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Abstract. We formulate a number of related generalisations of the weight part of Serre’s conjecture
to the case of GLn over an arbitrary number field, motivated by the formalism of the Breuil–Mézard
conjecture. We give evidence for these conjectures, and discuss their relationship to previous work.
We generalise one of these conjectures to the case of connected reductive groups which are unram-
ified over Qp , and we also generalise the second author’s previous conjecture for GLn/Q to this
setting, and show that the two conjectures are generically in agreement.
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1. Introduction

The goal of this paper is to formulate a number of related generalisations of the weight
part of Serre’s conjecture to the case of GLn over an arbitrary number field. Since this is

T. Gee: Department of Mathematics, Imperial College London; e-mail: toby.gee@imperial.ac.uk
F. Herzig: Department of Mathematics, University of Toronto; e-mail: herzig@math.toronto.edu
D. Savitt: Department of Mathematics, Johns Hopkins University; e-mail: savitt@math.jhu.edu

Mathematics Subject Classification (2010): 11F80, 11F75



2860 Toby Gee et al.

a problem with a long and involved history and since we work in significant generality
in this paper, we begin with an extended introduction, in which we try to summarise this
history (Sections 1.1 to 1.5) and give a detailed overview of the approach that we have
taken (Sections 1.6 and 1.7).

1.1. Serre’s conjecture for GL2 over Q

Let p be a prime. Serre’s conjecture, as originally formulated in 1973 (see [SD73,
p. 9] and [Ser75, §3]), predicted that every odd irreducible continuous representation
r̄ : GQ → GL2(Fp) which is unramified outside p has a twist by a power of the mod p
cyclotomic character which arises from a cuspidal modular Hecke eigenform of level 1
and weight at most p + 1. The theory of the θ -operator then implies that r̄ itself is mod-
ular of weight at most p2

− 1. This was a bold conjecture, for at the time there was little
evidence outside of the cases p = 2, 3. In those cases, since there are no cusp forms of
level 1 and weight less than 12 the conjecture simply predicts that there are no such rep-
resentations. This can be established via discriminant bounds, as in [Tat94] and [Ser86,
p. 710].

Serre [Ser87] later formulated a version of the conjecture with no restriction on the
ramification of r̄ , which included a precise recipe for both the weight and the level of a
modular eigenform giving rise to r̄ . In this way the conjecture became computationally
verifiable, and was tested in a number of cases in which r̄ has small image.

At least as far back as [Ser75], it had been known that in the theory of mod p modular
forms, one can trade off the weight and level (and Nebentypus) at p. For this reason
Serre restricted his attention to modular forms of level prime to p. He conjectured that
the minimal possible level of the candidate eigenform giving rise to r̄ could be taken to be
the prime-to-p Artin conductor of r̄ , while his conjectural recipe for the minimal possible
weight of the eigenform (in prime-to-p-level) was more intricate, and depended on the
ramification behaviour of r̄ at p.

The part of Serre’s conjecture which predicts that every odd irreducible continuous
representation r̄ : GQ→ GL2(Fp) arises from some modular eigenform is often referred
to as “the weak form of Serre’s conjecture”, while the form of the conjecture that includes
the precise recipes for the minimal weight and level is called “the strong form of Serre’s
conjecture”. Much of the early work concerning Serre’s conjecture was focussed on prov-
ing that the weak form implies the strong form, and it is natural to expect that work on
generalisations of Serre’s conjecture will follow the same pattern. (Indeed, the eventual
proof of Serre’s conjecture [KW09a, KW09b, Kis09b] relied on the work that had been
done to prove the equivalence of the weak and strong forms.)

Serre’s conjectural recipe for the minimal weight of an eigenform of prime-to-p level
giving rise to r̄ was more subtle than the recipe for the level, but essentially amounted to
providing the minimal weight k that was consistent with the known properties of the re-
striction to a decomposition group at p of the Galois representations associated to eigen-
forms. To make this precise one nowadays uses the language of p-adic Hodge theory.
Given a modular eigenform f of weight k ≥ 2 and prime-to-p level, the associated p-adic
Galois representation rf : GQ→ GL2(Qp) has the property that the restriction rf |GQp to
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a decomposition group at p is crystalline with Hodge–Tate weights k−1 and 0. Therefore
any results on the reduction mod p of crystalline representations ofGQp with Hodge–Tate
weights k−1 and 0, such as the early results of Deligne and Fontaine–Serre when k ≤ p,
give information (purely in terms of r̄|GQp ) about the possible weights k of the modular
eigenforms giving rise to r̄ .

To give a concrete example, let ε denote the cyclotomic character, and ε its reduction
mod p. Suppose that

r̄|IQp
∼=

(
εk−1

∗

0 1

)
(1.1.1)

where IQp is the inertia group at p, and 2 < k < p + 1. Then the minimal weight
predicted by Serre’s recipe is k. Indeed, it is known that any crystalline representation
ρ : GQp → GL2(Qp) with Hodge–Tate weights k − 1 and 0 (with k in the given range)
and whose reduction mod p is reducible must be an extension of an unramified character
by an unramified twist of εk−1, and therefore the shape of ρ|IQp must be as on the right-
hand side of (1.1.1).

We make one further remark about the above example. Suppose that the extension
class ∗ vanishes, and assume for simplicity that k < p − 1. Serre observed that

(r̄ ⊗ ε1−k)|IQp
∼=

(
εp−k 0

0 1

)
(1.1.2)

and therefore has minimal weight p + 1 − k. Thus, although Serre’s conjecture predicts
that any r̄ has a twist which is modular with weight at most p + 1, in this split case there
are actually two such twists. This is the so-called “companion forms” phenomenon.

1.2. Serre weights

We now explain a representation-theoretic reformulation of the weight k in Serre’s con-
jecture. This optic first appears in the work of Ash–Stevens [AS86], and both simplifies
the original weight recipe for GL2 over Q and has proved crucial for formulating the
weight part of Serre’s conjecture for other groups and over other fields.

The Eichler–Shimura isomorphism allows one to reinterpret Serre’s conjecture in
terms of the cohomology of arithmetic groups. If V is an Fp-representation of GL2(Fp)
and N is prime to p, then we have a natural action of the Hecke algebra of 01(N)

on H 1(01(N), V ), and so it makes sense to speak of a continuous representation
r̄ : GQ → GL2(Fp) being associated to an eigenclass in that cohomology group. If
r̄ is odd and irreducible, then the Eichler–Shimura isomorphism implies that r̄ is mod-
ular of weight k and prime-to-p level N if and only if r̄ is associated to an eigenclass
in H 1(01(N),Symk−2 F2

p), where Symk−2 F2
p is the (k − 2)th symmetric power of the

standard representation of GL2(Fp) on F2
p. By dévissage one deduces that r̄ is modu-

lar of weight k and prime-to-p level N if and only if r̄ is associated to an eigenclass in
H 1(01(N), V ) for some Jordan–Hölder factor V of Symk−2 F2

p. (Recall that the repre-
sentation Symk−2 F2

p is reducible as soon as k > p + 1.)
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It is then natural to associate to r̄ the set W(r̄) of irreducible Fp-representations V
of GL2(Fp) such that r̄ is associated to an eigenclass in H 1(01(N), V ) for some prime-
to-p level N . Thanks to the argument in the previous paragraph, the (finite) set W(r̄)
determines all weights in which r̄ occurs in prime-to-p level, and not just the minimal
such weight. For this reason such representations of GL2(Fp) are now often referred to as
Serre weights, or even simply weights.

To illustrate, suppose once again that r̄ is as in (1.1.1), with 2 < k < p − 1. If
the extension class ∗ is non-split, then we have W(r̄) = {Symk−2 F2

p}. However, in the
companion forms case where the extension class ∗ is split, we have

W(r̄) = {Symk−2 F2
p, detk−1

⊗Symp−1−k F2
p}

instead. Here the second weight comes from observing via (1.1.2) that the weight
Symp−1−k F2

p should lie in W(r̄ ⊗ ε1−k), and then undoing the twist.
Serre [Ser87, §3.4] in fact asked whether a “mod-p Langlands philosophy” exists

which would give a more natural definition of the weight, and which would allow for
generalisations of the conjecture to other groups and number fields. This is now known
to be true for GL2 over Q [Col10, Eme10] and the set W(r̄) intervenes naturally from
this point of view (see for example [Bre10]). There is considerable evidence that such
a philosophy remains true in more general settings, although it is far from completely
developed at this point. Indeed the results to date on generalisations of the weight part of
Serre’s conjecture have been a major guiding influence on the development of the mod p
Langlands program, rather than a consequence of it.

1.3. Early generalisations

Formulations of very general versions of the weak conjecture have been known to the
experts for many years; the main issue is to define the correct generalisation of “odd”, for
which see for example [Gro07] and [BV13, §6]. (If one wishes to consider automorphic
forms or cohomology classes for groups which are not quasi-split, it is also necessary
to impose conditions on the ramification of r̄ at places at which the underlying group is
ramified; see [GK14, Def. 4.5.3] for the case of quaternion algebras.) Moreover, granting
an understanding of classical local Langlands and its relationship to local-global com-
patibility, it is reasonably straightforward to generalise the definition of the (prime-to-p)
level in terms of the prime-to-p ramification of r̄ . For example, for generalisations to GLn
over arbitrary number fields, one again expects to take the level to be the prime-to-p Artin
conductor of r̄; see e.g. [ADP02, §2.2] for the case that the number field is Q.

However, formulating the weight part of the conjecture in any generality has proved
difficult. We stress at the outset that, in keeping with the mod p Langlands philosophy,
one conjectures that the set of Serre weights associated to r̄ depends only on the restric-
tions of r̄ to decomposition groups at places dividing p. For this reason all of the weight
predictions that we discuss in this paper are formulated in terms of local Galois represen-
tations.

For Hilbert modular forms over a totally real field F in which p is unramified, a
precise conjecture was formulated by Buzzard–Diamond–Jarvis [BDJ10]. It was essential
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for [BDJ10] to use the “Serre weight” point of view, since weights of Hilbert modular
forms are [F : Q]-tuples of integers and so there is not a natural notion of minimal weight
of r̄ . In this context a Serre weight is an irreducible Fp-representation of

∏
v|p GL2(kv),

where kv is the residue field of the completion Fv . The recipe of [BDJ10] predicts the set
of weightsW(r̄) in terms of the Hodge–Tate weights of crystalline lifts of r̄|GFv for v |p,
in line with the discussion at the end of Section 1.1. The prediction of [BDJ10] is now
known to be correct [GLS14, GK14].

In another direction, the study of the weight part of Serre’s conjecture for GLn
over Q was initiated by Ash and his collaborators [AS00, ADP02], with a particular focus
on GL3. They gave a combinatorial recipe for a predicted set of weights, in the spirit of
Serre’s original recipe but using the language of Serre weights. The combinatorial recipe
takes as input the tame inertia weights of r̄|IQp (the base p “digits” of the exponents when
r̄|IQp is written as a successive extension of powers of fundamental characters), much as
in the examples (1.1.1), (1.1.2) and their reformulations in Section 1.2.

In the case where r̄|GQp is semisimple, the thesis [Her09] of the second-named au-
thor gave a representation-theoretic recipe for a predicted set of weights, which for
generic r̄|GQp should be the full set of weights. The prediction is made in terms of the re-
duction mod p of Deligne–Lusztig representations, and involves a mysterious involution
R on the set of Serre weights. In particular [Her09] predicts some weights for GL3 that
are not predicted by [ADP02], and that were subsequently computationally confirmed (in
some concrete cases) by Doud and Pollack. (We stress that [AS00, ADP02] did not claim
to predict the full set of weights for r̄ .)

1.4. The Breuil–Mézard conjecture

We now turn to the Breuil–Mézard conjecture, which gives a new way of looking at the
weight part of Serre’s conjecture.

Originally the Breuil–Mézard conjecture arose in the context of attempts to generalise
the Taylor–Wiles method [TW95], and was also one of the starting points of the p-adic
Langlands program. It was clear early on that understanding the geometry of deformation
spaces of local mod p Galois representations with prescribed p-adic Hodge-theoretic
conditions was essential for proving automorphy lifting theorems; the earliest automorphy
lifting theorems required the smoothness of such deformation spaces. The Breuil–Mézard
conjecture gives a measure of the complexity of these deformation spaces, in terms of the
modular representation theory of GL2.

We state a version of this conjecture for GLn over Qp, following [EG14]. We need
the following data and terminology:

◦ a continuous representation ρ : GQp → GLn(Fp),
◦ a Hodge type λ, which in this setting is an n-tuple λ = (λ1, . . . , λn) of integers with
λ1 ≥ · · · ≥ λn, and
◦ an inertial type τ , i.e. a representation IQp → GLn(Qp) with open kernel and that can

be extended to a representation of GQp .
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Kisin [Kis08] associates to this data a lifting ring Rλ,τρ whose characteristic 0 points
parameterise the lifts of ρ that are potentially crystalline with type τ and Hodge–Tate
weights

λ1 + n− 1, . . . , λn−1 + 1, λn. (1.4.1)

The Breuil–Mézard conjecture predicts the Hilbert–Samuel multiplicity e(Rλ,τρ ⊗Zp Fp)
of Rλ,τρ ⊗Zp Fp, as follows.

The inertial local Langlands correspondence (cf. Henniart’s appendix to [BM02]) as-
sociates to τ a finite-dimensional smooth Qp-representation σ(τ) of GLn(Zp). On the
other hand, associated to λ is the irreducible algebraic representation W(λ) of GLn(Qp)
of highest weight λ.

Conjecture 1.4.2 (The generalised Breuil–Mézard conjecture). There exist non-nega-
tive integers µV (ρ), indexed by Serre weights V , such that for all Hodge types λ and
inertial types τ we have

e(R
λ,τ
ρ ⊗Zp Fp) =

∑
V

nλ,τ (V )µV (ρ)

where nλ,τ (V ) is the multiplicity of V in the reduction mod p of W(λ) ⊗Qp σ(τ) (as a
GLn(Zp)-representation).

This conjecture was first formulated by Breuil–Mézard [BM02] for GL2 with certain re-
strictions on λ and τ . In the special case where the Serre weight V is actually a Weyl
module, and therefore lifts to some W(λ) in characteristic zero, taking τ trivial in Con-
jecture 1.4.2 gives an equality µV (ρ) = e(R

λ,triv
ρ ⊗Zp Fp). For this reason we typically

refer to the integers µV (ρ) as multiplicities.
Relying on some explicit calculations, Breuil and Mézard furthermore gave predic-

tions for the multiplicities µV (ρ), and observed a close connection between these mul-
tiplicities and the weight part of Serre’s original modularity conjecture: namely, that one
appeared to have µV (r̄|GQp ) > 0 if and only if V was a predicted Serre weight for r̄ .

More recently, the first-named author and Kisin [GK14] suggested that one could
turn this around and use the Breuil–Mézard conjecture to define the set of Serre weights
WBM(ρ) = {V : µV (ρ) > 0} associated to a local Galois representation ρ. One would
then conjecture that W(r̄) = WBM(r̄|GQp ).

Note that this prediction for the set of Serre weights associated to r̄ , while very gen-
eral, is contingent on the truth of the Breuil–Mézard conjecture. In fact, what [GK14] ac-
tually do is prove the Breuil–Mézard conjecture for GL2 and λ = 0 (for arbitraryK/Qp),
which allows them unconditionally to define a set of weights WBT(ρ). Here BT stands
for Barsotti–Tate. This description of the set of weights turns out to be extremely useful,
and was an important part of the resolution in [GK14] and [GLS15] of the conjectures
of [BDJ10] and their generalisations to arbitrary totally real fields.

The key technique used by [GK14] is the method of Taylor–Wiles–Kisin patch-
ing. One first constructs a globalisation r̄ of ρ. Write X∞ = SpfRρ[[x1, . . . , xh]],
with Rρ the universal lifting ring of ρ and h ≥ 0 a certain integer. Similarly write
Xτ∞ = SpfR0,τ

ρ [[x1, . . . , xh]], which if non-empty is of dimension d + 1 for some d
independent of τ . In the context of [GK14] a patching functor is a non-zero covariant
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exact functor M∞ from the category of finitely generated Zp-modules with a continuous
action of GL2(OK), to the category of coherent sheaves on X∞, with the properties that:
◦ for all inertial types τ the sheaf M∞(σ (τ )) is p-torsion free and has scheme-theoretic

support Xτ∞, and in fact is maximal Cohen–Macaulay over Xτ∞;
◦ the (maximal Cohen–Macaulay over a regular scheme, so) locally free sheaf
M∞(σ (τ ))[1/p] has rank one over the generic fibre of Xτ∞, and
◦ for all Serre weights V , the support of the sheaf M∞(V ) either has dimension d or is

empty.
This is an abstraction of the output of the Taylor–Wiles–Kisin patching method applied to
spaces of automorphic forms. The existence of a patching functor can be shown to imply
that the Breuil–Mézard conjecture holds (in the cases under consideration in [GK14]), and
moreover that WBT(ρ) is precisely the set of weights V for which M∞(V ) 6= 0. On the
other hand, Gee and Kisin [GK14] construct such a functor, and the construction implies
thatM∞(V ) 6= 0 if and only if r̄ is automorphic of weight V . Putting these together, they
conclude that the set WBT(ρ) is indeed the correct weight set for r̄ .

1.5. Shadow weights and the crystalline lifts conjecture

One of the features of the weight part of Serre’s conjecture for GLn (n ≥ 3) that distin-
guishes it from the GL2 case is that there exist Serre weights that do not lift to character-
istic 0. For example, for GL3 over Q roughly half the Serre weights are so-called “upper
alcove weights”. These have the property that if W is the irreducible representation in
characteristic 0 with the same highest weight as an upper alcove weight U , then the re-
duction mod p of W is not irreducible but rather has two Jordan–Hölder factors, one of
which is U and another which we denote by L (for “lower alcove”).

It was observed in the conjecture of [Her09] (in the semisimple case) as well as in
the computations of [ADP02] (including some non-semisimple examples) that whenever
L was a predicted Serre weight for some r̄ , so also was U . For this reason one began to
refer to the weight U as a shadow of the weight L. The conjecture that U occurs in the
set of Serre weights of r̄ whenever L does (as well as its natural generalisation to the GLn
setting) became known as the shadow weight conjecture.

In the optic of the Breuil–Mézard conjecture, the shadow weight conjecture says that
if µL(ρ) > 0 for some local Galois representation ρ and if U is a shadow of L, then also
µU (ρ) > 0. The Breuil–Mézard conjecture itself implies that if ρ has Serre weightU then
ρ has a crystalline lift with Hodge–Tate weights corresponding to the highest weight ofU ,
or equivalently to the highest weight of W ; and conversely if ρ has such a crystalline lift,
then ρ has at least one Serre weight that occurs in the reduction ofW . In combination with
the shadow weight conjecture, this is elevated to an if-and-only-if: ρ has Serre weight U
if and only if a crystalline lift of ρ with Hodge–Tate weights as above exists.

This attractive picture (as well as its generalisation to GLn over more general number
fields) was known as the crystalline lifts version of the weight part of Serre’s conjecture,
and was widely believed for a number of years. For the sake of historical accuracy, we
should remark that the crystalline lifts version of the weight part of Serre’s conjecture
emerged in [Gee11, §4] before the Breuil–Mézard optic, motivated by its evident parallels
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with the GL2 case (both Serre’s original conjecture and the conjecture of [BDJ10]) and
its compatibility with the conjectures of [Her09].

The crystalline lifts version of the weight part of Serre’s conjecture was contained
in drafts of the present paper as recently as 2014. We had a narrow escape, then, when
(prior to the completion of this paper) Le, Le Hung, Levin, and Morra [LL+18] produced
counterexamples to the shadow weight conjecture for GL3 over Q (in the non-semisimple
case), thus also disproving the crystalline lifts version of the weight part of Serre’s con-
jecture for GL3.

The geometric explanation seems to be as follows. The papers [EG18, EG] construct a
finite type equidimensional Artin stack X over Fp whose Fp-points naturally correspond
to the isomorphism classes of representations ρ : GQp → GL3(Fp). The stack X should
have among its irreducible components X (U) and X (L), whose Fp-points are precisely
the representations ρ for which U and L respectively are Serre weights, and these com-
ponents appear to intersect in codimension one. Since the paper [ADP02] makes compu-
tations for representations r̄ which by construction have small image, it is not surprising
in hindsight that those representations might lie in special loci of X .

1.6. This paper

In this paper, we explain a general formulation of the weight part of Serre’s conjec-
ture (Conjecture 3.2.7) in terms of the Breuil–Mézard conjecture, based on the philos-
ophy outlined in Section 1.4. Moreover, there are compelling reasons (coming from the
Fontaine–Mazur conjecture and the Taylor–Wiles method) to believe that this recipe gives
the correct weights in full generality. In particular, in Proposition 4.2.1 we prove that the
existence of a suitable patching functor would on the one hand imply the Breuil–Mézard
conjecture, and would on the other hand imply that the set WBM(ρ) is the set of Serre
weights of globalisations of ρ.

Although we believe this description of the weights is the “correct” one, and it seems
likely that any proof of the weight part of Serre’s conjecture in general situations will
need to make use of this formulation, it is of interest to have more explicit descriptions of
the set of weights. For a variety of reasons (which we discuss in the body of the paper),
it seems unlikely that in general there will be explicit and complete descriptions of the
sort that one finds for GL2 in [GLS14, GLS15, DDR16, CEGM17], but it does seem
reasonable to hope for something more concrete in the case that ρ is semisimple and
suitably generic.

Indeed, it remains plausible that the crystalline lifts version of the weight part of
Serre’s conjecture, despite being false in general, is nevertheless true in the case where r̄
is semisimple locally at places above p. For instance, there is considerable evidence in the
3-dimensional case over Q: when r̄|GQp is suitably generic, many cases of the conjecture
are proved in [EGH13] and [LL+18], and for some non-generic r̄|GQp there is computa-
tional evidence due to [ADP02]. The more recent papers [LL+16, LLHL16] extend the
results of [LL+18] to the case of totally real fields in which p is unramified, and estab-
lish weight elimination (that the set of modular weights is a subset of the set of predicted
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weights) in arbitrary dimension in this setting, again with a genericity hypothesis on r̄
locally above p.

In Conjecture 5.1.7 we formulate the crystalline lifts version of the weight part
of Serre’s conjecture for Galois representations that are semisimple locally at primes
above p. We remark that when the extension K/Qp is ramified, the definition of the
weight set in terms of crystalline lifts involves a choice of lifting K ↪→ Qp for each em-
bedding k ↪→ Fp of the residue field k of K . (The former embeddings index Hodge–Tate
weights, the latter are used to parameterise Serre weights.) This leads us to define two
weight sets, W∃cris(ρ) and W∀cris(ρ). The former is the set of weights obtained by taking
the union over all such choices of liftings, and the latter is the set of weights obtained by
taking the intersection. We conjecture that these two sets are in fact equal.

Section 6 contains a brief and informal discussion of some intuition for Serre weight
conjectures that is suggested to us by the Galois moduli stacks of [EG18, EG].

We next explore the possibility of making the conjectures of Section 5 explicit. Our
basic idea is that in the case when ρ is semisimple, we can explicitly construct many
crystalline lifts of ρ by lifting each irreducible factor of ρ separately (and this comes down
to constructing crystalline lifts of characters, since each irreducible mod p representation
ofGK is induced from a character of an unramified extension ofK). We call a crystalline
lift obtained in this way an obvious crystalline lift, and correspondingly we obtain a set
of weights Wobv(ρ). (In fact this is not quite accurate: the set Wobv(ρ) also takes into
account our expectation that the set of Serre weights of ρ should depend only on ρ|IK ;
see Definition 7.1.3.) To illustrate, the representation

ρ ∼=

(
εk−1χ1 0

0 χ2

)
of GQp with χ i unramified has a crystalline lift ρ of the form

ρ ∼=

(
εk−1χ1 0

0 χ2

)
where each χi is unramified and lifts χ i (i = 1, 2). The representation ρ has Hodge–Tate
weights k−1 and 0; taking into account the shift by (1, 0) as in (1.4.1), we predict that the
Serre weight Symk−2 F2

p, which is described by the highest weight (k−2, 0), is contained
in Wobv(ρ). Similarly, ρ has a crystalline lift with Hodge–Tate weights p − 1, k − 1 ob-
tained by lifting χ2 instead to εp−1χ2, leading to the inclusion detk−1

⊗Symp−1−k F2
p ∈

Wobv(ρ), in accordance with Section 1.2.
As will be discussed in Remark 5.1.11, under the assumption of the generalised

Breuil–Mézard conjecture, the shadow weight conjecture and the crystalline lifts con-
jecture are equivalent. Therefore, our explicit weight set for ρ needs to be closed under
the consequences of the shadow weight conjecture. We denote the smallest set of Serre
weights that satisfies this requirement and that contains Wobv(ρ) by C(Wobv(ρ)) (see Sec-
tion 7.2). We call the weights that lie in the complement C(Wobv(ρ)) \Wobv(ρ) shadow
weights. The simplest example occurs for GL3 over Qp, as explained in Section 1.5.

For a period of time, we hoped that the set C(Wobv(ρ)) might explain the full set of
weights of ρ arising from crystalline lifts; unfortunately, this cannot always be the case.
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Again this phenomenon first occurs for GL3 over Qp. In some cases we can inductively
construct further crystalline lifts of ρ coming from Levi subgroups. The idea is that we
write ρ =

⊕
i ρi and take the direct sum of certain crystalline lifts ρi of ρi whose ex-

istence would be implied by the generalised Breuil–Mézard conjecture in combination
with the explicitly constructed weight set for ρi . The weight set resulting from these (hy-
pothetical) crystalline lifts is denoted by Wexpl(ρ). It contains in fact all shadow weights.
We call the weights in the complement Wexpl(ρ) \ C(Wobv(ρ)) obscure weights. See Ex-
ample 7.2.5 for examples of such weights in the case of GL3 over Qp. In Section 7.4
we ask furthermore whether the weight set of ρ should be closed under certain “weight
shifts”, and we give a limited amount of evidence for a positive answer.

In general we do not know how close our explicit weight set Wexpl(ρ) is to the ac-
tual set of weights of ρ. In Section 8 we compare this predicted weight set to all existing
conjectures and computational evidence that we are aware of. Then, in the final part of
our paper, we give strong evidence that in case K/Qp is unramified and ρ is sufficiently
generic (a genericity condition on the tame inertia weights of ρ|IQp ) we are not miss-
ing any weights. It turns out that it is most natural to work in the setting of unramified
groups G over Qp, considering GLn over K as the restriction of scalars ResK/QpGLn
to Qp. (For our precise conditions on G, see Hypothesis 9.1.1.) We extend both our ex-
plicit weight set Wexpl(ρ) as well as the weight set W ?(ρ) of [Her09] to this general
setting and then prove the following theorem.

Theorem 1.6.1 (Theorem 10.2.11). If ρ|IQp is semisimple and sufficiently generic, then
W ?(ρ) =Wexpl(ρ) = C(Wobv(ρ)).

In particular, there are no obscure weights in this generic setting. The proof is not imme-
diate but requires some subtle modular representation theory. We thus see this result as an
encouraging sign that Wexpl(ρ) is correct in the generic unramified case.

This paper has two appendices. Appendix A contains the proof of a theorem of J. C. Ye
and J. P. Wang on alcove geometry that is needed in Section 10; as far as we know, the only
published proofs are in Chinese. In Appendix B we prove by combinatorial arguments that
the explicit set of Serre weights defined in Section 7 is always non-empty.

The only part of the paper that we have not yet mentioned is Section 2, in which we
describe a global framework for formulations of generalisations of Serre’s conjecture, in
terms of the cohomology of arithmetic quotients of adèle groups. Although it is of course
necessary to have chosen such a framework before one can begin to speak about Serre’s
conjecture (e.g. in order to define what one means when one says that r̄ is modular of a
given weight!), this discussion is in some sense secondary to the rest of the paper, which
is entirely local except for parts of Section 4 on patching.

1.7. Index to the weight sets defined in this paper

Associated to a global Galois representation r̄ : GF → GLn(Fp):

◦ W(r̄), the Serre weights of r̄: Definition 2.1.3;
◦ Wv(r̄), the local Serre weights of r̄ at a place v |p: Conjecture 2.1.5.
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Associated to a local Galois representation ρ : GK → GLn(Fp):

◦ WBM(ρ), the Breuil–Mézard predicted weights for ρ: Definition 3.2.6;
◦ WS(ρ), the S-Breuil–Mézard predicted weights for ρ: Definition 3.3.7;
◦ W∃cris(ρ) and W∀cris(ρ), the crystalline weights for ρ: Definition 5.1.5.

Associated to ρ : GK → GLn(Fp) such that ρ|IK is semisimple:

◦ Wobv(ρ), the obvious weights for ρ: Definition 7.1.3;
◦ C(Wobv(ρ)), the obvious and shadow weights for ρ: Definition 7.2.1;
◦ Wexpl(ρ), the explicit predicted weights for ρ: Definition 7.2.3;
◦ W?(ρ) (n = 3), the weights predicted by [Her09]: Proposition 8.2.8.

See Section 7.5 for a summary of our conjectures about these weight sets.
Associated to a tame inertial L-parameter τ : IQp → Ĝ(F), for a group G as in

Hypothesis 9.1.1 (generalising the corresponding definitions for ρ such that ρ|IK is semi-
simple):

◦ Wobv(τ ), the obvious weights for τ : Definition 9.3.6;
◦ C(Wobv(τ )), the obvious and shadow weights for τ : Definition 9.3.9;
◦ Wexpl(τ ), the explicit predicted weights for τ : Definition 9.3.10;
◦ W?(τ ), the weights for τ predicted in the manner of [Her09]: Definition 9.2.5.

The latter three of these sets coincide for sufficiently generic τ (Theorem 10.2.11).

1.8. Notation and conventions

We fix a prime p. If K is any field, we let K be a separable closure of K , and let
GK = Gal(K/K); nothing we do will depend on the choice of K , and in particular
we will sometimes consider GL to be a subgroup of GK when K ⊂ L. In Section 9 we
will instead denote Gal(K/K) by 0K to avoid a conflict of notation. All Galois represen-
tations are assumed to be continuous with respect to the profinite topology on the Galois
group and the natural topology on the coefficients (which will usually be either the p-adic
topology or the discrete topology).

IfK is a finite extension of Qp, we write OK and k respectively for the ring of integers
and the residue field of K , IK for the inertia subgroup of GK , and FrobK for a geometric
Frobenius element of GK . If F is a number field and v is a finite place of F then we let
Frobv denote a geometric Frobenius element of GFv and we write kv for the residue field
of the ring of integers of Fv .

We will useE to denote our coefficient field, a finite extension of Qp contained in Qp.
We write O = OE for the ring of integers of E, and F for its residue field. When we are
working with representations of the absolute Galois group of a finite extension K/Qp,
we will often assume that E is sufficiently large, by which we mean that the images of
all embeddings K ↪→ Qp are contained in E. We also let Zp denote the ring of integers
of Qp, and Fp its residue field (it is thus our fixed choice of algebraic closure of Fp).

LetK be a finite extension of Qp, and let ArtK : K×→ W ab
K be the isomorphism pro-

vided by local class field theory, which we normalise so that uniformisers correspond to
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geometric Frobenius elements. Let rec denote the local Langlands correspondence from
isomorphism classes of irreducible smooth representations of GLn(K) over C to iso-
morphism classes of n-dimensional Frobenius semisimple Weil–Deligne representations
ofWK as in the introduction to [HT01], so that when n = 1 we have rec(π) = π ◦Art−1

K .
We fix an isomorphism ı : Qp → C and define the local Langlands correspondence recp
over Qp by ı ◦ recp = rec◦ ı. This depends only on ı−1(

√
p) (and the only ambiguity is a

quadratic unramified twist, so that in particular recp|IK does not depend on any choices).
Assume for the rest of this section that E is sufficiently large. For the purposes of

defining the notation below, we also allow E = Qp, O = Zp, F = Fp in what follows
in this section. Define Sk = {σ : k ↪→ F} and SK = {κ : K ↪→ E}. If κ ∈ SK , we let
κ be the induced element of Sk . Let ε denote the p-adic cyclotomic character, and ε the
mod p cyclotomic character. For each σ ∈ Sk we define the fundamental character ωσ
corresponding to σ to be the composite

IK →→ O×K → k×
σ
−→ F×,

where the first map is induced by Art−1
K . In particular (

∏
σ∈Sk

ωσ )
e(K/Qp) = ε|IK . When

k = Fp and σ : k → F is the unique embedding, we will often write ω in place of ωσ . If
χ is a character of GK or IK , we denote its reduction mod p by χ .

If W is a de Rham representation of GK over E, then for each κ ∈ SK we will write
HTκ(W) for the multiset of Hodge–Tate weights of W with respect to κ . By definition
this set contains the integer −i with multiplicity dimE(W ⊗κ,K K̂(i))

GK . Thus for ex-
ample HTκ(ε) = {1}. The set HTκ(W) is invariant under extensions of the coefficient
field, and so also makes sense for de Rham representations over Qp (and embeddings
κ : K ↪→ Qp).

We say thatW has regular Hodge–Tate weights if for each κ , the elements of HTκ(W)
are pairwise distinct. Let Zn+ denote the set of tuples (λ1, . . . , λn) of integers with λ1 ≥

· · · ≥ λn. A Hodge type is an element of (Zn+)SK . Then if W has regular Hodge–Tate
weights, there is a Hodge type λ such that for each κ ∈ SK we have

HTκ(ρ) = {λκ,1 + n− 1, λκ,2 + n− 2, . . . , λκ,n},

and we say that W is regular of weight λ (or Hodge type λ).
An inertial type is a representation τ : IK → GLn(E) with open kernel and which

extends to the Weil group WK . Then we say that a de Rham representation ρ : GK →
GLn(E) has inertial type τ and Hodge type λ, or more briefly that ρ has type (λ, τ ), if ρ is
regular of weight λ, and the restriction to IK of the Weil–Deligne representation WD(ρ)
associated to ρ is equivalent to τ .

For any λ ∈ Zn+, view λ as a dominant weight of the algebraic group GLn/OK
in the

usual way, and let M ′λ be the algebraic OK -representation of GLn given by

M ′λ := IndGLn
Bn

(w0λ)/OK

where Bn is the Borel subgroup of upper-triangular matrices of GLn, andw0 is the longest
element of the Weyl group. (This representation is denoted by H 0

OK
(λ) in [Jan03, §II.8].

Note that its generic fibre is irreducible with highest weight λ by [Jan03, II.5.6].) Write
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Mλ for the OK -representation of GLn(OK) obtained by evaluating M ′λ on OK . For any
λ ∈ (Zn+)SK we write Lλ,O for the O-representation of GLn(OK) defined by⊗

κ∈SK

(Mλκ ⊗OK ,κ O),

although when O is clear from the context we will suppress it and write simply Lλ.
We remark that the sets SK for varying (sufficiently large) coefficient fields E can

be naturally identified, and we will freely do so; and similarly for the sets Sk , (Zn+)SK ,
and (Zn+)Sk .

If A is a Noetherian local ring with maximal ideal m of dimension d, andM is a finite
A-module, then there is polynomial PAM(X) of degree at most d (the Hilbert–Samuel
polynomial of M), uniquely determined by the requirement that for n � 0, the value
PAM(n) is equal to the length of M/mn+1M as an A-module. Then the Hilbert–Samuel
multiplicity e(M,A) is defined to be d! times the coefficient of Xd in PAM(X), and we
write e(A) for e(A,A).

2. A global setting

2.1. GLn over a number field

In this section we briefly explain a possible global setup in which we can formulate the
weight part of Serre’s conjecture for GLn over a number field F . It is presumably possible
to formulate such conjectures for a general connected reductive group over a number
field (by a characteristic p analogue of the conjectures of [BG15]), but this would entail
developing a great deal of material of no relevance to the bulk of this paper.

The point of this paper is to formulate and study only the weight part of Serre’s con-
jecture, and this is expected to be a purely local question (see Conjecture 2.1.5 below).
Indeed, essentially everything in this paper (other than various comparisons to results in
the literature, giving evidence for our conjectures) after the present section is purely local.
On the other hand, to make a general global formulation requires a careful discussion of
various technical issues (such as: the association of mod p Satake parameters to charac-
teristic polynomials of Frobenii; characteristic p analogues of the various considerations
of [BG15], such as the C-group; variants using the Galois action on the étale cohomology
of Shimura varieties, rather than the Hecke action on the Betti cohomology; and so on).

