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Abstract. We prove some cases of the Zilber–Pink conjecture on unlikely intersections in Shimura
varieties. Firstly, we prove that the Zilber–Pink conjecture holds for intersections between a curve
and the union of the Hecke translates of a fixed special subvariety, conditional on arithmetic conjec-
tures. Secondly, we prove the conjecture unconditionally for intersections between a curve and the
union of Hecke correspondences on the moduli space of principally polarised abelian varieties, sub-
ject to some technical hypotheses. This generalises results of Habegger and Pila on the Zilber–Pink
conjecture for products of modular curves.

The conditional proof uses the Pila–Zannier method, relying on a point-counting theorem of
Habegger and Pila and a functional transcendence result of Gao. The unconditional results are
deduced from this using a variety of arithmetic ingredients: the Masser–Wüstholz isogeny theorem,
comparison between Faltings and Weil heights, a super-approximation theorem of Salehi Golsefidy,
and a result on expansion and gonality due to Ellenberg, Hall and Kowalski.
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1. Introduction

The aim of this paper is to prove some cases of the Zilber–Pink conjecture on unlikely
intersections [Pin05]. Pink’s version of this conjecture, a generalisation of the André–Oort
and Manin–Mumford conjectures, is as follows.

Conjecture 1.1 ([Pin05, Conjecture 1.3]). Let S be a mixed Shimura variety over C. Let
V be an algebraic subvariety of S which is not contained in any proper special subva-
riety of S. Then the intersection of V with the union of all special subvarieties of S of
codimension greater than dimV is not Zariski dense in V .

In this paper, we consider cases of Conjecture 1.1 where S is a pure Shimura variety and
V is an irreducible curve. When V is an irreducible curve, the conclusion “not Zariski
dense in V ” is equivalent to “finite.” Instead of the intersection of V with the union of
all special subvarieties of codimension at least 2, we consider its intersection only with
Hecke translates of a fixed special subvariety. Roughly speaking, Hecke translates mean
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translates of a special subvariety by rational elements of the reductive group attached to
the ambient Shimura variety; see Section 2 for the precise definition.

Thus we consider the following restricted version of Conjecture 1.1.

Conjecture 1.2. Let S be a pure Shimura variety. Let SH ⊂ S be a special subvariety
of codimension at least 2. Let V ⊂ S be an irreducible algebraic curve which is not
contained in any proper special subvariety of S. Then the intersection of V with the union
of all Hecke translates of SH is finite.

We prove Conjecture 1.2 conditional on two arithmetic conjectures (Conjectures 3.2
and 3.3): a large Galois orbits conjecture and a conjecture on the fields of definition of
Hecke translates. This conditional result is similar to a special case of the main theorem
of [DR18], but not directly implied by it as we use a different measure of complexity in
our conjectures.

Let Ag denote the moduli space of principally polarised abelian varieties of dimen-
sion g. We prove Conjecture 1.2 unconditionally for Hecke correspondences (that is,
Hecke translates of the diagonal) in the Shimura variety Ag × Ag , subject to certain
technical hypotheses. To the best of the author’s knowledge, this is the first unconditional
proof of cases of the Zilber–Pink conjecture for pure Shimura varieties, beyond the cases
where the Shimura variety is a product of modular curves [HP12], [Pil17] or the spe-
cial subsets have dimension zero (the André–Pink and André–Oort conjectures) [Orr15],
[Tsi18].

The proofs are based on the Pila–Zannier strategy using o-minimality [PZ08]. The
conditional result relies on a point-counting result for “semi-rational points” due to
Habegger and Pila [HP16], a height bound for Siegel sets proved by the author of the
present paper [Orr18] and a functional transcendence result of Gao [Gao17]. The uncon-
ditional results are deduced by proving certain cases of the arithmetic conjectures needed
for the conditional result. When the curve V is defined over Q, the Galois orbits conjecture
is proved using the Masser–Wüstholz isogeny theorem and Faltings heights; when V is
not defined over Q we use results on expansion in groups due to Salehi Golsefidy [SG19]
and an application of expansion to gonality of curves by Ellenberg, Hall and Kowalski
[EHK12].

1.1. Unconditional results

We prove two cases of Conjecture 1.2 unconditionally. In both cases the Shimura variety
is S = Ag ×Ag for g ≥ 2, where Ag is the moduli space of principally polarised abelian
varieties of dimension g over C. In both unconditional results, we look at intersections
between a curve V and Hecke correspondences, that is, Hecke translates of the diagonal
in Ag ×Ag .

The two unconditional theorems are as follows. Theorem 1.3 applies when the curve
V is defined over Q, while Theorem 1.4 applies when V is not defined over Q. Each
theorem has its own additional restrictions on V and on the subset of the union of Hecke
correspondences whose intersection with V is controlled. The term “asymmetric curve”
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in Theorem 1.3 essentially means that the degrees of the two projections V → Ag are
distinct: for a precise definition, see Section 5.1.

Theorem 1.3. Let g ≥ 2 be an integer. Let6 be the set of points (s1, s2) ∈ Ag×Ag such
that the abelian varietyAs1 is isogenous toAs2 and EndAs1 ∼= Z. Let V ⊂ Ag×Ag be an
asymmetric irreducible algebraic curve defined over Q. Suppose that V is not contained
in a proper special subvariety of Ag ×Ag . Then V ∩6 is finite.

Theorem 1.4. Let b, g ≥ 2 be integers. Let 6 be the set of points (s1, s2) ∈ Ag × Ag

for which there exists a polarised isogeny (As1 , λs1) → (As2 , λs2) whose degree is not
divisible by the b-th power of any prime number. Let V ⊂ Ag × Ag be an irreducible
algebraic curve which is not contained in a proper special subvariety of Ag×Ag . Suppose
that there exists an algebraically closed field K ⊂ C such that:

(i) The Zariski closure of p1(V ) is defined over K (where p1 is the first projection
Ag ×Ag → Ag).

(ii) V is not defined over K .

Then V ∩6 is finite.

Hecke correspondences in Ag × Ag have a natural interpretation as the set of points
(s1, s2) such that there exists a polarised isogeny between the associated principally
polarised abelian varieties (As1 , λs1) and (As2 , λs2). This interpretation via isogenies is
essential to the proof of Theorem 1.3 and so this proof is fundamentally restricted to
Ag × Ag or at least to Shimura varieties of Hodge type, but is only used incidentally
in the proof of Theorem 1.4. Theorem 1.4 is restricted to Ag × Ag because it relies on
concrete calculations in the group GSp2g(Q).

1.2. Previous results

Previous results with analogous hypotheses were proved for the Shimura variety A3
1

(where A1 is the moduli space of elliptic curves): [HP12, Theorem 1] is analogous to The-
orem 1.3 and [Pil17, Theorem 1.4] is analogous to Theorem 1.4. These previous results
had to work with subvarieties of A3

1 rather than A2
1 so that there exist positive-dimensional

special subvarieties of codimension at least 2, as is required for the intersections with a
curve to be “unlikely” in the sense of Pink’s conjecture. On the other hand, when g ≥ 2,
Pink’s conjecture applies to Hecke correspondences in Ag ×Ag because they have codi-
mension at least 2.

The only special subvarieties of A3
1 are intersections of subvarieties defined by one of

the following two conditions:

• the projection onto one of the copies of A1 is a fixed special point;
• the projection onto two of the copies of A1 is a Hecke correspondence.

Consequently, Habegger and Pila were able to prove the full Zilber–Pink conjecture for
curves in A3

1 satisfying the appropriate technical hypotheses. On the other hand, when
g ≥ 2, Ag ×Ag contains special subvarieties which cannot be described in terms of just
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special points and Hecke correspondences (for example, subvarieties of A2 × A2 which
project onto quaternionic Shimura curves) and our method does not apply to these more
general special subvarieties.

Theorem 1.3 also implies the following special case of the André–Pink conjecture.
A more general version of this theorem was previously proved in [Orr15].

Theorem 1.5. Let g ≥ 2 be an integer. Let s ∈ Ag(Q) be a point which is not contained
in a proper special subvariety of Ag . Let 6 be the set of points t ∈ Ag such that At is
isogenous to As . Let V ⊂ Ag be an irreducible algebraic curve defined over Q which is
not contained in a proper special subvariety of Ag . Then V ∩6 is finite.

Theorem 1.5 can be deduced from Theorem 1.3 by applying it to the curve {s} × V ⊂
Ag × Ag . However [Orr15, Theorem 1.2] is more general than Theorem 1.5 in several
ways: it allows s and V to be defined over C rather than Q (it is possible to use Theo-
rem 1.4 to prove some but not all of the cases in which s and V are not defined over Q), it
allows s to be contained in a proper special subvariety, and it applies to all curves V which
are not weakly special subvarieties of Ag (a weaker condition than not being contained
in a proper special subvariety).

