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Abstract. We study the asymptotic properties of the conormal cycle of nodal sets associated to a
random superposition of eigenfunctions of the Laplacian on a smooth compact Riemannian man-
ifold without boundary. In the case where the dimension is odd, we show that the expectation of
the corresponding current of integration equidistributes on the fibres of the cotangent bundle. In the
case where the dimension is even, we obtain an upper bound of lower order on the expectation.
Using recent results of Alesker, we also deduce some properties on the asymptotic expectation of
any smooth valuation including the Euler characteristic of random nodal sets.
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1. Introduction

We consider a (C∞) smooth compact connected oriented Riemannian manifold (M, g)
without boundary, and we study the nonzero solutions of

−1geλ = λ
2eλ, (1)

where 1g is the Laplace–Beltrami operator induced by the Riemannian metric g and
λ > 0. Our geometric assumption implies that there exists a nondecreasing sequence

0 = λ1 < λ2 ≤ · · · → +∞,

and an orthonormal basis (ej )j≥1 of L2(M) such that

∀j ≥ 1, −1gej = λ
2
j ej .

More generally, we are in fact interested in finite superpositions of such solutions, i.e.

f ∈ H3 := 1[0,32](−1g)L
2(M). (2)
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Recall that if we denote by N(3) the dimension of H3, one has the following Hörman-
der–Weyl asymptotics [42]:

N(3) =
Volg(M)

2nπn/20(n/2+ 1)
3n +O(3n−1), (3)

where n is the dimension of M and Volg is the Riemannian volume induced by g. In the
present article, we aim at studying elements in H3 in the high-frequency limit 3→∞.
There are several natural ways to study these objects: one can for instance look at their
Lp norms, their nodal sets, their nodal domains, or their quantum limits. In the present
article, we will study the geometry of the nodal sets

Nf := {x ∈ M : f (x) = 0}, f ∈ H3.

Again, there are many natural questions regarding the geometry of Nf or its distribution
onM—see for instance the book of Han and Lin [38] or the recent survey of Zelditch [68]
on nodal sets of eigenfunctions. For instance, one can try to compute their Hausdorff
volume, the number of their connected components, or more general geometric quantities
like Betti numbers.

The simplest question seems to be a priori the computation of the volume. In fact, in
this case, it was conjectured by Yau [66] that there exist constants 0 < cg ≤ Cg < ∞

such that, for every nonzero solution eλ of (1),

cgλ ≤ Vn−1(Neλ) ≤ Cgλ,

where Vn−1 is the Riemannian hypersurface volume. In the case of real-analytic metrics,
this conjecture was proved by Donnelly and Fefferman [27]; see also [44] for the case of
arbitrary elements in H3. In the C∞ case, the lower bound was proved earlier in dimen-
sion 2 by Brüning [18], while in dimension n ≥ 3, the best known lower bounds are of
order λ(3−n)/2, as recently proved by Colding and Minicozzi [23] and Hezari, Sogge and
Zelditch [41, 62]. Concerning the upper bound in the C∞ case, Dong, Donnelly and Fef-
ferman [28, 26] obtained an upper bound of order λ3/2 in dimension 2, and in dimension
n ≥ 3, Hardt and Simon proved an upper bound of order λcλ for some c > 0 [39]. Thus,
even the a priori simpler question of estimating the volume of nodal sets remains to our
knowledge far from being completely understood in a general setting.

A natural approach is to ask whether the properties expected for any nodal set are valid
for a “generic” solution of (1) or at least for a “generic” element f of H3. In order to
formulate a notion of genericity in H3, we introduce the following Gaussian probability
measure on the space H3:

µ3(df ) = dµ3(f ) := e
−N(3)‖f ‖2/2

(
N(3)

2π

)N(3)/2
dc1 . . . dcN(3),

with f =

N(3)∑
j=1

cj ej .
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Remark 1.1. We note that, with this convention, the expectation of the L2 norm is∫
H3

‖f ‖2
L2(M)

dµ3(f ) = 1.

In this setting, Bérard gave an “average” version [4] of Yau’s conjecture:∫
H3

Vn−1(Nf ) dµ3(f ) =
Vol(Sn−1)

Vol(Sn)
3

√
n+ 2

Volg(M)(1+ o(1)).

More recently, Rudnick and Wigman also estimated the variance in the case where
(M, g) is a rational torus [56] or the canonical sphere [65], and Letendre [50] gener-
alized Bérard’s result to the intersection of several “random” nodal sets. Zelditch [67]
also showed that something slightly stronger than Bérard’s result holds. More precisely,
he proved that, given any smooth function ω on M , one has∫

H3

〈f ∗(δ0)‖df ‖, ω〉 dµ3(f )

=
Vol(Sn−1)

Vol(Sn)
3

√
n+ 2

∫
M

ω(x) d Volg(M)(1+ o(1)), (4)

where f ∗(δ0) is the pull-back by f of the Dirac distribution, and 〈·, ·〉 is the duality
bracket. This result shows that if we average over the Gaussian measure, the nodal sets
become equidistributed in M .

Using this probabilistic approach, we can in fact say much more on the geometry
and the topology of the nodal sets. In the case of the canonical 2-sphere, Nazarov and
Sodin [52] gave large deviation estimates for the number of connected components of
a random nodal set. Lerario and Lundberg [49] also obtained lower and upper bounds
for the expectation of the number of connected components when one considers more
general families of random nodal sets. Nicolaescu [54] estimated the number of critical
points of a random function f in H3 from which one can also deduce upper bounds on
the number of connected components. Nazarov and Sodin [61, 53] generalized their large
deviation result on random spherical harmonics and they studied the number of connected
components of Nf for general Gaussian random functions. In our context, if we denote
by N(f ) the number of connected components of Nf , their result reads

∀δ > 0, lim
3→∞

µ3

({
f ∈ H3 :

∣∣∣∣N(f )3n
− ag

∣∣∣∣ > δ

})
= 0,

for some nonexplicit constant ag > 0 depending only on (M, g). Note that this gives not
only the rate of convergence for the expectation but also a large deviation estimate. It is
also slightly more precise in the sense that the result remains true if we count the number
of connected components in some rescaled geodesic ball Bg(x, R3−1) for some large
R > 0 [61, Theorem 5].

Gayet and Welschinger [35] proved that, given any closed hypersurface 6 in Rn, the
probability of finding 6 in the intersection of Nf with a geodesic ball Bg(x, R3−1) is



3020 Nguyen Viet Dang, Gabriel Rivière

uniformly bounded from below by an explicit positive constant; see also [34] for earlier
results in the case of random polynomials. This allows one to deduce lower bounds on
all the Betti numbers of our random nodal sets. In fact, they also proved that, on any
smooth compact connected Riemannian manifold (M, g) without boundary and for every
0 ≤ i ≤ n− 1, one can find explicit constants 0 < ci(M, g) ≤ Ci(M, g) <∞ such that

ci(M, g)3
n
≤

∫
H3

bi(Nf ) dµ3(f ) ≤ Ci(M, g)3n,

where bi is the i-th Betti number [33, 35]. Recall that b0(Nf ) = N(f ). Their result is in
fact more general than what we claim in the sense that it is valid for any elliptic pseudo-
differential operator of positive order1 m. For n odd, Letendre [50] showed the following
asymptotic property of the Euler characteristic χ(Nf ) of a random nodal set:∫

H3

χ(Nf ) dµ3(f ) =
2(−1)(n−1)/2

π Vol(Sn−1)

(
3

√
n+ 2

)n
Volg(M)+O(3n−1). (5)

We recall that the Euler characteristic is given by the alternating sum of Betti numbers.
Finally, Sarnak and Wigman [57] recently described the universal laws satisfied by the
topologies of random nodal sets (see also [19]).

These different results show that more is known on the geometry of nodal sets if one
only aims at probabilistic results. Even if we do not address this kind of questions in the
present article, we note that probabilistic approaches have been considered for a long time
in algebraic geometry—see for instance [45] where Kac estimated the number of real ze-
ros of a random polynomial as its degree goes to infinity. In “random” algebraic geometry,
one aims at studying the zero set of random polynomials of several variables instead of
random superposition of eigenfunctions, and the spectral parameter 3 is replaced by the
degree of the polynomials [48, 60, 59, 10, 11, 32, 50].

So far, we have only discussed the mathematical point of view on random Gaussian
superposition of high-frequency eigenfunctions but we emphasize that they play an im-
portant role in the physics literature. For instance, in quantum chaos, one is interested in
understanding the semiclassical properties of a quantum system whose underlying classi-
cal system enjoys chaotic features such as ergodicity or mixing. Berry [7] predicted that
semiclassical eigenmodes of chaotic systems should exhibit the same behaviour as a ran-
dom superposition of waves. This is known as the Berry random wave conjecture. In par-
ticular, any result on random superposition of waves should provide an intuition on what
one could expect for a chaotic system. In our framework, the main example of chaotic sys-
tem is given by manifolds with negative curvature whose geodesic flows are exponentially
mixing. Motivated by this conjecture of Berry, random nodal sets (and nodal domains2)
were also extensively studied in the physics literature especially in the last fifteen years
starting from the works of Blum, Gnutzmann and Smilansky [13] on nodal domains. The
case of nodal sets was studied by Berry [8] who considered (on 2-dimensional domains)
similar questions to the ones mentioned above on the volume and the curvature of random

1 In this case, the asymptotics are of order 32n/m.
2 This means subsets of M where f has a fixed sign.
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nodal sets. In the 2-dimensional case, Bogomolny, Dubertrand and Schmit [14] conjec-
tured that random nodal sets are in fact well described in terms of percolation processes
and Schramm–Loewner Evolution models.

2. Statement of the main results

We denote by T ∗M the cotangent bundle of M , and an element of T ∗M is denoted by
(x, ξ) with x ∈ M , ξ ∈ T ∗xM . From the point of view of “microlocal geometry”, it is
often more natural to consider the conormal cycle of Nf = {f = 0} rather than the
set Nf itself [47, Chapter 9]. Recall that the conormal cycle is defined as follows, for
every f in H3:

N∗({f = 0}) = {(x, ξ) ∈ T ∗M : f (x) = 0, ξ = tdxf for some t 6= 0} ⊂ T ∗M. (6)

Note that the above defines the conormal cycle only in the set-theoretical sense and we
will later discuss the central issue of orientation. Outside of its singular points, this subset
of T ∗M is a Lagrangian conical submanifold and it contains in some sense more infor-
mation on the geometry of the nodal sets. For that reason, it seems natural to us to focus
on the properties of this set. Before giving more explanations on the relevance of the
conormal cycle in microlocal geometry, we mention, as a first motivation, a celebrated
index theorem of Kashiwara [47, Th. 9.5.3, p. 385]. In the real analytic case, this result
expresses the Euler characteristic of Nf as a Lagrangian intersection in T ∗M between the
conormal cycle of Nf and the graph of dg for a generic function g on M:

[Graph dg] ∩ [N∗({f = 0})] = χ(Nf ) (7)

where the intersection is in the oriented sense.
To our knowledge, the properties of this set have been studied neither from the deter-

ministic point of view, nor from the probabilistic one. In this article, we aim at studying
the probabilistic properties of the setN∗({f = 0})which are somewhat easier to consider.
For that purpose, we introduce the following subset of H3:

D3 := {f ∈ H3 : ∃x ∈ Nf , dxf = 0}.

By a Sard type argument (see for instance [50, §2.3]), one can verify that µ3(D3) = 0
for 3 large enough. Thus, for µ3-a.e. f in H3, N∗({f = 0}) is a smooth n-dimensional
submanifold of

T •M := {(x, ξ) ∈ T ∗M : ξ 6= 0}.

In particular, once we choose an orientation, N∗({f = 0}) can be viewed as an n-current
[N∗({f = 0})] in the sense of de Rham [24, 58]. This means that, for every smooth
compactly supported n-form ω on T •M , we define

〈[N∗({f = 0})], ω〉 =
∫
N∗({f=0})

ω.
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Remark 2.1. We note that N∗({f = 0}) has two components for f in D3:

N∗±({f = 0}) :=
{
(x, ξ) ∈ T •M : f (x) = 0 and ξ = tdxf for some t ∈ R±\{0}

}
.

We will precisely discuss orientability questions in §3.1. We will in fact use the classical
conventions of [22, p. 682].

Our first main result shows that this defines in fact an L1 function:

Theorem 2.2. Let (M, g) be a smooth oriented connected compact Riemannian manifold
without boundary of dimension n. Then the map

H3 3 f 7→ [N
∗({f = 0})] ∈ D′n(T •M) (8)

is integrable with respect to the Gaussian measure µ3. Equivalently, for every test form
ω on T •M , the map

H3 3 f 7→ 〈[N
∗({f = 0})], ω〉 ∈ R

belongs to L1(H3, dµ3).

In order to state our second result, let us denote by �g the Riemannian volume form on
(M, g), by π : T ∗M → M the natural projection, and by π∗�g the pull-back of the
Riemannian volume on T ∗M . Then, our second theorem shows the following universal
behaviour:

Theorem 2.3. Let (M, g) be a smooth oriented connected compact Riemannian manifold
without boundary of dimension n. Then∫

H3

[N∗({f = 0})] dµ3(f ) = Cn

(
3

√
n+ 2

)n
π∗�g +O(3n−1) (9)

with

Cn =
2(−1)(n+1)/2

π Vol(Sn−1)
if n is odd, and Cn = 0 otherwise.

Equivalently, for every test form ω on T •M , one has∫
H3

〈[N∗({f = 0})], ω〉 dµ3(f ) = Cn

(
3

√
n+ 2

)n ∫
T ∗M

π∗�g ∧ ω +O(3n−1).

We note that an important feature of this result is that it shows a very different behaviour
depending on whether the dimension is odd or not. For n odd, our theorem shows that the
submanifold N∗({f = 0}) becomes uniformly equidistributed on the fibres T ∗xM , while
when n is even, we only obtain an upper bound of lower order.
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2.1. A brief outline of the proof using Berezin integrals

Our asymptotic formula can be elegantly derived by using a representation of the conor-
mal cycle as an oscillatory integral over odd and even variables in the formalism of
Berezin [4, 37, 25, 63]—see Section 5 for a brief reminder. Let us now sketch the principle
of our derivation. In a geodesic coordinate chart, we first introduce, for f in H3 \D3, a
map

G(f ) : T •M × R∗ 3 (x, ξ, t) 7→ y = (f (x), tdxf − ξ) ∈ Rn+1.

By classical arguments involving wavefront sets, we then represent the conormal cycle as
a current in the sense of de Rham which is obtained by pull-back by G(f ):

[N∗(f = 0)] =
∫
t∈R∗

G(f )∗(δn+1
0 (y)dy1

∧ · · · ∧ dyn+1).

Then we use the formalism of Berezin integrals to write the current δn+1
0 (y)dy1

∧ · · · ∧

dyn+1 in exponential form:

δn+1
0 (y)dy1

∧ · · · ∧ dyn+1
=

(∫
Rn+1

e−2iπp.y dp

)
dy1
∧ · · · ∧ dyn+1

=
1

(−2iπ)n+1

∫
R(n+1|n+1)

e−2iπ(p.y+5.dy) dp d5.

Thus, the conormal cycle can be expressed as an oscillatory integral over even and odd
variables:

[N∗(f = 0)] =
1

(−2iπ)n+1

∫
t∈R∗

(∫
R(n+1|n+1)

e−2iπ(p.G(f )+5.dG(f )) dp d5

)
. (10)

Then the calculation of the expected conormal cycle reduces to an evaluation of Gaussian
integrals except that we are in presence of odd and even variables and this exponential
representation of the current dramatically simplifies the combinatorics. Integrating over
the measure µ3 and inverting (formally) the integrals implies that we shall compute∫

R(n+1|n+1)

(∫
H3

e−2iπ(p.G(f )+5.dG(f )) dµ3(f )

)
dp d5.

Note that this inversion of the order of integration requires rigorous justification which is
provided in §4.3. We also refer to Remark 4.7 for a discussion of this question and the
so-called Kac–Rice formula. Finally, we compute the Gaussian integral∫

H3

e−2iπ(p.G(f )+5.dG(f )) dµ3(f ) (11)

using Hörmander pointwise Weyl asymptotics of the spectral projector [42] and super-
symmetric Gaussian integration [37]. Notice that the Berezin integrals were also used in
the works [3, 12, 29] devoted to the statistics of the critical points of random holomorphic
sections with applications to counting vacuas in string theory. The general philosophy
is that Berezin integrals allow one to elegantly express determinants as supersymmetric
integrals, which hugely simplifies calculations.
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2.2. Applications: smooth valuations on manifolds

We will now explain the interest of the concept of conormal cycle by giving some ap-
plications of our equidistribution theorem. First, we recall a “microlocal version” of the
generalized Gauss–Bonnet theorem of Chern [22, equation (20), pp. 679–683], later gen-
eralized by Fu to subanalytic sets [31, p. 832] (see also [55, Definition 4.4.1 and Proposi-
tion 4.4.2] for a detailed exposition).