As all of these points are orthogonal to our goals in the remainder of the paper, we
have restricted ourselves to a brief description of the case of GLn, as this suffices for the
bulk of the paper, and for much of the computational evidence to date. (The remaining
computations concern forms of GL2.)

Let AF denote the adèles of F , and let A∞F denote the finite adèles of F . Let U =
UpUp be a compact open subgroup of GLn(A∞F ), where Up is a compact open sub-
group of GLn(A

∞,p
F ), assumed to be sufficiently small, and Up = GLn(OF ⊗Z Zp).

Let A◦∞ = R×>0, embedded diagonally in
∏
v|∞ GLn(Fv), and write U◦∞ =

∏
v|∞ U

◦
v ⊂∏

v|∞ GLn(Fv), where U◦v = SOn(R) if v is real and U◦v = Un(R) if v is complex. Set

Y (U) := GLn(F )\GLn(AF )/UA◦∞U
◦
∞.
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Let W be an irreducible smooth Fp-representation of Up; the action of Up on W
necessarily factors through

∏
v|p GLn(kv), and we write W ∼=

⊗
v|pWv , where Wv is an

irreducible Fp-representation of GLn(kv). We can define a local system W of Fp-vector
spaces on Y (U) via

W :=
(
(GLn(F )\GLn(AF )/UpA◦∞U

◦
∞)×W

)
/Up. (2.1.1)

By shrinking Up we are free to assume that it is a product Up =
∏
v-p Uv .

There is a finite set 60 of finite places of F (dependent on U ) which contains all
places dividing p, and which has the property that if v /∈ 60 is a finite place
of F , then Uv = GLn(OFv ). For each v /∈ 60, the spherical Hecke algebra
Hv := H(GLn(OFv )\GLn(Fv)/GLn(OFv ),Zp) (cf. [Gro98b]) with coefficients in
Zp acts naturally on each cohomology group H i(Y (U),W). Indeed, Hv is identi-
fied with the subalgebra H(U\UGLn(Fv)U/U,Zp) of the usual adelic Hecke algebra
H(U\GLn(A∞F )/U,Zp), and the bigger subalgebra H(U\UGLn(A

∞,p
F )U/U,Zp) acts

naturally on each cohomology group H i(Y (U),W) (the prime-to-p condition being rel-
evant, as W may be non-trivial).

Let r̄ : GF → GLn(Fp) be an irreducible representation. For any U as above, and for
any finite set 6 of places of F containing 60, all the finite places at which r̄ is ramified,
and all the infinite places of F , we may define a maximal ideal m = m(r̄, U,6) of
T6 :=

⊗
′

v /∈6 Hv with residue field Fp by demanding that for all places v /∈ 6, the
semisimple part of r̄(Frob−1

v ) is conjugate to the class defined by the Hv-eigenvalues
determined by m under the (suitably twisted) Satake isomorphism (cf. [Gro99, §17]). (Of
course, since we are working with GLn, this just amounts to specifying the characteristic
polynomial of r̄(Frobv), as in [CHT08, Prop. 3.4.4(2)], but the formulation we have used
here generalises more easily to more general groups.)

Definition 2.1.2. We say that r̄ is automorphic if there are some W,U,6 as above such
that H i(Y (U),W)m 6= 0 for some i ≥ 0.

Definition 2.1.3. Suppose that r̄ is automorphic. Let W(r̄) denote the set of isomorphism
classes of irreducible representationsW of

∏
v|p GLn(kv) for whichH i(Y (U),W)m 6= 0

for some i ≥ 0. We refer to W(r̄) as the set of Serre weights of r̄ .

Remark 2.1.4. Let Up(1) be the kernel of the homomorphism Up →
∏
v|p GLn(kv).

A natural variant of the definition of the Serre weights of r̄ would be to ask that
HomUp (W

∨, H i(Y (Up(1)),Fp)m) 6= 0 for some i ≥ 0. We do not know how to show un-
conditionally that the two definitions always give the same set of weights, but this would
follow from conjectures in the literature, as we now explain.

Let r1 be the number of real places of F , and let r2 be the number of complex-
conjugate pairs of complex places. Set q0 = r1bn

2/4c+ r2n(n−1)/2; this is the minimal
degree of cohomology to which tempered cohomological automorphic representations
of GLn(AF ) will contribute. According to the conjectures of [CE12], as expanded upon
in [Eme14, §3.1.1], it is expected that if someH i(Y (U),Fp)m is non-zero (where nowUp
can be arbitrarily small), then in fact H q0(Y (U),Fp)m 6= 0, while H i(Y (U),Fp)m = 0
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for i < q0; there is a similar expectation for the H i(Y (U),W)m. If this conjecture holds,
then it follows easily from the Hochschild–Serre spectral sequence that this variant defi-
nition gives the same set of Serre weights as Definition 2.1.3.

We now have the following general formulation of a weak version of the weight part of
Serre’s conjecture.

Conjecture 2.1.5. Suppose r̄ is automorphic. Then we may write W(r̄) =
⊗

v|p Wv(r̄),
where Wv(r̄) is a set of isomorphism classes of irreducible representations of GLn(kv),
which depends only on r̄|GFv .

In fact one expects something more, namely that the set Wv(r̄) should depend only
on r̄|IFv , a point that will be important for making explicit Serre weight conjectures later
in the paper (see especially Section 7.1).

Much of the rest of the paper will be occupied with the question of making Conjec-
ture 2.1.5 more precise (and for giving evidence for the more precise conjectures) in the
sense of giving conjectural descriptions of the sets Wv(r̄) in terms of r̄|GFv .

2.2. Groups which are compact modulo centre at infinity

While it is natural to work with the group GLn/F , just as in the characteristic 0 Lang-
lands program it is often advantageous to work with other choices of group, in particular
those that admit discrete series. From the point of view of Serre’s conjecture, it is par-
ticularly advantageous to work with groups which are compact mod centre at infinity;
the associated arithmetic quotients only admit cohomology in degree 0, which facilitates
an easy exchange between information in characteristic 0 and characteristic p. (In the
more general context of groups that admit discrete series, there is an expectation that af-
ter localising at a maximal ideal m as above which is “non-Eisenstein” in the sense that
it corresponds to an irreducible Galois representation, cohomology should only occur in
a single degree; however, there are at present only fragmentary results in this direction,
beyond the case of groups of semisimple rank 1.)

In particular, Gross [Gro99], [Gro98a], [Gro07] considers questions relating to the
weak form of Serre’s conjecture for certain groups over Q which are compact mod centre
at infinity. While he does not consider the weight part of Serre’s conjecture in his set-
ting (although the discussion of [Gro99, §4] could be viewed as a starting point in this
direction), the conjectures we will make in this paper, especially those for more general
reductive groups, could be used to make explicit Serre weight conjectures for “algebraic
modular forms” (in Gross’s terminology). It seems likely that computations with these au-
tomorphic forms would be a good way to investigate our general Serre weight conjectures.

A great deal of progress has been made on these and related questions for a particular
class of such groups, namely unitary groups or quaternion algebras over totally real and
CM fields, which are compact mod centre at infinity. (In the case of quaternion algebras
over a totally real field, it is also possible to allow the quaternion algebra to split at a
single infinite place: in that case the semisimple rank is 1, and it is easy to show that the
cohomology of the associated Shimura curves vanishes outside of degree 1 after localising
at a non-Eisenstein maximal ideal, for example via [BDJ10, Lem. 2.2]).
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In particular, for these groups the association of Galois representations (valued in
GLn(Qp)) to automorphic representations is well-understood (see [Shi11] and the refer-
ences therein), and the Taylor–Wiles machinery is also well-developed [CHT08] and has
been successfully applied to the problem of the weight part of Serre’s conjecture (see for
example [GK14]). The relevance of these results (which address characteristic 0 Galois
representations and how characteristic p Galois representations deform to characteris-
tic 0) to the weight part of Serre’s conjecture is the following simple principle, which
underlies the proofs of most of what is known about the weight part of Serre’s conjecture
to date, and also motivates much of the material in the following sections.

Let us abusively adopt the notation of Section 2.1 above, although the groups we
are considering are now (say) unitary groups which are compact mod centre at infin-
ity. Let V be a finite free Zp-module with a continuous action of Up, and let V =
V ⊗Zp Fp. Then (recalling that U is sufficiently small) we can define a local system
of Zp-modules V on Y (U) as in (2.1.1), and since Y (U) only has cohomology in de-
gree 0, we see that H 0(Y (U),V)m 6= 0 if and only if H 0(Y (U),V)m 6= 0 if and only if
H 0(Y (U),W)m 6= 0 for some Jordan–Hölder factor W of V .

Now, if H 0(Y (U),V)m 6= 0 then we may consider the p-adic Galois representations
attached to the automorphic representations contributing to H 0(Y (U),V)m; these will
lift our representation r̄ , and in particular for places v |p the restrictions to GFv of these
representations will lift r̄|GFv . The known p-adic Hodge-theoretic properties of the Galois
representations associated to these automorphic representations then prescribe non-trivial
relationships between the r̄|GFv (for v |p) and V , and thus between the r̄|GFv and V .
In particular, by considering the Jordan–Hölder factors W of V , we obtain necessary
conditions in terms of the r̄|GFv for r̄ to be automorphic of Serre weight W . The basic
perspective of this paper (which was perhaps first considered in [Gee11, §4], and was
refined in [GK14]) is that these necessary conditions are often also sufficient.

Example 2.2.1. As a specific example of these considerations, consider the case of a
definite quaternion algebra over Q that is split at p. Up to twist, an irreducible Fp-
representation of GL2(Fp) is of the form W = Symk−2 F2

p for some 2 ≤ k ≤ p + 1.
Taking V = Symk−2 Z2

p in the above discussion, and using the Jacquet–Langlands cor-
respondence, we find that if r̄ is automorphic of Serre weight W , then r̄ can be lifted to
the Galois representation attached to a newform of weight k and level prime to p. By
local-global compatibility, this means that r̄|GQp has a lift to a crystalline representation
with Hodge–Tate weights {k − 1, 0}. If one assumes that conversely the only obstruction
to r̄ being automorphic of Serre weight W is this property of r̄|GQp having a crystalline
lift with Hodge–Tate weights {k − 1, 0}, then an examination of the possible reductions
mod p of such crystalline representations recovers Serre’s original conjecture [Ser87]
(or rather, the specialisation of the conjecture of [BDJ10] to the case of modular forms
over Q, which implies Serre’s original conjecture by, for example, an explicit comparison
of Serre’s original recipe for a minimal weight with the explicit list of Serre weights; see
the proof of [BDJ10, Thm. 3.17]).

This example generalises in an obvious fashion to the case of forms of U(2) over
totally real fields which are compact at infinity, and allows one to recover the Serre weight
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conjecture of [BDJ10]. (In the case of quaternion algebras over totally real fields there is
a parity obstruction to finding lifts to characteristic zero, coming from the global units.
However, in line with Remark 2.2.2 below, the weight part of Serre’s conjecture is known
for both quaternion algebras and compact forms of U(2) over totally real fields, and the
sets of Serre weights are the same in both cases. We will elaborate on this point, and in
particular say a few words about its proof, in Remark 4.2.5 below.)

More generally one can work over a totally real field with a form of U(n) which is
compact at infinity, and employ similar considerations; the general theory of “change of
weight” for Galois representations developed in [BL+14] (which generalises an argument
of Khare–Wintenberger) shows that it is reasonable to expect that the only obstructions
to producing automorphic lifts of particular weights will be the local ones prescribed by
p-adic Hodge theory. However, for most choices of W it is no longer possible to find
a representation V for which V ∼= W , and it is far from clear how to extract complete
information in characteristic p from information in characteristic zero, and accordingly
far from clear how to generalise the description of the weight part of Serre’s conjecture
for GL2. However, we do still obtain information (for example, that being automorphic
of some Serre weight implies the existence of a crystalline lift of some specific Hodge–
Tate weights), and much of this paper is devoted to exploring the relationship between the
weight part of Serre’s conjecture and p-adic Hodge theory. In particular, a consequence of
the philosophy of [GK14] is that information about potentially semistable lifts is sufficient
to determine the set of Serre weights in general; we explain this in Sections 3 and 4 below.

Remark 2.2.2. It is generally expected that there is a mod p Langlands correspondence
satisfying local-global compatibility at places dividing p; this is known for GL2/Q by
the results of [Eme10]. A consequence of such a compatibility would be that the sets
Wv(r̄) would only depend on the reductive group over Fv . It therefore seems reasonable
to use considerations from groups which are compact modulo centre at infinity to make
conjectures about Wv(r̄) for more general groups; in particular, one can use considera-
tions about unitary groups which split at places above p (as in Example 2.2.1) to make
predictions about the weight part of Serre’s conjecture for GLn.

Remark 2.2.3. One could consider the question of the relationship of the ramification of
the Galois representation away from p to the tame level (“the level in Serre’s conjecture”),
and the question of sufficient conditions for a mod p Galois representation to correspond
to a Hecke eigenclass in the first place (“the weak form of Serre’s conjecture” which
should correspond to an oddness condition at infinite places; see for example [Gro07]
and [BV13, §6]). Again, these questions lie in a rather different direction to the concerns
of this paper, and we will not address them here.

3. The Breuil–Mézard formalism for GLn and Serre weights

In this section we will recall the formalism of the general Breuil–Mézard conjecture
for GLn, following [EG14], and then explain how the formalism leads to a Serre weight
conjecture. As in [EG14], we will only formulate the potentially crystalline (as opposed
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to potentially semistable) version of the conjecture, as this is all that we will need. We
expect an analogous conjecture to hold in the potentially semistable case, and we refer
the reader to [Kis09a, §1.1.4] for a discussion of the differences between the potentially
crystalline and potentially semistable versions of the conjecture in the case of GL2/Qp.
(See also [GG15, Lem. 5.2], which shows for GL2 that the potentially crystalline and
potentially semistable conjectures predict the same multiplicities; we anticipate that the
proof will extend to GLn.)

3.1. Serre weights

Let K/Qp be a finite extension, and assume throughout this section that the field E/Qp
(our field of coefficients) is sufficiently large. Recall that k and F denote the residue fields
of K and E respectively. Fix a representation ρ : GK → GLn(F). (We will use ρ to
denote a local Galois representation, typically of the groupGK , in contrast to r̄ which we
reserve for a global Galois representation, typically of the group GF .)

Definition 3.1.1. A Serre weight is an isomorphism class of irreducible F-representations
of GLn(k). (This definition will be extended to more general reductive groups in Defini-
tion 9.1.4.)

We will sometimes (slightly abusively) refer to an individual irreducible representation as
a Serre weight.

Remark 3.1.2. From the results recalled below, it follows that all Serre weights can be
defined over k (note that our running assumptions imply in particular that F contains the
images of all embeddings k ↪→ Fp). Hence the choice of coefficient field is irrelevant,
will occasionally be elided below, and will be taken to be Fp from Section 5 onwards.

Let W(k, n) denote the set of Serre weights for our fixed k and n. In the following para-
graphs we give an explicit description of this set.

Write X(n)1 for the subset of Zn+ consisting of tuples (ai) such that p − 1 ≥ ai − ai+1

for all 1 ≤ i ≤ n−1. If a = (aσ,i) ∈ (Zn+)Sk , write aσ for the component of a indexed by
σ ∈ Sk . Set f = [k : Fp], and let ∼ denote the equivalence relation on (Zn+)Sk in which
a ∼ a′ if and only if there exist integers xσ such that aσ,i − a′σ,i = xσ for all σ, i and for
any labelling σj of the elements of Sk such that σpj = σj+1 we have

∑f−1
j=0 p

jxσj ≡ 0
(modpf − 1). When k = Fp we can omit the subscript σ , and the above equivalence
relation amounts to ai − a′i = (p − 1)y for some integer y, independent of i.

Given any a ∈ X(n)1 , we define the k-representation Pa of GLn(k) to be the repre-
sentation obtained by evaluating IndGLn

Bn
(w0a)/OK

on k (so we have a natural GLn(OK)-

equivariant isomorphismMa ⊗OK
k
∼
→ Pa), and let Na be the irreducible k-subrepresen-

tation of Pa generated by the highest weight vector (that this is indeed irreducible follows
from the analogous result for the algebraic group GLn; cf. [Jan03, II.2.2–II.2.6], [Her09,
Appendix]).
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If a ∈ (X(n)1 )Sk then we define an irreducible F-representation Fa of GLn(k) by

Fa :=
⊗
σ∈Sk

(Naσ ⊗k,σ F).

The representations Fa are absolutely irreducible, and every irreducible F-representation
of GLn(k) is of the form Fa for some a (see for example [Her09, Appendix]). Furthermore
Fa ∼= Fa′ if and only if a ∼ a′, and so the map a 7→ Fa gives a bijection from (X

(n)
1 )Sk/∼

to the set of Serre weights. We identify the two sets W(k, n) and (X(n)1 )Sk/∼ under this
bijection, and we refer to the elements of (X(n)1 )Sk/∼ as Serre weights. (We will abuse
this terminology in two specific ways: if a ∈ (X(n)1 )Sk and W is a set of weights, we may
write a ∈ W when literally we mean Fa ∈ W, and we may write “the weight a” when
literally we mean “the Serre weight represented by a.”)

If k = Fp we will also write F(aσ,1, . . . , aσ,n) for Fa , where Sk = {σ }.

3.2. The Breuil–Mézard conjecture

By the main results of [Kis08], for each Hodge type λ and inertial type τ there is a unique
reduced and p-torsion free quotientRλ,τ

ρ,O of the universal lifting O-algebraRρ,O which is
characterised by the property that if E′/E is a finite extension of fields, then an O-algebra
homomorphism Rρ,O → E′ factors through Rλ,τ

ρ,O if and only if the corresponding repre-
sentation GK → GLn(E′) is potentially crystalline of Hodge type λ and inertial type τ .
The ring Rλ,τ

ρ,O[1/p] is regular by [Kis08, Thm. 3.3.8]. When O is clear from the context,

we will suppress it and write simply Rλ,τρ . If τ is trivial we will write Rλρ for Rλ,τρ .
Given an inertial type τ , there is a finite-dimensional smooth irreducible Qp-represen-

tation σ(τ) of GLn(OK) associated to τ by the “inertial local Langlands correspondence”,
as in the following consequence of the results of [SZ99], which is [CE+16, Theorem 3.7].

Theorem 3.2.1. If τ is an inertial type, then there is a finite-dimensional smooth irre-
ducible Qp-representation σ(τ) of GLn(OK) such that if π is any irreducible smooth
Qp-representation of G, then the restriction of π to GLn(OK) contains (an isomorphic
copy of ) σ(τ) as a subrepresentation if and only if recp(π)|IK ∼ τ and N = 0 on
recp(π). Furthermore, in this case the restriction of π to GLn(OK) contains a unique
copy of σ(τ).

Remark 3.2.2. In particular, if τ is the trivial inertial type, then σ(τ) ∼= Qp is the trivial
one-dimensional representation of GLn(OK).

Remark 3.2.3. In general the type σ(τ) need not be unique, although it is a folklore
conjecture (which is known for n = 2, see Henniart’s appendix to [BM02]) that σ(τ) is
unique if p > n. The Breuil–Mézard conjecture, as formulated below, should hold for
any choice of σ(τ); indeed it seems plausible that the semisimplification of the reduction
mod p of σ(τ) does not depend on any choices (this is the case when n = 2 by [BD14,
Prop. 4.2]).
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Enlarging E if necessary, we may assume that σ(τ) is defined over E. Since it is a finite-
dimensional representation of the compact group GLn(OK), it contains a GLn(OK)-
stable O-lattice Lτ . Set Lλ,τ := Lτ ⊗O Lλ, a finite free O-module with an action of
GLn(OK). Then we may write

(Lλ,τ ⊗O F)ss ∼
→

⊕
a

F
nλ,τ (a)
a ,

where the sum runs over Serre weights a ∈ W(k, n), and the nλ,τ (a) are non-negative
integers. Then we have the following conjecture.

Conjecture 3.2.4 (The generalised Breuil–Mézard conjecture). There exist non-nega-
tive integers µa(ρ) depending only on ρ and a such that for all Hodge types λ and inertial
types τ we have e(Rλ,τρ /$) =

∑
a nλ,τ (a)µa(ρ).

Here$ is a uniformiser of O. The finitely many integers µa(ρ) are in fact hugely overde-
termined by the infinitely many equations e(Rλ,τρ /$) =

∑
a nλ,τ (a)µa(ρ). We will re-

turn to this point in the next subsection.

Remark 3.2.5. The multiplicities µa(ρ) in Conjecture 3.2.4 will be independent of the
coefficient field E, in the following sense. Let E′ be a finite extension of E, with ring
of integers O′ and residue field F′. Write ρ′ = ρ ⊗F F′ and τ ′ = τ ⊗E E′. One knows
[BL+14, Lem. 1.2.1 and §1.4] that there is an isomorphism R

λ′,τ ′

ρ′,O′
∼= R

λ,τ
ρ,O ⊗O O′. It

follows that if Conjecture 3.2.4 holds then µa(ρ′) = µa(ρ) for all a ∈W(k, n).

The generalised Breuil–Mézard conjecture is almost completely understood when n = 2
and K = Qp i.e. in the setting originally studied and conjectured by Breuil and Mézard
[BM02].1 In fact, it is completely understood in this setting when p > 3 [Kis09a, Paš15,
HT15]; when p = 2, 3 it is known in all cases except when the representation ρ is re-
ducible and the characters on the diagonal of ρ have ratio ε (= ε−1 when p ≤ 3) [Paš16,
Kis09a, San16]. The multiplicities µa(ρ) are described in most cases (those for which
ρ has only scalar endomorphisms) in [BM02, §2.1.2], and in general in [Kis09a, §1.1]
together with [San14].

Assuming Conjecture 3.2.4, we make the following definition and conjecture.

Definition 3.2.6. We define WBM(ρ), the Breuil–Mézard predicted weights for ρ, to be
the set of Serre weights a such that µa(ρ) > 0.

Conjecture 3.2.7. In the weight part of Serre’s conjecture (Conj. 2.1.5), we may take
Wv(r̄) =WBM(r̄|GFv ).

In Section 4 below we will explain how the formalism of the Taylor–Wiles–Kisin patching
method shows that this is a natural definition for the set of predicted Serre weights.

1 Breuil and Mézard restricted their original conjecture to the case of Hodge types λ = (r, 0)
with 0 ≤ r ≤ p − 3, due to the lack of a suitable integral p-adic Hodge theory at the time, and
considered potentially semistable deformation rings. The conjecture was later extended to arbitrary
Hodge types and adapted to the potentially crystalline setting by Kisin [Kis10].
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3.3. Breuil–Mézard systems

We now describe a family of variants of Conjectures 3.2.4 and 3.2.7. Let S be a set of
pairs (λ, τ ) such that λ is a Hodge type and τ is an inertial type (both for our fixed K
and n). We say that S is a Breuil–Mézard system if the map ZW(k,n)

→ ZS given by the
formula

(xa)a∈W(k,n) 7→

(∑
a

nλ,τ (a)xa

)
(λ,τ )∈S

is injective; in particular, if S is a Breuil–Mézard system then for each representation ρ
the equations e(Rλ,τρ /$) =

∑
a nλ,τ (a)µa(ρ), regarded as a system of linear equations

in the variables µa(ρ), can have at most one solution.
We remark that S is a Breuil–Mézard system if and only if the image of the map

Z[S] → K0(RepF(GLn(k))) sending (λ, τ ) 7→ [Lλ,τ ⊗O F] has finite index. (Here we
write K0(RepF(GLn(k))) for the Grothendieck group of finite-dimensional F[GLn(k)]-
modules.) Indeed, if S is finite then this is precisely the dual of the definition in the
previous paragraph; in general, for the “only if” direction one simply notes that any
Breuil–Mézard system contains a finite Breuil–Mézard system, and similarly for the “if”
direction.

Example 3.3.1. Take n = 2 and let BT be the set of pairs (0, τ ), so that BT is the set
of potentially Barsotti–Tate types. Then [GK14, Lem. 3.5.2] shows that BT is a Breuil–
Mézard system, and indeed that this is true even if we restrict to types τ such that det τ is
tame.

To give another example, we make the following definition.

Definition 3.3.2. We say that an element λ ∈ (Zn+)SK is a lift of an element a ∈ (Zn+)Sk
if for each σ ∈ Sk there exists κσ ∈ SK lifting σ such that λκσ = aσ , and λκ ′ = 0 for
all other κ ′ 6= κσ in SK lifting σ . In that case we may say that the lift λ is taken with
respect to the choice of embeddings (κσ ). When a ∈ (X(n)1 )Sk we will also say that λ is a
lift (with respect to the choice of embeddings (κσ )) of the Serre weight represented by a.

Example 3.3.3. Fix a lift λb for each Serre weight b, and let c̃r be the set of pairs
(λb, triv), where triv denotes the trivial type. Then c̃r is a Breuil–Mézard system, because
Lemma 3.3.5 below shows (inductively) that the natural map Z[c̃r]→K0(RepF(GLn(k)))
is surjective.

Definition 3.3.4. For a ∈ (Zn+)Sk , let ‖a‖ :=
∑
i,σ (n+ 1− 2i)aσ,i ∈ Z≥0.

Lemma 3.3.5. If λ is a lift of a ∈ (X(n)1 )Sk , then Lλ ⊗O F has socle Fa , and every other
Jordan–Hölder factor of Lλ ⊗O F is of the form Fb with b ∈ (X(n)1 )Sk and ‖b‖ < ‖a‖.

To prove Lemma 3.3.5 it is best to work not with the group GLn over k but rather its
restriction of scalars to Fp. For this reason we defer the proof until Section 10.3. However,
we stress that Lemma 3.3.5 will only be used in our discussion of the Breuil–Mézard
system c̃r.
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In the following conjectures and definition, we let S be a Breuil–Mézard system.

Conjecture 3.3.6 (The Breuil–Mézard conjecture for representations of type S). There
exist non-negative integers µa(ρ) depending only on ρ and a such that for all (λ, τ ) ∈ S
we have e(Rλ,τρ /$) =

∑
a nλ,τ (a)µa(ρ).

Definition 3.3.7. Suppose that the Breuil–Mézard conjecture for representations of type
S is true for ρ. We define WS(ρ) to be the set of Serre weights a such that µa(ρ) > 0.

Conjecture 3.3.8 (The S-weight part of Serre’s conjecture). Suppose that the Breuil–
Mézard conjecture for representations of type S (Conj. 3.3.6) is true. Then the weight
part of Serre’s conjecture (Conj. 2.1.5) holds with Wv(r̄) =WS(r̄|GFv ).

Of course if the generalised Breuil–Mézard conjecture (Conj. 3.2.4) holds, then so does
the Breuil–Mézard conjecture for representations of any type S, and in that case we must
always have WBM(ρ) = WS(ρ). In particular, if we believe Conjecture 3.2.4 (and as
we explain in Section 4 below, we certainly should believe Conjecture 3.2.4!), then the
Breuil–Mézard predicted weights for ρ are completely determined by information about
the crystalline lifts of ρ of bounded Hodge–Tate weights.

Example 3.3.9. Assume that p > 2. Gee and Kisin [GK14, Cor. 3.5.6] have established
the Breuil–Mézard conjecture for potentially Barsotti–Tate representations; that is, they
have shown that Conjecture 3.3.6 holds for the system BT of Example 3.3.1. In fact
they also prove (subject to a Taylor–Wiles-type hypothesis) that the BT-weight part of
Serre’s conjecture holds in this setting, i.e. the analogue of Conjecture 2.1.5 for quaternion
algebras or forms of U(2) over totally real fields holds with Wv(r̄) =WBT(r̄|GFv ) [GK14,
Cor. 4.5.4]; see also the discussion in Section 4.2 of this paper.

Example 3.3.10. Let c̃r be one of the Breuil–Mézard systems of Example 3.3.3. Then a
weak version of the Breuil–Mézard conjecture for representations of type c̃r is trivially
true; namely, there are uniquely determined integers µa(ρ) satisfying the required equa-
tions, but it is not clear that these integers are non-negative. (Since the system c̃r is in
bijection with the set of Serre weights, it is immediate that there are uniquely determined
rational numbers µa(ρ) satisfying the required equations, and that they are in fact integers
follows easily from Lemma 3.3.5.)

If n = 2, it follows trivially that the µa(ρ) are indeed non-negative integers (so that
the Breuil–Mézard conjecture holds for representations of type c̃r), and that a ∈ Wc̃r(ρ)

if and only if ρ has a crystalline lift of Hodge type λa (for our chosen lift λa of a).
The set Wc̃r(ρ) a priori could depend on the choice of lifts in the construction of c̃r.

However, if n = 2 and p > 2, it is proved in [GLS15, Thm. 6.1.8] that the set Wc̃r(ρ)

is independent of these choices, and indeed is equal to WBT(ρ) and thus (as explained in
Example 3.3.9) under a mild Taylor–Wiles hypothesis the analogue of Conjecture 2.1.5
for quaternion algebras or forms of U(2) over totally real fields holds with Wv(r̄) =

Wc̃r(r̄|GFv ).
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4. Patching functors and the Breuil–Mézard formalism

4.1. Patching functors

The most general results available to date on the weight part of Serre’s conjecture have
been based on the method of Taylor–Wiles patching (see, for example, [BLGG13] and
[GK14]). In this section, we give a general formalism for these arguments, and we explain
how the resolution of the weight part of Serre’s conjecture for Hilbert modular forms
in [GK14, BLGG13, GLS15] fits into this framework.

The formalism we have in mind is a generalisation of the one employed in [GK14],
which in turn is based on Kisin’s work on the Breuil–Mézard conjecture [Kis09a]. Since
our aim in this paper is not to prove new global theorems, but rather to explain what
we believe should be true, we avoid making specific Taylor–Wiles patching arguments,
and instead use the abstract language of patching functors, originally introduced for GL2
in [EGS15]. Our patching functors will be for GLn, and will satisfy slightly different
axioms from those in [EGS15], but are motivated by the same idea, which is to abstract
the objects produced by Taylor–Wiles patching. In practice one often wants to consider
all places above p at once, but for simplicity of notation we will work at a single place in
this section.

Continue to work in the context of Section 3, so that we have a fixed representation
ρ : GK → GLn(F). Fix some h ≥ 0, and write R∞ := Rρ[[x1, . . . , xh]], X∞ :=
SpfR∞. (In applications, the xi will be the auxiliary variables that arise in the Taylor–
Wiles method; they will be unimportant in our discussion, and the reader unfamiliar with
the details of the Taylor–Wiles method will lose nothing by assuming that h = 0.) We
write Rλ,τ∞ := R

λ,τ
ρ [[x1, . . . , xh]] and X∞(λ, τ ) := SpfRλ,τ∞ . Write X∞ and X∞(λ, τ )

for the special fibres of X∞ and X∞(λ, τ ) respectively. Write d + 1 for the dimension of
the non-zero X∞(λ, τ ) (which is independent of the choice of λ, τ ).

Let C denote the category of finitely generated O-modules with a continuous action
of GLn(OK); in particular, we have Lλ,τ ∈ C for any λ, τ . Fix a Breuil–Mézard system S
in the sense of Section 3.3.

Definition 4.1.1. A patching functor for S is a non-zero covariant exact functor M∞
from C to the category of coherent sheaves on X∞, with the properties that:

◦ for all pairs (λ, τ ) ∈ S, the sheafM∞(Lλ,τ ) is p-torsion free and has scheme-theoretic
support X∞(λ, τ ), and in fact is maximal Cohen–Macaulay over X∞(λ, τ );
◦ for all Serre weights Fa , the support X∞(Fa) of the sheaf M∞(Fa) either has dimen-

sion d or is empty;
◦ the (maximal Cohen–Macaulay over a regular scheme, so) locally free sheaf
M∞(Lλ,τ )[1/p] has rank one over the generic fibre of X∞(λ, τ ).

Remark 4.1.2. In practice, examples of patching functors M∞ come from the Taylor–
Wiles–Kisin patching method applied to spaces of automorphic forms, localised at a max-
imal ideal of a Hecke algebra which corresponds to a global Galois representation r̄ which
locally at some place above p restricts to give ρ. For example, the functor σ ◦ 7→ M∞(σ

◦)
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defined in [CE+16, §4] is conjecturally a patching functor; the only difficulty in verify-
ing this is that the usual Auslander–Buchsbaum argument only shows that M∞(Lλ,τ ) is
maximal Cohen–Macaulay over its support, which is a union of irreducible components
of the generic fibre of X∞(λ, τ ).

Showing that this support is in fact the whole of X∞(λ, τ ) is one of the major open
problems in the field; it is closely related to the Fontaine–Mazur conjecture, and is there-
fore strongly believed to hold in general. By the main results of [BL+14], this is known
whenever all potentially crystalline representations of Hodge type λ and inertial type τ
are potentially diagonalisable, but this condition seems to be hard to verify in practice.

Remark 4.1.3. The assumption that M∞(Lλ,τ )[1/p] has rank one corresponds to the
notion of a minimal patching functor in [EGS15]. The following arguments go through
straightforwardly if one allows the rank to be higher, and in applications coming from
Taylor–Wiles–Kisin patching, it is occasionally necessary to allow this (due to the need
to ensure that the tame level is sufficiently small when the image of the global Galois
representation is also small), but it makes no essential difference to the discussion below.
However, these cases are rare, and in particular the patching constructions of [CE+16]
give examples where the rank is one.

4.2. The relationship to the Breuil–Mézard conjecture

The connection between patching functors and Serre weights is the following result,
which is an abstraction of one of the main ideas of [GK14].

Proposition 4.2.1. If a patching functor for S exists, then the Breuil–Mézard conjec-
ture for representations of type S (Conj. 3.3.6) holds, and WS(ρ) is precisely the set of
weights σ for which M∞(σ ) 6= 0.

Proof. Let M∞ be a patching functor for S. The X∞(λ, τ ) are all equidimensional of
dimension d by [BM14, Lem. 2.1]. (Strictly speaking the context of loc. cit. has n = 2,
but its proof is completely general.) By [Mat89, Thm. 14.6] we have

e(M∞(Lλ,τ ⊗O F),X∞(λ, τ )) =
∑
a

nλ,τ (a)e(M∞(Fa),X∞(λ, τ )) (4.2.2)

(noting that M∞(Fa) is supported on X∞(λ, τ ) whenever nλ,τ (a) > 0). Now from
[Mat89, Thm. 14.7] it follows that if A→→ B is a surjection of Noetherian local rings of
the same dimension and M is a finitely generated B-module, then e(B,M) = e(A,M),
where on the right-hand side,M is regarded as anA-module via the given map. IfX∞(Fa)
is non-empty, then from the definition of a patching functor it has dimension d , and it fol-
lows that

nλ,τ (a)e(M∞(Fa),X∞(λ, τ )) = nλ,τ (a)e(M∞(Fa),X∞(Fa)). (4.2.3)

If we make the convention that e(0,∅) = 0, then (4.2.3) holds in general, since the left-
hand side is 0 when X∞(Fa) is empty.
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From the third bullet point in the definition of a patching functor, we know that
M∞(Lλ,τ )p is free of rank 1 for any minimal prime p of Rλ,τ∞ (note that the latter ring has
no p-torsion). Let S := R

λ,τ
∞ \

⋃
p p, the union being taken over all minimal primes

of Rλ,τ∞ . We have S−1M∞(Lλ,τ ) ∼=
∏

pM∞(Lλ,τ )p as an S−1R
λ,τ
∞
∼=
∏

p(R
λ,τ
∞ )p-

module, the products again being taken over all minimal primes of Rλ,τ∞ . Hence we can
findm′ ∈ M∞(Lλ,τ ) such that for any such p, the image ofm′ inM∞(Lλ,τ )p is a basis as
an (Rλ,τ∞ )p-module. It follows that [Kis09a, Prop. 1.3.4(2)] applies with A = M = Rλ,τ∞ ,
M ′ = M∞(Lλ,τ ), G = 1, x = $ , and f : M → M ′ the map sending 1 7→ m′, from
which we find that

e(M∞(Lλ,τ ⊗O F),X∞(λ, τ )) = e(Rλ,τρ /$). (4.2.4)

(Note that e(X∞(λ, τ )) = e(R
λ,τ
∞ /$) = e(R

λ,τ
ρ /$).)