1.3. Outline of paper

In Section 2, we define the concepts related to Shimura varieties which we shall use, along
with some miscellaneous notation. In Section 3, we prove Conjecture 1.2, conditional
on arithmetic conjectures (Conjectures 3.2 and 3.3). Section 4 contains some results on
Hecke correspondences in Ag × Ag which are used in the proofs of both Theorems 1.3
and 1.4, including proving Conjecture 3.3 in this case. Finally Sections 5 and 6 prove the
large Galois orbits conjectures required for Theorems 1.3 and 1.4 respectively.

2. Definitions and notation

We briefly recall various definitions related to Shimura varieties, in order to establish the
terminology and notation which we use in this paper. At the end of the section, we also
include some miscellaneous definitions.

2.1. Shimura varieties

Except in the proof of Lemma 4.3, we will only work with a single geometrically con-
nected component of a Shimura variety, which we call a “Shimura variety component.”
We therefore omit the complexities of Deligne’s adelic definition of Shimura varieties.

A Shimura datum is a pair (G, X) where G is a connected reductive Q-algebraic
group andX is a G(R)-conjugacy class in Hom(S,GR) satisfying axioms 2.1.1.1–2.1.1.3
of [Del79]. Here S denotes the Deligne torus ResC/RGm. These axioms imply that X is
a finite disjoint union of Hermitian symmetric domains [Del79, Corollaire 1.1.17].
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We select a connected component X+ ⊂ X. Let G(R)+ denote the stabiliser of X+

in G(R), and let G(R)+ denote the identity component of G(R). Write G(Q)+ =
G(Q) ∩G(R)+ and G(Q)+ = G(Q) ∩G(R)+.

Let ρ : G→ GLn,Q be a faithful representation. For each positive integer N , let

0(N) = {γ ∈ G(Q)+ : ρ(γ ) ∈ GLn(Z) and ρ(γ ) ≡ In mod N}.

A congruence subgroup of G(Q)+ is a subgroup which contains some 0(N) as a sub-
group of finite index. The groups 0(N) depend on the choice of the representation ρ, but
the notion of congruence subgroup does not.

If 0 is a congruence subgroup of G(Q)+, then by [BB66], the quotient space S =
0\X+ has a canonical structure as a quasi-projective variety over C. This variety S is a
connected component of the Shimura variety ShK(G, X). We write π : X+ → S for the
uniformisation map.

According to Deligne’s theory of canonical models ([Del79], completed in [Mil83]
and [Bor84]), the Shimura variety ShK(G, X) has a canonical model over a number field.
Hence the connected component S also has a model over a number field. We use the
phrase Shimura variety component to mean a variety over a number field whose extension
to C is of the form 0\X+ and whose structure over a number field comes from the theory
of canonical models, as described above.

2.2. Special and weakly special subvarieties

A sub-Shimura datum of (G, X) is a Shimura datum (H, XH) such that H ⊂ G and
XH ⊂ X. Pick a connected componentX+H ofXH such thatX+H ⊂ X

+. As a consequence
of [Del71, Proposition 1.15], π(X+H) is an algebraic subvariety of S. We call a set X+H of
this form a pre-special subset of X+ and we call its image π(X+H) a special subvariety
of S.

There are several equivalent definitions of weakly special subvarieties of S: as totally
geodesic varieties [Moo98], in terms of Shimura morphisms [Pin05] or via the following
concrete but somewhat convoluted definition [UY11]. Let (H, XH) ⊂ (G, X) be a sub-
Shimura datum such that the adjoint group Had splits as a direct product H1 ×H2. Then
X+H also splits as a direct productX+1 ×X

+

2 , such that there are Shimura data (H1, X1) and
(H2, X2) where X+1 is a connected component of X1 and X+2 is a connected component
of X2. For each point x2 ∈ X

+

2 , we call the fibre X+1 × {x2} ⊂ X
+

H ⊂ X
+ a pre-weakly

special subset of X+. Its image π(X+1 ×{x2}) is an algebraic subvariety of S, and we call
subvarieties of this form weakly special subvarieties of S.

Note that, in the above definition, either H1 or H2 may be the trivial group. If H1 is
trivial, then the resulting weakly special subvariety is a point (and this shows that every
single-point subset of S is a weakly special subvariety). If H2 is trivial, then the resulting
weakly special subvariety is S itself.
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2.3. Hecke translates and Hecke correspondences

Let SH = π(X+H) be a special subvariety of S. A Hecke translate of SH is a subvariety
of S of the form SH,γ = π(γ.X+H) where γ ∈ G(Q)+. Observe that SH,γ is itself a
special subvariety, associated with the sub-Shimura datum (γHγ−1, γ .XH) ⊂ (G, X).
The condition γ ∈ G(Q) is essential here: if γ ∈ G(R) \ G(Q), then γHγ−1 need not
be defined over Q and π(γ.X+H) is usually not a locally closed subset of S (even in the
complex topology).

Consider the special case where H is the diagonal subgroup of G×G. For γ ∈ G(Q)+,
(1, γ ).X+H is equal to the graph of the action of γ on X+. We write

Tγ = π((1, γ ).X+H).

Subvarieties of S × S of this form are called Hecke correspondences.

2.4. Other definitions

Throughout this paper, whenever we refer to polarisations, isogenies or endomorphisms
of abelian varieties, we mean polarisations, isogenies or endomorphisms defined over
an algebraically closed field. When we talk about points of a variety, unless otherwise
specified, we mean C-points.

If (A, λ) and (B,µ) are principally polarised abelian varieties, then a polarised
isogeny f : A→ B is an isogeny such that f ∗µ = nλ for some n ∈ Z.

By the word definable, we mean “definable in the o-minimal structure Ran,exp.”
Given positive integers b and n, we say that n is b-th-power-free if it is not divisible

by the b-th power of any prime number.
Given a rational matrix γ ∈ Mn(Q) with entries γij = aij/bij (each entry written as

a fraction in lowest terms), we write

denom γ = max
1≤i,j≤n

|bij |, H(γ ) = max
1≤i,j≤n

max(|aij |, |bij |).

3. Conditional Zilber–Pink for Hecke translates

The aim of this section is to prove Conjecture 1.2 (Pink’s conjecture for intersections
between a curve and Hecke translates of a fixed special subvariety), conditional on a large
Galois orbits conjecture and a conjecture on the fields of definition of Hecke translates.
The main theorem resembles [DR18, Theorem 14.2], but uses a different definition of
complexity adapted to our special case of Hecke translates of a fixed special subvariety.

In stating the theorem and the conjectures on which it depends we shall use the fol-
lowing set-up.

Set-up 3.1. Let (G, X) be a Shimura datum and let S be an associated Shimura variety
component.

Let (H, XH) ⊂ (G, X) be a sub-Shimura datum. For each γ ∈ G(Q)+, let SH,γ
denote the special subvariety π(γ.X+H) ⊂ S.
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Let ρ : G→ GLn,Q be a faithful representation. For each γ ∈ G(Q)+, define

N(γ ) = max
(
denom ρ(γ ), |det ρ(γ ) · denom ρ(γ )n|

)
.

Let � be a subset of G(Q)+ and let 6 be a subset of
⋃
γ∈� SH,γ . For each point

s ∈ 6, define
N(s) = min {N(γ ) : γ ∈ � such that s ∈ SH,γ }.

The representation ρ in Set-up 3.1 is an auxiliary device needed to define the complex-
ity N(γ ) (which can often be interpreted as a modification of |det ρ(γ )|, taking into ac-
count denominators). If we replace ρ by another faithful representation of G, the new
function N(γ ) is polynomially bounded with respect to the old N(γ ) and vice versa.
Hence Conjectures 3.2 and 3.3 do not depend on the choice of ρ, except that the con-
stants will change.

The sets � and 6 are treated as input data, rather than simply fixing � = G(Q)+
and 6 =

⋃
γ∈G(Q)+ SH,γ , in order to make it clear that if we can prove Conjectures 3.2

and 3.3 for certain subsets � ⊂ G(Q)+ and 6 ⊂
⋃
γ∈G(Q)+ SH,γ then we can deduce a

corresponding partial version of Conjecture 1.2. This flexibility is used in our applications
to Hecke correspondences in Ag × Ag: in Theorem 1.3, 6 is restricted to points where
the associated abelian varieties have endomorphism ring Z, while in Theorem 1.4, �
only contains matrices with b-th-power-free determinant. Note that the definition of N(s)
depends on the set �.

Conjecture 3.2. In the situation of Set-up 3.1, let V ⊂ S be an irreducible algebraic
curve which is not contained in any proper special subvariety of S. Let L be a finitely
generated field of characteristic zero over which V is defined. There exist constants
C1, C2 > 0 such that for all points s ∈ V ∩6,

#(Aut(C/L) · s) ≥ C1N(s)
C2 .

Conjecture 3.3. In the situation of Set-up 3.1, for every κ > 0, there exists a con-
stant C3 such that, for every γ ∈ �, SH,γ is defined over a number field of degree at
most C3N(γ )

κ .

