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Abstract. We consider the one-dimensional discrete Schrödinger operator

[H(x, ω)ϕ](n) ≡ −ϕ(n− 1)− ϕ(n+ 1)+ V (x + nω)ϕ(n),

n ∈ Z, x, ω ∈ [0, 1], with real-analytic potential V (x). Assume L(E,ω) > 0 for all E. Let Sω
be the spectrum of H(x, ω). For all ω obeying the Diophantine condition ω ∈ Tc,a , we show the
following: if Sω ∩ (E′, E′′) 6= ∅, then Sω ∩ (E′, E′′) is homogeneous in the sense of Carleson
[Car83]. Furthermore, we prove that if Gi , i = 1, 2, are two gaps with 1 > |G1| ≥ |G2|, then
|G2| . exp(−(log dist(G1,G2))

A), A � 1. Moreover, the same estimates hold for the gaps in
the spectrum on a finite interval, that is, for SN,ω :=

⋃
x∈T specH[−N,N ](x, ω), N ≥ 1, where

H[−N,N ](x, ω) is the Schrödinger operator restricted to the interval [−N,N]with Dirichlet bound-
ary conditions. In particular, all these results hold for the almost Mathieu operator with |λ| 6= 1. For
the supercritical almost Mathieu operator, we combine the methods of [GS08] with Jitomirskaya’s
approach from [Jit99] to establish most of the results from [GS08] with ω obeying a strong Dio-
phantine condition.
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1. Introduction

We consider quasi-periodic Schrödinger equations

[H(x, ω)ϕ](n) ≡ −ϕ(n− 1)− ϕ(n+ 1)+ V (x + nω)ϕ(n) = Eϕ(n) (1.1)

in the regime of positive Lyapunov exponents. We assume that V (x) is a 1-periodic, real-
analytic function. Recall that for irrational ω, the spectrum of H(x, ω) does not depend
on x. We denote it by Sω. It was shown in [GS11] that Sω is a Cantor set for almost
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every irrational ω, in the regime of positive Lyapunov exponent. The main objective of
this work is to show that the structure of the gaps is “regular”. More specifically, a closed
set S ⊂ R is called homogeneous if there is τ > 0 such that for any E ∈ S and any
0 < σ ≤ diam(S), the estimate

|S ∩ (E − σ,E + σ)| > τσ (1.2)

holds (see [Car83]). We then also say that S is τ -homogeneous.

Theorem H. Let

ω ∈ Tc,a :=
{
ω ∈ [0, 1] : ‖nω‖ ≥

c

n(log n)a
, n ≥ 1

}
.

If E0 ∈ Sω and L(ω,E0) ≥ γ > 0 then there exists σ0 = σ0(V , c, a, γ ) such that

|Sω ∩ (E0 − σ,E0 + σ)| ≥ σ/2 (1.3)

for all σ ∈ (0, σ0]. In particular:

(a) If L(ω,E)≥γ for allE ∈ R, then Sω is τ -homogeneous with some τ=τ(V, c, a, γ ).
(b) If L(ω,E) ≥ γ for all E ∈ (E′, E′′) and there exists ε > 0 such that

Sω ∩ (E′ − ε, E′′ + ε) = Sω ∩ (E′, E′′), (1.4)

then Sω∩(E′, E′′) is either empty or τ -homogeneous with some τ = τ(V, c, a, γ, ε).

The previous statements also hold with SN,ω :=
⋃
x∈T specH[−N,N ](x, ω), N ≥ 1, in-

stead of Sω (here H[−N,N ](x, ω) is the Schrödinger operator restricted to the interval
[−N,N] with Dirichlet boundary conditions).

Remarks. (1) If we introduce a coupling constant, that is, if we replace V by λV , we
know by Sorets–Spencer [SS91] that part (a) of our theorem applies for λ ≥ λ0(V ). For
part (b) we note that for energies near the edges of the interval (E′, E′′) we do not know
how much of the nearby spectrum afforded by (1.3) sits inside (E′, E′′). We deal with
this issue by imposing condition (1.4) which forces all the spectrum near (E′, E′′) to be in
(E′, E′′). In general, if we assume that the Lyapunov exponent does not vanish throughout
the spectrum, the existence of the intervals (E′, E′′) to which part (b) of our theorem
applies follows from the continuity of the Lyapunov exponent (see [GS01], [BJ02]) and
the density of gaps given by [GS11]. Indeed, givenE0 ∈ Sω such that L(ω,E0) ≥ γ > 0,
we can find an interval (E′, E′′) such that E0 ∈ (E

′, E′′), L(ω,E) ≥ γ /2 > 0 for
E ∈ (E′, E′′), and E′, E′′ /∈ Sω. The last condition ensures that we have (1.4) with
ε = ε(dist({E′, E′′},Sω)).

(2) In general our theorem does not guarantee that Sω ∩ {E ∈ R : L(ω,E) > 0}
is homogeneous (unless we are in the setting of part (a)). However, this is indeed true
for typical analytic potentials, in the sense of the Main Theorem of [Avi15]. Recall that
in [Avi15] it is shown that for typical analytic potentials there exist finitely many disjoint
closed intervals Ik such that Sω ⊂

⋃
k Ik and Sω ∩ Ik is either absolutely continuous or
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pure point. Furthermore, one has spectral uniformity in both subcritical and supercritical
regimes. For the supercritical regime this means that there exists γ > 0 such that Sω ∩
{E ∈ R : L(ω,E) > 0} = Sω ∩ {E ∈ R : L(ω,E) ≥ γ }. One can now apply part (b)
of our theorem on each non-empty interval Ik ∩ {E ∈ R : L(ω,E) ≥ γ } to deduce the
homogeneity of the spectrum in the supercritical regime.

(3) The strong Diophantine condition on ω can be relaxed. This is one of the results
in the ongoing work of Tao and Voda [TV16]. In the current work we use the existing
results developed assuming the strong Diophantine condition in [GS08] and [GS11].

The homogeneity property of the spectrum of quasi-periodic Schrödinger operators in
the regime of small coupling was recently established in [DGL16]. There the continuum
quasi-periodic Schrödinger operator

−ψ ′′(x)+ V (x)ψ(x) = Eψ(x), x ∈ R, (1.5)

is considered, where

V (x) =
∑
n∈Zν

c(n)e(xnω), (1.6)

|c(m)| ≤ ε exp(−κ0|m|) (1.7)

with κ0 > 0, ε being small and with a Diophantine vector ω,

|nω| ≥ a0|n|
−b0 , n ∈ Zν \ {0}, (1.8)

for some
0 < a0 < 1, ν < b0 <∞.

The following relation between the gaps and the bands of the operator is established using
the estimates from [DG14]:

There exists ε0 = ε0(κ0, a0, b0) > 0 such that for 0 < ε < ε0, the gaps in the
spectrum of the operator H can be labeled as Gm = (E−m, E

+
m), m ∈ Zν \ {0}, G0 =

(−∞, E) so that the following estimates hold:

(i) For every m ∈ Zν \ {0}, we have

E+m − E
−
m ≤ 2ε exp(−κ0|m|/2).

(ii) For every m,m′ ∈ Zν \ {0} with m′ 6= m and |m′| ≥ |m|, we have

dist([E−m, E
+
m], [E

−

m′
, E+

m′
]) ≥ a|m′|−b,

where a, b > 0 are constants depending on a0, b0, κ0, ν.
(iii) For every m ∈ Zν \ {0},

E−m − E ≥ a|m|
−b,

This feature was not known for the almost Mathieu operator even in the regime of small
coupling. The homogeneity property can be derived from (i)–(iii). In the current paper we
establish a slightly weaker version of (i)–(iii).



3076 David Damanik et al.

Theorem G. Let ω ∈ Tc,a and assume L(ω,E) ≥ γ > 0 for any E ∈ (E′, E′′).
There exists N0(V , c, a, γ ) such that if N ≥ N0 and G1, G2 are two gaps in Sω ∩
(E′, E′′) with |G1|, |G2| > exp(−N1−) then dist(G1,G2) > exp(−(logN)C0) with
C0 = C0(V , c, a, γ ). The same statement holds for gaps in SN̄,ω∩(E′, E′′) with N̄ ≥ N .

It is natural to inquire about the precise calibration between the gaps and the bands. In
particular, is it true that, in Theorem G, one has

dist(G1,G2) ≥ a|N |
−b,

with a, b > 0 being constants depending on V , ω and the lower bound L(E) ≥ γ > 0?
Moreover, if so, are these estimates optimal?

Consider the almost Mathieu operator

[H(x, ω)φ](n) = −φ(n− 1)− φ(n+ 1)+ 2λ cos(2π(x + nω))φ(n), n ∈ Z. (1.9)

It is a fundamental fact that the Lyapunov exponent here obeys

L(ω,E) ≥ log |λ|

for all E. Thus, as a particular case of Theorem H and as a consequence of Aubry duality,
we have the following.

Theorem H′. Let |λ| 6= 1 and ω ∈ Tc,a . Then the set Sω is τ -homogeneous for some
τ = τ(c, a, λ). Furthermore, the estimates in Theorem G hold.

The relevance of the homogeneity property to the inverse spectral theory of almost pe-
riodic potentials (or Jacobi matrices with almost periodic coefficients) was established
in the remarkable work by Sodin and Yuditskii [SY95, SY97]. They studied the inverse
spectral problem for reflectionless Jacobi matrices whose spectrum is a given homoge-
neous set. The reflectionless potentials were introduced, in the continuum setting, by
Craig [Cra89]. Reflectionless potentials are very relevant to the spectral theory of er-
godic potentials. Different classes of potentials, which are in fact reflectionless, were
studied, prior to [Cra89], in the basic works on ergodic potentials by Deift and Simon
[DS83], Johnson [Joh82], Johnson and Moser [JM82], and Kotani [Kot84], [Kot87]. It
was shown in [Cra89] that being reflectionless is the key feature which allows for the
development of a number of fundamental objects from the periodic theory like auxiliary
spectrum, trace formula, product expansions; see also the work by Gesztezy and Simon
[GS96]. Employing the version of the trace formula from [GS96], Gesztezy and Yuditskii
[GY06] found another remarkable consequence of the homogeneity property combined
with being reflectionless: the spectrum is purely absolutely continuous. See also the paper
by Poltoratski and Remling [PR09], where an even stronger result was established.

In view of these results and the results of the current paper it seems very natural
to investigate the connection between the homogeneity property and the spectral phase
transition theory of quasi-periodic potentials (see the work by Avila [Avi15]). Namely,
we would like to pose the following question:



Homogeneity of the spectrum for quasi-periodic Schrödinger operators 3077

Problem 1. Consider

[H(x, ω)ϕ](n) ≡ −ϕ(n− 1)− ϕ(n+ 1)+ λV (x + nω)ϕ(n) = Eϕ(n) (1.10)

with real-analytic V and Diophantine ω. It is known that for small λ, this operator has a
complete set of Bloch–Floquet eigenfunctions. We expect that, in analogy to the small-
coupling result in the continuum case from [DGL16], one can also prove that the spectrum
is homogeneous, and moreover the calibration estimates (i)–(iii) for gaps and bands hold.
Assume that the Lyapunov exponent L(E, λ) vanishes on the spectrum for all 0<λ<λ0.
Can one find a complete set of Bloch–Floquet eigenfunctions for 0< λ < λ0? The main
issue here is how to control the homogeneity property of the spectrum using the zero
Lyapunov exponent on the spectrum. Indeed, while vanishing Lyapunov exponents on a
set of positive Lebesgue measure imply the presence of absolutely continuous spectrum,
the homogeneity of the spectrum is a sufficient condition for purely absolutely continuous
spectrum. Once the latter property has been established, the existence of a complete set
of Bloch–Floquet eigenfunctions follows from the work of Kotani [Kot84], Deift–Simon
[DS83], and Avila–Krikorian [AK06].

Finally, we emphasize that the analysis of “fine properties” of the spectral set SN,ω :=⋃
x∈T specH[−N,N ](x, ω) on a finite interval, especially with general analytic V , seems

to be a very interesting problem in its own right. The numerical plots of the eigenval-
ues E(N)j (x) of H[−N,N ](x, ω) (Rellich parametrization) look very complicated (see Fig-
ures 1–3).

