for any
definable function after refining our stratification. We will also need bounds on second
derivatives; those will be obtained in Corollary 2.3.10, by applying Proposition 2.3.6 to
the first derivatives. Functions satisfying the desired bounds will be called “sedated”.

Before going into the details, here is an informal explanation. Given an £-definable
function f: X — R on an L-definable set X € R”, we can remove a lower-dimensional
subset from X using Corollary 2.2.2 to obtain a bound on val(V f(x)) which is good
whenever x is not too close to the boundary of X:

val(V £ (x)) > val(f(x)) — valdist(x, R" \ X). 2.4)

As a bound on V f(x), this is in some sense optimal, but it is often possible to get better
bounds on individual partial derivatives: Very roughly, even near the boundary of X, one
should be able to obtain good bounds on the partial derivatives in those directions which
do not point towards the boundary (see Figure 2.1(a)). To construct stratifications, we will
need such better bounds.

It is not so clear how to make this precise in general. Instead, the result in this subsec-
tion will provide the better bounds only in the rather specific situation we are in after the
rectilinearization explained in Subsection 1.9: We only need a bound on the partial deriva-
tives parallel to W := R x {0}”’”/, and that bound should not be affected by dist(x, W)
being small even if W contains a boundary segment of X. (Such a bound makes most
sense if X indeed has a boundary segment in W; however, we will also prove and use the
result when it does not.) The precise statement is that after removing a lower-dimensional
subset from X, we obtain the estimate

val(d; f(x)) > val(f (x))—valdist(pr,, (x), R"/\prSn/(X)) fori=1,....,n (2.5)
for points x € X satisfying
valdist(x, R" \ X) < val(pr.,,(x)). (2.6)

Condition (2.6) ensures that x is not too close to a border part of X different from W,
indeed, (2.5) cannot be expected for points close to a “diagonal border part” like x7 in
Figure 2.1.

Since it is pr.,/(X) which appears in (2.5) and not X itself, the only lower-dimen-
sional sets it makes sense to remove from X are sets of the form pr;]l,(Z) for some
Z C pr.,(X) (see Figure 2.1(b)). This is how Proposition 2.3.6 is stated, and it is this
set Z which will be used in the strategy outlined in Subsection 1.9 to shrink the n’-
dimensional stratum.

The bound (2.5) is the one we will need to treat those augmented val-chains whose
first two points a®, a! lie in two different strata; functions satisfying this bound will be
called (a)-sedated. Proposition 2.3.6 also provides two variants of this, which are needed
for other kinds of val-chains: to treat plain val-chains, we will need (b)-sedated functions,
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Fig. 2.1. (a) At x| and x,, one can expect good bounds on the partial derivatives of f in the
dashed directions, but not in the perpendicular directions. Proposition 2.3.6 provides good bounds
on horizontal derivatives at points close to the x-axis: the bound on 9 f (x}) is computed using the
distance ¢ in the projection pr.; (X). Such a bound cannot be expected for 91 f(x2), since xj is
close to a border part of X different from the x-axis. (b) To obtain the bounds, it might be necessary
to remove a lower-dimensional subset Z from pr—;(X). This in effect weakens the condition on
d1 f(x1), since ¢ becomes smaller. a

which satisfy a bound like (1.31), and to treat augmented val-chains whose first two points
lie in the same stratum, we will need functions whose derivatives are (c)-sedated (see
below).

Everything described so far is what we need for short val-chains. For longer val-
chains, say, living in strata of dimensions e; > --- > e, we still need to bound the
partial derivatives 91 f(x), ..., 9, f(x) of a function f with domain X C R, but all
the intermediate dimensions e, also play a role, namely for the conditions specifying to
which boundaries of X the point x is allowed to be close. To make this precise, we start
by fixing some notation. In the whole subsection, we assume the following.

Assumption 2.3.1. Let the following be given:

e aninteger m > 1;
e integers0 < e, < --- <ey;
e an open L-definable set X C R°1.

Notation 2.3.2. WesetY = pre,,, (X ). For x € X, we define:

o (o= Le(x) = dist(pre,, (x), R \ pre,, (X)) for 1 < € < m;

o oy = og(x) = max{l, |[pr_,, (x)| - Co—1(x)" Y for2 < € < m.

The shorter notation &, oy will implicitly refer to a given point x € X in context. Note
that ¢, and oy implicitly also depend on X.

Some of this notation is illustrated in Figure 2.2. The purpose of oy is the following. One
can only expect to obtain the best bounds on 91 f(x), ..., 9, f(x) at those x satisfying
val(og) = O for all £. (Note that in the case m = 2, the condition val(c,) = 0 is exactly
equivalent to (2.6).) However, even for x € X not satisfying those conditions, it is possible
to obtain a weakened bound, where the weakening is expressed in terms of the valuations
of the oy. This leads to the following definition of sedated functions.
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Fig. 2.2. A picture illustrating some of Notation 2.3.2, in the case m = 3,e; =3,ep =2,e3 = 1.

Definition 2.3.3 (Sedated functions). Suppose that m, e¢; and X are given as in Assump-
tion 2.3.1, and suppose that f: X — R is an L-definable function. We consider three
different versions: (v) € {(a), (b), (c)}. In version (b), we additionally assume m > 2. We
call f e[1,m)-(v)-sedated (on X) if it is C! and, for every x € X and every 1 <i < e,

val(9; f(x)) > val(u)(x)) — val(g (x)) + Zval(ag (x)), where 2.7
=2
U@ (x) = f(x),  uwx) =max{|f ()], Ipro, I}, ue ) =1 (2.8)

We call an L-definable function X — R" ey ,)-(v)-sedated if each of its coordinate
functions is ey ,]-(v)-sedated.

In this notation, “e[y ,,1” is a shorthand for the tuple (ey, ..., e;). In particular, for 1 <
k <€ <mand f afunction on a subset of R, we also have a notion of being e ¢1-(v)-
sedated.

Remark 2.3.4. Equation (2.7) depends on the domain X, since ¢, does. Nevertheless,
if f is e[1,m]-(v)-sedated, then so is the restriction of f to any subset of X. Indeed, by
shrinking X, ¢, can only become smaller and oy can only become greater, both of which
make (2.7) easier to satisfy.
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Remark 2.3.5. If, in (b)-sedation, one allows ¢; = e», then (a) can be considered as a
special case of (b) via some renumbering. However, for clarity, we wrote down the two
cases separately.