Theorem 3.4. In the situation of Set-up 3.1, let V ⊂ S be an irreducible algebraic
curve which is not contained in any proper special subvariety of S. Suppose that
dimXH ≤ dimX − 2. Suppose also that Conjectures 3.2 and 3.3 hold for the chosen
(G, X), (H, XH), S, ρ, �, 6 and V . Then V ∩6 is finite.

The hypothesis dimXH ≤ dimX − 2 in Theorem 3.4 ensures that intersections between
V and SH,γ are unlikely in the sense of Pink’s conjecture (Conjecture 1.1).

Conjecture 3.2 is a large Galois orbits conjecture similar to others commonly used in
unlikely intersections arguments. It is analogous to [DR18, Conjecture 11.1] but using a
different complexity function. Similarly, Conjecture 3.3 is analogous to [DR18, Conjec-
ture 12.6]. Theorem 3.4 has no conditions analogous to [DR18, Conjecture 12.7], because
the height bound we require has been proved in [Orr18] and this is sufficient to deduce
the analogue of [DR18, Conjecture 10.3] for our setting.
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The proof of Theorem 3.4 is based on [HP12, Section 5], which proves a similar re-
sult in which S is a power of a modular curve. The proof has two parts, both relying
on o-minimality. The first part is a functional transcendence argument (written geometri-
cally), the second part is point counting using a strong variant of the Pila–Wilkie theorem.

3.1. Intersections with a family of translates

Let S be a Shimura variety and let SH ⊂ S be a special subvariety of codimension at
least 2. We show that if an algebraic curve V ⊂ S has positive-dimensional intersection
with a semialgebraic family of translates of SH, then V is contained in a proper weakly
special subvariety of S. If in addition V intersects a Hecke translate of SH, then V is
contained in a proper special subvariety (the effect of this additional hypothesis resembles
the fact that if a weakly special subvariety contains a special point, then it is special).

Proposition 3.5. Let S be a Shimura variety component associated with the Shimura
datum (G, X). Let π : X+ → S be the uniformisation map. Let (H, XH) ⊂ (G, X) be a
sub-Shimura datum such that dimXH ≤ dimX − 2. Let X+H be a connected component
of XH which is contained in X+. Let V ⊂ S be an irreducible algebraic curve. Consider
the following hypotheses:

(a) There exists a connected semialgebraic set A ⊂ G(R)+ of dimension at most 1 such
that π−1(V ) ∩ A.X+H is uncountable.

(b) There exists γ ∈ G(Q)+ such that π−1(V ) ∩ γ.X+H is non-empty.

We can draw the following conclusions:

(i) If (a) holds, then V is contained in a proper weakly special subvariety of S.
(ii) If (a) and (b) hold, then V is contained in a proper special subvariety of S.

Part (i) of Proposition 3.5 follows from the hyperbolic Ax–Schanuel conjecture, proved
by Mok, Pila and Tsimerman [MPT19], but we give here a proof using a simpler func-
tional transcendence result from [Gao17]. Our main interest (in order to prove to prove
Theorem 3.4) is in part (ii). We do not use part (i) in the proof of part (ii), but we thought
it is still useful to include part (i) in order to make the roles of the two conditions (a)
and (b) clearer.

We prove Proposition 3.5 by constructing a complex algebraic subset of the compact
dual of X+ which contains an irreducible component of π−1(V ). In order to obtain a
weakly special subvariety from this algebraic set, we use [Gao17, Theorem 8.1], which is
based on monodromy arguments. Parts (i) and (ii) of Proposition 3.5 are then proved by
controlling the dimension of this algebraic set.

Let X̌ denote the compact dual of the Hermitian symmetric domain X+. There is an
action of G(C) on X̌ given by a morphism of complex algebraic varieties

φ : G(C)× X̌→ X̌.

Let A be the semialgebraic set which appears in hypothesis (a) of Proposition 3.5. Let
B be the Zariski closure of A inside G(C). Because A is contained in a real algebraic set
of (real) dimension at most 1, the (complex) dimension of B is at most 1.
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Since A ⊂ B, hypothesis (a) implies that π−1(V ) ∩ φ(B ×X+H) is uncountable. The
complex analytic set π−1(V ) has only countably many irreducible components, so we can
choose an irreducible component V1 ⊂ π

−1(V ) such that V1∩φ(B×X
+

H) is uncountable.
Let W denote the Zariski closure of V1 inside X̌. By [Gao17, Theorem 8.1], W ∩X+

is a pre-weakly special subset of X+.
Let Y denote the complex algebraic subset of G(C)× X̌ given by

Y = {(β, x) ∈ B × X̌H : φ(β, x) ∈ W }.

Lemma 3.6. The Zariski closure of φ(Y ) in X̌ is equal to W .

Proof. From the definition of Y , we see that φ(Y ) ⊂ W . Since W is Zariski closed, the
Zariski closure of φ(Y ) is also contained in W .

We have
V1 ∩ φ(B ×X

+

H) ⊂ W ∩ φ(B × X̌H) = φ(Y )

so our choice of V1 implies that V1 ∩ φ(Y ) is uncountable. Since V1 is an irreducible
complex analytic curve, it follows that V1 is contained in the Zariski closure of φ(Y ).
Therefore W = V Zar

1 is contained in the Zariski closure of φ(Y ). ut

The proof of Proposition 3.5(i) is now immediate.

Proof of Proposition 3.5(i). V is contained in π(W), which is a weakly special subvariety
of S. So it suffices to show that dimW < dim S = dimX.

Since φ is a morphism of algebraic varieties and using Lemma 3.6, we have dimW ≤

dimY . Hence using the hypothesis that dimXH ≤ dimX − 2, we get

dimW ≤ dimY ≤ dimB + dim X̌H ≤ 1+ (dimX − 2) = dimX − 1. ut

We will use Lemma 3.6 to prove part (ii) of Proposition 3.5 (we do not use part (i) in the
proof of (ii)). First we use hypothesis (b) to obtain a more refined bound for dimY .

Assume for contradiction that V is not contained in any proper special subvariety
of S. It follows that the pre-weakly special set W ∩ X+ is not contained in any proper
pre-special subset of X+. Consequently, since W ∩ X+ is a pre-weakly special subset
of X+, there is a direct product decomposition X+ = X+1 ×X

+

2 such that

W ∩X+ = X+1 × {x2}

for some point x2 ∈ X
+

2 . Write Gad
= G1 × G2 for the associated decomposition of the

adjoint group.

Lemma 3.7. In the setting of Proposition 3.5, assume that (a) and (b) hold, and that V
is not contained in a proper special subvariety of S. Then dimY < dimX+1 .

Proof. Let p2 denote the projection X+ → X+2 . We have p2(V1) = {x2} and thus
p2(π

−1(V )) ⊂ p2(0.x2). Therefore hypothesis (b) from Proposition 3.5 implies that
x2 ∈ p2(γ.X

+

H) for some γ ∈ G(Q)+. Because γ ∈ G(Q)+, p2(γ.X
+

H) is a pre-special
subvariety of X+2 . Since V is not contained in any proper special subvariety of S, we
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deduce that p2(γ.X
+

H) = X
+

2 . It follows that γHγ−1 projects surjectively onto G2, and
hence H also projects surjectively onto G2.

For each β ∈ B, consider

Yβ = {x ∈ X̌H : (β, x) ∈ Y } = {x ∈ X̌H : φ(β, x) ∈ X̌1 × {x2}}

= {x ∈ X̌H : p2(β.x) = x2} = {x ∈ X̌H : p2(x) = p2(β)
−1.x2}.

In other words, Yβ is the fibre of p2|X̌H
: X̌H → X̌2 above the point p2(β)

−1.x2 ∈ X̌2.

We have seen that H surjects onto G2. Hence p2|X̌H
: X̌H → X̌2 is surjective, so a

general fibre of p2|X̌H
has dimension equal to dim X̌H− dim X̌2. Since p2|X̌H

is an equiv-
ariant morphism of H(C)-homogeneous spaces, all its fibres have the same dimension.
Using the hypothesis on dimXH from Proposition 3.5, we get

dimYβ ≤ dim X̌H − dim X̌+2 ≤ (dimX+ − 2)− dimX+2 = dimX+1 − 2.

This inequality holds for all β ∈ B, while a general fibre of Y → B has dimension at
least dimY − dimB. We conclude that

dimY ≤ (dimX+1 − 2)+ dimB ≤ dimX+1 − 1. ut

Proof of Proposition 3.5(ii). Since W = X̌1 × {x2}, we have dimW = dimX+1 . By
Lemma 3.6, dimW ≤ dimY . This contradicts Lemma 3.7 unless V is contained in a
proper special subvariety of S. ut

3.2. Point counting

In order to prove Theorem 3.4, we apply a variant of the Pila–Wilkie counting theorem
[HP16, Corollary 7.2] to the set

Z = {(γ, x) ∈ G(R)+ × F : x ∈ γ.X+H and π(x) ∈ V }

where F is a suitable fundamental set in X+. Conjectures 3.2 and 3.3, together with a
height bound from [Orr18], imply that Z contains many points (γ, x) for which γ is
rational and has bounded height. By [HP16, Corollary 7.2], this implies that Z contains
a definable path whose image in G(R)+ is semialgebraic and whose image in X+ is
positive-dimensional. We conclude by applying Proposition 3.5.

