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Abstract. We investigate existence and uniqueness of weak solutions of the Cauchy problem for
the porous medium equation on negatively curved Riemannian manifolds. We show existence of
solutions taking as initial condition a finite Radon measure, not necessarily positive. We then estab-
lish uniqueness in the class of nonnegative solutions, under a quadratic lower bound on the Ricci
curvature. On the other hand, we prove that any weak solution of the porous medium equation nec-
essarily takes on as initial datum a finite Radon measure. In addition, we obtain some results in
potential analysis on manifolds, concerning the validity of a modified version of the mean-value
inequality for superharmonic functions, and properties of potentials of positive Radon measures.
Those results are new and of independent interest, and are crucial for our approach.

Keywords. Porous medium equation, Sobolev inequalities, Green function, potential analysis, su-
perharmonic functions, nonlinear diffusion equations, smoothing effect, asymptotics of solutions

1. Introduction

We are concerned with existence and uniqueness of weak solutions of Cauchy problems
for the porous medium equation on Riemannian manifolds of the following type:{

ut = 1(u
m) in M × (0,∞),

u = µ on M × {0},
(1.1)

where M is an N -dimensional complete, simply connected Riemannian manifold with
nonpositive sectional curvatures (a Cartan–Hadamard manifold), 1 is the Laplace–Bel-
trami operator on M , m > 1 and µ is a finite Radon measure on M . Note that when
dealing with sign-changing solutions, as usual we set um = |u|m−1u.

In the special case of the Euclidean space, problem (1.1) has been deeply investigated
in [26]. In particular, existence and uniqueness results for nonnegative solutions have been
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established. More recently, similar results have been generalized to the fractional porous
medium equation [32, 16, 15]. Furthermore, problem (1.1) with M = HN ,{

ut = 1(u
m) in HN × (0,∞),

u = µ on HN × {0},
(1.2)

where HN denotes the N -dimensional hyperbolic space, has lately been addressed in a
number of papers. In fact, in [31] it has been studied for m > 1 and µ a Dirac delta, in
[27, 28] for m > 1 and µ ∈ L∞(HN ), and in [13] for µ ∈ Lp(HN ) for any p > p0
(for a certain p0(m,N)) in a fast diffusion regime, i.e. (N − 2)/(N + 2) < m < 1.
More precisely, in [31] a thorough analysis of the fundamental solution of the differential
equation in (1.2), that is, the solution of (1.2) with µ = δ, is performed. That special
solution is then used to study the large-time behaviour of nonnegative solutions to (1.2)
with µ ∈ L1(HN ).

The aim of our paper is to investigate existence and uniqueness of weak solutions to
problem (1.1) under the hypothesis that the sectional curvatures are nonpositive (this is
enough for existence), and that the Ricci curvature is bounded from below by −C(1 +
dist(x, o)2) for some positive constant C and a fixed point o ∈ M (this is required for
uniqueness). Under our assumptionsM is necessarily nonparabolic (see Section 3), hence
the Green function G(x, y) on M is finite for all x 6= y.

In particular, we show that for any given finite Radon measure µ (not necessarily
positive) there exists a weak solution to problem (1.1) which takes on the initial condition
in a suitable “dual” sense. Note that, in general, such a solution can change sign. On the
other hand, we are able to prove uniqueness under the additional assumption thatµ, and so
the corresponding solution, is nonnegative. Furthermore, we show that any weak solution
of the differential equation in problem (1.1) (i.e. without a prescribed initial condition)
necessarily takes on, in a suitable weak sense, a finite Radon measure as t → 0+, which
is uniquely determined (the initial trace). Observe that this property also justifies the fact
that we consider a finite Radon measure as initial datum in problem (1.1). Let us stress
that no result in the literature seems to be available as concerns signed measures, for
which we can prove existence and trace results.

Let us mention that in order to prove that the initial condition is taken on in a suitable
weak sense, we exploit some results from potential theory on Riemannian manifolds that
we have established here precisely for this purpose, but which also have an independent
interest. To be specific, we extend to Riemannian manifolds some results for potentials of
nonnegative measures given in the monograph [21], and we obtain a suitable mean-value
inequality for superharmonic (and subharmonic) functions, without assuming any sign
condition and in particular dealing also with positive superharmonic functions. Note that,
in contrast with the classical results in [22], where the standard mean value of nonneg-
ative smooth subharmonic functions is considered, we deal with a modified mean value
which takes into account the Green function of −1 on M; this allows us to remove the
nonnegativity assumption. This is essential for our purposes; in fact, since we deal with
positive superharmonic functions, the results in [22] cannot be applied in that case. In ad-
dition, we work with lower semicontinuous functions with values in (−∞,∞] which are
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superharmonic (or subharmonic with values in [−∞,∞)) in a distributional sense only:
in fact, we shall apply such inequalities to potentials of Radon measures. In establish-
ing such modified mean-value inequalities, we follow the arguments of [2] (see also [8]
and references therein), where similar results are obtained in Euclidean space for general
second-order elliptic operators.

Note that mean-value inequalities involving Green functions, in the context of general
strongly nonparabolic Riemannian manifolds, have been first proved in [25]. However,
such inequalities are established for smooth functions, although they can be shown to
hold for Lipschitz functions (see [25, Remark 2.4]), a class of functions which is not
sufficient for our purposes.

We remark that the above mentioned results in potential analysis will also be crucial
in the proof of uniqueness. In fact, by adapting to the present setting the general “duality
method” (see [26]), we consider the problem satisfied by the difference of the potentials
of any two solutions taking on the same initial measure, and the corresponding dual one.

Let us also mention that, in a different framework, Green functions in connection with
the porous medium equation have recently been used in [5] to obtain certain sharp a priori
estimates.

From a general viewpoint, the fact that we are considering non-positively curved Rie-
mannian manifolds implies substantial differences form the Euclidean case. In fact, in
view of our hypotheses on sectional curvatures, we could have different properties for
the Green function and for the growth of the volume of balls (which can be exponen-
tial in the radius, as in HN , or even faster). Therefore, we need to use more delicate
cut-off arguments which exploit crucial integrability properties of the Green function. In
addition, our assumption concerning the bound from below for the Ricci curvature (see
(H)(ii) below) is essential since it ensures conservation of mass for the aforementioned
dual problem, a key tool in the uniqueness proof. It is not surprising that such a bound on
the Ricci curvature is essential for uniqueness, since it implies stochastic completeness
of M , which is equivalent to uniqueness of bounded solutions in the linear case (i.e. for
the heat equation); see [10].

The potential techniques we exploit allow us to establish an identity which expresses
the Green function in terms of the time integral of the solution of problem (1.1) with
µ = δx0 for any x0 ∈ M . The formula holds, indeed, on general Riemannian mani-
folds, without specific assumptions on its curvatures. In particular, it seems to be new,
to our knowledge, even in the Euclidean framework. On the other hand, it extends to the
nonlinear case a well-known formula, which relates the Green function to the heat ker-
nel. This result implies in particular that a manifold is nonparabolic if and only if the
Barenblatt solution is integrable in time. We are not aware of previous results connecting
nonparabolicity of a manifold to properties of nonlinear evolutions of the kind studied
here.

The paper is organized as follows. In Section 2 we state the main results and we give
the precise definition of solution to problem (1.1). In Section 3 we recall some useful
preliminaries in Riemannian geometry and basic facts concerning analysis on manifolds.
Then in Section 4 we obtain some results in potential analysis on manifolds; they are
mostly used in the subsequent sections, but they also have an independent interest. Ex-
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istence of solutions is shown in Section 5, along with the integral identity involving the
Green function. Finally, in Section 6 we prove both uniqueness of solutions and the results
concerning the initial trace.

Remark 1.1. Our results are presented for simplicity in the case of Cartan–Hadamard
manifolds of dimension N ≥ 3. However, they hold with identical proofs under the fol-
lowing more general assumptions:

• M is nonparabolic, complete and noncompact. Moreover, it supports the Sobolev-type
inequality ‖f ‖2σ ≤ C ‖∇f ‖2 for some σ > 1, C > 0 and all f ∈ C∞c (M);
• G(x, y)→ 0 as dist(x, y)→∞, uniformly in x ∈ K , given any compact set K ⊂ M;
• there exists o ∈ M such that x 7→ dist(x, o) is C2(M \ B) for some neighbourhood B

of o and |1x dist(x, o)| ≤ c dist(x, o) for a suitable constant c > 0 and dist(x, o) large
(not necessary for existence).

Note that the above properties are fulfilled ifM is, for instance, a nonparabolic, complete
and noncompact Riemannian manifold of dimension N ≥ 3 possessing a pole o such that
cut(o) = ∅ (i.e. the cut locus at o is empty) and assumption (H)(ii) below holds, with
nonpositive sectional curvatures outside a compact set.

2. Statements of the main results

We consider Cartan–Hadamard manifolds, i.e. complete, noncompact, simply connected
Riemannian manifolds with nonpositive sectional curvatures. Observe that (see e.g. [10,
12]) on Cartan–Hadamard manifolds the cut locus of any point o is empty. So, for any
x ∈ M \ {o}, one can define its polar coordinates with pole at o. Namely, for any point
x ∈ M \ {o} there exists a polar radius ρ(x) := d(x, o) and a polar angle θ ∈ SN−1

such that the geodesic from o to x starts at o with direction θ in the tangent space ToM
(and has length ρ). Since we can identify ToM with RN , θ can be regarded as a point of
SN−1

:= {x ∈ RN : |x| = 1}.
The Riemannian metric in M \ {o} in polar coordinates reads

ds2
= dρ2

+ Aij (ρ, θ)dθ
idθ j ,

where (θ1, . . . , θN−1) are coordinates in SN−1 and (Aij ) is a positive definite matrix.
Let

A := {f ∈ C∞((0,∞)) ∩ C1([0,∞)) : f ′(0) = 1, f (0) = 0, f > 0 in (0,∞)}.

We say thatM is a spherically symmetric manifold or a model manifold if the Riemannian
metric is given by

ds2
= dρ2

+ ψ(ρ)2dθ2,

where dθ2 is the standard metric on SN−1, and ψ ∈ A. In this case, we write M ≡ Mψ ;
furthermore, we have

√
A(ρ, θ) = ψ(ρ)N−1η(θ) (for a suitable function η).
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Note that for ψ(r) = r , we have M = RN , while for ψ(r) = sinh r , M is the
N -dimensional hyperbolic space HN .

For most of our purposes, we shall assume that the following hypothesis is satisfied,
where we denote by Rico(x) the radial Ricci curvature at x with a given pole o ∈ M (see
Section 3 for some more details):{

(i) M is a Cartan–Hadamard manifold of dimension N ≥ 3;
(ii) Rico(x) ≥ −C(1+ dist(x, o)2) for some C ≥ 0.

(H)

For instance, assumption (H) is satisfied if M = HN , and e.g. on Riemannian models
(see Section 3 below) associated with functions ψ such that ψ ′′ ≥ 0 and ψ(r) = er

α
for

any r > 0 large enough, for some 0 < α ≤ 2.
Note that by (H) the Green function G(x, y) > 0 on M exists and is finite for all

x 6= y (see again Section 3), i.e. M is nonparabolic.
Let M+(M) be the set of positive Radon measures on M , with M+

F (M) := {µ ∈

M+(M) : µ(M) < ∞}. We shall also denote by MF (M) the space of signed finite
measures on M , that is, measures that can be written as differences of two elements of
M+

F (M).

Definition 2.1. Given a measure µ ∈MF (M), we say that a function u is a weak solu-
tion to problem (1.1) if

u ∈ L∞((0,∞);L1(M)) ∩ L∞(M × (τ,∞)) for all τ > 0, (2.1)

∇(um) ∈ L2((τ,∞);L2(M)) for all τ > 0, (2.2)

−

∫
∞

0

∫
M

u(x, t)ϕt (x, t) dV(x) dt +
∫
∞

0

∫
M

〈∇(um)(x, t),∇ϕ(x, t)〉 dV(x) dt = 0

(2.3)

for any ϕ ∈ C∞c (M × (0,∞)), and

lim
t→0

∫
M

u(x, t)φ(x) dV(x) =
∫
M

φ(x) dµ(x) for any φ ∈ Cb(M) := C(M)∩L∞(M).

(2.4)

In fact we shall prove (see Proposition 5.1 below) that weak solutions in the sense of
Definition 2.1 are continuous curves in L1(M).

2.1. Existence and uniqueness results

Concerning existence of solutions starting from an initial finite (not necessarily positive)
Radon measure, which are allowed to change sign, we prove the next result. The strategy
of the proof is similar to the one of [16, Theorem 3.2], but new ideas are necessary,
since the method of proof of [16, Theorem 3.2] works only in the case of positive Radon
measures.
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Theorem 2.2. Let assumption (H)(i) be satisfied. Let µ ∈MF (M). Then there exists a
weak solution u to problem (1.1) which conserves the quantity

µ(M) =

∫
M

u(x, t) dV(x) for all t > 0 (2.5)

and satisfies the smoothing effect

‖u(t)‖∞ ≤ Kt
−α
|µ|(M)β for all t > 0, (2.6)

where K is a positive constant which only depends on m,N , and where

α :=
N

(m− 1)N + 2
, β :=

2
(m− 1)N + 2

. (2.7)

Note that this result can be extended, apart from the conservation of mass, to the case of
the supercritical fast diffusion case m ∈ ((N − 2)/N, 1) (see Remark 5.3 below).

Concerning uniqueness of nonnegative solutions taking on the same initial positive fi-
nite measure, we show the following result. The ideas of the proof bear some similarities
to the one given in [16, Section 5], being based on the duality method of Pierre [26], but
substantial differences occur, mainly due to the very different properties of the heat semi-
group and the Green function on M , related to our assumptions on sectional curvatures.

Theorem 2.3. Let assumption (H) be satisfied. Let u1 and u2 be two nonnegative weak
solutions to problem (1.1). Suppose that their initial datum, in the sense of (2.4), is the
same µ ∈M+

F (M). Then u1 = u2.