Proposition 2.3.6 (Sedating functions). Fix (v) € {(a), (b), (c)}. Let m, ey, X, Y be as
in Assumption 2.3.1 and Notation 2.3.2 (with m > 2 in version (b)) and suppose that
f: X — R is an L-definable function which is e[| y-(v)-sedated for 1 < m’ < m (or
2 <m’ < m, in version (b)). Suppose moreover that

(@) (no additional condition),
() fis C'and val(V f(x)) = 0, 2.9)
(¢) val(f(x)) >0.

Then there exists an L-definable set Z C Y of dimension less than ey, such that the
restriction of f to X \ pr;;m (Z2) is e[1,m)-(v)-sedated.

Remark 2.3.7. The proposition direcly implies the corresponding result for functions
with range R", by applying it to each of the coordinate functions.

Remark 2.3.8. In our application of this proposition, the bound (2.7) will only be needed
on the subset X’ := {x € X : val(op) = --- = val(o,,) = 0}, i.e., where the sum
disappears and the bound is “best possible”. Nevertheless, we need to work with a notion
of sedated functions imposing a bound on all of X for the following somewhat strange
reason. The proof of Proposition 2.3.6 only works if X and f are both L-definable; in
particular, the “induction hypothesis” (that f is e[j ,,/;-(v)-sedated for m’ < m) is needed
on an L-definable set, so we need a formulation of that hypothesis which we can prove
on all of X, and not just on X",

The strategy of the proof of Proposition 2.3.6 is as follows. We will use Lemma 2.2.4 to
choose, foreach y € ¥, anelement x = 7(y) € Xy = {x € X : pr, (x) = y} where the
difference between the two sides of (2.7) is worst, i.e., where the left hand side minus the
right hand side is minimal. In particular, it suffices to prove that (2.7) holds for those x.
Corollary 2.2.2 allows us to shrink Y in such a way that we obtain good bounds on the
derivatives of f(z(y)) in terms of valdist(y, R \ Y) = val(¢,,). We then obtain (2.7) by
combining these bounds with the assumption about ef; ,,/-(v)-sedation for m’ < m.

To be able to apply Lemma 2.2.4 as described above, we need the difference of the
two sides of (2.7) to be bounded on each fiber X,. Such a bound can be obtained from
equation (2.7) for e[y ,,—1]-sedation, provided that we fix a lower bound on lpr..,,, (1.
Thus, before applying the above strategy, we will treat points x with small ||pr_, (x)||
separately. The idea for this is that for each fixed (small) d > 0, we can apply the same
strategy as before to the subset {x € X : [lpr., (x)| = d}. Different d yield different
sets Z4 to be removed from Y for (2.7) to hold. Instead of removing all of them from Y
(which would be too much), we remove the limit (in a suitable sense) of Z; for d — 0;
this does not imply (2.7) by itself, but it does allow us to bound by how much it fails, and
that is enough for applying the above strategy to the remainder of X.

Here are the details.
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Proof of Proposition 2.3.6. During the proof, we will construct a set Z of dimension less
than e, which we will successively enlarge until the conclusion is satisfied. More pre-
cisely, we will obtain something slightly stronger: We will find a Z C R®" of dimension
less than e,;, such that

val(9; f(x)) > val(u)(x)) — Valdist(prym x),Z2) + Z val(og(x)) (2.10)
=2

for every x € X =X \ przém(Z). This then implies that f IX is (v)-sedated (using
Remark 2.3.4 concerning the 8@).

In a very first step, we ensure that f is C 1 Tn version (b), this is an assumption; in the
other versions, if m > 2, it follows from the assumption that f is (say) e[;,1}-(v)-sedated,
and if m = 1, this can be achieved by removing a suitable subset from X =Y.

Fix i < ¢,,. Inequality (2.10) can be rewritten as

val(gi (x)) > — valdist(prfem x), 2), 2.11)
where "
8i(x) =0 f(x) - uwy) " JJos " (2.12)
=2

As in the above sketch of proof, given y € Y, we write X, for the fiber over X
above y, and similarly, if X’ C X is a subset, we set X’y =X'NX,.
We will prove the following.

CLAIM 1. Suppose that Z C R is an L-definable set of dimension less than e,;, and
that X' € X is an L-definable subset such that for every y € Y \ Z and everyi < ey,
|gi| is bounded on the fiber X ’y Then there exists an L-definable set Z2>2Z of dimension
less than ey, such that

val(g; (x)) > — valdist(pr_, (x), Z) foreveryx € X'. (2.13)

Before proving Claim 1, we show how it implies the proposition. It suffices to prove that
the set Z of y € Y such that |g; (x)| is unbounded on the fiber X, has dimension less than
m. Indeed, then we obtain (2.11) by applying the claim to X’ := X.

If m = 1, then |g;(x)| is bounded on each X, for the trivial reason that X, is a
singleton; thus assume m > 2.

To bound |g; (x)|, we first check that for every x € X,

val(gi(x)) = — val(pr.,, (x)). (2.14)

We have

m—1

val(g; (x)) = val(9; f(x)) — val(u)(x)) — Z val(oy) — val(oy,).
=2

()
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In version (b), if m = 2 then the last term in (x) disappears, and hence (2.14) follows
from the following three items: the assumption (2.9), val(u ) (x)) < val(pr, o (x)), and
val(oz) < 0. In all other cases, the assumption that f is e[y ,—1]-(v)-sedated implies
(x) > —val({m—1), which, together with val(o;,) < val(pr., (x)) — val({m—1) (by the
definition of o), implies (2.14).

For d € R>op, set

Xy ={x e X:lpr.,, Ol =dh

by (2.14), |g;| is bounded on X;l for each fixed d, so Claim 1 (used in the language £ (d))
yields an £(d)-definable set Z; € R" of dimension less than m and such that

val(g; (x)) > — valdist(y, Zy) (2.15)

forx € X/, and y = pre,,, (x). By the Compactness Theorem, we may assume that the
sets Z4 are defined uniformly in d, so that the following sets are £-definable:

Zy = | J(Za x {d}) SR x Rz and
d>0

Z={yeR":(y,0) € cl(Z.)}

(where cl(Z,) denotes the topological closure of Z,). Since Z; has dimension less than
ey for every d, we have dimdZ, < dimZ, < ¢, and hence dimZ < e, (since Z C
0Z4 U Zy). We claim that |g;| is bounded on each fiber Xy with y # Z.