Lemma 3.8. There exist fundamental sets F ⊂ X+ ( for the action of 0) and FH ⊂ X
+

H
( for the action of 0H = 0 ∩ H(Q)+) such that FH ⊂ F . Furthermore π|F : F → S is
definable in Ran,exp.

Proof. We define a Siegel set in G(R)+ to be the intersection of G(R)+ with a Siegel set
in G(R), as defined in [Orr18, Section 2]. We define Siegel sets in H(R)+ analogously.
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Choose a point x0 ∈ X
+

H . The stabiliser of x0 in H(R)+ is a maximal compact sub-
group KH ⊂ H(R)+, so we can identify X+H with H(R)+/KH. Choose a KH-right-
invariant Siegel set SH ⊂ H(R)+. By [Bor69, Théorèmes 13.1 and 15.4], there exists
a finite set CH ⊂ H(Q)+ such that

FH = CH.SH.x0

is a fundamental set in X+H for the action of 0H.
By [Orr18, Theorem 1.2], we can find a Siegel set SG ⊂ G(R)+ and a finite set

C ⊂ G(Q)+ such that
SH ⊂ C.SG.

According to [Orr18, Theorem 4.1], SG isKG-right-invariant whereKG is some maximal
compact subgroup of G(R)+ which contains KH. Because X+H → X+ is injective, the
stabiliser in G(R)+ of x0 ∈ X

+ is the unique such subgroup KG. Hence by [Bor69,
Théorèmes 13.1 and 15.4], there exists a finite set CG ⊂ G(Q)+ such that CG.SG.x0 is a
fundamental set in X+ for the action of 0.

Let C′G = CG ∪ CH.C, which is a finite subset of G(Q)+. Then

F = C′G.SG.x0

is a fundamental set in X+ for 0 and satisfies FH ⊂ F .
The restriction of π to F is definable in Ran,exp by [KUY16, Theorem 4.1]. ut

In order to relate the complexity N(s) of a point s ∈ V ∩ SH,γ to the height of γ , we use
[Orr18, Theorem 1.1] as follows.

Lemma 3.9. In the situation of Set-up 3.1, there exists a constant C4 such that, for every
s ∈ 6, there exist γ ∈ G(Q)+ and x ∈ F ∩ γ.FH satisfying

π(x) = s and H(ρ(γ )) ≤ C4N(s).

Proof. By the definition of N(s), there exists γ1 ∈ � ⊂ G(Q)+ such that s ∈ SH,γ1 and
N(s) = N(γ1). Because γ1.FH is a fundamental set for the action of γ10Hγ

−1
1 on γ1.X

+

H ,
we can pick x1 ∈ γ1.FH such that s = π(x1).

Because F is a fundamental set for the action of 0 on X+, there exists γ2 ∈ 0 such
that γ2.x1 ∈ F . (Note that we cannot just pick γ2 = γ−1

1 because γ1 is not necessarily
in 0.)

Since γ2.x1 and γ−1
1 .x1 are both in F = C′G.SG.x0, we have

γ2.γ1 ∈ C
′

G.SG.S
−1
G .C′−1

G .

In other words, there exist ξ1, ξ2 ∈ C
′

G such that

ξ−1
1 γ2γ1ξ2 ∈ SG.S

−1
G .

Since γ2 is in 0, it has determinant ±1 and bounded denominators. Since ξ1, ξ2 are
elements of the fixed finite set C′G, their determinants and denominators are bounded.
Hence N(ξ−1

1 γ2γ1ξ2) is bounded by a constant multiple of N(γ1) = N(s).
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By [Orr18, Theorem 1.1], H(ρ(ξ−1
1 γ2γ1ξ2)) is bounded by a constant multiple of

N(ξ−1
1 γ2γ1ξ2). Again since ξ1, ξ2 are elements of a fixed finite set, H(ρ(γ2γ1)) is simi-

larly bounded.
Letting x = γ2.x1 and γ = γ2.γ1 completes the proof. ut

As a first application of Lemma 3.9, we show that the complexity of points in V ∩ 6
tends to infinity in the situation of Theorem 3.4. This lemma uses only the existence of a
bound for H(ρ(γ )) in terms ofN(s) from Lemma 3.9 and does not require that the bound
is polynomial. The fact that the bound is polynomial will be used later, in the proof of
Theorem 3.4.

Lemma 3.10. In the situation of Set-up 3.1, let V ⊂ S be an irreducible algebraic curve
which is not contained in any proper special subvariety of S. For each positive integer N ,
the set

{s ∈ V ∩6 : N(s) ≤ N}

is finite.

Proof. If s ∈ V ∩6 and N(s) ≤ N , then Lemma 3.9 tells us that s ∈ V ∩ SH,γ for some
γ ∈ G(Q)+ such that H(ρ(γ )) ≤ C4N . There are finitely many γ ∈ G(Q)+ satisfying
this height bound.

For each γ ∈ G(Q)+, SH,γ is an algebraic variety while V is an irreducible algebraic
curve not contained in SH,γ . Hence V ∩ SH,γ is finite for each γ .

Therefore the set described in the lemma is a finite union of finite sets. ut

We use the following point-counting result of Habegger and Pila, which is a simplified
version of [HP16, Corollary 7.2].

Theorem 3.11. Let Z ⊂ Rm × Rn be a definable set. Let p1 : Rm × Rn → Rm and
p2 : Rm × Rn→ Rn denote the projection maps. For T ≥ 1, let

Z∼(Q, T ) = {z ∈ Z : p1(z) ∈ Qm and H(p1(z)) ≤ T }.

For every ε > 0, there exists a constant C5 (depending on Z and ε) with the following
property: if there exists T ≥ 1 such that

#p2(Z
∼(Q, T )) ≥ C5 T

ε

then there exists a continuous definable path [0, 1] → Z such that:

(i) the composition p1 ◦ β : [0, 1] → Rm is semialgebraic and its restriction to (0, 1) is
real analytic;

(ii) the composition p2 ◦ β : [0, 1] → Rn is non-constant.

We will apply Theorem 3.11 to the set

Z = {(γ, x) ∈ G(R)+ × F : x ∈ γ.X+H and π(x) ∈ V }.

This set is definable by Lemma 3.8.
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Proof of Theorem 3.4. Assume for contradiction that V ∩ 6 is infinite. According to
Lemma 3.10, V ∩6 contains points of arbitrarily large complexity.

Let s be a point in V ∩6 of large complexity (we will decide how large later). Choose
γ ∈ � such that s ∈ V ∩ SH,γ and N(γ ) = N(s).

Let C1, C2, C3 be the constants from Conjectures 3.2 and 3.3 (where we set κ = C2/2
in Conjecture 3.3). By Conjecture 3.3, SH,γ is defined over an extension L′/L of degree
at most C3N(s)

C2/2. By Conjecture 3.2, we have

#(Aut(C/L′) · s) ≥
#(Aut(C/L) · s)
[L′ : L]

≥
C1

C3
N(s)C2/2.

Since the varieties V and SH,γ are both defined over L′, every point s′ in the Galois
orbit Aut(C/L′) · s lies in V ∩ SH,γ . Therefore N(s′) ≤ N(s). By Lemma 3.9, there exist
γ ′ ∈ G(Q)+ and x′ ∈ F ∩ γ ′.FH such that π(x′) = s′ and

H(ρ(γ ′)) ≤ C4N(s
′) ≤ C4N(s).

Thus (γ ′, x′) ∈ Z∼(Q, C4N(s)). The fact that π(x′) = s′ implies that distinct points
s′ ∈ Aut(C/L′) · s give rise to distinct points x′ ∈ p2(Z

∼(Q, C4N(s)).
We conclude that if we take T = C4N(s), then

#p2(Z
∼(Q, T ) ≥ (C1/C3)N(s)

C2/2 = (C1/C3) (T /C4)
C2/2.

Taking ε = C2/3 in Theorem 3.11, we see that the inequality #p2(Z
∼(Q), T ) ≥ C5 T

ε

will be satisfied for large T (and by Lemma 3.10 we can make T arbitrarily large by
picking s ∈ V ∩6 withN(s) large enough). Therefore there exists a continuous definable
path β : [0, 1] → Z with the properties listed in Theorem 3.11.

Let A ⊂ G(R) denote the image of p1 ◦ β. By property (i) from Theorem 3.11, A is
semialgebraic. Since A is the image of a path, dimA ≤ 1.

By the definition of Z, the image of p2 ◦ β is contained in A.X+H ∩ π
−1(V ). By

property (ii) from Theorem 3.11, p2 ◦ β is non-constant. Since p2 ◦ β is a definable path,
we deduce that the image of p2◦β is uncountable. Hence hypothesis (a) of Proposition 3.5
is satisfied.