Theorem 2.4. Let (M, g) be a smooth compact Riemannian manifold of dimension n.
Then there exists a smooth, closed, compactly supported n-form θ on T •M such that∫
T •xM

θ = 1 for all x ∈ M , and for any smooth oriented submanifold of codimension≥ 1,
one has

χ(X) = 〈[N∗(X)], θ〉 (12)

where [N∗(X)] is the conormal cycle of X and χ is the Euler characteristic.

Proof. This is a microlocal interpretation of the main result of [22] that we briefly recall.
Let π0 : UM → M denote the unit tangent bundle over M . Then Chern constructed an
(n− 1)-form 2 on the unit tangent bundle UM defined in [22, eq. (9), p. 676] satisfying
the following properties:

• d2 = 0 ([22, eq. (11), p. 677]),
• −

∫
π−1

0 (x)
2 = 1 ([55, p. 51]),

• for any oriented submanifold X of M , if we denote by UNX ⊂ UM the unit normal
bundle ofX inM then we have a generalized Chern–Gauss–Bonnet identity−

∫
UNX2

= χ(X) ([22, eq. (20), p. 679] and [55, Proposition 4.4.2, p. 52]).

The form −2 is called the geodesic curvature form by Park [55, Definition 4.1.1, p. 51].
Since M is Riemannian, the metric gives an isomorphism T ∗M ' TM which induces an
isomorphism of cones T •M = T ∗M \ {0} ' TM \ {0}. By the above isomorphism and
the natural trivial fibration TM \ {0} → UM whose fibre is the group (R>0,×), there is
an isomorphism of cones p : T •M → UM × R>0. Choose any smooth function ϕ ≥ 0
on R>0 such that dϕ is compactly supported and

∫
∞

0 dϕ = 1; such a function is easy to
construct by considering χ ∈ C∞c (R>0), χ ≥ 0 such that

∫
∞

0 χ(t) dt = 1 and setting
ϕ(x) =

∫ x
0 χ(t) dt . Then consider the n-form θ = p∗(−2 ∧ dϕ) and let us check it

satisfies the claim of the theorem. First the integral of
∫
T •xM

θ over a fibre T •xM satisfies∫
T •xM

θ =

∫
T •xM

p∗(−2 ∧ dϕ) =

∫
UxM×R>0

(−2) ∧ dϕ =

∫
UxM

(−2)

∫
R>0

dϕ = 1.

Then the pairing 〈[N∗(X)], θ〉 satisfies the identity

〈[N∗(X)], θ〉 =

∫
N∗(X)

θ =

∫
N∗(X)

p∗(−2 ∧ dϕ) =

∫
UNX×R>0

−2 ∧ dϕ

=

(∫
UN(X)

−2

)
︸ ︷︷ ︸

χ(X)

(∫
R>0

dϕ

)
︸ ︷︷ ︸

1

= χ(X). ut
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Remark 2.5. In our main theorems, we chose to consider the conormal cycle in T •M
instead of UM in order to make some aspects of the calculation slightly simpler.

From this result, we deduce an alternative proof of equality (5) which gives the mean
Euler characteristic of random nodal sets:

Theorem 2.6 (Letendre [50]). Let (M, g) be a smooth oriented compact Riemannian
manifold of odd dimension n. Then∫

H3

χ(Nf ) dµ3(f ) =
2(−1)(n−1)/2

π Vol(Sn−1)
Volg(M)

(
3

√
n+ 2

)n
+O(3n−1). (13)

Proof. Let θ be the n-form of Theorem 2.4. Then∫
H3

χ(Nf ) dµ3(f ) =
∫
H3

〈[N∗({f = 0})], θ〉 dµ3(f )

since the map f 7→ 〈[N∗({f = 0})], θ〉 is integrable with respect to the measure dµ3 by
Theorem 2.2. Hence by Theorem 2.3, we obtain an integral on the cotangent cone:∫

H3

χ(Nf ) dµ3(f ) =
∫
T •M

Cn

(
3

√
n+ 2

)n
π∗�g ∧ θ +O(3n−1)

=

∫
x∈M

(∫
T •xM

(−1)nθ
)
∧ Cn

(
3

√
n+ 2

)n
π∗�g +O(3n−1)

= (−1)n
∫
x∈M

Cn

(
3

√
n+ 2

)n
�g +O(3n−1)

=
2(−1)n(−1)(n+1)/2

π Vol(Sn−1)
Vol(M)

(
3

√
n+ 2

)n
+O(3n−1)

where we have used the Fubini theorem on the cotangent cone T •M and we have in-
tegrated on the fibres of T •M first. Note that since n is odd, (−1)n(−1)(n+1)/2

=

(−1)(3n+1)/2
= (−1)(n−1)/2, which explains the constant found in the statement of our

theorem. ut

Letendre [50] computed the Euler characteristic by expressing it as the integral over
{f = 0} of a certain curvature form depending on f as for instance in [21, eq. (9)].
Here, instead of this approach, we use Theorem 2.4 which gives the Euler characteristic
as the integral of a fixed curvature form over N∗({f = 0}). In some sense, this point of
view allows us to extend Letendre’s Theorem to an equidistribution result in the same
way as Zelditch’s equidistribution result (4) generalized Bérard’s result on the volume.

Chern’s formula for the Euler characteristic of a smooth submanifold can in fact be
understood in the more general framework of the theory of smooth valuations recently
developed by Alesker [2] and which we will now briefly review. We consider a smooth
oriented manifold X (not necessarily endowed with a Riemannian structure) and we de-
note by P(X) the set of all compact submanifolds of M with corners. In the terminology
of [2], we say that a map

φ : P(X)→ C
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is a smooth valuation if it is a finitely additive functional satisfying certain continuity
properties. For simplicity of exposition, we remain vague on these two notions which
need to be defined carefully on P(X)—see [1, Part II] for details. As was already men-
tioned, smooth valuations on manifolds generalize classical concepts from integral ge-
ometry such as volumes, Euler characteristic and mixed volumes. One of the remarkable
properties of these valuations is that they can be represented as follows: for every smooth
valuation φ, there exists a smooth differential n-form ωφ on T ∗X such that, for any P
in P(X), one has

φ(P ) =

∫
N∗(P )

ωφ,

where N∗(P ) is the conormal cycle of P [2]. We emphasize that the converse statement
is also true, and that the n-form is a priori nonunique. In the example of the Euler char-
acteristic χ , Theorem 2.4 gives such an n-form as soon as we have fixed an arbitrary
Riemannian metric on X.

Thanks to this interpretation of smooth valuations as integrals over conormal cycles,
Theorems 2.2 and 2.3 imply the following corollary on smooth valuations:

Corollary 2.7. Let (M, g) be a smooth connected compact Riemannian manifold without
boundary of dimension n. Let φ be a smooth valuation in the sense of [1] such that ωφ
can be chosen compactly supported in T •M . Then the map

f 7→ φ(Nf )

belongs to L1(H3, dµ3). Moreover,∫
H3

φ(Nf ) dµ3(f ) = Cn
(

3
√
n+ 2

)n ∫
T ∗M

π∗�g ∧ ωφ +O(3n−1), (14)

where

Cn =
2(−1)(n+1)/2

π Vol(Sn−1)
if n is odd, and Cn = 0 otherwise.

2.3. Further questions

Let us now mention natural questions that can be asked about the conormal cycles at-
tached to nodal sets.

• In the spirit of [50], it would be natural to consider intersections of nodal sets and com-
pute the expectation of their conormal cycle. This could probably be directly obtained
with the methods of the article but would require some slightly more complicated com-
binatorial arguments. For simplicity of exposition, we consider only one nodal set.
• Regarding Theorem 2.3, it would be natural to understand the asymptotics in the case

of n even. At least in the case where the set of closed geodesics is of zero Liouville
measure, we believe that one should be able to compute the term of order 3n−1 in the
asymptotics using the fact that in this geometric framework, the remainders in Weyl’s
asymptotics are of order o(3n−1). Understanding the geometric meaning of the lower
order term (and also checking that it is nonzero) is probably more subtle than comput-
ing the leading term we obtain here.
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• In this article, we only computed the expectation of the conormal cycle and it would be
of course natural to look for variance or large deviations estimates in the spirit of [8,
56, 52, 65, 53].
• Finally, it would be natural to understand what happens in the deterministic case. Can

one obtain at least some upper bounds on the conormal cycle of a deterministic nodal
set? If yes, what are the rates, and do they also depend on the dimension? This kind of
questions would require completely different techniques, like the ones in [38].

2.4. Organization of the article

Section 3 gathers preliminary results that will be used in our proof. More precisely, our
first task in the present article is to express the conormal cycle [N∗(f = 0)] explicitly
in terms of Dirac distributions and differential forms. This kind of representation appears
in the book of Schwartz [58] and it is in some sense slightly more adapted to our prob-
lem than the geometrically appealing definitions appearing in the works of Kashiwara–
Schapira, Fu, Alesker, Bernig [6, 47, 46, 31]. Thus, we give in Section 3 an explicit
integral formula for the conormal cycle. Moreover, we also introduce in that section other
relevant tools needed for the proof of our main theorem.

In Section 4, which forms the core of our paper, we give the complete proofs of
Theorems 2.2 and 2.3 using microlocal analysis and combinatorics.

Then, in Section 5, building on tools from quantum field theory, we give a new in-
tegral formula which expresses the conormal cycle of a nodal set as an oscillatory inte-
gral in bosonic (even) and fermionic (odd) variables. Our formula makes use of the so
called Berezin integral [4, 37, 25, 63] which was already mentioned above. This formula
is inspired by a very general formula expressing integration currents as oscillatory inte-
grals over odd and even variables used by A. Losev et al. in their works on instantonic
quantum field theories [30, 51]. We give a leisurely introduction to the necessary tools
to grasp the meaning of our formula. Using this very simple integral formula represent-
ing [N∗(f = 0)], we give a fast derivation of the leading term of the asymptotics of∫
H3
[N∗({f = 0})] dµ3(f ), which becomes a simple exercise in Gaussian integration

with respect to odd and even variables and completely avoids the heavy combinatorics
of the second part. The introduction of even (fermionic) variables allows us to avoid
complicated combinatorics involving sums over partitions at the expense of a little bit of
abstraction. The calculations are similar to those encountered in quantum field theory on
curved Riemannian manifolds. This somewhat alternative derivation of the main asymp-
totic formula is presented in this last part in a purely formal way and it relies on several
inversions of integrals and a priori estimates on remainder terms which could in fact be
justified by using the arguments of the second part of the article.

The article also contains four appendices. Appendix A recalls some classical results
on the derivatives of the spectral projector of the Laplacian. Appendix B justifies the in-
version formulas used in the article via tools from microlocal analysis. In Appendix C, we
briefly discuss a question of independent interest: building on the proof of Lemma B.3, we
give a functional-analytic proof of the Whitney embedding theorem. Finally, Appendix D
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gives a brief account of the properties of currents needed for our purposes and carefully
justifies the meaning of our formula using tools from microlocal analysis.

3. Preliminary results

In this section, we give the three main ingredients for the proof of our main Theorem. The
first ingredient is Proposition 3.7, which gives a representation formula for the conormal
cycle in terms of pull-back of Dirac distributions. As we shall see in this proposition,
the conormal cycle can be thought as a local functional on 2-jets of functions. Thus, our
second ingredient (Prop. 3.9) describes the push-forward of the Gaussian measure µ3 on
H3 by the map

J 2
3(y) : H3 3 f 7→ F =

(
f (y);

(
∂ylf (y)

3

)
1≤l≤n

;

(
∂2
yrysf (y)

32

)
1≤r,s≤n

)
∈ Rn

2
+n+1

where we identify Rn2
+n+1 with the fibres of the 2-jet bundle. The push-forward measure

J 2
3∗µ3 is in fact defined by its characteristic function which is expressed in terms of

the kernel of the spectral projector defining our Gaussian measure µ3. Then the third
ingredient (Prop. 3.10) is a kind of “Fubini statement” which allows one to interchange
the order of integrations in the variables (y, η, t, f ) involved in our problem.

Remark 3.1. For any smooth oriented manifold X of dimension m, we will denote by
(Dd(X))0≤d≤m the smooth compactly supported d-forms on X and by (D′d(X))0≤d≤m its
dual, i.e. the set of currents of dimension d on X. We refer to Appendix D for a brief
account on the theory of currents which is necessary in our proof.

3.1. Representation of the conormal cycle

Our first goal is to represent the conormal cycle N∗({f = 0}) in terms of Dirac distribu-
tions. For that purpose, we first need to recall the definition of push-forward in the context
of currents. Let λ : X→ Y be a proper smooth map between two smooth oriented mani-
foldsX and Y , and let T be a current in D′d(X), where d ≤ dimY . Then the push-forward
λ∗(T ) is defined by duality from the pull-back:

∀ω ∈ Dd(Y ), 〈λ∗T , ω〉Y = 〈T , λ
∗ω〉X.

An important fact concerning the push-forward operation is that an orientation of T
canonically induces an orientation of λ∗T .

3.1.1. Abstract definition of the current of integration. Let us start by recalling the defi-
nition of the conormal cycle of {f = 0}:

Definition 3.2. LetM be a smooth connected compact oriented manifold of dimension n
without boundary. Let f ∈ C∞(M). If dxf never vanishes on {f = 0} then we define
the conormal cycle [N∗({f = 0})] as the integration current on the conical Lagrangian
submanifold {(x, ξ) : f (x) = 0 and ξ = tdxf for some t ∈ R \ {0}} in D′n(T •M).
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A subtle fact we must add to our definition concerns the orientation of the conormal cycle.
First, note that the conormal cycle contains two components

N∗±({f = 0}) =
{
(x, ξ) : f (x) = 0 and ξ = tdxf for some t ∈ R± \ {0}

}
since it does not meet the zero section of the cotangent bundle. Hence an orientation of
[N∗({f = 0})] consists in choosing an orientation for each component separately. In what
follows, we denote by R∗ the set R\{0}. Let us give another description of [N∗({f = 0})]
in terms of Lagrange immersion which will be useful since we will interpret the conor-
mal cycle [N∗({f = 0})] as the push-forward of a cone S × R∗ and the orientation of
[N∗({f = 0})] will be induced by an orientation of S × R∗:

Lemma 3.3. Let f ∈ C∞(M) where df never vanishes on S := {f = 0}. Let i :
S ↪→ M be the canonical immersion. Then the conormal cycle N∗({f = 0}) is the image
of the immersion

λ : S × R∗ 3 (x, t) 7→ (i(x), tdi(x)f ) ∈ T
•M, (15)

and, at the level of currents,

[N∗({f = 0})] = [λ(S × R∗)] = λ∗[S × R∗], (16)

where we orient the current [S × R∗] by any differential form α ∈ �n(S × R∗) such that
df ∧ α|S×R>0 = �g ∧ dt |S×R>0 and df ∧ α|S×R<0 = −�g ∧ dt |S×R<0 .

Remark 3.4. The cone S ×R∗ contains two components S ×R>0 and S ×R<0 that we
should orient separately.