Our final result concerns the existence and uniqueness of an initial trace for solutions to
the differential equation in problem (1.1).

Theorem 2.4. Let assumption (H) be satisfied. Let u be a weak solution of the differen-
tial equation in problem (1.1), in the sense that u satisfies (2.1)–(2.3). Then there exists
µ ∈MF (M) such that (2.4) is satisfied for any φ ∈ Cc(M) or for φ equal to a constant.

Under the additional assumption that u ≥ 0, the conclusion holds for any φ ∈ Cb(M),
for some µ ∈M+

F (M).

Remark 2.5. We point out that our existence and uniqueness results also hold in the
linear case, i.e. for m = 1. To the best of our knowledge no results are available in the
literature if the initial condition is a measure. Note that for the heat equation the explosion
rate − dist(x, o)2 for the Ricci curvature is a sharp condition for uniqueness, as shown
in [20]. For several other sharp results in the linear case see [23, 18, 19, 24]

2.2. Superharmonic functions and modified mean-value properties

In this section we establish a modified version of the mean-value inequality for distribu-
tional superharmonic functions. It should be stressed that these results, of independent
interest, will be essential in the proofs of the potential-theoretic results of Section 4.2,
which are in turn fundamental to the proof of uniqueness for solutions to problem (1.1).
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Unless otherwise stated, we assume here thatM is a nonparabolic manifold of dimen-
sion N ≥ 2, with G being the minimal positive Green function of M .

Let u : M → (−∞,∞] be a lower semicontinuous (l.s.c.) function. For r > 0 we
define

mr [u](x) :=

∫
{y∈M : G(x,y)=1/r}

u(y)|∇yG(x, y)| dS(y) for all x ∈ M, (2.8)

where dS is the (N−1)-dimensional Hausdorff measure onM . Moreover, for any α > 0,
we set

Mr [u](x) :=
α + 1
rα+1

∫ r

0
ξαmξ [u](x) dξ for all x ∈ M. (2.9)

Let us recall the well-known smooth coarea formula (see e.g. [6, Exercise III.12]). Let
φ : M → R be of class C∞(M) with |∇φ| ∈ L∞(M), and let f : M → R be either
nonnegative or in L1(M). Then∫

M

f |∇φ| dV =
∫
R
dξ

∫
{y∈φ−1(ξ)}

f (y) dS(y).

By approximation it is not difficult to show that the formula is also true with the choices
φ(y)= [G(x, y)]−1 and f (y)= u(y)[G(x, y)]−αχ{y∈M :G(x,y)>r}, for each fixed x ∈M .
So, one can rewrite (2.9) as

Mr [u](x) :=
α+1
rα+1

∫
{y∈M :G(x,y)>1/r}

u(y)[G(x, y)]−α−2
|∇yG(x, y)|

2 dV(y) (2.10)

for all x ∈ M .

Definition 2.6. We say that a l.s.c. function u : M → (−∞,∞] is m-continuous if

u(x) = lim
r→0

mr [u](x) for all x ∈ M.

Similarly, u is M-continuous if

u(x) = lim
r→0

Mr [u](x) for all x ∈ M.

We point out that if u is continuous, then it is both m-continuous and M-continuous
(see the proof of Lemma 4.1). Moreover, in general, if u is m-continuous, it is also
M-continuous.

Definition 2.7. We say that u ∈ L1
loc(M) is superharmonic (resp. subharmonic) if∫

M

u(x)1φ(x) dV(x) ≤ (≥) 0 for any φ ∈ C∞c (M), φ ≥ 0.

Moreover, u ∈ L1
loc(M) is harmonic if it is both subharmonic and superharmonic.
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Definition 2.8. We say that a l.s.c. function u : M → (−∞,∞] is m-superharmonic if

mr [u](x) ≤ u(x) for all x ∈ M and a.e. r > 0.

Similarly, u is M-superharmonic if

Mr [u](x) ≤ u(x) for all x ∈ M, r > 0.

Furthermore, we say that u is m-subharmonic if −u is m-superharmonic, while u is
M-subharmonic if −u is M-superharmonic.

Finally, we say that u is m-harmonic if it is both m-subharmonic and m-superhar-
monic, while u is M-harmonic if it is both M-subharmonic and M-superharmonic.

We have the following result, which will be proved in Section 4.1.

Theorem 2.9. (i) Let u be M-continuous, l.s.c. and superharmonic. Then u is M-super-
harmonic.

(ii) Let u be M-continuous, upper semicontinuous and subharmonic. Then u is M-sub-
harmonic.

Of course, the above theorem implies that if u is continuous and harmonic, then u is
M-harmonic, in agreement with the results of [25], which are given in principle for more
regular functions.

We stress again that the classical mean-value formula (for the Riemannian measure of
a ball) need not be valid, and that in principle only a mean-value inequality for nonnega-
tive subharmonic functions holds (see [22]).

By minor modifications in the proof of Theorem 2.9, a local version of such results on
general Riemannian manifolds (possibly parabolic) can be obtained, without supposing
that hypothesis (H) holds. In fact, we have the following.

Corollary 2.10. Let � ⊂ M be an open bounded subset. Let u be M-continuous, l.s.c.
and superharmonic in �. Then u is M-superharmonic in �. Similar statements hold for
subharmonic and harmonic functions.

Note that in Corollary 2.10, the function G in (2.8) is meant to be replaced by the Green
function of −1 in �′ with homogeneous Dirichlet boundary conditions at ∂�′, where �′

is any open bounded domain with smooth boundary such that � b �′.

We remark that, besides the previous ones, we expect that further results given in [2]
can be extended to Riemannian manifolds. In particular, it should be true that if a function
u is m-continuous, l.s.c. and superharmonic, then it is m-superharmonic. However, we
limit ourselves to proving the results stated above, since they are the only ones we need
in the study of existence and uniqueness for problem (1.1).

2.3. A connection between the Green function and the porous medium equation

In this section we state a nonlinear counterpart of a well-known result that relates the
Green function to the heat kernel. In this case, the role of the heat kernel is taken over by
the fundamental solution Bx0 of problem (1.1) with µ = δx0 , for each fixed x0 ∈ M .
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Suppose that hypothesis (H) is satisfied. Then by Theorem 2.2 the function Bx0 is well
defined. If we drop that assumption, the method developed in Section 5.2 to construct Bx0

does not work. Nevertheless, the function Bx0 can always be defined as the monotone
limit of approximate solutions to Dirichlet problems set in BR × (0,∞) (for the details,
see the proof of Theorem 2.11 in Section 5.3). In general, we cannot in principle exclude
that Bx0 = ∞.

Theorem 2.11. Let M be a complete noncompact Riemannian manifold of dimension
N ≥ 2. For any x0 ∈ M , let Bx0 be the solution of problem (1.1) with µ = δx0 , in the
sense described above. Then

G(x0, y) =

∫
∞

0
Bmx0

(y, t) dt for all y ∈ M. (2.11)

In particular, the time integral in (2.11) exists and is finite if and only ifM is nonparabolic.

As a consequence of Theorem 2.11 and of symmetry of the Green function (see (3.12)
below), we have the identity∫

∞

0
Bmx0

(y, t) dt =

∫
∞

0
Bmy (x0, t) dt for all x0, y ∈ M.

Remark 2.12. Since sectional curvatures are by assumption nonpositive, Hessian com-
parison (see (3.5) below) shows that BE0 (ρ(x), t), where BE0 (|x|, t) is the Euclidean
Barenblatt solution, is a supersolution of problem (1.1) with µ = δ0. By the compari-
son principle in bounded domains, it is not difficult to show that, as a consequence, if u is
a solution of (1.1) with µ ≡ u0 and supp u0 compact, then supp u(t) is also compact for
all t > 0. For the details, we refer to the proof of Proposition 5.1.

Moreover, in view of the construction of B0, by the same arguments as above we have
B0 ≤ B

E
0 in M × (0,∞). In particular, suppB0 is compact.

3. Preliminaries on Riemannian geometry and analysis on manifolds

Let M be a complete noncompact Riemannian manifold. Let 1 denote the standard
Laplace–Beltrami operator, ∇ the gradient (with respect to the metric of M) and dV
the Riemannian volume element.

In [29] it is shown that −1, defined on C∞c (M), is essentially self-adjoint in L2(M).
In particular, this implies that if f ∈ L2(M) with 1f ∈ L2(M), then ∇f ∈ L2(M), and
there exists a sequence {fj } ⊂ C∞c (M) such that

fj → f, ∇fj → ∇f, 1fj → 1f in L2(M).

In addition, for any f, g ∈ L2(M) with 1f,1g ∈ L2(M) we have∫
M

f 1g dV = −
∫
M

〈∇f,∇g〉 dV =
∫
M

g1f dV.
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It is seen directly that the Laplace–Beltrami operator in polar coordinates has the form

1 =
∂2

∂ρ2 +m(ρ, θ)
∂

∂ρ
+1Sρ , (3.1)

where m(ρ, θ) := ∂
∂ρ
(log
√
A), A := det(Aij ), 1Sρ is the Laplace–Beltrami operator on

the submanifold Sρ := ∂B(o, ρ) \ cut(o) and B(o, ρ) denotes the Riemannian ball of
radius ρ centred at o (B(ρ) for short). Furthermore, on model manifolds

1 =
∂2

∂ρ2 + (N − 1)
ψ ′

ψ

∂

∂ρ
+

1
ψ21SN−1 ,

where 1SN−1 is the Laplace–Beltrami operator on SN−1.

Let us recall comparison results for sectional and Ricci curvatures, which will be
used in what follows. For any x ∈ M \ {o}, denote by Rico(x) the Ricci curvature at x in
the direction ∂/∂ρ. Let ω denote any pair of tangent vectors from TxM having the form
(∂/∂ρ,X), where X is a unit vector orthogonal to ∂/∂ρ. Denote by Kω(x) the sectional
curvature at the point x ∈ M of the 2-section determined by ω. By classical results (see
e.g. [9], [10, Section 15]), if

Kω(x) ≤ −
ψ̃ ′′(ρ)

ψ̃(ρ)
for all x ≡ (ρ, θ) ∈ M \ {o}, (3.2)

for some function ψ̃ ∈ A, then

m(ρ, θ) ≥ (N − 1)
ψ̃ ′(ρ)

ψ̃(ρ)
for all ρ > 0, θ ∈ SN−1.

Moreover (see e.g. [10, Section 3]),

V(BR) ≥ ωN
∫ R

0
ψ̃(ρ)N−1 dρ, (3.3)

where ωN is the measure of the unit sphere SN−1.

On the other hand, if

Rico(x) ≥ −(N − 1)
ψ ′′(ρ)

ψ(ρ)
for all x ≡ (ρ, θ) ∈ M \ {o},

for some function ψ ∈ A, then

m(ρ, θ) ≤ (N − 1)
ψ ′(ρ)

ψ(ρ)
for all ρ > 0, θ ∈ SN−1. (3.4)

Note that if Mψ is a model manifold, then for any x ≡ (ρ, θ) ∈ Mψ \ {o} we have

Kω(x) = −
ψ ′′(ρ)

ψ(ρ)
and Rico(x) = −(N − 1)

ψ ′′(ρ)

ψ(ρ)
.

Since in view of hypothesis (H) we have Kω(x) ≤ 0, we infer that condition (3.2) is
trivially satisfied with ψ̃(ρ) = ρ. Therefore,

m(ρ, θ) ≥
N − 1
ρ

for all x ≡ (ρ, θ) ∈ M \ {o}. (3.5)
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Let spec(−1) be the spectrum of −1 in L2(M). Note that (see [10, Section 10])

spec(−1) ⊆ [0,∞).

As a consequence of (H)(i), the Sobolev inequality

‖f ‖ 2N
N−2
≤ CS‖∇f ‖2 for all f ∈ C∞c (M) (3.6)

holds for some positive constant CS > 0, which is equivalent to the Faber–Krahn in-
equality

λ1(�) ≥ CFKV(�)−2/N (3.7)

for some positive constant CFK , for any bounded regular domain � ⊂ M . Here λ1(�)

denotes the first eigenvalue for the operator −1 in L2(�) with homogeneous Dirichlet
boundary conditions on ∂�. Moreover, for some positive constant CN one has

V(BR(x)) ≥ CNRN for any x ∈ M,R > 0. (3.8)

Inequalities (3.6) and (3.7) and their connection are classical results, which follow e.g.
from [12, Exercise 14.5, Corollary 14.23, Remark 14.24] or [17, Lemma 8.1, Theorem
8.3]. Furthermore, (3.8) is due to (H)(i) and (3.3) with ψ̃(ρ) = ρ.

Let G(x, y) be the Green function on M . Note that a priori (see [10]) either G(x, y)
= ∞ for all x, y ∈ M or G(x, y) <∞ for all x 6= y.

Since M is by assumption a Cartan–Hadamard manifold and hence sectional curva-
tures are nonpositive, standard Hessian comparisons imply that

G(x, y) ≤ C̃ dist(x, y)2−N for all x, y ∈ M, (3.9)

for a suitable C̃ > 0 (we refer e.g. to [11, Theorem 4.2] and (3.15) below). In particular,
the Green function G(x, y) is finite for any x 6= y and vanishes as dist(x, y) → ∞.
Furthermore (see [10, Section 4]),

G(x, y) ∼ C̃ dist(x, y)2−N as dist(x, y)→ 0 (for any fixed y), (3.10)
G(x, y) > 0 for all x, y ∈ M, (3.11)
G(x, y) = G(y, x) for all x, y ∈ M. (3.12)

In addition,

for each fixed y ∈ M, x 7→ G(x, y) is of class C∞(M \ {y}), (3.13)
1xG(x, y) = 0 for any x ∈ M \ {y},

and ∫
M

G(x, y)1φ(x) dV(x) = −φ(y) ≤ 0 (3.14)

for any φ ∈ C∞c (M) with φ ≥ 0. Moreover, by Sard’s theorem, for all x ∈ M and
a.e. (possibly depending on x) a > 0, one has ∇yG(x, y) 6= 0 on the level set {y ∈ M :
G(x, y) = a}. In particular such level sets are smooth.
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Let h be the heat kernel on M; we have the identity

G(x, y) =

∫
∞

0
h(x, y, t) dt for all x, y ∈ M (3.15)

(see [10]). Moreover, let {Tt }t≥0 denote the heat semigroup on M . The minimal positive
solution of the Cauchy problem for the heat equation{

ut = 1u in M × (0,∞),
u = u0 ∈ L

1(M), u0 ≥ 0 on M × {0},

can be written as

Tt [u0](x) =

∫
M

h(x, y, t)u0(y) dV(y) for all x ∈ M, t ≥ 0.