Putting together equations (4.2.2), (4.2.3), and (4.2.4), we find that Conjecture 3.3.6
holds with

µa(ρ) := e(M∞(Fa),X∞(Fa)).

By the definition of a Breuil–Mézard system, the µa(ρ) are uniquely determined. Finally,
it follows from [Mat89, Formula 14.2] that e(M∞(Fa),X∞(Fa)) > 0 if and only if
M∞(Fa) 6= 0, and the result follows. ut

Remark 4.2.5. In the cases that M∞ arises from the Taylor–Wiles–Kisin patching con-
struction, M∞(Fa) corresponds to (patched) spaces of mod p automorphic forms of
weight a, and it is immediate from the definition that M∞(Fa) 6= 0 if and only if r̄ is
automorphic of Serre weight a. Thus in cases where it can be shown that the Taylor–
Wiles–Kisin method gives a patching functor for S (which, as explained in Remark 4.1.2,
amounts to showing that the support of the M∞(Lλ,τ ) is as large as possible), the S-
weight part of Serre’s conjecture (Conj. 3.3.8) follows from Proposition 4.2.1.

As explained in Remark 4.1.2, it is not in general known that potentially crystalline
representations are potentially diagonalisable, which limits the supply of patching func-
tors for general Breuil–Mézard systems.

The situation is better when n = 2, and indeed as a consequence of [GK14],
[BLGG13] and [GLS15], it is now known that if p > 2, then WBT(ρ) = Wc̃r(ρ), where
BT is the Breuil–Mézard system of Example 3.3.1, and c̃r is any of the Breuil–Mézard
systems of Example 3.3.3; and it is known that the analogue of Conjecture 2.1.5 for
quaternion algebras or forms of U(2) over totally real fields holds for this set of weights.

We briefly recall the argument. By the results of [Kis09c, Gee06] potential diagonal-
isability is known for the system BT, and Proposition 4.2.1 (applied to the Taylor–Wiles–
Kisin patching method for automorphic forms on suitable quaternion algebras or forms
of U(2)) then implies the result of [GK14] discussed in Example 3.3.9. Indeed, as we
have already explained, Proposition 4.2.1 is an abstraction of the arguments of [GK14].
It remains to show that WBT(ρ) =Wc̃r(ρ).

Since this question is purely local, it suffices to work in the U(2) setting, where it is
essentially immediate (by the considerations explained in Example 2.2.1) that WBT(ρ) ⊂

Wc̃r(ρ) (note that by the previous paragraph, the left-hand side is known at this point
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in the argument to be the set of weights that occur globally). The purely local results
of [GLS15], coming from a detailed study of the underlying integral p-adic Hodge theory,
show that if Fa ∈ Wc̃r(ρ), then ρ necessarily has a potentially diagonalisable crystalline
lift of Hodge type λã . The above machinery then shows that Wc̃r(ρ) ⊂ WBT(ρ) (again
using the fact that the right-hand side is the set of weights that occur globally; this part of
the argument is carried out in [BLGG13]), as required.

5. Crystalline lifts and Serre weights

The Breuil–Mézard version of the weight part of Serre’s conjecture (Conjecture 3.2.7) has
the obvious drawback that even the definition of the conjectural set WBM(ρ) of weights
is contingent on Conjecture 3.2.4. (Of course, in theory it is possible to determine the
conjectural values of the µa(ρ)’s without proving the generalised Breuil–Mézard con-
jecture first, by computing e(Rλ,τρ /$) for enough choices of λ and τ , but in practice
this seems to be very difficult.) In this section we will, under the assumption that ρ|IK is
semisimple, define another conjectural set of Serre weights in terms of crystalline lifts.
Although this set of weights may not be any more computable than WBM(ρ), its defini-
tion will not depend on any unproven conjectures, and perhaps more importantly it will
provide a bridge between the Breuil–Mézard description of the set of Serre weights and a
much more explicit set of Serre weights to be defined in Section 7.1.

It is perhaps also worth recalling that, although we have emphasized the Breuil–
Mézard perspective in this article, the crystalline lifts perspective historically came first.
Indeed, the original explicit description of weights given in [Ser87] can in retrospect be
understood as the most optimistic conjecture that one could make given the constraints
provided by known results on the reduction mod p of the crystalline representations as-
sociated to modular forms, and similarly the conjecture of [BDJ10] arose from the con-
sideration of crystalline lifts via Fontaine–Laffaille theory. Unfortunately, when n > 2 it
seems that (contrary to the conjectures made in [Gee11]) the obvious extension of these
conjectures to the general case that ρ|IK is not semisimple is false, and it now seems likely
that a precise description of the sets of weights in general will be extremely complicated;
see Sections 6.2 and 7.3 below.

5.1. Crystalline lifts

We fix a finite extension K/Qp and a representation ρ : GK → GLn(Fp).

Remark 5.1.1. Note that we have now switched (for the remainder of the paper) to work-
ing with ρ whose coefficients are algebraically closed. By Remark 3.2.5 it still makes
sense to speak of WBM(ρ): choose any sufficiently large finite extension F/Fp such that
ρ has a model ρF over F, set µa(ρ) = µa(ρF), and take WBM(ρ) = {a : µa(ρ) > 0} as
usual. (Recall that Serre weights can equally well be taken to be defined over Fp; cf. Re-
mark 3.1.2.) Similarly for any Hodge type λ we can write Rλρ = Rλ

ρ,O ⊗O Zp for any
sufficiently large O, and Remark 3.2.5 again shows that this is well-defined. Correspond-
ingly, in this section Lλ will mean Lλ,O ⊗O Zp for any sufficiently large O.
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Definition 5.1.2. Suppose that λ ∈ (Zn+)SK . A crystalline lift of ρ of Hodge type λ is a
representation ρ : GK → GLn(Zp) such that

◦ ρ ⊗Zp Fp
∼= ρ, and

◦ ρ ⊗Zp Qp is crystalline and regular of weight λ.

To motivate our reformulation of the weight part of Serre’s conjecture in terms of crys-
talline lifts, we consider the following lemma.

Lemma 5.1.3. Assume that the generalised Breuil–Mézard conjecture (Conj. 3.2.4)
holds. Then ρ has a crystalline lift of Hodge type λ if and only if WBM(ρ) ∩

JHGLn(k)(Lλ ⊗Zp Fp) 6= ∅.

Proof. Since a representation ρ : GK → GLn(Zp) has image contained in GLn(O′) for
some finite O′/Zp, it follows that ρ has a crystalline lift of Hodge type λ if and only
if Rλρ 6= 0. Under the assumption of Conjecture 3.2.4, this is equivalent to there being
a Jordan–Hölder factor Fa of Lλ ⊗Zp Fp such that µa(ρ) > 0, which by definition is
equivalent to a ∈WBM(ρ). ut

Corollary 5.1.4. Assume the generalised Breuil–Mézard conjecture (Conj. 3.2.4) holds,
and let λ be a lift of the Serre weight a. If a ∈ WBM(ρ), then ρ has a crystalline lift of
Hodge type λ.

Proof. Suppose that λ is a lift of a with respect to the lift (κσ ) of Sk . From Definition 3.3.2
we see that Lλ =

⊗
σ∈Sk

Maσ ⊗OK ,κσ Zp, and so Lλ⊗Zp Fp
∼=
⊗

σ∈Sk
Paσ ⊗k,σ Fp. In

particular Lλ ⊗Zp Fp has Fa as a Jordan–Hölder factor and Lemma 5.1.3 applies. ut

We are thus led to make the following definition.

Definition 5.1.5. We define W∃cris(ρ), the crystalline weights for ρ, to be the set of Serre
weights a such that the representation ρ has a crystalline lift of Hodge type λ for some
lift λ of a. We further define W∀cris(ρ) to be the set of Serre weights a such that ρ has a
crystalline lift of Hodge type λ for every lift λ of a.

It is not difficult to check that this definition is reasonable in the following sense: let
a ∈ (X

(n)
1 )Sk/∼ be a Serre weight, and suppose that λ = (aσ,i) and λ′ = (a′σ,i) are two

lifts of a to (Zn+)SK , each taken with respect to the same choice of embeddings (κσ ); then
ρ has a crystalline lift of Hodge type λ if and only if it has a crystalline lift of Hodge
type λ′. To see this, we first recall the following basic fact about crystalline characters
and their reductions modulo p.

Lemma 5.1.6. Let 3 = {λκ}κ∈SK be a collection of integers.

(i) There is a crystalline character ψK3 : GK → Z×p such that for each κ ∈ SK we have
HTκ(ψK3 ) = λκ ; this character is uniquely determined up to unramified twists.

(ii) We have ψK3 |IK =
∏
σ∈Sk

ω
bσ
σ , where bσ =

∑
κ∈SK : κ=σ

λκ .
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Proof. Existence in (i) is well-known: see for instance [Ser79, §2.3, Cor. 2] or [Con11,
Prop. B.4]. If ψ and ψ ′ are crystalline characters of GK with the same labelled Hodge–
Tate weights, then ψ−1ψ ′ is a crystalline representation all of whose Hodge–Tate weights
are zero, and so is unramified. This proves (i), while (ii) is a consequence of [Con11,
Prop. B.3] (see also the proof of [GLS14, Prop. 6.7]). ut

Now, to justify the claim preceding Lemma 5.1.6, write a′σ,i − aσ,i = xσ . Then the lift of
Hodge type λ′ can be obtained by twisting the lift of type λ by a crystalline character with
κσ -labelled Hodge–Tate weight xσ for each σ ∈ Sk , κ ′-labelled Hodge–Tate weights 0
for all other κ ′ ∈ SK , and trivial reduction; such a character exists by Lemma 5.1.6.

In general, we obviously have W∀cris(ρ) ⊂ W∃cris(ρ), and assuming the generalised
Breuil–Mézard conjecture we even have WBM(ρ) ⊂ W∀cris(ρ) = W∃cris(ρ). (The equality
follows from Lemma 5.1.3, noting that Lλ⊗Zp Fp

∼= Lλ′ ⊗Zp Fp for any two lifts λ, λ′ of
the same Serre weight.) If ρ|IK is semisimple, then as in [Gee11, Conj. 4.2.1], we make
the following conjecture. As we have already remarked, we do not believe that [Gee11,
Conj. 4.2.1] is true without the semisimplicity hypothesis that we impose here; even in the
semisimple case, where there is (as we will see below) considerable evidence in favour of
the conjecture, we do not have a fully satisfying reason to believe that it holds in complete
generality, in the sense that for instance we do not know how to see that it would follow
from other widely-believed conjectures.

Conjecture 5.1.7 (The weight part of Serre’s conjecture in terms of crystalline lifts).

(i) We have W∃cris(ρ) =W∀cris(ρ).
(ii) If ρ|IK is semisimple, then in the context of the generalised Breuil–Mézard conjec-

ture (Conj. 3.2.4), one has WBM(ρ) =W∃cris(ρ) =W∀cris(ρ).
(iii) If r̄|IFv is semisimple for all places v |p, then the weight part of Serre’s conjecture

(Conj. 2.1.5) holds with Wv(r̄) =W∃cris(r̄|GFv ).

If one believes the S-weight part of Serre’s conjecture (Conj. 3.3.8)—and as explained
in Section 4 above, the Taylor–Wiles–Kisin method strongly suggests that we should
believe Conjecture 3.3.8—then the mysterious part of Conjecture 5.1.7 is the assertion
that W∃cris(ρ) is no larger than WS(ρ). The evidence for this conjecture is for the most
part limited to the case n ≤ 2 (but see Remark 5.1.9 below) and the case of GL3(Qp),
and from a theoretical point of view the conjecture is rather mysterious; however, the
evidence for the case of GL3(Qp) is striking (see Section 8 for a detailed discussion of
the theoretical and computational evidence in this case), and makes the conjecture seem
plausible in general.

Remark 5.1.8. Considerable progress has been made on Conjecture 5.1.7 in the case
where ρ is at most two-dimensional.

If n = 1 then Conjecture 5.1.7 is a consequence of class field theory together with an
analysis of crystalline characters and their reductions modulo p. (For example, part (i) of
the conjecture when n = 1 follows from Lemma 5.1.6.)

If n = 2 and p > 2 then, as explained in Remark 4.2.5, part (i) of Conjecture 5.1.7
is known, and the analogue of part (iii) for quaternion algebras and forms of U(2) over
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totally real fields is also known. If n = 2 and K = Qp then part (ii) is known whenever
the Breuil–Mézard conjecture is known; that is, it is known unless p = 2, 3, the rep-
resentation ρ is reducible, and the characters on the diagonal of ρ have ratio ε (= ε−1

when p ≤ 3) [Paš15, HT15, Paš16, San16]. Indeed, all of these results hold without the
assumption of semisimplicity.

Remark 5.1.9. Again assuming the generalised Breuil–Mézard conjecture, we note that
the weights in WBM(ρ) and W∃cris(ρ)which are in the closure of the lowest alcove (i.e. the
weights a such that aσ,1−aσ,n+(n−1) ≤ p for each σ ) must always coincide: this follows
by considerations similar to those in the proofs of Lemma 5.1.3 and Corollary 5.1.4, by
noting that if λ is a lift of such a weight, the representation Lλ ⊗Zp Fp is irreducible. In
particular, when n ≤ 2 all Serre weights are in the closure of the lowest alcove, so that
the progress towards Conjecture 5.1.7 in the case n ≤ 2 should be regarded as relatively
weak evidence for the general case.

It is worth mentioning that while it is an open problem to prove that W∃cris(ρ) is non-
empty in general, we strongly believe that this is the case. Indeed, if ρ arises as the local
mod p representation associated to an automorphic representation of some unitary group
which is compact at infinity, then this is automatic from the considerations explained in
Example 2.2.1 (in brief: the corresponding system of Hecke eigenvalues will show up in
the cohomology associated to some Serre weightW , and lifting to characteristic 0 gives a
global Galois representation which is crystalline of the appropriate Hodge–Tate weights).

While it might seem that this is a rather restrictive requirement on ρ, it is expected
that such an automorphic representation exists for every choice of ρ (of course, one has
to allow unitary groups associated to arbitrary CM fields). Indeed, as explained in [EG14,
App. A], the methods of [Cal12] allow one to globalise ρ to a representation which should
(under the assumption of a weak version of Serre’s conjecture for unitary groups) corre-
spond to an automorphic representation on some unitary group. Furthermore, even with-
out knowing weak Serre, under the assumptions that p - 2n and that ρ admits a potentially
diagonalisable lift with regular Hodge–Tate weights, the potential automorphy results
of [BL+14] imply that ρ can indeed be globalised to an automorphic Galois representa-
tion [EG14, Cor. A.7], so that W∃cris(ρ) is provably non-empty for such representations.
It is widely expected that every ρ admits such a potentially diagonalisable lift, and this
is known if ρ is semisimple by [CE+16, Lem. 2.2]. (These considerations are expanded
upon in [GHLS17, §3].)

We close this section with the observation that the generalised Breuil–Mézard con-
jecture and the crystalline lifts version of the weight part of Serre’s conjecture (Conjec-
tures 3.2.4 and 5.1.7) together with Lemma 5.1.3 entail the following conjecture.

Conjecture 5.1.10. Suppose that ρ|IK is semisimple. If W∃cris(ρ)∩ JHGLn(k)(Lλ⊗Zp Fp)
6= ∅ for some lift λ of the Serre weight a, then a ∈W∃cris(ρ).

It is possible to use (global) potential automorphy techniques to prove Conjecture 5.1.10
in certain special cases; see [GHLS17, §3] for details.
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Remark 5.1.11. Assume that the generalised Breuil–Mézard conjecture holds so that, as
we have already observed, WBM(ρ) ⊂ W∀cris(ρ) = W∃cris(ρ). Then Conjecture 5.1.7(ii)
is equivalent to the variant of Conjecture 5.1.10 where W∃cris is replaced with WBM (both
times). Indeed, this variant is equivalent to W∃cris(ρ) ⊂WBM(ρ) by Lemma 5.1.3.

6. The picture

6.1. A geometric perspective

We now explain a geometric perspective (“the picture”) on the weight part of Serre’s
conjecture. Full details will appear in [EG18, EG, CEGS]. Continue to fix a finite ex-
tension K/Qp and an integer n ≥ 1. Assume that p is odd. Then the papers [EG18,
EG, CEGS] construct a finite type equidimensional Artin stack X over Fp (of dimension
[K : Qp]

(
n
2

)
) whose Fp-points naturally correspond to the isomorphism classes of those

representations ρ : GK → GLn(Fp) that admit a de Rham lift to GLn(Zp) (of course,
these are conjecturally all the ρ, but as far as we are aware this is only known if n ≤ 3;
the case n = 3 is due to Muller [Mul13]).

Furthermore, for each pair (λ, τ ) consisting of a Hodge type λ and an inertial type τ ,
there is a finite type formal Artin stack Xλ,τ over SpfZp whose Zp-points are in natural
bijection with the isomorphism classes of de Rham representations ρ : GK → GLn(Zp)
of type (λ, τ ). There is a specialisation morphism π : Xλ,τ → X , which on points just
sends ρ to its reduction mod p. The underlying reduced substack of π(Xλ,τ ) is a union
of irreducible components of X .

Each irreducible component of X has a dense open subset of closed points that lie only
on that component, and which correspond to certain maximally non-split upper-triangular
representations with characters χ1, . . . , χn on the diagonal such that the characters χi |IK
are fixed. We refer to these points as the generic Fp-points of the component.

Suppose for example that n = 2, and fix characters ψi : IK → F×p for i = 1, 2
that extend to GK . Then whenever ψ1ψ

−1
2 6= ε, there is a unique component whose

generic Fp-points correspond to extensions of χ2 by χ1 with χi |IK ∼= ψi , and these
representations have a unique Serre weight. We label the irreducible component by the
corresponding Serre weight. Note that this Serre weight can be read off directly from an
expression of the χi in terms of fundamental characters (that is, from the tame inertial
weights).

To illustrate what happens when ψ1ψ
−1
2 = ε, suppose further that K = Qp.

There is one component of X whose generic Fp-points are très ramifiée extensions
of χ by χε, where χ is any unramified character, and also another component whose
generic Fp-points are extensions of χ2 by χ1ε, where χ1 6= χ2 are any unramified
characters. The peu ramifiée extensions of χ by χε lie on both components (and so
are not generic Fp-points on either of them). We label the first component by the Serre
weight Symp−1 F2

p, while the second is labelled by both 1 and Symp−1 F2
p, the two Serre

weights of a generic Fp-point on that component. In particular every component of X
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labelled by 1 is also labelled by Symp−1 F2
p. All other components of X are labelled by

a single Serre weight, as in the previous paragraph, and in fact each other Serre weight is
the label for a unique irreducible component of X .

More generally, we expect that when n > 2 there will be a set of weights associated
to each component, and the Serre weights of any ρ will be precisely the union of the
sets of weights associated to the components that it lies on. In particular the labels of a
component must therefore be the Serre weights of its generic Fp-points. This structure,
with the set of Serre weights for ρ being the set WS(ρ) for a Breuil–Mézard system S,
should be a consequence of the Breuil–Mézard conjecture for representations of type S.
Indeed for n = 2 (with K arbitrary) and S = BT this can be proved, as a consequence of
the results of [GK14] (see [CEGS]).

Accordingly, understanding the weight part of Serre’s conjecture should reduce to un-
derstanding the components of X on which a given representation lies, and understanding
what the Serre weights are for maximally non-split upper-triangular representations (that
are generic enough to lie on a single component).

While this structure is already (at least to us) very attractive, we expect that the picture
is both simpler and more structured than what is entailed by the Breuil–Mézard conjec-
ture. Specifically, we expect that most components are labelled by a single weight, and
that in the cases where there are multiple weights labelling a component, they are fre-
quently related in a simple way (see Section 7.4). For example, if K = Qp and a compo-
nent has F(a1, . . . , an) as a label, then the generic representations on the component are
of the form 

χ1 ∗ . . . ∗

χ2 . . . ∗

. . .
...

χn


where χi |IQp = ω

ai+n−i . Furthermore, if none of the ai−ai+1 are equal to 0 or p−1, then
we expect there to be a unique component labelled by this weight, and this component
should be labelled only by F(a1, . . . , an). We will discuss the case where some ai − ai+1
are equal to 0 or p − 1 in Section 7.4.

6.2. Crystalline lifts

We briefly explain what light the geometric perspective of Section 6.1 sheds on the crys-
talline lifts conjectures of Section 5, and on their expected failure to extend to the case of
non-semisimple representations.

Let a be a Serre weight, and let λ be a lift of a. As explained in Section 6.1, there
is a specialisation morphism π : Xλ,triv → X , which on points just sends a crystalline
representation ρ of weight λ to its reduction mod p. The underlying reduced substack
of π(Xλ,triv) is a union of irreducible components of X , and the geometrisation of the
Breuil–Mézard conjecture of [BM14, EG14] strongly suggests that these irreducible com-
ponents should be precisely the ones that have some Jordan–Hölder factor of Lλ ⊗ Fp
among their labels.
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If the conjectures of Section 5 held for arbitrary (not necessarily semisimple) ρ, then
we would be forced to conclude that the Serre weight Fa is a label of each of the above
components. However, work of Lê Hùng Viêt Bao, Brandon Levin, Dan Le and Stefano
Morra [LL+18] contradicts this conclusion; instead, their calculations indicate that al-
ready for n = 3 and K = Qp, if a is in the upper alcove and is suitably generic, then
the two Jordan–Hölder factors Fa , Fb of Lλ ⊗ Fp correspond to two components of X ,
labelled by the single weight Fa (resp. Fb), which meet in a codimension one substack.
Thus the generic ρ on the component labelled by the weight in the lower alcove do not
satisfy the conjectures of Section 5; it is only those ρ which lie in a special position which
do so. (The limited evidence available in the cases n = 2, 3 suggests that it is possible that
two components labelled by suitably generic weights F,F ′ meet in codimension i, where
i is minimal such that ExtiGLn(Fp)(F, F

′) 6= 0, but we do not know if it is reasonable to
expect this to be true in general.)

Of course, the most special position is that occupied by semisimple ρ, which agrees
(in the case that ρ is a sum of characters) with the conjectures of Section 5. Note also
that in general it seems reasonable to expect that any component containing ρ also con-
tains ρss, which is consistent with the folklore belief that the set of Serre weights for ρ
should be a subset of those for ρss.

7. Explicit weight conjectures in the semisimple case

Once again assume that ρ|IK is semisimple. The set W∃cris(ρ) is, in general, very badly
understood: for instance at the time of writing we do not know how to prove, in general,
that it is non-empty! (Though we do when ρ is semisimple; see Appendix B.) We would
therefore like to have a version of the weight part of Serre’s conjecture that is more ex-
plicit than conjectures we have already described, such as Conjecture 5.1.7 in terms of
crystalline lifts.

In Sections 7.1 and 7.2 we construct various sets of weights that we have good reason
(e.g. as a consequence of the generalised Breuil–Mézard conjecture) to believe are con-
tained in W∃cris(ρ). On the other hand there is no reason to think that in general any of
these sets are actually equal to W∃cris(ρ); to the contrary, we explain in Example 7.2.9 and
Section 7.4 why we believe that this should not be the case. These examples illustrate the
difficulty in making a general explicit conjecture.

However, we do expect that at least for generic ρ and unramified K/Qp, the set
C(Wobv(ρ)) defined below in Section 7.2 is equal to W∃cris(ρ), motivated by a compar-
ison with the conjectures of [Her09]; this will be explained in Section 10.

7.1. Obvious lifts

Recall from Section 2 that if r̄ : GF → GLn(Fp) is automorphic, one may hope that the
set Wv(r̄) depends only on r̄|IFv . We do not understand this as well as we would like; for
instance, it appears to be somewhat more than can be deduced easily from the Breuil–
Mézard formalism, because even in the case of GL2(Qp), the quantities µa(ρ) do not
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depend only on ρ|IQp (see [San14, Thm. 1]). However, since p-adic Hodge-theoretic con-
ditions are fundamentally conditions about ramification, it is not unreasonable to imagine
that the set W∃cris(r̄|GFv ) depends exclusively on r̄|IFv and not on the image of Frobv
under r̄ . For instance this is known to be true when n = 2 and p > 2 by [GLS15,
Prop. 6.3.1].

To make Conjecture 5.1.7 explicit, one can imagine trying to exhibit specific elements
of W∃cris(ρ) by constructing crystalline lifts of ρ of various Hodge types, for instance by
taking sums ρ′ of inductions of crystalline characters. This is essentially what we will
do; however, an immediate flaw with this plan is that for such ρ′ one has limited control
over the image of FrobK under ρ′, and in particular one may not be able to match the
image of FrobK under ρ. (This will however be possible in generic situations.) Guided
by the expectation that W∃cris(ρ) should depend only on ρ|IK , we will be satisfied with
constructing certain crystalline representations ρ′ (that we call obvious lifts of ρ) with the
property that ρ′|IK ∼= ρ|IK . In particular we caution that an obvious lift of ρ need not
literally be a lift of ρ. When an obvious lift ρ′ of ρ has Hodge type λa , with λa a lift of a
Serre weight a, we will call a an obvious weight of ρ.

We now set up some basic results about crystalline characters. For each integer n ≥ 1,
letKn be the unique extension ofK insideK which is unramified of degree n. We denote
the residue field ofKn by kn. Given a character χ : GKn → Z×p , we define a character χ (r)

by
χ (r)(g) = χ(FrobrK ·g · Frob−rK ).

Note that this character does not depend on the choice of FrobK . The following lemma is
elementary (see also Lemma 9.3.2(iii) for a generalisation).

Lemma 7.1.1. If χ : GKn → Z×p is crystalline, then so is χ (r) and for any κ ′ ∈ SKn we
have HTκ ′(χ (r)) = HTκ ′◦Frob−rK

(χ).

Recall from Lemma 5.1.6 that for any collection of integers 3 = {λκ}κ∈SK there ex-
ists a crystalline character ψK3 : GK → Z×p such that for each κ ∈ SK we have
HTκ(ψK3 ) = λκ , and that this character is uniquely determined up to unramified twists.

Corollary 7.1.2. Let 3 = {λκ ′}κ ′∈SKn be a collection of integers. The representation

ρK3 := IndGKGKn Zp(ψ
Kn
3 ) is crystalline, and for each κ ∈ SK we have

HTκ(ρK3 ) = {λκ ′ : κ
′
∈ SKn such that κ ′|K = κ}.

Moreover

ρK3 |IK
∼=

n−1⊕
i=0

( ∏
σ∈Skn

ωbσσ

)qi
where bσ =

∑
κ ′∈SKn : κ

′
=σ λκ ′ and q = #k.

Proof. If ρ is a Hodge–Tate representation of GK and L is a finite extension of K ,
then gr−i(DHT(ρ|GL)) = gr−i(DHT(ρ)) ⊗K L. From this we deduce that if κ ′ ∈ SL



2892 Toby Gee et al.

then HTκ ′(ρ|GL) = HTκ ′|K (ρ). Applying this statement for L = Kn, the corollary now
follows from Lemma 7.1.1, the fact that IndGKGKn (ψ

Kn
3 )|GKn

∼=
⊕n−1

r=0(ψ
Kn
3 )(r), and (for

the first part of the statement) the fact that the property of being crystalline only depends
on the restriction to inertia. The formula for ρK3 |IK follows from Lemma 5.1.6(ii). ut

Definition 7.1.3. Suppose that ρ|IK is semisimple. We define an obvious lift of ρ to be a
representation of the form ρ′ = ρK31

⊕ · · · ⊕ ρK3d (for some partition n1 + · · · + nd = n)
such that ρ′|IK ∼= ρ|IK .

We define Wobv(ρ) to be the set of Serre weights a such that ρ has an obvious lift ρ′

of Hodge type λ for some lift λ of a. (In this case we say that the lift ρ′ witnesses the
obvious weight a.)

It is essential in this definition that we have required ρ′|IK ∼= ρ|IK rather than ρ′ ∼= ρ:
as we will see in Example 7.1.9, making the latter definition would sometimes have pro-
duced a different (too small) set of weights. We note that if ρ has an obvious lift of some
Hodge type lifting the Serre weight a, then it has a lift of any Hodge type lifting a: this
follows from Corollary 7.1.2 (specifically, the fact that ρK3 |IK only depends on the mul-
tisets {λκ ′ : κ ′ ∈ SKn lifting σ ∈ Skn}) and an argument as in the paragraph following
Definition 5.1.5.

Remark 7.1.4. The set Wobv(ρ) is always non-empty. This is not at all immediate from
the definitions, and unfortunately the only proof we have been able to find proceeds via
a direct and somewhat painful combinatorial argument; for this reason we have deferred
the proof to Appendix B.

Since we expect that the possible Hodge types of the crystalline lifts of ρ depend only
on ρ|IK , we make the following conjecture.

Conjecture 7.1.5. We have Wobv(ρ) ⊂W∀cris(ρ).

We consider several illustrative examples.

Example 7.1.6. When n = 1, any obvious lift of ρ is an unramified twist of a genuine
crystalline lift of ρ, from which it follows that Wobv(ρ) =W∀cris(ρ) =W∃cris(ρ).

Example 7.1.7 (Comparison with Schein’s conjecture). We determine the obvious
weights of a representation ρ : GK → GL2(Fp) such that ρ|IK is semisimple. Let e be
the absolute ramification index of K . The weight part of Serre’s conjecture has been for-
mulated in this context by Schein [Sch08].

Suppose first that ρ is irreducible. Consider a Serre weight a represented by
(xσ , yσ )σ∈Sk ∈ (Z2

+)
Sk , and let λ ∈ (Z2

+)
SK be a lift of (xσ , yσ ). An obvious lift ρ′

of ρ must be of the form IndGKGK2
ψ
K2
3 . Suppose that ρ′ witnesses a. We may take ρ′ to

have Hodge type λ, so that the Hodge–Tate weights λκ ′ of ψK2
3 are as follows. For each

σ ∈ Sk , there is a pair (κ ′σ,1, κ
′

σ,2) of K2/K-conjugate embeddings K2 ↪→ Qp such that
κ ′σ,1, κ ′σ,2 : k2 ↪→ Fp extend σ , and λκ ′

σ,1
= xσ + 1, λκ ′

σ,2
= yσ . For the remaining e − 1
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pairs (κ ′1, κ
′

2) ofK2/K-conjugate embeddingsK2 ↪→ Qp such that κ ′1, κ ′2 : k2 ↪→ Fp ex-
tend σ , we have {λκ ′1 , λκ ′2} = {1, 0}. Write σ1 for κ ′σ,1 ∈ Sk2 and σ2 for its k2/k-conjugate.
Let 0 ≤ mσ ≤ e − 1 be the number of embeddings κ ′1 6= κ

′

σ,1 with κ ′1 = σ1 and λκ ′1 = 1.
Then we see from Corollary 7.1.2 that

ρ|IK
∼=

(∏
σ∈Sk

ω
xσ+1+mσ
σ1 ω

yσ+e−1−mσ
σ2 0

0
∏
σ∈Sk

ω
xσ+1+mσ
σ2 ω

yσ+e−1−mσ
σ1

)
.

In other words, we have a ∈ Wobv(ρ) if and only if for each σ ∈ Sk we can write the
elements of Sk2 extending σ as σ1, σ2 so that the above formula holds for some choice of
integers 0 ≤ mσ ≤ e − 1. Observe that these are precisely the Serre weights predicted
for ρ in [Sch08, Thm. 2.4].

Next suppose that ρ is reducible, and let a be a Serre weight as in the previous para-
graph. If ρ|IK is non-scalar then every obvious lift of ρ must be a sum of two characters,
but if ρ|IK is scalar then ρ may also have obvious lifts whose generic fibres are irreducible.
Consider first the obvious lifts ρ′ of ρ that have Hodge type λ (hence witness a) and that
are sums of two characters. Say ρ′ = ψK3 ⊕ψ

K
3′

with 3 = {λκ} and 3′ = {λ′κ}. For each
σ ∈ Sk , there is an embedding κσ ∈ SK lifting σ such that {λκσ , λ

′
κσ
} = {xσ + 1, yσ }.

For the remaining e − 1 embeddings κ ∈ SK extending σ , we have {λκ , λ′κ} = {1, 0}.
Define J = {σ ∈ Sk : λκσ = xσ + 1}. If σ ∈ J we let 0 ≤ mσ ≤ e − 1 be the number of
embeddings κ 6= κσ extending σ such that λκ = 1, while if σ 6∈ J we let 0 ≤ mσ ≤ e−1
be the number of embeddings κ 6= κσ extending σ such that λ′κ = 1. Then we see from
Corollary 7.1.2 that ρ|IK is isomorphic to(∏

σ∈J ω
xσ+1+mσ
σ

∏
σ /∈J ω

yσ+e−1−mσ
σ 0

0
∏
σ /∈J ω

xσ+1+mσ
σ

∏
σ∈J ω

yσ+e−1−mσ
σ

)
.

In other words the weight a ∈ Wobv(ρ) is witnessed by an obvious lift whose generic
fibre is reducible if and only if the above formula holds for some subset J ⊂ Sk and a
choice of integers 0 ≤ mσ ≤ e − 1.

In fact if ρ|IK is scalar, then it turns out that every weight a ∈ Wobv(ρ) that is wit-
nessed by an obvious lift whose generic fibre is irreducible is also witnessed by an ob-
vious lift whose generic fibre is reducible, so that the previous paragraph still describes
the whole set Wobv(ρ) in this case. This observation is an elementary but not necessar-
ily straightforward exercise that we leave to the reader. (One first reduces to the case
e ≤ p − 1 by noting that if e ≥ p then every weight a whose central character is com-
patible with det(ρ)|IK lies in Wobv(ρ) and is witnessed by an obvious lift whose generic
fibre is reducible. Alternatively, if p ≥ 3 the observation can be deduced from the local
results in [GLS15], specifically Theorem 4.1.6 of loc. cit., while for p = 2 one reduces
to the case e = 1 as above. But the case e = 1 is straightforward: after twisting one may
suppose that yσ = 0 for all σ ; then xσ + 1 ∈ {1, p − 1, p} for all σ (see [GLS14, last
paragraph of the proof of Thm. 10.1] for a more precise statement), and one checks that
ρ|IK has the above shape with J = {σ : xσ = 0}.) Observe that these are precisely the
Serre weights predicted for ρ in [Sch08, Thm. 2.5].
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Example 7.1.8. Consider (a, b, c) ∈ Z3
+ with a − b, b − c > 1 and a − c < p − 2.

We determine the obvious weights of a representation ρ : GQp → GL3(Fp) such that
ρ|IQp = ω

a
⊕ ωb ⊕ ωc. Any obvious lift ρ′ must be a sum of characters. In particular ρ′

has the form
ψ

Qp
{x} ⊕ ψ

Qp
{y} ⊕ ψ

Qp
{z}

where (x − 2, y − 1, z) ∈ X(3)1 , and {x, y, z} and {a, b, c} reduce to the same subset
of Z/(p − 1). It follows that the only possibilities for (x, y, z) (up to translation by
Z(p − 1, p − 1, p − 1)) are

(a, b, c), (b, c, a − p + 1), (c + p − 1, a, b),
(c + p − 1, b, a − p + 1), (a, c, b − p + 1), (b + p − 1, a, c)

and therefore

Wobv(ρ) = {F(a − 2, b − 1, c), F (b − 2, c − 1, a − p + 1), F (c + p − 3, a − 1, b),
F (c + p − 3, b − 1, a − p + 1), F (a − 2, c − 1, b − p + 1), F (b + p − 3, a − 1, c)}.

We see from this example that we cannot expect to have Wobv(ρ) = W∃cris(ρ): this
is because (at least if ρ is semisimple) the weights F(c + p − 2, b − 1, a − p),
F(a − 1, c − 1, b − p), and F(b + p − 2, a − 1, c − 1) also belong to W∃cris(ρ). We
explain this for F(c+p−2, b−1, a−p); the others are similar. We need to exhibit a lift
ρ′ of ρ with Hodge–Tate weights {c+p, b, a−p}. Since p+1 < 2p− (a−c) < 2p, for
example by [Ber10, Thm. 3.2.1(3)], we can take ρ′ to be the sum of an unramified twist
of εb and an unramified twist of εa−p ⊗ V where V is a suitable crystalline representa-
tion with irreducible generic fibre and Hodge–Tate weights {2p − (a − c), 0} (one of the
representations V2p+1−(a−c),ap considered in [Ber10]).