Proof of Lemma 3.3. By definition, [N∗({f = 0})] is just the integration current on
N∗({f = 0}) which is equal to λ(S × R∗). Therefore, for any test form ω in Dn(T •M),

〈[N∗({f = 0})], ω〉 =
∫
N∗({f=0})

ω =

∫
λ(S×R∗)

ω =

∫
S×R∗

λ∗ω

= 〈[S × R∗], λ∗ω〉 = 〈λ∗[S × R∗], ω〉

by definition of push-forward, which yields the claim. ut

3.1.2. Expression in local coordinates. Our goal is to show that the conormal cycle
[N∗({f = 0})] can be written (in local coordinates) as the current∫

t∈R∗
δn+1

0

(
f,
t

3
df − ξ

)
df ∧

n∧
i=1

d

(
t

3
∂xif − ξi

)
, (17)

where 3 is any positive number—see Proposition D.1 in Appendix D for the meaning of
the convenient notation δn+1

0 (f, tdxf/3 − ξ). We need to do this progressively and the
first step is to define some integration current [Zf,3] on R∗ × T •M whose push-forward
along the first factor R∗ yields the conormal cycle [N∗({f = 0})]. For that purpose, we
set

Zf,3 :=

{
(t, x, ξ) ∈ R∗ × T •M : f (x) = 0 and ξ =

t

3
dxf

}
. (18)
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Lemma 3.5. Let f ∈ C∞(M) where df never vanishes on {f = 0}. Let [Zf,3] be the
integration current on the set Zf,3 defined by (18) and π̃ the projection R∗ × T •M 3
(t; x, ξ) 7→ (x, ξ) ∈ T •M . Then

[N∗({f = 0})] = π̃∗[Zf,3]. (19)

Proof. Let ω(x, ξ ; dx, dξ) be an element in Dn(T •M). One has

〈π̃∗[Zf,3], ω〉 = 〈[Zf,3], π̃
∗ω〉 =

∫
{f (x)=0,ξ=tdxf,t∈R∗}

ω(x, ξ ; dx, dξ)

by a change of variable. Hence

〈π̃∗[Zf,3], ω〉 =

∫
{f (x)=0,t∈R∗}

ω(x, tdxf ; dx, d(tdxf )) =

∫
S×R∗

(λ∗ω)(t, x; dt, dx)

since (λ∗ω)(t, x; dt, dx) = ω(x, tdxf ; dx, d(tdxf )), and finally 〈π̃∗[Zf,3], ω〉 =
λ∗[S × R∗](ω) = [N∗({f = 0})](ω) by Lemma 3.3. ut

The next lemma represents the current [Zf,3] by Dirac distributions in a local coordinate
chart. Let (U, φ) be a sufficiently small coordinate chart centred at a point x0 in M . It
induces a coordinate chart on T ∗M as follows:

8 := T ∗φ : T ∗U → φ(U)× Rn, (x, ξ) 7→ (y, η) = (φ(x), (dxφ
∗)−1ξ).

We also set
T̊ ∗U := {(y, η) ∈ φ(U)× Rn : η 6= 0}.

We will use these conventions throughout. In particular, (x, ξ) will always denote a point
in T ∗M and (y, η) its image in local coordinates. Using these conventions, one has

Lemma 3.6. Let f ∈ C∞(M) where df never vanishes on {f = 0}. Then, in any system
(y, η) of local coordinates on T̊ ∗U where U ⊂ M is some bounded open subset,

[Zf,3]|R∗×T̊ ∗U = δ
n+1
0

(
f (y),

t

3
dyf − η

)
df ∧

n∧
i=1

d

(
t

3
∂yif − ηi

)
. (20)

Proof. The submanifold Zf,3 in R∗ × T •U is defined in the local coordinates (y, η) by
the system of n+ 1 equations:

f (y) = 0,
t

3

∂f

∂yi
− ηi = 0, 1 ≤ i ≤ n.

The collection of 1-forms
(
dyf, dηi − d

(
t
3
∂f

∂yi

))
1≤i≤n is linearly independent along Zf,3

as

dyf ∧

n∧
i=1

(
dηi − d

(
t

3

∂f

∂yi

))
= dyf ∧ dη1 ∧ · · · ∧ dηn + lower order terms in dη,
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where dyf ∧ dη1 ∧ · · · ∧ dηn does not vanish on Zf,3 since df does not vanish on
{f = 0}. Then, by Corollary D.4, the current [Zf,3] is represented in local coordinates
(y, η) by (20). ut

Combining the above lemma with Lemma 3.5 which gives the identity [N∗({f = 0})] =
π̃∗[Zf,3], we conclude this first part by the first key ingredient of our proof :

Proposition 3.7. Let f ∈ C∞(M) where df never vanishes on {f = 0}. Then, in any
system (y, η) of local coordinates on T̊ ∗U where U ⊂ M is some bounded open subset,
the restriction of the conormal cycle [N∗({f = 0})] to T •U can be described by

[N∗({f = 0})]|T •U =
∫
t∈R∗

δn+1
0

(
f (y),

t

3
dyf −η

)
dyf ∧

n∧
i=1

d

(
t

3
∂yif −ηi

)
(21)

where we use the convention
∫
t∈R∗ =

∫
+∞

0 +
∫
−∞

0 .

Our convention for the integral
∫
t∈R∗ reflects our choice of orientation for the conormal

cycle. We note that we use in fact the same convention as in [22, p. 682].

3.2. Push-forward of the Gaussian measure on 2-jets over U

Thanks to (21), the conormal cycle of {f = 0} at a point x ∈ U can be thought of as a
functional of the 2-jet of f at x ∈ U . As we aim at computing its expectation with respect
to the variable f , the push-forward of the measure µ3 on the 2-jet bundle will naturally
appear. The push-forward of this measure will then “live” on the space Rn2

+n+1 since
we are working in local charts. From this point on, we will in fact make use of geodesic
normal coordinate charts for which one has proper asymptotics for the spectral projector
associated to the Gaussian measure µ3 (see Appendix A).

Remark 3.8. By a geodesic normal coordinate chart, we mean the following. Consider
the exponential map Exp induced by the Riemannian metric on M . There exists a neigh-
bourhood U ofM×{0} in TM such that Exp induces a smooth diffeomorphism (x, v) 7→

(x, expx(v)) from U onto a small neighbourhood of the diagonal inM ×M . Then, we fix
a point x0 in M , and we consider the preimage of Tx0M under this diffeomorphism. This
defines a local chart around x0 into Tx0M which can be identified with Rn via a measure
preserving linear isomorphism.

We fix (y, η, t) in T̊ ∗U × R∗ and m ≥ 1. We define the following map from H3 to
Rn2
+n+1:

J 2
3(y) : f 7→ F =

(
f (y);

(
∂ylf (y)

3

)
1≤l≤n

;

(
∂2
yrysf (y)

32

)
1≤r,s≤n

)
.

For the coordinates in Rn2
+n+1, we set

F = (F0;F1, . . . , Fn;F1,1, . . . , Fn,1, F1,2, . . . , Fn,2, . . . , F1,n, F2,n, . . . , Fn,n).
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The next proposition describes the Fourier transform of the push-forward of the Gaussian
measure µ3 under the map J 2

3(y). It follows directly from the results on the asymp-
totics of the derivatives of the spectral projector recalled in Appendix A (more precisely,
Corollary A.3).

Proposition 3.9. The push-forward of the Gaussian measure µ3 under the map J 2
3(y)

induces a Gaussian measure ν̃y3(F ) on Rn2
+n+1:

ν̃
y
3(F ) := (J

2
3(y)∗µ3)(F ), (22)

whose Fourier transform has the following expression:∫
Rn2+n+1

e−2iπT .F ν̃
y
3(F ) = e

−
2π2

Volg(M)
〈T ,A3(y)T 〉

. (23)

where the matrix A3(y) is defined as follows:

A3(y) := A0 +O(3−1) =

(
A

1,1
3 (y) A

1,2
3 (y)

A
2,1
3 (y) A

2,2
3 (y)

)
,

with the constant in the remainder uniformly bounded in terms of y and 3, and

A0 :=

(
A1,1 A1,2
A2,1 A2,2

)
,

where the matrices Ai,j do not depend on y and are defined as follows.
A1,1 is an (n+1)×(n+1)matrix,A1,2 is an (n+1)×n2 matrix,A2,1 is an n2

×(n+1)
matrix, and A2,2 is an n2

× n2 matrix. Their expressions are

A1,1 :=

(
1 01×n

0n×1
1
n+2 Idn

)
, A2,1 = A

T
1,2 = −

1
n+ 2

((δr,s)1≤r,s≤n, 0n2×n),

and

A2,2 :=
1

(n+ 2)(n+ 4)
(Bs,s′)1≤s,s′≤n,

with Bs,s′ an n× n matrix which is equal to

Bs,s := Id+ 2 diag((δj,s)1≤j≤n) if s = s′,

and

Bs,s′ = B
T
s′,s := (δi,sδj,s′ + δi,s′δj,s)1≤i,j≤n if s 6= s′.

3.3. Interchanging integrations

In our proof, we need to integrate functions involving the variables (y, η, t) in T̊ ∗U ×R∗
but also f in H3. The fact that we can reverse the order of integration plays a central role
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in the following—see e.g. the proof of Proposition 4.4. Recall from [50, §2.3] that

D3 := {f ∈ H3 : ∃y ∈ f
−1(0), dyf = 0}.

is of µ3-measure 0 for 3 large enough. One can also verify that �3 = H3\D3
is an open subset of H3. For every f in H3, we define the following map on
H3 × φ(U)× Rn × R∗:

G3 : H3 × φ(U)× Rn × R∗ 3 (f, y, η, t)

7→

(
f (y);

t

3
∂y1f − η1, . . . ,

t

3
∂ynf − ηn

)
∈ R× Rn.

Then one has

Proposition 3.10. Let 9(f, y, η, t) be a test function in D(�3 × T̊ ∗U × R∗). Then〈
1, 〈G3(f )∗(δn+1

0 ),9〉
T̊ ∗U×R∗

〉
�3
= 〈G∗3(δ

n+1
0 ),9〉

�3×T̊ ∗U×R∗

=
〈
1, 〈G3(y, η, t)∗(δn+1

0 ),9〉�3
〉
T̊ ∗U×R∗ . (24)

Proof. See Appendix B. ut

4. Proof of Theorems 2.2 and 2.3

Recall that we aim at computing the expectation of the current of integration on the sub-
manifold N∗({f = 0}). According to Proposition 3.7 which gives an integral represen-
tation of the conormal cycle, one knows that, for every f in �3, and for every ω in
Dn(T̊ ∗U), one has

1
3n

∫
N∗({f=0})

ω(y, dy, η, dη)

=

〈
G3(f )

∗(δn+1
0 ), df ∧

n∧
j=1

d

(
t

3
∂yj f − ηj

)
∧ ω(y, η, dy, dη)

〉
T̊ ∗U×R∗

,

where 〈·, ·〉
T̊ ∗U×R∗ is the duality bracket in D′(T̊ ∗U ×R∗)×D(T̊ ∗U ×R∗). Recall that

we chose a particular orientation for R∗ in §3.1.
The main result of this section is the following theorem from which Theorems 2.2

and 2.3 follow by partition of unity:

Theorem 4.1. We use the above notations. For any element

ω :=
∑

|α|+|β|=n

ωα,β(y, η)dy
α
∧ dηβ

in Dn(T̊ ∗U), let
‖ω‖ = sup

α,β,(y,η)∈T̊ ∗U

|ωα,β(y, η)|.
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For every compact set K ⊂ T̊ ∗U , there exists a constant CK such that for all test forms
ω supported in K, ∫

H3

∣∣∣∣∫
N∗({f=0})

ω(y, dy, η, dη)

∣∣∣∣ dµ3 ≤ CK‖ω‖

and ∫
H3

(∫
N∗({f=0})

ω(y, dy, η, dη)

)
dµ3(f )

= Cn

(
3

√
n+ 2

)n ∫
T̊ ∗U

dy1
∧ · · · ∧ dyn ∧ ω(y, dy, η, dη)+O(3n−1),

with Cn = 0 if n ≡ 0 (mod 2) and

Cn :=
2(−1)(n+1)/2

π Vol(Sn−1)

if n ≡ 1 (mod 2).

Remark 4.2. It follows from the first statement of Theorem 4.1 that for every test form ω,
the map

f 7→

∫
N∗({f=0})

ω(y, dy, η, dη)

belongs to L1(H3, dµ3). For any integral current T , let M(T ) denote the mass of the
current T [36]. Our result is in fact slightly stronger than what we claimed in Theorem 2.2
as it also means that, for any smooth compactly supported cut-off function ϕ ∈ D0(T •M),∫

H3

M(ϕ[N∗({f = 0})]) <∞.

In other words, the mass of the cut-off conormal cycle ϕ[N∗({f = 0})] is an L1 function
of f ∈ H3.

The purpose of this section is to prove Theorem 4.1. We emphasize that there are two
parts in this statement. On the one hand, we have to show the integrability property, and
on the other hand, we have to compute the precise value of the expectation. The first part
requires a delicate analysis which is carried out in the first part of this section. After that
step, we can combine this first part with some combinatorial arguments in order to obtain
the second part of the theorem.

More precisely, the proof is organized as follows. First, in §4.1, we write a formal
asymptotic expansion in powers of 3−1 of

J (f, ω,U) :=
1
3n

∫
N∗({f=0})

ω(y, dy, η, dη).

In the more delicate §4.3 we prove the first part of Theorem 4.1 concerning the integrabil-
ity of the conormal cycle as a function of f ∈ H3 with respect to the measure dµ3. Then,
in §4.4, we explicitly compute the expression of the leading term and in the remaining
subsections we compute the combinatorial constant appearing in the leading term.
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4.1. Preliminary simplification

Before getting into the details of the proof of Theorem 4.1, we start by making a few
reductions that will make the calculation slightly simpler:

Lemma 4.3. Let ω :=
∑
|α|+|β|=n ωα,β(y, η)dy

α
∧dηβ be an element in Dn(T̊ ∗U). With

the above conventions, for every 3 and every f in �3,

1
3n

∫
N∗({f=0})

ω(y, dy, η, dη)

= −

n−1∑
k=0

3−k
〈
G3(f )

∗(δn+1
0 ), tn−3−kPk

(
(ηj )j , (∂

2
yj yl

f/32)j,l, (ωα,β)α,β
)〉
T̊ ∗U×R∗ ,

where

• for every 0 ≤ k ≤ n − 1, Pk(R, S, T ) is a polynomial which does not depend on 3, t
or f ,
• for every 0 ≤ k ≤ n − 1, Pk(R, S, T ) is homogeneous of degree 2 in the variables R,

homogeneous of degree n− 1− k in the variables S, and homogeneous of degree 1 in
the variables T ,
• for k = 0, one has

P0((Rj )j , (Sj,l)j,l, (Tα,β)α,β) =
( n∑
p=1

∑
σ∈Sn

ε(σ )RpRσ(p)
∏
j 6=p

Sj,σ (j)

)
T(0,...,0),(1,...,1).

At first sight, this lemma seems rather technical; yet, writing the integrals this way will
simplify the presentation afterwards. This lemma gives at least a formal expansion in
powers of 3−1, and we will verify in the following subsections that each term in the sum
is in fact integrable and has uniformly bounded L1 norm in H3.

Proof of Lemma 4.3. Write first

1
3n

∫
N∗({f=0})

ω(y, dy, η, dη) =

n∑
p=1

(−1)p
1
3n

∫
R+
I (p)(f, t) dt,

where

I (p)(f, t) =

〈
G3(f )

∗(δn+1
0 ),

∂ypf

3
df ∧

∧
j 6=p

d

(
t

3
∂yj f − ηj

)
∧ ω(y, η, dy, dη)

〉
T̊ ∗U

.

Expanding the df term in the wedge product, one can also write

1
3n

∫
N∗({f=0})

ω(y, dy, η, dη) =

n∑
p,q=1

(−1)n+p−1
∫
R+
I (p,q)(f, t) dt,
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where

I (p,q)(f, t)

:=

〈
G3(f )

∗(δn+1
0 ),

∂ypf

3

∂yqf

3

∧
j 6=p

d

(
t

32 ∂yj f −
ηj

3

)
∧ dyq ∧ ω(y, η, dy, dη)

〉
T̊ ∗U

.

Thanks to the definition of G3(f )∗(δn+1
0 ), this can be rewritten as

I (p,q)(f, t)

=
1
t2

〈
G3(f )

∗(δn+1
0 ), ηpηq

∧
j 6=p

d

(
t

32 ∂yj f −
ηj

3

)
∧ dyq ∧ ω(y, η, dy, dη)

〉
T̊ ∗U

.

Write now ω :=
∑
|α|+|β|=n ωα,β(y, η)dy

α
∧ dηβ , where ωα,β is compactly supported

in T̊ ∗U . By expanding the wedge product involved in the integrals, we can rearrange the
sum in the following way:

1
3n

∫
N∗({f=0})

ω(y, dy, η, dη)

= −

n−1∑
k=0

3−k
〈
G3(f )

∗(δn+1
0 ), tn−3−kPk((ηj )j , (∂

2
yj yl

f/32)j,l, (ωα,β)α,β)
〉
T̊ ∗U×R∗ ,

where the Pk(R, S, T ) are as in the statement. ut

4.2. Notations and conventions

In the following, for every 0 ≤ k ≤ n− 1, we set

J (k)(f, ω,U) =
〈
G3(f )

∗(δn+1
0 ), tn−3−kPk

(
(ηj )j , (∂

2
yj yl

f/32)j,l, (ωα,β)α,β
)〉
T̊ ∗U×R∗ .