Fix y € Y \ Z, consider x € X, withy € ¥ \ Z and setd := ||pr., (x)|| (so that
xe X :1). Inequality (2.14) provides a bound on |g; (x)| for large d, and for small d we
will obtain a bound from (2.15). More precisely, set

do == dist((y, 0), Zs)

(which is strictly positive, by definition of Z). By (2.14) it suffices to bound |g;(x)]
for those x satisfying val(pr>em (x)) > val(dp). This implies that valdist((y, d), Z,) =
valdist((y, 0), Z,), and hence we must have

valdist(y, Z4) = valdist((y, d), Z4 x {d}) < valdist((y, d), Z,) = val(dp).

So for such a d, we obtain

val(g; (x)) (2£5) — valdist(y, Zg) > — val(dp).

Thus |g;| is bounded on all of X, which finishes the proof that Claim 1 implies the
proposition.

Proof of Claim 1. Even though the case m = 1 (versions (a), (c)) does not need to
be treated separately, we do note that for m = 1, Claim 1 follows directly by applying
Corollary 2.2.2 to f (and using (2.9) in version (c)).

Fix i < ¢, for the entire proof of the claim. (We can treat each g; separately.)
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Set Y’ := pr,, (X')\ Z. For y € Y, |g]| is bounded on X, so we can apply
Lemma 2.2.4 to the restriction g; [X’y, using the language £(y). Doing this forall y € Y’
(and applying the Compactness Theorem) yields an £-definable function 7: ¥/ — X
with 7(y) € X ; such that

val(g; (x)) > val(gi(z(y))) forallx € X) andye Y. (2.16)
We will prove that after a suitable enlargement of Z, we obtain
val(g;(t(y))) > — valdist(y, Z) foreveryy € Y'; 2.17)

together with (2.16), this implies (2.13).
In the remainder of the proof, {, and o, always refer to the point x := t(y). Plugging
(2.12) (the definition of g;) into (2.17) yields a condition on 0; f*:

val(9; f(z(y))) = val(u)(z(y))) — valdist(y, Z) + Z val(ay). (2.18)
=2

Consider the derivative of the function A(y) := f(r(y)) with respect to the i-th coordi-
nate. Using the notation

() = (¥, Tep+1(0)s - -5 Te (1)), (2.19)
we can write it as
el
0ih(y) =0 f(z(y)) + Z I f(T(y) - 0itr(y), (2.20)
k=e,+1

so to obtain (2.18), it suffices to prove that in (2.20), (i) the left hand side and (ii) all
summands of the sum over k have valuation at least that of the right hand side of (2.18).

For (i), apply Corollary 2.2.2 to i (extended trivially outside of ¥”). This implies that,
by enlarging Z, we can achieve

val(9;h(y)) > val(h(y)) — valdist(y, Z). (2.21)

Since the sum in (2.18) is at most O (by definition of oy), it remains to check that
val(f(t(y))) = val(u)(t(y))); this follows from the definition of uy), and, in version
(©), (2.9).

For (ii), fix k (with e,, < k < e]) and choose m’ such that e,y 1| < k < e,; note that
m’ < m. Our goal is to prove

val(9 f(x)) + val(9; 7k (y)) > val(u)(x)) — valdist(y, Z) + Z val(oy) (2.22)
=2

(where x = 7(y)). Applying Corollary 2.2.2 to 7 (again, extended trivially outside of Y”)
yields, after further enlarging Z,

val(9; T (y)) > val(tx(y)) — valdist(y, Z) > val(pr 1(x)) — valdist(y, Z). (2.23)

>em/+
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In the case m’ = 1 of version (b), (2.22) now follows from these three items: (2.9)
(which implies val(d; f(x)) > 0), val(u)(x)) < Val(pr>e2 (x)), and val(oy) < 0. Thus
we may now suppose that either m’ > 2 or that we are not in version (b). Then the
assumption that f is efy ,,/1-(v)-sedated implies

m/
val(3 f (x)) = val(u(y)(x)) — val(g,) + Z val(oy), (2.24)
=2
and (2.22) follows by taking the sum of (2.23) and (2.24) and then noting that
Val(p1r>em,+l (x)) — val(¢,y) = val(o,41) and val(oy) < 0.
This finishes the proof of (ii), hence of (2.18), hence of Claim 1, and hence of Propo-
sition 2.3.6. O

The notion of (c)-sedation will be applied to the first derivatives of a function, to control
its second derivatives. We introduce a corresponding notion. (Note that similar bounds
also appear in [NV].)

Definition 2.3.9 ((c;)-sedated functions). Suppose that m, e, and X are given as in As-
sumption 2.3.1. We call an L-definable function f: X — R e[ n]-(c2)-sedated if it
is C2, val(Jac, f) > Oforevery x € X,andfor 1 <i <ep,, 1 < j < e, we have

val(3; £ (x)) = —val(Gu(x)) + Y _ val(or(x)), (2.25)
=2

where ¢, and o, are as in Notation 2.3.2. We call an L£-definable function X — R"
e<m-(c2)-sedated if each of its coordinate functions is ey ,1-(c2)-sedated.

Corollary 2.3.10 ((cy)-sedating functions). Let m, ey, X, Y be as above, and suppose
that f: X — R is an L-definable function which is e[| y1-(c2)-sedated for all m" < m.
Suppose moreover that val(V ) > 0 (this follows anyway if m > 2). Then there exists
an L-definable set Z C Y of dimension less than ey, such that the restriction of f to
X\ prz,, (Z) is e[1,m)-(c2)-sedated.

Proof. If m = 1, we start by removing a lower-dimensional subset from X = Y to ensure
that f is C2. (If m > 2, f is already C2.) Then we apply Proposition 2.3.6(c) to each of
the derivatives 9; f (1 < j < ey). ]

We finish this subsection by proving that being sedated is preserved under certain kinds
of transformations, which will be the building blocks of the rectilinearization maps men-
tioned in Subsection 1.9.

Lemma 2.3.11 (Sedation and rectilinearization). Fix (v) € {(a), (b), (c2)}, and let the
following be given:

integers 1 <m’ <m (2 <m’ < m inversion (b)),
integers ey > -+ > ey > 0,

L-definable sets X, X C R4,

L-definable functions f: X — R and f: X >R
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Suppose that there exists an L-definable bijection r : X — X such that f = foY and
which sends

X = (Xm. Xm—1, Xx) € RO x REm=176m 5 RETm=1 1o
X = (X, Xm—1, Xx) = (X, imf—l"' 8(Xm)s Xs),

where g: pr., (X) — R=17" is ey m)-(c2)-sedated. Then f is e[y n1-(v)-sedated iff
fis e1,m'1-(v)-sedated.