Example 7.1.9. Next, we determine the obvious weights of an unramified representation
ρ : GQp → GL3(Fp). The reader can verify that the family of obvious lifts

ψ
Qp
{p−1} ⊕ ψ

Qp
{0} ⊕ ψ

Qp
{−p+1}

witness the weight F(p − 3,−1,−p + 1); the obvious lifts ρ
Qp
{−1,p} ⊕ ψ

Qp
{0} witness

the weight F(p − 2,−1,−1); the obvious lifts ρ
Qp
{−1,p} ⊕ ψ

Qp
{p−1} witness the weight

F(p − 2, p − 2,−1); and that these are the only weights in Wobv(ρ) when p > 2.
When p = 2, it is easy to check that Wobv(ρ) = W(F2, 3) (so there are four weights in
this case). This example illustrates two points. First, although ρ is a sum of characters,
there are obvious weights of ρ that cannot be witnessed by sums of characters. Second,
we remark that many unramified representations ρ : GQp → GL3(Fp) do not have literal

lifts of the form ψ
Qp
{p−1}⊕ψ

Qp
{0} ⊕ψ

Qp
{−p+1} (or of the other two shapes above). For instance

if ρ : GQp → GL3(Fp) has a lift of the form ψ
Qp
{p−1} ⊕ ψ

Qp
{0} ⊕ ψ

Qp
{−p+1} then ρ(FrobQp )

will be semisimple. Similarly, it may be the case that ρss may not have a literal lift of the
form ρ

Qp
{−1,p}⊕ψ

Qp
{0} or ρ

Qp
{−1,p}⊕ψ

Qp
{p−1}, since possessing such a lift imposes restrictions

on the eigenvalues of ρ(FrobQp ).
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7.2. Shadow and obscure weights

Now we would like to address the observation (from Example 7.1.8) that in general we
need not have Wobv(ρ) =W∃cris(ρ). To begin to account for this, Conjecture 5.1.10 moti-
vates the following definition.

Definition 7.2.1. If W is a set of Serre weights, we define C(W) to be the smallest set of
weights with the properties:

◦ W ⊂ C(W), and
◦ if C(W) ∩ JHGLn(k)(Lλ ⊗Zp Fp) 6= ∅ for some lift λ of the Serre weight a, then a ∈

C(W).

For instance, Conjecture 5.1.10 asserts that we should have W∃cris(ρ) = C(W∃cris(ρ)).

Example 7.2.2. Return to the case of GL3 over Qp. If F(x, y, z) is a Serre weight
such that C({F(x, y, z)}) ) {F(x, y, z)}, then x − z < p − 2 and C({F(x, y, z)}) =
{F(x, y, z), F (z + p − 2, y, x − p + 2)}. Indeed, if x − z < p − 2 then by [Her09,
Prop. 3.18] there is a short exact sequence

0→ F(λ)→ Lλ ⊗Zp Fp → F(x, y, z)→ 0

where λ = (z + p − 2, y, x − p + 2), so that F(λ) ∈ C({F(x, y, z)}), and these give all
the instances of reducible Lλ ⊗Zp Fp with λ ∈ X(3)1 .

For instance, in the setting of Example 7.1.8 we see that F(c+p− 2, b− 1, a−p) ∈
C({F(a−2, b−1, c)}), that F(a−1, c−1, b−p) ∈ C({F(b−2, c−1, a−p+1)}), and
that F(b + p − 2, a − 1, c − 1) ∈ C({F(c + p − 3, a − 1, b)}). In fact one can check in
this setting that C(Wobv(ρ)) is precisely Wobv(ρ) together with these three extra weights.
(We note that this same prediction can be found in the discussion immediately following
[ADP02, Def. 3.5].)

If one believes Conjecture 5.1.10, then one might hope that also C(Wobv(ρ)) =W∃cris(ρ),
and indeed we will show in Section 10 that this is a reasonable expectation when K/Qp
is unramified and ρ is sufficiently generic in a precise sense. However, the following
generalisation of the principle behind Conjecture 5.1.10 will show that this cannot be true
in all cases.

Suppose that ρ|IK ∼= (
⊕r
j=1 ρ

(j))|IK with ρ(j) : GK → GLnj (Fp) not necessarily
irreducible. Write ηm = (m − 1, . . . , 1, 0) for any m ≥ 1. Let a be a Serre weight, and
suppose that λ is some lift of a. Suppose that λ(j) (for each 1 ≤ j ≤ r) are Hodge types
in (Znj+ )SK such that the λ(j)κ + ηnj for each κ are obtained by partitioning λκ + ηn into r
decreasing subsequences of length nj . (We will say that the λ(j) are an η-partition of a.)
If W∃cris(ρ

(j))∩ JHGLnj (k)(Lλ(j) ⊗Zp Fp) 6= ∅, then Conjecture 5.1.10 entails that ρ(j) has

a crystalline lift of Hodge type λ(j). The direct sum of these lifts would be a crystalline
lift of

⊕
j ρ

(j) of Hodge type λ, in which case a ∈ W∃cris(
⊕
j ρ

(j)). Since we expect that
W∃cris(ρ) depends only on ρ|IK , we then also expect to have a ∈W∃cris(ρ).

We are thus led to the following definition.
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Definition 7.2.3. Suppose that ρ|IK is semisimple. We recursively define Wexpl(ρ), the
explicit predicted weights for ρ, to be the smallest set containing Wobv(ρ) and satisfy-
ing the expectation described in the previous paragraph: that is, a ∈ Wexpl(ρ) for any
Serre weight a such that there exists a decomposition ρ|IK ∼=

⊕r
j=1 ρ

(j)
|IK and an

η-partition λ(j) of a such that Wexpl(ρ
(j)) ∩ JHGLnj (k)(Lλ(j) ⊗Zp Fp) 6= ∅ for each j .

Taking r = 1 in this definition we see that C(Wobv(ρ)) ⊂ Wexpl(ρ). We say that
an element of the set C(Wobv(ρ)) \ Wobv(ρ) is a shadow weight, while an element of
Wexpl(ρ) \ C(Wobv(ρ)) is an obscure weight.

Example 7.2.4. If n ≤ 2 it is easily checked that Wexpl(ρ) = Wobv(ρ). It is shown in
[GLS15, Thm. 4.1.6] that when n = 2 and p > 2 we have W∀cris(ρ) = W∃cris(ρ), and that
these sets agree with the prediction of Schein [Sch08]. It follows that if n = 1, or n = 2
with p > 2, then Wexpl(ρ) =Wobv(ρ) =W∀cris(ρ) =W∃cris(ρ).

Explicitly, if n = 1, Lemma 5.1.6 implies that a ∈ Wexpl(ρ) for a Serre weight a if
and only if ρ|IK =

∏
σ∈Sk

ω
aσ
σ . If n = 2, Example 7.1.7 shows that Wobv(ρ) coincides

with the set of weights predicted by Schein [Sch08]. Since Wobv(ρ) = Wexpl(ρ) in this
setting, the claim follows from the above results of [GLS15].

Example 7.2.5. The existence of shadow weights in the case of GL3 over Qp was dis-
cussed in Example 7.2.2. We now classify the obscure weights in this case (showing, in
particular, that they sometimes exist). We will repeatedly make use of our knowledge of
Wexpl(ρ) for n ≤ 2; see Example 7.2.4. Suppose that ρ : GQp → GL3(Fp) is a represen-
tation such that ρ|IQp is semisimple.

Since Symr F2
p is irreducible as a GL2(Fp)-representation for r ≤ p−1, it is straight-

forward to see that the weight F(x, y, z) can be obscure for ρ only if we have:

◦ ρ|IQp
∼= (ρ(1) ⊕ ρ(2))|IQp with dim ρ(i) = i,

◦ F(y + 1) ∈Wexpl(ρ
(1)), i.e. ρ(1)|IQp

∼= ωy+1, and

◦ Wexpl(ρ
(2)) ∩ JHGL2(Fp)(L(x+1,z) ⊗Zp Fp) 6= ∅.

Moreover, as F(x, y, z) is not obvious, the restriction ρ(2)|IQp does not have the form

ωx+2
⊕ωz or ω(x+2)+pz

σ1 ⊕ω
(x+2)+pz
σ2 , where SF

p2 = {σ1, σ2}. Hence x−z ≥ p−1. A cal-

culation shows that the irreducible constituents of L(x+1,z) ⊗Zp Fp are F(x − p + 2, z),
F(x − p + 1, z + 1), F(z + p − 1, x − p + 2) if p − 1 ≤ x − z < 2p − 2 (where the
second weight is omitted if x− z = p−1) and F(z+p−1, z+1) (twice), F(z+1, z) if
x−z = 2p−2. Hence ρ(2)|IQp is eitherωx+1

⊕ωz+1 orω(x+3)+p(z−1)
σ1 ⊕ω

(x+3)+p(z−1)
σ2 (the

latter only if x−z 6= 2p−2). (This is of course compatible with [Ber10, Thm. 3.2.1] com-
puting the reduction of crystalline representations with Hodge–Tate weights {x + 2, z}.)

In the first case, one finds that ρ|IQp
∼= ωx+1

⊕ωy+1
⊕ωz+1. If x−y, y− z < p−1,

then F(z+p−2, y, x−p+2) is an obvious weight for ρ, and F(x, y, z) is its shadow (so
in particular is not obscure). Suppose on the other hand that x−y = p−1 or y−z = p−1.
Once again F(x, y, z) cannot be a shadow weight (as a shadow weight F(x, y, z) always
has x − y, y − z < p − 1) but sometimes it is an obvious weight.
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The weight F(y + p − 1, y, z) is straightforwardly checked to be obvious precisely
when p = 2, or else p > 2 and y − z ∈ {0, p − 2}. (When y − z = p − 2 the
obvious lift is a sum of characters, while when y = z the obvious lift has the shape
ρ
Qp
{y+p+1,z}⊕ψ

Qp
{y+1}.) Thus the weight F(y+p−1, y, z) is an obscure weight for ρ|IQp

∼=

ωy+1
⊕ ωy+1

⊕ ωz+1 exactly when p > 2 and y − z 6∈ {0, p − 2}. By a similar analysis
the weight F(x, y, y − p + 1) is an obscure weight for ρ|IQp

∼= ωx+1
⊕ ωy+1

⊕ ωy+1

exactly when p > 2 and x − y 6∈ {0, p − 2}.
Now suppose instead that x − z 6= 2p − 2 and ρ|IQp

∼= ωy+1
⊕ ω

(x+3)+p(z−1)
σ1 ⊕

ω
(x+3)+p(z−1)
σ2 . If x − y, y − z < p− 1 then again the weight F(z+p− 2, y, x −p+ 2)

is obvious (the obvious lift has the shape ψ
Qp
{y+1} ⊕ ρ

Qp
{x−p+2,z+p}) and F(x, y, z) is its

shadow. Suppose on the other hand that x−y = p−1 or y−z = p−1. Then once again
F(x, y, z) cannot be a shadow weight, while sometimes it is an obvious weight.

The weight F(y+p− 1, y, z) with y− z 6= p− 1 can be checked to be obvious pre-
cisely when y−z = p−2; in this case the obvious lift has the shape ψ

Qp
{z} ⊕ρ

Qp
{y+p+1,y+1}.

(Note that y − z = p − 1 is excluded because x − z 6= 2p − 2.) Thus the weight
F(y+p− 1, y, z) is an obscure weight for ρ|IQp

∼= ωy+1
⊕ω

(y+2)+pz
σ1 ⊕ω

(y+2)+pz
σ2 pre-

cisely when y− z 6∈ {p− 2, p− 1}. By a similar argument the weight F(x, y, y−p+ 1)
is an obscure weight for ρ|IQp

∼= ωy+1
⊕ ω

(x+2)+py
σ1 ⊕ ω

(x+2)+py
σ2 exactly when x − y 6∈

{p − 2, p − 1}. This completes our analysis of obscure weights for GL3(Qp).

One might optimistically hope that there is an equality Wexpl(ρ) = W∃cris(ρ); for exam-
ple this is known to be the case when n ≤ 2 (except for n = 2 and p = 2) thanks to
[GLS15]. Unfortunately we do not expect this to be true in general; for example, in Ex-
ample 7.4.5 we give some explicit examples in the case of GL3(Qp) of weights which are
not in Wexpl(ρ) but which we suspect are in W∃cris(ρ). Furthermore we remark that the
sets W∃cris(ρ) must also be compatible with other functorial operations, such as suitable
tensor products and inductions, and it is far from clear whether or not the sets Wexpl(ρ)

satisfy these compatibilities.
On the other hand, in the unramified setting we are prepared to conjecture that these

two weight sets are equal at least for sufficiently generic ρ.

Conjecture 7.2.6. Suppose that K/Qp is unramified and that ρ|IK is semisimple and
sufficiently generic. Then Wexpl(ρ) =W∃cris(ρ).

Conjecture 7.2.7. Suppose that for each v|p, the extension Fv/Qp is unramified and
r̄|IFv is semisimple and sufficiently generic. Then the weight part of Serre’s conjecture
(Conj. 2.1.5) holds with Wv(r̄) =Wexpl(r̄|GFv ).

The general definition of “sufficiently generic” will be given in Definition 10.1.12, but to
give the reader a sense of the meaning of this term, we spell it out in the case where ρ is
a direct sum of characters.

Example 7.2.8. Suppose that K is an unramified extension of Qp and that ρ is a sum of
characters, so that ρ|IK ∼=

⊕n
i=1

∏
σ∈Sk

ω
µσ,i
σ for integers µσ,i (very much not uniquely

defined). Fix δ > 0. We say that ρ is δ-generic if it is possible to choose the integers µσ,i
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such that µσ,i − µσ,i+1 ≥ δ for all 1 ≤ i < n and all σ , and furthermore µσ,1 − µσ,n ≤
p − n − δ. We say that a statement is true for sufficiently generic ρ if there exists δ > 0
(independent of p) such that the statement is true for all δ-generic ρ.

We will prove in Theorem 10.2.11 that Conjecture 7.2.7 agrees with all other conjectures
in the literature, in particular that of [Her09] (hence our willingness to make the conjec-
ture, even though it is stronger than what is entailed by the generalised Breuil–Mézard
formalism and by Conjecture 5.1.7). In fact we will show in Theorem 10.2.11 that for
sufficiently generic ρ|IK andK/Qp unramified we have Wexpl(ρ) = C(Wobv(ρ)) (that is,
there are no obscure weights), so that in the context of Conjecture 7.2.7 the construction
of the set Wexpl(r̄|GFv ) is somewhat simplified.

We stress that for any fixed ρ the set of weights Wexpl(ρ) is quite explicit in principle,
at least for p large: the calculation of Wobv(ρ) is a combinatorial exercise (as in Ex-
amples 7.1.8 and 7.1.9), and then the shadow and obscure weights are determined by the
Jordan–Hölder decompositions of the representationsLλ⊗ZpFp. As for the computability
of those decompositions, consider first the case k = Fp. One needs to decompose GLn-
modules Lλ ⊗Zp Fp with λ dominant and ‖λ‖ < Np (for some N independent of p, and
with ‖·‖ as in Definition 3.3.4) into simple GLn(Fp)-modules. For p � 0, Lusztig’s con-
jecture allows one to recursively decompose Lλ ⊗Zp Fp into simple GLn-modules when
λ is p-regular [Jan03, II.8.22], [Fie12]. For the remaining λ one uses [Jan03, II.7.17(b)].
For decomposing simple GLn-modules as representations of GLn(Fp), see for example
[Jan87, §1.5]. For general k one follows the same strategy, replacing GLn with the alge-
braic group G = ResW(k)/ZpGLn and Lλ ⊗Zp Fp with the dual Weyl module W(λ) as
defined in Sections 9–10.

Example 7.2.9. As remarked above, we will show in Theorem 10.2.11 that for suffi-
ciently generic ρ|IK and K/Qp unramified we have Wexpl(ρ) = C(Wobv(ρ)). In this ex-
ample, we show that this statement does not extend to the case where K/Qp is ramified.

Suppose that K/Qp is ramified quadratic and ρ : GK → GL3(Fp) is such that
ρ|IK

∼= ωa+3
⊕ ωb+2

⊕ ωc+1, where a > b > c and a − c < p − 4. We claim that
F(a, b, c) is an obscure weight of ρ.

If we had F(a, b, c) ∈ C(Wobv(ρ)), then F(a, b, c) ∈ Wobv(ρ), as (a, b, c) lies in
the lowest alcove. As ρ|IK is a sum of distinct characters, any obvious crystalline lift of
ρ|IK is a sum of characters. From Lemma 5.1.6 we would get ρ|IK ∼= ω

r
⊕ ωs ⊕ ωt with

(r, s, t) = (a + 2, b+ 1, c)+w(2, 1, 0) for some permutation w ∈ S3. By the bounds on
(a, b, c) we get a contradiction.

To show that in fact F(a, b, c) ∈ Wexpl(ρ), note that we can find ρ(i) : GK →
GLi(Fp) (i = 1, 2) with ρ(1)|IK ∼= ω

b+2 and ρ(2)|IK ∼= ω
a+3
⊕ ωc+1. By Lemma 5.1.6

we have F(b + 2) ∈ Wobv(ρ
(1)) and F(a + 2, c) ∈ Wobv(ρ

(2)). Let SK = {σ1, σ2}. We
define an η-partition of F(a, b, c) as follows:

λσ1 = (a, b, c), λσ2 = 0,

λ(1)σ1
= (b + 1), λ(1)σ2

= (1),

λ(2)σ1
= (a + 1, c), λ(2)σ2

= (1, 0).
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Then Lλ(1) ⊗ Fp ∼= F(b + 2) and Lλ(2) ⊗ Fp ∼= Syma−c+1 F2
p ⊗ Sym1 F2

p ⊗ detc . We
see that F(a+ 2, c) is a Jordan–Hölder factor of Lλ(2) ⊗Fp, for example by Brauer’s for-
mula [Jan03, II.5.8(b)]. (The only other factor is F(a + 1, c+ 1).) From Definition 7.2.3
we see that indeed F(a, b, c) ∈Wexpl(ρ).

7.3. Remarks on the general (non-semisimple) case

Now let us drop our assumption that ρ|IK is semisimple, and consider what we might
say about explicit weights for ρ. As mentioned in Section 6.2, one expects that the Serre
weights of ρ should be a subset of the Serre weights of ρss. However, we hesitate to make
any sort of precise conjecture: evidence is scant beyond the two-dimensional case, and
the limited information that we do possess suggests that there are serious complications
that arise already in the three-dimensional case.

We begin with a brief review of the two-dimensional case (for p > 2 and gen-
eral K/Qp) as studied in [GLS15]. It is shown that W∃cris(ρ) depends only on ρ|IK
[GLS15, Prop. 6.3.1], and that W∀cris(ρ) = W∃cris(ρ) ⊂ W∃cris(ρ

ss). Suppose now that
ρ : GK → GL2(Fp) is an extension of characters χ1 by χ2. By Example 7.1.7 any
weight a ∈ W∃cris(ρ

ss) is witnessed by a sum of characters. Let L(χ1, χ2, a) be the
subset of H 1(GK , χ2χ

−1
1 ) obtained by taking the union, over all literal lifts ψ1, ψ2 of

χ1, χ2 such that ψ1 ⊕ ψ2 witnesses a ∈ W∃cris(ρ
ss), of the image in H 1(GK , χ2χ

−1
1 ) of

H 1
f (GK ,Zp(ψ2ψ

−1
1 )). Then a ∈ W∃cris(ρ) if and only if the extension class correspond-

ing to ρ lies in L(χ1, χ2, a).
In fact it is almost always true that if ψ1, ψ2 as above are chosen so that the di-

mension of H 1
f (GK ,Zp(ψ2ψ

−1
1 )) is as large as possible, then the image of that space

in H 1(GK , χ2χ
−1
1 ) is actually equal to L(χ1, χ2, a). The lone exception occurs when

χ2χ
−1
1 is the cyclotomic character and a is represented by (xσ , yσ )σ∈Sk with xσ − yσ =

p − 1 for all σ ∈ Sk . In that case, if the ψi as above are chosen so that the dimen-
sion of H 1

f (GK ,Zp(ψ2ψ
−1
1 )) is as large as possible, then the images of the spaces

H 1
f (GK ,Zp(λψ2ψ

−1
1 )) cover L(χ1, χ2, a) as λ varies over all unramified characters with

trivial reduction mod p (cf. [GLS15, Thms. 5.4.1 and 6.1.8 and their proofs]).
In three dimensions, the situation appears to be considerably more complicated. In

addition to the discussion of Section 6.2, we have the following example.

Example 7.3.1. Suppose that ρ : GQp → GL3(Fp) is such that

ρ ∼

χ1 ∗ ∗

χ2 ∗

χ3

 .
Suppose moreover that χ1|IQp = ωa+1, χ2|IQp = ωb+1, χ3|IQp = ωc+1 with integers
a > b > c > a − (p − 1), where all gaps in the inequalities are at least 3, and that ρ
is maximally non-split (i.e. χ1 is the unique subrepresentation and χ3 the unique quotient
representation). When the χi are fixed, the isomorphism class of ρ is determined by an
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invariant FL(ρ) ∈ P1(Fp) \ {χ2(p)}. In the global setting of a suitable compact unitary
group the Serre weights of ρ are almost completely determined in [HLM17]: with the
possible addition of the shadow weight F(c + p − 1, b, a − p + 1), the set of Serre
weights equals

{F(a − 1, b, c + 1)} if FL(ρ) 6∈ {0,∞},
{F(a − 1, b, c + 1), F (b + p − 1, a, c)} if FL(ρ) = 0,
{F(a − 1, b, c + 1), F (a, c, b − p + 1)} if FL(ρ) = ∞.

That is, the set of Serre weights consists of one element of Wobv(ρ
ss), namely the obvious

weight coming from the diagonal characters of ρ in their given order, together with a set
of shadow weight(s) depending on the parameter FL(ρ). The occasional presence of the
weights F(b+p− 1, a, c) and F(a, c, b−p+ 1) suggests that there is no naive explicit
conjecture for non-semisimple ρ. We make two further remarks. First, in [HLM17] it is
verified that in this setting there exists an ordinary crystalline lift of ρ that witnesses the
containment F(a − 1, b, c+ 1) ∈W∃cris(ρ). Second, when the maximal non-splitness as-
sumption above is dropped, an upper bound on the set of Serre weights of ρ was obtained
by Morra–Park [MP17].

7.4. Shifted weights

We continue to consider ρ such that ρ|IK may not be semisimple. Recall from Section 6.1
that when n = 2 and K = Qp, every component of X labelled by 1 is also labelled by
Symp−1 F2

p; equivalently, every ρ with 1 as a Serre weight also has Symp−1 F2
p as a Serre

weight. This can be viewed as the first instance of the following more general question:
for which pairs of Serre weights F,F ′ does F ∈ WBM(ρ) imply that one must have
F ′ ∈WBM(ρ) as well? In this case we say that the weight F entails the weight F ′.

The geometric perspective explained in Section 6.1 (combined with the Breuil–
Mézard conjecture) allows a significant reduction to this question. The weight F will
entail the weight F ′ if and only if every component of X labelled by F is also labelled by
F ′; to check the latter it suffices to check that every generic Fp-point (of some component)
that has F as a Serre weight also has F ′ as a Serre weight. In particular, if one believes
that the Breuil–Mézard conjecture holds, then one should believe that F entails F ′ for
arbitrary ρ as long as the same holds for maximally non-split upper-triangular ρ (or even
those that are sufficiently generic to lie on just one component of X ).

In the remainder of this section we will discuss the following specific instance of the
weight entailment question.

Definition 7.4.1. If a, b are Serre weights, we say that b is a shift of a if there exists
1 ≤ i0 < n such that

bσ,i − aσ,i =

{
p − 1 if i ≤ i0,
0 if i > i0,

for all σ ∈ Sk .
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Note that this definition only depends on i0 but not on the choice of representative
a ∈ (X

(n)
1 )Sk/∼, and that we must have aσ,i0 = aσ,i0+1 for all σ ∈ Sk in order for any

shift of a to exist.

Question 7.4.2. If the weight b is a shift of the weight a, does a ∈ WBM(ρ) entail that
b ∈WBM(ρ) for representations ρ : GK → GLn(Fp)?

We equally well ask the same question with WBM(ρ) replaced by any set that con-
jecturally coincides with it, such as W∀cris(ρ), W∃cris(ρ), or WS(ρ) for any Breuil–Mézard
system S.

Remark 7.4.3. This question was suggested to us by the work of Ash–Pollack–Soares
[APS04] and Doud [Dou07]: the weight sets conjectured for ρ : GQp → GL3(F2) in
[APS04, §2], resp. for irreducible ρ : GQp → GLn(Fp) in [Dou07, Conj. 2.10] are by
definition closed under shifts (cf. also [Dou07, Def. 2.7]).

Example 7.4.4. Suppose that n = 2 and p > 2. Via twisting by a suitable character,
Question 7.4.2 when n = 2 can be reduced to the case where a = 0 and bσ = (p − 1, 0)
for all σ ∈ Sk . Since one knows (even if ρ|IK is not semisimple) that WBT(ρ) =

W∃cris(ρ) = W∀cris(ρ) in this setting by the work of [GLS15], an affirmative answer to
Question 7.4.2 for any of these sets is equivalent to the statement that if ρ : GK →
GL2(Fp) has a regular Barsotti–Tate lift then it also has a crystalline lift with Hodge type
some lift of b, which is well known (and can be proved for example via the techniques
of [GLS15], or by using the corresponding fact for automorphic forms and the potential
modularity techniques of [GK14, App. A]).

Example 7.4.5. We now give an extended discussion of the case GL3/Qp which suggests
that Question 7.4.2 may have an affirmative answer in this setting as well. Computational
evidence for this (due to [ADP02, APS04, Dou07]) will be reviewed in Section 8.7. Our
discussion will be heuristic; in particular we will assume the Breuil–Mézard conjecture,
and will extrapolate the labelling of the irreducible components of X from the case n = 2
in a speculative fashion. In particular, note that for n = 2, the labelling of the irreducible
components of X is dictated by the restrictions to inertia of the characters of generic re-
ducible ρ on those components, with the subtlety that in the ambiguous case these weights
could either be one-dimensional or twists of the Steinberg representation, we always pre-
dict the twist of the Steinberg representation, and only predict the one-dimensional rep-
resentation in the case that (twists of) these generic ρ admit a crystalline lift of Hodge
type 0.

In particular, every component labelled by a one-dimensional weight is also labelled
by the corresponding twist of the Steinberg representation, and this fact is reflected by
the fact that a generic reducible representation admitting a crystalline lift of Hodge type 0
also necessarily admits one of Hodge type corresponding to the Steinberg representation.
We will now assume that similar considerations apply for n = 3, and see what is implied.

We first suppose that ρ|IQp is semisimple and observe that the set Wexpl(ρ) described
in Section 7.2 is not necessarily closed under shifts, so that a positive answer to Ques-
tion 7.4.2 means that Wexpl(ρ) is at best a proper subset of W∃cris(ρ). We leave it as an
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exercise to the reader to check the following. If ρ is reducible, then Wexpl(ρ) is closed
under shifts. (Use the fact that weights F(x, y, y) or F(y, y, z) are either obvious or
obscure.) On the other hand if

ρ|IQp
∼=

⊕
σ∈SF

p3

ω(y+2)+p(y+1)+p2z
σ

with 0 ≤ y − z ≤ p − 2 then F(y, y, z) ∈ Wexpl(ρ) but F(y + p − 1, y, z) 6∈ Wexpl(ρ)

(this can be checked by hand, or seen from the tables in Proposition 8.2.14), and dually if

ρ|IQp
∼=

⊕
σ∈SF

p3

ωy+p(y+1)+p2(x+2)
σ

with 0 ≤ x − y ≤ p− 2 then F(x, y, y) ∈Wexpl(ρ) but F(x, y, y − p+ 1) 6∈Wexpl(ρ);
and moreover these are the only shifts missing from Wexpl(ρ) for irreducible ρ. (It is
perhaps worth pointing out that shifts do not account for all of the obscure weights of Ex-
ample 7.2.5, so that neither shifts nor obscure weights alone can account for the difference
between C(Wobv(ρ)) and the full set of weights.)

Let us now consider the weight entailment problem for weights of the form F =

F(y, y, z) and F ′ = F(y+p−1, y, z); the case of F(x, y, y) and F(x, y, y−p+1)will
be dual. Recall (e.g. from Example 7.2.2) that Lλ ⊗Zp Fp = F(λ) for both λ = (y, y, z)
and λ = (y + p − 1, y, z), so that we expect that F(y, y, z) (resp. F(y + p − 1, y, z))
is a weight for ρ if and only if ρ has a crystalline lift of Hodge type (y, y, z) (resp.
(y + p − 1, y, z)). Suppose that a component Z of X has F(y, y, z) among its labels,
so that a generic Fp-point on Z corresponds to ρ that has a crystalline lift of Hodge
type (y, y, z). We wish to know whether ρ also has a crystalline lift of Hodge type
(y + p − 1, y, z).

If y − z ≤ p − 3, Fontaine–Laffaille theory implies that a generic Fp-point on Z
corresponds to ρ having the shape

ρ|IQp ∼

ωy+2
∗ ∗

ωy+1
∗

ωz

 . (7.4.6)

The same conclusion seems likely to hold if y − z = p − 2: an argument as in [GLS14,
Prop. 7.8] shows at least that ρ has the same semisimplification as the representation
(7.4.6), and it seems quite plausible that the order of the characters on the diagonal will
be correct. Suppose this is so.

Let χ1, χ2, χ3 be the characters on the diagonal of ρ (in the same order as given in
(7.4.6)). Then as long as none of χi/χj with i < j are cyclotomic it is straightforward to
show that a crystalline lift of ρ with Hodge type (y + p − 1, y, z) exists. One can even
take this lift to be upper-triangular; see for example [GG12, Lem. 3.1.5]. Even if some
χi/χj is cyclotomic, it is reasonable to imagine that the same conclusion holds; e.g. when
y − z ≤ p − 3 this is immediate from [GHLS17, Cor. 2.3.5].

Alternatively, it is plausible that any ρ having the shape (7.4.6) and having a crys-
talline lift of Hodge type (y, y, z) has an ordinary such lift, with characters down the
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diagonal having Hodge–Tate weights y + 2, y + 1, z (in that order); cf. the first remark at
the end of Example 7.3.1, as well as the discussion of the case n = 2 and K/Qp arbitrary
in Section 7.3. Write this lift as an extension of a two-dimensional crystalline represen-
tation V (with Hodge–Tate weights {y + 1, z}) by a character W . One may then hope to
produce the desired lift of ρ of Hodge type (y + p − 1, y, z) by considering extensions
of V by unramified twists of W ⊗ εp−1.

We remark that the above arguments say nothing about the case y − z = p − 1.
However, it is at least the case for ρ|IQp semisimple that the set Wexpl(ρ) contains
F(y + p − 1, y, y − p + 1) whenever it contains F(y + p − 1, y, y).

When n > 3 the heuristic arguments in Example 7.4.5 at least make it plausible that
Question 7.4.2 has an affirmative answer for shifts of weights F = F(a1, . . . , an) with
a1−an small (e.g. when a1−an ≤ p−n, so that Fontaine–Laffaille theory still determines
the shape of ρ|IQp for ρ corresponding to a generic Fp-point on a component of X labelled
by F ).

7.5. Summary

We briefly summarise the Serre weight conjectures that we have explained in this section.

Definition 7.5.1. Let ρ : GK → GLn(Fp) be a representation.

◦ If the generalised Breuil–Mézard conjecture holds, we define WBM(ρ) to be the set of
Serre weights a such that µa(ρ) > 0.
◦ We define W∃cris(ρ) to be the set of Serre weights a such that ρ has a crystalline lift of

Hodge type λa for some lift λa of a.
◦ We define W∀cris(ρ) to be the set of Serre weights a such that ρ has a crystalline lift of

Hodge type λa for every lift λa of a.
◦ If ρ|IK is semisimple, we define a non-empty set Wobv(ρ) of obvious weights in Defi-

nition 7.1.3, and a set Wexpl(ρ) ⊃ C(Wobv(ρ)) of explicit weights in Definition 7.2.3.

Conjecture 7.5.2. Let ρ : GK → GLn(Fp) be a representation. Assume that ρ|IK is
semisimple.

(i) We have C(W∃cris(ρ)) =W∃cris(ρ).
(ii) The sets W∃cris(ρ) and W∀cris(ρ) depend only on ρ|IK , as does WBM(ρ) if it is defined

(i.e. if the generalised Breuil–Mézard conjecture holds).
(iii) We have Wexpl(ρ) ⊂W∃cris(ρ) =W∀cris(ρ).
(iv) If the generalised Breuil–Mézard conjecture holds then WBM(ρ) =W∃cris(ρ).
(v) IfK/Qp is unramified, and ρ|IK is sufficiently generic, then W∃cris(ρ) =Wexpl(ρ) =

C(Wobv(ρ)).

Conjecture 7.5.3. If each r̄|IFv is semisimple, then the weight part of Serre’s conjecture
(Conj. 2.1.5) holds with Wv(r̄) =W∃cris(r̄|GFv ).
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Finally (assuming again that ρ|IK is semisimple), we recall that W∀cris(ρ) ⊂ W∃cris(ρ) by
definition; that if the generalised Breuil–Mézard conjecture holds then we have WBM(ρ)

⊂ W∀cris(ρ) = W∃cris(ρ) (cf. Lemma 5.1.3); and that if the set W∃cris(ρ) depends only
on ρ|IK , then Wobv(ρ) ⊂W∃cris(ρ) (and similarly for W∀cris(ρ)).

8. Existing conjectures in the literature

In this section we review the theoretical and computational evidence for our conjectures,
beyond the case n = 2 which was discussed in detail above. We also make comparisons
with other conjectures in the literature.

8.1. The case of GL3(Qp)

TakeK = Qp and fix an odd and irreducible representation r̄ : GQ→ GLn(Fp) such that
r̄|IQp is semisimple. The first Serre weight conjectures in this context were made by Ash,
Doud, Pollack, and Sinnott [AS00], [ADP02]. We will discuss their work in Section 8.4
below. Later (Section 10), we will show that Conjecture 7.2.7 agrees with the Serre weight
conjecture made by the second author in [Her09]. (In fact we will ultimately work in a
somewhat more general context than this.) Recall, however, that in Conjecture 7.2.7 the
representation r̄|IQp is assumed to be sufficiently generic. In this next section we will
check that in the three-dimensional case the conjecture of [Her09] agrees completely with
the explicit set of weights described in the previous section.

8.2. The conjecture of [Her09] for GL3 over Qp

Recall that [Her09, Conj. 6.9] predicts the set of regular Serre weights for which a
given irreducible, odd representation r̄ : GQ → GLn(Fp) is automorphic. Regular Serre
weights are defined as follows.2

Definition 8.2.1. A weight a ∈W(k, n) is said to be regular if aσ,i − aσ,i+1 < p− 1 for
all σ, i, and irregular otherwise. Let Wreg ⊂W(k, n) be the set of regular weights.

The set of Serre weights predicted in [Her09] is denoted W?(r̄|IQp ), so we want to check
that W?(ρ|IQp ) = Wexpl(ρ) ∩Wreg for a local representation ρ : GQp → GL3(Fp) such
that ρ|IQp is semisimple. To describe the set W?(ρ|IQp ), we begin with the following
definitions.

Definition 8.2.2. Suppose that (w,µ) ∈ Sn × Zn. Let w = w1 · · ·wm be the unique
decomposition of the permutation w into disjoint cycles (including trivial cycles), and
write µ = (µ1, . . . , µn).

2 We caution the reader that the term regular as applied to Serre weights is unrelated to the term
regular as applied to Hodge–Tate weights in Section 1.8.
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(i) If wi = (c0 · · · cdi−1) we set Ni =
∑di−1
j=0 p

jµcj , write ki = Fpdi , and de-
fine τdi (wi, µ) to be the isomorphism class of the inertial Galois representation⊕

σ∈Ski
ω
Ni
σ of dimension di .

(ii) We define τ(w,µ) to be the isomorphism class of the inertial Galois representation⊕m
i=1 τdi (wi, µ) of dimension n.

(iii) We say that the pair (w,µ) is good if for all 1 ≤ i ≤ m and for all d | di with d 6= di
we have (pd − 1)Ni 6≡ 0 (modpdi − 1).