One can see some “almost gaps” shadowed by “rare graphs fragments”—see for in-
stance Figure 1 between the spectral value levels E = 2 and E = 4. Even for the almost
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Fig. 1. Rellich functions, V 3rd degree, N = 29.
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Fig. 2. Rellich functions, almost Mathieu, Dirichlet BC, N = 12.
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Fig. 3. Rellich functions, almost Mathieu, periodic case, N = 12.

Mathieu case, the picture still has some “gaps shadowing” (see Figure 2). The picture
simplifies under periodic boundary conditions (see Figure 3).

Finally, we would like to pose the following problem:

Problem 2. (a) Describe as accurately as possible the “true” gaps in the spectral set
SN,D :=

⋃
x∈T specH[−N,N ],D(x, ω) on a finite interval with Dirichlet boundary condi-

tions. In particular, determine the gaps of smallest size.
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(b) Develop a description for the spectral set SN,P :=
⋃
x∈T specH[−N,N ],P (x, ω)

on a finite interval with periodic boundary conditions.
(c) Develop a description of the spectral sets on a finite interval for rational approxi-

mations of the frequency ω.

1.1. Description of the method

As mentioned before, the homogeneity of the spectrum for continuous Schrödinger op-
erators and small coupling constant was recently established in [DGL16] via detailed
quantitative results concerning the structure of the gaps in the spectrum. For results on
homogeneity of the spectrum for limit-periodic Schrödinger operators see [Fil17, FL15].
We show in this paper that in the regime of positive Lyapunov exponent, homogeneity
can be obtained with less machinery. In fact, one does not even need to use finite scale
localization. Rather, we use finite scale approximate eigenvalues rather than eigenfunc-
tions. This approach only relies on the availability of a large deviation estimate; compare
[Bou02], where a similar idea was used.

This method has the advantage of avoiding the removal of a “non-arithmetic” set of
frequencies, which would be needed to eliminate the double resonances, as required in
order to establish localization. To capture the infinite volume spectrum, we establish a
criterion for given E0 to fall in the spectrum on the whole lattice (see Lemma 2.8).

The most basic mechanism behind the homogeneity of the spectrum is the Wegner
estimate. It is a finite volume version of the fact that the integrated density of states is
Hölder continuous. For any x, ω ∈ T, let

{E
(N)
j (x, ω)}Nj=1, {ψ

(N)
j (x, ω, ·)}Nj=1 (1.11)

denote the eigenvalues and a choice of normalized eigenvectors of H[1,N ](x, ω), respec-
tively. The Wegner estimate amounts to the fact that the graphs of E(N)j (x, ω) cannot be
“too flat”. See the discussion of the quantitative version of this issue in Remark 2.2. The
other main reason for the homogeneity of the spectrum is the fragmentary stabilization
of the graphs of the Dirichlet eigenvalues plotted against the phases at different scales
(see Figure 4). This allows for good control on the structure of the spectrum on the whole
lattice Z via the spectrum on intervals [−N,N] with large N . Thus, the Wegner estimate
makes it possible to obtain finite scale spectral segments of considerable size that we can
then screen, via fragmentary stabilization, to obtain relatively large sets in the infinite
volume spectrum. Heuristically, this is how the proof of Theorem H proceeds.

As already mentioned, the resolution of the fragmentary stability picture is accurate
enough to allow the proof of homogeneity to go through. However, it seems that for pos-
sible future refinements of the result, one needs the more detailed picture given by finite
scale localization. This is why, after we prove the main result, we also develop the finite
scale localization approach. The novelty here is that we focus on the almost Mathieu op-
erator for which we can establish the results without removal of any frequencies ω ∈ Tc,a .
This is due to the method of Jitomirskaya [Jit99] for eliminating resonances. The advan-
tage of this method that it explicitly identifies the resonant phases as x = mω/2 mod 1,
m ∈ Z, and there is no need to eliminate any further ω’s.
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Fig. 4. Fragmentary stability of spectral segments: Fragments of graphs from scale N̄ � N are
very close to E(N)
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(x, ω), x ∈ [x0, x0]. The small segments on the E axis represent the exceptional

set.

We now give a rough outline of the main ingredients of both parts of the paper. Most
of them were developed in [GS08, GS11]. In fact, we shall cite several results from these
papers as part of our argument (see Propositions A–I below). The following three items
describe the basic properties of the transfer matrix formalism. Throughout, it is essential
that the Lyapunov exponents are positive.

• Large deviation estimate for the characteristic determinants of the Dirichlet problem
on a finite interval.
• Hölder continuity of the Lyapunov exponent.
• Uniform upper bounds for the Dirichlet characteristic determinants.

The next three items build upon these foundations and describe essential features of the
spectral theory, in particular the localization of the eigenfunctions.

• A version of the Wegner estimate.
• Elimination of double resonances on finite intervals.
• Exponential localization on finite intervals.

Finally, these tools feed into the following facts, which lie deeper and are of crucial im-
portance to understanding the structure of the gaps in the spectrum.

• Quantitative separation of the Dirichlet eigenvalues on a finite interval.
• Formation of the spectrum on the whole lattice from the spectra on finite intervals.

This paper is not self-contained since we refer to reader to [GS08, GS11] for some of the
rather involved proofs of the aforementioned technical ingredients. These results are used
repeatedly in this work. On the other hand, some of the results derived from them, such
as the Wegner estimate, are easy to obtain and we present their proofs.
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Certain finer spectral properties, most notably the localization of the eigenfunctions
and separation of the eigenvalues in the setting of Theorem H, require elimination of a
Hausdorff dimension zero set of ω. So we cannot follow that route for the almost Mathieu
operator. Therefore, approximately half of the work in this paper is devoted to establishing
the needed ingredients for the Mathieu operator with |λ| > 1 and with arbitrary ω ∈ Tc,a .

On first reading, it is recommended to focus entirely on the proofs of Theorems G
and H.

2. Transfer matrices and the Wegner estimate

We start by recalling the basics of the transfer matrix formalism. If ψ is a solution of the
difference equation H(x, ω)ψ = Eψ , then[

ψ(b + 1)
ψ(b)

]
= M[a,b](x, ω,E)

[
ψ(a)

ψ(a − 1)

]
,

where the transfer matrix is given by

M[a,b](x, ω,E) =

a∏
k=b

[
V (x + kω)− E −1

1 0

]
.

We let MN = M[1,N ]. The Lyapunov exponent is defined by

L(ω,E) = lim
N→∞

1
N

∫ 1

0
log ‖MN (x, ω,E)‖ dx

a.s.
= inf

N

1
N

log ‖MN (x, ω,E)‖.

The Hölder continuity of the Lyapunov exponent as a function of the energy was es-
tablished in [GS01] under a strong Diophantine condition. The result was improved in
[YZ14] to hold even for weak Liouville frequencies. The dependence of the Hölder ex-
ponent on γ (see the following proposition) was removed (for strongly Diophantine fre-
quencies) in [Bou05, Prop. 8.3].

Proposition A. Assume ω ∈Tc,a and L(ω,E0)≥ γ > 0. There exists ε0= ε0(V , c, a, γ )

such that L(ω,E) ≥ γ /2 for any E ∈ (E0 − ε0, E0 + ε0). Moreover, there exists α0 =

α0(V , c, a) > 0 such that

|L(ω,E1)− L(ω,E2)| ≤ C(V, c, a, γ )|E1 − E2|
α0

for any Ej ∈ (E0 − ε0, E0 + ε0), j = 1, 2.

The above result is essentially [GS01, Thm. 6.1]. The first statement is implicit in [GS01],
but it also follows explicitly from [BJ02].

Next we focus on results concerning the finite scale Dirichlet determinants. Let
H[a,b](x, ω) be the Schrödinger operator defined via (1.1) on a finite interval [a, b] with
Dirichlet boundary conditions, ψ(a − 1) = 0, ψ(b + 1) = 0. Let f[a,b](x, ω,E) =
det(H[a,b](x, ω)− E) be its characteristic polynomial. One has

f[a,b](x, ω,E) = fb−a+1(x + (a − 1)ω, ω,E), (2.1)
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where

fN (x, ω,E) = det(HN (x, ω)− E)

=

∣∣∣∣∣∣∣∣∣∣∣

V (x + ω)− E −1 0 · · · · · · 0
−1 V (x + 2ω)− E −1 0 · · · 0
...

...
...

...
...

...

−1
0 . . . . . . . . . . . . . . 0 −1 V (x +Nω)− E

∣∣∣∣∣∣∣∣∣∣∣
. (2.2)

It is known that also

M[a,b](x, ω,E) =

[
f[a,b](x, ω,E) −f[a+1,b](x, ω,E)

f[a,b−1](x, ω,E) −f[a+1,b−1](x, ω,E)

]
. (2.3)

It was shown in [GS08] that through this relation it is possible to pass from large deviation
estimates for the transfer matrix to large deviation estimates for the determinants. The
following large deviation estimate for the determinants is a basic tool in our approach
(see [GS08, Cor. 3.6]).

Proposition B. Let ω ∈ Tc,a and E ∈ R be such that L(ω,E) ≥ γ > 0. There exists
C0 = C0(V , c, a, γ ) such that

mes
{
x ∈ T :

∣∣log |fN (x, ω,E)| −NL(ω,E)
∣∣ > H

}
≤ C exp(−H/(logN)C0) (2.4)

for all H > (logN)C0 and N ≥ 2. Moreover, the set on the left-hand side is contained in
the union of . N intervals, each of measure not exceeding the bound stated in (2.4).

Subharmonic functions can deviate only towards large negative values but not large posi-
tive ones. This explains the following result which is implied by [GS08, Prop. 4.3].

Proposition C. Let ω ∈ Tc,a and E ∈ R be such that L(ω,E) ≥ γ > 0. There exist
C0 = C0(V , c, a, γ ) and C = C(V ) such that

sup
x∈T

log |fN (x, ω,E)| ≤ NL(ω,E)+ C(logN)C0 for any N ≥ 2. (2.5)

Wegner’s estimate now follows easily.

Proposition D. Let ω ∈ Tc,a and E ∈ R be such that L(E,ω) ≥ γ > 0. There exists
C0 = C0(V , c, a, γ ) such that for H > (logN)2C0 and N ≥ 2, one has

mes{x ∈ T : dist(E, specHN (x, ω)) < exp(−H)} . exp(−H/(logN)C0). (2.6)

Moreover, the set on the left-hand side is contained in the union of . N intervals, each
of measure not exceeding the bound stated in (2.6).

Proof. By Cramer’s rule,

|(HN (x, ω)− E)
−1(k,m)| =

|f[1,k−1](x, ω,E)| |f[m+1,N ](x, ω,E)|

|fN (x, ω,E)|
.
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By Proposition C,

log |f[1,k−1](x), ω,E)| + log |f[m+1,N ](x, ω,E)| ≤ NL(ω,E)+ C(logN)C0

for any x ∈ T. Therefore,

‖(HN (x, ω)− E)
−1
‖ ≤ N2 exp(NL(ω,E)+ C(logN)C0)

|fN (x, ω,E)|

for any x ∈ T. Since

dist(E, specHN (x, ω)) = ‖(HN (x, ω)− E)−1
‖
−1,

the lemma follows from Proposition B. ut

The following result is an immediate consequence of the Wegner estimate (2.6) and the
continuity of the functions E(N)j (x, ω).

Corollary 2.1. Let ω ∈ Tc,a and assume L(E,ω) ≥ γ > 0 for any E ∈ (E′, E′′). There
exists C0 = C0(V , c, a, γ ) such that for H > (logN)2C0 and N ≥ 2, if I is an interval
satisfying

|I | ≥ exp(−H/(logN)C0) and E
[−N,N ]
j (I, ω) ⊂ (E′, E′′),

then
|E
[−N,N ]
j (I, ω)| ≥ 2 exp(−H).

In the following remark, a ∼ b for a, b > 0 means that these numbers are comparable up
to fixed multiplicative constants (say, within a factor of 2). Moreover, a � b means that
a/b ≥ C for some large constant C.