Note that
‖Ttφ‖p ≤ ‖φ‖p for all t > 0, p ∈ [1,∞], φ ∈ Lp(M). (3.16)

Furthermore, as a consequence of (3.6), we have

‖Ttφ‖∞ ≤
C

tN/2
‖φ‖1 for any t > 0, φ ∈ L1(M), (3.17)

for some C = C(N) > 0 (see e.g. [7, Chapter 4]).

4. Auxiliary results in potential analysis on Riemannian manifolds

This section is devoted to establishing some crucial results for superharmonic functions
and potentials of Radon measures, the latter being closely related to the former. Here, un-
less otherwise stated, M will always be assumed to be a nonparabolic Cartan–Hadamard
manifold of dimension N ≥ 2.

4.1. Proof of the modified mean-value inequality and properties of superharmonic
functions

In order to show the modified mean-value inequality, we need a preliminary lemma.

Lemma 4.1. For each fixed y ∈ M , the function x 7→ G(x, y) from M to [0,∞] is
superharmonic. Moreover, it is both m- and M-continuous.

Proof. In view of (3.10) and (3.14), the function x 7→ G(x, y) is superharmonic. Fur-
thermore, an easy application of the divergence theorem yields, for any x ∈ M and a.e.
r > 0,

−

∫
{y∈M :G(x,y)>1/r}

G(x, y)1φ(y) dV(y)

= −mr [φ](x)−
1
r

∫
{y∈M :G(x,y)>1/r}

1φ(y) dV(y)+ lim
ρ→0

mρ[φ](x) (4.1)



The porous medium equation on Riemannian manifolds 2781

for any φ ∈ C2(M). This can be shown exactly as in [2, formula (11.4)], upon noting that
limr→0 mρ[φ](x) exists, as proved in formula (11.2) and just above (11.7) in [2].

Now, we choose φ = ξ with ξ ∈ C∞c (M), ξ = 1 in a neighbourhood of x, and
r > 0 so large that supp ξ ⊂ {y ∈ M : G(x, y) > 1/r}. Hence, using (3.14), (4.1), an
integration by parts, and the fact that mr [φ](x) = 0, we obtain

lim
ρ→0

∫
{y∈M :G(x,y)=1/ρ}

|∇yG(x, y)| dS(y) = 1. (4.2)

From (4.2) it easily follows that any continuous function on M is automatically m- and
so M-continuous. Therefore, for each y ∈ M , the function x 7→ G(x, y) is m-continuous
at any x ∈ M \ {y}. It remains to show that it is m-continuous also at x = y. This is a
straightforward consequence of the very definition of mr and (4.2):

lim
r→0

mr [G(·, y)](y) = lim
r→0

∫
{z∈M :G(y,z)=1/r}

G(y, z)|∇zG(y, z)| dS(z)

= lim
r→0

1
r

∫
{z∈M :G(y,z)=1/r}

|∇zG(y, z)| dS(z) = ∞.

Hence the function x 7→ G(x, y) is M-continuous, too. This completes the proof. ut

Proof of Theorem 2.9. We shall prove that for every x ∈ M the function r 7→Mr [u](x)

is nonincreasing in (0,∞). Note that this property combined with the fact that u is
M-continuous easily gives the conclusion.

Now, let ψ ∈ C∞([0,∞)) with ψ ≥ 0, ψ constant in [0, ε), ψ = 0 in [R,∞) for
some R > ε > 0. Fix any x0 ∈ M . Define

φ(x) := ψ

(
1

G(x0, x)

)
for all x ∈ M, (4.3)

with the obvious convention that φ(x0) = ψ(0). In view of (3.13) and (3.9), we have
φ ∈ C∞c (M). Since u is superharmonic, Definition 2.7 implies∫

M

u1φ dV ≤ 0. (4.4)

A straightforward computation yields

1φ(x) =
|∇xG(x0, x)|

2

G(x0, x)4

[
ψ ′′
(

1
G(x0, x)

)
+2G(x0, x)ψ

′

(
1

G(x0, x)

)]
for all x ∈ M.

(4.5)

In view of (3.11), of the explicit form of 1φ(x) given above, and of the discussion after
formula (3.14), we can apply the smooth coarea formula (see again [6, Exercise III.12]),
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(4.4) and (4.5) to get

0 ≥
∫
M

u1φ dV

=

∫
∞

0

∫
{x∈M : 1/G(x0,x)=t}

u(x)
|∇xG(x0, x)|

G(x0, x)2

×

[
ψ ′′
(

1
G(x0, x)

)
+ 2G(x0, x)ψ

′

(
1

G(x0, x)

)]
dt

=

∫
∞

0
t2
[
ψ ′′(t)+

2ψ ′(t)
t

] ∫
{x∈M : 1/G(x0,x)=t}

u(x)|∇xG(x0, x)| dS(x) dt

=

∫
∞

0
[t2ψ ′′(t)+ 2tψ ′(t)]mt [u](x0) dt =

∫
∞

0
(t2ψ ′(t))′mt [u](x0) dt. (4.6)

Given any η ∈ C∞c ((0,∞)) with η ≥ 0, we can pick

ψ(t) :=

∫
∞

t

η(s)

s2 ds for all t ∈ [0,∞).

Using such ψ in (4.3) and (4.6) we obtain∫
∞

0
η′(t)mt [u](x0) dt ≥ 0 for all η ∈ C∞c ((0,∞)), η ≥ 0. (4.7)

By [3, Lemma 8.2.13], (4.7) implies that the function r 7→ Mr [u](x) is nonincreasing
in (0,∞). This completes the proof. ut

As a consequence of Lemma 4.1 and Theorem 2.9 we obtain the next result.

Corollary 4.2. For each y ∈ M, the function x 7→ G(x, y) is M-superharmonic.

We have two further lemmas, concerning superharmonic functions, which will be used in
what follows.

Lemma 4.3. Let u be an M-superharmonic function. Then u is M-continuous.

Proof. Let x ∈ M . From Definition 2.8 we immediately deduce that

u(x) ≥ lim sup
r→0

Mr [u](x). (4.8)

Now, let ε > 0 and u(x) < ∞ (the proof for u(x) = ∞ is analogous). Since u is l.s.c.
at x, there exists r̃ε > 0 such that

inf
Br̃ε (x)

u ≥ u(x)− ε. (4.9)

Due to (3.9), there exists r̄ε > 0 such that

{y ∈ M : G(x, y) = 1/ρ} ⊂ Br̃ε (x) for all 0 < ρ ≤ r̄ε. (4.10)

Hence, in view of (4.9) and (4.10), we obtain

Mr [u](x) ≥ [u(x)− ε]
α + 1
rα+1

∫ r

0
ρα
∫
{y∈M :G(x,y)=1/ρ}

|∇yG(x, y)| dS(y) dρ (4.11)
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for all 0 < r ≤ r̄ε. Due to (4.2), letting r → 0 in (4.11) yields

lim inf
r→0

Mr [u](x) ≥ u(x)− ε. (4.12)

The conclusion follows from (4.8) and (4.12), since ε is arbitrary. ut

Lemma 4.4. Let {un} be a sequence of M-superharmonic functions. Then the function
x 7→ lim infn→∞ un(x) is M-superharmonic, provided it is l.s.c.

Proof. Since each un is M-superhamonic, it satisfies

un(x) ≥
α + 1
rα+1

∫ r

0
ρα
∫
{y∈M :G(x,y)=1/ρ}

un(y)|∇yG(x, y)| dS(y) dρ (4.13)

for all x ∈ M . By Fatou’s Lemma applied to the right-hand side of (4.13),

lim inf
n→∞

un(x) ≥
α + 1
rα+1

∫ r

0
ρα
∫
{y∈M :G(x,y)=1/ρ}

lim inf
n→∞

un(y)|∇yG(x, y)| dS(y) dρ,

so lim infn→∞ un is M-superharmonic. ut

4.2. Potentials of Radon measures and their properties

We start by recalling the definition of vague convergence for Radon measures.

Definition 4.5. Given a sequence {µn} ⊂ M+(M) and µ ∈ M+(M), we say that µn
converges vaguely to µ, and we write

µn ⇀ µ as n→∞,

if ∫
M

φ dµn→

∫
M

φ dµ as n→∞ for all φ ∈ Cc(M). (4.14)

The same definition holds for a sequence {µn} ⊂ MF (M) and µ ∈ MF (M). In the
latter case the validity of (4.14) plus the condition supn |µn|(M) <∞ is equivalent to the
validity of (4.14) for all φ ∈ C0(M) := {φ ∈ C(M) : φ(x)→ 0 as d(x, o)→∞} (see
e.g. [1, Definition 1.58]).

A well-known compactness result asserts that if supn |µn|(M) <∞ then there exists
µ ∈ MF (M) such that (4.14) holds for all φ ∈ C0(M) along a subsequence [1, Theo-
rem 1.59].

Furthermore, vague convergence implies a lower semicontinuity property:

|µ|(M) ≤ lim inf
n→∞

|µn|(M).
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For any µ ∈M+(M) we define its potential as

Gµ(x) :=
∫
M

G(x, y) dµ(y) for all x ∈ M.

Note that, in general, Gµ is a function fromM to [0,∞]. When dµ(y) = f (y) dV(y) for
some measurable function f ≥ 0, we shall use the simplified notation

Gf (x) :=
∫
M

G(x, y)f (y) dV(y) for all x ∈ M. (4.15)

The same definition holds for any µ ∈MF (M), namely Gµ = Gµ+ − Gµ− . In this case
Gµ(x) only makes sense for almost every x ∈ M; by means of Tonelli’s Theorem and
estimate (3.9), it is straightforward to show that potentials of finite Radon measures are at
least L1

loc(M) functions.
The main goal of this section is to prove the next result.

Proposition 4.6. Let {µn} ⊂ M+(M) and µ ∈ M+(M), with µn ⇀ µ. Suppose that
for each compact subset K ⊂ M and for any ε > 0 there exists Rε > 0 such that∫

BcR

∫
K

G(x, y) dV(y) dµn(x) ≤ ε for any R > Rε, n ∈ N. (4.16)

Then
Gµ(x) = lim inf

n→∞
Gµn(x) for every x ∈ M, (4.17)

provided x 7→ lim infGµn(x) is l.s.c.

We point out that Proposition 4.6 will play a key role in the proof of Theorem 2.3. In
particular, the fact that (4.17) holds for every x ∈ M will be fundamental.

The proof of Proposition 4.6 requires some preliminary tools.

Proposition 4.7 (Principle of descent). Let {µn} ⊂ M+(M) and µ ∈ M+(M). Sup-
pose that µn ⇀ µ. Then

Gµ(x) ≤ lim inf
n→∞

Gµn(x) for all x ∈ M. (4.18)

Proof. Assume first that there exists a compact subset K such that suppµn ⊂ K for any
n ∈ N and suppµ ⊂ K. For each ε > 0 define

Gε(x, y) := φε

(
1

G(x, y)

)
for all x, y ∈ M,

where

φε(r) :=

{
1/ε, r ≤ ε,

1/r, r > ε.

Note that Gε is continuous and bounded in M ×M; furthermore, for each ε > 0,

Gε(x, y) ≤ G(x, y) for all x, y ∈ M, (4.19)
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and
Gε(x, y)→ G(x, y) as ε→ 0 for all x, y ∈ M. (4.20)

Hence, in view of (4.19) and of the fact that µn ⇀ µ,∫
M

Gε(x, y) dµ(y) = lim
n→∞

∫
M

Gε(x, y) dµn(y) ≤ lim inf
n→∞

∫
M

G(x, y) dµn(y) (4.21)

for all x ∈ M . As a consequence of (4.20), (4.21), and Fatou’s Lemma, we obtain

Gµ(x) =
∫
M

lim
ε→0

Gε(x, y) dµ(y) ≤ lim inf
ε→0

∫
M

Gε(x, y) dµ(y)

≤ lim inf
n→∞

∫
M

G(x, y) dµn(y) for all x ∈ M .

In order to complete the proof, we have to get rid of the assumption suppµn ⊂ K for
any n ∈ N and suppµ ⊂ K . To this end, note that since µ is locally finite, the function
R 7→ µ(BR) is locally bounded and nondecreasing, thus its jump set is countable. There-
fore, we can select an increasing sequence {Rk} ⊂ (0,∞) such that µ(∂Bk) = 0 where
Bk := BRk . This implies that µkn := µncBk ⇀ µcBk =: µ

k as n→ ∞, for each k ∈ N
(see [1, Proposition 1.62]). So,

Gµ
k

(x) ≤ lim inf
n→∞

Gµ
k
n(x) ≤ lim inf

n→∞
Gµn(x) for all x ∈ M.

Hence (4.18) follows by letting k→∞ in the above inequality, in view of the monotone
convergence theorem. ut

Lemma 4.8. Let µ ∈M+(M). Then Gµ : M → [0,∞] is a l.s.c. function.