It is straightforward to verify that these definitions do not depend on any of the choices
involved.

Remark 8.2.3. The above definitions are concrete instances of the more general and
more canonical [Her09, (6.15)] and [Her09, Def. 6.19]. We will recall this more canonical
definition, and extend it to other groups, in Proposition 9.2.3.

If ρ|IQp
∼= τ(w,µ), the condition that the pair (w,µ) is good means, concretely, that the

dimensions of the Jordan–Hölder factors of ρ correspond to the cycle type of w.

Example 8.2.4. Suppose that w is the transposition swapping i and j . Then the pair
(w,µ) is good if and only if p + 1 - µi + pµj , or equivalently p + 1 - µi − µj . In
particular this is always the case if |j − i| = 1 and µ = λ+ (n− 1, . . . , 1, 0) where λ is
the lift of a Serre weight.

Example 8.2.5. Suppose that n = 3 and w = (i j k) is a 3-cycle. If µ = λ + (2, 1, 0)
where λ represents a regular Serre weight, it is a straightforward exercise to verify that
the pair (w,µ) is always good.

Suppose for the remainder of this section that n = 3, so that Wreg refers to the regular
weights in W(Fp, 3), and write η = (2, 1, 0).

Definition 8.2.6. We define X(3)reg ⊂ X
(3)
1 to be the set of triples such that a ≥ b ≥ c and

a − b, b − c ≤ p − 2. Note that X(3)reg/∼ ∼=Wreg.
If (x, y, z) ∈ Z3, let reg(x, y, z) be the unique element of Wreg represented by some

(x′, y′, z′) ∈ X
(3)
reg with (x′, y′, z′) ≡ (x, y, z) modulo (p − 1)Z3.

Definition 8.2.7. Following [Her09, Prop. 3.18] (see also Example 7.2.2), we define the
function (from weights to sets of weights)

r(F (x, y, z)) =

{
{F(x, y, z)} if x − z ≥ p − 2,
{F(x, y, z), F (z+ p − 2, y, x − p + 2)} if x − z < p − 2.

Following [Her09, Def. 7.3] we set A(µ) = r(reg(µ − η)) for each µ ∈ X(3)1 . Note that
if F ∈Wreg then r(F ) ⊂Wreg, and so A(µ) ⊂Wreg for any µ ∈ X(3)1 .
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The set W?(ρ|IQp ) in [Her09] is defined in terms of a Deligne–Lusztig representation as-
sociated to ρ|IQp . In the three-dimensional case we have the following explicit description
of this set, which is all we will need for the purposes of this section.

Proposition 8.2.8 ([Her09, Prop. 7.4]). Let ρ : GQp → GL3(Fp) be a representation
such that ρ|IQp is semisimple. Set

C(ρ|IQp ) = {µ ∈ X
(3)
1 : there exists w ∈ S3 with (w,µ) good and ρ|IQp

∼= τ(w,µ)}.

Then
W?(ρ|IQp ) =

⋃
µ∈C(ρ|IQp )

A(µ).

Example 8.2.9. Suppose that ρ|IQp is unramified. Then Wexpl(ρ) consists of the four
weights F(p−3,−1,−p+1), F(p−2,−1,−1), F(p−2, p−2,−1), F(p−2,−1,−p)
by Examples 7.1.9 and 7.2.5. On the other hand, C(ρ|IQp ) consists of all µ ∈ X(3)1 ∩

(p − 1)Z3, and reg(µ − η) = F(p − 3,−1,−p + 1) for all µ ∈ C(ρ|IQp ). We there-
fore have W?(ρ|IQp ) = {F(p − 3,−1,−p + 1)}. Hence we confirm that W?(ρ|IQp ) =

Wexpl(ρ) ∩Wreg, since the other three weights in Wexpl(ρ) are irregular.

We can now prove the main result of this section.

Proposition 8.2.10. Let ρ : GQp → GL3(Fp) be a representation such that ρ|IQp is
semisimple. Then Wexpl(ρ) ∩Wreg =W?(ρ|IQp ).

Remark 8.2.11. In Proposition 8.2.14 we will describe the irregular weights in Wexpl(ρ).

Proof of Proposition 8.2.10. Note that obscure weights for GL3/Qp were analysed com-
pletely in Example 7.2.5, and were all found to be irregular, so that Wexpl(ρ) ∩ Wreg
consists entirely of obvious and shadow weights. It is then easy to see from the definition
of Wexpl(ρ) (or alternatively from Proposition 9.3.7 in the next section), together with the
discussion of Example 7.2.2, that

Wexpl(ρ) ∩Wreg =
⋃

µ∈C′(ρ|IQp )
A(µ)

where

C′(ρ|IQp ) = {µ ∈ X
(3)
reg + η : there exists w ∈ S3 with ρ|IQp

∼= τ(w,µ)}.

To show the inclusion “⊂” in the proposition, we have to consider µ ∈ X(3)reg + η such
that there exists w ∈ S3 with (w,µ) not good and ρ|IQp

∼= τ(w,µ). By Examples 8.2.4
and 8.2.5 this only happens when w = (1 3), µ = (a, b, a − p − 1). The condition
µ ∈ X

(3)
reg + η forces 2 ≤ a − b ≤ p − 1. Then τ(w,µ) ∼= ωa−1

⊕ ωa−1
⊕ ωb and so

τ(w,µ) ∼= τ(1, µ′) with µ′ = (a − 1, b, a − p). Since (1, µ′) is good and µ′ ∈ X(3)1 ,
we have µ′ ∈ C(ρ|IQp ). Directly from Definition 8.2.7 one calculates that A(µ) =
{F(a−2, b−1, a−p−1)} and A(µ′) = {F(a−3, b−1, a−p), F (a−2, b−1, a−p−1)}.
In particular A(µ) ⊂ A(µ′) ⊂W?(ρ|IQp ), as required.
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For the reverse inclusion, one must consider µ ∈ X(3)1 \ (X
(3)
reg + η) such that there

exists w ∈ S3 with (w,µ) good and ρ|IQp
∼= τ(w,µ). There are three cases. First, if

µ = (a, a, a), then w = 1 and ρ|IQp is a sum of three copies of ωa . After a twist we
can reduce to the unramified case, which we have already considered in Example 8.2.9.
(Alternatively, just note that µ′ = (a + p − 1, a, a − p + 1) ∈ X(3)reg + η with τ(1, µ′) ∼=
τ(1, µ) and A(µ′) = A(µ).)

Second, suppose µ = (a, a, c) with 0 < a−c ≤ p−1, so that A(µ) = {F(a+p−3,
a − 1, c)}. Without loss of generality we may assume w ∈ {1, (1 3), (1 2 3)} (note that
the pair ((1 2), µ) is not good). For each of these three possibilities it is easy to check
that there exists w′ ∈ S3 such that τ(w,µ) ∼= τ(w′, µ′) and µ′ ∈ {(a + p − 1, a, c),
(c + p, a, a − 1)} ⊂ X

(3)
reg + η; for instance if w = (1 2 3) we take w′ = (1 3 2) and

µ′ = (c + p, a, a − 1). In particular µ′ ∈ C′(ρ|IQp ) and either A(µ) = A(µ′) (if
µ′ = (a + p − 1, a, c)) or A(µ) ⊂ A(µ′) (if µ′ = (c + p, a, a − 1)), as required.

Finally, if µ = (a, c, c) with 0 < a− c ≤ p− 1 then one can argue as in the previous
case; alternatively we can reduce to the previous case by duality using the following
lemma, valid for GLn (cf. [Her09, Prop. 6.23(ii)]), whose proof is straightforward. ut

Lemma 8.2.12. We have Wexpl(ρ
∨) = {F∨ ⊗ det1−n : F ∈Wexpl(ρ)}.

We now describe the irregular weights in Wexpl(ρ). As a preliminary, we observe that the
possibilities for ρ|IQp are given by the following alternatives.

Lemma 8.2.13. Suppose that τ : IQp → GL3(Fp) is semisimple and extends to a repre-
sentation of GQp . Then precisely one of the following alternatives holds:

(i) τ ∼= τ(1, (a, b, c)) where a ≥ b ≥ c and a − c ≤ p − 1,
(ii) τ ∼= τ((2 3), (a, b, c)) where a ≥ b > c and a − c ≤ p − 1,

(iii) τ ∼= τ((1 2 3), (a, b, c)) where a > b ≥ c and a − c ≤ p,
(iv) τ∨ ∼= τ((1 2 3), (a, b, c)) where a > b ≥ c and a − c ≤ p.

Moreover, in (i) the triple (a, b, c) is unique up to the equivalence relation generated by
(a, b, c) ∼ (c + p − 1, a, b); in (ii) the triple (a, b, c) is unique up to translation by
(p−1, p−1, p−1)Z; in (iii) and (iv), the triple (a, b, c) is unique up to the equivalence
relation generated by (a, b, c) ∼ (c + p, a − 1, b).

Proof. Parts (iii) and (iv) follow from [EGH13, Lem. 5.2.2]. The rest of the proof is left
to the reader. ut

Proposition 8.2.14. Let ρ : GQp → GL3(Fp) be a representation such that ρ|IQp is
semisimple. Then the weights in Wexpl(ρ) \Wreg are described as follows.

(i) Suppose that ρ|IQp is as in Lemma 8.2.13(i). The set Wexpl(ρ) \Wreg consists of the
weights F(µ−η) for triples µ as in the second column of the following table, under
the conditions as in the first column.
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Condition µ

a − b = 1, b − c 6= 0 (b + p, b, c)

a − b = 1, b − c ≤ 1 (b + p, b, c − p + 1)
b − c = 1, a − c 6= p − 1 (c + p, c, a − p + 1)
b − c = 1, a − c ≥ p − 2 (c + p, c, a − 2p + 2)
a − c = p − 2, a − b 6= 0 (a + p, a, b)

a − c = p − 2, a − b ≤ 1 (a + p, a, b − p + 1)
b − c = 1, a − b 6= 0 (a, b, b − p)

b − c = 1, a − b ≤ 1 (a + p − 1, b, b − p)
a − b = 1, a − c 6= p − 1 (c + p − 1, a, a − p)
a − b = 1, a − c ≥ p − 2 (c + 2p − 2, a, a − p)
a − c = p − 2, b − c 6= 0 (b, c, c − p)

a − c = p − 2, b − c ≤ 1 (b + p − 1, c, c − p)
a − b = 0 (b + p, b, c − 1), (c + p, a, a − p)
b − c = 0 (c + p, c, a − p), (a + 1, b, b − p)
a − c = p − 1 (a + p, a, b − 1), (b + 1, c, c − p)

(ii) Suppose that ρ|IQp is as in Lemma 8.2.13(ii). The set Wexpl(ρ) \Wreg consists of the
weights F(µ−η) for triples µ as in the second column of the following table, under
the conditions as in the first column.

Condition µ

b − c = 1, a − c 6= p − 1 (c + p, c, a − p + 1)
a − b = 1 (b + p, b, c)

a − c = 2 (c + p + 1, c + 1, b − p)
a − b = 0 (b + p, b, c − 1), (c + p, a, a − p)
b − c = 1, a − b 6= 0 (a, b, b − p)

a − c = p − 2 (b, c, c − p)

a − b = p − 3 (c + p, b − 1, b − p − 1)
a − c = p − 1 (b + 1, c, c − p), (a + p, a, b − 1)

(iii) Suppose that ρ|IQp is as in Lemma 8.2.13(iii). The set Wexpl(ρ) \Wreg consists of
the weights F(µ − η) for triples µ as in the second column of the following table,
under the conditions as in the first column.

Condition µ

a − b = 2 (c + p, a − 1, a − p − 1)
a − b = 1, a − c 6= 1 (c + p + 1, a − 1, a − p − 1)
a − c = p − 1 (b + 1, c, c − p)
a − c = p, b − c 6= p − 1 (b + 2, c, c − p)
b − c = 1 (a, b, b − p)

b − c = 0, a − b 6= p (a + 1, b, b − p)
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Remark 8.2.15. Suppose that ρ|IQp is as in Lemma 8.2.13(iv). The description of the
set Wexpl(ρ) \ Wreg can be extracted from Proposition 8.2.14(iii) by duality using
Lemma 8.2.12.

Also, we remind the reader that in part (iii), the list of weights given here does not
include the shifted weights described at the beginning of Example 7.4.5.

Proof of Proposition 8.2.14. Note that if F(x, y, z) is a weight with x − z < p− 2, then
the weight F(z+p−2, y, x−p+2) as in Example 7.2.2 is regular, so that all the weights
in these tables must either be obvious or obscure. The obscure weights are analyzed in
Example 7.2.5, and are listed in the final three rows of the table in (i), and the second half
of rows 4 and 8 of the table in (ii). (These rows also contain some obvious weights.)

Suppose, then, that the irregular weight F((b + p, b, c) − η) lies in Wobv(ρ), with
0 < b − c ≤ p. It follows from the definitions that ρ|IQp

∼= τ(w, (b + p, b, c)) for
some w ∈ S3. For each w one then expresses ρ|IQp in the form of Lemma 8.2.13 (in
all possible ways) to generate the lines of the above tables containing triples of the form
µ = (µ1, µ2, µ3) in the second column with µ1 − µ2 = p (relabelling as necessary,
as well as keeping in mind the equivalence relations in Lemma 8.2.13). For example, if
p > 2 then rewriting τ(1, (b + p, b, c)) as τ(1, (b + 1, b, c)) when 0 < b − c ≤ p − 2
and as τ(1, (b + 1, b, c + p − 1)) when p − 1 ≤ b − c ≤ p gives the first two lines of
the table in (i); then the next four lines come from the first two lines via the equivalence
relation of Lemma 8.2.13. We leave the rest of the details as an exercise for the reader
(for which we suggest considering the case p = 2 separately, at least in the cases when
ρ is reducible). Dualising using Lemma 8.2.12 we obtain a similar list for ρ|IQp for the
weight F((a, b, b − p)− η). ut

8.3. The results of [EGH13]

The paper [EGH13] considers the weight part of Serre’s conjecture for Galois representa-
tions r̄ : GF → GL3(Fp), where F is a totally real field in which p splits completely, and
r̄|GFv is irreducible for each v|p. The main results are proved with respect to some ab-
stract axioms, which are in particular satisfied for the cohomology of forms of U(3)which
are compact at infinity, and show that if each r̄|GFv satisfies a mild genericity condition,
then the set of weights in which r̄ is automorphic contains the set of weights predicted
by the conjecture of [Her09], and that any other weight for which r̄ is automorphic is
non-generic. (Here a weight is generic if it is sufficiently far away from the walls of any
alcove. As with the definition of genericity for a Galois representation, this will be made
precise in Section 10 below.)

In the light of the discussion of Section 8.1, these results are completely consistent
with our conjectures.

8.4. The conjecture of Ash, Doud, Pollack, and Sinnott for GLn over Qp

Let r̄ : GQ → GLn(Fp) be odd and irreducible. The first Serre weight conjectures for
such r̄ with n > 2 were made by Ash, Doud, Pollack, and Sinnott [AS00], [ADP02].
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When n = 3, a detailed comparison between their conjecture and the conjecture of
[Her09] can be found in [Her09, §7]. The purpose of this section is to note the following
result.

Proposition 8.4.1. Let r̄ be as above and suppose that r̄|IQp is semisimple and suffi-
ciently generic. Then the Serre weights predicted in [ADP02, Conj. 3.1] are a subset of
Wexpl(r̄|GQp ).

For the term “sufficiently generic” we once again refer the reader to Definition 10.1.12
(but see also Example 7.2.8 for the case when r̄|GQp is a sum of characters).

Remark 8.4.2. It turns out that the subset of Serre weights predicted in [ADP02,
Conj. 3.1] consists of a mix of some (but not all) obvious weights for r̄|GQp and some
(but very far from all) shadow weights. In any case we stress that the paper [ADP02] does
not claim to predict the full set of weights for r̄ .

Since the proof of Proposition 8.4.1 will make use of terminology and results from Sec-
tions 9–10, we defer the proof until Section 10.4. (We may safely do so because nothing
in the paper depends logically on Proposition 8.4.1.)

We make two further remarks. First, [ADP02] still give a conjectural set of Serre
weights even when r̄|IQp is not semisimple, a context in which we do not make an ex-
plicit prediction; we have no heuristic by which to predict whether or not all the Serre
weights conjectured by [ADP02] in this context are indeed weights of r̄ . Second, we
note that when r̄|GQp is irreducible, Doud [Dou07, Conj. 2.10] predicts precisely the set
Wobv(r̄|GQp ) together with all weight shifts as described in Section 7.4.

8.5. The results of [BLGG18]

The article [BLGG18] applies the machinery of the paper [BL+14] to the problem of
the weight part of Serre’s conjecture for unitary groups over CM fields. As explained in
Section 4, a lack of general results on the potential diagonalisability of crystalline rep-
resentations limits the scope for proving general comprehensive results. However, under
mild conditions the paper shows that when n = 3, p splits completely in an imaginary
CM field F , and r̄ : GF → GL3(Fp) is such that r̄|GFv is semisimple for each v|p, then r̄
is automorphic for every obvious predicted weight in the sense of Definition 7.1.3 above.
This is, of course, consistent with our conjectures.

8.6. GSp4

The paper [HT13] formulates a version of the weight part of Serre’s conjecture for ir-
reducible representations r̄ : GQ → GSp4(Fp), under the assumption that r̄|GQp is a
sum of characters, and under a mild regularity condition on the weights. The formulation
follows that of [Her09], and is a special case of the more general conjectures that we for-
mulate in Sections 9 and 10, which show that these conjectures are also consistent with
the philosophy of this paper.
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8.7. Computational evidence

The paper [Tor12] carried out computations for the weight part of Serre’s conjecture
(Conj. 2.1.5) in the case that F = Q(i) and n = 2. In this setting the Taylor–Wiles method
is not available in anything like the generality required to make arguments along the lines
of those explained in Remark 4.2.5 for totally real fields, and so there are no theoretical
results on the weight part of Serre’s conjecture. However, the computations of [Tor12] are
all consistent with the expectation that the weight part of Serre’s conjecture will behave
identically in this case, and are thus completely consistent with the conjectures of this pa-
per. (It is explained in [Tor12, §7] that there was one example where two expected weights
were not found; however Mehmet Haluk Şengün has independently reproduced the cal-
culations of [Tor12] in unpublished work, and has found complete agreement, except that
the two “missing” weights were also obtained.)

The paper [ADP02] explicitly carries out calculations for the weight part of Serre’s
conjecture (Conj. 2.1.5) for the case F = Q and n = 3. These calculations, and some
additional calculations that Doud and Pollack carried out at the request of the second
author, are all consistent with the conjecture of [Her09], and thus with our conjectures;
see [Her09, §8] for more details of this.

Remark 8.7.1. In fact, the calculations in [ADP02] would have been consistent with
Conjectures 5.1.7 and 5.1.10 even without the hypothesis that ρ|IK is semisimple. To be
precise, set F = F(x, y, z) with x− z < p−2, and set F ′ = F(z+p−2, y, x−p+2);
then in the calculations of [ADP02], one finds that whenever F is a Serre weight for
some ρ, so is F ′.

On the other hand, as we have explained in Section 6.2, Conjectures 5.1.7 and 5.1.10
are now known to be false if one omits the hypothesis that ρ|IK is semisimple. One thus
expects that every ρ with Serre weight F considered by [ADP02] happens to lie on the
(codimension one) intersection between the two components of the stack X labelled by
the Serre weights F and F ′ (cf. the discussion in Section 6); while at the time of writing
we do not know for certain that this is the case, an examination of the explicit representa-
tions considered by [ADP02] suggests that they are indeed in a rather special position.

8.8. Computational evidence for irregular Serre weights

Consider a representation r̄ : GQ → GL3(Fp) that is odd and irreducible, and such
that r̄|Ip is semisimple. Since our conjectures cover more weights than those of [Her09]
(namely, the weights which are irregular), we now give computational evidence for such
weights.

8.8.1. Examples from [ADP02]. The weight predictions in [ADP02, Conj. 3.1] are am-
biguous for irregular weights: if x ≡ y or y ≡ z (modp − 1), then their weight pre-
diction of F(x, y, z)′ means that r̄ occurs in at least one weight F(x′, y′, z′) such that
(x′, y′, z′) ≡ (x, y, z) (mod (p − 1)Z3) (so there are either two or four such weights, the
latter precisely when x ≡ y ≡ z (modp − 1)).



2912 Toby Gee et al.

In [ADP02] there are six examples with r̄|GQp of length two (see [ADP02, Table 10])
and two examples with r̄|GQp irreducible (see [ADP02, §7.2]) where ambiguous weight
predictions occur. In each case, except for the second entry of [ADP02, Table 10] which
lies outside the scope of his program, Doud has checked for us that r̄ appears in both
weights implied by the ambiguous notation (testing Hecke eigenvalues for all l ≤ 47, as
in [ADP02]). This is consistent with our conjecture, as all weights in question are obvious.

8.8.2. Examples from [Dou07]. The paper [Dou07] provided computational evidence for
several r̄ with r̄|GQp occurring in irregular weights. Recall that for such r̄ his predicted
weight set is obtained by adjoining all weight shifts to Wexpl(r̄|GQp ). In most of his ex-
amples the irregular weights are obvious for r̄|GQp ; see Section 8.8.4 below for the re-
maining cases.

8.8.3. Obscure weights. Consider the irreducible polynomial f (x) = x4
− x3

+ 5x2
−

4x + 3 over Q with Galois group A4, as in [ADP02, Ex. 5.4]. By taking the unique
three-dimensional irreducible representation of A4 over F13, we obtain a Galois repre-
sentation r̄ as above with r̄|I13

∼= τ(1, (6, 6, 0)). We have Wexpl(r̄|GQp ) = {F(16, 5, 0),
F (16, 11, 6), F (22, 17, 6), F (17, 11, 5), F (29, 17, 11), F (23, 17, 5)}, where the last two
weights are obscure. Doud could provide for us computational evidence that r̄ is auto-
morphic in each of these weights, and showed that it does not occur in any other irregular
weight F(a, b, c) with a− c /∈ {21, 24}. (Note that the central character forces a− c ≡ 0
(mod 3) for irregular weights.)

8.8.4. Weight shifts. In the literature we found evidence for shifted weights that are
not contained in Wexpl(r̄|GQp ) in the following cases. First, when p = 2, [APS04,
Table 3] contains three examples where r̄|I2 ∼= τ((1 2 3), (1, 0, 0)) (or its dual). We have
Wexpl(r̄|GQp ) = {F(0, 0, 0), F (1, 1, 0), F (2, 1, 0)} (all are obvious), and F(1, 0, 0) is a
shift of F(0, 0, 0). In each case [APS04] gives computational evidence that r̄ occurs in
all four weights.

Second, when p = 3, [Dou07, §5.3] considers an example in which r̄|I3
∼=

τ((1 2 3), (2, 0, 0)) (or its dual; these are denoted by m = 2, m = 8 in [Dou07, Table 2]).
In this case

Wexpl(r̄|GQp ) = {F(1, 1, 1), F (1, 0, 0), F (3, 2, 0), F (3, 3, 1), F (5, 3, 1), F (2, 1, 0)}

(all but the last weight being obvious), and F(3, 1, 1) is a shift of F(1, 1, 1). Doud
[Dou07] gives computational evidence for all seven weights. (Note that F(3, 1, 1) is miss-
ing from [Dou07, Table 2], but Doud confirmed to us that this is just a typo.)

9. Unramified groups

We now explain how to extend the definition of the set of weights Wexpl(ρ), as well as
the set of weights W?(ρ) defined in [Her09], to the more general setting of unramified
groups over Qp. In this section and the next, we will use 0K instead of GK to denote the
absolute Galois group of K , to avoid confusion with our notation for algebraic groups.
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9.1. L-groups and L-parameters

LetG be a connected reductive group over Zp, i.e. a smooth affine algebraic group whose
geometric fibres are connected reductive. Then G × Qp is unramified (i.e. quasisplit
and split over an unramified extension of Qp), and conversely every unramified group
over Qp arises in this way (by choosing a hyperspecial point in the building). Let B be
a Borel subgroup of G with Levi subgroup T ⊂ B, so T is a maximal torus of G. Note
that we have a canonical identification of character groups X(T × Qp) ∼= X(T × Fp),
which is compatible with the Galois action of 0Qp →→ 0Fp . We sometimes write just
X(T ) for this Galois module and similarly Y (T ) for the cocharacter group Y (T ×Qp) ∼=
Y (T × Fp). Let W := (N(T )/T )(Qp) ∼= (N(T )/T )(Fp) denote the Weyl group. Let
1 = 1(B, T ) ⊂ X(T ), respectively 1∨ = 1∨(B, T ) ⊂ Y (T ), denote the simple roots
(respectively coroots) defined by B. Then 0Qp naturally acts on the based root datum
90(G,B, T ) := (X(T ),1, Y (T ),1

∨). Let L ⊂ Qp denote the splitting field of G, i.e.
the finite unramified extension of Qp cut out by the 0Qp -action on 90(G,B, T ).

A dual group of G is a quadruple (Ĝ, B̂, T̂ , {xα}α∈1(B̂,T̂ )), where Ĝ is a split con-
nected reductive group over Zp, B̂ a Borel of Ĝ, T̂ ⊂ B̂ a Levi subgroup, xα : Ga

∼
→ Ûα

isomorphisms of algebraic groups (where 1(B̂, T̂ ) is the set of simple roots determined
by B̂, and Ûα is the root subgroup of α), together with an isomorphism φ : 90(Ĝ, B̂, T̂ )
∼
→ 90(G,B, T )

∨. This isomorphism induces an action of 0Qp on (Ĝ, B̂, T̂ , {xα}) that
factors through Gal(L/Qp), and we define the L-group LG := ĜoGal(L/Qp), a reduc-
tive group over Zp. The Weyl group of T̂ is naturally identified withW via the duality iso-
morphism. We remark that any two pinnings (Ĝ, B̂, T̂ , {xα}) of Ĝ are Ĝ(Zp)-conjugate
provided that Z(Ĝ) is connected. (This is equivalent to Gder being simply connected,
which we will assume in a moment.) We also remark that our definition of the L-group
is compatible with that of [Kot84] and [BG15] who work with canonical based root data.
(The reason is that (B, T ) and (B̂, T̂ ) are defined over Zp.)

From now on we suppose the following.

Hypothesis 9.1.1. Assume that the group Gder is simply connected, that Z(G) is con-
nected, and that G has a local twisting element η, which by definition means that η ∈
X(T )

0Qp and 〈η, α∨〉 = 1 for all α ∈ 1. (Twisting elements are defined in the same
way for groups over number fields in [BG15, §5.2]; they are a key part of the general
conjectures made in [BG15] on the association of Galois representations to automorphic
representations.)

In the following definitions, A is a topological Zp-algebra, i.e. a Zp-algebra that is also a
topological ring.

Definition 9.1.2. An L-parameter is a continuous homomorphism 0Qp →
LG(A) that

is compatible with the projections to Gal(L/Qp).

Definition 9.1.3. An inertial L-parameter is a continuous homomorphism IQp → Ĝ(A)

that admits an extension to an L-parameter 0Qp →
LG(A).
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We say that (inertial) L-parameters ρ1, ρ2 are equivalent if they are Ĝ(A)-conjugate, and
we write ρ1 ∼= ρ2.

Definition 9.1.4. A Serre weight is an isomorphism class of irreducible Fp-representa-
tions of G(Fp). (Just as for GLn, we will sometimes abuse terminology and refer to an
individual irreducible representation as a Serre weight.)

Given a tamely ramified inertial L-parameter τ : IQp → Ĝ(Fp) we will define below
sets of Serre weights W?(τ ) and Wexpl(τ ). These generalise respectively the construction
in [Her09] and the construction in Section 7. (To be precise, in the latter case we will
only generalise the case of GLn over unramified extensions of Qp.) Our main result,
Theorem 10.2.11, will establish that the two sets are equal for generic τ .

9.2. Definition of W?(τ )

In this section we generalise [Her09, §§6.3–6.4]. To simplify notation, let (G,B, T ) :=
(G,B, T ) × Fp and (G∗, B∗, T ∗) := (Ĝ, B̂, T̂ ) × Fp. Let F : G → G denote the
relative Frobenius, so GF = G(Fp). Let F ∗ : G∗ → G∗ denote the composite Fr ◦ ϕ =
ϕ ◦ Fr, where Fr denotes the relative Frobenius on G∗ and ϕ ∈ 0Qp denotes from now
on a geometric Frobenius element. Then F ∗ is the relative Frobenius for a different Fp-
structure on G∗, as ϕ has finite order on G∗.

Recall that we fixed an isomorphism φ : 90(G
∗, B∗, T ∗)

∼
→ 90(G,B, T )

∨ above
that is by definition 0Qp -equivariant. Our conventions are that 0Qp and the Weyl group act
on the left on X(T ) and Y (T ); so γ (µ) = µ ◦ γ−1 and w(µ) = µ ◦ w−1 for µ ∈ X(T ),
γ ∈ 0Qp , w ∈ W . However, F is not invertible, so we set F(µ) = µ ◦ F . Similar
comments apply to G∗. With these conventions we have F ◦ φ = φ ◦ F ∗ on Y (T ∗), as3

F = pϕ on X(T ) and F ∗ = pϕ on Y (T ∗). Thus φ is a duality between (G, F ) and
(G∗, F ∗) in the sense of Deligne–Lusztig [DL76]. (Note once again that 90(G,B, T ),
90(G

∗, B∗, T ∗) are canonically isomorphic to the canonical based data, as (B, T ) is F -
stable and (B∗, T ∗) is F ∗-stable.)

Fix from now on a generator (ζpi−1) ∈ lim
←−i≥1

F×
pi

. Recall the following facts from
[DL76, §5].

(i) The (canonical) Weyl group W = N(T )/T is canonically identified with
N(T ∗)/T ∗ so that w ◦ φ = φ ◦ w for all w ∈ W . The actions of F and F ∗ on W
are inverse to each other.

(ii) There is a canonical bijection between GF -conjugacy classes of pairs (T, θ) con-
sisting of an F -stable maximal torus T ⊂ G and a character θ : TF → Q×p and G∗F

∗

-
conjugacy classes of pairs (T∗, s) consisting of an F ∗-stable maximal torus T∗ ⊂ G∗ and
a semisimple element s ∈ T∗F

∗

.
(iii) If the classes of (T∗, s), (T, θ) are in bijection in (ii), then they are both said to be

maximally split if T∗ ⊂ ZG∗(s) is a maximally split torus (i.e. contained in an F ∗-stable
Borel subgroup of ZG∗(s)).

3 In order not to get confused about actions on X(T ), it helps to think in terms of the actions
on T . For example, F = pϕ−1 on T .
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Proposition 9.2.1. We have the following commutative diagram{
maximally split

(T∗, s)

}
/G∗F

∗

OO

��

oo duality //
{

maximally split
(T, θ)

}
/GF� _

��{
tame inertial L-parameters

IQp → Ĝ(Fp)

}
/∼=

Vφ //

{
representations of
G(Fp) over Qp

}
/∼=

defining the map Vφ .

Proof. We proceed as in the proof of [Her09, Prop. 6.14]. Recall that (ζpi−1) gives rise
to a generator gcan ∈ IQp/I

w
Qp , where IwQp is the wild ramification subgroup. Since

0Qp/I
w
Qp = IQp/I

w
Qp o 〈ϕ〉, where ϕ−1gϕ = gp for g ∈ IQp/I

w
Qp , the bottom left

corner of the diagram is in bijection with Ĝ(Fp)-conjugacy classes of semisimple ele-
ments s′ ∈ Ĝ(Fp) = G∗(Fp) such that ϕ−1(s′) is G∗(Fp)-conjugate to (s′)p. Equiv-
alently, by conjugating s′ to T ∗(Fp) and using F ∗ = pϕ on T ∗, these are F ∗-stable
G∗(Fp)-conjugacy classes of semisimple elements of G∗(Fp). Since Z(G) is connected,
every such conjugacy class has a representative in G∗F

∗

, unique up to G∗F
∗

-conjugacy.
We then get the bijection on the left as in [Her09]. The map on the right is given by
(T, θ) 7→ εGεTR

θ
T, with notation as in [Her09, §4.1 and Lem. 4.2]. It is a genuine repre-

sentation of GF = G(Fp) by [DL76, Prop. 10.10]. ut

The explicit description of Vφ in [Her09] generalises, as we now explain. Recall that for
w ∈ W we choose gw ∈ G(Fp) such that g−1

w F(gw) ∈ N(T )(Fp) represents w and
define T w := gwT g

−1
w . Then T w is an F -stable maximal torus. Define θw,µ : T Fw → Q×p

for µ ∈ X(T ) by θw,µ(t) := µ̃(g−1
w tgw), where tilde denotes the Teichmüller lift. Any

pair (T, θ) consisting of an F -stable maximal torus T and a character θ : TF → Q×p is
GF -conjugate to (T w, θw,µ) for some (w,µ).

Definition 9.2.2. Let R(w,µ) := εGεT wR
θw,µ
T w

be defined as in the proof of Proposi-
tion 9.2.1. (It may be virtual if (w,µ) is not maximally split.)

For d ≥ 1 let ωd : IQp → F×p be the character ωσ , where σ : Fpd → Fp denotes the
inclusion of the unique subfield of Fp of degree d over Fp. Let τ(w,µ) : IQp → T̂ (Fp)
denote the tame representation

τ(w,µ) := N(F ∗◦w−1)d/F ∗◦w−1(µ(ωd)),

where d ≥ 1 is chosen such that (F ∗ ◦ w−1)d = pd on Y (T ∗), µ is considered as an
element of Y (T ∗) via φ, and NAd/A =

∏d−1
i=0 A

i .
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Proposition 9.2.3. The representation τ(w,µ) is an inertial L-parameter. If (T w, θw,µ)
is maximally split then it corresponds to τ(w,µ) under the bijections of Proposition 9.2.1
and we have Vφ(τ (w,µ)) ∼= R(w,µ). In particular, Vφ is independent of the choice of
(ζpi−1)i .

Proof. This is the same as in [Her09, Prop. 6.14]. ut

Let X(T )+ denote the subset of X(T ) consisting of dominant weights, and let X1(T ) :=

{µ ∈ X(T ) : 0 ≤ 〈µ, α∨〉 ≤ p − 1 for all α ∈ 1}, X0(T ) := {µ ∈ X(T ) :

〈µ, α∨〉 = 0 for all α ∈ 1}. For µ ∈ X(T )+ let F(µ) denote the irreducible algebraic
G-representation of highest weight µ. (As the referee points out, this notation is ambigu-
ous, since F is also the Frobenius. However, below F(ν) for ν ∈ X(T ) will always mean
the algebraic representation and never the weight ν ◦ F .)

Lemma 9.2.4. The map

X1(T )

(F − 1)X0(T )
→ {Serre weights of G(Fp) = GF }/∼=, µ 7→ F(µ)|GF ,

is a (well-defined ) bijection.

Proof. We claim first that there exists a finite order automorphism π of (G,B, T ) that
commutes with F and that induces the action ϕ−1 on 90(G,B, T ). To see this, note first
that we can choose a pinning xα : Ga

∼
→ Uα for α ∈ 1 such that F ◦xϕα = xα ◦Fa for all

α ∈ 1, where Fa is the relative Frobenius on Ga and Uα is the root subgroup of α. Then
let π be the unique automorphism of (G,B, T , {xα}1) inducing ϕ−1 on90(G,B, T ). To
see that F and π commute, note that both maps send Uα onto Uϕ−1α .

Then F ◦ π−1 is the relative Frobenius of a split Fp-structure on G, since F ◦ π−1
=

Fϕ = p on T . The lemma now follows from [Her09, Appendix, Prop. 1.3], on noting
that F = pπ−1 on X(T ). ut

Let Xreg(T ) := {µ ∈ X(T ) : 0 ≤ 〈µ, α∨〉 < p − 1 for all α ∈ 1} ⊂ X1(T ). Then
µ 7→ w0 · (µ − pη) defines a self-bijection of Xreg(T ) (where w0 ∈ W is the longest
element), which passes to the quotient Xreg(T )/(F − 1)X0(T ). Via Lemma 9.2.4 this
quotient is identified with a subset Wreg of all (isomorphism classes of) Serre weights of
G(Fp). We write

R :Wreg →Wreg, F (µ) 7→ F(w0 · (µ− pη)),

for the induced bijection.