Since we are assuming that V ∩ 6 is non-empty, hypothesis (b) of Proposition 3.5 is
also satisfied. Therefore we can apply Proposition 3.5(ii) to conclude that V is contained
in a proper special subvariety of S, which gives a contradiction. ut

4. Degree and field of definition of Hecke correspondences in Ag

In order to apply Theorem 3.4 to Hecke correspondences in Ag × Ag , we need several
lemmas about these Hecke correspondences. In this section, we prove Conjecture 3.3 for
Hecke correspondences in Ag×Ag and bound the degree of such a Hecke correspondence
in terms of the complexity of an associated general symplectic matrix.

All of the proofs in this section rely on explicit calculations with matrices in
GSp2g(Q) and in particular on the symplectic elementary divisor theorem. It seems plau-
sible that these results can be generalised to arbitrary Shimura varieties, albeit with more
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difficult proofs. If so, Theorem 1.4 could be generalised to all Shimura varieties as the
results of this section are the only reason it is restricted to Ag . On the other hand, gen-
eralising the results of this section to other Shimura varieties would not allow us to im-
mediately generalise Theorem 1.3 because its proof uses abelian varieties much more
fundamentally, via the Faltings height.

Let ν : GSp2g → Gm denote the standard character of GSp2g . Thus the action of
GSp2g(k) on the standard symplectic form ψ : k2g

× k2g
→ k is given by

ψ(γ.x, γ.y) = ν(γ )ψ(x, y).

Let 0 = Sp2g(Z), let 0(m) = ker(Sp2g(Z)→ Sp2g(Z/mZ)) for each positive integerm,
and let 0γ = 0 ∩ γ−10γ for each γ ∈ GSp2g(Q)+.

We shall repeatedly use the following symplectic elementary divisor theorem.

Lemma 4.1 ([And87, Lemma 3.3.6]). Let γ ∈ GSp2g(Q)+ ∩M2g(Z). Then γ can be
written in the form κδλ where κ, λ ∈ 0 and

δ = diag(a1, . . . , ag, b1, . . . , bg),

with ai, bi ∈ Z>0, aibi = ν(γ ) for all i, ai | ai+1 for each i ≤ g − 1 and ag | bg .
Furthermore these conditions determine δ uniquely.

4.1. Hecke correspondences and isogenies

We begin by recalling a well-known description of Hecke correspondences in Ag × Ag

as moduli of pairs of abelian varieties related by a polarised isogeny.

Lemma 4.2. Let s = (s1, s2) ∈ Ag × Ag and let n be a positive integer. The following
are equivalent:

(1) There exists a polarised isogeny from (As1 , λs1) to (As2 , λs2) of degree n.
(2) s ∈ Tγ for some γ ∈ GSp2g(Q)+ ∩M2g(Z) such that det γ = n.

Proof. The point s ∈ Ag ×Ag lies in Tγ if and only if γ is the rational representation of
a polarised isogeny f : As1 → As2 with respect to some symplectic bases of H1(As1 ,Z)
and H1(As2 ,Z). When such an f exists, deg f = det γ . ut

4.2. Field of definition of Hecke correspondences

We prove that Conjecture 3.3 holds for Hecke correspondences in Ag × Ag . Note that
in the case of Ag , every Hecke correspondence has the same field of definition so the
dependence on N(γ ) in Conjecture 3.3 is not required, but we cannot expect this to hold
for Hecke correspondences on arbitrary Shimura varieties.

Lemma 4.3. Every Hecke correspondence in Ag ×Ag is defined over Q.
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Proof. Let K = Sp2g(Ẑ). For each γ ∈ GSp2g(Q)+, let Kγ = K ∩ γ−1Kγ .
The Hecke correspondence Tγ ⊂ Ag × Ag is isomorphic to a connected compo-

nent of the Shimura variety Shγ = ShKγ (GSp2g,H±g ). By Deligne’s theory of canonical
models of Shimura varieties, Shγ is defined over the reflex field of the Shimura datum
(GSp2g,H±g ), namely Q. Hence it suffices to show that Shγ is connected.

Since GSpder
2g = Sp2g is simply connected, we can apply [Del71, 2.7]. This tells us

that the connected components of Shγ are in bijection with

Q×\A×f × R×/ν(Kγ ×K∞)

where K∞ = StabGSp2g(R)(x) for some point x ∈ X. Now K∞ is the product of the
centre R× with a maximal compact subgroup of GSp2g(R)+, so ν(K∞) = R×+. We
deduce that the connected components of Shγ are in bijection with

Q×+\A
×

f /ν(Kγ ).

Write γ = κδλ as in Lemma 4.1. Then Kγ = λ−1Kδλ. Since the codomain of ν is
commutative, it follows that ν(Kγ ) = ν(Kδ).

Since δ is diagonal, Kδ contains all the diagonal elements of K . In particular, Kδ
contains αx = diag(x, . . . , x, 1, . . . , 1) for every x ∈ Ẑ×. We have ν(αx) = x for each
x ∈ Ẑ× and so ν(Kδ) = Ẑ×.

Thus the connected components of Shγ are in bijection with Q×+\A
×

f /Ẑ
×. This is

isomorphic to the class group of Q, so has one element. ut

4.3. Degree of Hecke correspondences

In order to prove Theorem 1.4, we will need a lower bound for the degree of the finite
morphism Tγ → Ag (the restriction of first projection Ag×Ag → Ag) in terms of ν(γ ).
The degree of this morphism can also be described as the index [0 : 0γ ].

Lemma 4.4. Let γ ∈ GSp2g(Q)+ ∩ M2g(Z). Suppose that the entries of γ have no
common factor. Then

[0 : 0γ ] ≥ ν(γ ).

Proof. Write γ = κδλ as in Lemma 4.1. Then 0γ = λ−10δλ and λ ∈ 0, so [0 : 0γ ] =
[0 : 0δ]. Because κ, λ ∈ 0, the entries of δ still have no common factor. Therefore we
can replace γ by δ without loss of generality, so that γ = diag(a1, . . . , ag, b1, . . . , bg)

for integers which satisfy the conditions of Lemma 4.1. Because the entries of γ have no
common factor, we must have a1 = 1.

Factorise ν(γ ) as ν(γ ) = q1 · · · qr , where the qi are powers of distinct primes. For
each i = 1, . . . , r , letGγ,i denote the image of 0γ in Sp2g(Z/qiZ). By [NS64, Theorems
1 and 4], the map 0 →

∏
i Sp2g(Z/qiZ) is surjective. Because the image of 0γ under

this map is contained in
∏
i Gγ,i , we deduce that

[0 : 0γ ] ≥

r∏
i=1

[Sp2g(Z/qiZ) : Gγ,i].
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Hence it suffices to prove that

[Sp2g(Z/qiZ) : Gγ,i] ≥ qi

for each i. We will prove this by exhibiting qi elements η0, . . . , ηqi−1 ∈ Sp2g(Z/qiZ)
which lie in distinct left Gγ,i-cosets.

For each integer `, let η` ∈ Sp2g(Z/qiZ) be the matrix with ones on the diagonal,
` in position (g + 1, 1) and zeroes everywhere else. We can calculate η−1

k η` = η`−k .
Since a1b1 = n and a1 = 1, we deduce that b1 = n ≡ 0 mod qi . It follows that

every element of Gγ,i has zero (mod qi) as its entry in position (g + 1, 1). Hence if
η−1
k η` ∈ Gγ,i , we must have k ≡ ` mod qi .

Thus η0, . . . , ηqi−1 lie in distinct left Gγ,i-cosets of Sp2g(Z/qiZ). ut

5. Unconditional Zilber–Pink: asymmetric curves

In this section, we prove Conjecture 3.2 (large Galois orbits) for endomorphism-generic
points in the intersection of Hecke correspondences in Ag × Ag with an asymmetric
curve defined over Q (the term “asymmetric curve” is defined below). We use this to
deduce Theorem 1.3.

The proof of this case of Conjecture 3.2 uses the Weil height machine, Faltings heights
and the Masser–Wüstholz isogeny theorem. The use of heights means that the argument
applies only to curves defined over Q (some of the arguments could be extended to work
over C by using Moriwaki’s height, but there is no version of Masser–Wüstholz known
for Moriwaki’s height). The use of Faltings heights and the Masser–Wüstholz theorem
limit the method to Shimura varieties which have interpretations in terms of moduli of
abelian varieties.

Let 6 denote the set defined in Theorem 1.3. Because 6 only contains points (s1, s2)
where EndAs1 ∼= Z, it is not a union of special subvarieties of Ag×Ag . Instead6 can be
obtained from the union of the Hecke correpondences in Ag×Ag by removing countably
many smaller special subvarieties (parametrising abelian varieties with endomorphism
rings larger than Z). This restriction on EndAs1 is necessary because our Galois orbits
bound is in terms of the smallest degree of an isogeny As1 → As2 . If EndAs1 6∼= Z,
then the isogeny of minimum degree might not be polarised, and this would prevent us
applying Lemma 4.2 to these isogenies.