Proof. Given x0 ∈ M , take any sequence {xn} ⊂ M with xn → x0. Due to Fatou’s
Lemma, the continuity of y 7→ G(x0, y) in M \ {x0} for each x0 ∈ M , and (3.10), we get

Gµ(x0) =

∫
M

lim
n→∞

G(xn, y) dµ(y) ≤ lim inf
n→∞

∫
M

G(xn, y) dµ(y) = lim inf
n→∞

Gµ(xn).

This completes the proof. ut

Lemma 4.9. Let the assumptions of Proposition 4.6 be satisfied. Then

Gµ(x) = lim inf
n→∞

Gµn(x) for V-a.e. x ∈ M. (4.22)

Proof. Towards a contradiction, suppose that for the set

E :=
{
x ∈ M : Gµ(x) < lim inf

n→∞
Gµn(x)

}
we have V(E) > 0. We can therefore select a compact subset K ⊂ E with V(K) > 0.
By Fatou’s Lemma and the very definition of E, we have∫

K

Gµ dV <
∫
K

lim inf
n→∞

Gµn dV ≤ lim inf
n→∞

∫
K

Gµn dV. (4.23)
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Note that for any ν ∈M+(M), by Tonelli’s Theorem,∫
K

Gν dV =
∫
M

φK dν,

where
φK(x) :=

∫
K

G(x, y) dV(y) for all x ∈ M.

Since φK = GχK , Lemma 4.14 below implies φK ∈ C(M) ∩ L∞(M). For any R > 0 let
φRK be a continuous function on M with

φRK(x) =

{
φK(x) for any x ∈ BR,
0 for any x ∈ BcR+1,

and
φRK ≤ φK in M.

We have∣∣∣∣∫
M

φK dµ−

∫
M

φK dµn

∣∣∣∣
≤

∫
M

(φK − φ
R
K) dµn︸ ︷︷ ︸

I1

+

∫
M

(φK − φ
R
K) dµ︸ ︷︷ ︸

I2

+

∣∣∣∣∫
M

φRK dµn −

∫
M

φRK dµ

∣∣∣∣︸ ︷︷ ︸
I3

. (4.24)

Thanks to (4.16), I1 can be estimated as follows: for any ε > 0 there exists Rε > 0 such
that for all R > Rε, n ∈ N,

0 ≤ I1 ≤

∫
BcR

φK dµn ≤ ε. (4.25)

Now, for any R2 > R1 > 1 let ξ ∈ C(M) with

ξ
R1,R2
K (x) = ξ(x) =

{
φK(x) for any x ∈ BR2 \ BR1 ,

0 for any x ∈ BcR2+1 ∪ BR1−1,

and
ξ ≤ φK in M.

Since µn ⇀ µ as n→∞, property (4.16) and Fatou’s Lemma imply∫
BcR1

φK dµ ≤ lim inf
R2→∞

∫
M

ξ dµ = lim inf
R2→∞

lim
n→∞

∫
M

ξ dµn ≤ lim sup
n→∞

∫
Bc
R1−1

φK dµn ≤ ε

provided R1 > Rε + 1. This yields

0 ≤ I2 ≤ ε for all R > Rε + 1. (4.26)
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Moreover, I3 → 0 as n→∞ by the very definition of vague convergence. Hence, letting
n→∞ in (4.24), choosing R > Rε + 1, using (4.25) and (4.26), we deduce

lim sup
n→∞

∣∣∣∣∫
M

φK dµ−

∫
M

φK dµn

∣∣∣∣ ≤ 2ε, (4.27)

which contradicts (4.23). Thus, (4.22) follows. ut

Lemma 4.10. Let µ ∈M+(M). Then Gµ is M-superharmonic.

Proof. Let x ∈ M and r > 0. Thanks to Tonelli’s Theorem and Corollary 4.2, we have

Gµ(x) =
∫
M

G(x, y) dµ(y) ≥

∫
M

Mr [G(·, y)](x) dµ(y)

=
α + 1
rα+1

∫
M

∫ r

0
ραmρ[G(·, y)](x) dρ dµ(y)

=
α + 1
rα+1

∫
M

∫ r

0
ρα
∫
{z∈M :G(x,z)=1/ρ}

G(y, z)|∇zG(x, z)| dS(z) dρ dµ(y)

=
α + 1
rα+1

∫ r

0
ρα
∫
M

∫
{z∈M :G(x,z)=1/ρ}

G(y, z)|∇zG(x, z)| dS(z) dµ(y) dρ

=
α + 1
rα+1

∫ r

0
ρα
∫
{z∈M :G(x,z)=1/ρ}

Gµ(z)︷ ︸︸ ︷∫
M

G(z, y) dµ(y) |∇zG(x, z)| dS(z) dρ

=Mr [Gµ](x),

and the proof is complete. ut

Proof of Proposition 4.6. From Lemmas 4.4 and 4.10, both Gµ and L := lim infn→∞ Gµn
are M-superharmonic. Hence, in view of Lemma 4.3 and (4.22), for every x ∈ M ,

L(x) = lim
r→0

Mr [L](x)

= lim
r→0

α + 1
rα+1

∫ r

0
ξα
∫
{y∈M : G(x,y)=1/ξ}

L(y)|∇yG(x, y)| dS(y) dξ

= lim
r→0

α + 1
rα+1

∫ r

0
ξα
∫
{y∈M :G(x,y)=1/ξ}

Gµ(y)|∇yG(x, y)| dS(y) dξ

= lim
r→0

Mr [Gµ](x) = Gµ(x);

we point out that here we have used (2.10) in order to circumvent the fact that Gµ and L
coincide only V-a.e. in M . ut

Let us recall the following well-known result, which will be essential in the proof of
Theorem 2.2, in the case of signed measures.
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Lemma 4.11 (Jordan decomposition). Let µ ∈ MF (M). There exists a unique couple
(µ+, µ−) ∈M+

F (M)×M+

F (M) such that µ = µ+ − µ− and

µP ≥ µ+, µN ≥ µ− (4.28)

for any other couple (µP , µN ) ∈M+

F (M)×M+

F (M) such that

µ = µP − µN . (4.29)

Moreover, (µ+, µ−) is the unique minimizer of the functional

(µP , µN ) 7→ µP (M)+ µN (M) for all µP , µN ∈M+

F (M) subject to (4.29).

The corresponding minimum is referred to as the total variation of µ, and it is denoted by
|µ|(M), the total mass of the positive finite Radon measure |µ| = µ+ + µ−.

Proof. This is a classical result in measure theory: see for instance [33, Theorem 10.8].
We point out that the last statement is just a consequence of (4.28). In fact, in view of the
latter, given any decomposition (µP , µN ) 6= (µ+, µ−) there necessarily exists a Borel
set A ⊂ M such that either µP (A) > µ+(A) or µN (A) > µ−(A). In particular,

|µ|(M) = µ+(A)+ µ+(M \ A)+ µ−(A)+ µ−(M \ A)

< µP (A)+ µP (M \ A)+ µN (A)+ µN (M \ A) = µP (M)+ µN (M). ut

Remark 4.12. If dµ(x) = f (x) dV(x) for some f ∈ L1(M), then dµ+(x) =

f+(x) dV(x) and dµ−(x) = f−(x) dV(x).

We now show a standard uniqueness result involving potentials of finite Radon measures.

Lemma 4.13. Let µ, ν ∈ MF , and suppose that Gµ(x) = Gν(x) for almost every
x ∈ M . Then µ = ν. In particular, if µ (or ν) is positive, then Gµ(x) = Gν(x) for
every x ∈ M .

Proof. Let φ ∈ C∞c (M). In view of the assumptions, we have∫
M

Gµ(x)1φ(x) dV(x) =
∫
M

Gν(x)1φ(x) dV(x). (4.30)

By Fubini’s Theorem (recall (3.9)), (4.30) is equivalent to∫
M

∫
M

G(x, y)1φ(x) dV(x) dµ(y) =
∫
M

∫
M

G(x, y)1φ(x) dV(x) dν(y),

that is, ∫
M

φ(y) dµ(y) =

∫
M

φ(y) dν(y). (4.31)

From (4.31) the conclusion follows thanks to density of C∞c (M) in Cc(M). ut

The following result, which is crucial for what follows, is concerned with integrability
properties of potentials of functions in L1(M) ∩ L∞(M).
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Lemma 4.14. Let N ≥ 3 and f ∈ L1(M)∩L∞(M). Then Gf ∈ C(M)∩Lp(M) for all
p ∈ (N/(N − 2),∞], ∇Gf ∈ [L2(M)]N , and∫

M

|∇Gf |2 dV =
∫
M

f Gf dV. (4.32)

Proof. We first show that Gf ∈ C(M). To this end, fix any x0 ∈ M , ε > 0, and suppose
that x ∈ Bε(x0). We have

|Gf (x)− Gf (x0)| ≤

∫
M

|G(x, y)−G(x0, y)| |f (y)| dV(y)

≤ ‖f ‖∞

∫
Bε(x0)

[G(x, y)+G(x0, y)] dV(y)

+

∫
Bcε (x0)

|G(x, y)−G(x0, y)| |f (y)| dV(y).

Due to (3.9), since f ∈ L1(M), by dominated convergence we get∫
Bcε (x0)

|G(x, y)−G(x0, y)| |f (y)| dV(y)→ 0 as x → x0.

On the other hand, since y 7→ G(x, y) is bounded e.g. in L
N−1
N−2 (Bε(x0)) uniformly with

respect to x ∈ M (recall again (3.9) and the fact that the Riemannian measure V is locally
Euclidean), and G(x, y) → G(x0, y) as x → x0 for every y ∈ M , we see that G(x, y)
converges weakly to G(x0, y) in L

N−1
N−2 (Bε(x0)), so that∫

Bε(x0)
G(x, y) dV(y)→

∫
Bε(x0)

G(x0, y) dV(y) as x → x0.

Hence,

lim sup
x→x0

|Gf (x)− Gf (x0)| ≤ 2 ‖f ‖∞

∫
Bε(x0)

G(x0, y) dV(y),

and the claim follows by letting ε→ 0, thanks to the local integrability of y 7→ G(x0, y).
In order to prove that Gf ∈ Lp(M) for all p ∈ (N/(N − 2),∞], it is convenient to

use the representation formula (3.15) for the Green function. In fact, by means of (3.16),
(3.17) and interpolation, it is straightforward to infer the following estimate:

‖Ttf ‖p ≤ Ct
−
N(p−1)

2p ‖f ‖1 ∀p ∈ (1,∞), ∀t > 0, (4.33)

where C is a positive constant depending only on N , p. By (3.15),

‖Gf ‖p ≤
∫
∞

0
‖Ttf ‖p dt =

∫ 1

0
‖Ttf ‖p dt +

∫
∞

1
‖Ttf ‖p dt ∀p ∈ [1,∞]. (4.34)

By using (3.16) and f ∈ L1(M) ∩ L∞(M), the first integral on the r.h.s. of (4.34) is
finite for every p ∈ [1,∞]. By means of (3.17) we can deduce that the second integral
on the r.h.s. of (4.34) is finite for p = ∞; furthermore, thanks to (4.33), that integral is
also finite for all p ∈ (N/(N − 2),∞). We have thus shown that Gf ∈ Lp(M) for all
p ∈ (N/(N − 2),∞].
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We are left with the proof of (4.32). We assume, with no loss of generality, that f ≥ 0.
For any R > 0, we denote by GfR the potential of f in BR , that is, the unique H 1

0 (BR)

solution to {
−1v = f in BR,
v = 0 on ∂BR.

Clearly, ∫
BR

|∇GfR |
2 dV =

∫
BR

f GfR dV. (4.35)

Because GfR converges monotonically from below to Gf and f ∈ L1(M) ∩ L∞(M),
and because from the first part of the proof we know that Gf ∈ Lp(M) for all p ∈
(N/(N − 2),∞], we can pass to the limit in (4.35) as R→∞ to get∫

M

|∇Gf |2 dV ≤
∫
M

f Gf dV

and
∇GfR ⇀ ∇G

f in [L2(M)]N , (4.36)

where ∇GfR is set to be zero in BcR . Exploiting the fact that GfR = 0 on ∂BR and
−1Gf = f in M , we obtain∫

BR

〈∇GfR ,∇G
f
〉 dV =

∫
BR

f GfR dV. (4.37)

Identity (4.32) then follows by letting R → ∞ in (4.37), on using (4.36) and the mono-
tone convergence of GfR to Gf . The case of signed functions follows by writing f =
f+ − f−, and using the linearity of the potential operator. ut

5. Existence of weak solutions: proofs

This section is devoted to the proofs of our main results concerning existence and funda-
mental properties of the weak solutions to (1.1) we construct.

5.1. Consequences of the definition of weak solution

The aim of this subsection is to prove the following result, which establishes some fun-
damental properties enjoyed by weak solutions in the sense of Definition 2.1.

Proposition 5.1. Let assumption (H)(i) be satisfied. Let u be any function satisfying
(2.1)–(2.3). Then

u ∈ C((0,∞);L1(M)), (5.1)∫
M

u(x, t1) dV(x) =
∫
M

u(x, t2) dV(x) for all t2 > t1 > 0, (5.2)

‖u(t)‖∞ ≤ Kt
−α
‖u‖

β

L∞((0,∞);L1(M))
for all t > 0, (5.3)

where K is a positive constant which only depends on m,N , and α, β are as in (2.7).
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In order to prove Proposition 5.1 we need a preliminary lemma, which relies on results
on the porous medium equation that are by now well known.