Definition 9.2.5. For a tame inertial L-parameter τ : IQp → Ĝ(Fp) let

W?(τ ) := {R(F ) : F ∈Wreg an irreducible constituent of Vφ(τ )}.

Remark 9.2.6. Note that this set does not agree completely with the set W ?(τ ) defined
in [Her09, §6] when G = GLn. The only discrepancy occurs for weights F(λ) with
〈λ, α∨〉 = p − 2 for some α ∈ 1, which is irrelevant for our main result (Theo-
rem 10.2.11).
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9.3. Definition of Wexpl(τ )

We will now define Wexpl(τ ) for a tame inertial L-parameter τ : IQp → Ĝ(Fp). When
G = ResK/QpGLn with K/Qp finite unramified, we will recover the set of weights given
in Definition 7.2.3 (this will be Proposition 9.5.3).

9.3.1. Hodge–Tate cocharacters. Suppose for the moment that K/Qp is finite, or more
generally that K/Qp is algebraic with finite ramification index, and that H is a (not nec-
essarily connected) algebraic group over Qp. Recall that a continuous homomorphism
ρ : 0K → H(Qp) is said to be Hodge–Tate (resp. crystalline) if for some faithful (and
hence any) representationH → GLN over Qp, the resultingN -dimensional Galois repre-
sentation is Hodge–Tate (resp. crystalline). Given any ρ : 0K → H(Qp) that is Hodge–
Tate, and any homomorphism j : K → Qp, it is explained in [BG15, §2.4] that there is
an H ◦(Qp)-conjugacy class HTj (ρ) of cocharacters Gm → H over Qp (or equivalently,
an element of Y (T̂ )/W , where T̂ is a fixed maximal torus and W its Weyl group in H ◦).
These classes satisfy the relation

HTj◦γ−1(ρ) = ρ(γ )HTj (ρ)ρ(γ )−1 for all γ ∈ 0K . (9.3.1)

Our normalisation is such that HTj (ε) = 1 for all j . If µ : Gm → H is a cocharacter we
let [µ] denote its class in Y (T̂ )/W . The following lemma is elementary.

Lemma 9.3.2. Suppose ρ : 0K → H(Qp) is Hodge–Tate.

(i) If f : H → H ′ is a map of algebraic groups over Qp, then for j : K → Qp,

f ◦ HTj (ρ) = HTj (f ◦ ρ).

(ii) If K ′ ⊂ K contains K , then for j : K → Qp,

HTj (ρ|0K′ ) = HTj (ρ).

(iii) Suppose that L is another field and that γ : K
∼
→ L is an isomorphism sending K

onto L. Then for j : L→ Qp,

HTj◦γ (ρ) = HTj (ρ ◦ (γ−1(−)γ )).

Now specialise to an L-parameter ρ : 0Qp →
LG(Qp) that is crystalline. Then the

element HT1(ρ) ∈ Y (T̂ )/W = X(T )/W associated to id : Qp → Qp determines all
Hodge–Tate cocharacters by (9.3.1). Also, HTj (ρ) depends only on j |L.

Suppose that τ : IQp → Ĝ(Fp) is a tame inertial L-parameter.

Definition 9.3.3. We say that an L-parameter ρ : 0Qp →
LG(Zp) is an obvious crys-

talline lift of τ if
(i) ρ|IQp is Ĝ(Fp)-conjugate to τ ;

(ii) ρ is crystalline;
(iii) there is a maximal torus T ∗ ⊂ LG/Zp such that

ρ(0Qp ) ⊂ NLG
/Zp
(T ∗)(Zp) and ρ(IQp ) ⊂ T

∗(Zp).
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Remark 9.3.4. As any two maximal tori of LG/Zp are Ĝ(Zp)-conjugate, we may as-

sume without loss of generality that T ∗ = T̂/Zp in (iii). We also remark that NLG(T̂ ) =

NĜ(T̂ )o Gal(L/Qp).

Remark 9.3.5. Note that (iii) implies that there existsK ⊂ Qp withK/Qp finite unram-
ified such that ρ(0K) ⊂ T ∗(Zp).

Definition 9.3.6. We define

Wobv(τ ) := {F(µ) : µ ∈ X1(T ), τ admits an obvious crystalline lift ρ
with HT1(ρ) = [µ+ η] ∈ X(T )/W }.

Proposition 9.3.7. We have Wobv(τ ) = {F(µ) : µ ∈ X1(T ), τ ∼= τ(w,µ+ η) for some
w ∈ W }.

Proof. More generally we will show that

{HT1(ρ) : ρ an obvious crystalline lift of τ }
= {[µ] : µ ∈ X(T ) such that τ ∼= τ(w,µ) some w ∈ W }.

(Note that τ(σwF(σ)−1, σµ) ∼= τ(w,µ) for σ ∈ W .)
First suppose that ρ : 0Qp → NLG(T̂ )(Zp) is an obvious crystalline lift of τ .

Fix K ⊂ Qp with K/Qp finite unramified such that ρ(0K) ⊂ T̂ (Zp). Then for all
j : Qp → Qp, the cocharacter µj := HTj (ρ|0K ) ∈ Y (T̂ ) is a lift of HTj (ρ) ∈
Y (T̂ )/W (by Lemma 9.3.2). Note that µj depends only on j |K . Also, conj(ρ(ϕ)) ◦
ρ|0K = ρ|0K ◦(ϕ(−)ϕ

−1) (where conj(g) denotes conjugation by g), so by Lemma 9.3.2,
conj(ρ(ϕ)) ◦ µj = µj◦ϕ−1 . Writing ρ(ϕ) = ϕẇ−1

∈ NLG(T̂ )(Zp), for some ẇ ∈
NĜ(T̂ )(Zp) lifting w ∈ W , we get µj◦ϕ−1 = ϕw−1µj . For ν ∈ X(T̂ ), ν ◦ ρ|0K :
0K → Z×p is crystalline with Hodge–Tate cocharacters HTj (ν ◦ ρ|0K ) = 〈ν, µj 〉 ∈ Z,
hence by Lemma 5.1.6,

ν ◦ ρ|IQp =
∏

j∈0Qp /0K

j(ωd)
〈ν,µj 〉,

where d := [K : Qp]. It follows that

ρ|IQp =

d−1∏
s=0

µϕ−s (ω
ps

d ) = ω

∑
ps (ϕw−1)sµ1

d = τ(w,µ1), (9.3.8)

as F ∗ = pϕ on Y (T̂ ) = X(T ).
Conversely, given (w,µ) ∈ W×X(T ), choose d ≥ 1 such that (ϕw−1)d acts trivially

on µ. Let K ⊂ Qp be unramified over Qp of degree d. Let ρ′ : 0K → T̂ (Zp) be
crystalline such that HTϕ−s (ρ′) = (ϕw−1)sµ ∈ Y (T̂ ) for all s ∈ Z. (Note that HTj (ρ′)
only depends on j |K . To construct ρ′ write T̂ ∼= Grm and use Lemma 5.1.6.) It follows
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by Lemma 5.1.6 that ϕw−1
◦ ρ′ = ρ′ ◦ (ϕ(−)ϕ−1) on IQp . Therefore we may define an

L-parameter ρ : 0Qp →
LG(Zp) by (i) ρ|IQp = ρ′|IQp and (ii) ρ(ϕ) = ϕẇ−1 where

ẇ ∈ NĜ(T̂ )(Zp) is any fixed lift of w. Then ρ is crystalline, as ρ|IQp is crystalline, and
HT1(ρ) = [µ] by Lemma 9.3.2. Also, ρ|IQp = τ(w,µ) by (9.3.8). ut

For ν ∈ X(T )+ let W(ν) denote the G-module IndGB (w0ν) defined in [Jan03, II.2]. It has
a unique highest weight ν and G-socle F(ν).

Definition 9.3.9. If W is a set of Serre weights of G(Fp), we define C(W) to be the
smallest set of Serre weights with the properties:

◦ W ⊂ C(W), and
◦ if W ∩ JHG(Fp)W(ν) 6= ∅, where ν ∈ X1(T ), then F(ν) ∈ C(W).

9.3.2. Levi predictions. The Levi subgroups M ⊂ G that contain T are in bijection
with the 0Qp -stable subsets of 1, by sending M to 1M . Note that each M satisfies
Hypothesis 9.1.1 with the same twisting element η as G. For each M fix a dual group
(M̂, B̂M , T̂M , {xα,M}α∈1̂M ). Then there is a unique 0Qp -equivariant homomorphism i :

(M̂, B̂M , T̂M) → (Ĝ, B̂, T̂ ) such that i∗ : X(T̂ ) → X(T̂M) corresponds to idY (T ) and
i ◦ xα,M = xα for all α ∈ 1̂M . In fact, i is a closed immersion, so we can and will think
of M̂ as the Levi subgroup of Ĝ containing T̂ defined by 1∨M , with induced structures.

We have variants of the definitions of Sections 9.1–9.3 with M replacing G, and we
will indicate these by decorating notation with an M: in particular XM1 (T ), W

M(µ) for
µ ∈ X(T )+,M , [ · ]M , and in Section 10 also8M ,8+M , ‖·‖M , ↑M , τM(w,µ) forw ∈ WM

and µ ∈ X(T ).

Definition 9.3.10. We recursively define Wexpl(τ ) to be the smallest set containing
Wobv(τ ) that is closed under the following operation: whenever τ : IQp → Ĝ(Fp) factors
(perhaps after conjugation) through an inertial L-parameter τM : IQp → M̂(Fp) with M
as above, and Wexpl(τ

M) ∩ JHM(Fp)W
M(w · ν) 6= ∅ (where ν ∈ X1(T ) and w ∈ W are

such that w · ν ∈ X(T )+,M), then F(ν) ∈Wexpl(τ ).

Remark 9.3.11. If we take M = G in the recursive step of this definition, we find that
C(Wobv(τ )) ⊂Wexpl(τ ).

The motivation for Definition 9.3.10 is as in Section 7.2: we expect that τM has a crys-
talline lift of Hodge–Tate cocharacter [w · ν + η]M , hence that τ has a crystalline lift of
Hodge–Tate cocharacter [ν + η].

Lemma 9.3.12. IfG = T is a torus and τ a tame inertial L-parameter, then Wexpl(τ ) =

Wobv(τ ) = {F(µ− η)} for any µ ∈ X(T ) such that τ ∼= τ(1, µ).

Proof. The equality Wexpl(τ )=Wobv(τ ) is clear by Remark 9.3.11. By Proposition 9.2.3,
there exists µ ∈ X(T ) such that τ ∼= τ(1, µ) (as W = 1), so F(µ − η) ∈ Wobv(τ ) by
Proposition 9.3.7. By the same result, if we take any weight F(µ′ − η) ∈ Wobv(τ ), then
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τ ∼= τ(1, µ′). It follows that (1+F ∗+· · ·+(F ∗)d−1)(µ−µ′) ≡ 0 (mod (pd−1)Y (T ∗)),
where d is chosen as in §9.2. Equivalently, (1 + F + · · · + F d−1)(µ − µ′) ≡ 0
(mod (pd − 1)X(T )). As F d − 1 = pd − 1 is injective on X(T ) we see that µ ≡ µ′

(mod (F − 1)X(T )), i.e. F(µ− η) ∼= F(µ′ − η). ut

Remark 9.3.13. For general G it follows from Lemma 9.3.12 that if M = T in the
recursive step of Definition 9.3.10, then the non-emptiness of the intersection implies
that F(ν) ∈ Wobv(τ ), so no new weights are obtained. (To see this, note that the non-
emptiness implies that τ ∼= τ(1, w ·ν+η) for somew ∈ W , by applying Proposition 9.3.7
to τT . Hence τ ∼= τ(w−1F(w), ν + η), which implies the claim.)

9.4. Restriction of scalars

Suppose for the rest of this section that K ⊂ Qp with K/Qp finite unramified. In the
following, if X is a set (resp. group, group scheme) with a smooth left action of 0K ,

then we denote by Ind
0Qp
0K

X the induced set (resp. group, group scheme) consisting of
functions 0Qp → X that are 0K -equivariant. For γ ∈ 0Qp let evγ : Ind

0Qp
0K

X → X

denote the evaluation map at γ . If Y is a set of representatives of 0K\0Qp , the (evy)y∈Y

provide a non-canonical isomorphism Ind
0Qp
0K

X
∼
→ X[K:Qp] of sets (resp. groups, group

schemes).
Suppose that H is a connected reductive group over OK with Borel BH , Levi TH ⊂

BH and simple roots 1H ⊂ X(TH ). Suppose that H satisfies Hypothesis 9.1.1 (or rather
its analogue over K) with local twisting element ηH ∈ X(TH )0K . We may then obtain a
group G as in Section 9.1 by restriction of scalars:

(G,B, T ) := ResOK/Zp (H,BH , TH ).

Note that G × Qp ∼=
∏
κ:K→Qp H ×K,κ Qp, so Gder is simply connected and Z(G) is

connected. In particular,

X(T ) ∼=
⊕

κ:K→Qp

X(TH ×κ Qp) ∼= Ind
0Qp
0K

X(TH ).

It follows that 90(G,B, T ) ∼= Ind
0Qp
0K

90(H,BH , TH ) (where strictly speaking 1 con-
sists of those functions in Ind

0Qp
0K

1H that are supported on a single coset of 0K , and
similarly for 1∨) and that η ∈ X(T )0Qp ∼= X(TH )0K defined by ηH is a local twisting
element of G. Hence G satisfies Hypothesis 9.1.1. Let L ⊂ Qp denote the splitting field
of H , so L/Qp is finite unramified, L ⊃ K , and G× L is also split.

Let (Ĥ , B̂H , T̂H , {xα′}) be a dual group of H as in Section 9.1, and define

(Ĝ, B̂, T̂ ) := Ind
0Qp
0K

(Ĥ , B̂H , T̂H ).

Then 0Qp preserves a pinning {xα} of Ĝ that is naturally induced from {xα′}. We also see
that 90(Ĝ, B̂, T̂ ) ∼= Ind

0Qp
0K

90(Ĥ , B̂H , T̂H ) (with the same proviso as above), so via the
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induced isomorphism 90(Ĝ, B̂, T̂ )
∼
→ 90(G,B, T )

∨ we can consider (Ĝ, B̂, T̂ , {xα})
as a dual group of G. We let LH := Ĥ o Gal(L/K).

Note that the notions of (inertial) L-parameter and obvious crystalline lift carry over
to representations of 0K (respectively IK ). Also note that ev1 : Ĝ(A) → Ĥ (A) is
0K -equivariant hence extends to a homomorphism ev1 : Ĝ(A)o Gal(L/K)→ LH(A).

Lemma 9.4.1. Suppose that A is a topological Zp-algebra. Then we have a bijection{
L-parameters

0Qp
ρ
−→ LG(A)

}
/Ĝ(A)

∼
→

{
L-parameters

0K
ρK
−→ LH(A)

}
/Ĥ (A)

. (9.4.2)

sending ρ to ρK = ev1(ρ|0K ). If A = Qp then ρ is crystalline if and only if ρK is
crystalline.

Proof. For the moment let us consider A with the discrete topology. By writing ρ(g) =
ρ0(g) o g we see that ρ0 defines a 1-cocycle 0Qp → Ĝ(A), and in this way we
get a bijection between Ĝ(A)-conjugacy classes of L-parameters ρ and the pointed

set H 1(0Qp , Ĝ(A)). As Ĝ(A) ∼= Ind
0Qp
0K

Ĥ (A), the non-abelian Shapiro lemma [Sti10,
Prop. 8] shows that H 1(0Qp , Ĝ(A))

∼= H 1(0K , Ĥ (A)) where ρ0 is sent to ev1(ρ
0
|0K ).

This proves (9.4.2) if A is discrete. From the description ρK = ev1(ρ|0K ) and (9.4.4) it
follows in general that ρ is continuous iff ρ|0L is continuous iff ρK is continuous, and
similarly for the crystalline condition when A = Qp. For later reference we recall from
[Sti10] a description of a representative ρ in the inverse image of ρK . Let Y be a set of
representatives of 0K\0Qp with 1 ∈ Y . Then ρ is defined by

evγ ρ0(γ ′) = ρ0
K(δ)

−1
· ρ0
K(δ
′) ∈ Ĥ (A), (9.4.3)

where γ = δy, γ γ ′ = δ′y′ with δ, δ′ ∈ 0K , y, y′ ∈ Y . ut

In the context of Lemma 9.4.1 for any γ ∈ 0Qp we have γ ◦ ρ|0L ∼= ρ|0L ◦ (γ (−)γ
−1),

so
evγ (ρ|0L) ∼= ρK |0L ◦ (γ (−)γ

−1) : 0L→ Ĥ (A). (9.4.4)

Lemma 9.4.5. Suppose that A is a topological Zp-algebra. Then we have a bijection{
inertial L-parameters

IQp
τ
−→ Ĝ(A)

}
/Ĝ(A)

∼
→

{ inertial L-parameters

IK
τK
−→ Ĥ (A)

}
/Ĥ (A)

sending τ to τK = ev1(τ ).

Remark 9.4.6. Note that IK = IQp .

Proof. By Lemma 9.4.1 the map is well-defined and surjective. Suppose that τ1, τ2 are
inertial L-parameters such that τ1,K ∼= τ2,K . As the τi extend to L-parameters, from
(9.4.4) we see that evγ (τ1) ∼= evγ (τ2) for any γ ∈ 0Qp . Let Y be a set of representatives



2922 Toby Gee et al.

of 0K\0Qp , and choose hy ∈ Ĥ (A) (y ∈ Y ) such that

evy(τ1) = hy · evy(τ2) · h
−1
y for all y ∈ Y.

Then τ1 = g · τ2 · g
−1, where g ∈ Ĝ(A) is defined by g(y) = hy for y ∈ Y . ut

Lemma 9.4.7. Suppose that τ : IQp → Ĝ(Fp) is a tame inertial L-parameter and that
ρ : 0Qp →

LG(Zp) is an L-parameter. Then ρ is an obvious crystalline lift of τ iff ρK
is an obvious crystalline lift of τK .

Proof. The “only if” implication is immediate from Lemma 9.4.1. Conversely, if ρK
is an obvious crystalline lift of τK , by Lemma 9.4.5 we have ρ|IQp

∼= τ , as it is true
after evaluating at 1. Also, ρ is crystalline by Lemma 9.4.1. Now assume without loss of
generality that ρK takes values in NLH (T̂H )(Zp). Then ρ (or rather a representative of ρ
in its conjugacy class) is obtained from ρK by formula (9.4.3), which shows that ρ takes
values in NLG(T̂ )(Zp). Now if γ ′ ∈ IQp , then ρ(γ ′) ∈ T̂ (Zp) follows from (9.4.3), as
y = y′ and δ′ ∈ δIK . ut

9.5. The case of GLn

Suppose that H = GLn, BH the upper-triangular Borel subgroup and TH the diagonal
torus, all over OK . Define (Ĥ , B̂H , T̂H ) likewise but over Zp. Identify X(TH )

∼
→ Y (T̂H )

by sending diag(x1, . . . , xn) 7→
∏
x
ai
i to x 7→ diag(xa1 , . . . , xan). Note that L = K and

LH = Ĥ . Let ηH ∈ X(TH ) be the local twisting element diag(x1, . . . , xn) 7→
∏
xn−ii .

Lemma 9.5.1. The representation ρK : 0K → GLn(Zp) is an obvious crystalline lift
of τK : IK → GLn(Fp) in the sense of the current section if and only if it is an obvious
crystalline lift in the sense of Definition 7.1.3.

Proof. It suffices to show that ρK : 0K → GLn(Zp) satisfies condition (iii) in Defini-
tion 9.3.3 iff it is isomorphic to

⊕
Ind0K0Ki

Zp(χi) for some Ki ⊂ Qp with Ki/K finite

unramified and characters χi : 0Ki → Z×p . This is clear, as either condition is equiva-
lent to Znp being a direct sum of n rank 1 free Zp-submodules that are permuted by 0K ,
with IK preserving each summand. ut

Combining the previous lemma with Lemma 9.4.7, we obtain the following.

Corollary 9.5.2. ρ : 0Qp → LG(Zp) is an obvious crystalline lift of τ : IQp → Ĝ(Fp)
if and only if ρK : 0K → GLn(Zp) is an obvious crystalline lift of τK : IK → GLn(Fp)
in the sense of Definition 7.1.3.

We can now show that when G = ResK/QpGLn, the set Wexpl(τ ) recovers the collection
of Serre weights given by Definition 7.2.3. More precisely, we have the following.

Proposition 9.5.3. For τ : IQp → Ĝ(Fp) a tame inertial L-parameter, we have Wexpl(τ )

=Wexpl(τK), where the latter set is computed according to Definition 7.2.3.
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Remark 9.5.4. Note that we have canonical isomorphisms G(Fp) ∼= H(k) = GLn(k),
where k is the residue field of K .

Proof of Proposition 9.5.3. Let r : OK → k be the reduction map and σ0 : k → Fp the
inclusion. We have canonical isomorphisms

G× Fp ∼=
∏

σ : k→Fp

H ×σr Fp, (9.5.5)

X(T × Fp) ∼=
⊕

σ : k→Fp

X(TH ×σr Fp) ∼= Ind
0Qp
0K

X(TH ×σ0r Fp). (9.5.6)

Forµ = (µσ ) ∈ X(T ×Fp)we can writeµσ = νσ×σ Fp with νσ ∈ Homk(TH×r k,Gm),
as TH is split. Then in (9.5.6), for γ ∈ 0Qp ,

evγ−1(µ) = ev1(γ
−1µ) = (γ−1µ)σ0 = γ

−1µγ ◦σ0 = νγ ◦σ0 × Fp.

In particular, as η ∈ X(T )0Qp , we have evγ−1(η) = ηH = ηH,0 × Fp, where ηH,0 =
(n− 1, n− 2, . . . , 0) ∈ Homk(TH ×r k,Gm).

Suppose that ρ is an obvious crystalline lift of τ with HT1(ρ) = [µ + η], where
µ ∈ X1(T ). Then from Lemma 9.3.2 and (9.4.4) we get, for any γ ∈ 0Qp ,

HTγ (ρK) = HT1(ρK ◦ (γ
−1(−)γ )) = evγ−1(HT1(ρ))

= [evγ−1(µ+ η)] = [(νγ ◦σ0 + ηH,0)× Fp]. (9.5.7)

Under the decomposition (9.5.5), the Serre weight F(µ) ∈ Wobv(τ ) is isomorphic to⊗
σ F(µσ ) as a representation of G(Fp) ∼= H(k), so F(µ) ∼=

⊗
Fk(νσ ) ⊗σ Fp, where

Fk(νσ ) denotes the irreducible algebraicH/k-representation with highest weight νσ . Then
Fk(νσ ) ∼= Nνσ (cf. Section 3.1) as representations of G(Fp) ∼= H(k). By (9.5.7), F(µ) is
the Serre weight associated to the obvious crystalline lift ρK by Definition 7.1.3. Hence
Wobv(τ ) =Wobv(τK).

Similarly, with the above notation we get an isomorphismW(µ) ∼=
⊗
Wk(νσ )⊗σ Fp,

where Wk(νσ ) denotes the H/k-module Ind
H/k
BH/k

(w0νσ ), so Wk(νσ ) ∼= M ′νσ ⊗OK
k (cf.

Section 1.8). We deduce that C(Wobv(τ )) = C(Wobv(τK)), where the latter is computed
according to Definitions 7.1.3 and 7.2.1.

To compare explicit predicted weights, note first that any Levi M of G containing T
is of the form M = ResOK/ZpMH with MH a Levi of H containing TH , so that MH

∼=∏r
j=1 GLnj for some r and nj ’s; then τ factors through τM if and only if there is an iso-

morphism τK ∼=
⊕
j τ

(j)
K with dim τ

(j)
K = nj for all j . In general, whenever (G,B, T ) ∼=∏

j (Gj , Bj , Tj ) factors as a product of pinned groups, then η =
∑
j ηj , where ηj is a local

twisting element of Gj , and Wexpl,η(τ1 × · · · × τr) = {�jFj : Fj ∈ Wexpl,ηj (τj )} where
the subscripts η and ηj indicate the dependence on the local twisting element. Moreover,
if µ =

∑
µj with µj ∈ X(Tj )+, then F(µ) ∼= �jFGj (µj ) and W(µ) ∼= �jWGj (µj ).

From Proposition 9.3.7 we find that Wexpl,η(τ ) = Wexpl,η′(τ ) ⊗ F(η
′
− η) whenever

η′ is another local twisting element. Putting these observations together, we see that
Wexpl(τ ) =Wexpl(τK), where the latter is computed according to Definition 7.2.3. ut
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9.6. A unitary group example

We work out another example of the constructions in this section. Suppose that n ≥ 1

and let J =
(

1
. . .

1

)
. For any Zp-algebra A define G(A) = {g ∈ GLn(A ⊗Zp Zp2) :

tg · J · g = J }, where conjugation g 7→ g is trivial on A and the non-trivial Galois
automorphism on Zp2 . Then G is a connected reductive group over Zp with generic fibre
the unramified unitary group over Qp of absolute rank n.

We consider the upper-triangular Borel B and diagonal maximal torus T . Then the
splitting field is Qp2 and ϕ ∈ Gal(Qp2/Qp) acts as (a1, . . . , an) 7→ −(an, . . . , a1) on
X(T ) ∼= Zn, i.e. as −w0. We assume that n is odd so that G has a local twisting element,
namely η = ((n− 1)/2, (n− 3)/2, . . . ,−(n− 1)/2). As dual group we take Ĝ = GLn
over Zp with upper-triangular Borel B̂ and diagonal maximal torus T̂ , with pinning given
by the isomorphisms sending a ∈ Ga to the upper-triangular unipotent matrix having
unique off-diagonal element a in the (i, i + 1)-entry (for 1 ≤ i < n) and obvious iden-
tification φ (as in §9.5). With these choices, LG = GLn o Gal(Qp2/Qp) with ϕ acting

as g 7→ J ′ · tg−1
· (J ′)−1, where J ′ =

(
1

−1
. . .

)
(with alternating signs along the

diagonal).
We can identify G with GLn/Fp via the inclusion Fp2 ↪→ Fp, and then F = −pw0

on X(T ). Serre weights are identified with equivalence classes X(n)1 /∼, where a ∼ a′ if
and only if a − a′ ∈ (p + 1, . . . , p + 1)Z.

To finish, here is an explicit example with n = 3. Consider µ = (a, b, c) suffi-
ciently generic in the lowest alcove and suppose that the inertial L-parameter τ : IQp →

GL3(Fp) is given by τ ∼= τ(1, µ), i.e. τ ∼=
( ωa−pc2

ω
b(1−p)
2

ω
c−pa

2

)
. Then

Wexpl(τ ) = {F((a, b, c)− η), F ((b, c − 1, a − p)− η), F ((c + p, a + 1, b)− η),
F ((c + p − 1, b, a − p + 1)− η), F ((a, c, b − p − 1)− η), F ((b + p + 1, a, c)− η),

F ((c + p, b, a − p)− η), F ((a, c − 1, b − p)− η), F ((b + p, a + 1, c)− η)},

where the first six weights are obvious and the last three are shadows. For example, the
second weight is obvious by Proposition 9.3.7 since τ ∼= τ((1 2 3), (b, c − 1, a − p)).
Note that there are no obscure weights by Remarks 9.3.11 and 9.3.13, as G and T are the
only Levi subgroups of G that contain T .

10. Comparison with [Her09]

In this section we will prove that for L-parameters τ : IQp → Ĝ(Fp) that are suffi-
ciently generic, the sets W?(τ ) and Wexpl(τ ) are equal. This establishes in particular that
Conjecture 7.2.7 is in agreement with the Serre weight conjecture of [Her09].
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10.1. The weight set W?(τ ) in the generic case

We begin by giving an alternative characterization of the set W?(τ ) (for τ sufficiently
generic in a sense to be made precise below) in terms of the ↑ relation on alcoves. We
refer the reader to [Jan03, II.6.5] for the definition of the ↑ relation; see also [Her09,
Def. 3.15].

We use the same notation as in Section 9.2. Recall from the proof of Lemma 9.2.4
that there is a finite order automorphism π of (G,B, T ) that induces the action of ϕ−1 on
90(G,B, T ). In particular, F = pπ−1 on X(T ).

Let8 ⊂ X(T ) denote the set of roots,8+ the subset of positive roots,Wp := pZ8o
W the affine Weyl group, and W̃p := pX(T ) oW the extended affine Weyl group. We
refer to [Jan03, II.6] for the definition of alcoves and for the basic facts about them. We
denote by C0 the lowest (or fundamental) alcove. We say that a weight λ ∈ X(T ) is
p-regular if it does not lie on any alcove walls; equivalently, StabWp (λ) = 1.

Lemma 10.1.1. Suppose λ ∈ X(T ) is p-regular. Then StabW̃p (λ) = 1.

Proof. The proof of [Her09, Lem. 5.6] applies, as Z(G) is connected. ut

Recall from [Her09, §5.2] the definition of µ ∈ X(T ) lying δ-deep in an alcove. We say
that a statement is true for µ lying sufficiently deep in some alcove C if there is a δ > 0
depending only on the based root datum 90(G,B, T ) together with its automorphism π

(and in particular not on p) such that the statement holds for all µ which are δ-deep in C.
Recall from [Jan03, II.9] the definitions of G1T -modules Ẑ1(λ) and L̂1(λ) for

λ ∈ X(T ), where the group scheme G1 is the kernel of F : G → G. Supposing there
exists µ ∈ C0 ∩X(T ) (equivalently, p > 〈η, α∨〉 ∀α ∈ 8+), let

D1 := {u ∈ W̃p : u · µ ∈ X1(T )}.

This set is independent of the choice of µ, and it is a finite union of pX0(T )-cosets.

Proposition 10.1.2. For µ lying sufficiently deep in the alcove C0, we have

R(w,µ+ η) =
∑

u∈D1/pX0(T )

∑
ν∈X(T )

[Ẑ1(µ+ pη) : L̂1(pν + u · µ)]F(u · (µ+ wπν))

in the Grothendieck group of finite-dimensional Fp[G(Fp)]-modules.

Remark 10.1.3. Recall that the Deligne–Lusztig representation R(w,µ) was defined in
Definition 9.2.2. The notation [Ẑ1(λ) : L̂1(µ)] signifies the multiplicity of the simple
G1T -module L̂1(µ) as a Jordan–Hölder factor of Ẑ1(λ).

Remark 10.1.4. By Lemma 9.2.4 the inner sum depends only on the coset of u in
D1/pX

0(T ).

Proof of Proposition 10.1.2. This proposition is a generalisation of Jantzen’s generic de-
composition formula for Deligne–Lusztig representations [Jan81, Satz 4.3]. For a gener-
alisation of [Jan81, §1–3] to reductive groups with simply connected derived subgroups,
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see [Her09, Appendix]. We now explain how [Jan81, §4] generalises to the same context.
We only leave aside the part of [Jan81, §4.1] that follows equation 4.1(2). Without fur-
ther comment, any reference in the remainder of this paragraph will be to [Jan81], and
we keep the same notation and conventions as in the [Her09, Appendix]. For example,
any occurrence of ρ, ρw, εw, γw1,w2 should be replaced by ρ′, ρ′w, ε

′
w, γ

′
w1,w2

. In addi-
tion, in §4 any occurence of the term “µ + ρ” should be replaced by “µ + πρ′”. We let
h := max{〈ρ′, α∨〉 + 1 : α ∈ R+}. Furthermore, any occurrence of Dn as the index of
a sum should be replaced by (a fixed set of representatives of) Dn/pnX0(T ), which is
finite. In particular, Satz 4.3 says that

R̃w(n, µ+πρ
′) = 9

∑
u∈Dn/pnX0(T )

ν∈X(T )

[Ẑ(n, µ+pnρ′) : L̂(n, pnν+u ·µ)]χp(u · (µ+wπν)).

In §4.3 and §4.4, α∨0 denotes any choice of highest coroot. The inequality in line −3 of
page 472 is no longer true in general, but the following line still holds. In line −1 of
page 472 the second occurrence of ν1 should be ν2 (a typo). In the proof of Lemma 4.4,
−w′ε′

w0w′
= ρ′ − ρ′

w′
only holds modulo X0(T ), but this is sufficient. The diagonal ele-

ments of the upper-triangular matrix now lie in X0(T ) ⊂ Z[X(T )]W , and so the terms χ
likewise need to be multiplied by elements of X0(T ). Similar comments apply to the
following two displayed equations.

To deduce our proposition, we choose Jantzen’s split G/Fp such that G × Fp ∼= G

with relative Frobenius F ◦ π−1 (see the proof of Lemma 9.2.4). We then choose ρ′ = η
(noting that πη = η), take n = 1, and use Lemma 10.1.1. ut

Lemma 10.1.5. Suppose p ≥ 2 max{〈η, α∨〉 : α ∈ 8+}. For weights λ ∈ X(T ) and
µ ∈ X1(T ) we have

[Ẑ1(λ) : L̂1(µ)] 6= 0 ⇔ σ · (λ− pη) ↑ w0 · (µ− pη) for all σ ∈ W. (10.1.6)

Remark 10.1.7. Here we do not need to assume that Z(G) is connected or that η is
Gal(L/Qp)-invariant. We remark that [DS87, Cor. 2.7] relies on Corollary A.1.2(ii).

Proof. First suppose that G = Gder. Then [DS87, Cor. 2.7] shows that [Ẑ1(λ) : L̂1(µ)]

6= 0 if and only if µ ∈
⋂
y∈Wv

I−1
y,1 · SL(y · λ) in their notation, where v ∈ −η + pX(T )

is arbitrary. Taking v = −η and y ∈ W−η = W , we find that this is equivalent to
µ+ p(yη− η) ↑ y · λ for all y ∈ W , or equivalently w0y · (λ− pη) ↑ w0 · (µ− pη) for
all y ∈ W .

In the general case, note that both sides of (10.1.6) imply that µ ∈ Wp · λ. For
µ ∈ Wp · λ we have [Ẑ1(λ) : L̂1(µ)]G = [Ẑ1(λ) : L̂1(µ)]Gder and µ ↑ λ if and
only if µ|T∩Gder ↑ λ|T∩Gder . (Note that Wp · λ ⊂ λ+ Z8. The restriction map X(T )→→

X(T ∩ Gder) induces a bijection λ + Z8 ∼
→ λ|T∩Gder + Z8, which identifies ≤, Wp-

actions, and hence ↑, on both sides. Also, Ẑ1(λ), L̂1(µ) restrict to corresponding objects
for Gder; see [Her09, proof of Prop. 5.7].) This reduces the claim to the case G = Gder.

ut
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Proposition 10.1.8. For µ lying sufficiently deep in the alcove C0, and for λ ∈ X1(T ),
F(λ) is a Jordan–Hölder constituent of R(w,µ+ η) if and only if there exists ν ∈ X(T )
such that

σ · (µ+ (wπ − p)ν) ↑ w0 · (λ− pη) for all σ ∈ W.

Proof. For µ lying sufficiently deep in C0 we have p ≥ 2 max{〈η, α∨〉 : α ∈ 8+}, so we
can (and do) assume this inequality. From Proposition 10.1.2 we know that

R(w,µ+ η) =
∑

u∈D1/pX0(T )

∑
ν∈X(T )

[Ẑ1(µ+ p(η − ν)) : L̂1(u · µ)]F(u · (µ+ wπν)).

By Lemma 10.1.5, the (u, ν) term of the double sum is non-zero if and only if

σ · (µ− pν) ↑ w0 · (u · µ− pη) for all σ ∈ W. (10.1.9)

As in [Her09, proof of Prop. 5.7], for µ sufficiently deep in C0 we deduce that
σ · (µ + (wπ − p)ν) ↑ w0 · (u · (µ + wπν) − pη) for all σ ∈ W , which proves
the “only if” part of the proposition. (Note that in (10.1.9) there are only finitely many
possibilities for ν modulo X0(T ), independent of µ.)

Conversely, if σ · (µ+ (wπ − p)ν) ↑ w0 · (λ− pη) for all σ ∈ W , we may reverse
the above argument, as explained in [Her09, proof of Prop. 5.7]. ut

Lemma 10.1.10. For µ lying sufficiently deep in the alcove C0, (T w, θw,µ) is maximally
split for all w ∈ W .