Proof. The lemma is symmetric with respect to swapping X and X; we will carry out
various arguments only in one direction without further notice.

We start by verifying that for £ < m — 1, the valuations val(¢,) and val(oy) from Nota-
tion 2.3.2 are preserved by /. More precisely, we show that, for £ = (X, Xm—1, %) € X
and x = (X, Xm—1, Xx) = ¥ (%), we have

valdist(pr_,, (X), R \ pr-,, X)) = valdist(pr,, (x), R \ pro,, (X)) (2.26)
forl <¢<m—1.Sincepr., oy =pr., |, thisthen alsoimplies
val(oy (X)) = val(o¢(x)), (2.27)

where oy (x) is computed with respect to X and oy (x) is computed with respect to X.

To prove (2.26), we assume £ = 1; for other ¢, the same proof applies, after replacing
&5 X, X by their projections to R.

Both sides of (2.26) are no less than p := valdist(x,,, R \ pr-,, (X)), so it suffices
to verify that given an element § € R \ X satisfying val(} — £) > s, we can find an
element y € R¢! \ X satisfying val(y — x) = val(y — X).

We write § = (Vm, Im—1, Yx) € R x Rém-17¢m x R ~¢m-1 By definition of p,
the function g is defined on the entire ball B := B- 1 (xp). This means that, first of all,
Y = Om> Im—1 + &(¥m), y») is well-defined, and secondly, the Mean Value Theorem
argument from Remark 2.1.13 applies, yielding

val(g(ym) — 8(xm)) = val(ym — Xpm);

now an easy computation yields val(y — x) = val(y — x), as desired.
From (2.26) and (2.27), we obtain, for x = ¥ (X),

’ ’”/

m
—val(Zu (X)) + Y val(or(x)) = —val( (£)) + Y _ val(op(£)) =: A(x).
=2 =2
That the function g is (cz)-sedated in particular means that val(Jacg) > 0. This
yields the following equations concerning the partial derivatives of f(x, Xn—1, x,) =

f(xmw’emifl"‘g(xﬂ)vxi): o

min  val(3; f(£)) = min val(3; f (x)),
1<i<ey_1 R I<i<ep_i (228)
val(9; f (X)) = val(d; f(x)) fore,_1 <i <ej.
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Now we are ready to prove the claims of the lemma. For (v) = (a), (b), f is
e[1,m'1-(v)-sedated iff
X min val(9; f(x)) > val(u)(x)) + A(x) forevery x € X, (2.29)
<i<e,,

and similarly for f . The left hand sides of (2.29) are equal for f and f by (2.28), and the
right hand sides are equal since f(X) = f(x) and, in version (b) (which implies m > 3),
Pr.e, (x) = Pr.., (%)
Finally, suppose that f is e[ ,,11-(c2)-sedated, i.e.,
val(Jac f) >0 and val(9;; f) = A(x) forl <i <eu,1<j<e.

(To simplify notation, from now on, we omit the points at which the derivatives are taken.)
Using (2.28), we obtain val(Jac f ) = 0, and it remains to verify that val(9;; f ) > A. Direct
computation of this second derivative yields the following, where ¢ = (g¢,,+1, - - - » &e,i_1)
and where we set dx g := 0 for k > e,:

Uj(fow)=0f+ D Yuf-dige+ Y. duf-djg

em<€<em_1 em<l<ep—1
+ Y dwf-dige-dige+ Y, ef g
em <t/ <ey_i em<€=<em—|

All the second derivatives of f appearing on the right hand side have valuation at least A
(note that £, £’ < e,,). Together with val(Jac g) > 0, we get the desired bound for every-
thing except the last sum. In that one, we have val(de f) > 0 and val(9;;g¢) > — val(&n)
(since g is e[, m]-(c2)-sedated). Now — val(¢,) > — val(g,/) > A since val(oy) < 0 for
all £, so also here, we get the desired bound. O

3. The main proof

This entire section constitutes the proof of Theorem 1.6.7. We fix, once and for all, a
closed, L£-definable set X € R".

3.1. Some notation

We fix some notation which will be useful at various places in the proof. Suppose that we
have already fixed a stratification X of X (in the sense of Definition 1.2.1); in particular,
we assume that each X' is closed. We moreover assume that the strata, i.e., the definably
connected components of the skeletons Xt form a bradycell decomposition in the sense
of Definition 2.1.4. (Recall that definable connectedness always refers to the language L.)

Notation 3.1.1 (Aligning and groups of coordinates). Suppose that S = (S%)o<¢<p is
a sequence of strata with St c Xet for some eg > ey > --- > ey. These inequalities,
together with ey < n, imply m < n + 1, so Proposition 2.1.5 provides an aligner x € C,
such that each transformed set « (S?) is aligned in the sense of Definition 2.1.1. In such a
situation, i.e., when S and an appropriate « are given, we will assume that the strata S¢ are
already aligned by transforming our coordinate system using «. (Why this assumption is
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harmless will be explained at the appropriate places.) We will moreover use the following
notation, where 0 < £ < m:

e We write S¢ = prie[(Se) for the base of S¢ and p’: §¢ — R~ for the map whose

graph is S¢.
e We introduce a notation for “groups of coordinates” of points x = (x1, ..., x,) € R™
X o= (X1, ..., Xe,),
Xg = (Xep o415+, %) TorO <€ <m,
Xy = (Xegq1s -+ -0 Xn)-
In particular,
X = (X, Xm—1, -+ X0, Xx)-

(Note that xo might be the empty tuple since possibly eyp = e;.) We use a similar
notation for points in R and for the functions ,0‘Z 0O <f<m):

X = (X, Xm—1s .., Xe41, xXg) forx € R¥;

Pt = (pf_ys -5 PG5 PY)-

Now suppose that we additionally have a val-chain a°, ..., a™ with a® € S¢ and with
distances A1 > --- > Ay (and dimensions eg > e; > --- > e,,). There are natural
balls B¢ € §¢ associated with such a val-chain, though it requires an argument to see that
the balls, as defined below, are really subsets of St

0

Notation 3.1.2. Given a val-chain a?, ..., a" with a® € §¢ and with distances Ao>

<o > A1, WE Set
BY = B.;,,, (pre,, (@) SR for0 <€ <m.