Lemma 5.2. Let µ ≡ u0 ∈ L
1(M) ∩ L∞(M). Then there exists a unique weak solution

u to problem (1.1) satisfying (2.1)–(2.2) down to τ = 0 and

−

∫
∞

0

∫
M

u(x, t)ϕt (x, t) dV(x) dt +
∫
∞

0

∫
M

〈∇(um)(x, t),∇ϕ(x, t)〉 dV(x) dt

=

∫
M

u0(x)ϕ(x, 0) dV(x) (5.4)

for any ϕ ∈ C∞c (M × [0,∞)). Moreover, u ∈ C([0,∞);L1(M)), and if v is another
weak solution to problem (1.1) with initial datum v0 ∈ L

1(M) ∩ L∞(M) then

‖u(t)− v(t)‖1 ≤ ‖u0 − v0‖1 for all t > 0. (5.5)

Proof. As u0 ∈ L
1(M)∩L∞(M), existence of the so-called energy solutions, that is, so-

lutions for which (2.1)–(2.2) hold down to τ = 0 and (5.4) is satisfied, is rather standard
(we refer e.g. to [30, Sections 5, 9] for the Euclidean case). The simplest way to construct
them is e.g. by using approximate problems on balls, establishing suitable a priori esti-
mates and then passing to the limit as the radius of the ball goes to infinity. A sketch of
an analogous procedure is provided at the beginning of the proof of Theorem 2.2 below.
Uniqueness in this class is due to a well-known theorem by Oleı̆nik (see [30, Section 5.3]).
The continuity of u(t) as a curve in L1(M) is then a consequence of an alternative con-
struction of the solution, which makes use of the Crandall–Liggett Theorem and proceeds
by means of time discretization (see [30, Section 10]). Also the L1-contractivity inequal-
ity (5.5) is a classical fact (see [30, Section 3]).

For similar issues involving existence, uniqueness and equivalence of different con-
cepts of solution (in the framework of the fractional porous medium equation), we also
refer to [15, Appendix A]. ut

Proof of Proposition 5.1. Given almost every t0 > 0, namely any Lebesgue point of u(t)
as a curve inL1(M), let {θ t0% } (0 < % < t0) be a family of positive, smooth approximations
of χ[t0,∞) such that supp θ t0% ⊂ [t0 − %,∞) and (θ t0% )′ → δt0 as % → 0. Let ϕ be any
function in C∞c (M × [t0,∞)); we can assume that ϕ is the restriction to M × [t0,∞) of
some function in C∞c (M × (0,∞)). Hence, by plugging in (2.3) the test function

ϕ%(x, t) := θ
t0
% (t)ϕ(x, t) ∀(x, t) ∈ M × (0,∞)

and letting %→ 0, we end up with the identity

−

∫
∞

t0

∫
M

u(x, t)ϕt (x, t) dV(x) dt +
∫
∞

t0

∫
M

〈∇(um)(x, t),∇ϕ(x, t)〉 dV(x) dt

=

∫
M

u(x, t0)ϕ(x, t0) dV(x).

On the other hand, by Definition 2.1 it is apparent that (2.1)–(2.2) hold for τ = t0; we
have therefore shown that uc[t0,∞) is a weak solution to (1.1) (with 0 replaced by t0) in
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the sense of Lemma 5.2, starting from the initial datum µ ≡ u(t0) ∈ L
1(M) ∩ L∞(M).

In particular u ∈ C([t0,∞);L1(M)), whence (5.1) because t0 can be arbitrarily small.
To establish (5.2), we use a reasoning similar to the one outlined in Remark 2.12.

Indeed, by the same arguments, we know that the free-mass time-shifted Barenblatt func-
tions

B
E,D
0 (ρ(x), t) := (t + 1)−α[D − k ρ(x)2(t + 1)−β ]1/(m−1)

+ (5.6)

for all (x, t) ∈ M × (0,∞), ∀D > 0 are (weak) supersolutions to (1.1) with initial
datum µ ≡ B

E,D
0 (ρ(x), 0), where α, β are as in (2.7) and k is a positive constant de-

pending only on m,N . Let us first prove (5.2) under the additional assumption that u(t1)
is compactly supported. In this case, we can always choose D in (5.6) so large that
|u(x, t1)| ≤ B

E,D
0 (ρ(x), 0). Hence, because BE,D0 (ρ(x), t) and −BE,D0 (ρ(x), t) are a

supersolution and a subsolution, respectively, it follows that

−B
E,D
0 (ρ(x), t − t1) ≤ u(x, t) ≤ B

E,D
0 (ρ(x), t − t1) for a.e. (x, t) ∈ M × (t1,∞).

(5.7)

Since BE,D0 is compactly supported for all times, estimate (5.7) implies that u is also
compactly supported for all times. In particular, (5.2) holds. If u(t1) is not compactly
supported, we can pick a sequence of initial data u1,n ∈ L

1(M) ∩ L∞(M), with com-
pact support, such that limn→∞ u1,n = u(t1) in L1(M). If we denote by un the solution
to (1.1) corresponding to µ ≡ u1,n, the above argument shows that (5.2) is satisfied with
u replaced by un(t − t1): on the other hand, the L1-contractivity inequality (5.5) ensures
that the solution map is continuous in L1(M), so we can let n→∞ to get (5.2).

Let us finally deal with the smoothing effect (5.3). For initial data u0 and correspond-
ing solutions u as in Lemma 5.2, the estimate

‖u(t)‖∞ ≤ Kt
−α
‖u0‖

β

L1(M)
for all t > 0 (5.8)

is a consequence of the Sobolev inequality (3.6) (see e.g. [4, Theorem 4.1] or [14, Corol-
lary 5.6]). Hence, by applying (5.8) to uc[t1,∞) we obtain

‖u(t)‖∞ ≤ Kt
−α
‖u(t1)‖

β

L1(M)
≤ Kt−α‖u‖

β

L∞((0,∞);L1(M))
for all t > t1;

since t1 > 0 is arbitrary, the conclusion follows. ut

5.2. Proof of the existence result

Let us outline the main ideas behind the proof of Theorem 2.2. Suppose first that µ is a
compactly supported measure. Take µε ∈ L1(M) ∩ L∞(M) such that∫

M

φµε dV →
∫
M

φ dµ as ε→ 0 for any φ ∈ Cb(M), (5.9)



The porous medium equation on Riemannian manifolds 2793

and ∫
M

|µε| dV → |µ|(M) as ε→ 0; (5.10)

to this end it suffices, for instance, to mollify the image of µ on RN and then go back
to M through one of the regular bijections between M and RN . For any fixed ε > 0 and
R > 0, consider then the following homogeneous Dirichlet problem:

ut = 1(u
m) in BR × (0,∞),

u = 0 on ∂BR × (0,∞),
u = µεcBR on BR × {0},

(5.11)

for which one can provide the same definition of weak solution as in Lemma 5.2 upon
replacingM with BR and requiring in addition that um ∈ H 1

0 (BR). Existence, uniqueness
and good properties of the weak (energy) solution to (5.11), which will be denoted by
uε,R , can be shown by well-established methods (see again the proof of Lemma 5.2).
Classical compactness arguments ensure that {uε,R} converges (up to subsequences), as
R →∞, to a function uε satisfying (2.1)–(2.3). A further passage to the limit as ε → 0
yields a function u which still satisfies (2.1)–(2.3). The hardest point is to prove that u
also fulfils (2.4), that is, its initial trace is precisely µ. To this end we have to adapt to our
framework some potential techniques first introduced by M. Pierre [26] and then recently
developed in [32, 16] in the nonlocal Euclidean context. Finally, we handle general finite
measures (not necessarily compactly supported) by an additional approximation.

Proof of Theorem 2.2. By standard arguments one can infer that the weak (energy solu-
tion) uε,R to (5.11) satisfies the nonexpansivity of the L1 norms

‖uε,R(t)‖L1(BR)
≤ ‖µε‖L1(BR)

for all t > 0, (5.12)

the L1-L∞ smoothing effect

‖uε,R(t)‖L∞(BR) ≤ Kt
−α
‖µε‖

β

L1(BR)
for all t > 0, (5.13)

and the energy estimates∫ t2

t1

∫
BR

|∇(umε,R)(x, t)|
2 dV(x) dt +

∫
BR

|uε,R(x, t2)|
m+1 dV(x)

≤ Km t−αm1 ‖µε‖
1+βm
L1(BR)

, (5.14)∫ t2

t1

∫
BR

|(zε,R)t (x, t)|
2 dV(x) dt ≤ C̃ t−αm1 ‖µε‖

1+βm
L1(BR)

, (5.15)

for all t2 > t1 > 0, where zε,R := u
(m+1)/2
ε,R and C̃ is a positive constant that depends on

N,m, t1, t2 but is independent of ε, R. In the Euclidean context estimates (5.12), (5.14),
(5.15) are by now classical: see again [30], in particular Section 5 there. The fact that here
BR is a ball on a Riemannian manifold is inessential. The smoothing effect (5.13) is again
a direct consequence of the Sobolev inequality (3.6).
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Let Gε,R be the potential of uε,R , that is,

Gε,R(x, t) :=
∫
M

GR(x, y)uε,R(y, t) dV(y) for all x ∈ M, t > 0,

where GR is the Green function of the Dirichlet Laplacian in BR . We claim that Gε,R
solves

(Gε,R)t = −umε,R in BR × (0,∞),

in the sense that∫
BR

Gε,R(x, t2)φ(x) dV(x)−
∫
BR

Gε,R(x, t1)φ(x) dV(x)

= −

∫ t2

t1

∫
BR

umε,R(x, t)φ(x) dV(x) dt (5.16)

for all t2 > t1 > 0 and any φ ∈ C∞c (BR). Indeed, by standard elliptic regularity,

GφR(x) :=
∫
BR

GR(x, y)φ(y) dV(y) ∈ C∞0 (BR). (5.17)

Hence, we are allowed to pick the test function ϕ(x, t) = GφR(x) [θ
t1
% (t) − θ

t2
% (t)] in the

weak formulation of (5.11), with θ t·% defined as in the proof of Proposition 5.1. By using
the fact that (−1)GφR = φ in BR , integrating by parts and letting %→ 0, we get∫

BR

uε,R(x, t2)GφR(x) dV(x)−
∫
BR

uε,R(x, t1)GφR(x) dV(x)

= −

∫ t2

t1

∫
BR

umε,R(x, t)φ(x) dV(x) dt, (5.18)

which is (5.16) up to an application of Fubini’s Theorem on the left-hand side. By letting
t1 → 0 in (5.18), we obtain∫

BR

uε,R(x, t2)GφR(x) dV(x)−
∫
BR

GφR(x) µε(x) dV(x)

= −

∫ t2

0

∫
BR

umε,R(x, t)φ(x) dV(x) dt. (5.19)

We now let R → ∞. Thanks to (5.12)–(5.15), routine compactness and lower-semi-
continuity arguments ensure that {uε,R}, set to be zero outside BR , converges almost
everywhere (up to subsequences) to some function uε which satisfies (2.1)–(2.3) (with u
replaced by uε) and the analogues of (5.12)–(5.15):

‖uε(t)‖1 ≤ ‖µε‖1 for all t > 0, (5.20)

‖uε(t)‖∞ ≤ Kt
−α
‖µε‖

β

1 for all t > 0, (5.21)
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∫ t2

t1

∫
M

|∇(umε )(x, t)|
2 dV(x) dt +

∫
M

|uε(x, t2)|
m+1 dV(x)

≤ Km t−αm1 ‖µε‖
1+βm
1 , (5.22)∫ t2

t1

∫
M

|(zε)t (x, t)|
2 dV(x) dt ≤ C̃ t−αm1 ‖µε‖

1+βm
1 , (5.23)

for all t2 > t1 > 0, where zε := u
(m+1)/2
ε . Moreover, since

lim
R→∞

GφR(x) = Gφ(x) ∀x ∈ M, Gφ ∈ C0(M), |GφR| ≤ G|φ|

(consequences of definition (4.15) plus (3.9), (3.10), (3.13)), by exploiting estimates
(5.12)–(5.13) we can pass to the limit in (5.19) to get∫
M

uε(x, t2)Gφ(x) dV(x)−
∫
M

Gφ(x) µε(x) dV(x) = −
∫ t2

0

∫
M

umε (x, t)φ(x) dV(x) dt.

As a final step, we let ε → 0. In view of (5.20)–(5.23) and (5.9)–(5.10), proceeding as
above we deduce that {uε} converges almost everywhere (up to subsequences) to some
function u which satisfies (2.1)–(2.3),

‖u(t)‖1 ≤ |µ|(M) for all t > 0, (5.24)

‖u(t)‖∞ ≤ Kt
−α
|µ|(M)β for all t > 0 (5.25)

and∫
M

u(x, t2)Gφ(x) dV(x)−
∫
M

Gφ(x) dµ(x) = −
∫ t2

0

∫
M

um(x, t)φ(x) dV(x) dt,

that is,∫
M

G(x, t2)φ(x) dV(x)−
∫
M

Gµ(x)φ(x) dV(x)

= −

∫ t2

0

∫
M

um(x, t)φ(x) dV(x) dt (5.26)

up to an application of Fubini’s Theorem, where we denote by G(t) the potential of u(t).
In particular, by combining (5.24)–(5.25) and (5.26) we deduce the estimate∣∣∣∣∫

M

G(x, t2)φ(x) dV(x)−
∫
M

Gµ(x)φ(x) dV(x)
∣∣∣∣

≤ ‖φ‖∞K
m−1
|µ|(M)1+β(m−1)

∫ t2

0
t−α(m−1) dt. (5.27)

By compactness results in measure spaces (recall Definition 4.5), from (5.24) it follows
that every sequence tn→ 0 has a subsequence {tnk } such that {u(tnk )} converges vaguely
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to a certain finite Radon measure ν. On the other hand, as noted above, Gφ(x) is a con-
tinuous function that vanishes as dist(x, o) → ∞. We can therefore pass to the limit as
t2 → 0 in (5.27) (by using Fubini’s Theorem again): because φ is arbitrary, it follows that
Gµ = Gν almost everywhere in M; so, thanks to Lemma 4.13, we have ν = µ and the
limit measure does not depend on the particular subsequence. We have thus proved that

lim
t→0

∫
M

u(x, t)φ(x) dV(x) =
∫
M

φ(x) dµ(x) for any φ ∈ C0(M). (5.28)

In particular, given the lower semicontinuity of the total variation with respect to the
vague topology,

|µ|(M) ≤ lim inf
t→0

‖u(t)‖1, (5.29)

so that by gathering (5.24) and (5.29) we obtain

lim
t→0
‖u(t)‖1 = |µ|(M). (5.30)

We are then left with proving that (5.28) holds for any φ ∈ Cb(M). To this end, we
exploit Lemma 4.11. In fact, by (5.24) and [1, Theorem 1.59], every sequence tn→ 0 has
a subsequence {tnk } such that {u+(tnk )} and {u−(tnk )} converge vaguely to some positive
finite Radon measures µP and µN , respectively. Thanks to (5.28) it follows that µ =
µP − µN . Moreover, by (5.30) and the lower semicontinuity of the total variation with
respect to the vague topology, we have

µP (M)+ µN (M) ≤ lim inf
k→∞

‖u+(tnk )‖1 + lim inf
k→∞

‖u−(tnk )‖1

≤ lim inf
k→∞

‖u(tnk )‖1 = |µ|(M). (5.31)

By Lemma 4.11, (5.31) implies µP = µ+ and µN = µ−, so that

lim
k→∞
‖u+(tnk )‖1 = µ+(M), lim

k→∞
‖u−(tnk )‖1 = µ−(M). (5.32)

From (5.32) and [1, Proposition 1.80] we then infer that

lim
k→∞

∫
M

u±(x, tnk )φ(x) dV(x) =
∫
M

φ(x) dµ±(x)

for all φ ∈ Cb(M). Since the same argument can be performed along any sequence, (2.4)
follows. Note that the conservation of “mass” (2.5) is an immediate consequence of (5.2)
and (2.4) with φ = 1.