Remark 2.2. The Wegner estimate is a fundamental tool which has been applied to the
problem of localization of eigenfunctions in both the quasi-periodic and the random set-
tings. For the problem under consideration here, namely the homogeneous nature of the
spectrum, our reading of Wegner’s estimate is as follows. Let E ∈ R be arbitrary and
recall the eigenvalues as defined in (1.11). Assume that

|E − E
(N)
j (x0, ω)| ≤ exp(−(logN)A) (2.7)

for some N and x0 and A� 1. Then, with σ calibrated against N such that

σ ∼ exp(−(logN)A), (2.8)

the intersection

(E−σ,E+σ)∩
{
E
(N)
j (x, ω) : x ∈

(
x0−exp(−(logN)B), x0+exp(−(logN)B)

)}
, (2.9)

where B := A/2, contains an interval IE with

|IE | ≥ wN := exp(−(logN)A) ∼ σ. (2.10)

Note that this is a special case of the previous corollary, using the largest possible values
of H .
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The next two results address the relation between the distance of an energy to the spectrum
and the large deviation estimate from Proposition B. Recall that for any x0, x, one has

|E
(N)
j (x, ω)− E

(N)
j (x0, ω)| ≤ ‖HN (x, ω)−HN (x0, ω)‖ ≤ C(V )|x − x0|. (2.11)

Lemma 2.3. Let ω ∈ Tc,a and E ∈ R be such that L(E,ω) ≥ γ > 0 and let x ∈ T.
There exist N0(V , c, a, γ, E) and C0(V , c, a, γ, E) such that for any N ≥ N0, if

dist(E, specHN (x, ω)) ≥ exp(−K)

for some K � 1, then

log |fN (x, ω,E)| ≥ NL(ω,E)−K(logN)C0 .

Proof. Due to Proposition B there exists x′ such that |x′ − x| < exp(−K logN) and

log |fN (x′, ω,E)| > NL(ω,E)−K(logN)C .

From (2.11) and our assumption on E, we obtain

|E
(N)
j (x′, ω)− E

(N)
j (x, ω)| |E

(N)
j (x, ω)− E|−1

≤ C(V )|x′ − x| |E
(N)
j (x, ω)− E|−1

≤ exp(−(K logN)/2) < 1/2,

and therefore∣∣log |E − E(N)j (x′, ω)| − log |E − E(N)j (x, ω)|
∣∣

≤ 2|E(N)j (x′, ω)− E
(N)
j (x, ω)| |E

(N)
j (x, ω)− E|−1

≤ 2 exp(−(K logN)/2),∣∣log |fN (x′, ω,E)| − log |fN (x, ω,E)|
∣∣ ≤ 2N exp(−(K logN)/2) < 1.

This yields the desired conclusion. ut

The usefulness of a lower bound on the determinant as in the previous lemma can be seen
from the following result.

Lemma 2.4 ([GS11, Lem. 6.1]). Let ω ∈ Tc,a , E ∈ R, L(ω,E) > γ > 0, and N ≥
N0(V , a, c, γ, E). Furthermore, assume that

log |fN (x, ω,E)| > NL(ω,E)−K/2

for some x ∈ T and K > (logN)C0 . Then

|(HN (x, ω)− E)
−1(j, k)| ≤ exp(−γ |j − k| +K), ‖(HN (x, ω)− E)

−1
‖ ≤ exp(K).

In particular dist(E, specHN (x, ω)) ≥ exp(−K).

Proof. Apply Cramer’s rule as in the proof of Wegner’s estimate. ut

We will use the following immediate consequence of Lemmas 2.3 and 2.4.
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Lemma 2.5. Let ω ∈ Tc,a and E ∈ R be such that L(ω,E) ≥ γ > 0 and let x ∈ T.
There exist N0(V , c, a, γ, E) and C0(V , c, a, γ, E) such that for any N ≥ N0, if

dist(E, specHN (x, ω)) ≥ exp(−K)

for some K � 1, then

|(HN (x, ω)− E)
−1(j, k)| ≤ exp(−γ |j − k| + 2K(logN)C0).

It is natural to link eigenfunctions of finite volume operators to (generalized) eigenfunc-
tions in infinite volume. The standard tool for this is the Poisson formula: for any solution
of the difference equation H(x, ω)ψ = Eψ , we have

ψ(m) = (H[a,b]−E)
−1(m, a)ψ(a−1)+(H[a,b]−E)−1(m, b+1)ψ(b+1), m ∈ [a, b].

(2.12)
This identity was introduced into the theory of localized eigenfunctions in the fundamen-
tal work on the Anderson model by Fröhlich and Spencer [FS83]. The Poisson formula
tells us that the decay of the Green function implies the decay of the eigenfunction wher-
ever the Green function exists. Lemmas 2.4 and 2.5 demonstrate how to effectively apply
the Poisson formula in the regime of positive Lyapunov exponents, by being able to eval-
uate the decay of the Green function (H[a,b]−E)−1(m, n) in terms of |m−n|. Lemma 2.4
explains how the large deviation estimate from Proposition B can be used to guarantee the
conditions of Lemma 2.6. This leads to the following localization principle: the eigen-
function ψ [a,b]j defined by

H[a,b](x, ω)ψ
[a,b]
j (x, ω) = E

[a,b]
j (x, ω)ψ

[a,b]
j (x, ω)

decays exponentially on any subinterval [c, d] ⊂ [a, b] for which the large deviation
estimate

log |f[c,d](x, ω,E
[a,b]
j (x, ω))| > (c − d)L(ω,E

[a,b]
j (x, ω))− (c − d)1−δ (2.13)

is valid. This is of crucial importance to the theory of localization, and we shall make
this precise later.

The following elementary observation links the spectra in finite volume to the decay
of the Green function.

Lemma 2.6. Let x, ω ∈ T, E ∈ R, and [a, b] ⊂ Z. If for any m ∈ [a, b], there exists
3m = [am, bm] ⊂ [a, b] containing m such that

(1−〈δa, δam〉)|(H3m(x, ω)−E)
−1(am, m)|+(1−〈δb, δbm〉)|(H3m(x, ω)−E)

−1(bm, m)|

< 1,

then E /∈ specH[a,b](x, ω).

Proof. Assume to the contrary that E ∈ specH[a,b](x, ω) and let ψ be a corresponding
eigenvector. Let m ∈ [a, b] be such that |ψ(m)| = maxn |ψ(n)|. The hypothesis together
with the Poisson formula (2.12) gives us that |ψ(m)| < max(|ψ(am)|, |ψ(bm)|) if am 6= a
and bm 6= b; |ψ(m)| < |ψ(bm)| if am = a; and |ψ(m)| < |ψ(am)| if bm = b. In each
case we reach a contradiction, so we must have E /∈ specH[a,b](x, ω). ut
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We use Lemma 2.6 to establish our criterion for an energy to be in the spectrum. For this
we will also use the following well-known fact.

Lemma 2.7. If for some x, ω ∈ T andE ∈ R there exist δ > 0 and sequences ak →−∞
and bk →∞ such that

dist(E, specH[ak,bk](x, ω)) ≥ δ,

then
dist(E, specH(x, ω)) ≥ δ.

Proof. The hypothesis implies that for any φ ∈ `2(Z) with finite support, there exists k
such that

‖(H(x, ω)− E)φ‖ = ‖(H[ak,bk](x, ω)− E)φ‖ ≥ δ‖φ‖.

It follows by density that
‖(H(x, ω)− E)φ‖ ≥ δ‖φ‖

for any φ ∈ `2(Z), and this yields the conclusion. ut

We can now formulate the spectrum criterion lemma. In the following two results, the
notation N1− means N1−ε for some small absolute ε > 0. For example ε = 1

100 will
suffice (as in fact will large choices).

Lemma 2.8. Let ω ∈ Tc,a and E ∈ R be such that L(ω,E) ≥ γ > 0. There exists
N0 = N0(V , c, a, γ ) such that the following statement holds for any N ≥ N0. If for any
x ∈ T, there exists r(x) ∈ [−N/2, N/2] such that

dist(E, specHr(x)+[−N,N ](x, ω)) ≥ exp(−N1−),

then
dist(E,Sω) ≥ 1

2 exp(−N1−).

Proof. Fix x ∈ T and let N̄ ≥ N be arbitrary. Let

p = −N̄ −N + r(x − N̄ω), q = N̄ +N + r(x + N̄ω).

We will use Lemma 2.6 to show that Ẽ /∈ specH[p,q](x, ω) for any |Ẽ − E| ≤

exp(−N1−)/2. Note that, by Proposition A, we have L(Ẽ, ω) ≥ γ /2. From the hy-
pothesis we infer that

dist(Ẽ, specH[p,p+2N ]) ≥
1
2 exp(−N1−).

It follows from Lemma 2.5 that

|(H[p,p+2N ](x, ω)− Ẽ)
−1(p + 2N,m)| < 1

for any m ∈ [p, p +N + [N/2]]. Analogously

|(H[q−2N,q](x, ω)− Ẽ)
−1(q − 2N,m)| < 1
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for any m ∈ [q −N − [N/2], q]. For m ∈ [p +N + [N/2], q −N − [N/2]], let

am = m−N + r(x +mω), bm = m+N + r(x +mω).

We clearly have [am, bm] ⊂ [p, q]. Using the hypothesis and Lemma 2.5, we get

|(H[am,bm](x, ω)− Ẽ)
−1(am, m)| + |(H[am,bm](x, ω)− Ẽ)

−1(bm, m)| < 1.

We can now apply Lemma 2.6 to find that Ẽ /∈ specH[p,q](x, ω). Since this is true for
any |Ẽ − E| ≤ exp(−N1−)/2, it follows that

dist(E, specH[p,q](x, ω)) ≥ 1
2 exp(−N1−).

Since N̄ was arbitrary, we can choose sequences ak →−∞ and bk →∞ such that

dist(E, specH[ak,bk](x, ω)) ≥
1
2 exp(−N1−).

The conclusion follows from Lemma 2.7. ut

The previous lemma relates the full spectrum Sω to the finite scale spectrum

SN,ω :=
⋃
x∈T

specH[−N,N ](x, ω).

The proof of the lemma cannot be adjusted to give a relation between the finite scale
spectra for different scales. Instead, we will use the following weaker result.

Lemma 2.9 ([GS11, Lem. 13.2]). Let ω ∈ Tc,a and E ∈ R be such that L(ω,E) ≥
γ > 0. There exists N0 = N0(V , c, a, γ ) such that the following statement holds for any
N ≥ N0. If

dist(E,SN,ω) ≥ exp(−N1−),

then
dist(E,SN̄,ω) ≥

1
2 exp(−N1−) for any N̄ ≥ N .

Proof. The proof is analogous to that of Lemma 2.8. The only difference is that we now
know that r(x) = 0. ut

3. Stability of the spectrum

In this section we address the issue of how much of the finite scale spectrum SN,ω survives
when we pass to a larger scale N̄ or to the full scale.

Lemma 3.1. Let ω ∈ Tc,a and assume L(ω,E) ≥ γ > 0 for any E ∈ (E′, E′′). There
exist c0 = c0(V , c, a, γ ) and N0 = N0(V , c, a, γ ) such that

mes
(
SN,ω ∩ (E′, E′′) \ SN̄,ω

)
≤ exp(−c0N) for any N̄ ≥ N ≥ N0.
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Proof. Let N (k)
= N2k and assume N̄ ≤ N (1). Let E = E

[−N,N ]
j (x, ω) ∈ SN,ω ∩

(E′, E′′). Let ` = [c1N ] with c1 � 1. By Proposition B we can find an interval n0 +

[−`, `], |n0| ≤ C` � N , on which the large deviation estimate holds. By Lemma 2.4
and the Poisson formula it follows that

|ψ
[−N,N ]
j (x, ω; n)| ≤ exp(−cN), |n− n0| ≤ `/2.

Let

ξl(n) =

{
ψ
[−N,N ]
j (x, ω; n), n ∈ [−N, n0],

0, otherwise,

ξr(n) =

{
ψ
[−N,N ]
j (x, ω; n), n ∈ [n0, N],

0, otherwise.

Then ‖ξl‖ ≥ 1/2 or ‖ξr‖ ≥ 1/2. If ‖ξl‖ ≥ 1/2, then the fact that

‖(H
[−N,−N+2N̄ ](x, ω)− E)ξl‖ ≤ exp(−cN)

implies dist(E,SN̄,ω) ≤ 2 exp(−cN). The same conclusion holds if ‖ξr‖ ≥ 1/2. Since
the finite spectra are unions of intervals, it follows that

mes
(
SN,ω ∩ (E′, E′′) \ SN̄,ω

)
. N̄ exp(−cN) ≤ exp(−cN/2).