In particular,

J (f, ω,U) :=
1
3n

∫
N∗({f=0})

ω(y, dy, η, dη) = −

n−1∑
k=0

3−kJ (k)(f, ω,U). (25)

In the following, the letter J (resp. K , L) will denote functionals of (y, η, t, f ) that have
been integrated against the variables (y, η, t) (resp. (y, η, t, f ), f ).

4.3. Integrability

For any ω :=
∑
|α|+|β|=n ωα,β(y, η)dy

α
∧ dηβ in Dn(T̊ ∗U), let

‖ω‖ = sup
α,β,(y,η)∈T̊ ∗U

|ωα,β(y, η)|.
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Using the conventions of §4.2, we will now prove the first part of Theorem 4.1 which
follows immediately from the next proposition.

Proposition 4.4. Let ω ∈ Dn(T̊ ∗U). Then, for every 0 ≤ k ≤ n− 1,

f 7→ J (k)(f, ω,U)

belongs to L1(H3, dµ3) and for every compact set K, there exists a constant CK,k > 0
such that for any test form ω in Dn(T̊ ∗U) supported in K,∫

�3

|J (k)(f, ω,U)| dµ3(f ) ≤ CK,k‖ω‖.

Proving this proposition is our most delicate task from the analytical point of view as we
have to carefully justify several inversions and convergences of integrals.

Remark 4.5. As was already mentioned, a direct consequence of this lemma is that, for
every ω in Dn(T̊ ∗U),

f 7→
1
3n

∫
N∗({f=0})

ω(y, dy, η, dη)

belongs to L1(H3, dµ3), which is exactly the content of the first part of Theorem 4.1. In
fact, we have something slightly more precise:∫

�3

(∫
N∗({f=0})

ω(y, dy, η, dη)

)
dµ3(f )

= −3n
∫
�3

J (0)(f, ω,U) dµ3(f )+O(3n−1).

Recall from §4.2 that

J (0)(f, ω,U) :=

n∑
p=1

∑
σ∈Sn

ε(σ )

×

〈
G3(f )

∗(δn+1
0 ), tn−3ηpησ(p)

(∏
j 6=p

∂2
yj ,yσ(j)

f

32

)
ω(0,...,0),(1,...,1)(y, η)

〉
T̊ ∗U×R∗

.

In particular, the second part of Theorem 4.1 reduces to the computation of the expectation
of J (0)(f, ω,U) with respect to the Gaussian measure dµ3(f ). This computation will be
performed in §§4.4 and 4.5.

We will now prove Proposition 4.4 in several steps. At several stages of the proof, we will
use results on pull-back of distributions which are discussed in Appendix B.
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4.3.1. Proof of Proposition 4.4—First step. As a first step, we will give a crude upper
bound on |J (k)(f, ω,U)|. Let ω̃ be a smooth function compactly supported on K ⊂ T̊ ∗U
such that, for any multiindices (α, β) satisfying |α| + |β| = n, and for any 1 ≤ p, q ≤ n,
one has

∀(y, η) ∈ T̊ ∗U, |ωα,β(y, η)ηpηq | ≤ ω̃(y, η).

Moreover, we choose ω̃ so that sup
(y,η)∈T̊ ∗U

ω̃(y, η) ≤ C‖ω‖ where C > 0 is a constant
depending only on the support of ω, and where ‖ · ‖ is the norm on smooth forms defined
at the beginning of §4.3. As explained in Remark B.9, G3(f )∗(δn+1

0 ) is a positive distri-
bution on T̊ ∗U × R∗, hence a positive Radon measure G3(f )∗(δn+1

0 )(dny, dnη, dt) on
T̊ ∗U × R∗. In particular,

|J (k)(f, ω,U)|

≤

∫
T̊ ∗U×R∗

ω̃(y, η)|t |n−3−kQk

(
(|∂2

yj yl
f/32

|)j,l
)
G3(f )

∗(δn+1
0 )(dny, dnη, dt) (26)

for some homogeneous polynomialQk of degree n− 1− k with nonnegative coefficients
and which is independent of ω, U , (y, η, t) and 3. Then, according to (26) and to Propo-
sition 3.10, the integrability of J (k)(f, ω,U) with respect to dµ3 will follow from the
integrability of the map

T̊ ∗U × R∗ ×�3 3 (y, η, t, f ) 7→ ω̃(y, η)|t |n−3−kQk

(
(|∂2

yj yl
f/32

|)j,l
)
∈ R+

with respect to the Radon measure µ3(f )G∗3(δ
n+1
0 )(df, dny, dnη, dt) where

µ3(f ) := e
−N(3)‖f ‖2/2

(
N(3)

2π

)N(3)/2
.

Thus, according to (26), in order to prove the lemma it remains to show that∫
T̊ ∗U×R∗×�3

ω̃(y, η)|t |n−3−kQk

(
(|∂2

yj yl
f/32

|)j,l
)
µ3(f )G

∗
3(δ

n+1
0 )(df, dny, dnη, dt)

is uniformly bounded with respect to 3. Let j := (j1, . . . , j2(n−k)−3, j2(n−k−1)) be an
element in {1, . . . , n}2(n−1−k). As Qk is a homogeneous polynomial of degree n− 1− k,
it is sufficient to prove that

K(k)(j, ω,U) :=∫
T̊ ∗U×R∗×�3

ω̃(y, η)|t |n−3−k
n−1−k∏
p=1

∣∣∣∣∣∣
∂2
y
j2p−1y

j2p
f

32

∣∣∣∣∣∣µ3(f )G∗3(δn+1
0 )(df, dny, dnη, dt)

(27)

is uniformly bounded with respect to 3.

4.3.2. Proof of Proposition 4.4—Step 2: Interchanging integrals. We can now use Propo-
sition 3.10 in order to reverse the order of integration, and to integrate first with respect
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to the f variable. For that purpose, we define the following nonnegative Radon measures
on �3:

ν
(y,η,t)

3,1 (df ) = µ3(f )G3(y, η, t)
∗(δn+1

0 )(df ),

ν
(y,η,t)

3,2 (df ) =

n−1−k∏
p=1

∣∣∣∣∣∣
∂2
y
j2p−1y

j2p
f (y)

32

∣∣∣∣∣∣
2

µ3(f )G3(y, η, t)
∗(δn+1

0 )(df ).

Then, combining (27) and the “Fubini identity” (24) of Proposition 3.10 with the Hölder
inequality, one finds that

K(k)(j, ω,U)

=

∫
T̊ ∗U×R∗×�3

ω̃(y, η)|t |n−3−k
n−1−k∏
p=1

∣∣∣∣∣∣
∂2
y
j2p−1y

j2p
f

32

∣∣∣∣∣∣µ3(f )G∗3(δn+1
0 )(df, dny, dnη, dt)

=

∫
T̊ ∗U×R∗

ω̃(y, η)|t |n−3−k

×

∫
�3

n−1−k∏
p=1

∣∣∣∣∣∣
∂2
y
j2p−1y

j2p
f

32

∣∣∣∣∣∣µ3(f )G3(y, η, t)∗(δn+1
0 )(df )

 dny dnη dt

≤

∫
T̊ ∗U×R∗

ω̃(y, η)|t |n−3−k
√
ν
(y,η,t)

3,1 (�3)

√
ν
(y,η,t)

3,2 (�3) d
ny dnη dt.

Finally, we get

K(k)(j, ω,U)

≤

∫
T̊ ∗U×R∗

ω̃(y, η)|t |n−3−k
√
ν
(y,η,t)

3,1 (�3)

√
ν
(y,η,t)

3,2 (�3) d
ny dnη dt. (28)

The problem is that we do not know a priori if (y, η, t) 7→ ν
(y,η,t)

3,1 (�3) and (y, η, t)

7→ ν
(y,η,t)

3,2 (�3) are integrable functions of (y, η, t). In particular, the r.h.s. of (28) can

a priori be infinite. We will now compute ν(y,η,t)3,q (�3) for q = 1, 2 and show that it is
in fact uniformly bounded in terms of 3 by an integrable function. We note that the case
q = 1 is a particular case of the case q = 2 (when k = n − 1). Thus, we only need to
compute ν(y,η,t)3,2 (�3). For that purpose, we introduce the following regularization of the
Dirac distribution, for every fixed t in R∗:

δn+1
t,1/m(F0, F1, . . . , Fn) :=

∫
Rn+1

e−(|τ0|
2
+t2|τ |2)/me−2iπ(τ0,τ ).F dτ0 dτ.

Remark 4.6. We denote by 0 = {0} × (Rn+1)∗ the wavefront set of δn+1
0 . Under the

conventions of [43, §8.2], δn+1
0 belongs to the space D′0(Rn+1). One can verify that

(δn+1
t,1/m)m≥1 sequentially converges to δn+1

0 in the topology of D′0(Rn+1) for every fixed t
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in R∗. Combining the sequential continuity of the pull-back operation ([43, Th. 8.2.4], see
also [17]) with Lemma B.3, we find that (G3(y, η, t)∗(δn+1

t,1/m))m≥1 weakly converges to
G3(y, η, t)

∗(δn+1
0 ) in the topology of D′(RN(3)), for every fixed (y, η, t) in T̊ ∗U × R∗.

We can then define the following sequences of regularized positive Radon measures, for
every m ≥ 1:

ν
(y,η,t)

3,2,m (df ) =

n−1−k∏
p=1

∣∣∣∣∣∣
∂2
y
j2p−1y

j2p
f (y)

32

∣∣∣∣∣∣
2

µ3(f )G3(y, η, t)
∗(δn+1

t,1/m)(f )df. (29)

We will now verify that (ν(y,η,t)3,2,m (�3))m≥1 is uniformly bounded in terms ofm as follows:

∀t > 0, ν
(y,η,t)

3,2,m (�3) ≤
C0

tn
e−1/(C0t

2), (30)

where the constant C0 is uniform in (y, η) on the support of ω̃, for 0 < m ≤ 1 and3 > 0
large enough. Then, combining this with Remark 4.6, one can deduce that ν(y,η,t)3,2 (�3) is
bounded by the same quantity, and thanks to (28), we can conclude that K(k)(j, ω,U) is
uniformly bounded in terms of 3, which is exactly what we were aiming for.

4.3.3. Proof of Proposition 4.4—Final step: Gaussian integral bounds on ν(y,η,t)3,2 (�3).

It remains to prove (30). Observe by the defining equation (29) of ν(y,η,t)3,2,m that

ν
(y,η,t)

3,2,m (�3) =

∫
�3

n−1−k∏
p=1

∣∣∣∣∣∣
∂2
y
j2p−1y

j2p
f (y)

32

∣∣∣∣∣∣
2

µ3(f )G3(y, η, t)
∗(δn+1

t,1/m)(df )

=

∫
Rn2+n+1

(n−1−k∏
p=1

F 2
j2p−1,j2p

)
(G3(y, η, t)∗µ3)(F )(δ

n+1
t,1/m)(F ) dF

where we recognize the push-forward measure ν̃y3(F ) = (G3(y, η, t)∗µ3)(F ) on
Rn2
+n+1 of the Gaussian measure µ3 described in Proposition 3.9. This allows us to

bound ν(y,η,t)3,2,m (�3):

ν
(y,η,t)

3,2,m (�3) ≤

∫
Rn+1

e2iπτ.ηe−(|τ0|
2
+t2|τ |2)/mδ̂

y
t (τ0, τ ) dτ0 dτ, (31)

where

δ̂
y
t (τ0, τ ) :=

∫
Rn2+n+1

n−1−k∏
p=1

F 2
j2p−1,j2p

e−2iπ(τ0,tτ ).(F0,...Fn)ν̃
y
3(F ) (32)

and ν̃y3(F ) is the Gaussian measure of Proposition 3.9. This quantity can also be rewritten
more explicitly using Wick’s lemma as

δ̂
y
t (τ0, τ ) = (−1)n−1−k

n−1−k∏
p=1

(
1

2π
∂

∂Tj2p−1,j2p

)2(
e
−

2π2
〈T ,A3(y)T 〉

Volg(M)
)
|T=(τ0,tτ,0)

, (33)
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where A3(y) was defined in Proposition 3.9. Equivalently, one has

δ̂
y
t (τ0, τ ) = R

j
y,3(τ0, tτ )e

−
2π2

Volg(M)
〈(τ0,tτ ),A

1,1
3 (y)(τ0,tτ )〉

,

for some polynomial Rj
y,3 depending only on y, 3 and j and whose coefficients are

uniformly bounded in terms of 3 and y. Combining this with (31), one finds that

ν
(y,η,t)

3,2,m (�3) ≤

1
tn
√

detB3(y)
R

j
y,3

(
1

2iπ
∂

∂η′0
,

(
1

2iπ
∂

∂η′l

)
1≤l≤n

)(
e−π〈η

′,B3,m(y)η
′
〉
)
|η′=(0,η/t), (34)

where B3,m(y) = π
Volg(M)

A
1,1
3 (y) + 1

2πm . From this expression, we deduce that there
exists a constant C0 > 0 such that for every (y, η) in the support of ω̃ (which is a compact
subset of T̊ ∗U ) and for every m ≥ 1, one has

∀t > 0, ν
(y,η,t)

3,2,m (�3) ≤
C0

tn
e−1/(C0t

2),

which is exactly the upper bound (30) from which we get

K(k)(j, ω,U) ≤
∫
T̊ ∗U×R∗

ω̃(y, η)|t |n−3−k
√
ν
(y,η,t)

3,1 (�3)

√
ν
(y,η,t)

3,2 (�3) d
ny dnη dt

≤ CK‖ω‖

∫
R∗
|t |n−3−k 1

tn
e
−

1
CKt2 dt︸ ︷︷ ︸

<∞

,

for some constant CK depending only on the compact support K ⊂ T̊ ∗U of ω. The
conclusion of Proposition 4.4 follows.

4.3.4. A consequence of integrability. We fix k = 0. We note that we have in fact proven
something slightly stronger than what we claim in the proposition. Namely, the map

(y, η, t, f ) 7→ tn−3ηpησ(p)

(∏
j 6=p

∂2
yj ,yσ(j)

f

32

)
µ3(f )ω(0,...,0),(1,...,1)(y, η)

belongs to L1(T̊ ∗U × R∗ × �3,G∗3(δ
n+1
0 )) and, thanks to Proposition 3.10, we can

integrate this quantity in any order, i.e. either first with respect to f (and then (y, η, t)) or
first with respect to (y, η, t) (and then f ).

4.4. Expectation of the leading term

In the previous subsection, we have verified that all the terms in the asymptotic expansion

J (f, ω,U) =
1
3n

∫
N∗({f=0})

ω(y, dy, η, dη) = −

n−1∑
k=0

3−kJ (k)(f, ω,U)
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belong to L1(H3, dµ3) and that their L1 norm is uniformly bounded with respect to 3.
We will now precisely compute the expectation of the leading term J (0)(f, ω,U), from
which the second part of Theorem 4.1 will follow.

Recall from Remark 4.5 and §4.3.4 that the expectation of the leading term decom-
poses as ∫

H3

J (0)(f, ω,U) dµ3(f ) =

n∑
p=1

∑
σ∈Sn

ε(σ )Kp,σ (ω,U), (35)

where

Kp,σ (ω,U) =

∫
T̊ ∗U×R∗

tn−3ηpησ(p)ω(0,...,0),(1,...,1)(y, η)Lp,σ (y, η, t) d
ny dnη dt,

and

Lp,σ (y, η, t) :=

∫
�3

(∏
j 6=p

∂2
yj ,yσ(j)

f

32

)
µ3(f )G3(y, η, t)

∗(δn+1
0 )(df ).

In particular, it remains to compute the value of Kp,σ (ω,U) and first the value of
Lp,σ (y, η, t).