The restriction to asymmetric curves in Theorem 1.3 is used to bound the height of
points in V ∩ 6 in terms of their complexity (Lemma 5.1) and thence to obtain a Galois
orbits bound which is uniform for all points in V ∩6.

5.1. Asymmetric curves and Faltings heights

We say that a curve V ⊂ Ag × Ag is asymmetric if the two projections V → Ag have
different degrees (the definition we are using for the degree of a morphism V → Ag is
given below). Note that this definition is not the direct generalisation of the definition of
asymmetric curves in An

1 from [HP12]—if we were to generalise our definition to a curve
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V ⊂ An
g , we would demand that the degrees of all the coordinate projections V → Ag

should be distinct, while the definition in [HP12] allows one degree to occur twice. The
reason for this difference is that we look at points on V ⊂ Ag×Ag which satisfy a single
isogeny relation, while [HP12] considered points on V ⊂ An

1 satisfying two isogeny
relations.

We define the degree of a morphism from a curve to Ag as follows. Let Āg denote the
Baily–Borel compactification of Ag . There is an ample line bundle LBB on Āg given by
automorphic forms of weight 1. A morphism f : V → Ag from an irreducible complex
algebraic curve V to Ag induces a morphism f̄ : V̄ → Āg where V̄ is a smooth projective
curve birational to V . We define the degree of f : V → Ag to be the degree of the line
bundle f̄ ∗LBB on V̄ .

Let 6′ denote the set of points (s1, s2) ∈ Ag ×Ag such that As1 is isogenous to As2
(with no restriction on EndAs1 ). For each point s = (s1, s2) ∈ 6′, define the complexity
N ′(s) to be the minimum degree of an isogeny As1 → As2 . If s ∈ 6, then the isogeny
As1 → As2 of minimum degree is polarised and consequently in this case N ′(s) = N(s),
where N(s) is the function defined in Set-up 3.1.

For each point s ∈ Ag(Q), write hF (s) for the absolute logarithmic semistable Falt-
ings height of the associated abelian variety As .

We use the asymmetry hypothesis via the following lemma, which adapts the proof of
[HP12, Lemma 4.2].

Lemma 5.1. Let V ⊂ Ag × Ag be an asymmetric irreducible algebraic curve defined
over Q which is not contained in any proper special subvariety of Ag ×Ag . There exists
a constant C6 such that, for all but finitely many points s = (s1, s2) ∈ V ∩6′,

hF (s1) ≤ C6 logN ′(s).
Proof. Observe first that each point of V ∩ 6′ is defined over Q. This is because 6′

is contained in a union of proper special subvarieties of Ag × Ag . Since V is a Hodge
generic curve, its intersection with each proper special subvariety is finite. Since both V
and the special subvarieties are algebraic varieties defined over Q, we deduce that all the
points of their intersections are defined over Q.

Let V̄ be a smooth projective curve birational to V and let p̄1, p̄2 denote the mor-
phisms V̄ → Āg induced by the projections V ⊂ Ag ×Ag → Ag . Let

Li = p̄∗i LBB

for i ∈ {1, 2}, and let di be the degree of the line bundle Li . Since V̄ is a curve, L⊗d2
1 is

algebraically equivalent to L⊗d1
2 .

Assume without loss of generality that p̄1 is non-constant. Since LBB is ample, it
follows that L1 is ample. Hence d1 > 0.

For the line bundles L1 and L2, choose height functions hLi : V̄ (Q)→ R as in Weil’s
height machine [HS00, Theorem B.3.6]. By the additivity and algebraic equivalence prop-
erties of height functions, we have

(d2/d1)hL1(s)− hL2(s) = o(hL1(s))

as s runs over points in V̄ (Q) with hL1(s)→∞ (using the fact that L1 is ample).
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Also choose a height function hBB : Āg(Q) → R associated with the Baily–Borel
line bundle LBB on Ag . By the functoriality property in the height machine,

hLi (s) = hBB(pi(s))+ O(1).

As proved in [Fal83, p. 356], for each i = 1 and 2,

|hF (pi(s))− hBB(pi(s))| = O(loghBB(pi(s))).

Combining the above relations between heights, we deduce that

(d2/d1)hF (p1(s))− hF (p2(s)) = o(hF (p1(s))). (1)

Furthermore by [Fal83, Lemma 5], there is a constant C7 such that

|hF (p1(s))− hF (p2(s))| ≤ C7 logN ′(s). (2)

Because V is asymmetric, d1 6= d2. Hence we can combine (1) and (2) to obtain

hF (p1(s)) = C8 logN ′(s)+ o(hF (p1(s))).

It follows that there is some constant C9 such that, for every s ∈ V ∩6, either hF (p1(s))

≤ C9 or
hF (p1(s)) ≤ 2C8 logN ′(s). (3)

By [Fal83, Lemma 3], there are only finitely many points s1 ∈ Ag such that hF (s1)
≤ C9. Since the projection p1|V is quasi-finite, it follows that there are only finitely many
points s ∈ V such that hF (p1(s)) ≤ C9. We conclude that (3) holds for all but finitely
many s ∈ V ∩6, as required. ut

5.2. Large Galois orbits

The proof of Theorem 1.3 uses the following theorem of Masser and Wüstholz.

Theorem 5.2 ([MW93]). Given positive integers g and d, there exist constants C10 and
C11 depending only on g (not on d) such that for all principally polarised abelian vari-
eties A and B of dimension at most g, defined over a number field of degree at most d , if
A and B are isogenous, then there is an isogeny A→ B of degree at most

C10 (d ·max(1, hF (A)))C11 .

Note that the isogeny of bounded degree whose existence is asserted by Theorem 5.2 is
not necessarily a polarised isogeny, even if we know a priori that there exists a polarised
isogeny A→ B. Consequently, the following bound is in terms of N ′(s), not N(s).

Proposition 5.3. Let V ⊂ Ag×Ag be an asymmetric irreducible algebraic curve defined
over a number field L. Assume that V is not contained in any proper special subvariety
of Ag ×Ag .

There exist constants C12, C13 > 0 depending only on V and g such that, for every
s ∈ V ∩6′,

#(Aut(C/L) · s) ≥ C12N
′(s)C13 .
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Proof. Let s = (s1, s2) ∈ V ∩ 6′. Because Ag is only a coarse moduli space for princi-
pally polarised abelian varieties, As1 and As2 need not have models over the field Q(s).
However, there is a fine moduli space Ag(3) for principally polarised abelian varieties
with full 3-torsion level structure. There is a finite surjective morphism Ag(3)→ Ag for-
getting the level structure. Let s′ be a point in Ag(3)×Ag(3)which maps to s ∈ Ag×Ag .
Then As1 and As2 have models defined over the field Q(s′).

Furthermore [Q(s′) : Q(s)] is bounded by a constant, namely the degree of the map
Ag(3)×Ag(3)→ Ag ×Ag . Hence there is a constant C14 such that

[Q(s′) : Q] ≤ [Q(s′) : Q(s)][L(s) : L][L : Q] ≤ C14 [L(s) : L]. (4)

Since As1 and As2 are both defined over Q(s′), Theorem 5.2 tells us that

N ′(s) ≤ C10
(
[Q(s′) : Q] ·max(1, hF (s1))

)C11 .

Using Lemma 5.1 (which depends on the asymmetry hypothesis), we deduce that there is
a constant C15 such that

N ′(s) ≤ C15
(
[Q(s′) : Q] ·max(1, logN ′(s))

)C11

for all but finitely many s ∈ V ∩6. We can remove the finitely many exceptions and the
logN ′(s) factor by adjusting the constants, which gives

N ′(s) ≤ C16 [Q(s′) : Q]C17 .

Combining this with inequality (4) and noting that #(Aut(C/L) · s) = [L(s) : L] proves
the proposition. ut

Proof of Theorem 1.3. We apply Theorem 3.4 to S = Ag × Ag . Let (G, X) be the
Shimura datum (GSp2g,H±g )× (GSp2g,H±g ) and let (H, XH) ⊂ (G, X) be the diagonal
sub-Shimura datum.

Let
� = {(1, γ ) ∈ G(Q)+ : γ ∈ GSp2g(Q)+ ∩M2g(Z)}.

For each γ ∈ GSp2g(Q)+, the special subvariety SH,(1,γ ) defined in Set-up 3.1 is equal
to the Hecke correspondence Tγ . Thus by Lemma 4.2,⋃

γ∈�

SH,γ = {(s1, s2) ∈ Ag ×Ag : there exists a polarised isogeny As1 → As2}.

According to the definition in Theorem 1.3,

6 =
{
(s1, s2) ∈

⋃
γ∈�

SH,γ : EndAs1 ∼= Z
}
.