Recall that so far we are assuming N̄ ≤ N (1)
= N2. In general, we can find k such that

N (k)
≤ N̄ ≤ N (k+1) and we have

mes
(
SN,ω ∩ (E′, E′′) \ SN̄,ω

)
≤ mes

(
SN,ω ∩ (E′, E′′) \ SN (1),ω

)
+mes

(
SN (1),ω ∩ (E′, E′′) \ SN (2),ω

)
+ · · · +mes

(
SN (k),ω ∩ (E′, E′′) \ SN̄,ω

)
≤ exp(−cN)+ exp(−cN (1))+ · · · + exp(−cN (k)) ≤ exp(−cN/2). ut

If the mass of an eigenvector ψ [−N,N ]j is concentrated near the edges of the interval,
then we cannot guarantee that the corresponding eigenvalue is close to Sω. We can only
come close to the full scale spectrum provided that the mass of ψ [−N,N ]j is concentrated
inside the interval. It is not clear whether each E ∈ SN,ω can be associated with such an
eigenvector. However, we can produce spectral segments of considerable size for which
this holds.

Lemma 3.2. Let ω ∈ Tc,a and E ∈ Sω and assume L(E,ω) ≥ γ > 0. There exist
c0(V , c, a, γ ), C0(V , c, a, γ ), andN0(V , c, a, γ ) such that the following statement holds
for N ≥ N0. There exist x0 ∈ T and j0 ∈ [−N,N] such that

|E
[−N,N ]
j0

(x0, ω)− E| ≤ exp(−N1−),

and for all |x − x0| < exp(−(logN)C0), we have

|ψ
[−N,N ]
j0

(x, ω; n)| ≤ exp(−c0N), |n| ≥ (1− c0)N.
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Proof. Since E ∈ Sω, Lemma 2.8 implies that there exists x′ ∈ T such that

max
|n|≤N/2

dist(E, specHn+[−N,N ](x′, ω)) ≤ exp(−N1−). (3.1)

Let ` = [cN ], with c < 1 to be chosen later. We will argue that there exists |n0| ≤ N/2
such that the Green function at scale ` has off-diagonal decay on the intervals

n0 + [−N,−N + `− 1] and n0 + [N − `+ 1, N]

at the edges of n0 + [−N,N]. Due to Proposition D we know that there exists
A(V, c, a, γ )� 1 such that

{x ∈ T : dist(E, specH`(x0, ω)) < exp(−(log `)A)} ⊂
k0⋃
k=1

Ik,

where Ik are intervals such that |Ik| ≤ exp(−(log `)A/2), and k0 ≤ C`. We now set
c = (4C)−1 so that we have ` ≤ N/4. Due to the Diophantine condition, each Ik contains
at most one point of the form

x′ + (n−N)ω or x′ + (n+N − `+ 1)ω,

with |n| ≤ N/2. Since k0 ≤ N/4, it follows that there exists |n0| ≤ N/2 such that
x0 + (n0 −N)ω and x0 + (n0 +N − `+ 1)ω are not in any of the Ik , and therefore

dist(E, specH`(x0 + (n0 −N)ω,ω)), dist(E, specH`(x0 + (n0 +N − `+ 1)ω, ω))

≥ exp(−(log `)A)� exp(−N1−). (3.2)

Let x0 = x
′
+ n0ω. By (3.1) there exists j0 such that

|E − E
[−N,N ]
j0

(x0, ω)| ≤ exp(−N1−). (3.3)

From this, (3.2), and (2.11) it follows that

dist(E[−N,N ]j0
(x, ω), specH`(x −Nω,ω)),

dist(E[−N,N ]j0
(x, ω), specH`(x + (N − `+ 1)ω, ω)) ≥ 1

2 exp(−(log `)A),

for any |x − x0| ≤ c exp(−(log `)A). Lemma 2.5 implies that∣∣(H`(x −Nω,ω)− E[−N,N ]j0
(x, ω)

)−1
(j, k)

∣∣ ≤ exp(−γ |j − k| + (logN)C),∣∣(H`(x + (N − `+ 1)ω, ω)− E[−N,N ]j0
(x, ω)

)−1
(j, k)

∣∣ ≤ exp(−γ |j − k| + (logN)C).

The desired estimates on the eigenvectorψ [−N,N ]j0
(x, ω) now follow by applying the Pois-

son formula on the intervals [−N,−N + `− 1] and [N − `+ 1, N]. ut

Next we address the stability of the spectral segments produced via the previous lemma.
As in the proof of Lemma 3.1 we need to argue by induction on scales. The inductive
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step that will be stated in Lemma 3.3 is essentially [Bou05, Lemma 12.22]. For the con-
venience of the reader we will sketch its proof. The original proof is for the case when
the potential is a trigonometric polynomial. We will include the simple approximation
argument needed to deal with analytic potentials. For this we recall some facts regarding
the approximation of the potential by trigonometric polynomials.

Let

V (x) =

∞∑
n=−∞

vne(nx),

be the Fourier series expansion for V , where we use the notation e(x) := exp(2πix). It is
known that since V is real-analytic on T, it can be extended to a strip of width 2ρ0 around
the real axis, for some ρ0 > 0, and that this implies the existence of C such that

|vn| ≤ C exp(−πρ0|n|).

In fact, we can take C = supx∈T |V (x ± iρ0/2)|. Let

Ṽ (x) =

K∑
n=−K

vne(nx). (3.4)

As a consequence of the bound on the Fourier coefficients, we have

sup
x∈T
|V (x)− Ṽ (x)| ≤ C(‖V ‖∞, ρ0) exp(−πρ0K/3).

It follows that we always have

|E
(N)
j (x, ω)− Ẽ

(N)
j (x, ω)| ≤ ‖HN (x, ω)− H̃N (x, ω)‖ ≤ C exp(−cK). (3.5)

Lemma 3.3. Let ω ∈ Tc,a and assume L(ω,E) ≥ γ > 0 for any E ∈ (E′, E′′). Let
I ⊂ [0, 1] be an interval and let j ∈ [−N,N]. Assume that E[−N,N ]j (I, ω) ⊂ (E′, E′′)

and that for each x ∈ I , there exists ξ , ‖ξ‖ = 1, with support in [−N + 1, N − 1], such
that

‖(H(x, ω)− E
[−N,N ]
j (x, ω))ξ‖ < e−c0N , (3.6)

where c0 > 0 is some constant. Let

logN1 � logN � log logN1.

If c0 ≤ C(V, c, a, γ ) � 1 and N ≥ N0(V , c, a, γ, c0), then we can partition I into
intervals Im, m ≤ NC

1 , with C an absolute constant, so that for each Im, there exists
j1 ∈ [−N1, N1] such that

|E
[−N,N ]
j (x, ω)− E

[−N1,N1]
j1

(x, ω)| ≤ exp(−c0N/2), x ∈ Im,

and for each x ∈ Im, there exists ξ , ‖ξ‖ = 1, with support in [−N1+1, N1−1], satisfying

‖(H(x, ω)− E
[−N1,N1]
j1

(x, ω))ξ‖ < e−c0N1 .
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Proof. Fix x ∈ I and let ξ be as in (3.6). We have

H[−N,N ](x, ω) = H[−N1,N1](x, ω),

H[−N,N ](x, ω)ξ = E
[−N,N ]
j (x, ω)ξ +O(e−c0N )

= E
[−N,N ]
j (x)

∑
〈ξ, ψ

[−N1,N1]
k (x, ω)〉ψ

[−N1,N1]
k (x, ω)+O(e−c0N ),

H[−N1,N1](x, ω)ξ =
∑

E
[−N1,N1]
k (x, ω)〈ξ, ψ

[−N1,N1]
k (x, ω)〉ψ

[−N1,N1]
k (x, ω).

Note that for the first two identities, we have used the fact that ξ is supported in
[−N + 1, N − 1]. It follows that(∑

|E
[−N,N ]
j (x, ω)− E

[−N1,N1]
k (x, ω)|2〈ξ, ψ

[−N1,N1]
k (x, ω)〉2

)1/2
< e−c0N . (3.7)

Since ‖ξ‖ = 1, there exists j1(x) ∈ [−N1, N1] such that

|〈ξ, ψ
[−N1,N1]
j1

(x, ω)〉| ≥ 1/
√
N1. (3.8)

The estimate (3.7) implies that

|E
[−N,N ]
j (x, ω)− E

[−N1,N1]
j1

(x, ω)| <
√
N1 e

−c0N . (3.9)

As in the proof of Lemma 3.2 it can be seen that there exists N1/2 < k1 < N1 such
that

|ψ
[−N1,N1]
j1

(x, ω; n)| ≤ exp(−3c0N1), k1 ≥ |n| ≥ k1 − 3c0N1. (3.10)

For this we use the assumption that c0 is small enough. Let η be the normalized projection
of ψ [−N1,N1]

j1
(x, ω) onto the subspace corresponding to the interval [−k1, k1]. By (3.8)

and (3.10),

‖(H(x, ω)− E
[−N1,N1]
j1

)η‖ .
√
N1 exp(−3c0N1) < exp(−2c0N1). (3.11)

Now we just need to estimate the number of components of the set of phases x that
satisfy (3.9) and (3.11). For this we need to approximate the potential V by a trigono-
metric polynomial. To do so, we note that the existence of η, ‖η‖ = 1, with support in
[−N1 + 1, N1 − 1], satisfying (3.11) is equivalent to

‖[PN1(H(x, ω)−E
[−N1,N1]
j1

)∗(H(x, ω)−E
[−N1,N1]
j1

)PN1 ]
−1
‖ > exp(2c0N1), (3.12)

where PN1 is the projection onto the subspace corresponding to the interval
[−N1 + 1, N1 − 1]. Choose Ṽ as in (3.4) with K = CN2

1 . Then we have

|Ẽ
[−N,N ]
j (x, ω)− Ẽ

[−N1,N1]
j1

(x, ω)| < 2
√
N1 e

−c0N ,

and

‖[PN1(H̃ (x, ω)− Ẽ
[−N1,N1]
j1

)∗(H̃ (x, ω)− Ẽ
[−N1,N1]
j1

)PN1 ]
−1
‖ > exp(2c0N1)/2.
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The set of x’s satisfying the above estimates can be given a semialgebraic description
in terms of polynomials of degree at most NC

1 (see [Bou05, proof of Lemma 12.22]). It
follows that I can be partitioned into intervals Im, m ≤ NC

1 , such that j1(x) from the
above estimates can be kept constant on each of the subintervals. If we now go back to
the original potential, the estimates (3.9) and (3.11) hold up to a correction by a constant
factor, and with the constant choice of j1 on each Im. This concludes the proof. ut

The next lemma is our result on the stability of the spectral segments from Lemma 3.2.

Lemma 3.4. Let ω ∈ Tc,a and assume L(ω,E) ≥ γ > 0 for any E ∈ (E′, E′′). Let
I ⊂ [0, 1] be an interval and let j ∈ [−N,N]. Assume that E[−N,N ]j (I, ω) ⊂ (E′, E′′)

and for each x ∈ I , there exists ξ , ‖ξ‖ = 1, with support in [−N + 1, N − 1], such that

‖(H(x, ω)− E
[−N,N ]
j (x, ω))ξ‖ < e−c0N , (3.13)

where c0 > 0 is some constant. If c0 ≤ C(V, c, a, γ ) � 1 and N ≥ N0(V , c, a, γ, c0),
then

mes(E[−N,N ]j (I, ω) \ Sω) < exp(−c0N/4).

Proof. Let N1 = N2. Using Lemma 3.3, we partition I into intervals Im, m ≤ NC
1 , so

that for each Im, there exists j1 ∈ [−N1, N1] such that

|E
[−N,N ]
j (x, ω)− E

[−N1,N1]
j1

(x, ω)| ≤ exp(−c0N/2), x ∈ Im, (3.14)

and for each x ∈ Im, there exists ξ , ‖ξ‖ = 1, with support in [−N1+1, N1−1], satisfying

‖(H(x, ω)− E
[−N1,N1]
j1

(x, ω))ξ‖ < e−c0N1 . (3.15)

Let

EN,1,ω =
⋃
m

(
E
[−N,N ]
j (Im, ω)	 E

[−N1,N1]
j1

(Im, ω)
)
,

where 	 denotes symmetric difference. By the continuity of the parametrization of the
eigenvalues and (3.14), it follows that mes(EN,1,ω) ≤ exp(−c0N/3).