Finally, in order to handle a general finite Radon measure µ (not necessarily com-
pactly supported), it is enough to approximate µ by the sequence {µcBn} as n→∞, and
proceed as above. ut
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Remark 5.3 (The case (N − 2)/N < m < 1). By using the same techniques as in the
proof of Theorem 2.2, we can establish existence of weak solutions to problem (1.1) also
for m below 1, in the supercritical fast-diffusion range (N − 2)/N < m < 1. Indeed,
well-posedness of the approximate problems (5.11) still holds, as do the key estimates
(5.12)–(5.15); the assumption m > (N − 2)/N plays a crucial role in the validity of the
smoothing effect (5.13) (see [4, Theorem 4.1]). The only difference is that, since m < 1,
the r.h.s. of (5.26) has to be bounded as follows:∣∣∣∣∫ t2

0

∫
M

um(x, t)φ(x) dV(x) dt
∣∣∣∣ ≤ ‖φ‖∞V(suppφ)1−m|µ|(M)m t2.

Actually, the only point that we are not able to recover in Theorem 2.2 is the conservation
of “mass” (2.5). The problem is that, form < 1, the analogues of the Euclidean Barenblatt
profiles (5.6) we exploit in the proof of Proposition 5.1 are no more compactly supported,
and their decay rate at infinity is too slow compared to the possible volume growth of the
Riemannian manifolds we are interested in. On the other hand, in general mass conserva-
tion fails: for instance, on Riemannian manifolds supporting the Poincaré/gap inequality
‖f ‖2 ≤ ‖∇f ‖2 for all f ∈ C∞c (M) (like those whose sectional curvatures are bounded
from above by a negative constant), the L1(M) norm of the solution vanishes in finite
time [4, Theorem 6.1].

5.3. Connection between the Green function and the porous medium equation: proof

Let us consider again the solutions uε,R to the approximate problems (5.11). If µ ∈
M+

F (M), such solutions are by construction nonnegative; hence, by the standard com-
parison principle, for all 0 < R1 < R2,

uε,R1(x, t) ≤ uε,R2(x, t) for a.e. (x, t) ∈ BR1 × (0,∞). (5.33)

For any fixedR > 0, if we let ε→ 0 we obtain, by the techniques of the proof of Theorem
2.2, a nonnegative weak solution uR to (5.11) with µε replaced by µ. By letting ε → 0
in (5.33) we also deduce that order is preserved:

uR1(x, t) ≤ uR2(x, t) for a.e. (x, t) ∈ BR1 × (0,∞),

so {uR} is nondecreasing in R. As a consequence, the pointwise limit u as R→∞ exists
regardless of the validity of hypothesis (H); in such a general framework, this is precisely
what we mean by a “solution” to (1.1) when µ is a positive measure.

Proof of Theorem 2.11. Let uR be the solution of problem (5.11) with µε ≡ δx0 , where
R is so large that x0 ∈ BR . Let GR be the potential of uR , and GφR the potential of any
φ ∈ C∞c (BR) (recall (5.17)). Given any t2 > t1 > 0, by plugging the test function
ϕ(x, t) = GφR(x)[θ

t1
% (t) − θ

t2
% (t)] in the definition of weak solution (θ t·% is as in the proof
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of Proposition 5.1), letting % → 0 and invoking Tonelli’s Theorem, we end up with the
identity∫

BR

GR(x, t2)φ(x) dV(x)−
∫
BR

GR(x, t1)φ(x) dV(x)

= −

∫ t2

t1

∫
BR

umR(x, t)φ(x) dV(x) dt. (5.34)

From (5.34) we deduce that the map t 7→ GR(x, t) is nonincreasing (recall that uR is
nonnegative). Hence, GR(t) has a pointwise limit as t → ∞. The limit is necessarily
zero: this is a straightforward consequence, for instance, of the smoothing estimate (2.6),
which clearly holds for (5.11) as well. Passing to the limit in (5.34) as t2 →∞ we get∫

BR

GR(x, t1)φ(x) dV(x) =
∫
∞

t1

∫
BR

umR(x, t)φ(x) dV(x) dt. (5.35)

Letting t1 → 0 in (5.35), recalling the initial condition and using again Tonelli’s Theorem
we infer that∫

BR

GR(x0, x)φ(x) dV(x) =
∫
BR

φ(x)

∫
∞

0
umR(x, t) dt dV(x). (5.36)

Now we point out that both x 7→
∫
∞

0 umR(x, t) dt and x 7→ GR(x0, x) are M-super-
harmonic functions belonging to L1(BR). Indeed, in view of standard results concern-
ing the porous medium equation on bounded domains (see [30]), it is well known that
‖uR(t)‖L∞(BR) behaves at most like t−N/[2+N(m−1)] as t → 0 and at most like t−1/(m−1)

as t →∞. This immediately implies that
∫
∞

0 umR(t) dt ∈ L
1(BR). Moreover, by classical

results, u(x, t) is continuous in BR × [t1,∞) for all t1 > 0. In particular, by domi-
nated convergence,

∫
∞

t1
umR(t) dt is also continuous for all t1 > 0. As a consequence of

the differential equation solved by uR and of the fact that ‖uR(t)‖L∞(BR) vanishes as
t → ∞, we deduce that

∫
∞

t1
umR(t) dt is superharmonic. Hence, thanks to Theorem 2.9,∫

∞

t1
umR(t) dt is M-superharmonic; then, in view of Lemma 4.4, so is

∫
∞

0 umR(t) dt . The
fact that x 7→ GR(x0, x) is M-superharmonic follows from Corollary 4.2; in addition,
it belongs to L1(BR) since BR is bounded (see e.g. [12]). In view of the above remarks,
(5.36) and Lemma 4.3, we have

GR(x0, x) =

∫
∞

0
umR(x, t) dt for all x ∈ BR. (5.37)

The conclusion then follows from (5.37) by monotone convergence and the fact that
GR ↑ G as R→∞ everywhere. ut

6. Proof of the uniqueness result

We begin this section with a key lemma, which will be useful in what follows and which
is essentially based on the potential-theoretic results given in Sections 2.2 and 4. For our
purposes it is crucial that the limit in (6.3) below is valid for every x, which follows from
Proposition 4.6.
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Lemma 6.1. Let u be a nonnegative weak solution of problem (1.1) with µ ∈M+

F (M).
Then the potential G(t) of u(t) satisfies

Gt = −um in M × (0,∞), (6.1)

in the sense that∫
M

G(x, t2)φ(x) dV(x)−
∫
M

G(x, t1)φ(x) dV(x)

= −

∫ t2

t1

∫
M

um(x, t)φ(x) dV(x) dt (6.2)

for all t2 > t1 > 0 and for any φ ∈ C∞c (M). In particular, G(t) admits an absolutely con-
tinuous version on (0,∞) in Lp(M) for all p ∈ (N/(N−2),∞), which is nonincreasing
in t . Moreover,

lim
t→0

G(x, t) = Gµ(x) for all x ∈ M. (6.3)

Proof. Consider a cut-off function ξ ∈ C∞([0,∞)) with

ξ =

{
1 in [0, 1],
0 in [2,∞),

0 ≤ ξ ≤ 1 in [0,∞).

Set ρ(x) := d(x, o) for all x ∈ M . For every R ≥ 1, define

ξR(x) := ξ(ρ(x)/R) for all x ∈ M.

Let C := max{sup[0,∞) |ξ
′
|, sup[0,∞) |ξ

′′
|}. In view of (3.1) we have

1ξR(x) =
1
R2 ξ

′′

(
ρ(x)

R

)
+
m(ρ, θ)

R
ξ ′
(
ρ(x)

R

)
for all x ∈ M. (6.4)

Clearly
∇ξR = 0 and 1ξR = 0 in BR ∪ Bc2R; (6.5)

moreover,
|∇ξR(x)| ≤ C/R for all x ∈ B2R \ BR

since |∇ρ(x)| = 1. Furthermore, thanks to assumption (H)(ii), it is not difficult to check
that there exists a positive constant Ĉ such that (3.4) is fulfilled by a suitable ψ satisfying
ψ(ρ) = eĈρ

2
for all ρ large enough. As a consequence, by exploiting also (3.5), from

(6.4) we infer that

|1ξR(x)| ≤
1
R2

∣∣∣∣ξ ′′(ρ(x)R
)∣∣∣∣+ N − 1

R

∣∣∣∣ψ ′(ρ(x))ψ(ρ(x))
ξ ′
(
ρ(x)

R

)∣∣∣∣
≤
C

R2 + 2CĈ(N − 1) ≤ C̄ ∀x ∈ B2R \ BR (6.6)

provided R is large enough, for another positive constant C̄ that depends only on N , C
and Ĉ.
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In view of (3.9), (3.10) and (3.13), the potential

Gφ(x) :=
∫
M

G(x, y)φ(y) dV(y) for all x ∈ M

is a regular function belonging to C0(M). For every R ≥ 1 and % > 0, we are therefore
allowed to pick the test function

ϕ(x, t) := ξR(x)Gφ(x)[θ t1% (t)− θ t2% (t)] for all x ∈ M, t ≥ 0

in (2.3), where θ t·% is as in the proof of Proposition 5.1. By letting %→ 0 we get∫
M

u(x, t2)ξR(x)Gφ(x) dV(x)−
∫
M

u(x, t1)ξR(x)Gφ(x) dV(x)

=

∫ t2

t1

∫
M

um(x, t)1(ξR Gφ)(x) dV(x) dt; (6.7)

the r.h.s. of (6.7) reads (we use the fact that −1Gφ = φ in M)

−

∫ t2

t1

∫
M

um(x, t)ξR(x)φ(x) dV(x) dt +
∫ t2

t1

∫
M

um(x, t)1ξR(x)Gφ(x) dV(x) dt︸ ︷︷ ︸
I1

+ 2
∫ t2

t1

∫
M

um(x, t)〈∇ξR, ∇Gφ〉(x) dV(x) dt︸ ︷︷ ︸
I2

. (6.8)

In view of (6.5)–(6.6), we can estimate the last two integrals of (6.8) as follows:

|I1| ≤ C̄‖Gφ‖∞
∫ t2

t1

∫
B2R\BR

um(x, t) dV(x) dt, (6.9)

|I2| ≤
C(t2 − t1)

1/2

R

×

(∫ t2

t1

∫
B2R\BR

u2m(x, t) dV(x) dt
)1/2(∫

B2R\BR

|∇Gφ(x)|2 dV(x)
)1/2

. (6.10)

Since u ∈ Lp(M × (τ,∞)) for all τ > 0, p ∈ [1,∞], and since ∇Gφ ∈ [L2(M)]N

(recall Lemma 4.14), by letting R→∞ we deduce that I1 and I2 vanish, so that passing
to the limit in (6.7) yields∫
M

u(x, t2)Gφ(x) dV(x)−
∫
M

u(x, t1)Gφ(x) dV(x) = −
∫ t2

t1

∫
M

um(x, t)φ(x) dV(x) dt,

which is (6.2) up to an application of Tonelli’s Theorem. The absolute continuity of G(t)
as a curve in Lp(M) for any p ∈ (N/(N − 2),∞) is then a consequence of (6.2) and
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Lemma 4.14 (we use the fact that u(t) ∈ L1(M)∩L∞(M)). Since u ≥ 0, still by (6.2) and
Lemma 4.14 we deduce that for every x ∈ M the function t 7→ G(x, t) is nonincreasing.

In order to establish (6.3), pick a sequence {tn} ⊂ (0,∞) such that tn→ 0 as n→∞.
From (3.9) and the fact that u ∈ L∞((0,∞);L1(M)) we infer that for each compact
subset K ⊂ M and for any ε > 0 there exists Rε > 0 such that∫

BcR

∫
K

G(x, y) dV(y) u(x, tn) dV(x) ≤ ε for all R > Rε, n ∈ N.

Furthermore, by Definition 2.1, {u(tn)} converges vaguely to µ. By monotonicity, the
function x 7→ lim infG(x, tn) is l.s.c., hence we can apply Proposition 4.6 to deduce that

Gµ(x) = lim inf
n→∞

G(x, tn) for every x ∈ M.

This implies (6.3), due to the just mentioned monotonicity property of t 7→ G(x, t). ut

6.1. Formal strategy of proof

Our method of proof is modelled after the one given in [26] in the Euclidean context (see
also [16, proof of Theorem 3.4]). We sketch it below.