Proof. The dual pair is (T∗, s)with T∗ = T ∗
F ∗(w−1)

and s = g∗
F ∗(w−1)

s′(g∗
F ∗(w−1)

)−1, and

where s′ := N(F ∗◦w−1)d/F ∗◦w−1µ(ζpd−1)with d > 0 chosen such that (F ∗◦w−1)d = pd .
We can define ŝ : X(T∗)→ Q×p by ŝ(µ) := µ̃(s). Then ŵ(s) = w(ŝ) forw ∈ N(T∗)/T∗,
so StabN(T∗)/T∗(ŝ) ∼= StabN(T∗)/T∗(s) ∼= StabW (s′). By [DL76, Thm. 5.13], this group is
generated by reflections, as Z(G) is connected. A reflection sα ∈ W fixes s′ ∈ T ∗ if and
only if

(1− sα)
(d−1∑
i=0

(F ∗ ◦ w−1)iµ
)
(ζpd−1) = 1

⇔ (1− sα)
(d−1∑
i=0

(F ∗ ◦ w−1)iµ
)
≡ 0 (mod (pd − 1)X(T ))

⇔

〈 d−1∑
i=0

(pπ−1w−1)iµ, α∨
〉
≡ 0 (modpd − 1),

where we have used the fact that 〈α, Y (T )〉 = Z, as Z(G) is connected. Equivalently,

d−1∑
i=0

pi〈µ, (wπ)iα∨〉 ≡ 0 (modpd − 1).

If µ ∈ C0, the left-hand side has to be zero, so 〈µ, α∨〉 ≡ 0 (modp), and this is impossi-
ble if µ lies (h−1)-deep in C0, where h = max{〈η, β∨〉+1 : β ∈ 8+}. Thus for µ lying
sufficiently deep in C0, the Weyl group of T∗ in the connected reductive group ZG∗(s) is
trivial, so ZG∗(s) = T∗, which implies that (T∗, s) is maximally split. ut
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The group X(T )oW acts on the set W ×X(T ) by
(ν,σ )(w,µ) = (σwπσ−1π−1, σµ+ (p − σwπσ−1)ν) (10.1.11)

(see [Jan81, §3.1]). This action has the same orbits as the action considered in [Her09,
§4.1], as F = pπ−1 on X(T ) and F(σ) = πσπ−1 in Aut(T ) for σ ∈ W . In particular,
[Her09, Lem. 4.2] still applies. Note also that τ(w,µ) depends only on the orbit of (w,µ).

Definition 10.1.12. We say that a tame inertialL-parameter τ is δ-generic if τ ∼= τ(w,µ)
for some w ∈ W and µ lying δ-deep in C0. As in [Her09, §6.5] we say that a statement is
true for all sufficiently generic tame inertial L-parameters τ if it holds for all τ ∼= τ(w,µ)
with w ∈ W and for µ lying sufficiently deep in C0; in other words, if there exists δ > 0
depending only in the based root datum 90(G,B, T ) together with its automorphism π

(and in particular not on p) such that the statement holds for all τ that are δ-generic.

We remark that this definition of δ-generic differs slightly from the one in [Her09,
Def. 6.27], as we do not require that the pair (w,µ) occurring in the definition be “good”
(cf. [Her09, Def. 6.19]). On the other hand, this change does not affect what it means for a
statement to be true for all sufficiently generic τ : indeed, [Her09, Lem. 6.24] (whose ana-
logue in this paper is Lemma 10.1.10) shows that the pair (w,µ) is automatically good
for µ lying sufficiently deep in C0.

Proposition 10.1.13. For all sufficiently generic tame inertial L-parameters τ : IQp →
Ĝ(Fp) and for all λ ∈ X1(T ), F(λ) ∈ W?(τ ) if and only if τ ∼= τ(w, λ′ + η) for some
dominant λ′ ↑ λ and some w ∈ W .

Remark 10.1.14. Alternatively, the equivalence holds for λ lying sufficiently deep in a
restricted alcove. (See [Her09, Prop. 6.28].)

Proof of Proposition 10.1.13. Write τ ∼= τ(w,µ+η). For µ lying sufficiently deep inC0,
Proposition 10.1.8 implies that W?(τ ) consists of the Serre weights F(λ) for λ ∈ Xreg(T )

such that there exists ν ∈ X(T ) with

σ · (µ+ (wπ − p)ν) ↑ λ for all σ ∈ W.

Equivalently, this relation holds for the unique σ making the left-hand side dominant. The
proof concludes as in [Her09, Prop. 6.28], using Lemma 10.1.10 and (10.1.11). ut

10.2. The main result

The main result of this section is Theorem 10.2.11, which shows that for all sufficiently
generic tame inertial L-parameters τ the setsW ?(τ ) and Wexpl(τ ) coincide, and moreover
that the Levi predictions of Definition 9.3.10 do not produce any new weights beyond
those already in C(Wobv(τ )).

Define ‖λ‖ :=
∑
α>0〈λ, α

∨
〉 for λ ∈ X(T ). Then we have:

(i) λ < µ ⇒ ‖λ‖ < ‖µ‖.
(ii) λ ∈ X(T )+ ⇒ ‖λ‖ ≥ 0, with equality if and only if λ ∈ X0(T ).

(iii) ‖λ‖ = ‖π(λ)‖ for all λ ∈ X(T ).
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Lemma 10.2.1. Fix N ∈ Z>0. Suppose that λ ∈ X(T )+ with ‖λ‖ < Np.

(i) For all sufficiently generic τ , if τ ∼= τ(w, λ) then λ is as deep as we like in its alcove.
(ii) For λ′ ∈ X1(T ) lying sufficiently deep in a restricted alcove, if F(λ′) ∈ JHG(Fp)W(λ)

then λ is as deep as we like in its alcove.

For instance, to be precise, the statement in (i) means that for each fixed δ > 0 and for all
sufficiently generic τ , if τ ∼= τ(w, λ) then λ is δ-deep in its alcove; the meaning of (ii) is
similar.

Proof of Lemma 10.2.1. (i) There is a finite collection of alcoves (independent of p)
such that any λ allowed by ‖λ‖ < Np lies in the closure of one of them. Therefore, as
explained after [Her09, Def. 6.27], modulo (p − 1)X0(T ) there are only finitely many
possible λ (independent of p) and, for τ sufficiently generic, each one is δ-deep in its
alcove. (In [Her09, paragraph before Prop. 6.28], p − π is injective on the free abelian
group X(T )/Z8, as π has finite order.)

(ii) In the argument that follows, for ν ∈ X(T )+ we will often write ν = ν0 + pν1
with ν0 ∈ X1(T ) and ν1 ∈ X(T )+ (so that ν1 is unique modulo X0(T )).

Choose µ ∈ X(T )+ such that F(λ′) ∈ JHG(Fp) F(µ) and F(µ) ∈ JHGW(λ). Then
µ ↑ λ, so ‖µ‖ < Np and µ lies as deep in its alcove as λ.

If µ ∈ X1(T ), then µ ≡ λ′ (mod (p − π)X0(T )), and we are done. Otherwise,
F(µ) ∼= F(µ0)⊗F(µ1)

(π) asG(Fp)-representations, so there exists µ(1) ∈ X(T )+ such
that F(λ′) ∈ JHG(Fp) F(µ

(1)) and F(µ(1)) ∈ JHG(F (µ0) ⊗ F(µ1)
(π)). In particular,

µ(1) ≤ µ0 + πµ1, so as µ1 6∈ X
0(T ) we have

‖µ(1)‖ ≤ ‖µ0‖ + ‖µ1‖ < ‖µ‖ − (p − 1) < ‖µ‖ − p/2. (10.2.2)

Iterating, we can find a sequence of dominant weights µ = µ(0), µ(1), . . . , µ(r) with

◦ F(µ(i+1)) ∈ JHG(F (µ
(i)
0 )⊗ F(µ

(i)
1 )

(π)) for all 0 ≤ i < r ,
◦ µ(i) 6∈ X1(T ) for all 0 ≤ i < r , but µ(r) ∈ X1(T ),
◦ F(µ(r)) ∼= F(λ′) as G(Fp)-representations.

Moreover, by (10.2.2), we know that r < 2N .
On the other hand, as in [Her09, proof of Prop. 9.1] we can write F(µ0)⊗F(µ1)

(π)
=∑

aεbµ′0
W(µ′0 + πε), where the sum runs over ε ∈ X(T ) such that wε ≤ µ1 for all

w ∈ W , and dominant µ′0 ↑ µ0. Hence µ(1) ↑ σ · (µ′0 + πε) for some such ε, µ′0 and
some σ ∈ W . It follows that if µ(1) is (δ + N)-deep in its alcove, then µ′0 (and hence µ)
is δ-deep in its alcove. Therefore, as r < 2N , if λ′ is (δ+ 2N2)-deep in its alcove, then λ
is δ-deep in its alcove. ut

Lemma 10.2.3. SupposeM ⊂ G is a Levi subgroup containing T , and that τM : IQp →
M̂(Fp) denotes a tame inertial L-parameter. Let τ : IQp → Ĝ(Fp) denote the composite
of τM and the inclusion M̂ ⊂ Ĝ. Fix δ > 0. For all τ sufficiently generic, τM is δ-generic.
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Proof. Write τM ∼= τM(w, λ) with w ∈ WM , λ ∈ X(T ). Write λ = λ0 + pλ1 with
λ0 ∈ X1(T ), λ1 ∈ X(T )+. Then τM(w, λ) ∼= τM(w, λ′), where λ′ = λ0 + wπλ1. For
ν ∈ X(T ) let |ν| :=

∑
α>0 |〈v, α

∨
〉|. Then

|λ′| ≤ |λ0| + |λ1| =
p − 1
p
|λ0| +

1
p
|λ| ≤

(p − 1)2

p

∑
1

nβ +
|λ|

p
,

where we write
∑
α>0 α

∨
=
∑
β∈1 nββ

∨.
Iterating, we deduce that τM ∼= τM(w,µ) with |µ| < p

∑
1 nβ , so µ lies in the

closure of a finite union of alcoves (for G, hence also for M). A fortiori, τ ∼= τ(w,µ).
As in the proof of Lemma 10.2.1(i), for τ sufficiently generic, µ lies as deep as we like in
its alcove (for G, hence also for M). By reversing the argument we deduce that τM is as
generic as we like. ut

Lemma 10.2.4. Suppose that λ,µ ∈ X(T )+,M − η. Choose w,w′ ∈ W such that w · λ
and w′ · µ are in X(T )+ − η. Then

λ ↑M µ ⇒ w · λ ↑ w′ · µ.

Proof. Let µ′ := w′ ·µ, the unique element in (X(T )+−η)∩W ·µ. We may assume that
w′ ∈ W has least possible length, i.e. w′ is a Kostant representative for StabW (µ′+η)\W
(noting that the stabiliser is generated by simple reflections).

First we claim that w′(8+M) ⊂ 8+, or equivalently w′(1M) ⊂ 8+. Suppose that
α ∈ 1M . Asµ ∈ X(T )+,M−ηwe know that 〈µ′+η,w′(α)∨〉 ≥ 0. Hence ifw′(α) ∈ 8−,
then equality holds, i.e. sw′(α) ∈ StabW (µ′ + η). By our choice of w′ it follows that
w′sα = sw′(α)w

′ > w′, hence w′(α) ∈ 8+. This proves the claim.
By Corollary A.1.2 and induction, we may assume that λ = sα,np · µ for some

α ∈ 8+M , n ∈ Z and that λ 6= µ. As λ ∈ X(T )+,M − η, we deduce that 〈µ + η, α∨〉 >
np > 0. Hence w′ · λ = sw′(α),npw

′
· µ with 〈w′ · µ + η,w′(α)∨〉 > np > 0 and

w′(α) ∈ 8+ by the above. Then [Jan03, II.6.9] shows that

w′′w′ · λ = w′′sw′(α),npw
′
· µ ↑ w′ · µ

for any w′′ ∈ W making w′′w′(λ+ η) dominant. ut

Lemma 10.2.5. Suppose µ ∈ X(T )+− η and ν ∈ X(T )+. Then for λ ∈ X(T )+− η, we
have λ ↑ µ + pν if and only if λ = σ · (µ′ + pε) for some σ ∈ W , some µ′ ↑ µ with
µ′ ∈ X(T )+ − η and some ε ∈ X(T ) such that wε ≤ ν for all w ∈ W .

Proof. Let X(µ, ν) denote the subset of λ ∈ X(T )+ − η defined by the right-hand side
of the claimed equivalence.

For the “if” direction of the lemma note that w · (µ′ + pε) ↑ µ′ + pν for all w ∈ W
by [Her09, Lem. 9.4] and that µ′ + pν ↑ µ + pν by [Jan03, II.6.4(4)]. (We note that
the proof of [Her09, Lem. 9.4] holds in our more general context. The only necessary
modifications are that in the statement of that lemma the weights µ, ν are to be taken in
X(T )+ − η and in the proof of reduction step (R1) we may assume i > 0 and then the
first displayed inequality becomes 0 < pi ≤ 〈λ′ + η,wα∨〉.)
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Conversely, suppose λ ↑ µ + pν with λ, µ, ν as in the statement of the lemma. By
Corollary A.1.2 there is a sequence λ = λr ↑ λr−1 ↑ . . . ↑ λ0 = µ + pν, where
λi ∈ X(T )+ − η and there exist affine reflections sαi ,nip = sαi + nipαi ∈ Wp (αi ∈ 8+,
ni ∈ Z) such that λi+1 = sαi ,nip · λi . Without loss of generality, λi+1 < λi for all i.

We now show that λi ∈ X(µ, ν) by induction on i. This is obvious when i = 0. For
the induction step we are reduced to the following statement. Given λ, λ′ in X(T )+ − η
such that λ = sα,np · λ′ with 〈λ′ + η, α∨〉 > np and α ∈ 8+, then λ′ ∈ X(µ, ν) implies
λ ∈ X(µ, ν). (Note that here λ no longer denotes the element λr above.) Note that n > 0,
since np > 〈λ+ η, α∨〉 ≥ 0. As λ′ ∈ X(µ, ν) we can write λ′ = σ · (µ′ + pε) as in the
statement of the lemma. Then

λ = sα,np · λ
′
= sασ · (µ

′
+ p(ε − nσ−1α)). (10.2.6)

Case 1: Assume that 〈ε, σ−1α∨〉 ≥ n. To see that λ ∈ X(µ, ν), by (10.2.6) it suffices
to show that w(ε−nσ−1α) ≤ ν for all w ∈ W . Let ε′ := sσ−1αε = ε−〈ε, σ

−1α∨〉σ−1α.
As 〈ε, σ−1α∨〉 ≥ n, the sequence wε, w(ε−nσ−1α), wε′ is monotonic with respect to≤
(i.e. either increasing or decreasing). As wε ≤ ν and wε′ ≤ ν by our assumption on ε,
we conclude that w(ε − nσ−1α) ≤ ν.

Case 2: Assume that 〈ε, σ−1α∨〉 = n − r for some r > 0. As 〈µ′ + η, σ−1α∨〉 =

〈λ′+η, α∨〉−p〈ε, σ−1α∨〉, we see that 〈µ′+η, σ−1α∨〉 > rp. As µ′ ∈ X(T )+−η and
r > 0, we get σ−1α ∈ 8+. Let w ∈ W be such that µ′′ := wsσ−1α,rp · µ

′
∈ X(T )+ − η.

Then µ′′ ↑ µ′ by [Jan03, II.6.9] and

σw−1
· (µ′′ + pwε) = σ · (sσ−1α · µ

′
+ rpσ−1α + pε)

= sασ · (µ
′
− rpσ−1α + pε − p〈ε, σ−1α∨〉σ−1α)

= sασ · (µ
′
+ p(ε − nσ−1α)),

which equals λ by (10.2.6). Hence λ ∈ X(µ, ν). ut

Recall the definition of d(C) ∈ Z for an alcove C [Jan03, II.6.6]. For all α ∈ 8+ there is
a unique nα ∈ Z such that

nαp < 〈λ+ η, α
∨
〉 < (nα + 1)p (10.2.7)

for all λ ∈ C. Then d(C) =
∑
8+ nα . If C is dominant, then d(C) is the number of affine

root hyperplanes separating C and the lowest alcove. If λ ∈ C, then we set d(λ) := d(C).
Note that if λ, µ ∈ X(T ) are p-regular, then d(µ) ≤ d(λ) for µ ↑ λ and d(µ) ≤
d(µ+ pν) for ν ∈ X(T )+, where equality holds only if µ = λ, respectively ν ∈ X0(T )

[Jan03, II.6.6].

Proposition 10.2.8. Fix N ∈ Z>0. Then for τ sufficiently generic and any λ ∈ X(T )+
with ‖λ‖ < Np, the following are equivalent.

(i) W ?(τ ) ∩ JHG(Fp)W(λ) 6= ∅.
(ii) τ ∼= τ(w, λ′ + η) for some dominant λ′ ↑ λ and some w ∈ W .

Moreover, if (ii) holds then λ′ = λ ∈ X1(T ) or there exists F(ν) inW ?(τ )∩JHG(Fp)W(λ)
with d(ν) < d(λ).
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Proof. (i)⇒(ii): Suppose F(λ′) ∈ W ?(τ ) ∩ JHG(Fp)W(λ) for some λ′ ∈ X1(T ). By
Proposition 10.1.13 we have τ ∼= τ(w, λ′′ + η) for some dominant λ′′ ↑ λ′ and some
w ∈ W . By Lemma 10.2.1 we see that λ′′, λ′, and λ are as deep in their respective alcoves
as we like. To show (ii) we can now follow [Her09, proof of Prop. 9.1], noting that it
never uses that λ is restricted (as is assumed there) and making the following modifica-
tions: F(µ1) should be replaced by its π -twist F(µ1)

(π) ∼= F(πµ1) and ρ by η. In the
expressions µ0 + ε, µ

′

0 + ε, µ0 +w
′ε, ε should be replaced by πε. Starting with [Her09,

(9.2)], the expression pw−1w′ε should be replaced by pπ−1w−1w′πε, as well as σwσ−1

by σwπσ−1π−1. (Note also that π ∈ W in loc. cit. is now a bad choice of letter.)
(ii)⇒(i): Suppose that

τ ∼= τ(w, λ
′
+ η) for some dominant λ′ ↑ λ and some w ∈ W. (10.2.9)

By Lemma 10.2.1, we see that λ′ (and hence λ) lie as deep in their respective alcoves as
we like. If λ′ = λ ∈ X1(T ), then F(λ) ∈ W ?(τ )∩ JHG(Fp)W(λ) by Proposition 10.1.13,
as required. Thus from now on we may assume λ′ = λ 6∈ X1(T ) or λ′ 6= λ.

We will first find λ′′ ∈ X(T )+ such that F(λ′′) is a G-constituent of W(λ), and such
that λ′′ 6= λ if λ′ 6= λ. If λ′ = λ 6∈ X1(T ), we take λ′′ := λ. If however λ′ 6= λ, choose
λ′′ 6= λ maximal such that λ′′ is dominant and λ′ ↑ λ′′ ↑ λ. By Corollary A.1.2 there
exists an affine reflection sβ,np ∈ Wp (β ∈ 8+, n ∈ Z) such that sβ,np · λ = λ′′. As λ′′ is
dominant, 〈λ + η, β∨〉 > np > 0. Jantzen’s sum formula [Jan03, II.8.19] says that for a
certain descending filtration (V (λ)i)i≥0 on the Weyl module V (λ) we have∑

i>0

chV (λ)i =
∑
α∈8+

∑
0<mp<〈λ+η,α∨〉

νp(mp) sgn(wα,m) chW(wα,msα,mp · λ),

where wα,m ∈ W is chosen such that wα,msα,mp · λ is dominant. Note that the p-adic
valuation νp(mp) is positive, as m > 0. By [Jan03, II.6.8], for each term in the sum,
wα,msα,mp · λ ↑ λ and equality does not hold. Also, as λ is p-regular, all wα,msα,mp · λ
that occur in this sum are distinct. (See also [Jan03, II.8.19, Rk. 3].) Note thatwβ,n = 1 by
the previous paragraph. Therefore, by the maximality of λ′′ and by the strong linkage prin-
ciple, F(λ′′) is a G-constituent of W(λ), as claimed. (It occurs once in W(wβ,nsβ,np · λ),
but cannot occur in any other term.)

Suppose first that λ′′ ∈ X1(T ), so λ′′ 6= λ. Then F(λ′′) ∈ W ?(τ ) by Proposi-
tion 10.1.13 and (10.2.9), so F(λ′′) ∈ W ?(τ ) ∩ JHG(Fp)W(λ) and d(λ′′) < d(λ), as
required.

Alternatively, if λ′′ /∈ X1(T ), then λ′′ = λ′′0 + pλ
′′

1 , where λ′′0 ∈ X1(T ) and λ′′1 ∈
X(T )+ −X

0(T ). By Lemma 10.2.5, as λ′ ↑ λ′′ we can write λ′ = σ · (µ+pε) for some
σ ∈ W , some dominant µ ↑ λ′′0 , and some ε ∈ X(T ) such that w′ε ≤ λ′′1 for all w′ ∈ W .
As (w, λ′+η) = (w, σ (µ+pε+η)) is in the sameX(T )oW -orbit as (w′, µ+πε′+η),
where w′ := σ−1wπσπ−1 and ε′ := π−1w′πε, we have

τ ∼= τ(w
′, µ+ πε′ + η). (10.2.10)

By genericity, we may assume that p is large enough such that λ′′1 ∈ C0 and that µ+ πε′

lies in the same alcove as µ for any possible λ′′1 and ε′. Then µ + πε′ ↑ λ′′0 + πε
′′ for



General Serre weight conjectures 2933

some ε′′ ∈ Wε′ = Wε. Note that ε′′ is a weight of F(λ′′1) = W(λ
′′

1). Hence (as in [Her09,
proof of Prop. 9.1]), F(λ′′0 +πε

′′) is aG(Fp)-constituent of F(λ′′) ∼= F(λ′′0)⊗F(λ
′′

1)
(π),

hence by the above a G(Fp)-constituent of W(λ). By Proposition 10.1.13 and (10.2.10),
F(λ′′0+πε

′′) ∈W?(τ ), hence F(λ′′0+πε
′′) ∈ W ?(τ )∩JHG(Fp)W(λ) and d(λ′′0+πε

′′) =

d(λ′′0) < d(λ), as required. ut

Theorem 10.2.11. For sufficiently generic tame inertial L-parameters τ we have W ?(τ )

=Wexpl(τ ) = C(Wobv(τ )).

Proof. It suffices to show Wexpl(τ ) ⊂ W ?(τ ) ⊂ C(Wobv(τ )). To see that Wexpl(τ ) ⊂

W ?(τ ), first note that Wobv(τ ) ⊂ W ?(τ ) by Propositions 9.3.7 and 10.1.13. Suppose
there is a Levi M ⊂ G containing T such that τ factors via τM : IQp → M̂(Fp). Then
τM is as generic as we like by Lemma 10.2.3. It remains to check that if ν ∈ X1(T )

and w ∈ W are such that w · ν ∈ X(T )+,M , then W ?(τM) ∩ JHM(Fp)(W
M(w · ν)) 6= ∅

implies F(ν) ∈ W ?(τ ). Noting that ‖w · ν‖M ≤ ‖ν‖, we see from Proposition 10.2.8
that τM ∼= τM(w′, λ′ + η) for some M-dominant λ′ ↑M w · ν and some w′ ∈ WM .
By Lemma 10.2.4 we have σ · λ′ ↑ ν, where σ ∈ W such that σ(λ′ + η) ∈ X(T )+.
Hence τ ∼= τ(w′, λ′ + η) ∼= τ(σw′πσ−1π−1, σ · λ′ + η). From this we deduce as in
Lemma 10.2.1(i) that σ · λ′ ∈ X(T )+, as it is as deep as we like in its alcove, hence
F(ν) ∈ W ?(τ ) by Proposition 10.1.13.

To prove W ?(τ ) ⊂ C(Wobv(τ )), we show

F(λ) ∈ W ?(τ ) ⇒ F(λ) ∈ C(Wobv(τ )) for all λ ∈ X1(T )

by induction on d(λ). (Note that d(λ) is bounded, independent of p.) As F(λ) ∈ W ?(τ ),
Proposition 10.1.13 implies that τ ∼= τ(w, λ′ + η) for some dominant λ′ ↑ λ and some
w ∈ W . If λ′ = λ, then F(λ) ∈ Wobv(τ ) by Proposition 9.3.7. Otherwise, by Propo-
sition 10.2.8 there exists ν ∈ X1(T ) such that F(ν) ∈ W ?(τ ) ∩ JHG(Fp)W(λ) and
d(ν) < d(λ). By induction, we have F(ν) ∈ C(Wobv(τ )) ∩ JHG(Fp)W(λ), hence by
definition of C we get F(λ) ∈ C(Wobv(τ )). ut

Remark 10.2.12. In principle the implied constant in this theorem (as well as in all other
results in Section 10) can be made explicit. We also remark that none of the results we
use depend on Lusztig’s conjecture.

10.3. The proof of Lemma 3.3.5

In this section we prove Lemma 3.3.5, which we restate here (using once again the nota-
tion of Section 3).

Lemma 10.3.1. If λ is a lift of a ∈ (X(n)1 )Sk , then Lλ⊗O F has socle Fa , and every other
Jordan–Hölder factor of Lλ ⊗O F is of the form Fb with b ∈ (X(n)1 )Sk and ‖b‖ < ‖a‖.

Proof. It suffices to prove the analogous claim over Fp. For this we work in the following
more general setting: Let G denote a connected reductive group over Fp such that Gder
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is simply connected.4 We also let B be a Borel subgroup of G with Levi subgroup T ,
(G,B, T ) := (G,B, T )×Fp, and let F : G→ G denote the relative Frobenius. Let π be
the finite order automorphism of (G,B, T ) as in the proof of Lemma 9.2.4; in particular,
F = pπ−1 on X(T ). For the moment we work with the definition of ‖ · ‖ given in
Section 10.2, and check at the end of the proof that it agrees with Definition 3.3.4.

We will show that for a ∈ X1(T ), W(a) has GF -socle F(a), and that every other
Jordan–Hölder factor is of the form F(b), b ∈ X1(T ), ‖b‖ < ‖a‖.

We first leave aside the socle and show by induction on ‖a‖ that if V is a G-module
with unique highest weight a ∈ X1(T ), and dimVa = 1, then [V : F(a)]GF = 1,
and every other Jordan–Hölder factor of the GF -representation V is of the form F(b),
b ∈ X1(T ), ‖b‖ < ‖a‖.

Any irreducible G-constituent of V is of the form F(b) with b ≤ a. Hence it is
enough to show that if [F(b) : F(c)]GF > 0 (c ∈ X1(T )) then ‖c‖ ≤ ‖b‖, and that
[F(b) : F(a)]GF = δab.

If b ∈ X1(T ), then c ≡ b (modX0(T )) by Lemma 9.2.4 and we are done. Otherwise,
b = b0 + pb1 with b0 ∈ X1(T ) and b1 ∈ X(T )+ −X

0(T ). Then

F(b) ∼= F(b0)⊗ F(pb1) ∼= F(b0)⊗ F(π(b1))

asGF -representations, and the latterG-module has unique highest weight b0+π(b1). As
‖b0+π(b1)‖ = ‖b‖− (p−1)‖b1‖ < ‖b‖, we see by induction that ‖c‖ ≤ ‖b0+π(b1)‖

< ‖b‖.
The claim about the socle follows by dualising the statement of [Hum06, Thm. 5.9].

(In the proof replace σ by any element ofX(T ) that pairs to p−1 with any simple coroot
and ≤Q by ‖ · ‖ ≤ ‖ · ‖, keeping in mind the above result about Jordan–Hölder factors.)

To deduce the lemma, apply the above with G = Resk/FpGLn as in Section 9.5. We
have canonical identifications GF ∼= GLn(k) and X(T ) ∼= (Zn)Sk . In the notation of
Section 3.1 and the proof of Proposition 9.5.3 we get

Lλ ⊗ Fp ∼=
∏
σ∈Sk

(Maσ ⊗k,σ Fp) ∼= W(a), Fa ⊗ Fp ∼=
∏
σ∈Sk

(Naσ ⊗k,σ Fp) ∼= F(a).

To recover Definition 3.3.4, note that
(∑

α∨
)
σ
= (n − 1, n − 3, . . . ,−n + 1) ∈ Zn+ for

any σ ∈ Sk . ut

10.4. Comparison with [ADP02]

Let r̄ : GQ → GLn(Fp) be odd and irreducible. In this section we prove Proposi-
tion 8.4.1, i.e. we show that if r̄|IQp is semisimple and sufficiently generic then the Serre
weights predicted in [ADP02] are a subset of Wexpl(r̄|GQp ).

Suppose that F(λ), with λ ∈ X(n)1 sufficiently deep in its alcove, is predicted for r̄ by
[ADP02, Conj. 3.1]. Then according to Definition 2.23 of loc. cit., but using our terminol-

4 That is, G is the special fibre of one of the groups that we considered in Section 9, except we
do not assume that Z(G) is connected or that G has a local twisting element.
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ogy, there exist integers ni , an η-partition (λ(i)) of λwith λ(i) ∈ Zni+ , weightsµ(i) ∈ X(ni )1 ,
and ni-cycles wi ∈ Sni such that:

◦ λ(i) ≡ µ(i) (mod (p − 1)Zni ) for all i,
◦ r̄|IQp

∼=
⊕

i τ(wi, µ
(i)
+ ηni ), where each summand is irreducible, and

◦ µ
(i)
1 − µ

(i)
ni ≤ p − 1 for all i.

(In fact, in what follows we make no use of the final condition in the above list, nor of the
irreducibility of the summands, nor of the fact that wi is an ni-cycle.)

Write λ(i) = µ(i) + (p − 1)ν(i) with ν(i) ∈ Zni+ . Then by (10.1.11) we have

τ(wi, µ
(i)
+ ηni )

∼= τ(σwiσ
−1, σ · ((λ(i) − pν(i))+ pw−1

i ν(i))+ ηni )

for all σ ∈ Sni . By Lemma 10.2.5 we have

σi · ((λ
(i)
− pν(i))+ pw−1

i ν(i)) ↑ (λ(i) − pν(i))+ pν(i) = λ(i),

where σi is chosen so that the left-hand side is dominant. Proposition 10.2.8 then gives

W ?(τ (wi, µ
(i)
+ ηni )) ∩ JHGLni (Fp)W(λ

(i)) 6= ∅,

and so by Proposition 9.5.3, Theorem 10.2.11, and Definition 7.2.3 we deduce that F(λ)
is in Wexpl(r̄|GQp ).

10.5. Beyond unramified groups

It is at present unclear how to formulate versions of the various conjectures of this paper
for general ramified groups, where crystalline representations are not available. It seems
reasonable to expect that at least for inner forms of GLn, it should be possible to use
the Breuil–Mézard formalism; indeed, this is carried out for quaternion algebras in the
papers [GS11, GG15]. For more general groups the absence of a local Langlands cor-
respondence and a mature theory of types at present mean that it is unclear whether to
expect the Breuil–Mézard formalism to extend in the necessary fashion.

Appendix A. Wang’s result on the ↑-ordering of alcoves

We give Wang’s proof of the following theorem on the geometry of alcoves (see [Ye86],
[Wan87]). The following treatment is based on Chuangxun (Allen) Cheng’s translation of
parts of [Wan87].

A.1. Ye and Wang’s result

Let G denote a connected reductive group over Fp, and let B be a Borel subgroup of G
with Levi subgroup T . We then keep the same notation as in Sections 9–10, for example
we have 8, 8+, Wp, ↑. However, for convenience, in this section C0 and w0 do not have
their usual meaning.
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Theorem A.1.1 (Ye, Wang). Suppose C, C′ are dominant alcoves such that C ↑ C′.
Then there exists a sequence of dominant alcoves C = C0 ↑ C1 ↑ · · · ↑ Ck = C

′ such
that d(Ci)− d(Ci−1) = 1 for all i.

The proof of this theorem will be discussed below. We first deduce a corollary. Let ρ :=
1
2
∑
α∈8+ α. We say that λ ∈ X(T ) is ρ-dominant if 〈λ+ ρ, α∨〉 ≥ 0 for all α ∈ 1.

Corollary A.1.2. (i) Suppose C, C′ are dominant alcoves such that C ↑ C′. Then there
exists a sequence of dominant alcoves C = C0 ↑ C1 ↑ · · · ↑ Ck = C

′ and reflections
si ∈ Wp such that si · Ci−1 = Ci for all i.

(ii) Suppose λ, λ′ ∈ X(T ) are ρ-dominant such that λ ↑ λ′. Then there exists a sequence
of ρ-dominant weights λ = λ0 ↑ λ1 ↑ · · · ↑ λk = λ

′ and reflections si ∈ Wp such
that si · λi−1 = λi for all i.

Proof. Part (i) follows from Theorem A.1.1 and the definition of ↑, since d(C) < d(C′)

whenever C ↑ C′ with C 6= C′ (and this in fact implies part (ii) in case λ and λ′ are
p-regular).

For part (ii), let F (resp. F ′) be the facet containing λ (resp. λ′). Let C be the unique
maximal alcove with respect to ↑ that contains λ, or equivalently F , in its closure. It exists
by [Jan03, II.6.11(5)], with C = C+(F ) in the notation used there. Similarly we let C′

be the unique maximal alcove such that λ′ ∈ C′. As λ, λ′ are ρ-dominant, we see from
[Jan03, II.6.11] that C, C′ are dominant alcoves.

We claim that C ↑ C′. An argument exactly as in [Jan03, II.6.11(4)] (reflecting up
from C rather than down from w · C−) shows that C ↑ C′′ for some alcove C′′ such that
λ′ ∈ C′′, i.e. F ′ ⊂ C′′. By the maximality of C′ we deduce that C ↑ C′′ ↑ C′.

Applying part (i) we get a sequence of dominant alcoves C = C0 ↑ C1 ↑ · · · ↑ Ck
= C′ and reflections si ∈ Wp such that si · Ci−1 = Ci for all i. For each i let λi be the
uniqueWp-translate of λ in Ci . Then si ·λi−1 = λi for all i, λk = λ′, and λi is ρ-dominant
as Ci is dominant. ut

In the following, let A denote the set of alcoves and A+ the subset of dominant alcoves.
Let H denote the set of all hyperplanes

Hα,np = {λ ∈ X(T )⊗ R : 〈λ+ ρ, α∨〉 = np} (A.1.3)

for α ∈ 8+, n ∈ Z. For each hyperplane H = Hα,np ∈ H, let sH ∈ Wp be the reflection
in H . It is denoted by sα,np in [Jan03, II.6.1]. We will loosely say H is a wall of an
alcove C if H contains a facet of C of codimension one.

Given a hyperplane H = Hα,np ∈ H, we let H− (resp., H+) denote the half-space
obtained by replacing “=” by “<” (resp., “>”) in (A.1.3). Recall that C ↑ C′ if there
exists a sequence of alcoves C = C0, C1, . . . , Ck = C′ such that Ci = sHi · Ci−1 and
Ci ⊂ H

+

i for all i [Jan03, II.6.5]. We write C ↑↑ C′ if there is such a sequence satisfying

moreover −ρ ∈ H−i for all i. (This was considered, for example, in [And80].) We will
see in Corollary A.1.15 that the two partial orders agree on the set of dominant alcoves.

Let C+ denote the lowest alcove andD+ = {λ : 〈λ+ ρ, α∨〉 > 0 for all α ∈ 8+} the
(ρ-shifted) dominant Weyl chamber.
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Lemma A.1.4. If C ∈ A andH ∈ H then d(C) 6= d(sH ·C), and C ↑ sH ·C if and only
if d(C) < d(sH · C). In particular if d(sH · C) = d(C) + 1, then H = Hβ,(nβ+1)p for
some β ∈ 8+ and nβ as in (10.2.7) (with ρ replacing η ). Therefore there are only finitely
many alcoves C′ such that C ↑ C′ and d(C′)− d(C) = 1.

Proof. This follows easily from [Jan03, Lemma II.6.6 and its proof]. ut

Lemma A.1.5. Suppose C ∈ A and H is a wall of C. Let s = sH . Suppose that r ,
w ∈ Wp and r is a reflection. If w · C ↑ rw · C and rws · C ↑ ws · C, then rw = ws.