Note that (3.13) implies that dist(E,Sω)< exp(−c0N) for all E∈E[−N,N ]j (I, ω). At

the same time, if E ∈ E[−N,N ]j (I, ω) \ EN,1,ω, then E ∈ E[−N1,N1]
j1

(Im, ω) for some m,
and (3.15) implies that dist(E,Sω) < exp(−c0N1).

Let Nk = N2k . Through iteration we obtain sets EN,k,ω such that mes(EN,k,ω) <
exp(−c0Nk−1/3) and ifE∈E[−N,N ]j (I, ω)\

⋃
l≤k EN,l,ω, then dist(E,Sω)<exp(−c0Nk).

Finally, we note that

E
[−N,N ]
j0

(I, ω) \ Sω ⊂
⋃
k

EN,k,ω,

and we are done. ut
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4. Proofs of Theorems G and H

Proof of Theorem G. First we prove the full scale statement. Let J be the interval be-
tween G1 and G2. Then there exists E0 ∈ Sω ∩ J . We will argue that the size of J is
bounded below because Sω∩J must be relatively large. Lemma 3.2 implies the existence
of j ∈ [−N,N] and of a segment I , |I | > exp(−(logN)C), centered at a point x0, such
that

|E
[−N,N ]
j (x0, ω)− E0| ≤ exp(−N1−), (4.1)

and for any x ∈ I there exists ξ , ‖ξ‖ = 1, with support in [−N + 1, N − 1], such that

‖(H(x, ω)− E
[−N,N ]
j (x, ω))ξ‖ < exp(−cN)

(the vector ξ can be chosen to be the normalized projection of ψ [−N,N ]j (x, ω) onto the
subspace corresponding to [−N + 1, N − 1]). Using Proposition A we can guarantee that
L(ω,E) ≥ γ /2 for all E ∈ E[−N,N ]j (I, ω). Thus, we can apply Lemma 3.4 to get

mes(E[−N,N ]j (I, ω) \ Sω) ≤ exp(−cN).

By the continuity of E[−N,N ]j (·, ω) and (4.1), it follows that

E
[−N,N ]
j (I, ω) ∩ Sω ⊂ J ∩ Sω

(otherwise, we would have mes(E[−N,N ]j (I, ω) \ Sω) ≥ exp(−N1−)/2 ). At the same
time, Corollary 2.1 implies

mes(E[−N,N ]j (I, ω)) ≥ exp(−(logN)C).

Putting all these together we have

|J | ≥ |J ∩ Sω| ≥ |E[−N,N ]j (I, ω) ∩ Sω| ≥ exp(−(logN)C)− exp(−cN).

The conclusion follows immediately with an appropriate choice of C0.
The proof of the finite scale statement is analogous. One just needs to use Lemmas

2.9 and 3.1 instead of Lemmas 2.8 and 3.4. As before, there exists E0 ∈ SN̄,ω ∩ J . By
Lemma 2.9, there exist j ∈ [−N,N] and x0 ∈ T such that

|E
[−N,N ]
j (x0, ω)− E0| ≤ exp(−N1−). (4.2)

Let I = (x0 − exp(−(logN)C), x0 + exp(−(logN)C)). Using Proposition A we can
guarantee thatL(ω,E) ≥ γ /2 for allE ∈ E[−N,N ]j (I, ω). Thus, we can apply Lemma 3.1
to get

mes(E[−N,N ]j (I, ω) \ SN̄,ω) ≤ exp(−cN).

By the continuity of E[−N,N ]j (·, ω) and (4.2), it follows that

E
[−N,N ]
j (I, ω) ∩ SN̄,ω ⊂ J ∩ SN̄,ω
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(otherwise, we would have mes(E[−N,N ]j (I, ω) \ SN̄,ω) ≥ exp(−N1−)/2). At the same
time, Corollary 2.1 implies

mes(E[−N,N ]j (I, ω)) ≥ exp(−(logN)C).

Putting all these together we have

|J | ≥ |J ∩ SN̄,ω| ≥ |E
[−N,N ]
j (I, ω) ∩ SN̄,ω| ≥ exp(−(logN)C)− exp(−cN).

The conclusion follows immediately with an appropriate choice of C0. ut

Proof of Theorem H. We only prove the full scale version of the result. The finite scale
statement is proved analogously to the proof of Theorem G. We only need to prove
part (b). The other statements follow from its proof. Assume that Sω ∩ (E′, E′′) 6= ∅.
Let E0 ∈ Sω ∩ (E′, E′′). Let N ≥ N0 be large enough. From the proof of Theorem G we
know that there exist j ∈ [−N,N] and an interval I , |I | > exp(−(logN)C), centered at
a point x0, such that

|E
[−N,N ]
j (x0, ω)− E0| ≤ exp(−N1−),

mes(E[−N,N ]j (I, ω) \ Sω) ≤ exp(−cN),

mes(E[−N,N ]j (I, ω)) ≥ exp(−(logN)C).

Putting all this information together and assuming exp(−(logN)C) < ε (with ε from
(1.4)), we have∣∣(E0 − exp(−(logN)C), E0 + exp(−(logN)C)

)
∩ (Sω ∩ (E′, E′′))

∣∣
≥ exp(−(logN)C)− exp(−N1−)− exp(−cN) ≥ 1

2 exp(−(logN)C).

Since this is true for arbitrary large enough N , it follows that (1.2) holds for σ ≤ σ0, with
τ = 1/4. The conclusion follows because (1.2) holds trivially with τ ' σ0 for σ > σ0.

ut

5. Double resonances

Of key importance in the theory of localization is the notion of double resonance. This
refers to the situation where inside of a large window [−N,N], there are two smaller ones,
say I := [k1, k2], J := [k3, k4], which are not too close to each other and HI (x, ω) and
HJ (x, ω) have two eigenvalues E1, E2, respectively, with |E1 − E2| very small. If these
eigenvalues correspond to eigenfunctions HI (x, ω)ψ = E1ψ , HJ (x, ω)φ = E1φ, re-
spectively, which are well localized within these respective windows, thenH[−N,N ](x, ω)
exhibits an eigenvalue close to E1 with two eigenfunctions ψ±φ (with the understanding
that we set ψ = 0 outside of I and φ = 0 outside of J ). It is a delicate matter to turn this
idea into a quantitative, rigorous machinery. Localization happens precisely if such long
chains of resonances cannot occur.
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For the almost Mathieu operator, double resonances can be handled explicitly via
Lagrange interpolation for the trigonometric polynomial given by the finite-volume de-
terminant. This is the method of Jitomirskaya [Jit99], which we will use in this section.
Since the method does not apply to general potentials V , the problem is treated via elimi-
nation of “exceptional frequencies” ω in [GS11]. Alternatively, one can use semialgebraic
techniques to eliminate “bad” ω’s. This technique is quite robust and applies for example
to higher-dimensional tori. One can find a very effective and beautiful development of
this method in the monograph [Bou05].

For the purposes of this paper (as well as for the analysis of the gaps in [GS11]),
it is necessary to achieve a level of resolution in the double resonance problem that is
considerably higher than the one required for localization. The reason for this lies in the
distances between the eigenvalues on a finite interval. We use this separation to control
the process of formation of the spectrum Sω on the whole lattice from the spectra on
finite intervals (see Section 8). More specifically, to obtain points in Sω via SN we need
to keep the essential supports of the eigenfunctions in question bounded in order to obtain
a spectral value ofHω (see Remark 6.1). To keep the essential support compact, we make
sure that the eigenfunction at scale N gives rise to an eigenfunction at scale N̄ � N that
is very close to the initial function and with an eigenvalue that is very close to the initial
eigenvalue (see Propositions I and I′).

To derive the quantitative separation for two eigenvalues, say E
(N)
j (x, ω) and

E
(N)
k (x, ω), we need to verify that the sizes of the essential supports of ψ (N)j (x, ω) and

ψ
(N)
k (x, ω) are bounded by

|essential support| ≤ N := QN := exp((log logN)C), (5.1)

for some C � 1. This is the estimate that allows one to evaluate

|fN (x, ω,E1)− fN (x, ω,E2)| (5.2)

from Proposition B for two close but distinct values E1, E2. Heuristically, Proposition C
states that the exceptional set in the large deviation estimate is close to an algebraic curve
of degree ≤ (logN)A. This level of resolution is fine enough to see the scale (5.1) in
the setting of general potentials V for which we use frequency modulation to eliminate
double resonances.

The next result, which follows from [GS11, Prop. 5.5] and Proposition D, is a tool
designed to obtain the desired resolution in the elimination of double resonances. This
result employs the notions of measure and complexity. To be specific,

mes(S) ≤ ε, compl(S) ≤ K

means that for some intervals Ik ,

S ⊂
K⋃
k=1

Ik,

K∑
k=1

|Ik| ≤ ε.

Therefore, for the purposes of this paper we can assume that the sets from the next result
are just unions of intervals.
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Proposition E. Consider operators (1.1) with real-analytic V . Assume that L(ω,E) ≥
γ > 0 for any ω and any E ∈ (E′, E′′). There exists `0 = `0(V , c, a, γ ) such that for
any `1 ≥ `2 ≥ `0, the following holds: Given t > exp((log `1)

C0), H ≥ 1, there exists a
set �`1,`2,t,H ⊂ T with

mes(�`1,`2,t,H ) < exp((log `1)
C1)e−

√
H , compl(�`1,`2,t,H ) < t exp((log `1)

C1)H

such that for any ω ∈ Tc,a \�`1,`2,t,H there exists a set B`1,`2,t,H,ω ⊂ T with

mes(B`1,`2,t,H,ω) < t exp((log `1)
C1) e−

√
H ,

compl(B`1,`2,t,H,ω) < t exp((log `1)
C1)H

such that for any x ∈ T \ B`1,`2,t,H,ω one has

dist((E′, E′′) ∩ specH`1(x, ω), specH`2(x + tω, ω)) ≥ e
−H(log `1)

3C2
.

Even though no upper bound on the translation t is stated here, note that the estimates are
only meaningful if t < t̄(H), where the latter makes the right-hand side in the measure
estimate on the order of 1. In view of Lemmas 2.3 and 2.4 it is natural to recast the problem
of double or multiple resonances as the following question: for how many subintervals
[c, d] can the large deviation estimate

log |f[c,d](x, ω,E))| > (c − d)L(ω,E)− (c − d)1−δ (5.3)

fail with the same x, E? The large deviation estimate in Proposition B tells us that the set
where it fails is “almost a curve” in the plane of two variables x, ω. Therefore a Bézout
type argument should tell us that two intervals occur only for special values of x, which
is borne out by the previous proposition.

We shall now establish the following version of Proposition E for the almost Mathieu
operator. A key improvement over the general version is that no further elimination of
frequencies is required. However, this comes at the cost of the count of intervals where
the large deviation estimate might fail.

Proposition E′. Consider the almost Mathieu operator (1.9) with |λ| > 1 and ω ∈ Tc,a .
Let σ > 0. There exist N0 = N0(c, a, |λ|, σ ) such that for N ≥ N0, 4N ≤ |t | ≤
exp(Nσ−), and x ∈ T satisfying

min
|n|≤|t |+4N

‖x − nω/2‖ ≥ exp(−Nσ ),

we have

max
(

max
|n|≤[N/2]

log |fn+[−N,N ](x, ω,E)|, max
|n|≤[N/2]+1

log |fn+t+[−N,N ](x, ω,E)|
)

≥ (2N + 1)L(ω,E)−Nσ+.
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The key idea is to invoke Lagrange interpolation for the determinants, because one can
estimate the size of the Lagrange basis polynomials (see Lemma 5.2). It is clear from
(2.2) that f[−N,N ] is an even trigonometric polynomial of degree 2N + 1:

f[−N,N ](x, ω,E) =

2N+1∑
k=0

ak(λ, ω,E) cosk 2πx =: Q(cos 2πx).