Let u1, u2 be two weak solutions of problem (1.1) which take on the same initial
measure µ ∈ M+

F (M). Let G1(t) and G2(t) be the corresponding potentials. Given any
h > 0, define

W(x, t) := G2(x, t + h)− G1(x, t) for all x ∈ M, t > 0. (6.11)

In view of Lemma 6.1,

Wt (x, t) = a(x, t)1W(x, t) in M × (0,∞), (6.12)

where

a(x, t) :=

{
um1 (x,t)−u

m
2 (x,t+h)

u1(x,t)−u2(x,t+h)
> 0 if u1(x, t) 6= u2(x, t + h),

0 elsewhere.
(6.13)

Still Lemma 6.1 yields W(x, 0) ≤ 0 in M . The conclusion would follow if we could
show thatW ≤ 0 inM × (0,∞), since this would imply, by interchanging the roles of u1
and u2, that W = 0, and hence, by letting h → 0, that u1 = u2. In order to prove that
W ≤ 0 one considers solutions of the dual problem{

ϕt = −1(aϕ) in M × (0, T ],
ϕ = ψ on M × {T },

(6.14)

for any ψ ∈ C∞c (M) with ψ ≥ 0 and T > 0.
Using the solutions of the dual problem as test functions in the weak formulation of

(6.12) one formally gets∫
M

W(x, T )ψ(x) dV(x) =
∫
M

W(x, 0)ϕ(x, 0) dV(x) ≤ 0.

The claim follows since ϕ is by construction nonnegative. In fact, the procedure must be
carefully justified by means of suitable approximations of problem (6.14).
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6.2. Existence and basic properties of the approximate solutions ϕε,n

For every n ∈ N and ε > 0 we consider nonnegative solutions ϕn,ε of the problem{
(ϕn,ε)t = −1[(an + ε)ϕn,ε] in M × (0, T ],
ϕn,ε = ψ on M × {T },

(6.15)

where the sequence {an} is a suitable approximation of the function a defined by (6.13).
The functions ϕε,n are constructed by making use of linear semigroup theory; in particu-
lar, we take advantage of the fact that −1 is a positive self-adjoint operator generating a
Markov semigroup on L2(M) (see [10]).

The arguments one can exploit in the proof of the forthcoming lemma closely re-
semble those used to establish [16, Lemma 5.3], hence we skip it.

Lemma 6.2. Let {an} be a sequence of nonnegative functions converging a.e. to the func-
tion a defined in (6.13) such that:

• for any n ∈ N and t > 0, x 7→ an(x, t) is a regular function;
• for any n ∈ N and x ∈ M , t 7→ an(x, t) is a piecewise constant function, which is

constant on each time interval (T − (k + 1)T /n, T − kT /n], k ∈ {0, . . . , n− 1};
• {‖an‖L∞(M×(τ,∞))} is uniformly bounded with respect to n ∈ N for any τ > 0.

Then, for any ε > 0 and any ψ ∈ C∞c (M) with ψ ≥ 0, there exists a nonnega-
tive solution ϕn,ε to problem (6.15), in the sense that ϕn,ε(t) is a continuous curve in
Lp(M) (for all 1 < p < ∞) satisfying ϕn,ε(T ) = ψ and it is absolutely continuous on
(T − (k + 1)T /n, T − kT /n) for each k ∈ {0, . . . , n− 1}, so that the identity

ϕn,ε(t2)− ϕn,ε(t1) = −

∫ t2

t1

1[(an + ε)(τ ) ϕn,ε(τ )] dτ (6.16)

holds in Lp(M) ( for all 1 < p <∞) for any t1, t2 ∈ (T − (k + 1)T /n, T − kT /n) and
any k ∈ {0, . . . , n− 1}. Moreover,

ϕn,ε ∈ L
∞((0, T );Lp(M)) for all p ∈ [1,∞],

‖ϕn,ε(t)‖1 ≤ ‖ψ‖1 for all t ∈ [0, T ].
(6.17)

In the proofs of the next lemmas, even if we follow the general strategy used to show
analogous results in [16], there are some additional difficulties to overcome. They are
related to the fact that an analogue of [16, Proposition B.1] is not available in the present
framework, because of a possible different growth of the volume of balls. Thus, more
delicate cut-off arguments are required.

We now prove some crucial identities involving the functions ϕn,ε and W .

Lemma 6.3. Let W be defined as in (6.11), a as in (6.13), and an, ϕn,ε, ψ as in Lem-
ma 6.2. Then for all t ∈ (0, T ),∫

M

W(x, T )ψ(x) dV(x)−
∫
M

W(x, t)ϕn,ε(x, t) dV(x)

= −

∫ T

t

∫
M

[an(x, τ )+ ε − a(x, τ )]1W(x, τ)ϕn,ε(x, τ ) dV(x) dτ. (6.18)



The porous medium equation on Riemannian manifolds 2803

Proof. Let us set
tk := T (n− k)/n for all k ∈ {0, . . . , n}.

Thanks to Lemma 6.1, we know that W(t) is an absolutely continuous curve in Lp(M)
for all p ∈ (N/(N − 2),∞), satisfying (6.12). On the other hand, Lemma 6.2 ensures
that ϕn,ε(t) is a continuous curve in Lp(M) for all p ∈ (1,∞) on (0, T ], absolutely
continuous on (tk+1, tk) for each k ∈ {0, . . . , n−1} and satisfying the differential equation
in (6.15) on such intervals. Hence, the function

t 7→

∫
M

ξR(x)W(x, t)ϕε,n(x, t) dV(x),

where {ξR}R>0 is a cut-off family as in the proof of Lemma 6.1, is continuous on (0, T ],
absolutely continuous on (tk+1, tk) and satisfies

d

dt

∫
M

ξR(x)W(x, t)ϕn,ε(x, t) dV(x)

=

∫
M

{ξR(x)a(x, t)1W(x, t)ϕn,ε(x, t)−ξR(x)W(x, t)1[(an+ε)ϕn,ε](x, t)} dV(x)

(6.19)

on (tk+1, tk). By standard elliptic regularity, W(t) ∈ W 2,p
loc (M) for all p ∈ (1,∞). We

can therefore integrate by parts in the last term on the r.h.s. of (6.19) to get∫
M

ξR(x)W(x, t)1[(an + ε)ϕn,ε](x, t) dV(x)

=

∫
M

ξR(x)1W(x, t)[an(x, t)+ ε]ϕn,ε(x, t) dV(x)

+

∫
M

1ξR(x)W(x, t)[an(x, t)+ ε]ϕn,ε(x, t) dV(x)︸ ︷︷ ︸
I1(t)

+ 2
∫
M

〈∇ξR(x),∇W(x, t)〉 [an(x, t)+ ε]ϕn,ε(x, t) dV(x)︸ ︷︷ ︸
I2(t)

. (6.20)

By reasoning similarly to the proof of Lemma 6.1 and exploiting Lemma 4.14 with f =
u2(t + h)− u1(t) and (6.5)–(6.6), we obtain

|I1(t)| ≤ C̄ ‖W(t)‖∞ ‖an(t)+ ε‖∞

∫
B2R\BR

ϕn,ε(x, t) dV(x), (6.21)

|I2(t)| ≤
C‖an(t)+ ε‖∞

2R

×

(∫
B2R\BR

|∇W(x, t)|2 dV(x)+
∫
B2R\BR

ϕn,ε(x, t)
2 dV(x)

)
. (6.22)

Integrating (6.19)–(6.22) between any tk+1 < t∗ < t∗ < tk , noting that ∇W ∈

[L2(M × (t∗, t
∗))]N and ϕn,ε ∈ L2(M × (t∗, t

∗)), and letting R → ∞, we end up
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with∫
M

W(x, t∗)ϕn,ε(x, t
∗) dV(x)−

∫
M

W(x, t∗)ϕn,ε(x, t∗) dV(x)

= −

∫ t∗

t∗

∫
M

[an(x, τ )+ ε − a(x, τ )]1W(x, τ)ϕn,ε(x, τ ) dV(x) dτ. (6.23)

Now (6.18) just follows from (6.23), since the r.h.s. of (6.23) is in L1((τ, T )) (e.g. as a
function of t∗) for all τ ∈ (0, T ). ut

Lemma 6.4. Let an, ϕn,ε, ψ be as in Lemma 6.2. Then∫
M

ϕn,ε(x, t)φ(x) dV(x)−
∫
M

ψ(x)φ(x) dV(x)

=

∫
M

1φ(x)

[∫ T

t

(an(x, τ )+ ε)ϕn,ε(x, τ ) dτ

]
dV(x) (6.24)

for all t ∈ (0, T ), φ ∈ C∞c (M). In particular,∫
M

ϕn,ε(x, t) dV(x) =
∫
M

ψ(x) dV(x) for all t ∈ (0, T ). (6.25)

Proof. The validity of (6.24) just a consequence of (6.16) plus the continuity of ϕn,ε(t)
as a curve in L2(M) (for instance).

In order to establish (6.25), let us plug φ = ξR in (6.24), with ξR still defined as in the
proof of Lemma 6.1. Thanks to (6.5) and (6.6), we obtain∣∣∣∣∫

M

ϕn,ε(x, t)ξR(x) dV(x)−
∫
M

ψ(x)ξR(x) dV(x)
∣∣∣∣

≤ C̄ ‖an + ε‖L∞(M×(t,T ))

∫
B2R\BR

∫ T

t

ϕn,ε(x, τ ) dV(x) dτ. (6.26)

Since (6.17) trivially implies ϕn,ε ∈ L1(M × (0, T )), by letting R → ∞ in (6.26) we
deduce (6.25). ut

Lemma 6.5. Let an, ϕn,ε, ψ be as in Lemma 6.2. Denote by 8n,ε(t) the potential of
ϕn,ε(t), that is,

8n,ε(x, t) := Gϕn,ε(t)(x).
Then ∇8n,ε(t) ∈ [L2(M)]N and

‖∇Gψ‖22 = ‖∇8n,ε(t)‖
2
2 + 2

∫ T

t

∫
M

[an(x, τ )+ ε]ϕn,ε(x, τ )
2 dV(x) dτ (6.27)

for all t ∈ (0, T ].
Proof. Since8n,ε(t) is the potential of ϕn,ε(t), which belongs toL1(M)∩L∞(M) (recall
(6.17)), thanks to Lemma 4.14 we have 8n,ε(t) ∈ Lp(M) for all p ∈ (N/(N − 2),∞],
∇8n,ε(t) ∈ [L

2(M)]N and

‖∇8n,ε(t)‖
2
2 =

∫
M

8n,ε(x, t)ϕn,ε(x, t) dV(x). (6.28)
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Furthermore, one can show that 8n,ε(t) is an absolutely continuous curve in Lp(M) for
all p ∈ (N/(N − 2),∞), satisfying the differential equation

(8n,ε)t (x, t) = [an(x, t)+ ε]ϕn,ε(x, t) for a.e. (x, t) ∈ M × (0, T ). (6.29)

This can be established exactly as for (6.1). Taking advantage of (6.15), (6.28) and (6.29),
we then deduce that

d

dt
‖∇8n,ε(t)‖

2
2 =

∫
M

[an(x, t)+ ε]ϕn,ε(x, t)
2 dV(x)

−

∫
M

8n,ε(x, t)1[(an + ε)ϕn,ε](x, t) dV(x) (6.30)

for a.e. t ∈ (0, T ). In view of the integrability properties of 8n,ε, ∇8n,ε, ϕn,ε and
1[(an + ε)ϕn,ε], the last term in the r.h.s. of (6.30) can be integrated by parts (through
the same cut-off techniques we used in the proof of Lemma 6.3), which yields

d

dt
‖∇8n,ε(t)‖

2
2 = 2

∫
M

[an(x, t)+ ε]ϕn,ε(x, t)
2 dV(x) for a.e. t ∈ (0, T ). (6.31)

Since the r.h.s. of (6.31) is in L1((τ, T )) for each τ ∈ (0, T ), it turns out that t 7→
‖∇8n,ε(t)‖

2
2 is continuous on (0, T ] and absolutely continuous on every (tk+1, tk), and

the conclusion follows by integrating (6.31) over (t, T ). ut

6.3. Taking the limit of ϕn,ε as n→∞

This section is devoted to showing that, for each fixed ε > 0, the sequence {ϕn,ε} con-
verges in a suitable sense to a limit function ϕε as n → ∞. Moreover, ϕε inherits some
fundamental integrability properties from {ϕn,ε}.