Remark 4.7. If one wants to compute a Gaussian integral like∫
H3

(∫
N∗({f=0})

ω

)
dµ3(f ),

then a natural approach is to use the Kac–Rice formula which follows from the coarea
formula—see e.g. [11, Th. 4.2] or [50, Appendix C]. This kind of formula allows one to
change the order of integration in our integral and to integrate first with respect to the
Gaussian variable. As far as we know, there is no (at least no explicit) Kac–Rice formula
for the conormal cycle avalaible in the literature even if this kind of approach should a
priori allow one (modulo some work) to change the order of integration. Here, we have
decided to use an alternative approach to treat this issue which is more based on microlo-
cal techniques such as the pull-back theorem for distributions—see e.g. Appendix B. This
point of view of course also leads to reversing the order of integration as shown by (35).

4.4.1. Regularization of Kp,σ (ω). As in the proof of Proposition 4.4, we will regular-
ize the distributions δn+1

0 in order to proceed to the computation of Kp,σ (ω,U). In the
notations of §4.3.3 we have

Proposition 4.8. Consider the sequence δn+1
t,1/m of approximations of δn+1

0 . For every σ

in Sn, 1 ≤ p ≤ n and for every fixed (y, η, t) in T̊ ∗U × R∗, set

L(m)p,σ (y, η, t) :=

∫
H3

µ3(f )
∏
j 6=p

∂2
yj yσ(j)

f

32 G3(y, η, t)
∗(δn+1

t,1/m)(df ).

Then L(m)p,σ (y, η, t) equals the integral expression∫
Rn+1

e2iπτ.ηe−(|τ0|
2
+t2|τ |2)/m

∏
j 6=p

(
1

2π
∂

∂Tj,σ (j)

)2(
e
−

2π2
〈T ,A3(y)T 〉

Volg(M)
)
|T=(τ0,tτ,0)

dτ0 dτ.
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Proof. By the argument of §4.3.3, we know that

∫
H3

µ3(f )
∏
j 6=p

∂2
yj yσ(j)

f

32 G3(y, η, t)
∗(δn+1

t,1/m)(df )

=

∫
Rn2+n+1

(n−1−k∏
p=1

F 2
j,σ (j)

)
ν̃
y
3(F )(δ

n+1
t,1/m)(F )dF.

Since ν̃y3(F ) is a Gaussian measure with covariance A3, application of the Wick Lemma
shows that the right hand side equals∫

Rn+1
e2iπτ.ηe−(|τ0|

2
+t2|τ |2)/m

∏
j 6=p

(
1

2π
∂

∂Tj,σ (j)

)2(
e
−

2π2
〈T ,A3(y)T 〉

Volg(M)
)
|T=(τ0,tτ,0)

dτ0 dτ

which concludes the proof. ut

Note that

f 7→

(∏
j 6=p

∂2
yj ,yσ(j)

f

32

)
µ3(f )

1/2

tends to 0 as ‖f ‖ tends to infinity; thus, it can be approximated (in the C0 topology)
by a function ψ1(f ) in C∞c (H3). Moreover, mimicking the final step of the proof of
Proposition 4.4 (namely §4.3.3), one can verify that the sequence(∫

H3

µ3(f )
1/2G3(y, η, t)

∗(δn+1
t,1/m)(df )

)
m≥1

is uniformly bounded in terms of m ≥ 1 (but not necessarily in terms of 3, (y, η, t)).
Combining these two observations, we find that, for every 1 ≤ p ≤ n, for every σ in Sn,
and for a.e. (y, η, t) in T̊ ∗U × R∗,

lim
m→∞

L(m)p,σ (y, η, t) =

∫
H3

µ3(f )
∏
j 6=p

∂2
yj ,yσ(j)

f

32 G3(y, η, t)
∗(δn+1

0 )(df )

= Lp,σ (y, η, t),

where the last equality follows from (59) from the appendix. Mimicking one more time
the proof in §4.3.3, one also knows that there exists a constant C0 > 0 such that, for every
m ≥ 1, every 1 ≤ p ≤ n, and every σ in Sn, one has

∀(y, η, t) ∈ supp(ω(0,...,0),(1,...,1))× R∗, |L(m)p,σ (y, η, t)| ≤
C0

tn
e−1/(C0t

2).

In particular, from the dominated convergence theorem, we can deduce that

Kp,σ (ω) = lim
m→∞

∫
T̊ ∗U×R∗

tn−3ηpησ(p)ω(0,...,0),(1,...,1)(y, η)L
(m)
p,σ (y, η, t) d

ny dnη dt.

(36)
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4.4.2. Computing the limit as m → ∞. Using Gaussian integration, we will now ex-
plicitly compute the limit appearing in (36) as m → ∞ and 3 → ∞. According to
Proposition 4.8, one has

L(m)p,σ (y, η, t) = (−1)(n−1)/2
∫
Rn+1

e2iπτ.ηe−(|τ0|
2
+t2|τ |2)/m

×

∏
j 6=p

(
1

2π
∂

∂Tj,σ (j)

)(
e
−

2π2
〈T ,A3(y)T 〉

Volg(M)
)
|T=(τ0,tτ,0)

dτ0 dτ.

Recall that the expression of A3(y) was given in Propostion 3.9. If we plug in this ex-
pression into the previous equality, we can also verify that there exists a constant C0 > 0,
such that for every (y, η) in the support of ω̃ and for every m ≥ 1,

∀t > 0, |L(m)p,σ (y, η, t)− L̃
(m)
p,σ (η, t)| ≤

C03
−1

tn
e−1/(C0t

2), (37)

where

L̃(m)p,σ (η, t) =
(−1)(n−1)/2

(2π)n−1

∫
Rn+1

e2iπτ.ηe−(|τ0|
2
+t2|τ |2)/m

×

∏
j 6=p

(
∂

∂Tj,σ (j)

)(
e
−

2π2
〈T ,A0T 〉

Volg(M)
)
|T=(τ0,tτ,0)

dτ0 dτ.

In particular, provided that the limit limm→∞ L̃
(m)
p,σ (η, t) exists a.e., one can combine (36)

with the dominated convergence theorem to get

Kp,σ (ω,U) =

∫
T̊ ∗U×R∗

tn−3ηpησ(p)ω(0,...,0),(1,...,1)(y, η)
(

lim
m→∞

L̃(m)p,σ (η, t)
)
dny dnη dt

+O(3−1). (38)

Remark 4.9. We note that, thanks to the particular form of the matrix A0, one has

L̃(m)p,σ (η, t) =
(−1)(n−1)/2

(2π)n−1

∫
Rn+1

e2iπτ.ηe−
|τ0|

2
+t2|τ |2

m e
−

2π2t2|τ |2
Volg(M)(n+2)Hp,σ (τ0) dτ0 dτ,

where

Hp,σ (τ0) :=
∏
j 6=p

(
∂

∂Tj,σ (j)

)(
e
−

2π2
Volg(M)

〈(T0;0;(Ti,j )),A0(T0;0;(Ti,j )))
|T=(τ0;0;0)

.

After integrating over τ and letting m→∞, one finds

lim
m→∞

L̃(m)p,σ (η, t)

=
(−1)(n−1)/2

(2π)n−1
1
tn

(
(n+ 2)Volg(M)

2π

)n/2
e
−
(n+2)Volg(M)|η|2

2t2

∫
R
Hp,σ (τ0) dτ0.

4.4.3. Summing over p and σ . Recall that what we want to calculate is the leading term
−
∫
H3

J
(0)
3 (f, ω,U) dµ3(f ) of 3−n

∫
N∗({f=0})3

ω(y, dy, η, dη), which, thanks to (38)
and to Remark 4.9, is given by
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∫
H3

J (0)(f, ω,U) dµ3(f ) =

n∑
p=1

∑
σ∈Sn

ε(σ )Kp,σ (ω)

=

n∑
p=1

∑
σ∈Sn

ε(σ )

×

∫
T̊ ∗U×R∗

tn−3ηpησ(p)ω(0,...,0),(1,...,1)(y, η)
(

lim
m→∞

L̃(m)p,σ (η, t)
)
dny dnη dt

=
(−1)(n−1)/2

(2π)n−1

(
(n+ 2)Volg(M)

2π

)n/2 n∑
p=1

∑
σ∈Sn

ε(σ )

×

∫
T̊ ∗U×R∗

ηpησ(p)ω(0,...,0),(1,...,1)(y, η)
1
t3
e
−
(n+2)Volg(M)|η|2

2t2

∫
R
Hp,σ (τ0) dτ0 d

ny dnη dt.

In order to alleviate notations, we introduce:

L(η) =

n∑
p=1

∑
σ∈Sn

ε(σ )ηpησ(p)

∫
R
Hp,σ (τ0) dτ0. (39)

Then, we express everything in terms of L(η):∫
H3

J (0)(f, ω,U) dµ3(f )

=
(−1)(n−1)/2

(2π)n−1

(
(n+ 2)Volg(M)

2π

)n/2 n∑
p=1

∑
σ∈Sn

ε(σ )

×

∫
T ∗U×R∗

ω(0,...,0),(1,...,1)(y, η)ηpησ(p)
1
t3
e
−
(n+2)Volg(M)|η|2

2t2

∫
R
Hp,σ (τ0) dτ0 d

ny dnη dt

=
(−1)(n−1)/2

(2π)n−1

(
(n+ 2)Volg(M)

2π

)n/2 ∫
T ∗U×R∗

ω(0,...,0),(1,...,1)(y, η)

×
1
t3
e
−
(n+2)Volg(M)|η|2

2t2 L(η) dny dnη dt by definition of L(η)

=
(−1)(n−1)/2

(2π)n−1

(
(n+ 2)Volg(M)

2π

)n/2 ∫
T ∗U

ω(0,...,0),(1,...,1)(y, η)L(η) d
ny dnη

×

(∫
∞

0
t3e−

(n+2)Volg(M)|η|2t2

2
dt

t2
+

∫
−∞

0
t3e−

(n+2)Volg(M)|η|2t2

2
dt

t2

)
=
(−1)(n−1)/2

(2π)n−1

(
(n+ 2)Volg(M)

2π

)n/2 ∫
T ∗U

ω(0,...,0),(1,...,1)(y, η)L(η) d
ny dnη

×

∫
∞

0
e−

(n+2)Volg(M)|η|2t2

2 2t dt

=
2(−1)(n−1)/2

(2π)n−1
((n+ 2)Volg(M))n/2−1

(2π)n/2

∫
T ∗U

ω(0,...,0),(1,...,1)(y, η)
L(η)

|η|2
dny dnη.
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Therefore,∫
H3

(
1
3n

∫
N∗({f=0})

ω(y, dy, η, dη)

)
dµ3(f )

= An

∫
T̊ ∗U

L(η)

|η|2
dy1
∧ · · · ∧ dyn ∧ ω(y, dy, η, dη)+O(3−1), (40)

where

An :=
2(−1)(n+1)/2

(2π)n−1
((n+ 2)Volg(M))n/2−1

(2π)n/2
.

In order to conclude, it remains to compute L(η). This combinatorial calculation will be
the purpose of the next two subsections.

4.5. Computation of L(η)

Recall that L(η) is given by the sum (39). We start by computing explicitly each term in
the sum. We fix σ in Sn and 1 ≤ p ≤ n. Moreover, we set

T̃ := (T0; 0; (Ti,j )1≤i,j≤n) ∈ Rn
2
+n+1,

which appears in the definition ofHp,σ (τ0)—see Remark 4.9. Our first step will be to use
the Faà di Bruno’s formula for partial derivatives [40] to give an explicit expression of

∏
j 6=p

(
∂

∂Tj,σ (j)

)(
e
−

2π2
〈T̃ ,A0 T̃ 〉

Volg(M)
)
.

Recall that this formula states that∏
j 6=p

(
∂

∂Tj,σ (j)

)(
e
−

2π2
〈T̃ ,A0 T̃ 〉

Volg(M)
)
= e
−

2π2
〈T̃ ,A0 T̃ 〉

Volg(M)
∑

A∈P(0)
σ,p

(
−

2π2

Volg(M)

)|A|∏
a∈A

∂ |a|〈T̃ , A0T̃ 〉∏
j∈a ∂Tj,σ (j)

,

where P(0)σ,p is the set of partitions of {1 ≤ j ≤ n : j 6= p}. We now fix some notations:

Pσ,p := {A partition of {1 ≤ j ≤ n : j 6= p} : ∀a ∈ A, |a| ≤ 2 and σ(a) = a}.

Remark 4.10. We note that Pσ,p is empty if σ(p) 6= p. Moreover, for every σ such that
σ(p) = p, the above subset is empty if σ is not a product of disjoint 2-cycles.

For a given A in Pσ,p, we define

A1 := {a ∈ A : |a| = 1},
A2 := {a ∈ A : |a| = 2 and σ|a = id},
A3 := {a ∈ A : |a| = 2 and σ|a 6= id}.
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Using these conventions and the specific form of the matrix A0 (see §4.3.3), one finds
that ∏

j 6=p

(
∂

∂Tj,σ (j)

)(
e
−

2π2
〈T ,A0T 〉

Volg(M)
)
|T=(τ0;0;0)

= e
−

2π2τ2
0

Volg(M)
∑

A∈Pσ,p

(
−

4π2

Volg(M)(n+ 2)

)|A|( 1
n+ 4

)|A2|+|A3|

(−τ0)
|A1|.

Observe now that∫
R
τ
|A1|
0 e

−
2π2τ2

0
Volg(M) dτ0 =

(
Volg(M)

2π

)1/2

(|A1| − 1)!!
(

Volg(M)
4π2

)|A1|/2

if |A1| ≡ 0 (mod 2), and that it is equal to 0 otherwise. We now set

Cσ,p := ∑
A∈Pσ,p : |A1|≡0 (mod 2)

(
−

1
n+ 2

)|A|
(|A1| − 1)!!

(
4π2

Volg(M)

)|A|−|A1|/2( 1
n+ 4

)|A2|+|A3|

whenever σ(p) = p, and Cσ,p := 0 otherwise.

Remark 4.11. We note that the sum is empty as soon as n is even. In fact, requiring
|A1| ≡ 0 (mod 2) forces that n− 1 is even.

From the above calculation, we deduce

L(η) =

n∑
p=1

∑
σ∈Sn

ε(σ )ηpησ(p)

∫
R
Hp,σ (τ0) dτ0

=

(
Volg(M)

2π

)1/2 n∑
p=1

η2
p

∑
σ∈Sn

ε(σ )Cσ,p. (41)

In particular, from Remark 4.11, one has L(η) = 0 if n is even. We also note that∑
σ∈Sn

Cσ,p is independent of the choice of p. Thus, one finds that, whenever n is odd,

L(η) =

(
Volg(M)

2π

)1/2

|η|2
∑
σ∈Sn

ε(σ )Cσ,p. (42)

From (40), one finally obtains∫
H3

(
1
3n

∫
N∗({f=0})

ω(y, η, dy, dη)

)
dµ3(f )

=

(
Volg(M)

2π

)1/2

An

(∑
σ∈Sn

ε(σ )Cσ,p

) ∫
T̊ ∗U

dy1
∧ · · · ∧ dyn ∧ ω(y, dy, η, dη)

+O(3−1), (43)

where An was defined in (40).
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4.6. Computation of
∑
σ∈Sn

Cσ,p

From (43), it remains to compute
∑
σ∈Sn

Cσ,p which is independent of the choice of p.
For that purpose, we fix 0 ≤ k ≤ (n− 1)/2 and we suppose that σ is the product of k
disjoint 2-cycles σ1, . . . , σk . Next, we compute the value of Cσ,p in this case. We note
that |A3| is then necessarily equal to k, and thus

Cσ,p =

(
1

n+ 4

)k
×

∑
A∈Pσ,p : |A1|≡0 (mod 2)

(
−

1
n+ 2

)|A|
(|A1| − 1)!!

(
4π2

Volg(M)

)|A|−|A1|/2( 1
n+ 4

)|A2|

.

We also note the useful relations

n− 1 = |A1| + 2|A2| + 2|A3| and A = |A1| + |A2| + |A3|.

Recall now that the number of permutations in {1, 2, . . . , 2l} with l cycles of length 2 is
equal to (2l)!

l!2l [15, Th. 6.9]. From this observation, we deduce that

Cσ,p =

(
4π2

(n+ 2)2 Volg(M)

)(n−1)/2(
−
n+ 2
n+ 4

)k
×

(n−1)/2−k∑
l=0

(2l)!
l!2l

C2l
n−1−2k(n− 2(k + l + 1))!!

(
−
n+ 2
n+ 4

)l
,

and thus

Cσ,p =

(
2π2

2(n+ 2)2 Volg(M)

)(n−1)/2(
−

2(n+ 2)
n+ 4

)k
×

(n−1)/2−k∑
l=0

(n− 1− 2k)!

l!
(
n−1

2 − (k + l)
)
!