(If Ap41 = —00, we set B™ = Rem)
Note that B also contains the projections Pre,, (ah, ..., Pre., (a®) and that it is the
projection of the largest ball around a° which is disjoint from X¢¢~!.

Lemma 3.1.3. In the situation of Notations 3.1.1 and 3.1.2, the following hold for 0 <
L <m:

(1) The ball Bt is contained in S°. In particular, Pr., (ao) e St so the function ,og is
defined at the point pr_,, (a%).
(2) The function p* satisfies

val(pz(xl) — ,oe(xz)) > val()c1 — xz) forxl, x? e B

3) Fora® = Pre,, (ao) and a1 = @°, pe(czzo)) e S we have val(a® — al¥l) = A,.
In particular, the sequences a® all a2, ... a" and a1, al, a2, ..., a™ are val-

chains.
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¢1 =idg

Fig. 3.1. An overview of some of the notation from Subsections 3.1 and 3.2 (for a plain val-chain
aO, al) and a bit of additional notation used later.

0

Note that in the last statement, we might have a!!l = ¢°, namely when S° = S'.

Proof of Lemma 3.1.3. (1) We have B := B.;,, (@®) N S* # ¢ but BN ISt = ¢
(since 38t C Xe 1 and valdist(a®, X)) = Ae¢+1), so Lemma 2.1.12 implies Bt =
prgek (B) g S[-

(2) This is just the Mean Value Theorem argument from Remark 2.1.13.

(3) The inequality val(a® — aly < x, follows from the definition of val-chain, since
a¥l e Xe. For the other inequality, set at = Pre,, (a*). Then val(a0 —ab) = Ap im-
plies val@® — at) > A, and then (2) yields val(@!¥l — a%) > .. This together with
val(a® — ab) = g implies val(a® — althy > »,.

The “in particular” part is clear from the definition of val-chains. (Note that the second
one is an augmented val-chain). O

3.2. Rectilinearization

In the setting of Notation 3.1.1, we will sometimes need to “rectilinearize” along the
lower-dimensional strata: We will apply a map that translates the coordinates x; by pf“.
(Note that the maps pf“ for j < £ — 1 are not used for rectilinearization.) Here is our
notation for this: -
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Notation 3.2.1 (Rectilinearization). For 0 < £ < m, and suitable x = (xp, ..., x¢)
€ R, we define ¢¢(x) := x° where x is given by

b
Xy = Xm—1 = Ppy_1 (Xm),

b . m—1
Xn—2 = Xm=2 — P2 (Xms Xm—1)»

b, 2+1
Xp = Xg = Py (C ...,xﬂ).

Here, “suitable x”” means that all the maps pJJ: + involved are defined, i.e., ¢y (x) is defined
if pro,, (x) € S/ fort < j <m.
Remark 3.2.2. The definition of ¢, can also be written inductively:
Gm(x) =x for x € R,
$e((%, x0) = ($e1 (D), x¢g — p, 71 (@) for (F, xp) € R x R0 < £ <m,
Note that if eg = ey, then ¢p9 = ¢;.
We fix some more notation:
Notation 3.2.3. We set
Y i={x e R :pr_,,(x) € § for 0 < £ < m},

which is a subset of the domain of ¢y. We write Y := ¢o(Y) for the rectilinearization
of Y (note that ¢ induces a bijection ¥ — ¥”), and

b . b4 -1
P =P o,
for the rectilinearization of ,og, where 0 < £ < m. Note that the domain of /00b is YP.

Remark 3.2.4. From val(Jac p*) > 0, one easily deduces Jac ¢, € GL,, (OR) (at every
point of the domain of ¢;), using Remark 3.2.2. (Intuitively, this follows because the
expression of Jac ¢, in terms of the partial derivatives of pi, L < i < m,is a “lower
triangular matrix with identities on the diagonal”.)

To transfer arguments between the rectilinearized and the unrectilinearized setting, we
need the maps ¢, to be isometries with respect to the valuation. This is not true every-
where, but it is true on the balls B¢ = B (Pree, (a%)) introduced in Notation 3.1.2,
which is what we really need. Here is the precise statement.

Lemma 3.2.5. Suppose that a®, ....a" is a val-chain with a®* € S* and with dis-

tances Ag. For 0 < £ < m, ¢y is defined on B® and the restriction ¢¢| B® is a valuative
isometry (i.e., val(¢y xh = 0, (x?)) = val(x! — x?)) with image B, (¢¢ (priee @”)).
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Proof. Use induction and Remark 3.2.2. That ¢,[B¢ is defined follows from
Lemma 3.1.3(1), that it is an isometry follows from Lemma 3.1.3(2), and to see that
the image is all of B~ (¢¢(pr,, (a%))), consider its inverse (which is easy to specify
explicitly). O

3.3. Defining the stratification

In this section, we construct a stratification of the given set X € R". (Afterwards, we
will prove that this stratification has the desired properties.) The stratification is obtained
by constructing the skeletons X* one after another, starting with X4 X More precisely,
suppose that X5t XdimX paye already been constructed. We obtain )'Q by starting
with X* == X\ U X' and by removing closed subsets of dimension less than s in four
steps.

i>s

Step R1: We start by partitioning X into bradycells (using Proposition 2.1.5) and re-
move all bradycells of dimension less than s. Moreover, for each bradycell S € X* of
dimension s, we remove its frontier 05 from X3 This ensures that afterwards, each defin-
ably connected component of X* is a bradycell. (Recall that “definably connected” refers
to the language £.) Even though X* is not yet final, let us already call those connected
components strata.

By removing an additional closed subset of lower dimension from X*, we ensure that
the “border condition” holds, i.e., for any strata S C )0(5, N JO(S/, where s’ > s, we have
either S C cl(S8”) or S Ncl(S") = @. (In the end, this will imply that cl(S”) is a union of
strata.)

Note that none of the properties achieved in this step can be destroyed by removing
further closed, lower-dimensional subsets from X,

Step R2: Next, we choose a stratum S C X5 (i.e., a bradycell of dimension s) and an
aligner k € C, of S (see Definition 2.1.1). For each of these (finitely many) choices, we
remove an £-definable subset from X* as follows.