Lemma 6.6. Let u1, u2 be any two solutions of problem (1.1), taking on the same initial
datum µ ∈ M+

F (M). Let W be defined as in (6.11), a as in (6.13), and ϕn,ε, ψ as in
Lemma 6.2. Then, up to subsequences, {ϕn,ε} converges weakly in L2(M × (τ, T )) ( for
each τ ∈ (0, T )), as n→∞, to a suitable nonnegative function ϕε. Moreover,∫

M

ϕε(x, t)φ(x) dV(x)−
∫
M

ψ(x)φ(x) dV(x)

=

∫
M

1φ(x)

[∫ T

t

(a(x, τ )+ ε)ϕε(x, τ ) dτ

]
dV(x) (6.32)

for a.e. t ∈ (0, T ) and any φ ∈ C∞c (M),∫
M

ϕε(x, t) dV(x) =
∫
M

ψ(x) dV(x) for a.e. t ∈ (0, T ), (6.33)

and∣∣∣∣∫
M

W(x, T )ψ(x) dV(x)−
∫
M

W(x, t)ϕε(x, t) dV(x)
∣∣∣∣

≤ ε(T − t)‖ψ‖1‖u2(· + h)− u1(·)‖L∞(M×(t,T )) for a.e. t ∈ (0, T ). (6.34)
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Proof. From (6.27) we infer that {ϕn,ε} converges weakly (up to subsequences) in
L2(M × (τ, T )) (for each τ ∈ (0, T )) to some ϕε. Moreover, thanks to (6.17), for every
t ∈ (0, T ) there exists a subsequence (which a priori depends on t) such that∫

M

ϕn,ε(t)φ(x) dV(x)→
∫
M

φ(x) dνtε(x) for any φ ∈ Cc(M), (6.35)

for some νtε ∈M+

F (M). In fact we have dνtε = ϕε(t) dV for a.e. t ∈ (0, T ). In order to
show that, let t ∈ (0, T ) be a Lebesgue point for ϕε(t) as a curve in L1((τ, T );L2(M)).
Take any φ ∈ C∞c (M). Since for each τ ∈ (0, T ) the sequence {‖an + ε‖L∞(M×(τ,T ))} is
bounded, in view of (6.17) and (6.24) we obtain∣∣∣∣∫ t+δ

t

∫
M

ϕn,ε(x, τ )φ(x) dV(x) dτ −
∫ t+δ

t

∫
M

ϕn,ε(x, t)φ(x) dV(x) dτ
∣∣∣∣

≤

∫ t+δ

t

C(τ − t)‖ψ‖1‖1φ‖∞ dτ =
δ2C

2
‖ψ‖1‖1φ‖∞ (6.36)

for all 0 < δ < T − t , for some positive constant C independent of n, δ. By letting
n→∞ in (6.36) (up to subsequences) we get∣∣∣∣∫ t+δ

t

∫
M

ϕε(x, τ )φ(x) dV(x) dτ − δ
∫
M

φ(x) dνtε(x)

∣∣∣∣ ≤ δ2C

2
‖ψ‖1‖1φ‖∞. (6.37)

Upon dividing (6.37) by δ and then letting δ→ 0+ we deduce that∫
M

ϕε(x, t)φ(x) dV(x) =
∫
M

φ(x) dνtε(x),

so ϕε(t) dV = dνtε. Therefore, (6.32) easily follows by passing to the limit in (6.24) as
n→∞, also in view of the convergence properties of {an}.

Identity (6.33) and estimate (6.34) can be obtained along the lines of [16, proof of
Lemma 5.7]; we only mention that (6.33) follows by passing to the limit in (6.26), and
(6.34) follows by passing to the limit in (6.18), which is feasible since W(t) ∈ Cb(M)
and, thanks to (6.33), (6.35) also holds for any φ ∈ Cb(M). ut

6.4. Taking the limit of ϕε as ε→ 0 and proof of Theorem 2.3

In order to prove Theorem 2.3, we need to exploit the properties of the functions ϕε
provided by Lemma 6.6, and then let ε→ 0.

Proof of Theorem 2.3. Let 8ε(t) be the potential of ϕε(t), that is, 8ε(x, t) = Gϕε(t)(x).
In view of (6.32),

Gψ (x)−8ε(x, t)

=

∫ T

t

[a(x, τ )+ ε]ϕε(x, τ ) dτ ≥ 0 for a.e. (x, t) ∈ M × (0, T ). (6.38)
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This can be established as we did in the proof of (6.2): it is enough to plug ξRGφ in
(6.32) and let R → ∞, exploiting the fact that Gφ ∈ L∞(M), ∇Gφ ∈ [L2(M)]N ,
a ∈ L∞(M × (t, T )) and ϕε ∈ L1(M × (t, T )) ∩ L2(M × (t, T )).

So, in particular,

0 ≤ 8ε(x, t1) ≤ 8ε(x, t2) ≤ Gψ (x) for a.e. x ∈ M, 0 < t1 < t2 < T. (6.39)

We now let ε → 0. In view of (6.39) it follows that {8ε} is bounded in Lp(M × (0, T ))
for any p ∈ (N/(N − 2),∞]. In particular, there exists a sequence {8εn} that converges
weakly in Lp(M × (0, T )) to some 8 ∈ Lp(M × (0, T )). As a consequence, in view
of (6.38) and (6.39), by arguments similar to those used at the beginning of the proof
of Lemma 6.6, we can deduce that {8εn(t)} converges weakly in Lp(M) to 8(t) for
a.e. t ∈ (0, T ). Thanks to the boundedness of {ϕεn(t)} in L1(M) (recall (6.33)), for
a.e. t ∈ (0, T ) there exists a subsequence {εnk } (a priori depending on t) such that∫

M

ϕεnk (x, t)φ(x) dV(x)→
∫
M

φ(x) dνt (x) as k→∞ for any φ ∈ C0(M), (6.40)

for some νt ∈M+

F (M). Hence, for a.e. t ∈ (0, T ) and any φ ∈ Cc(M),∫
M

Gν
t

φ(x) dV(x) = lim
k→∞

∫
M

ϕεnk (x, t)G
φ(x) dV(x) = lim

k→∞

∫
M

8εnk (x, t)φ(x) dV(x)

=

∫
M

8(x, t)φ(x) dV(x). (6.41)

From (6.41) and Lemma 4.13, we infer that νt is independent of the particular subse-
quence, so that (6.40) holds along the whole sequence {εn} and8(t) is the potential of νt .
Moreover, in view of (6.39) and of the convergence properties of {8εn}, we get

0 ≤ 8(x, t1) ≤ 8(x, t2) ≤ Gψ (x) for a.e. x ∈ M, 0 < t1 < t2 < T. (6.42)

We now aim at proving that (6.40) holds for any φ ∈ Cb(M). To this end, note that
since (6.33) holds and a ∈ L∞(M × (τ, T )) for each τ ∈ (0, T ), we see that, up to
subsequences,∫

M

φ(x)

{∫ T

t

[a(x, τ )+ εn]ϕεn(x, τ ) dτ

}
dV(x)→

∫
M

φ(x) dσ t,T (x) as n→∞,

for a.e. t ∈ (0, T ) and any φ ∈ Cc(M), where σ t,T is a suitable element of M+

F (M). We
can therefore pass to the limit as n→∞ in (6.32) (with ε = εn) to get∫

M

φ(x) dνt (x)−

∫
M

ψ(x)φ(x) dV(x) =
∫
M

1φ(x) dσ t,T (x) (6.43)

for a.e. t ∈ (0, T ) and any φ ∈ C∞c (M). Now plug φ = ξR in (6.43), with ξR defined as
in the proof of Lemma 6.1. Thanks to (6.5) and (6.6), we obtain∣∣∣∣∫
M

ξR(x) dν
t (x)−

∫
M

ψ(x)ξR(x) dV(x)
∣∣∣∣ ≤ C̄ ∫

B2R\BR

dσ t,T (x) for a.e. t ∈ (0, T ).

(6.44)
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Since σ t,T is a positive finite measure, by letting R→∞ in (6.44) we get∫
M

dνt (x) =

∫
M

ψ(x) dV(x). (6.45)

From (6.33), (6.40), (6.45) and [1, Proposition 1.80] we then deduce that∫
M

ϕεn(x, t)φ(x) dV(x)→
∫
M

φ(x) dνt (x) as n→∞ for any φ ∈ Cb(M). (6.46)

As a consequence,∫
M

W(x, T )ψ(x) dV(x) =
∫
M

W(x, t) dνt (x) for a.e. t ∈ (0, T ), (6.47)

by passing to the limit as ε = εn → 0 in (6.34) (recall that, from Lemma 4.14, W(t) ∈
Cb(M)).

Since for a.e. 0 < t∗ < t∗ < T we have 8(x, t∗) ≤ 8(x, t∗) for a.e. x ∈ M (see
(6.42)), it is direct to show that the curve νt can be extended to every t ∈ (0, T ] so that it
still satisfies (6.42), (6.45) and (6.47). Hence, in view of Lemma 6.1 and (6.47),∫
M

W(x, T )ψ(x) dV(x) ≤
∫
M

[G2(x, h)− G1(x, t0)] dν
t (x) for all 0 < t < t0 < T.

(6.48)

Thanks to (6.42) and (6.45), it is straightforward to check that there exists ν0 ∈M+

F (M)

such that
lim
t→0

∫
M

φ(x) dνt (x) =

∫
M

φ(x) dν0 for any φ ∈ Cc(M)

and
Gν0(x) = lim

t→0
8(x, t) := 80(x) for a.e. x ∈ M.

Thus, by dominated convergence and Tonelli’s Theorem,

lim
t→0

∫
M

G1(x, t0) dν
t (x) = lim

t→0

∫
M

u1(x, t0)8(x, t) dV(x) =
∫
M

u1(x, t0)80(x) dV(x)

=

∫
M

G1(x, t0) dν0(x).

We can similarly prove that

lim
t→0

∫
M

G2(x, h) dν
t (x) =

∫
M

G2(x, h) dν0(x).

Hence, passing to the limit as t → 0 in (6.48) we infer that∫
M

W(x, T )ψ(x) dV(x) ≤
∫
M

[G2(x, h)− G1(x, t0)] dν0(x) for all 0 < t0 < T.

(6.49)
Letting t0 → 0 in (6.49), by monotone convergence and in view of Lemma 6.1 we find∫

M

W(x, T )ψ(x) dV(x) ≤
∫
M

[G2(x, h)− Gµ] dν0(x) ≤ 0. (6.50)
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Since h >, T > 0 and ψ ∈ C∞c (M) (with ψ ≥ 0) are arbitrary, (6.50) implies G1 ≥ G2.
Interchanging the roles of u1 and u2, we also get G1 ≤ G2, so that G1 = G2 and u1 = u2
in view of Lemma 4.13. ut

Remark 6.7. As a consequence of the above method of proof, Theorem 2.3 still holds
under the weaker assumption that (2.4) is satisfied for any φ ∈ Cc(M).

However, in contrast with the existence counterpart, in order to prove Theorem 2.3
we require some additional hypotheses. First of all, we assume (H)(ii): this is essential to
provide a cut-off family ξR satisfying (6.6), which is the main tool we exploit to justify
all the integration by parts, as well as the conservation of mass (6.45). The positivity of
the initial datum, µ ∈ M+F (M), is crucial for the validity of (6.3) for every x ∈ M and for
the monotonicity of G as a function of t ; both properties are deeply exploited in the final
part of the proof of Theorem 2.3.

Finally, in Remark 5.3 we explained how to recover existence in the range (N − 2)/N
< m < 1. As for uniqueness, there are two main issues. A priori nothing guarantees that
um(t) ∈ L1(M) for positive times: this prevents us from proving that the remainder
integrals I1 and I2 in the proof of Lemma 6.1 vanish as R → ∞. On the other hand,
the function a in (6.13) is no more bounded for positive times, a crucial property that we
exploit throughout the proof of Theorem 2.3.

6.5. Proof of existence and uniqueness of the initial trace

First note that, under the assumptions of Theorem 2.4, the proof of Lemma 6.1 works
without further issues down to the proof of identity (6.2). Moreover, by combining the
latter with the smoothing effect (5.3) and proceeding as in the proof of Theorem 2.2, we
end up with∣∣∣∣∫

M

G(x, t2)φ(x) dV(x)−
∫
M

G(x, t1)φ(x) dV(x)
∣∣∣∣

≤ ‖φ‖∞K
m−1
‖u‖

1+β(m−1)
L∞((0,∞);L1(M))

∫ t2

t1

t−α(m−1) dt, (6.51)

where again G(t) is the potential of u(t). Furthermore, given any t2 > t1 > 0 and any
R ≥ 1, by plugging in (2.3) the test function

ϕ(x, t) = ξR(x)[θ
t1
% (t)− θ

t2
% (t)] for all x ∈ M, t > 0

(θ t·% is defined as in the proof of Proposition 5.1 and ξR as in the proof of Lemma 6.1),
integrating by parts, letting %→ 0 and using (6.6), we obtain∣∣∣∣∫

M

u(x, t2)ξR(x) dV(x)−
∫
M

u(x, t1)ξR(x) dV(x)
∣∣∣∣

≤ C̄

∫ t2

t1

∫
B2R\BR

|u(x, t)|m dV(x) dt. (6.52)
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In addition, (2.1) and the smoothing effect (5.3) ensure that∫ t2

0

∫
M

|u(x, t)|m dV(x) dt ≤
Km−1

1− α(m− 1)
‖u‖

1+β(m−1)
L∞((0,∞);L1(M))

t
1−α(m−1)
2 <∞.

(6.53)

Having established (6.51)–(6.53) for general weak solutions to the differential equation
in (1.1), we are in a position to prove Theorem 2.4.

Proof of Theorem 2.4. In view of (6.51) we infer that the family {G(t)} is Cauchy in
L1

loc(M) as t → 0, hence there exists G0 ∈ L
1
loc(M) such that G(t) → G0 as t → 0 in

L1
loc(M). Moreover, the fact that u ∈ L∞((0,∞);L1(M)) implies that for every sequence
tn→ 0 there exists µ ∈MF (M) such that {u(tn)} converges vaguely to µ as n→∞, up
to a subsequence (recall Definition 4.5). On the other hand, the convergence of {G(tn)} to
G0 in L1

loc(M) implies Gµ = G0, so that by Lemma 4.13 the measure µ does not depend
on the sequence {tn}, and (2.4) holds for all φ ∈ Cc(M). In order to prove that (2.4) also
holds for constant functions, we can exploit (6.52): by letting t1 → 0 and using the vague
convergence of {u(t1)} to µ we end up with∣∣∣∣∫

M

u(x, t2)ξR(x) dV(x)−
∫
M

ξR(x) dµ(x)

∣∣∣∣ ≤ C̄ ∫ t2

0

∫
B2R\BR

|u(x, t)|m dV(x) dt.

We then let R→∞: thanks to (6.53) we obtain∣∣∣∣∫
M

u(x, t2) dV(x)−
∫
M

dµ(x)

∣∣∣∣ ≤ 0,

which is the conservation of mass, or equivalently the fact that (2.4) holds for φ equal
to any constant. If u ≥ 0, the last assertion of the theorem is just a consequence of
[1, Proposition 1.80], since for positive measures vague convergence plus convergence of
measures is equivalent to convergence in the dual space of Cb(M). ut
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results.
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