(
−
n+ 2
n+ 4

)l
.

Thanks to our formula for Cσ,p when σ is a product of k disjoint 2-cycles (thus ε(σ ) =
(−1)k), we deduce that∑
σ∈Sn

ε(σ )Cσ,p =

(
2π2

(n+ 2)2 Volg(M)

)(n−1)/2

×

(n−1)/2∑
k=0

C2k
n−1

(2k)!
k!2k

2k
(n−1)/2−k∑

l=0

(−1)l
(n− 1− 2k)!

l!2l
(
n−1

2 − (k + l)
)
!

(
n+ 2
n+ 4

)l+k
.

After simplification,∑
σ∈Sn

ε(σ )Cσ,p = (n− 1)!
(

2π2

(n+ 2)2 Volg(M)

)(n−1)/2

×

(n−1)/2∑
k=0

(
n+ 2
n+ 4

)k (n−1)/2−k∑
l=0

(
−
n+2
n+4

)l
k!l!

(
n−1

2 − (k + l)
)
!
,
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and thus∑
σ∈Sn

ε(σ )Cσ,p = (n− 1)!
(

2π2

(n+ 2)2 Volg(M)

)(n−1)/2

×

(n−1)/2∑
k=0

1

k!
(
n−1

2 − k
)
!

(
n+ 2
(n+ 4)

)k(
1−

n+ 2
n+ 4

)(n−1)/2−k

.

Finally, we obtain∑
σ∈Sn

ε(σ )Cσ,p =
(n− 1)!(
n−1

2

)
!

(
2π2

(n+ 2)2 Volg(M)

)(n−1)/2

. (44)

4.7. The conclusion

Regarding (40), (43) and (44), we define

Bn :=
2(−1)(n+1)/2

(2π)n−1
(n− 1)!(
n−1

2

)
!

π (n−3)/2

2(n+ 2)n/2
=
(−1)(n+1)/2

π Vol(Sn−1)

2
(n+ 2)n/2

.

if n ≡ 1 (mod 2) and Bn = 0 otherwise. Finally, still thanks to (43), we conclude∫
H3

(
1
3n

∫
N∗({f=0})

ω(y, dy, η, dη)

)
dµ3(f )

= Bn

∫
T̊ ∗U

ω(0,...,0),(1,...,1)(y, η) d
ny dnη +O(3−1),

which is exactly the content of the second part of Theorem 4.1.

5. Formal derivation of the main result via Berezin integration

The derivation of the main result (Th. 4.1) is slightly technical due to the fact that we have
to carefully justify the smallness of several terms and the interchange of several integrals,
but also due to some complicated combinatorics. The purpose of this last section is to
show how the combinatorial aspects of the proof can be treated more easily at the expense
of a little abstraction by making use of the so-called Berezin integral [5, 37, 25, 63].

In this section, we will not pay much attention to interchanging integrals or the size
of remainder terms, and we will mostly focus on the computation of the leading term of
the asymptotics. Similar arguments to the ones presented in the previous section would in
fact provide a rigorous justification of the calculation in the present section. The reason
for presenting this alternative approach in a formal (but not completely rigorous manner)
is that we believe that it can be helpful (at least for the reader familiar with Berezin inte-
gration) to understand and follow the main lines of our proof, especially its combinatorial
aspects. It is also plausible that this kind of intuitive calculation could be used for other
related questions.
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5.1. A brief reminder on Berezin integration

Berezin integration is a convenient formalism that allows us to represent the wedge prod-
uct appearing in our formulas as oscillatory integrals. This formalism was introduced by
Berezin [5] and it is a more or less standard tool in quantum field theory where one aims
at computing integrals over both bosonic (even) and fermionic (odd) variables. Basic in-
troductions to this formalism are given by Disertori [25] and Tao [63] with a view towards
random matrix theory, and a very good introduction can be found in the fantastic book
of Takhtajan [64, Chapter 7]; see also the book of Guillemin and Sternberg [37] for con-
siderations on Fourier transforms in this context. Following closely the presentation of
these references, we here give a brief (and somewhat simplified) overview that should be
sufficient for the purposes of our formal calculation.

5.1.1. Odd and even variables. Let V be a finite-dimensional real vector space. One can
define the so called exterior algebra 3V :=

⊕
∞

k=03
kV. For simplicity of notations, we

will denote by8182 := 81∧82 the product in this algebra. This algebra can be split into
two parts. One part is made up of the even (or bosonic) elements,3Veven :=

⊕
∞

k=03
2kV,

while the other is made up of the odd (or fermionic) elements, 3Vodd :=
⊕
∞

k=03
2k+1V.

Any odd element 5 commutes with every even element p, while it anticommutes with
odd elements. From this observation, one can deduce that any element 8 in

⊕
∞

k=13
kV

is nilpotent. One can verify that any element 8 of 3V can be exponentiated as follows:

exp(8) :=
∞∑
k=0

8k

k!
.

Important properties of the exponential are that exp(5) = 1+5 for any odd element 5
and that, for any even element p,

exp(p +8) = exp(p) exp(8) = exp(8) exp(p). (45)

5.1.2. Integration of functions of odd and even variables. One of the aims of Berezin
integration is to integrate functions whose variables are in 3V . In the following, we
just need a simple version of this formalism. Namely, we fix two nonnegative integers
d1 and d2, and we consider the case where V = R. We want to integrate functions de-
pending on the even variables (p1, . . . , pd1) ∈ (3

0V )d1 ' Rd1 and on the odd variables
(51, . . . ,5d2) ∈ (3

1V )d2 . Said differently, we consider the algebra C∞(Rd1) whose
elements are smooth functions f (p1, . . . , pd1) of the even variables (p1, . . . , pd1); then
we consider the Grassmann algebra C∞(Rd1)[51, . . . ,5d2 ], which is a polynomial al-
gebra generated by (51, . . . ,5d2) satisfying the relations 5i5j + 5j5i = 0 for all
(i, j) ∈ {1, . . . , d2}

2 (see [64, Chapter 7]). More precisely, our functions will be of the
form

f (p,5) := f0(p)+
∑
k≥1

∑
i1,...,ik

fi1,...,ik (p)5i1 . . . 5ik ,
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where f∗ are functions defined on Rd1 and with values in 3V . Given such a function f ,
we will say that it is defined on R(d1|d2) and its Berezin integral is defined by the funda-
mental formula∫

R(d1|d2)
f (p,5) dp d5 :=

∫
Rd1

∂51 . . . ∂5d2
f dp1 . . . dpd1 . (46)

We refer the reader to [25] for a more general presentation of Berezin integral, basic
properties of this integration procedure and a review of simple examples.

Remark 5.1. Following [37, Chapter 7], one can also define a notion of “super Fourier
transform”: for all q ∈ (30R)d1 and Q ∈ (31R)d2 ,

F(f )(q,Q) :=
∫
R(d1|d2)

exp(−2iπ(q.p +Q.5))f (p,5) dp d5.

The prefix “super” is here to emphasize that we consider functions depending on both
even (bosonic) and odd (fermionic) variables. We observe that q.p + Q.5 is an even
element.

Note that any 1-form Q can be written as follows:

Q = −
1

2iπ

∫
R(0|1)

exp(−2iπ5Q) d5, (47)

and more generally any product of d2 1-forms Q1, . . . ,Qd2 as

Q1 . . .Qd2 =
1

(−2iπ)d2

∫
R(0|d2)

exp
(
−2iπ

d2∑
j=1

5jQj

)
d51 . . . d5d2 . (48)

This formula gives us a representation of products of odd elements as “oscillatory” inte-
grals. This observation is the first key point which is at the heart of the calculation below.

5.1.3. Representation of integration currents as oscillatory integrals over even and odd
variables. Using the conventions of Appendix D, we consider a submanifold S in some
larger manifold X given by equations G = (gi)1≤i≤d = 0. Then it is well known that
the delta function δd0 ◦ G = G

∗(δd0 ) supported on S can be represented as an oscillatory
integral. So a natural question is how to represent the integration current [S] = [{G = 0}]
as an oscillatory integral. The answer involves the introduction of odd variables and the
use of the Berezin integral.

Proposition 5.2. Let X be a smooth oriented manifold with orientation [ω1], and

G : X 3 x 7→ y = (g1(x), . . . , gd(x)) ∈ Rd

a smooth function such that the differentials dxgi are linearly independent for every x ∈ X
satisfying g1(x) = · · · = gd(x) = 0. Let S be the submanifold inX defined by the regular
system of equations {g1 = · · · = gd = 0} and oriented by [ω2]. If dg1 ∧ · · · ∧ dgd
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has orientation compatible with the pair of orientations [ω1], [ω2] then the integration
current [S] is represented by the oscillatory integral

[S] = G∗
(

1
(−2iπ)d

∫
R(d|d)

e
−2iπ

∑d
j=1(pj y

j
+5j dy

j )
dp1 . . . dpd d51 . . . d5d

)
. (49)

Proof. This follows from a simple calculation. We start from the representation formula
for the current of integration given in Appendix D:

[S] = G∗(δd0dy
1
∧ · · · ∧ dyd).

Then, by the classical representation of the delta function by an oscillatory integral, one
has

G∗δd0G
∗(dy1

∧ · · · ∧ dyd) = G∗
(∫

Rd
e
−2iπ

∑d
j=1 pj y

j

dp1 . . . dpj

)
G∗(dy1

∧ · · · ∧ dyd).

Using the representation (48) of the exterior product dy1
∧ · · · ∧ dyd in terms of the

Berezin integral we end up with the expected formula. ut

If the ambient manifold X is RD (e.g. in a local chart), we can in fact write (at least
formally)

[S] =
1

(−2iπ)d

∫
R(d|d)

e
−2iπ

∑d
j=1(pjgj+5j dgj ) dp1 . . . dpd d51 . . . d5d .

This oscillatory integral formula is already known in the literature: it appears in the work
of Frenkel, Losev and Nekrasov on instantonic quantum field theory [30, p. 23].

5.1.4. Fourier transform of Gaussian integrals. We will prove the following lemma,
which will be the second key point in the computation of the asymptotics via Berezin
integration.

Lemma 5.3. Let N ≥ 1 and A be a symmetric, positive definite N × N matrix. Let
p = (p1, . . . , pN ) ∈ (3Veven)

N . Then

e−〈p|A
−1
|p〉/2
=

det(A)1/2

(2π)n/2

∫
RN
ei〈c,p〉e−〈c|A|c〉/2 dNc, (50)

where 〈c, p〉 =
∑N
j=1 cjpj and 〈p|A−1

|p〉 =
∑
i,j pipj (A

−1)ij .

Proof. Let C[[X1, . . . , XN ]] be the commutative algebra of formal power series in N
indeterminates (X1, . . . , XN ). First, we note that

e−〈X|A
−1
|X〉/2 and

det(A)1/2

(2π)n/2

∫
RN
ei〈c,X〉e−〈c|A|c〉/2 dNc (51)

are well defined as formal power series since the integral on the right hand side is de-
fined by expanding the exponential function ei〈c,X〉 in powers ofX under the integral sign
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where, for each (i1, . . . , ik), the term
∫
RN (ci1 . . . cik )e

−〈c|A|c〉/2dNc is a convergent inte-
gral that can be explicitly calculated by the Wick lemma. Then the equality between the
two formal series in (51) follows from the classical result on the Fourier transform of the
Gaussian measure replacing the formal indeterminate X by y ∈ RN and by uniqueness
of the Taylor series expansion in y at y = 0. ut

Remark 5.4. Conceptually, this proof shows that we can define the Fourier transform of
a Gaussian measure in a purely algebraic language.

5.2. Asymptotic expansion in a local chart

We fix a local geodesic normal coordinate chart (U, φ) and an element ω(y, dy, η, dη) in
Dn(T̊ ∗U). Recall that we want to compute the expectation of

J (f, ω,U) :=

∫
N∗({f=0})

ω(y, dy, η, dη)

with respect to the Gaussian measure dµ3. We can write formally

J (f, ω,U) =

∫
T̊ ∗U×R∗

δn+1
0

(
f,
tdyf

3
−η

)
df ∧

n∧
j=1

d

(
t∂yj f

3
−ηj

)
∧ω(y, dy, η, dη).

Recall that one of the reasons why the calculation of the expectation against the Gaussian
measure is possible is that the Dirac distribution can be represented by an oscillatory
integral over even variables:

δn+1
0

(
f,
tdyf

3
− η

)
=

∫
R(n+1|0)

exp
(
−2iπ

(
p0f + p.

(
tdyf

3
− η

)))
dp0 dp.

Then, some of the (combinatorial) difficulties in the proof come from the fact that at first
sight the wedge product does not have the same simple structure. By Proposition 5.2, we
see that the advantage of the Berezin formalism described above is that it allows us to
write the wedge product as an oscillatory integral over odd variables in R(0|n). Before
writing this oscillatory representation (see (53) below), we make a few steps that will
simplify the calculation slightly. More precisely, we expand the wedge product, and we
obtain

J (f, ω,U)

= 3

n∑
r,s=1

(−1)r
∫
T̊ ∗U×R∗

ηrηs

t2
dys ∧W r(f, t, y, dy, η, dη) ∧ ω(y, dy, η, dη) ∧ dt,

where

W r(f, t, y, dy, η, dη) := δn+1
0

(
f,
tdyf

3
− η

)∧
j 6=r

d

(
t∂yj f

3
− ηj

)
.
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For every t in R∗ and every f in H3, this defines an element in D′n+1(T̊
∗U). The main

contribution to this integral will come from the terms involving derivatives of f—this is
exactly the content of Proposition 4.4 above. Thus, one can set

W r
0 (f, t, y, dy, η) := δ

n+1
0

(
f,
tdyf

3
− η

)∧
j 6=r

d

(
∂yj f

32

)
,

and then one finds

J (f, ω,U)

= 3n
n∑

r,s=1

(−1)r
∫
T̊ ∗U×R∗

tn−3ηrηsdy
s
∧W r

0 (f, t, y, dy, η) ∧ ω(y, dy, η, dη) ∧ dt

+O(3n−1). (52)

In order to get the conclusion, everything boils down to computing the expectation of
W r

0 (f, t, y, dy, η) with respect to dµ3 for a given (y, η, t) in T̊ ∗U × R∗. In order to
alleviate notations, we will just writeW r

0 (f ) and re-introduce the dependence on (y, η, t)
later. Using the representation (48) of 1-forms via Berezin integrals, one can write the
following “oscillatory” integral:

W r
0 (f ) =

(−1)(n−1)/2

(2π)n−1

×

∫
R(n+1|n−1)

exp
(
−2iπ(p0f + p.

(
tdyf

3
− η

)
+

∑
j 6=r,k

∂2
yj yk

f

32 5jdy
k)

)
dp0 dp d5.

(53)

Remark 5.5. The fact that W r
0 (f ) has a simple representation as an oscillatory integral

is the central observation that makes our formal calculation much simpler than the de-
tailed combinatorial proof we gave before. Note that the element 5jdyk is even since it
is the product of two odd elements, and thus we are in a situation where we can apply
Lemma 5.3. As already mentioned, we do not pay much attention to interchanging inte-
grals and to the size of remainders, and we mostly focus on the conceptual aspects that
make our proof work.

Recall that we aim at computing the expectation of W r
0 (f ) with respect to the Gaussian

measure dµ3. For that purpose, we fix (p0, p,5) in R(n+1|n−1), and we use Lemma 5.3
to write∫
H3

exp
(
−2iπ(p0f + p.

(
tdyf

3

)
+

∑
j 6=r,k

∂2
yj yk

f

32 5jdy
k)

)
dµ3(f )

= exp
(
−

2π2

Volg(M)

〈
(p0, tp, (5jdy

k)j 6=r,k), A0(p0, tp, (5jdy
k)j 6=r,k)

〉)
(1+O(3−1)),

(54)
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where the covariance matrix A0 was defined in Proposition 3.9. We can now expand〈
(p0, tp, (5jdy

k)j 6=r,k), A0(p0, tp, (5jdy
k)j 6=r,k)

〉
=

1
n+ 2

t2|p|2 + p2
0 −

2
n+ 2

p0
∑
j 6=r

5jdy
j

+
2

(n+ 2)(n+ 4)

∑
j,k 6=r

(5jdy
k5kdy

j
+5jdy

j5kdy
k).