If s = (s1, s2) ∈ 6, then all isogenies As1 → As2 are polarised. In particular, this applies
to the isogeny of minimum degree and so by Lemma 4.2, the complexity function N(s)
defined in Set-up 3.1 is the same as the function N ′(s) used in Proposition 5.3. (Because
we only consider matrices γ with integer entries and positive determinant, the definition
in Set-up 3.1 simplifies to N(γ ) = det γ .)
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Conjecture 3.2 holds in this setting by Proposition 5.3 and Conjecture 3.3 holds by
Lemma 4.3. Therefore we can apply Theorem 3.4 to prove Theorem 1.3. ut

6. Unconditional Zilber–Pink: transcendental field of definition

In this section, we prove Conjecture 3.2 (large Galois orbits) for points in the intersection
of suitable Hecke correspondences in Ag ×Ag with a curve V whose field of definition
has positive transcendence degree over the field of definition of p1(V ) ⊂ Ag , where
p1 : Ag ×Ag → Ag denotes projection onto the first factor. This implies Theorem 1.4.

Let 6 be the set defined in Theorem 1.4. The hypothesis on the fields of definition
of V and p1(V ) allows us to relate the size of the Galois orbits of points s ∈ V ∩ 6
to the gonality of suitable covers of p1(V ). Note that in [Pil17, Theorem 1.4] (the anal-
ogous statement for g = 1), the Zariski closure of p1(V ) is A1 itself, which is defined
over Q. Hence in [Pil17, Theorem 1.4], the hypotheses on the field K of Theorem 1.4
were replaced by the simpler hypothesis that V is not defined over Q.

We bound the gonality of covers of p1(V ) using the theorem of Ellenberg, Hall
and Kowalski [EHK12] together with a super-approximation result of Salehi Golsefidy
[SG19] (which extends an earlier result of Salehi Golsefidy and Varjù [SGV12]). In
[Pil17], these covers were modular curves so it was possible to use the simpler gonal-
ity bound of Abramovich [Abr96]. The restriction to isogenies whose degrees are b-th-
power-free is necessary in order to apply [SG19].

This gives a bound for Galois orbits of points in the intersection of V with a Hecke
correspondence Tγ in terms of the index of the congruence subgroup 0 ∩ γ0γ−1 which
is valid for all Shimura varieties (Proposition 6.8). In order to convert this to a bound
in terms of N(γ ), as in Conjecture 3.2, we have to use Lemma 4.4 which applies only
to Ag . When deducing Theorem 1.4, we also make use of other results from Section 4
which apply only to Hecke correspondences in Ag × Ag . If we could generalise all the
results of Section 4 to other Shimura varieties, then we could obtain a generalisation of
Theorem 1.4.

6.1. Expansion of graphs

An expander family is a family of connected graphs (in which self-loops and multiple
edges are permitted) such that
• every graph in the family is r-regular for some fixed integer r; and
• there exists ε > 0 such that for every graph G in the family,

min {|∂X| / |X| : X ⊂ V (G), 0 < |X| ≤ |V (G)| /2} ≥ ε.

Here ∂X denotes the set of edges of G which have one endpoint in X and the other
endpoint not in X. This is the definition used in [EHK12]. The definition in [SGV12]
is the same except that it does not mention the conditions “connected” and “r-regular.”
The Cayley graphs considered in [SGV12] and [SG19] are automatically connected and
r-regular so this difference does not matter.

We will use the following results on expander families.
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Theorem 6.1 ([SG19, Theorem 1]). Let 0 ⊂ GLn(Z) be the subgroup generated by
a finite symmetric set 1. For each positive integer q, let πq denote the natural map
GLn(Z)→ GLn(Z/qZ). Let b ≥ 2 be an integer. The Cayley graphs Cay(πq(0), πq(1))
form an expander family as q ranges over the b-th-power-free positive integers if and only
if the identity component of the Zariski closure of 0 is perfect.

Given a field K and an algebraic curve C/K , let gonK(C) denote the K-gonality of C,
that is, the minimum degree of a non-constant K-rational map C 99K P1.

Theorem 6.2 ([EHK12, Theorem 8(b)]). Let U be a smooth connected algebraic curve
over C. Let {Ui : i ∈ I } be an infinite family of connected étale covers of U . Pick a point
u ∈ U , and for each i, let ui be a point of Ui which maps to u ∈ U . Let 1 be a finite
symmetric generating set of π1(U, u). If the family of Cayley–Schreier graphs

Cay(π1(U, u)/π1(Ui, ui),1)

is an expander family, then there exists a constant C18 > 0 such that

gonC(Ui) ≥ C18 [π1(U, u) : π1(Ui, ui)]

for every i ∈ I .

6.2. Gonality growth for congruence subgroup covers

Let (G, X) be a Shimura datum and let X+ be a connected component of X. For each
congruence subgroup 0 ⊂ G(Q)+, write S0 for the Shimura variety component 0\X+.

Fix a congruence subgroup 0 ⊂ G(Q)+ and write S = S0 . Let W ⊂ S be an
irreducible algebraic subvariety which is not contained in any proper special subvari-
ety of S. When W is a curve, we prove a lower bound for the gonality of irreducible
components of W ×S S0′ as 0′ runs over the subgroups of 0 which contain a principal
congruence subgroup of b-th-power-free level. This gonality bound (Proposition 6.6) is
restricted to curves, but W may be of any dimension in the intermediate results, Corol-
lary 6.4 and Lemma 6.5. In order to prove Theorem 1.4, we will apply the gonality bound
to the Zariski closure of p1(V ).

In order to define principal congruence subgroups of 0, we choose a faithful represen-
tation ρ : G→ GLn,Q such that ρ(0) ⊂ GLn(Z). (The principal congruence subgroups,
and hence the meaning of the condition “0∩γ0γ−1 contains a principal congruence sub-
group of b-th-power-free level,” depend on the choice of ρ.) For each positive integer q,
let 0(q) denote the kernel of the map 0→ GLn(Z/qZ) induced by ρ.

For each congruence subgroup 0′ ⊂ 0, let

W0′ = W ×S S0′ .

For each q ∈ N, let Wq,1, . . . ,Wq,rq denote the irreducible components of W0(q).
Let W sm denote the smooth locus of W , and similarly for W sm

q,i . Pick a base point
w ∈ W sm. For each q and i, pick wq,i ∈ W sm

q,i which maps to w ∈ W .



22 Martin Orr

Lemma 6.3. Assume that the congruence subgroup 0 is neat. There exists a subgroup
0W ⊂ 0 such that

(i) the identity component of the Zariski closure of 0W is a normal subgroup of Gder;
and

(ii) for each positive integer q and each irreducible component Wq,i ⊂ W0(q), the quo-
tient π1(W

sm, w)/π1(W
sm
q,i , wq,i) is in bijection with 0W /0W ∩ 0(q).

Proof. The inclusion W sm
→ W → S induces a homomorphism of fundamental groups

ι : π1(W
sm, w) → π1(S,w). Since 0 is neat, X+ is the universal cover of S. Therefore

choosing a point x ∈ X+ above w ∈ S induces an isomorphism fx : π1(S,w)→ 0.
Let 0W denote the image of fx ◦ ι : π1(W

sm, w)→ 0.
The representation ρ : G→ GLn,Q induces a variation of Z-Hodge structures on X+

(with underlying lattice Zn). Since 0 is neat and ρ(0) ⊂ GLn(Z), this descends to a vari-
ation of Hodge structures VZ on S. Since W is not contained in any proper special sub-
variety of S, the generic Mumford–Tate group of VZ|W sm is ρ(G). Therefore by [And92,
Theorem 1], the identity component of the Zariski closure of the monodromy group 0W
is a normal subgroup of Gder.

The action of π1(W
sm, w) on {w} ×S S0(q) factors through ι. Hence for each i =

1, . . . , rq , we have

π1(W
sm
q,i , wq,i) = Stabπ1(W sm,w)(wq,i) = ι

−1(Stabπ1(S,w)(wq,i)).

For each pointw′ ∈ {w}×SS0(q), the stabiliser Stabπ1(S,w)(w
′) is conjugate to f−1

x (0(q))

in π1(S,w). Because 0(q) is a normal subgroup of 0, we deduce that in fact

Stabπ1(S,w)(w
′) = f−1

x (0(q))

for every w′ ∈ {w} ×S S0(q). Therefore

π1(W
sm
q,i , wq,i) = (fx ◦ ι)

−1(0(q))

and so fx ◦ ι induces a bijection

π1(W
sm, w)/π1(W

sm
q,i , wq,i)→ 0W /0W ∩ 0(q). ut

The fundamental group π1(W
sm, w) is finitely generated becauseW sm is a smooth quasi-

projective complex algebraic variety. Choose a finite symmetric generating set 1 for
π1(W

sm, w) (symmetric means that g ∈ 1⇒ g−1
∈ 1).