As explained in Notation 3.1.1, we assume that § itself is aligned. This assumption
does not cause definability issues of the sets we remove, since « is (by definition of C,)
L-definable. Set § = pr(S) and denote by p: S — R"™ the function whose graph
is S. Moreover, set e; := s. By Corollary 2.3.10, there is a subset Z < S of lower
dimension such that p is ej 1]-(c2)-sedated on S \ Z. The preimage S N pr;‘: (Z)is a
subset of S of dimension less than s; we remove its closure cl(S N prgsl (2)) from X,

Step R3: The next shrinking of X* is similar, but instead of considering a single stratum
in X°, we consider a whole sequence S = (SE)O§€§m, with S¢ € X for some ey > e >

- > ey, =5, m > 0. (In fact, Step R2 is a special case of Step R3, but for R3 to work,
we will need that this special case has been carried out before.) Similarly to Step R2, for
any such sequence S and any aligner ¥ € C, of S, we will obtain a subset Z C S§” of
dimension less than s (where we use Notation 3.1.1), and for each S and « as above, we
remove the corresponding set c1(S™ N prgs1 (2)) from X5,



2760 Immanuel Halupczok, Yimu Yin

The goal of Step R3 is to ensure that certain functions on the set ¥> € R from
Notation 3.2.3 are e[ ;u1-(v)-sedated. This will be achieved using Proposition 2.3.6 and
Corollary 2.3.10, so we need to ensure that the functions are already e[ ,,/-(v)-sedated
for m’ < m. We use Notation 3.2.3 and set

8= p® — ,oilb OPr,,: Y> — R, (3.1

(If eg = e1, then 8” = p» — p!°.) The precise goal of Step R3 is to ensure the following:

ifm=0orey > eg: ,0Ob is e[, n/]-(c2)-sedated on Y’ for0 <m' <m;
ifm > 1andeg > e;: 8" is efo,m'1-(b)-sedated on Y’ forl <m’' <m; (3.2)
ifm > 1andeg = e;: 8" is e[1,m'1-(a)-sedated on Y’ forl <m’ <m.

(Note that in Subsection 2.3, the numbering starts with e, whereas for (cz)- and (b)-
sedation, we now start with eq.)

To obtain (3.2) for m’ < m, nothing needs to be removed from S™; instead, we de-
duce this inductively from the corresponding result obtained in the construction of Xem-1
(using Lemma 2.3.11 and Step R2); then we can e[ ;;1-(v)-sedate the functions using
Proposition 2.3.6 and Corollary 2.3.10. This is straightforward; here are the details.

Proof of (3.2) form’ < m. Fix m’ < m. For any statement related to 8”, we shall implic-
itly assume m’ > 1. We keep Notation 3.2.3 with respect to S, but we now additionally
consider the shortened sequence S = (SE)()Se <m—1 and put a hat on various objects rela-
tive to S introduced in Notations 3.2.1 and 3.2.3 and in 3.1): qgg, 1?, f/b, ,6‘”’, 8. Note that
we have Y C Y and ¢e = Yy o ng (for 0 < £ < m), where Yy = ¢ 1 X idggep—e,_; is
the map that rectilinearizes only with respect to p,!_,. In particular,

p¥ =p" oo, p"=p"oy1, and 5 =4"o1y.

By Step R3 for S (which has already been carried out when constructing Xem-1 ), PP is
e[o,m1-(c2)-sedated if g > ey and 8 is e[1,m'1-(a)-sedated or e ,,/1-(b)-sedated (depend-
ing on whether eg > e1). The map v is of the form required by Lemma 2.3.11, since
pr’flf] is e[m,m]-(c2)-sedated by Step R2, so that lemma implies (3.2) for m" < m. O

Obtaining (3.2) for m’ =m. Suppose first that m =0 or eq > e1. Using val(Jac, p°) >0
(for x € Y) and val(Jacy ¢p9) = O (by Remark 3.2.4), we obtain val(Jac,» pOb) > 0, so
we can apply Corollary 2.3.10 to p using e[0.m]- This yields a subset Z C pr_, (Y") =
Pre,, (Y) C 8™ of dimension less than e,, = s such that /oOb is e[o,m]-(c2)-sedated on
Y> \ Z', where Z’ is the preimage of Z in R under the projection. We shrink ¥” to
Y\ Z’ by removing cl(S”" N prg;m (2)) from S§™.

In a similar way (but using Proposition 2.3.6(b)), we ensure that 8" is e[o,m]-(b)-
sedated if m > 1. For this, we have to check that val(Jac,» § b) > (; this follows from the
corresponding statements for p® and p'".

Finally, if m > 1 and eg = ej, then without checking any additional condition, we
can apply Proposition 2.3.6(a) to shrink S so that §” becomes er1,m]-(a)-sedated. O
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Step R4: We keep the notation from Step R3 and remove one more set from S™ (again,
for each choice of S and «), namely S”* N pr;;m (a(prym (Y))). This ensures that if we

choose a sequence (8%, of strata after this step has been carrigd out and write Y for the
set corresponding to this new sequence, then d(pr., (¥)) N S$™ = {4, and hence, since

$™ is connected, we have either " C pre,,, (Y) or Sm N pre,, (Y) = @. (Later, only
sequences for which the first of these cases occurs will be relevant.)

This finishes the construction of X* and hence of the stratification of X. We will now
prove that this stratification is indeed a valuative Lipschitz stratification.

3.4. Relating the stratification to val-chains

We fix a val-chain ?, ..., a™ with at € §¢ C )0(65, dimensions eg > €1 > --- > e, and
distances A > - -+ > A, 41. We use Notations 3.1.1, 3.1.2, 3.2.1 and 3.2.3. The main goal
of this subsection is to prove Lemma 3.4.4, which can be considered as a bound on some
kind of distance between the tangent spaces T,0 ()o( €) and T, ()o( €1). The three different
properties obtained in (3.2) will roughly correspond to the following three different kinds
of val-chains (in this order): augmented val-chains with S° = S!, plain val-chains, and
augmented val-chains with §% £ S!.

Notation 3.4.1. We set ¢ := a° and @ = pr,,(a). By Lemma 3.1.3(1), we have
pre,,(a) € St for0 < ¢ <m,soa €Y and we can define a° := ¢y(a) € Y".

Remark 3.4.2. Since pr_, (a) € pr, (¥Y) N S™, this intersection is non-empty, so
Step R4 implies S C pr—,,, (¥) and hence §m = pre,, (¥).