Thanks to the anti-commutation rules for odd variables, the last term in this sum is in
fact equal to 0. Recall that we are in fact interested in computingW r

0 (f ) which is defined
by (53). In particular, we have to multiply this Gaussian term by e2iπp.η and then integrate
over (p0, p,5) in R(n+1|n−1). After integrating over the even variables (p0, p), one finds
that ∫

R(n|0)
e2iπp.η exp

(
−

2π2t2|p|2

(n+ 2)Volg(M)

)
dp

=

(
Volg(M)(n+ 2)

2πt2

)n/2
e
−
(n+2)Volg(M)|η|2

2t2 , (55)

and, by Lemma 5.3,

∫
R(1|0)

exp
(
−

2π2

Volg(M)

(
p2

0 −
2

n+ 2
p0
∑
j 6=r

5jdy
j

))
dp0

=

(
Volg(M)

2π

)1/2

exp
(

2π2

Volg(M)(n+ 2)2

(∑
j 6=r

5jdy
j
)2
)
. (56)

It now remains to integrate (56) with respect to the odd variables (5j )j 6=r . Regarding
the definition of the Berezin integral, we have to compute

∂

∂51
. . .

∂̂

∂5r
. . .

∂

∂5n
exp

(
2π2

Volg(M)(n+ 2)2

(∑
j 6=r

5jdy
j
)2
)
.

One can verify that if n is even, this quantity vanishes, and then the total expectation
vanishes. When n is odd, one finds from the multinomial Newton formula that

∂

∂51
. . .

∂̂

∂5r
. . .

∂

∂5n
exp

(
2π2

Volg(M)(n+ 2)2

(∑
j 6=r

5jdy
j
)2
)

=
(n− 1)!(
n−1

2

)
!

(
2π2

Volg(M)(n+ 2)2

)(n−1)/2

dy1
∧ · · · ∧ ˆdyr ∧ · · · ∧ dyn.
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Combining this with (56), we obtain∫
R(1|n−1)

exp
(
−

2π2

Volg(M)

(
p2

0 −
2

n+ 2
p0
∑
j 6=r

5jdy
j

))
dp0 d5

=

(
Volg(M)

2π

)1/2
(n− 1)!(
n−1

2

)
!

(
2π2

Volg(M)(n+ 2)2

)(n−1)/2

dy1
∧ · · · ∧ ˆdyr ∧ · · · ∧ dyn.

(57)

From (55) and (57), we deduce that∫
H3

W r
0 (f, t, y, dy, η) dµ3(f ) =

(−1)(n−1)/2

(2π)n−1
(n− 1)!(
n−1

2

)
!

π (n−3)/2

2(n+ 2)n/2
(n+ 2)Volg(M)

× e
−
(n+2)Volg(M)|η|2

2t2 dy1
∧ · · · ∧ ˆdyr ∧ · · · ∧ dyn(1+O(3−1)).

We now use equality (52). Summing over r and s and integrating over t , one finally sees
that, if n is odd,∫
H3

J (f, ω,U) dµ3(f )

=
2(−1)(n+1)/2

π Vol(Sn−1)

(
3

√
n+ 2

)n ∫
T̊ ∗U

dy1
∧ · · · ∧ dyn ∧ ω(y, dy, η, dη)+O(3n−1).

Appendix A. Derivatives of the spectral projector

Recall that (ej )1≤j≤N(3) is an orthonormal basis of H3 made up of eigenfunctions of 1.
We define the normalized projection kernel

C3(y, z) :=
1

N(3)

N(3)∑
j=1

ej (y)ej (z),

where N(3) = dim H3. The reason why we can perform some computations with re-
spect to the Gaussian measure µ3 is that we have very precise asymptotic information on
the kernel C3(y, z), at least on the diagonal. Namely, Bin [9] proved the following result
building on earlier arguments of Hörmander [42]:

Theorem A.1. Let (U, φ) be a sufficiently small geodesic normal coordinate chart. For
any multiindices α and β in Zn+, the following estimates hold uniformly for y in φ(U), as
3→∞:

∂αy ∂
β
z C3(y, z)|y=z = Cn,α,β3

|α+β|
+O(3|α+β|−1),

where, for α = β = 0,

Cn,0,0 :=
1

Volg(M)
;
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for α ≡ β (mod 2) and (α, β) 6= (0, 0),

Cn,α,β := (−1)(|α|−|β|)/2
∏n
j=1(αj + βj − 1)!!

Volg(M)(|α + β| + n) . . . (n+ 2)
;

and Cn,α,β := 0 otherwise.

Remark A.2. We use the following conventions:

(−1)!! := 1 and (2m− 1)!! := (2m− 1)(2m− 3) . . . 3 · 1.

We gather the values of the derivatives of the spectral projector which are used to prove
Proposition 3.9.

Corollary A.3.

• For derivatives of order 0, one has

C3(y, z)|y=z =
1

Volg(M)
+O(3−1),

• for every 1 ≤ j ≤ n, one has

1
32 ∂

2
yj
C3(y, z)|y=z = −

1
(n+ 2)Volg(M)

+O(3−1),

• for every 1 ≤ j ≤ n, one has

1
32 ∂yj ∂zjC3(y, z)|y=z =

1
(n+ 2)Volg(M)

+O(3−1),

• for every 1 ≤ j 6= k ≤ n, one has

1
34 ∂

2
yj
∂2
zk
C3(y, z)|y=z =

1
34 ∂

2
yj yk

∂2
zj zk

C3(y, z)|y=z

=
1

(n+ 2)(n+ 4)Volg(M)
+O(3−1),

• for every 1 ≤ j ≤ n, one has

1
34 ∂

2
yj
∂2
zj
C3(y, z)|y=z =

3
(n+ 2)(n+ 4)Volg(M)

+O(3−1),

• for every α 6≡ β (mod 2), one has

1
3|α+β|

∂αy ∂
β
z C3(y, z)|y=z = O(3−1).
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Appendix B. Proof of Proposition 3.10

We fix f in �3 = H3\D3. Recall that D3 is a zero measure subset of H3 and that its
complement is open. Given any test function 9(f, y, η, t) in D(�3 × T̊ ∗U × R∗), our
goal in this appendix is to make sense of the following Fubini equality:〈

1, 〈G3(f )∗(δn+1
0 ),9〉

T̊ ∗U×R∗
〉
�3
= 〈G∗3(δ

n+1
0 ),9〉

�3×T̊ ∗U×R∗

=
〈
1, 〈G3(y, η, t)∗(δn+1

0 ),9〉�3
〉
T̊ ∗U×R∗ .

The fact that the distribution G3(f )∗δn+1
0 is well-defined for f in �3 follows from

the following theorem of Hörmander [43, Th. 8.2.4]:

Theorem B.1. Let �1 ⊂ Rd1 and �2 ⊂ Rd2 be two open subsets. For any smooth map
G : �1 → �2, the normal of G is defined as

NG := {(G(x), τ ) ∈ �2 × Rd2∗ : τ ◦ dxG = 0}.

The pull-back operation extends uniquely to the distributions u ∈ D′(�2) whose wave-
front set WF(u) does not intersect the normal NG of G. Moreover, the wavefront set of
G∗u is contained in the set

G∗WF(u) := {(x, τ ◦ dxG) : (G(x), τ ) ∈WF(u)}.

Remark B.2. For the definition of the wavefront set, we refer to [43, 16]. Recall that, in
the case of δn+1

0 , one has

WF(δn+1
0 ) := {(0, τ ) : τ 6= 0} ⊂ T ∗Rn+1.

In the following, we will apply this theorem in three distinct situations. Recall that, for
every f in H3, we have defined the map

G3 : H3 × φ(U)× Rn × R∗ 3 (f, y, η, t)

7→

(
f (y);

t

3
∂y1f − η1, . . . ,

t

3
∂ynf − ηn

)
∈ R× Rn,

and our idea is to think of H3 × φ(U) × Rn × R∗ as the cartesian product of H3 with
φ(U) × Rn × R∗ and to think of the global distribution G∗3δ

n+1
0 also as a distribution

on H3 depending smoothly on the parameters in φ(U) × Rn × R∗ and conversely as a
distribution on φ(U) × Rn × R∗ depending smoothly on the parameters in H3. To be
more precise, we will use Hörmander’s theorem in the following three cases:

(1) We fix f in �3, and we consider the partial map G3(f ) : T̊ ∗U × R∗ → Rn+1. As
dyf 6= 0 on f−1(0), one can verify that

NG3(f ) ∩WF(δn+1
0 ) = ∅.

This means that if we freeze f , the pull-backG3(f )∗δn+1
0 is a well-defined distribu-

tion on T̊ ∗U × R∗.
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(2) We consider the mapG3 : H3× T̊
∗U×R∗+→ Rn+1. In order to apply Hörmander’s

result, we would need to verify

NG3 ∩WF(δn+1
0 ) = ∅,

which is slightly less obvious.
(3) We fix (y, η, t) in T̊ ∗U×R∗, and consider the partial mapG3(y, η, t) : H3→Rn+1.

The situation in this case is also slightly different from the first case.

The second and third cases are in some sense related to the notion of ampleness appearing
for instance in [33, 50], and they are contained in the following lemma:

Lemma B.3. There exists 30 > 0 such that, for every 3 ≥ 30,

NG3 ∩WF(δn+1
0 ) = ∅,

and, for every (y, η, t) in T̊ ∗U × R∗,

NG3(y,η,t) ∩WF(δn+1
0 ) = ∅.

In particular, G∗3(δ
n+1
0 ) is well-defined as a distribution on H3 × T̊

∗U × R∗, while
G3(y, η, t)

∗(δn+1
0 ) is well-defined as a distribution on H3.

Remark B.4. We note that in the second and third cases, the distributions are defined on
the whole space H3, and not only on �3. In particular, we can consider their restriction
to the open subset �3.

Before continuing our discussion of the properties of these pulled-back distributions, we
give the proof of the lemma.

Proof of Lemma B.3. Suppose that (0, τ ) belongs to the normal set NG3(y,η,t) (the other
case is similar). Then, for every f in H3,

τ0f (y)+

N(3)∑
j=1

τj
t∂yj f

3
= 0.

Consider now a family of functions f30 , f
3
1 , . . . , f

3
n in H3, and write

det
((
f3l (y),

t∂y1f3l

3
, . . . ,

t∂ynf
3
l

3

)
0≤l≤n

)
=
tn

3n
det((f3l (y), ∂y1f

3
l , . . . , ∂ynf

3
l )0≤l≤n).

If we are able to find a family (f3l )0≤l≤n in H3 such that the right hand side does not
vanish, we will deduce that τ = 0. For that purpose, we note that we can find3 a family

3 We may have to pick a slightly smaller neighbourhood U .
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of smooth functions f0, f1, . . . , fn on M such that the right hand side does not vanish
for every y in U . Unfortunately, these functions do not a priori belong to H3 but we can
solve this issue since by Lemma C.1 proved in Appendix C, finite linear combinations
of eigenfunctions are everywhere dense in C∞(M). Concretely, to every 0 ≤ l ≤ n

corresponds a sequence (f3l )3 in H3 which converges to fl in every Ck norm (this is
just an approximation property like the Stone–Weierstrass theorem but on Riemannian
manifolds). From this, we deduce the statement of the lemma for 3 large enough. ut

We refer the reader to Appendix C where a similar method yields an unusual proof of the
Whitney embedding theorem.

As a direct consequence of the pull-back theorem of Hörmander, we can also describe
the wavefront set of G∗3(δ

n+1
0 ):

Corollary B.5. For 3 > 0 large enough,

WF(G∗3(δ
n+1
0 )) ⊂

{
(yj , ηj , t, f ; ŷj , η̂

j , t̂ , f̂ ) ∈ T ∗(H3 × T̊
∗U × R∗) :

G3(f, y, η, t) = (0, . . . , 0), ŷj = τ0∂yj f + τ1
t

3
∂2
yj y1f + · · · + τn

t

3
∂2
yj yn

f, η̂j = τj ,

t̂ =
1
3

n∑
j=1

τj∂yj f, ∀1 ≤ i ≤ N(3), f̂i = τ0ei +

n∑
j=1

tτj

3
∂xj ei

for (τ0, τ1, . . . , τn) 6= (0, . . . , 0)
}
.

Remark B.6. This corollary has the following consequence; WF(G∗3(δ
n+1
0 )) contains no

element of the form (yj , ηj , t, f ; 0, 0, 0, f̂ )with f̂ 6= 0 or (yj , ηj , t, f ; ŷj , η̂j , t̂ , 0)with
(ŷj , η̂

j , t̂ ) 6= 0. The first observation is more or less immediate if one uses Theorem A.1
for α = β = 0. The second one follows from the proof of Lemma B.3.

The relevance of the above remark is due to the following general result which can be
found in [20, Proposition 1.3, p. 502]:

Proposition B.7. Let u ∈ D′(Rn1 × Rn2). Denote by (x, y; ξ, η) ∈ T ∗(Rn1 × Rn2) the
coordinates in the cotangent space. If WF(u) has no elements of the form (x, y; ξ, 0)
such that ξ 6= 0, then u(x, y) is smooth in x with value distribution in y in the sense that
for all test functions ϕ2(y), x 7→ 〈u(x, ·), ϕ2(·)〉Rn2 is smooth in x.

Thus, one finds that there exists H3 3 f 7→ T3(f ) ∈ D′(T̊ ∗U ×R∗) such that, for every
ψ1 ∈ D(H3) and every ψ2 ∈ D(T̊ ∗U × R∗),

f 7→ 〈T3(f ), ψ2〉T̊ ∗U×R∗ ∈ C
∞(H3),

and
(y, η, t) 7→ 〈G3(y, η, t)

∗δn+1
0 , ψ1〉�3 ∈ C

∞(T̊ ∗U × R∗).
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Moreover, one has the following “distributional version” of the Fubini theorem:

∀(ψ1, ψ2) ∈ D(H3)×D(T̊ ∗U × R∗),

〈ψ1, 〈T3(f ), ψ2〉T̊ ∗U×R∗〉H3
= 〈G∗3(δ

n+1
0 ), ψ1 � ψ2〉H3×T̊ ∗U×R∗

=
〈
ψ2, 〈G3(y, η, t)

∗(δn+1
0 ), ψ1

〉
H3
〉
T̊ ∗U×R∗ .

Remark B.8. Note that T3(f ) is well defined on the whole space H3 while
G3(f )

∗(δn+1
0 ) was only defined on �3 by Theorem B.1. For a fixed f in �3, one has in

fact T3(f ) = G3(f )∗(δn+1
0 ).

By density of the functions of the form ψ1(f )�ψ2(y, η, t) (where � is the exterior tensor
product) in D(�3 × T̊ ∗U × R∗) (see [58, Ch. IV]), given any test function 9(f, y, η, t)
in D(�3 × T̊ ∗U × R∗), one has the following Fubini equality:

〈
1, 〈T3, 9〉T̊ ∗U×R∗

〉
H3
= 〈G∗3(δ

n+1
0 ),9〉H3×T̊ ∗U×R∗ (58)

=
〈
1, 〈G3(y, η, t)∗(δn+1

0 ),9〉H3

〉
T̊ ∗U×R∗ .

Remark B.9. We emphasize that all the distributions considered so far are constructed
from the Dirac distribution δn+1

0 and that they are positive distributions. In particular,
according to [58, Ch. I], they can all be identified with positive Radon measures. There-
fore, it makes sense to test them against nonnegative measurable functions which are not
necessarily integrable (or integrable functions which are not necessarily smooth). This
identification is used several times in our proof of Proposition 4.4.

Remark B.10. We now make a final useful comment. We fix (ψ1, ψ2) ∈ D(H3) ×

D(T̊ ∗U × R∗). According to (24),

∫
T̊ ∗U×R∗

ψ2(y, η, t)

(∫
H3

ψ1(f )G3(y, η, t)
∗(δn+1

0 )(df )

)
dny dnη dt

=

∫
H3

ψ1(f )

(∫
T̊ ∗U×R∗

ψ2(y, η, t)T3(d
ny, dnη, dt)

)
df.