Given θk ∈ T, k = 1, . . . , 2N + 1, the Lagrange interpolation formula reads

Q(cos 2πy) =
2N+1∑
k=1

Q(cos 2πθk)

∏
n6=k(cos 2πy − cos 2πθn)∏
n 6=k(cos 2πθk − cos 2πθn)

. (5.4)

For the purposes of Proposition E′ we will take {θk} to be made of two pieces of the
orbit of the irrational shift. We will control the size of the Lagrange basis polynomials by
invoking the following elementary estimate (cf. [GS01, Lem. 3.1], [Jit99, Lem. 11]).

Lemma 5.1. Let ω ∈ Tc,a , x, y ∈ T and f (θ) = log |cos 2πy − cos 2πθ | for θ ∈ T.
There exists C0(a, c) such that∣∣∣∣ n∑

k=1

f (x + kω)− n

∫ 1

0
f (θ) dθ

∣∣∣∣ . nδ log
1
δ
+ C0(log n)a+2 log

1
δ

for any n > 1 and any 0 < δ � 1 such that δ ≤ mink ‖(x + kω ± y)/2‖.

Proof. Let

g±δ (θ) =

{
log |sin 2π‖(y ± θ)/2‖ |, ‖(y ± θ)/2‖ ≥ δ,
log |sin 2πδ|, ‖(y ± θ)/2‖ < δ.

If δ ≤ mink ‖(x + kω ± y)/2‖, then

n∑
k=0

f (x + kω) = n log 2+
n∑
k=1

g+δ (x + kω)+

n∑
k=1

g−δ (x + kω).

By Koksma’s inequality (see [KN74, Thm. 2.5.1]) we have∣∣∣∣ n∑
k=1

g±δ (x + kω)− n

∫ 1

0
g±δ (θ) dθ

∣∣∣∣ ≤ nDnVar(g±δ ) . C(a, c)(log n)a+2 log
1
δ
.

The discrepancy Dn is evaluated via the Erdős–Turán theorem (see [KN74, Lem.
2.3.2–3]). Finally, one has∣∣∣∣∫ 1

0
f (θ) dθ − log 2−

∫ 1

0
g+δ (θ) dθ −

∫ 1

0
g−δ (θ) dθ

∣∣∣∣ . δ log
1
δ
,

and the lemma follows. ut
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Lemma 5.2. Let ω ∈ Tc,a , x, y ∈ T, N ≥ 1, t ∈ Z, and

θn =

{
x + (−N + n− [N/2] − 1)ω, n = 1, . . . , 2[N/2] + 1,
x + (−N + t + n− [N/2] −N − 1)ω, n = 2[N/2] + 2, . . . , 2N + 1.

Given σ > 0, there exists N0(c, a, σ ) such that if

min
|n|≤|t |+4N

∥∥∥∥x − nω2
∥∥∥∥ ≥ exp(−Nσ ), min

|n|≤|t |+4N

∥∥∥∥x + nω ± y2

∥∥∥∥ ≥ exp(−Nσ )

for N ≥ N0 and 4N ≤ |t | ≤ exp(−Nσ−), then∣∣∣∣
∏
n6=k(cos 2πy − cos 2πθn)∏
n 6=k(cos 2πθk − cos 2πθn)

∣∣∣∣ ≤ exp(Nσ+) for k = 1, . . . , 2N + 1.

Proof. Recall that ∫ 1

0
log |ξ − cos 2πθ | dθ = − log 2, |ξ | ≤ 1.

Our assumptions on x, y, and t , together with the Diophantine condition on ω, guarantee
that we can apply Lemma 5.1 with δ = exp(−Nσ ) to get∣∣∣log

∣∣∣∏
n 6=k

(cos 2πy − cos 2πθn)
∣∣∣+ 2N log 2

∣∣∣ ≤ Nσ+,∣∣∣log
∣∣∣∏
n 6=k

(cos 2πθk − cos 2πθn)
∣∣∣+ 2N log 2

∣∣∣ ≤ Nσ+.

Note that the Diophantine condition and the assumption that |t | ≤ exp(Nσ−) are needed
to ensure that ‖(θk − θn)/2‖ ≥ exp(−Nσ ). The conclusion follows immediately. ut

Proof of Proposition E′. Fix x ∈ T satisfying the assumptions of the proposition. Due to
the large deviation estimate of Proposition B, we know there exists y ∈ T satisfying the
assumptions of Lemma 5.2 and such that

log |f[−N,N ](y, ω,E)| > (2N + 1)L(ω,E)− (logN)C .

At the same time, from Lemma 5.2 and (5.4), we have

|f[−N,N ](y, ω,E)| = |Q(cos 2πy)| ≤ (2N + 1) exp(Nσ+)max
n
|Q(cos 2πθn)|.

Therefore,

max
n

log |f[−N,N ](θn, ω,E)| ≥ (2N + 1)L(ω,E)− (Nσ+)1−.

This yields the desired conclusion. ut
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6. Localized eigenfunctions on finite intervals

We now continue by proving results on finite scale localization of eigenfunctions. We
give a detailed proof for the almost Mathieu case and only briefly discuss the proof for a
general analytic potential. For the latter case, a slightly different statement with detailed
proof can be found in [GS08].

The result which we present here is adjusted to our criterion for identifying finite
scale energies that are close to the full spectrum, as stated in Lemma 2.8. In turn, this
criterion is adapted to the elimination of resonances afforded by Proposition E′. Due to the
weaker elimination of resonances, in the case of the almost Mathieu operator we cannot
immediately exclude the possibility of the eigenvector having some mass concentrated at
the edges of a given interval. Instead we will see that we can work around this issue by
shifting the edges of the interval. The shift is phase and energy dependent, and it will be
crucial for Proposition I′ that our result addresses the stability of the shift.

Proposition F′. Consider the almost Mathieu operator (1.9) with |λ| > 1 and ω ∈ Tc,a .
Let

B`,M,ω :=
{
x ∈ T : min

|n|≤M+C0`
‖x − nω/2‖ < exp(−`1/2)

}
.

There exist `0(|λ|, c, a), c0(|λ|, c, a), and C0(|λ|, c, a) such that the following statement
holds for any ` ≥ `0, 4` ≤ M ≤ exp(`c0). Given E0 ∈ R and x0 ∈ R, there exists
N = N(x0, E0, `) such that 0 ≤ N −M ≤ C0` and if

x ∈
(
x0 − exp(−(log `)C0), x0 + exp(−(log `)C0)

)
\ B`,M,ω,

|E
[−N,N ]
j (x, ω)− E0| ≤ exp(−(log `)C0),

max
|s|≤[`/2]

dist(E[−N,N ]j (x, ω), specHs+[−`,`](x, ω)) . exp(−`1/2+),

(6.1)

then
|ψ
[−N,N ]
j (x0, ω; n)| ≤ exp(−|n| log |λ| + C0`), |n| > 4`.

Proof. From Proposition D we know that there exists A(V, c, a, γ ) such that

{x ∈ T : dist(E0, specH[−`,`](x, ω)) < exp(−(log `)A)} ⊂
k0⋃
k=1

Ik,

where Ik are intervals such that |Ik| ≤ exp(−(log `)A/2), and k0 ≤ C`. Due to the
Diophantine condition, each interval Ik contains at most one point of the form

x0 + (−M − n+ `)ω or x + (M + n− `)ω,

respectively, with |n| ≤ `C . It follows that there exists |n0| ≤ C` such that

x0 + (−M − n0 + `)ω, x0 + (M + n0 − `)ω /∈

k0⋃
k=1

Ik. (6.2)
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We let N = M + n0. Suppose

x ∈
(
x0 − exp(−(log `)2A), x0 + exp(−(log `)2A)

)
andE = E[−N,N ]j (x, ω) are such that |E−E0| ≤ exp(−(log `)2A). From (6.2) and (2.11)
it follows that

dist(E, specH[−N,−N+2`](x, ω)), dist(E, specH[N−2`,N ](x, ω)) & exp(−(log `)A).

We will use Lemma 2.6 to show that any

E′ ∈ (E − exp(−`1/2+), E + exp(−`1/2+))

is not in the spectrum of H on certain large intervals. Note that

dist(E′, specH[−N,−N+2`](x, ω)), dist(E′, specH[N−2`,N ](x, ω)) & exp(−(log `)A).

Lemmas 2.3 and 2.4 imply that

|(H[−N,−N+2`](x, ω)− E
′)−1(m,−N + 2`)| < 1, m ∈ [−N,−N + 2`− `/4],

|(H[N−2`,N ](x, ω)− E
′)−1(m,N − 2`)| < 1, m ∈ [N − 2`+ `/4, N].

Since we also have

max
|s|≤[`/2]

dist(E′, specHs+[−`,`](x, ω)) . exp(−`1/2+),

Lemma 2.4 implies that

max
|s|≤[`/2]

log |fs+[−`,`](x, ω,E′)| ≤ (2`+ 1)L(E′, ω)− `1/2+.

Proposition E′ and Lemma 2.4 imply that for any

m ∈ [−N + 2`− `/4,−4`] ∪ [4`,N − 2`+ `/4]

there exists 3m = [am, bm] ⊂ [−N,N] containing m such that m − am, bm − m > `/4
and

|(H3m(x, ω)− E
′)−1(m′, am)| � 1, m′ − am ≥ `/4,

|(H3m(x, ω)− E
′)−1(m′, bm)| � 1, bm −m

′
≥ `/4.

Lemma 2.6 now implies that E′ is not in the spectrum of H restricted to [−N, b−4`] and
[a4`, N]. Since this is true for any E′ ∈ (E− exp(−`1/2+), E+ exp(−`1/2+)), it follows
that

dist(E, specH[−N,b−4`](x, ω)), dist(E, specH[a4`,N ](x, ω)) & exp(−`1/2+).
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Lemma 2.3 implies that

log |f[−N,b−4`](x, ω,E)|, log |f[a4`,N ](x, ω,E)|

≥ NL(ω,E)− C`− `1/2+(logN)C ≥ NL(ω,E)− C′`, (6.3)

provided that N ≤ exp(`c0) with c0 small enough. The conclusion follows by using
Lemma 2.4 and the Poisson formula. ut

We will now state the analogous result for general potentials.

Proposition F. Consider the Schrödinger operator (1.1) with real-analytic V . Assume
that L(ω,E) ≥ γ > 0 for any ω and any E ∈ (E′, E′′). There exist `0(V , c, a, γ ),
C0(V , c, a, γ ), and C1(V , c, a, γ ) such that the following statement holds for any ` ≥ `0,
N ≥ exp((log `)2C0), ω ∈ Tc,a \�`,N , and x ∈ T \ B`,N,ω, where, using the notation of
Proposition E, we have

�`,N =
⋃

exp((log `)C0 )≤|t |≤N

�2`+1,2`+1,t,`1/2 ,

B`,N,ω =
⋃

exp((log `)C0 )≤|t |≤N,|s|≤`

(sω + B2`+1,2`+1,t,`1/2,ω).

If E[−N,N ]j (x, ω) ∈ (E′, E′′) is such that

max
|s|≤[`/2]

dist(E[−N,N ]j (x, ω),Hs+[−`,`](x, ω)) . exp(−`1/2+), (6.4)

then

|ψ
[−N,N ]
j (x, ω; n)| ≤ exp

(
−|n|γ + C1 exp((log `)C0)

)
, |n| > exp((log `)C0).

Proof. The main idea is to use Lemma 2.6 to show that any

E ∈
(
E
[−N,N ]
j (x, ω)− exp(−`1/2+), E

[−N,N ]
j (x, ω)+ exp(−`1/2+)

)
is not in the spectrum of H on certain large intervals. Since

max
|s|≤[`/2]

dist(E, specHs+[−`,`](x, ω)) . exp(−`1/2+),

Proposition E implies that

dist(E, specHt+[−`,`](x, ω)) & exp(−`1/2(log `)C0), exp((log `)C) < |t | ≤ N.