We apply Notation 2.3.2 to a°, relative to the set Y°, starting with eq instead of e, and we
allow ourselves to use that notation even if ¢y = ey:

2e(@) = dist(pro,, (@), R® \ pre,, (Y*))  for0 < ¢ <m, (3.3)
op(@’) = max{l, |pr.,, @) - ¢e-1@)~"} forl <€ <m. (34)

(Concerning the case ey = e, we consider the norm of the empty tuple as being 0 and its
valuation as being c0.)

Lemma 3.4.3. We have

val(pr_,, (@) = hes1 = val(g(@)) (3.5)
forO <l <m—1at(1)and0 < € < m at (2). In particular,
val(op(@”) =0 for 1 <€ <m. (3.6)
Proof. The “in particular” part follows directly from (3.5) and (3.4).
(1) We have pr>eé+](&b) = (az ...,ag), so it suffices to check that Val(a;) >

Aj+1 (= Agg1) for 0 < j < £. This follows from Lemma 3.1.3(3); indeed, a; =
aj — ,o; + (PISe,-H (a))) is just one of the coordinates of a — aliTH where the notation

ali*+11 is the one from Lemma 3.1.3.
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(2) It is enough to check that we have an inclusion
By (Pr=(, (@))) C pre,, (Y") = ¢e(pre,, (Y)). 3.7

By Lemma 3.2.5, we have B.j,,, (pr,,(@’))) = ¢¢(B") (where B* was defined as
By (prsw (a))); see Notation 3.1.2), so (3.7) is equivalent to

B* S pr_,, (V). (3.8)
The definition of Y yields
Prg, (Y) = prey, (Y) N Yoyt Nee N Yo, (3.9)
where o
Y ={x e R Ppre,; (x) € S/ for0 < j < ¢). (3.10)

and where Y; is the preimage of S7 under the projection R¢ — R¢ (for 41 < j < m).
By Lemma 3.1.3(1), for j > £ + 1 we have pr_,, (BY € B/  §/ and hence B* C V;.
By Remark 3.4.2 applied to the val-chain a°, ..., a%, we have §¢ C Pre,, (Y"). Together
with B¢ C S§¢ this implies (3.8). O

Suppose now that m > 1. We keep Notation 3.4.1 and additionally set b := a', b =
pr,, (b) and b” := ¢;(b). (This is well-defined by the same argument as for a”, applied to
the val-chain a!, ...a™). Recall that in Notation 3.2.3, we introduced the rectilinearized
maps p% = pto ¢[1. The following is a key intermediate result.
Lemma 3.4.4 (Bounding the difference of derivatives). Suppose that m > 1. Then for
1 <i=<ey, B

val(9;p% @) — 3ipa” (B)) = A1 — A1
Proof. Set ¢ = pr,, (a), ¢ = (¢, p'(¢)) and & = ¢;(¢). Note that ¢ = al!l in the
notation of Lemma 3.1.3, so ¢, a?

& follows as for a” and b°.
To prove the lemma, we “use c¢ as an intermediate step”, i.e., it suffices to prove

,...,a™ is a val-chain and hence well-definedness of

val(3; 0" (@) — ipa” (@) = A1 — A1, 3.11)
val(9; oy (@) = i ps (B7)) = A1 = dmr1. (3.12)
Since a, ¢, a?,...,a™ and ¢, b, a?, ..., a™ are val-chains (by Lemma 3.1.3), these two

inequalities follow from two special cases of the lemma itself: (3.11) is just the special
case b = alll, and (3.12) follows from the special case where S0 = S!. (The special case

yields (3.12) with ,oi1b replaced by p'”.) Thus we will now prove the lemma in these two
cases.

Case b = alll: In this case, Pre, (a) = b and hence also Pre, @) = b". Recall the
definition of §° from Step R3; we have

1b
8" (x") = p®(x") — py (pre,, (7)) forx” € Y°,
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and hence

0:0" @) — iy’ (") = 98 (@)
We now distinguish two subcases. If ep > ey, then since 8 is e[, n]-(b)-sedated on ¥”
(by (3.2)), we get (for 1 <i < ep,)

val(@:8°@)) ‘= minfval(8°(@)), val(pr..,, @)} — val(Gu(@)) + 3 val(o¢(@))

=1
(3.5)

o . bo=b
> min{val(§"(a")), A1} — A1

If, on the other hand, ey = e, then 8" is e[1,m]-(a)-sedated on Y? and we get

val(3,8°@) ‘2 val(8 (@) — val(Gu(@) + Y val(or(@)

(=2
(3.5)

Y a8 (@) = Amst.

In both cases, 8”(a@") = ,00 (a)— ,011 b) = (a— b),, so the valuation of this is at least A
(since a = a® and b = a!) and we get val(9;8° (@) > r; — Am+1, as desired.

Case Sop = S;: In that case, we have ,011b = pOb, so the claim of the lemma is
val(d; 0% (@) — 8;p” (B")) = A1 — D1 (3.13)

we will prove this using the Mean Value Theorem argument from Remark 2.1.13.

Set B := B>,,(a). By Lemma 3.2.5, B .= ¢o(B) is also a ball (note that ¢pg = ¢
and that B € B C Bl) and, since B contains @ and b and ¢o is a valuative isometry
on B, we have val(a” — b”) = A;. Thus for Remark 2.1.13 to yield (3.13), it remains to
verify that on the entire ball B®, we have

val(Jac 8i,00b) > —Am+1-

Given any & e B, let ¢ be its preimage in B and ¢ := (c, pO(E)) e s Applying (3.2)
to the strata S', ..., $™ shows that ,00b = ,o”’ is e[1,m]-(c2)-sedated on YP. (Note that the
set Y corresponding to ', ..., S is the same as the one corresponding to S°, ..., §™.)
Together with Lemma 3.4.3, this yields

29 - i -
val(Jac 3 p® (@) = = val(Gn(@)) + Y val(oy (@)
(3.5) =2
(3.6)
> —Am+l.

which is what we had to prove. O

3.5. Proving that we have a valuative Lipschitz stratification

We will use the characterization of valuative Lipschiz stratifications given by Proposi-
tion 1.8.3. Thus suppose that a®, ..., a™ is a val-chain with a® € §¢ C X¢¢, with dimen-
sions egp > €1 > --- > e, and with distances A1 > --- > A;41. We need to find vector
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spaces
Viem S Viem—1 €+ S Viks1 € Vik = TuS© for0 <k <m (3.14)

with dim Vi , = e, satisfying
A(Vie, Vir1,0) = Mgt — A1 forO <k <€ <m, (3.15)

(where A(W;, W) is the valuative metric on the Grassmannian; see Definition 1.8.1). The
strategy is as follows. Given any val-chain as above and any aligner k¥ € C,, of (S‘Z)ofgsm,
we will define an e,,-dimensional space denoted by Vp ,, depending only on the val-chain
and on «. Let Vi ¢ be the space obtained by applying the same definition to the sub-val-

chain a*, ak+1, ..ab (and the same aligner ). Once the spaces are defined, we will
prove that
Vo.o = T,08° (in the case m = 0); (3.16)
VO,m Cc VO,m—l ifm>1; (3.17)
A(VO,m» Vl,m) > A — At ifm > 1. (3.18)
By applying these results to various sub-val-chains of a°, ..., a™ one then obtains (3.14)

and (3.15), i.e., we are done with the proof of the theorem.