From the above discussion, one knows that

f 7→ ψ1(f )

(∫
T̊ ∗U×R∗

ψ2(y, η, t)T3(d
ny, dnη, dt)

)

is a smooth compactly supported function. As�3 = H3\D3 andD3 has zero Lebesgue
measure, one then has
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∫
T̊ ∗U×R∗

ψ2(y, η, t)

(∫
H3

ψ1(f )G3(y, η, t)
∗(δn+1

0 )(df )

)
dny dnη dt

=

∫
�3

ψ1(f )

(∫
T̊ ∗U×R∗

ψ2(y, η, t)G3(f )
∗(δn+1

0 )(dny, dnη, dt)

)
df

=

∫
T̊ ∗U×R∗

ψ2(y, η, t)

(∫
�3

ψ1(f )G3(y, η, t)
∗(δn+1

0 )(df )

)
dny dnη dt,

where the second equality follows from the fact that

G3(f )
∗(δn+1

0 )(dny, dnη, dt)df and G3(y, η, t)
∗(δn+1

0 )(df ) dny dnη dt

define the same Radon measure on �3 × T̊ ∗U × R∗. Note also that this equality holds
for any smooth compactly supported function ψ2. In particular, one finds that, for a.e.
(y, η, t) in T̊ ∗U × R∗,∫

H3

ψ1(f )G3(y, η, t)
∗(δn+1

0 )(df ) =

∫
�3

ψ1(f )G3(y, η, t)
∗(δn+1

0 )(df ). (59)

Appendix C. A functional-analytic proof of the Whitney embedding theorem

In this short section, we prove the approximation property used in the proof of Lemma
B.3, and we illustrate it by giving a simple proof of the Whitney embedding theorem. In
fact, on a smooth compact manifold M , if we have enough smooth functions e1, . . . , eN
so that their linear combinations approximate any smooth function with enough accuracy,
then we will prove that we can embed the manifold M in RN for N sufficiently large by
the simple map

M 3 x 7→ (e1(x), . . . , eN (x)) ∈ RN .

C.1. Approximation of smooth functions

We denote by H s(M) the Sobolev space of functions or distributions of order s, i.e.
the set of all distributions t such that 1s/2g t belongs to L2(M) with norm ‖ · ‖H s (M) =

‖(1−1g)s/2 · ‖L2(M). Note by the spectral theorem that

‖(1−1g)s/2t‖L2(M) =

( ∞∑
i=1

(1+ λ2
i )
s/2
|〈t, ei〉L2 |

2
)1/2

,

where we use the conventions of the introduction. First, we show that the eigenfunctions
of the Laplace operator span a vector space which is everywhere dense in C∞(M). This
property was used to prove Lemma B.3.

Lemma C.1. Let (M, g) be a smooth compact boundaryless Riemannian manifold. Then
the finite linear combinations of eigenfunctions (ei)i of the Laplace–Beltrami operator
1g span a dense subspace of C∞(M). More precisely, for every Ck norm ‖ · ‖Ck ,∥∥∥f − N∑

i=1

〈f, ei〉L2ei

∥∥∥
Ck
−−−−→
N→∞

0.
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Proof. Eigenfunctions (ei)i of the Laplace operator are smooth by elliptic regularity.
Thus, any finite combination of them belongs to C∞(M). By the Sobolev embedding
theorem, it suffices to show that for any s > 0,∥∥∥f − N∑

i=1

〈f, ei〉L2ei

∥∥∥
H s
−−−−→
N→∞

0.

For that purpose, we write∥∥∥f − N∑
i=1

〈f, ei〉L2ei

∥∥∥2

H s
=

∞∑
i=N+1

(1+ λ2
i )
s/2
|〈f, ei〉L2 |

2,

which tends to 0 as f is smooth. ut

C.2. Whitney embedding theorem

We will now show how this approximation property can be used to prove the following
version of the Whitney embedding theorem:

Theorem C.2. Let (M, g) be a smooth compact Riemannian manifold without boundary.
Let (ei)i be the sequence of eigenfunctions of the Laplace–Beltrami operator as defined
in the introduction. Then there exists N0 such that for any N ≥ N0, the map

iN : M 3 x 7→ (e1(x), . . . , eN (x)) ∈ RN (60)

is an embedding.

Proof. We first prove that iN is an immersion; then we show it is injective.
Fix some N . To show that iN is an immersion, we proceed as in the proof of Lem-

ma B.3. It suffices to show that for all x ∈ M , diN (x) has maximal rank, in other words

x 7→ (de1, . . . , deN )

has rank dimM = n. Equivalently, this means that near every x0 ∈ M , there is a neigh-
bourhood U and n sequences (a1

i )1≤i≤N , . . . , (a
n
i )1≤i≤N such that for all x ∈ U , the

covectors
N∑
i=1

a1
i dei(x), . . . ,

N∑
i=1

ani dei(x)

are linearly independent. In other words, the n-form( N∑
i=1

a1
i dei

)
∧ · · · ∧

( N∑
i=1

ani dei

)
never vanishes on U . But this is easy to achieve since for every x0, we can always
find some sufficiently small neighbourhood U of x0 and functions f1, . . . , fn such that
df1 ∧ · · · ∧ dfn(x) 6= 0 for all x ∈ U . And since the family (ei)i spans a dense sub-
space of C∞(M), we can always find N0 large enough so that the vector space spanned
by (ei)i≤N0 is very close to f1, . . . , fn in the C1 topology.
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The last part consists in proving that the above map is injective for N large enough.
By the previous part, we can fix N0 large enough so that iN0 is an immersion. Since an
immersion is locally injective and M is compact, there is some ε > 0 such that for all
x ∈ M , the map iN0 : B(x, ε)→ RN0 is injective. In other words, if iN0(x) = iN0(y) for
some (x, y) ∈ M2 then x = y or d(x, y) > ε. We denote by1M the diagonal inM ×M .
Consider the map iN0 × iN0 : (M ×M) \1M → RN0 × RN0 which meets the diagonal
1 ⊂ RN0 ×RN0 exactly at pairs of points (x, y) where iN0 fails to be injective. First note
that (iN0 × iN0)

−1(1) = {(x, y) : iN0(x) = iN0(y), d(x, y) ≥ ε} is a closed subset of
M ×M \1M . Since M ×M \1M is precompact, the closed subset (iN0 × iN0)

−1(1) is
compact. Note by definition of iN that for allN , (iN+1× iN+1)

−1(1) ⊂ (iN × iN )
−1(1).

Hence ((iN × iN )−1(1))N , for N ≥ N0, is a decreasing sequence of compact subsets in
M×M \ {(x, y) ∈ M2

: d(x, y) < ε}. For contradiction, assume that for all N ≥ N0, the
map iN fails to be injective; then (iN × iN )−1(1) is nonempty for allN , so for allN there
is a pair (xN , yN ) ∈ M ×M \ {(x, y) ∈ M2

: d(x, y) < ε} such that iN (xN ) = iN (yN )
for all N . By compactness ofM ×M \ {(x, y) ∈ M2

: d(x, y) < ε}, we may assume that
the sequence (xN , yN )N converges to some element (x, y) in M ×M \ {(x, y) ∈ M2

:

d(x, y) < ε}. It follows by definition of iN that ei(xk) = ei(yk) for all k ≥ i and by
continuity of the the functions (ei)i and the fact that xk → x, yk → y, we also see that
ei(x) = ei(y) for all i.

On the other hand, we know that there is some smooth function f such that f (x)
6= f (y). Since f =

∑
∞

i=1〈f, ei〉ei , this implies that f (x) =
∑
∞

i=1〈f, ei〉ei(x) =∑
∞

i=1〈f, ei〉ei(y) = f (y), which contradicts f (x) 6= f (y). ut

Appendix D. Background material on the theory of currents

In this appendix, we give formulas for the current of integration over submanifolds de-
fined by systems of equations of the form g1 = · · · = gd = 0 for some sufficiently
nice functions g1, . . . , gd . This kind of formulas can be found for instance in Schwartz’s
book [58, Section V.5, Example 3]. The advantage of representing currents of integration
via Dirac distributions is that they will then be easily integrated against the Gaussian mea-
sure dµ3 on H3 (see Section 4). For an introduction to the theory of currents, we also
refer to the books of de Rham [24] and Giaquinta–Modica–Souček [36].

D.1. Currents on zero sets

In mathematical physics, one is often interested in studying subsets in X given by equa-
tions {G = 0} for some G = (gi)1≤i≤d . In our article, we will encounter two classes of
currents associated to this type of submanifolds. The first class are currents representable
by integration on some smooth submanifolds which form a subclass of de Rham chains
(see [24, Chapter 2]). Let X be a smooth oriented manifold of dimension m, and let S
be a smooth, oriented, compact submanifold of X of dimension d ≤ m. This defines an
integration current [S] in D′d(X) which acts on test forms ω ∈ Dd(X) by

[S](ω) =

∫
S

ω. (61)
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The second class consists of Dirac distributions which are defined as follows. We
denote by δd0 the usual Dirac distribution at {0} on Rd . This is defined by

∀ϕ(x)dx1
∧ · · · ∧ dxd ∈ Dd(Rd), 〈δd0 , ϕdx

1
∧ · · · ∧ dxd〉Rd = ϕ(0). (62)

Now let us define the Dirac distribution G∗(δd0 ) = δd0 ◦ G supported by the zeros of a
function G : X→ Rd .

Proposition D.1. Let G = (gi)1≤i≤d ∈ C
∞(X) be such that, for all x ∈ X satisfying

g1(x) = · · · = gd(x) = 0, the linear forms dxg1(x), . . . , dxgd(x) are linearly indepen-
dent. Then

(1) the pull-back of δd0 ∈ D′d(R
d) byG, denoted byG∗δd0 (or also δd0 ◦G) is well-defined,

(2) the wavefront set of G∗δd0 is contained in

N∗({G = 0}) = {(x, ξ) ∈ T ∗X : G(x) = 0, ξ = τ ◦ dxG for some τ 6= 0 ∈ Rd},

(3) for every sequence (Tp)p which converges to δd0 in D′
{0}×(Rd )∗(R

d), G∗Tp → G∗δd0
in the normal topology of D′

N∗0 {G=0}(X) implies convergence in the weak topology

of D′(X).

Remark D.2. For the notion of wavefront set and for the precise definition of the set
D′0(X) of distributions whose wavefront set is contained in 0, we refer the reader to [43,
Section 8.2] (see also [16]); and for the definition of the normal topology on D′0(X), we
refer to [17].

Proof of Proposition D.1. Let NG = {(y, η) ∈ T ∗R : G(x) = y and η ◦ dxG = 0 for
some x ∈ X} be the normal set of the map G. By assumption, NG does not meet the
set {0} × (Rd)∗ ⊂ T ∗Rd , which is the wavefront set of δd0 . Therefore by the pull-back
theorem of Hörmander (Th. B.1), G∗δd0 = δd ◦ G is well-defined and its wavefront set
is included in G∗({0} × (Rd)∗) = N∗0 ({G = 0}). Finally, the last claim follows from the
sequential continuity of the pull-back operation ([43, Th. 8.2.4] or [17]). ut

Now the natural question is how the integration current on S = {G = 0} and the delta
form G∗δd0 = δd0 ◦ G are related to each other. Note that the Dirac distribution of the
submanifold S = {G = 0} is obviously not the same as the integration current [S] because
we integrate top forms against δd0 ◦G but only (m− d)-forms on [S].

D.2. Orientations on submanifolds

Before comparing these currents, we need to briefly discuss orientability questions. For
any smooth manifold X (orientable or not), there exists a smooth principal Z2 bundle
OX → X called the orientation bundle. Recall that if X is an orientable manifold, then
there exists a volume form ω ∈ 0(X,3nT ∗X) where n = dimX or equivalently there
exists a global section of OX. Indeed, every choice of volume form ω on X canoni-
cally defines a global section [ω] of the orientation bundle OX, also [ϕω] = [ω] for
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all ϕ > 0. Now, if we are given a submanifold S ⊂ X defined by equations g1 =

· · · = gd = 0 and if X is oriented by [ω1] ∈ OX and S by [ω2] ∈ OS , we choose
representatives ω1 ∈ 0(X,3

nT ∗X) and ω2 ∈ 0(S,3
n−dT ∗S). Then we say that the

orientation of dg1 ∧ · · · ∧ dgd is compatible with the pair of orientations [ω1], [ω2] if
dg1 ∧ · · · ∧ dgd ∧ ω2|S = ϕω1|S for some smooth function ϕ with ϕ|S > 0.

D.3. Relations between different types of currents

In the next proposition, we give a concrete description of the action of Dirac distributions
G∗δd0 on differential forms.

Proposition D.3. Let G = (gi)1≤i≤d be a smooth map from X to Rd such that the dif-
ferentials dxgi are linearly independent for every x satisfying g1(x) = · · · = gd(x) = 0.
Then, for any test form ω ∈ Dm(X) and for any α ∈ Dm−d(X) such that dg1 ∧ · · · ∧

dgd ∧ α = ω, one has

〈G∗δd0 , ω〉 =

∫
{G=0}

α. (63)

Proof. We first handle the case where g = (gi)1≤i≤d is a linear map from Rn to Rd of
maximal rank. Then one can choose (g1, . . . , gd) to be the first d components of some
system of linear coordinate functions (g1, . . . , gd , . . . , gn) on Rn, in this case G is just
the linear projection Rn→ Rd on the first d components and the zero set {G = 0} is just
{0} × Rn−d ⊂ Rn. For any function ψ on Rd , the pull-back of ψ by G simply reads

G∗ψ(g1, . . . , gn) = ψ(g1, . . . , gd)⊗ 1(gd+1, . . . , gn),

and therefore, by continuity of the pull-back operation [16], one has δd0 ◦ G = δd0 ⊗ 1.
Any form ω has a unique representation in the basis dg1 ∧ · · · ∧ dgn as

ω = ω1...n(g1, . . . , gn)dg1 ∧ · · · ∧ dgn,

therefore

[δd0 ◦G](ω) = [δ
d
0 ⊗ 1(gd+1, . . . , gn)](ω)

=

∫
Rn−d

ω1...n(0, . . . , 0, gd+1, . . . , gn)dgd+1 ∧ · · · ∧ dgn.

Note that any form α such that dg1 ∧ · · · ∧ dgd ∧ α = ω will coincide with

ω1...n(0, . . . , 0, gd+1, . . . , gn)dgd+1 ∧ · · · ∧ dgn

when restricted to {G = 0} = {0} × Rn−d . It follows that the pairing does not depend on
the choice of α.

Let us go back to the manifold case. For any m ∈ {G = 0}, let U be some neighbour-
hood of m on which the differentials dgi are linearly independent. Then one can choose
(g1, . . . , gd) to be the first d components of some system of local coordinate functions
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(g1, . . . , gn) on U . What we just did was to define some local chart 8 : X ⊃ U 3 m 7→
(g1(m), . . . , gn(m)) ∈ Rn on U ⊂ X such that G ◦ 8−1

: Rn → Rd is just the linear
projection on the first d components. Then the distribution δd0 ◦ (G ◦8

−1) is well-defined
by our previous discussion since G ◦8−1 is linear. Then we have the identity

〈(G ◦8−1)∗δd0 , ω〉 =

∫
{G◦8−1=0}

α

for all α such that
dg1 ◦8

−1
∧ · · · ∧ dgd ◦8

−1
∧ α = ω.

We have just constructed a delta distribution (G ◦ 8−1)∗δd0 supported by some linear
subspace; to go back to the open subset U in the manifold X, we must pull back the dis-
tribution (G◦8−1)∗δd0 by8. By the pull-back Theorem B.1, this yields8∗(G◦8−1)∗δd0
= G∗δd0 and, for every α such that dg1 ∧ · · · ∧ dgd ∧ α = ω,

〈G∗δd0 , ω〉 =

∫
{G=0}

α. ut

In fact, using the notations of §D.2 concerning the orientation of submanifolds defined by
systems of equations, we obtain the following corollary:

Corollary D.4. Let X be a smooth oriented manifold with orientation [ω1], and let

G := (gi)1≤i≤d : X→ Rd

be a smooth function such that the differentials dxgi are linearly independent for every
x ∈ X satisfying g1(x) = · · · = gd(x) = 0. Let S be the submanifold in X defined by the
regular system of equations {g1 = · · · = gd = 0} and oriented by [ω2]. If dg1∧· · ·∧dgd
has orientation compatible with the pair of orientations [ω1], [ω2] then

[S] = G∗(δd0 ) dg1 ∧ · · · ∧ dgd . (64)

Proof. We note that this corollary is proved in [58, Section V.5] when d = 1. It is in
fact a direct consequence of the property of the Dirac distribution δd0 ◦ G established in
Proposition D.3, i.e.

〈G∗δd0dg1 ∧ · · · ∧ dgd , α〉 = 〈G
∗δd0 , dg1 ∧ · · · ∧ dgd ∧ α〉 =

∫
S

α. ut
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