By the same reasoning as in the proof of Proposition F′, we obtain

dist(E[−N,N ]j (x, ω), specH[−N,−a](x, ω)),

dist(E[−N,N ]j (x, ω), specH[a,N ](x, ω)) & exp(−`1/2(log `)C0),

with a = [exp((log `)C0)] + 1. The conclusion follows by using Lemma 2.3, Lemma 2.4,
and the Poisson formula. ut
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Note that, due to Proposition E, in the above proposition we have

mes(�`,N ) ≤ N exp(−`1/4/2), compl(�`,N ) ≤ N2 exp((log `)C),

mes(B`,N,ω) ≤ N2 exp(−`1/4/2), compl(B`,N,ω) ≤ N2 exp(exp(log `)C),
(6.5)

provided ` is large enough. This shows that the above result is meaningful as long as
N ≤ exp(lε).

Remark 6.1. Condition (6.4) in Propositions F and F′ implies that the essential support
of the eigenfunction remains close to the origin as N grows. This condition serves as a
criterion for a given value E0 to fall into the spectrum in the regime of positive Lyapunov
exponents. This is the meaning of Lemma 2.8. Let us note that the elimination of reso-
nances in Propositions E and E′ combined with the Poisson formula ensures only that the
essential support of the eigenfunction cannot be too spread out. However, this obviously
does not specify where the essential support is located.

7. Separation of finite scale eigenvalues

Next we discuss the separation of finite scale eigenvalues. The basic idea is that if two dis-
tinct eigenvalues are too close, then we can show that their corresponding eigenfunctions
are also close, contradicting their orthogonality. It follows from (2.3) that the eigenvector
ψ for the Dirichlet problem on [a, b], normalized by ψ(a) = 1, is given by

ψ(n) = f[a,n−1](x, ω,E), n ∈ [a, b], (7.1)

with the convention that f[a,a−1] = 1. Thus, we can estimate the distance between the
eigenvectors corresponding to different energies by using the following consequence of
the uniform upper bound estimate.

Corollary 7.1 ([GS11, Cor. 2.14]). Fix ω0 ∈ Tc,a and E0 ∈ C. Assume that L(ω0, E0)

≥ γ > 0. Let ∂ denote one of the partial derivatives ∂x , ∂E , ∂ω. Then

sup{log ‖∂MN (x, ω,E)‖ : |E − E0| + |ω − ω0| < N−C, x ∈ T}

≤ NL(ω0, E0)+ C(logN)C0

for all N ≥ 2. Here C0 = C0(a) and C = C(V, a, c, γ, E0).

We are ready to prove separation of eigenvalues for the almost Mathieu operator.

Proposition G′. Using the notation and the assumptions of Proposition F′, we have

|E
[−N,N ]
k (x, ω)− E

[−N,N ]
j (x, ω)| > exp(−C2`), k 6= j,

with C2 = C2(|λ|, c, a)� C1.
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Proof. To reach a contradiction, let

E1 = E
[−N,N ]
j (x, ω), E2 = E

[−N,N ]
k (x, ω),

and assume that |E1 − E2| < exp(−C2`). We have |E2 − E0| . exp(−`1/2), so Propo-
sition F′ applies to E2 also. We know from (7.1) that

ψi(n) = f[−N,n−1](x, ω,Ei), i = 1, 2,

are eigenvectors corresponding to E1 and E2. Proposition F′ implies that∑
|n|>C`

|ψi(n)|
2
≤ exp(−C` log |λ|)

∑
|ψi(n)|

2

provided C � C1. From Corollary 7.1 it follows that∑
|n|≤C`

|ψ1(n)− ψ2(n)|
2
≤ |E1 − E2|

2 exp(2NL(E1, ω)+ C`)

≤ exp(−2C2`+ 2NL(E1, ω)+ C`).

From (6.3) we know that∑
|ψ1(n)|

2
≥ exp(2NL(E1, ω)− C`).

Therefore ∑
|n|≤C`

|ψ1(n)− ψ2(n)|
2
≤ exp(−C2`)

∑
|ψ1(n)|

2

provided C2 is large enough. We arrive at the estimate∑
|ψ1(n)|

2
+

∑
|ψ2(n)|

2
= ‖ψ1 −ψ2‖

2
≤ exp(−C`)

(∑
|ψ1(n)|

2
+

∑
|ψ2(n)|

2
)
.

This is impossible and concludes the proof. ut

We only state the analogous result for general analytic potentials. Its proof is completely
analogous to Proposition G′. The difference in the results comes from the difference in
the sizes of the localization windows. Note that, for this reason, the separation is much
better for the almost Mathieu operator.

Proposition G. Using the notation and the assumptions of Proposition F, we have

|E
[−N,N ]
k (x, ω)− E

[−N,N ]
j (x, ω)| > exp(−C2 exp((log `)C0)), k 6= j,

with C2 = C2(V , c, a, γ )� C1.

8. Stabilization of finite scale spectral segments

Propositions G and G′ allow us to obtain a stability property of the finite volume spectra
as we pass from one scale to the next bigger one. This paves the way for a multi-scale
control of the spectrum in infinite volume.
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We first recall some well-known estimates on the stabilization of finite scale eigenval-
ues and eigenfunctions as the scale increases.

Lemma 8.1. Let x, ω ∈ T. For any intervals 30 = [a0, b0] ⊂ 3 ⊂ Z and any j0, we
have

dist(E30
j0
(x, ω), specH3(x, ω)) ≤ |ψ

30
j0
(x, ω; a0)| + |ψ

30
j0
(x, ω; b0)|.

Proof. Let ψ0 be the extension, with zero entries, of ψ30
j0
(x, ω) to 3. Since ‖ψ0‖ = 1,

the conclusion follows from the fact that

‖(H3(x, ω)− E
30
j0
(x, ω))ψ0‖ ≤ |ψ

30
j0
(x, ω; a0)| + |ψ

30
j0
(x, ω; b0)|.

Indeed, this implies that ‖(H3(x, ω) − E
30
j0
(x, ω))−1

‖
−1 is also bounded by the right-

hand side and the lemma follows by self-adjointness of H3(x, ω). ut

Lemma 8.2. Let A be a finite-dimensional Hermitian operator. Let E, η ∈ R, η >

0. Assume that the subspace of the eigenvectors of A with eigenvalues in the interval
(E − η,E + η) is at most of dimension one. If there exists φ such that ‖φ‖ = 1 and

‖(A− E)φ‖ < ε < η,

then there exists an eigenvector ψ0 with an eigenvalue E0 ∈ (E − ε, E + ε) such that

‖φ − ψ0‖ . εη−1.

Proof. Let {ψj } be an orthonormal basis of eigenvectors of A, Aψj = Ejψj . Then

ε2 > ‖(A− E)φ‖2 =
∑
j

|〈φ,ψj 〉|
2(Ej − E)

2
≥ min

j
(Ej − E)

2.

This implies that Ek ∈ (E − ε, E + ε) for some k, and Ej /∈ (E − η,E + η) for any
j 6= k. We have

ε2 > ‖(A− E)φ‖2 ≥
∑
j 6=k

|〈φ,ψj 〉|
2(Ej − E)

2
≥ η2

∑
j 6=k

|〈φ,ψj 〉|
2,

and therefore

1− |〈φ,ψk〉|2 = ‖φ − 〈φ,ψk〉ψk‖2 =
∑
j 6=k

|〈φ,ψj 〉|
2
≤ ε2η−2.

The conclusion now follows from the fact that ‖φ − ψk‖2 = 2(1− Re 〈φ,ψk〉). ut

We will also use the following well-known result (which could be replaced by considera-
tions about semialgebraic sets).
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Lemma 8.3. Let ω ∈ T, N1, N2 ≥ 1, δ > 0, and assume that the potential V in (1.1) is
a trigonometric polynomial of degree d0. Then the number of connected components of

{x ∈ T : |E(N1)
j1

(x, ω)− E
(N2)
j2

(x, ω)| ≤ δ}

is . N1N2d
2
0 .

Proof. It can be seen from (2.2) that

exp(2πid0Nx)fN (x, ω,E) = PN (exp(2πix), E),

with PN being a polynomial of degree 2d0N . Since the eigenvalues are continuous in x,
the number of components of the set we are interested in is bounded by the number of
solutions of the system {

0 = PN1(z, E),

0 = PN2(z, E ± δ).

The conclusion follows by using Bézout’s Theorem. ut

We are now ready to prove a detailed result on the stability of the finite scale spectra for
the almost Mathieu operator. To be more precise, the result only applies to certain spectral
segments. However, by Lemmas 2.8 and 3.2 we know that these are precisely the spectral
segments that we need to get control of the full scale spectrum.

Proposition I′. Consider the almost Mathieu operator (1.9) with |λ| > 1 and ω ∈ Tc,a .
Let

BN,k,ω =
{
x ∈ T : min

|n|≤2N (k)
‖x − nω/2‖ < exp(−(N (k−2))1/2)

}
,

where N (k)
= N2k , k ≥ 0, N (−1)

= N . Let C0 be as in Proposition F′. There exists
N0(|λ|, c, a) such that the following statement holds for any N ≥ N0, k0 ≥ 1. If there
exists j0 such that

|ψ
[−N,N ]
j0

(x, ω;±N)| ≤ exp(−c0N)

for some constant c0 < 1 and for any x in an interval I , |I | ≤ exp(−(log 2N (k0−2))C0),
then I \

⋃k0
k=1 BN,k,ω can be partitioned into subintervals Im, m ≤ (N (k0))C , with C an

absolute constant, so that for each Im, there exist Nk = Nk(Im) ' N (k) and jk = jk(Im),
k = 1, . . . , k0, such that for any x ∈ Im and k ≤ k0 − 1, we have

|E
[−N,N ]
j0

(x, ω)− E
[−N1,N1]
j1

(x, ω)| . exp(−c0N),

|E
[−Nk+1,Nk+1]
jk+1

(x, ω)− E
[−Nk,Nk]
jk

(x, ω)| ≤ exp(−(Nk log |λ|)/2),

|ψ
[−N1,N1]
j1

(x, ω; n)| ≤ exp(−(|n| log |λ|)/2),
|n| > C(|λ|, a, c)N,

|ψ
[−Nk+1,Nk+1]
jk+1

(x, ω; n)| ≤ exp(−(|n| log |λ|)/2), |n| > Nk,

|ψ
[−Nk+1,Nk+1]
jk+1

(x, ω; n)− ψ
[−Nk,Nk]
jk

(x, ω; n)| ≤ exp(−(Nk log |λ|)/2), |n| ≤ Nk.

(8.1)
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Proof. Let B =
⋃k0
k=1 BN,k,ω. Note that I \ B has . (N (k0))2 components. Let x0 be the

midpoint of I and let E0 = E
[−N,N ]
j0

(x0, ω). Let N ′ = 3N . We choose Ni(x0, E0, N
′)

' N2i , i = 1, 2, as in Proposition F′. Since

s + [−N ′, N ′] ⊃ [−N,N] for any |s| ≤ [N ′/2],

it follows from Lemma 8.1 that

max
|s|≤[N ′/2]

dist(E[−N,N ]j0
(x, ω), specHs+[−N ′,N ′](x, ω)) ≤ 2 exp(−c0N). (8.2)

Lemma 8.1 also implies that there exists j1(x) such that

|E
[−N,N ]
j0

(x, ω)− E
[−N1,N1]
j1

(x, ω)| ≤ 2 exp(−c0N). (8.3)

It follows from Lemma 8.3 that we can partition I into fewer thanNC
1 subintervals, withC

an absolute constant, such that we can choose j1(x) to be constant on each of the subin-
tervals. Let I (1)m ,m . (N (k0))C , be the intervals of the partition induced on I \B. Because
of (8.2), (8.3) we have

max
|s|≤[N ′/2]

dist(E[−N1,N1]
j1

(x, ω), specHs+[−N ′,N ′](x, ω)) ≤ exp(−(N ′)1/2+),

so we can apply Proposition F′ to get

|ψ
[−N1,N1]
j1

(x, ω; n)| ≤ exp(−|n| log |λ| + C′N ′) ≤ exp(−|n| log |λ|/2), |n| > CN,

for all x ∈ I \ B. Note that

|E
[−N1,N1]
j1

(x, ω)− E0| ≤ exp(−(logN ′)C0),

because of (8.3), (2.11), and our assumption on the length of I .
Now Lemma 8.1 yields the existence of j2(x) for each x ∈ I \ B such that

|E
[−N1,N1]
j1

(x, ω)−E
[−N2,N2]
j2

(x, ω)| ≤ 2 exp(−N1 log |λ|+CN ′) ≤ exp(−N1 log |λ|/2).