We start by defining Vj ,,,. As usual, we use Notations 3.1.1,3.1.2,3.2.1 and 3.2.3. In
particular, we assume that the coordinate system has been transformed using «. This is
harmless, since such a transformation preserves the notion of val-chains on the one hand,
and the properties we are about to prove on the other hand.

Notation 3.5.1. For 0 < ¢ < m and suitable x = (x, x') € R x R" "%, we define a
variant of the rectilinearization maps, where “all coordinates of "~ are rectilinearized
along S¢: y

Pe(x) = (pe (%), x' — p*(¥)). (3.19)
(Note that if S® = §!, then q~50 = ¢~>1 .) We moreover set

a=a" W:=R" x {0V and Vo.m = (Jac, d0) " (W).

That (;30 is defined at a follows from Remark 3.4.2. As required, we have dim Vp ,, = epn,
so to finish the proof of the theorem, it remains to prove (3.16), (3.17) and (3.18).

Proof of (3.16). In the case m = 0, qEO_I sends SO x {0}"~¢ to SO, and we have W =
R x {0}~ Thus (Jac, ¢o) ' (W) is the tangent space to S° at a, as required. O

Proof of (3.17). Suppose that m > 1. We have

Vom—1 = (Tac, o)~ (W) (3.20)
where
W = Rem=1 x {0}~ em-1, (3.21)
do: (Xms Xm—1, Xm=2 - - - » X0, X3) > (Xmms Xm—1, x;_z, ...,xg, Xy — ,oo(prfeo(x))).

(3.22)
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An easy computation shows that (Jac, q’;o)_l(W) = (Jac, ¢~>o)_l(W); indeed, we have
¢§0 =vo qgo, where ¥ = ¢y, 1 X idgn—e,_;, and (Jacy w)’l(W) = W for any x.
Together with W D W, this implies Vo n—1 2 Vo,m, as required. O
Proof of (3.18). We have Vi, = (Jacp qsl)’l(W) where b = a! (and 431 has been
defined in (3.19)). To obtain A(Vy ;m, Vi,m) = A1 — Am+1, it suffices to prove that
val((Jaca §o) ™' [W — (Jacy $) ™ W) = At — At (323)

(by Lemma 1.8.2). 5
From the definition of ¢g, we get

~ Jac; 0
Jaca ¢0 - <— Jaz:),go 1

(Jacg ¢o)~! 0y (Jacg ¢o) ™! 0
(acg p%) o Jacapo) ™! 1)~ \Jacp (0 oy’ 1

> , and hence (3.24)

(Jacy ¢o) ™' = ( ) (3.25)
where a* = ¢o(a). If we moreover set a= pr,, (@) and @° = b1 (@), then we have
do(a) = (¢ (@), ag — ,oé (@)), and exactly the same computation as in (3.24) and (3.25)
yields -

(Jac; o) ™! 0)

-l
(Jacz ¢o) —<Jac(;b(,050¢’11) !

(3.26)

Combining (3.25) with (3.26) yields

0 (Jac;p)™! 0 0
0] = Jac;bpglb 1 0 (3.27)

)

(Jaczp)™' 0
(Jac, (]30)_1 — JaCéb(pé o ¢;1) 1

Jacp (0O o gy |1 Jacg p% | 1

where the coordinates are grouped according to R¢! x RO~ x R"~¢0.

We also do the computation from (3.24) and (3.25) for q31 (b) = (¢1(b), (bo, by) —
pl(b)), where b = pre., (b) and b’ = ¢1(b), and obtain (with the same grouping of
coordinates as before)

Jac;¢)™' 0 (Jac;¢)™' 0 0
(Jac,,él)—lz Jacgb(0910¢f1) 1 — Jacl;ppglb 1 0]. (3.28)

Jacp(plopy D) 0] 1 Jacy pr 0] 1

To prove (3.23), we have to prove the corresponding statements for the three submatrices
where (3.27) and (3.28) differ.

For the bottom-most submatrix, this is exactly the statement of Lemma 3.4.4. For the
middle submatrix, the result is obtained by applying Lemma 3.4.4 to the augmented val-
chain al'l a!, a2, ..., a™, where alll = (a:z, pl(c:z)) e S! and val(a“] — al) > A1 by
Lemma 3.1.3(3).

0
0
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Finally, for the top-most submatrix, we use an inductive argument. If m = 1, then
¢1 is the 1dent1ty, SO suppose now m > 2. Seta a = pr<62(a) al?l = (a 0 (a)) e §2

and similarly b = Pre,, b), b (21— (b pz(b)) e §2. Using Lemma 3.1.3, we find that
a2l pl21 g3 . a™ is a val- cham with val(a®' — b)) > ;. By induction, we may
assume that (3.23) holds for this shorter val-chain, i.e.,

val((Jac,p1 ¢2) ™ W — (Jacyiz $2) ™' W) = A1 — A1 (3.29)
This implies the desired inequality
val((Jacz 1) ' [W — (Jac; ¢1) "' IW) > A1 — A1, (3.30)

by using the fact that ¢ is obtained from ¢» by omitting some coordinates and that the
derivatives of these functions only depend on the first e coordinates. More precisely, a
computation as in (3.25) and (3.26) (applied to ¢, and ¢;) shows that (Jacz <;51)_1 is a

submatrix of (Jac, ¢~>2)_1 (for suitable x € R” and x = Pre,, (x)) and that this submatrix
only depends on pr_,, (x). O

This finishes the proof of Theorem 1.6.7, and hence also of Theorem 1.
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