Proof. Let H1 ∈ H be the hyperplane fixed by r . Then w · C ⊂ H−1 and ws · C ⊂ H+1 .
But w ·H is the unique hyperplane separating alcoves w ·C and ws ·C. ThusH1 = w ·H

and r = sw·H = wsw−1. ut

Proposition A.1.6. Suppose that C, H , s are as in Lemma A.1.5. If there exists a se-
quence w0, . . . , wh ∈ Wp such that wiw−1

i−1 is a reflection for all i and w0 · C ↑ · · · ↑

wh · C, then one of the following is true:

(i) w0s · C ↑ · · · ↑ whs · C.
(ii) There are integers j , k with 1 ≤ j ≤ k ≤ h such that w0s · C ↑ · · · ↑ wj−1s · C =

wj · C ↑ · · · ↑ wh · C and w0 · C ↑ · · · ↑ wk−1 · C = wks · C ↑ · · · ↑ whs · C.

Proof. Suppose (i) does not hold. Let j be the minimum and k be the maximum of the
non-empty set {i : wis · C ↑ wi−1s · C}. Then the proposition easily follows from
Lemma A.1.5. ut

Corollary A.1.7. Suppose that C, H , s are as in Lemma A.1.5. If w, w′ ∈ Wp are such
that w · C ↑ w′ · C and w′s · C ↑ w′ · C, then ws · C ↑ w′ · C.

Proof. We can find w0, . . . , wh ∈ Wp such that wiw−1
i−1 is a reflection for all i and

w · C = w0 · C ↑ · · · ↑ wh · C = w′ · C. By the proposition, w · C ↑ w′ · C implies
ws · C ↑ w′s · C or ws · C ↑ w′ · C. We are done in the second case. In the first case use
w′s · C ↑ w′ · C to conclude. ut

Lemma A.1.8. Suppose C ∈ A+ or that C has a wall H such that sH · C ∈ A+. Let
r ∈ Wp be a reflection. Then C ↑ r · C ⇔ C ↑↑ r · C.

Proof. Clearly if C ↑↑ r · C then C ↑ r · C. Conversely, suppose that C ↑ r · C.
Say r = sH1 , where H1 = Hα,mp with α ∈ 8+. We have C ⊂ H−1 and we want

to show that −ρ ∈ H−1 . If D+ ∩ H−1 6= ∅, then for any point x in the intersection,
0 < 〈x + ρ, α∨〉 < mp, so −ρ ∈ H−1 and we are done. If C ∈ A+, then C ⊂ D+ ∩H−1
and we are done.

If C 6∈ A+, then sH · C ∈ A+ for some wall H of C. If H 6= H1, then C and sH · C
lie on the same side of H1, so sH · C ⊂ D+ ∩ H−1 and we are done. If H = H1, then

r · C = sH · C ∈ A+, so H1 is a wall of D+ and thus −ρ ∈ H1 ⊂ H
−

1 . ut

Proposition A.1.9. Suppose C, C′ ∈ A with C′ ↑↑ C. If w, w′ ∈ W are such that w′ ·C′

and w ·C are dominant, then there exists a sequence of dominant alcoves w′ ·C′ = C0 ↑

↑ · · · ↑↑ Ck = w · C such that d(Ci)− d(Ci−1) = 1 for all i.
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Proof. By the definition of ↑↑ we can reduce to the case when C′ = sα,np · C for some

α ∈ 8+, −ρ ∈ H−α,np, and C ⊂ H+α,np. Thus 〈x + ρ, α∨〉 > np ≥ 0 for all x ∈ C. If
β = wα, we see that 〈y+ρ, β∨〉 > np ≥ 0 for all y ∈ w ·C. Since w ·C is dominant, we
have β ∈ 8+. Thus −ρ ∈ H−β,np and w ·C ⊂ H+β,np. Now we apply [Jan03, II.6.8] to the
dominant alcove w · C and the reflection sβ,np to obtain a sequence of dominant alcoves

w′′sβ,npw · C = C0 ↑ · · · ↑ Ck = w · C (A.1.10)

such that d(Ci)− d(Ci−1) = 1 for all i, for some w′′ ∈ W . Finally, notice that sβ,npw =
wsα,np and that ↑ can be replaced with ↑↑ in (A.1.10) by Lemma A.1.8. ut

Note that the translations of X(T ) ⊗ R that stabilise H are precisely given by pX(T ).
The following lemma is obvious.

Lemma A.1.11. Suppose t ∈ pX(T ) and C, C′ are alcoves.

(i) d(C′)− d(C) = d(t · C′)− d(t · C).
(ii) C′ ↑ C ⇔ t · C′ ↑ t · C.

Proposition A.1.12. Suppose C is an alcove and n ∈ Z≥0. Then

A(C, n) = {C′ : C ↑ C′ and d(C′)− d(C) ≤ n}

is finite. If t ∈ pX(T ), then A(t · C, n) = t ·A(C, n).

Proof. By [Jan03, II.6.10] the first claim is reduced to the case n = 1, which is covered
by Lemma A.1.4. The second claim is immediate from Lemma A.1.11. ut

Given n ∈ Z≥0 and an alcove C, we say that C is in general n-position if A(C, n) ⊂ A+.
The finiteness of A(C, n) guarantees the existence of alcoves in general n-position.

Lemma A.1.13. If n ∈ Z≥0 and C ∈ A+, then there exists a sequence of dominant
alcoves C = C̃0 ↑ · · · ↑ C̃h with h ∈ Z≥0 such that C̃i−1 and C̃i are adjacent for all i
(i.e. there is only one hyperplane between them) and C̃h is in general n-position.

Proof. First consider the case when C = C+. Take C′ = w · C in general n-position,
where w ∈ Wp. Let S be the set of reflections in the walls of C+. Pick a reduced expres-
sion w = s1 · · · sr (si ∈ S) in the Coxeter group (Wp, S). Letting Ci := s1 · · · si · C+, it
is clear that Ci−1, Ci are adjacent for all i. We claim that the Ci are dominant and that
C+ = C0 ↑ · · · ↑ Cr = C

′. If w := s1 · · · sr−1 and H ∈ H denotes the hyperplane fixed
by wsrw−1, then `(sHw) > `(w) implies by [Bou02, Thm. V.3.2.1] that C0 = C

+ and
Cr−1 = w ·C

+ lie on the same side of H . As H is the common wall of Cr−1, Cr , we see
that C0, Cr lie on opposite sides of H . Since C0 = C

+ and Cr are dominant, it follows
that C0 ⊂ H

−, so Cr ⊂ H+ and Cr−1 ↑ Cr . As H is not a wall of D+, we deduce that
Cr−1 is dominant. The claim follows by induction.

If C is general, write C = w · C+ for some w ∈ Wp and write w = σ + pν with
σ ∈ W , ν ∈ X(T ). Then it is easy to see that 〈ν, α∨〉 > −1 for all α ∈ 8+, i.e.
ν ∈ X(T )+. Hence t := pν maps dominant alcoves to dominant alcoves and alcoves in
general n-position to alcoves in general n-position. So the lemma is true if C = t · C+.
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If C = w · C+ 6= t · C+, we only have to find a sequence of dominant alcoves
C = C̃0 ↑ · · · ↑ C̃h = t · C+ such that C̃i−1 and C̃i are adjacent for all i. We use an
induction on the number of hyperplanes between C and t ·C+. Let H be a wall of C that
lies between C and t · C+, so H cannot be a wall of D+. Let C̃1 = sH · C = sHw · C

+.
Then C̃1 ∈ A+ and we have t · (−ρ) = w · (−ρ) ∈ H , so t · (−ρ) = sHw · (−ρ). Since
t · C+ ⊂ H+, it follows that C ↑ C̃1. Moreover, the number of hyperplanes between C̃1
and t · C+ is one less than the number of hyperplanes between C and t · C+. ut

Given an alcove C and n ∈ Z≥0, we let h(C, n) be the minimum possible value h occur-
ring as the length of the sequence in Lemma A.1.13.

Proof of Theorem A.1.1. We prove this by induction on d := d(C′)− d(C) ≥ 0. When d
is fixed, we induct on h(C, d). The cases d ≤ 1 are trivial. For any d , the case h(C, d) = 0
is trivial. Now for fixed C and d we have a sequence of dominant alcoves

C = C̃0 ↑ · · · ↑ C̃h

as in Lemma A.1.13 and such that h = h(C, d). If C̃1 ↑ C
′ then d(C′) − d(C̃1) =

d(C′)− d(C)− 1 and we are done by the induction hypothesis. So we can assume from
now on that C̃1↑C

′. We can write C̃1 = sH ·C and C′ = w ·C for some wall H of C and
somew ∈ Wp. Let C̃′1 = w·C̃1 = wsH ·C. We claim thatC′ ↑ C̃′1. Otherwise C̃′1 ↑ C

′. So
C ↑ w ·C andwsH ·C ↑ w ·C. By Cor. A.1.7 this implies that C̃1 = sH ·C ↑ w ·C = C

′,
a contradiction.

Thus C′ ↑ C̃′1, in particular C ↑ C̃′1. We apply Corollary A.1.7 again to C ↑ wsH ·C,
w ·C ↑ wsH ·C and get C̃1 = sH ·C ↑ wsH ·C = C̃

′

1. Now note that d(C̃′1)− d(C̃1) =

d(C′) − d(C) = d , but h(C̃1, d) = h(C, d) − 1. By induction hypothesis we have a
sequence of dominant alcoves

C̃1 = w0 · C̃1 ↑ w1 · C̃1 ↑ · · · ↑ wd · C̃1 = C̃
′

1

such that d(wi · C̃1) − d(wi−1 · C̃1) = 1 and so wiw−1
i−1 is a reflection in Wp for all i.

Note that w0 = 1 and wd = w. Since C̃1↑C
′
= wsH · C̃1, by Proposition A.1.6 we have

C = w0 · C ↑ w1 · C ↑ · · · ↑ wd · C = C
′. (A.1.14)

Since d = d(C′) − d(C), we have d(wi · C) − d(wi−1 · C) = 1 for all i. As wi · C
and the dominant alcove wi · C̃1 are adjacent, we may replace ↑ by ↑↑ in (A.1.14) (by
Lemma A.1.8). In particular, we havewi ·C ↑↑ C′ for all i. If somewi ·C is not dominant,
then wi · H is a wall of D+ and wisHw−1

i ∈ W . By Proppsition A.1.9, wi · C̃1 =

wisH · C = (wisHw
−1
i )wi · C ↑↑ C′, so C̃1 ↑ wi · C̃1 ↑ C′, contradiction. Thus

wi · C ∈ A+ for all i and (A.1.14) satisfies the condition in the theorem. ut

Corollary A.1.15. If C, C′ are dominant alcoves, then C ↑ C′ if and only if C ↑↑ C′.

Proof. This follows from Corollary A.1.2 and Lemma A.1.8. ut
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Appendix B. Wobv(ρ) is non-empty

The purpose of this appendix is to give a proof of the following result, which was
promised in Remark 7.1.4.

Theorem B.1.1. Suppose K/Qp is a finite extension, and let ρ : GK → GLn(Fp) be a
representation such that ρ|IK is semisimple. Then the set Wobv(ρ) of obvious weights for
ρ is non-empty.

A fortiori the same is true for Wexpl(ρ). Moreover, the proof shows that W∀cris(ρ) is non-
empty when ρ is semisimple.

Proof. For each σ ∈ Sk we fix an element κσ ∈ SK lifting σ . Throughout this proof, if
we refer to the lift of some Serre weight F , we mean any lift λ of F for which λκ = 0 if
κ 6∈ {κσ }σ∈Sk (cf. Definition 3.3.2). We will prove that ρ has an obvious lift ρ of Hodge
type λ, where λ is the lift of some Serre weight.

We may without loss of generality assume that ρ itself is semisimple. We begin by
explaining how to reduce to the case where ρ is irreducible, by induction on the number
of Jordan–Hölder factors of ρ.

Indeed, suppose that ρ = ρ′ ⊕ ρ′′, where ρ′ has dimension d ′ > 0 and ρ′′ is irre-
ducible. By induction ρ′ has an obvious lift ρ′ of Hodge type λ′, the lift of some Serre
weight. Similarly ρ′′ ⊗ ε−d

′

has an obvious lift ρ′′ of Hodge type λ′′, the lift of some
Serre weight.

For each σ ∈ Sk , let Hσ = max HTκσ (ρ
′) and hσ = min HTκσ (ρ

′′) + d ′. Also let
3 ⊂ ZSk be the sublattice consisting of tuples (xσ ) such that

∏
ω
xσ
σ = 1. It is elementary

to see that there exists x = (xσ ) ∈ 3 such that hσ+xσ ∈ [Hσ+1, Hσ+p] for all σ ∈ Sk .
(This comes down to the fact that ZSk/3 ∼= Z/(pf −1)Z, along with the fact that integers
have base p representations.) Let χ be a crystalline character whose Hodge type is the
lift of x, and such that χ is trivial; such a character exists by Lemma 5.1.6(i), (ii). Define
ρ := ρ′⊕(ρ′′⊗εd

′

⊗χ). Then one checks (considering separately the sets HTκ(ρ)where
κ = κσ for some σ ∈ Sk , and the sets HTκ(ρ) where κ 6∈ {κσ }σ∈Sk ) that ρ is an obvious
lift of ρ whose Hodge type is the lift of some Serre weight.

It remains to consider the case where ρ is irreducible. Let d = dim ρ, and write
ρ ∼= IndKKd ψ where Kd/K is the unramified extension of degree d and ψ : GKd → F×p
is a character. We wish to prove the existence of d-tuples {(hσ,0, . . . , hσ,d−1)}σ∈Sk of
integers such that 0 < hσ,i − hσ,i+1 ≤ p for all σ and i, and a crystalline character ψ
lifting ψ such that ⋃

κ ′∈SKd
κ ′|K=κσ

HTκ ′(ψ) = {hσ,0, . . . , hσ,d−1}

for each σ , and such that if κ ∈ SK but κ 6∈ {κσ }σ∈Sk then⋃
κ ′∈SKd
κ ′|K=κ

HTκ ′(ψ) = {0, 1, . . . , d − 1}.
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Let χ be any crystalline character of GKd such that HTκ ′(χ) = {0} whenever κ ′|K ∈
{κσ }σ∈Sk , and such that if κ ∈ SK but κ 6∈ {κσ }σ∈Sk then⋃

κ ′∈SKd
κ ′|K=κ

HTκ ′(χ) = {0, 1, . . . , d − 1}.

Then the theorem comes down to the existence of integers hσ,i as above and a crystalline
character χ ′ of GKd such that⋃

κ ′∈SKd
κ ′|K=κσ

HTκ ′(χ ′) = {hσ,0, . . . , hσ,d−1}

for each σ ∈ Sk , such that HTκ ′(χ ′) = {0} if κ ′|K 6∈ {κσ }σ∈Sk , and such that χ ′ = ψχ−1

(for then one can take ψ = χ ′χ ).
Unless (d, f ) = (2, 1), where pf = #k, the existence of χ ′ is an immediate con-

sequence of Proposition B.1.2 below (in combination with both parts of Lemma 5.1.6).
When (d, f ) = (2, 1), the existence of χ ′ will follow in the same way provided that
the character ψχ−1 of GK2 does not extend to GK . If also e(K/Qp) = 1 then χ is
unramified, and since ψ does not extend to GK , the same is true of ψχ−1. If instead
e(K/Qp) > 1, it is possible that ψχ−1 extends to GK . In that case choose any κ ′ ∈ SK2

such that HTκ ′(χ) = {1}. Let κ ′′ ∈ SK2 be the other embedding such that κ ′′|K = κ ′|K
(so that HTκ ′′(χ) = {0}). Let χ0 be a crystalline character of GK2 with the same labelled
Hodge–Tate weights as χ , except that HTκ ′(χ0) = {0} and HTκ ′′(χ0) = {1}. We note
that χχ−1

0 |IK2
= ω

p−1
κ ′′

. Hence χ χ−1
0 does not extend to GK (since ωκ ′′ is a fundamental

character of niveau 2 and its exponent is not a multiple of p + 1); so neither does the
character ψχ−1

0 , and the result follows from Proposition B.1.2 if we use ψχ−1
0 in place

of ψχ−1. ut

Proposition B.1.2. Given positive integers d and f , any residue class modulo pdf − 1
(with the exception of the residue classes congruent to 0 modulo p + 1 when d = 2,
f = 1) is of the form

∑df−1
i=0 xip

i , where for any i0 ∈ Z the set {xi : i ≡ i0 (mod f )} is
of the form {h0, . . . , hd−1} with 0 < hi − hi+1 ≤ p for all i.
Proof. Let N be the representative in the interval [0, pdf − 1) of our given residue class
modulo pdf − 1, and let x0, . . . , xdf−1 be the digits in the base p expansion of N , so that
certainly N ≡

∑df−1
i=0 xip

i (modpdf − 1). We will argue by altering the xi’s, preserving
this congruence, until the condition on the sets {xi : i ≡ i0 (mod f )} is met. The typical
alteration will be to add δp to xi and −δ to xi+1 (with xdf taken to mean x0). We break
into cases depending on the value of f .

(1) We consider first the case where f is even. Restrict our attention to the xj ’s
with j ≡ 0, 1 (mod f ). Relabel the pairs {(xif , xif+1) : i = 0, . . . , d − 1} as pairs
(a0, b0), . . . , (ad−1, bd−1), but not necessarily in the same order; instead, we choose the
labelling so that
(i) b0 ≥ · · · ≥ bd−1, and

(ii) if bi = bi+1 then ai+1 ≤ ai .
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There exist integers δi ∈ Z such that

(ai+1 + δi+1p)− (ai + δip) ∈ (0, p] (B.1.3)

for all i ∈ [0, d − 1). As ai+1 − ai ∈ (−p, p), we have δi+1 − δi ∈ [0, 1]. For each i
we define (a′i, b

′

i) = (ai + δip, bi − δi), thereby also altering the corresponding x’s. We
claim that a′i+1 − a

′

i and b′i − b
′

i+1 both lie in (0, p] for all i. The first of these claims is
precisely (B.1.3). For the second claim, write

b′i − b
′

i+1 = (bi − bi+1)+ (δi+1 − δi),

and observe that bi − bi+1 ∈ [0, p − 1] by (i), while δi+1 − δi ∈ [0, 1]. It remains to
note that if bi = bi+1 then ai+1 ≤ ai by (ii), implying δi+1 − δi = 1 by (B.1.3), and so
b′i − b

′

i+1 > 0 in all cases.
The two claims together show that after making these alterations, the sets {xj : j ≡ j0

(mod f )} for j0 = 0, 1 are both of the desired form {h0, . . . , hd−1} with 0 < hi − hi+1
≤ p for all i. If we iterate the above procedure for the xj ’s with j ≡ 2j0, 2j0+1 (mod f )}
for each j0 ∈ [1, f/2) in turn, the proposition follows in this case.

(2) Next we suppose that f is odd and f ≥ 3. It is enough to explain how to alter the
triples {(xif , xif+1, xif+2) : i = 0, . . . , d − 1}, for then we can deal with the remaining
consecutive pairs of residue classes as in the case where f was even. The truth of the
proposition is certainly unchanged under multiplication of the given residue class by a
power of p, or equivalently, under cyclic permutation of the xj ’s. We observe (trivially)
that it is possible to cyclically permute the xj ’s so that it is not the case that the pairs
(xif+1, xif+2) are all of the form (p − 1, p − 1) or (0, 0), with both occurring, and we
make such a cyclic permutation.

Now rewrite the triples (xif , xif+1, xif+2) as (a0, b0, c0), . . . , (ad−1, bd−1, cd−1)

with the labelling so that

(i) c0 ≥ · · · ≥ cd−1, and
(ii) if ci = ci+1 then bi+1 ≤ bi .

Conditions (i) and (ii), together with the condition on the pairs (xif+1, xif+2) from the
previous paragraph, imply that

there is no value of i such that (bi − bi+1, ci − ci+1) = (p − 1, p − 1). (B.1.4)

There exist δi ∈ Z such that

(ai+1 + δi+1p)− (ai + δip) ∈ (0, p] (B.1.5)

for all i ∈ [0, d − 1), and also εi ∈ Z such that

λi := (bi+1 + εi+1p)− (bi + εip) ∈ (0, p + 1] (B.1.6)

for all i ∈ [0, d − 1), with

λi = p + 1 ⇒ ai+1 ≤ ai,

λi = 1 ⇒ ai+1 > ai .
(B.1.7)
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As in case (1), we have δi+1 − δi ∈ [0, 1] for all i; similarly εi+1 − εi ∈ [0, 2], with

εi+1 − εi = 2 iff (bi, bi+1) = (p − 1, 0) and ai+1 ≤ ai . (B.1.8)

For each i we define

(a′i, b
′

i, c
′

i) = (ai + δip, bi + εip − δi, ci − εi),

thereby altering the corresponding x’s, and claim that then a′i+1− a
′

i , b
′

i+1− b
′

i , c
′

i − c
′

i+1
are in (0, p] for all i. Case (2) will be complete once we have proved this claim.

That a′i+1 − a
′

i ∈ (0, p] is immediate from (B.1.5). Next,

b′i+1 − b
′

i = λi − (δi+1 − δi)

with the first term on the right-hand side in (0, p + 1] and the second term in [0, 1]. If
λi = p + 1 then ai+1 ≤ ai by (B.1.7), which implies δi+1 − δi = 1 by (B.1.5); similarly
if λi = 1 then ai+1 > ai and δi+1− δi = 0. Thus in all cases we have b′i+1− b

′

i ∈ (0, p],
as desired.

Finally,
c′i − c

′

i+1 = (ci − ci+1)+ (εi+1 − εi)

with the first term on the right-hand side in [0, p − 1] and the second term in [0, 2]. If
ci = ci+1 then bi+1 ≤ bi , implying εi+1−εi > 0; thus c′i−c

′

i+1 > 0 in all cases. Suppose
on the other hand that ci − ci+1 = p − 1. Then by (B.1.4) we have bi − bi+1 6= p − 1,
and so εi+1− εi 6= 2 by (B.1.8); thus c′i − c

′

i+1 ≤ p in all cases, and case (2) is complete.

(3) Finally, we turn to the case f = 1. As usual, we take the xi’s at the outset to be the
digits in the base p expansion of N . As in part (2) we will make use of the fact that the
truth of the proposition is unchanged when multiplying the given residue class by a power
of p (i.e. under cyclic permutation of the xi’s), as well as when adding any multiple of
(pd − 1)/(p − 1) to the residue class (i.e. adding the same constant to each xi).

We first dispense with the case where d is even andN is divisible by (pd−1)/(p−1).
By hypothesis we have d ≥ 4 (recall that in the case d = 2, f = 1 the residue classes
divisible by p + 1 are excluded from the statement of the proposition). Subtracting the
appropriate multiple of (pd − 1)/(p − 1) we may suppose that N = 0. Then writing
d = 2m+ 2 with m ≥ 1, we alter the xi’s by replacing them with

(x′0, . . . , x
′

d−1) := (p, 2p − 1, p − 2,−1, 2p,−2, . . . , mp,−m).

In the remaining cases, we can reduce to one of the following three situations.

(I) d is odd, each xi lies in [0, p − 1], and xd−1 = maxi xi .
(II) d is even, each xi lies in [0, p − 1], x1 = maxi xi > 0, and xi = 0 for all even i.

(III) d is even, each xi lies in [0, p − 1] except x1 = p, and xi is non-zero for some odd
i > 1.
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To see this, we argue as follows. If d is odd, we cyclically permute to assume that xd−1 is
maximal to put ourselves in case (I). Now suppose d is even, so that (pd−1)/(p−1) - N
and not all the xi’s are equal. Subtracting mini xi from each xi , we can further suppose
that some xi is 0. Since not all xi’s are zero, we can suppose (after cyclically permuting
if necessary) that x1 = 0 and x2 > 0. If xi is non-zero for some odd i > 1, then we add
p to x1 and −1 to x2 to put ourselves in case (III). Otherwise xi = 0 for all odd i but not
for all even i. After cyclically permuting so that x1 = maxi xi , we have x2j = 0 for all j
and we are in case (II). This completes the reduction.

Write d = 2m if d is even and d = 2m+1 if d is odd. We relabel the pairs of variables
(x0, x1), . . . , (x2m−2, x2m−1) as (a0, b0), . . . , (am−1, bm−1), ordered as usual so that

(i) b0 ≥ · · · ≥ bm−1 and
(ii) if bi = bi+1 then ai+1 ≤ ai .

Note that when d is odd, xd−1 is not relabelled. When d is even, we can (and do) take
(a0, b0) = (x0, x1): in case (II) this is a consequence of the fact that ai = 0 for all i,
whereas in case (III) it is automatic.

There exist unique integers δi ∈ Z such that δ0 = 1 and

(ai+1 + δi+1p)− (ai + δip) ∈ (0, p] (B.1.9)

for all i ∈ [0, m− 1). For each i we define (a′i, b
′

i) = (ai + δip, bi − δi), thereby altering
the corresponding x’s. (Note when d is odd that xd−1 is unchanged.) It follows almost
exactly as in (1) that we have a′i+1− a

′

i , b
′

i − b
′

i+1 ∈ (0, p] for all i; the only modification
required is to note that in case (III), although b0 = p we still have b0 − b1 ∈ [0, p − 1]
because of the condition that xi is non-zero for some odd i > 1.

To complete the proof, it will suffice to show that{
a′0 − b

′

0 ∈ (0, p] if d is even,
a′0 − xd−1, xd−1 − b

′

0 ∈ (0, p] if d is odd.

First suppose that d is even. Since δ0 = 1 we have

a′0 − b
′

0 = (x0 − x1)+ (p + 1).

In case (II) we have x0 − x1 ∈ (−p, 0), while in case (III) we have x0 − x1 ∈ [−p, 0); in
either case a′0 − b

′

0 ∈ (0, p].
Finally, suppose that d is odd. We have a′0 = a0+p and b′0 = b0−1. Since a0 ≤ xd−1

and both are in the range [0, p − 1], we have a′0 − xd−1 = p − (xd−1 − a0) ∈ (0, p].
Similarly b0 ≤ xd−1 and both are in [0, p − 1], so that xd−1 − b

′

0 = (xd−1 − b0) + 1 is
in (0, p]. This completes the proof. ut
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are very grateful to Mehmet Haluk Şengün for repeating the calculations of [Tor12] for us, and to



General Serre weight conjectures 2945

Darrin Doud for extending some of his calculations for us. We thank Chuangxun (Allen) Cheng
for his translation of parts of [Wan87] and Jim Humphreys for inspiring correspondence related to
Corollary A.1.2. We are thankful to the referee for helpful comments.

The first author was partially supported by a Leverhulme Prize, EPSRC grant EP/L025485/1,
Marie Curie Career Integration Grant 303605, and by ERC Starting Grant 306326.

The second author was partially supported by NSF grants DMS-0902044 and DMS-0932078,
a Sloan Fellowship, and an NSERC grant.

The third author was partially supported by NSF grant DMS-0901049 and NSF CAREER grant
DMS-1054032.

References

[And80] Andersen, H. H.: The strong linkage principle. J. Reine Angew. Math. 315, 53–59
(1980) Zbl 0439.20026 MR 0564523

[ADP02] Ash, A., Doud, D., Pollack, D.: Galois representations with conjectural connections
to arithmetic cohomology. Duke Math. J. 112, 521–579 (2002) Zbl 1023.11025
MR 1896473

[APS04] Ash, A., Pollack, D., Soares, D.: SL3(F2)-extensions of Q and arithmetic co-
homology modulo 2. Experiment. Math. 13, 298–307 (2004) Zbl 1094.11019
MR 2103328

[AS00] Ash, A., Sinnott, W.: An analogue of Serre’s conjecture for Galois representations
and Hecke eigenclasses in the mod p cohomology of GL(n,Z). Duke Math. J. 105,
1–24 (2000) Zbl 1015.11018

[AS86] Ash, A., Stevens, G.: Modular forms in characteristic l and special values of their
L-functions. Duke Math. J. 53, 849–868 (1986) Zbl 0618.10026 MR 0860675

[BLGG13] Barnet-Lamb, T., Gee, T., Geraghty, D.: Serre weights for rank two unitary groups.
Math. Ann. 356, 1551–1598 (2013) Zbl 1339.11064 MR 3072811

[BLGG18] Barnet-Lamb, T., Gee, T., Geraghty, D.: Serre weights for U(n). J. Reine Angew.
Math. 735, 199–224 (2018) Zbl 06836107 MR 3757475

[BL+14] Barnet-Lamb, T., Gee, T., Geraghty, D., Taylor, R.: Potential automorphy and change
of weight. Ann. of Math. (2) 179, 501–609 (2014) Zbl 1310.11060 MR 3152941

[Ber10] Berger, L.: Représentations modulaires de GL2(Qp) et représentations galoisiennes
de dimension 2. Astérisque 330, 263–279 (2010) Zbl 1233.11060 MR 2642408

[BV13] Bergeron, N., Venkatesh, A.: The asymptotic growth of torsion homology for
arithmetic groups. J. Inst. Math. Jussieu 12, 391–447 (2013) Zbl 1266.22013
MR 3028790

[Bou02] Bourbaki, N.: Lie Groups and Lie Algebras. Chapters 4–6. Elements of Mathematics,
Springer, Berlin (2002) Zbl 0983.17001 MR 1890629

[Bre10] Breuil, C.: The emerging p-adic Langlands programme. In: Proc. International
Congress of Mathematicians (Hyderabad, 2010), Volume II, Hindustan Book Agency,
New Delhi, 203–230 (2010) Zbl 1368.11123 MR 2827792

[BD14] Breuil, C., Diamond, F.: Formes modulaires de Hilbert modulo p et valeurs
d’extensions entre caractères galoisiens. Ann. Sci. École Norm. Sup. (4) 47, 905–974
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the p-adic local Langlands correspondence. Cambridge J. Math. 4, 197–287 (2016)
Zbl 06624413 MR 3529394

[CEGS] Caraiani, A., Emerton, M., Gee, T., Savitt, D.: Moduli spaces of Kisin modules with
descent data. In preparation

[CHT08] Clozel, L., Harris, M., Taylor, R.: Automorphy for some l-adic lifts of automorphic
mod l Galois representations (with Appendix A, summarizing unpublished work of
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[GG15] Gee, T., Geraghty, D.: The Breuil–Mézard conjecture for quaternion algebras. Ann.
Inst. Fourier (Grenoble) 65, 1557–1575 (2015) Zbl 06541661 MR 3449190

[GHLS17] Gee, T., Herzig, F., Liu, T., Savitt, D.: Potentially crystalline lifts of certain prescribed
types. Doc. Math. 22, 397–422 (2017) Zbl 06687170 MR 3628787
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sentations. Ann. Sci. École Norm. Sup. (4) 48, 1383–1421 (2015) Zbl 1334.11041
MR 3429471

[Hum06] Humphreys, J. E.: Modular Representations of Finite Groups of Lie Type. Lon-
don Math. Soc. Lecture Note Ser. 326, Cambridge Univ. Press, Cambridge (2006)
Zbl 1113.20016 MR 2199819

[Jan81] Jantzen, J. C.: Zur Reduktion modulo p der Charaktere von Deligne und Lusztig.
J. Algebra 70, 452–474 (1981) Zbl 0477.20024 MR 0623819

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1283.11083&format=complete
http://www.ams.org/mathscinet-getitem?mr=3079258
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:06434684&format=complete
http://www.ams.org/mathscinet-getitem?mr=3323575
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1266.20059&format=complete
http://www.ams.org/mathscinet-getitem?mr=2999126
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1185.11030&format=complete
http://www.ams.org/mathscinet-getitem?mr=2280776
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1276.11085&format=complete
http://www.ams.org/mathscinet-getitem?mr=2785764
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1295.11043&format=complete
http://www.ams.org/mathscinet-getitem?mr=2876931
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:06541661&format=complete
http://www.ams.org/mathscinet-getitem?mr=3449190
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:06687170&format=complete
http://www.ams.org/mathscinet-getitem?mr=3628787
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:06391704&format=complete
http://www.ams.org/mathscinet-getitem?mr=3292675
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1288.11045&format=complete
http://www.ams.org/mathscinet-getitem?mr=3164985
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1317.11045&format=complete
http://www.ams.org/mathscinet-getitem?mr=3324938
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1282.11042&format=complete
http://www.ams.org/mathscinet-getitem?mr=2822861
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0978.11018&format=complete
http://www.ams.org/mathscinet-getitem?mr=1643625
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0996.11038&format=complete
http://www.ams.org/mathscinet-getitem?mr=1696481
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0965.11020&format=complete
http://www.ams.org/mathscinet-getitem?mr=1729443
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1036.11027&format=complete
http://www.ams.org/mathscinet-getitem?mr=1876802
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1232.11065&format=complete
http://www.ams.org/mathscinet-getitem?mr=2541127
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:06810454&format=complete
http://www.ams.org/mathscinet-getitem?mr=3705291
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1312.11042&format=complete
http://www.ams.org/mathscinet-getitem?mr=3028753
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1334.11041&format=complete
http://www.ams.org/mathscinet-getitem?mr=3429471
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1113.20016&format=complete
http://www.ams.org/mathscinet-getitem?mr=2199819
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0477.20024&format=complete
http://www.ams.org/mathscinet-getitem?mr=0623819


2948 Toby Gee et al.

[Jan87] Jantzen, J. C.: Representations of Chevalley groups in their own characteristic. In:
The Arcata Conference on Representations of Finite Groups (Arcata, CA, 1986),
Proc. Sympos. Pure Math. 47, Amer. Math. Soc., Providence, RI, 127–146 (1987)
Zbl 0652.20042 MR 0933356

[Jan03] Jantzen, J. C.: Representations of Algebraic Groups. 2nd ed., Math. Surveys Monogr.
107, Amer. Math. Soc., Providence, RI (2003) Zbl 1034.20041 MR 2015057

[KW09a] Khare, C., Wintenberger, J.-P.: Serre’s modularity conjecture. I. Invent. Math. 178,
485–504 (2009) Zbl 1304.11041 MR 2551763

[KW09b] Khare, C., Wintenberger, J.-P.: Serre’s modularity conjecture. II. Invent. Math. 178,
505–586 (2009) Zbl 1304.11042 MR 2551764

[Kis08] Kisin, M.: Potentially semi-stable deformation rings. J. Amer. Math. Soc. 21, 513–
546 (2008) Zbl 1205.11060 MR 2373358

[Kis09a] Kisin, M.: The Fontaine–Mazur conjecture for GL2. J. Amer. Math. Soc. 22, 641–690
(2009) Zbl 1251.11045 MR 2505297

[Kis09b] Kisin, M.: Modularity of 2-adic Barsotti–Tate representations. Invent. Math. 178,
587–634 (2009) Zbl 1304.11043 MR 2551765

[Kis09c] Kisin, M.: Moduli of finite flat group schemes, and modularity. Ann. of Math. (2)
170, 1085–1180 (2009) Zbl 1201.14034 MR 2600871

[Kis10] Kisin, M.: The structure of potentially semi-stable deformation rings. In: Proc. Inter-
national Congress of Mathematicians. Volume II (Allahabad, 2010), Hindustan Book
Agency, New Delhi, 294–311 (2010) Zbl 1273.11090 MR 2827797

[Kot84] Kottwitz, R. E.: Stable trace formula: cuspidal tempered terms. Duke Math. J. 51,
611–650 (1984) Zbl 0576.22020 MR 0757954

[LLHL16] Le, D., Le Hung, B. V., Levin, B.: Weight elimination in Serre type conjectures.
Preprint (2016)

[LL+16] Le, D., Le Hung, B. V., Levin, B., Morra, S.: Serre weight conjectures and Breuil’s
lattice conjecture in dimension three. Preprint (2016)

[LL+18] Le, D., Le Hung, B. V., Levin, B., Morra, S.: Potentially crystalline deformation rings
and Serre weight conjectures: shapes and shadows. Invent. Math. 212, 1–107 (2018)
Zbl 06860748 MR 3773788

[Mat89] Matsumura, H.: Commutative Ring Theory. 2nd ed., Cambridge Stud. Adv. Math. 8,
Cambridge Univ. Press, Cambridge (1989) Zbl 0666.13002 MR 1011461

[MP17] Morra, S., Park, C.: Serre weights for three-dimensional ordinary Galois representa-
tions. J. London Math. Soc. (2) 96, 394–424 (2017) Zbl 06797243 MR 3708956
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Arithmétiques de Bordeaux (Bordeaux, 1974), Astérisque 24-25, 109–117 (1975)
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