Using Lemma 8.3 we obtain a refined partition I (2)m ,m . (N (k0))C , of I \B, that contains
at most . NC

2 more intervals than the previous one, and such that the choice of j2 is
constant on each I (2)m . Again we have

max
|s|≤[N ′/2]

dist(E[−N2,N2]
j2

(x, ω), specHs+[−N ′,N ′](x, ω)) ≤ exp(−(N ′)1/2+),

and
|E
[−N2,N2]
j2

(x, ω)− E0| ≤ exp(−(logN ′)C0),
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so we can apply Proposition F′ to get the localization estimate for ψ [−N2,N2]
j2

(x, ω). Fur-
thermore, we can also apply Proposition G′ together with Lemma 8.2 to get

‖ψ
[−N2,N2]
j2

(x, ω)− ψ̃
[−N1,N1]
j1

(x, ω)‖

. exp(−N1 log |λ| + CN ′) exp(C′N ′) ≤ exp(−(N1 log |λ|)/2),

where ψ̃
[−N1,N1]
j1

(x, ω) is the extension, with zero entries, of ψ [−N1,N1]
j1

(x, ω) to
[−N2, N2].

The conclusion follows through iteration. For the sake of clarity we set up the next
step. Let x1 be the midpoint of I (2)m and let E1 = E

[−N1,N1]
j1

(x1, ω). Let N ′1 = 3N1. We
have

max
|s|≤[N ′1/2]

dist(E[−N1,N1]
j1

(x, ω), specHs+[−N ′1+N ′1](x, ω)) ≤ exp(−(N ′1)
1/2+),

and we choose N3(x1, E1, N
′

1) ' N (3). As before we obtain a refined partition I (3)m ,
m . (N (k0))C , and for each interval, there exists j3 such that

|E
[−N2,N2]
j1

(x, ω)− E
[−N3,N3]
j3

(x, ω)| ≤ exp(−N2 log |λ|/2)

for all x in the interval. As before we can apply Proposition F′, Proposition G′, and
Lemma 8.2 to deduce the desired estimates on the eigenvectors. ut

The result for general analytic potentials is analogous. Its proof is similar to that of Propo-
sition I′, but we have to approximate the potential V by trigonometric polynomials in
order to be able to use Lemma 8.3.

Proposition I. Consider the Schrödinger operator (1.1) with real-analytic V . Assume
that L(ω,E) ≥ γ > 0 for any ω and any E ∈ (E′, E′′). Let B`,N,ω, �`,N be as in
Proposition F and

BN,k,ω = B`k,Nk,ω, �N,k = �`k,Nk

with Nk = [exp(N1/10)]2
k−1

, `k = 3[logNk]10. There exists N0(V , c, a, γ ) such that the
following statement holds for any N ≥ N0, k0 ≥ 1 and ω ∈ Tc,a \

⋃k0
k=1�N,k . If there

exists j0 such that

|ψ
[−N,N ]
j0

(x, ω;±N)| ≤ exp(−c0N)

for some constant c0 < 1 and for any x in an interval I , and E[−N,N ]j0
(I, ω) ⊂ (E′, E′′),

then I \
⋃k0
k=1 BN,k,ω can be partitioned into subintervals Im, m ≤ NC

k0
, with C an

absolute constant, so that for each Im, there exist Nk = Nk(Im) ' N (k) and jk = jk(Im),
k = 1, . . . , k0, such that for any x ∈ Im and k ≤ k0 − 1, we have
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|E
[−N,N ]
j0

(x, ω)− E
[−N1,N1]
j1

(x, ω)| . exp(−c0N),

|E
[−Nk+1,Nk+1]
jk+1

(x, ω)− E
[−Nk,Nk]
jk

(x, ω)| ≤ exp(−(Nkγ )/2),

|ψ
[−N1,N1]
j1

(x, ω; n)| ≤ exp(−(|n|γ )/2),
|n| > exp((logN)C(V,c,a,γ )),

|ψ
[−Nk+1,Nk+1]
jk+1

(x, ω; n)| ≤ exp(−(|n|γ )/2), |n| > Nk,

|ψ
[−Nk+1,Nk+1]
jk+1

(x, ω; n)− ψ
[−Nk,Nk]
jk

(x, ω; n)| ≤ exp(−(Nkγ )/2), |n| ≤ Nk. (8.4)

Proof. Let B =
⋃k0
k=1 BN,k,ω. It follows from (6.5) that I \ B has . NC

k0
intervals. Note

that `1 ' 3N , so s + [−`1, `1] ⊃ [−N,N] for any |s| ≤ [`1/2], and therefore by
Lemma 8.1,

max
|s|≤[`1/2]

dist(E[−N,N ]j0
(x, ω), specHs+[−`1,`1](x, ω)) ≤ 2 exp(−c0N).

Lemma 8.1 also implies that there exists j1(x) such that

|E
[−N,N ]
j0

(x, ω)− E
[−N1,N1]
j1

(x, ω)| ≤ 2 exp(−c0N).

Choose Ṽ as in (3.4) with K = CN1 such that, by (3.5), we have

|Ẽ
[−N,N ]
j0

(x, ω)− Ẽ
[−N1,N1]
j1

(x, ω)| ≤ 3 exp(−c0N).

By Lemma 8.3 we can partition I into fewer than NC
1 subintervals such that j1(x) can be

kept constant on each of the subintervals. Using (3.5) again, on these intervals we have

|E
[−N,N ]
j0

(x, ω)− E
[−N1,N1]
j1

(x, ω)| ≤ 4 exp(−c0N),

and one can proceed as in the proof of Proposition I′. We just note that the choice of
`k and Nk is such that the separation obtained from Proposition G is by exp(−Nε

k ) >

exp(−N1/2
k1
). This is crucial for obtaining the desired estimates from Lemma 8.2. ut

Finally, let us note that our main results also follow from the results on stabilization
(though for general potentials the result is weaker because we have to remove a measure
zero set of bad frequencies). This is simply because we can establish the following two
analogues of Lemma 3.4. Their proofs mirror that of Lemma 3.4. For the convenience of
the reader, we include the proof for the almost Mathieu case.

Proposition 8.4. Consider the almost Mathieu operator (1.9) with |λ| > 1 and ω ∈ Tc,a .
There existsN0(|λ|, c, a) such that the following statement holds for anyN ≥ N0. If there
exist j0 and an interval I ⊂ T such that

|ψ
[−N,N ]
j0

(x, ω;±N)| ≤ exp(−c0N), x ∈ I,

for some constant c0 < 1, then

mes(E[−N,N ]j0
(I, ω) \ Sω) ≤ exp(−c1N

1/2),

with c1 an absolute constant.
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Proof. Let BN,k,ω be as in Proposition I′. Let C0 be as in Proposition F′. Partition I into
intervals I (0)m , m . exp((log 2N)C0), such that |I (0)m | ≤ exp(−(log 2N)C0). Let I (1)m , with

m . NC exp((log 2N)C0) ≤ exp((logN)C),

be the partition of I \BN,1,ω obtained by applying Proposition I′ with k0 = 1 on each I (0)m .
Since on each I (1)m we have

|E
[−N,N ]
j0

(x, ω)− E
[−N1,N1]
j1

(x, ω)| ≤ exp(−cN)

with N1 = N1(I
(1)
m ) ' N2, j1 = j1(I

(1)
m ), it follows by the continuity of the parametriza-

tion of the eigenvalues that

mes
(
E
[−N,N ]
j0

(I (1)m , ω)	 E
[−N1,N1]
j1

(I (1)m , ω)
)
. exp(−cN),

where 	 denotes symmetric difference. From (2.11) it follows that

mes(E[−N,N ]j0
(BN,1,ω, ω)) ≤ exp(−cN1/2).

Let

EN,1,ω = E[−N,N ]j0
(BN,1,ω, ω) ∪

⋃
m

(
E
[−N,N ]
j0

(I (1)m , ω)	 E
[−N1,N1]
j1

(I (1)m , ω)
)
.

We clearly have mes(EN,1,ω) ≤ exp(−cN1/2).
Note that Lemma 8.1 implies that

dist(E,Sω) . exp(−c0N), E ∈ E
[−N,N ]
j0

(I, ω).

Since anyE ∈ E[−N,N ]j0
(I, ω)\EN,1,ω also belongs to someE[−N1,N1]

j1
(I
(1)
m , ω), it follows

from Proposition I′ and Lemma 8.1 that

dist(E,Sω) ≤ exp(−cN1), E ∈ E
[−N,N ]
j0

(I, ω) \ EN,1,ω.

By applying Proposition I′ repeatedly, we obtain sets

EN,k,ω = E[−N,N ]j0
(BN,k,ω, ω) ∪

⋃
m

(
E
[−Nk−1,Nk−1]
jk−1

(I (k)m , ω)	 E
[−Nk,Nk]
jk

(I (k)m , ω)
)

such that mes(EN,k,ω) ≤ exp(−c(N (k−2))1/2) (recall that N (k)
= N2k ) and

dist(E,Sω) ≤ exp(−cN (k)), E ∈ E
[−N,N ]
j0

(I, ω) \

k⋃
`=1

EN,`,ω.

Finally, we note that
E
[−N,N ]
j0

(I, ω) \ Sω ⊂
⋃
k

EN,k,ω,

and we are done. ut
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Proposition 8.5. Consider the Schrödinger operator (1.1) with real-analytic V . Assume
that L(ω,E) ≥ γ > 0 for any ω and any E ∈ (E′, E′′). Let �N,k be as in Proposition I.
There exists N0(V , c, a, γ ) such that the following statement holds for any N ≥ N0 and
any ω ∈ Tc,a \

⋃
k≥1�N,k . If there exist j0 and an interval I ⊂ T such that

|ψ
[−N,N ]
j0

(x, ω;±N)| ≤ exp(−c0N), x ∈ I,

for some constant c0 < 1, and E[−N,N ]j0
(I, ω) ⊂ (E′, E′′), then

mes(E[−N,N ]j0
(I, ω) \ Sω) ≤ exp(−c1N

1/2),

with c1 an absolute constant.
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[YZ14] You, J., Zhang, S.: Hölder continuity of the Lyapunov exponent for analytic quasiperi-
odic Schrödinger cocycle with weak Liouville frequency. Ergodic Theory Dynam. Sys-
tems 34, 1395–1408 (2014) Zbl 1315.39004 MR 3227161

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0519.60066&format=complete
http://www.ams.org/mathscinet-getitem?mr=0696803
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0885.34070&format=complete
http://www.ams.org/mathscinet-getitem?mr=1395669
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1387.34120&format=complete
http://www.ams.org/mathscinet-getitem?mr=2271928
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0990.39014&format=complete
http://www.ams.org/mathscinet-getitem?mr=1847592
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1171.82011&format=complete
http://www.ams.org/mathscinet-getitem?mr=2438997
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1268.82013&format=complete
http://www.ams.org/mathscinet-getitem?mr=2753606
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0946.47018&format=complete
http://www.ams.org/mathscinet-getitem?mr=1740982
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0535.34021&format=complete
http://www.ams.org/mathscinet-getitem?mr=0675906
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0497.35026&format=complete
http://www.ams.org/mathscinet-getitem?mr=0667409
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0549.60058&format=complete
http://www.ams.org/mathscinet-getitem?mr=0780760
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0647.60073&format=complete
http://www.ams.org/mathscinet-getitem?mr=0933826
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0281.10001&format=complete
http://www.ams.org/mathscinet-getitem?mr=0419394
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1183.47026&format=complete
http://www.ams.org/mathscinet-getitem?mr=2504863
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0846.34024&format=complete
http://www.ams.org/mathscinet-getitem?mr=1360607
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1041.47502&format=complete
http://www.ams.org/mathscinet-getitem?mr=1674798
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0745.34046&format=complete
http://www.ams.org/mathscinet-getitem?mr=1138050
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1315.39004&format=complete
http://www.ams.org/mathscinet-getitem?mr=3227161

	1. Introduction
	2. Transfer matrices and the Wegner estimate
	3. Stability of the spectrum
	4. Proofs of Theorems G and H
	5. Double resonances
	6. Localized eigenfunctions on finite intervals
	7. Separation of finite scale eigenvalues
	8. Stabilization of finite scale spectral segments
	References