Corollary 6.4. Assume that 0 is neat. The Cayley graphs

Cay(π1(W
sm, w)/π1(W

sm
q,i , wq,i),1)

form an expander family as q runs over the b-th-power-free positive integers and Wq,i

runs over the connected components of W0(q) for each q.
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Proof. Let 0W ⊂ 0 be the monodromy group of W sm as in Lemma 6.3. The identity
component of the Zariski closure of 0W is semisimple and therefore perfect. Hence we
can apply [SG19, Theorem 1] (Theorem 6.1) to 0W to obtain the desired conclusion. ut

We have shown that the Cayley graphs associated with the irreducible components
of W0(q) form an expander family. In order to use this, we also need the following con-
sequence of Nori’s strong approximation theorem which tells us that the number of irre-
ducible components ofW0(q) is bounded. This lemma, in combination with Lemma 6.3(i),
is similar to a step in the proof of [EY03, Theorem 5.1].

Lemma 6.5. Let H ⊂ GLn be a semisimple Q-algebraic subgroup and let 0 =
H(Q) ∩ GLn(Z). For each positive integer q, let 0(q) be the kernel of the natural map
0 → GLn(Z/qZ). Let 0W ⊂ 0 be a finitely generated subgroup which is Zariski dense
in H. Then [0/0(q) : 0W /0W ∩ 0(q)] is bounded as q runs over all positive integers.

Proof. Let 0̄ denote the closure of 0 in GLn(Ẑ) (with respect to the profinite topology),
and similarly define 0̄W . For each positive integerm, letK(m) be the kernel of the natural
map GLn(Ẑ)→ GLn(Z/mZ).

By [Nor87, Theorem 5.3], 0̄W is open in 0̄. Note that [Nor87] does not contain a
proof of this theorem; an outline of a proof can be found at [EY03, Remark 5.3]. Hence
there exists m such that 0̄ ∩K(m) ⊂ 0̄W , and so

0(m) ⊂ 0̄ ∩K(m) ⊂ 0̄W .

Therefore, for every q ∈ N and every γ ∈ 0(m), the open set γ.K(q) ⊂ GLn(Ẑ)
intersects 0W . It follows that γ.0(q) is in the image of 0W → 0/0(q).

Therefore we have

[0/0(q) : 0W /0W ∩ 0(q)] ≤ [0 : 0(m)]

for every q, where m is independent of q. ut

Now we restrict to W being a curve, in order to apply [EHK12].

Proposition 6.6. Let W ⊂ S be an irreducible algebraic curve. There exists a constant
C19 > 0 such that, for every congruence subgroup 0′ ⊂ 0 which contains 0(q) for some
b-th-power-free positive integer q, each irreducible component Z of W0′ satisfies

gonC(Z) ≥ C19 [0 : 0
′
].

Proof. Note first that we may replace 0 by a finite index subgroup 00. At the same
time we replace W by an irreducible component of W00 , 0′ by 0′ ∩ 00 (which contains
0(q) ∩ 00) and Z by an irreducible component of W0′∩00 . These replacements change
gonC(Z) and [0 : 0′] by bounded factors, so they do not affect the conclusion of the
proposition. Thus we may assume that 0 is neat. This ensures that S0′ → S is étale.

Consider the family of connected étale covers W sm
q,i → W sm, as q runs over the b-th-

power-free positive integers and Wq,i runs over the connected components of W0(q) for



24 Martin Orr

each q. Thanks to the expansion result of Corollary 6.4, we can apply [EHK12, Theo-
rem 8(b)] (Theorem 6.2) to get

gonC(W
sm
q,i ) ≥ C18 [π1(W

sm, w) : π1(W
sm
q,i , wq,i)].

Let 0W ⊂ 0 be the monodromy group of W sm as in Lemma 6.3. By Lemmas 6.3
and 6.5 we have

[π1(W
sm, w) : π1(W

sm
q,i , wq,i)] = [0W : 0W ∩ 0(q)] ≥

[0 : 0(q)]

C20

for some constant C20 > 0.
Given an irreducible componentZ ofW0′ , choose a b-th-power-free positive integer q

such that 0(q) ⊂ 0′. Then some irreducible component Wq,i of W0(q) maps onto Z. We
have

deg(Wq,i → Z) ≤ deg(S0(q)→ S0′) = [0
′
: 0(q)].

Noting that gonC(W
sm
q,i ) = gonC(Wq,i) because W sm

q,i is a dense open subset of Wq,i ,
we can combine the above inequalities to get

gonC(Z) ≥
gonC(Wq,i)

deg(Wq,i → Z)
≥
C18 [0 : 0(q)]

C20 [0′ : 0(q)]
≥
C18

C20
[0 : 0′]. ut

6.3. Large Galois orbits

Before proving our large Galois orbits results, we need a lemma relating Galois orbits
of transcendental points of an algebraic curve to the gonality of the curve. In this lemma
and its proof, all fields are considered as subfields of C and algebraic closures are taken
inside C.

Lemma 6.7. LetK be an algebraically closed subfield of C. Let L be a finitely generated
extension of K inside C such that trdeg(L/K) ≥ 1. There exists a constant C21 > 0
depending only on K and L such that, for every irreducible algebraic curve Z defined
over K and every point s ∈ Z(L) \ Z(K),

#(Aut(C/L) · s) ≥ C21 gonC(Z).

Proof. Choose a transcendence basis t1, . . . , tr for L/K . We make this choice once, in-
dependent of Z and s. Then [L : K(t1, . . . , tr)] is a finite constant.

Because s ∈ Z(L) \ Z(K), there exists m ∈ {1, . . . , r} such that s can be de-
fined over an algebraic extension of K(t1, . . . , tm) but not over an algebraic extension
of K(t1, . . . , tm−1). Let M = K(t1, . . . , tm−1). Let M(tm, s) denote the smallest exten-
sion of M(tm) inside M(tm) over which s is defined. By Galois theory,

[M(tm, s) : M(tm)] = #(Gal(M(tm)/M(tm)) · s).

Consider the restriction maps

Aut(C/K(t1, . . . , tr))→ Gal(K(t1, . . . , tr)/K(t1, . . . , tr))→ Gal(M(tm)/M(tm)).
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The first is surjective because C is algebraically closed and the second is surjective be-
cause K(t1, . . . , tr) = M(tm, . . . , tr) is a regular extension of M(tm). Therefore

#(Gal(M(tm)/M(tm)) · s) = #(Aut(C/K(t1, . . . , tr)) · s)
≤ [L : K(t1, . . . , tr)] #(Aut(C/L) · s).

Let M(Z) denote the field of rational functions on Z with values in M . Because Z
is a curve, the locus of indeterminacy of any rational function in M(Z) is an M-scheme
of dimension zero. Since s is not defined over an algebraic extension of M , we deduce
that s is not contained in the locus of indeterminacy of any element of M(Z). Therefore
“evaluation at s” gives a well-defined field homomorphism M(Z)→ M(tm, s).

Since M(tm, s) has transcendence degree 1 over M , it is isomorphic to the field
of rational functions of some irreducible curve Y over M . The field homomorphism
M(Z) → M(tm, s) corresponds to a dominant M-rational map Y → Z. By [Poo07,
Proposition 1.1(vii)], the existence of such a map implies that

gonM(Z) ≤ gonM(Y ).

The inclusion M(tm) → M(tm, s) corresponds to a dominant M-rational map
Y → P1

M , so by the definition of gonality,

gonM(Y ) ≤ [M(tm, s) : M(tm)].

Combining the above inequalities and equations, we get

gonM(Z) ≤ [M(tm, s) : M(tm)] ≤ [L : K(t1, . . . , tr)] #(Aut(C/L) · s).

Since gonC(Z) ≤ gonM(Z) and [L : K(t1, . . . , tr)] is constant, this proves the lemma.
ut

Proposition 6.8. Let (G, X) be a Shimura datum and let S = 0\X+ be an associated
Shimura variety component. Let b be a positive integer. Let V ⊂ S × S be an irreducible
algebraic curve such that there exists an algebraically closed field K ⊂ C satisfying the
hypotheses (i) and (ii) of Theorem 1.4. Suppose that V is not contained in any proper
special subvariety of S × S, and that p1|V is not constant. Let L be a finitely generated
field over which V is defined. There exists a constant C22 > 0 depending only on S, V
and L such that, for every γ ∈ G(Q)+ such that 0 ∩ γ−10γ contains 0(q) for some
b-th-power-free integer q and for every s ∈ V ∩ Tγ ,

#(Aut(C/L) · s) ≥ C22[0 : 0 ∩ γ
−10γ ].

Proof. By hypothesis (ii) from Theorem 1.4, V is an algebraic curve not defined over K .
Hence V contains only finitely many points defined over K . We can ignore finitely many
points while proving the proposition, so we assume that s is not defined over K .

Let W denote the Zariski closure of p1(V ) in S. By hypothesis (i) from Theorem 1.4,
W is defined over K . Since p1|V is not constant, dimW = 1.

We interpret the Hecke correspondence Tγ in two ways. Firstly, it is by defini-
tion a subset of S × S. Secondly, it is isomorphic to the Shimura variety component



26 Martin Orr

(0 ∩ γ−10γ )\X+, and the natural map (0 ∩ γ−10γ )\X+ → S is the same as the re-
striction to Tγ of p1 : S × S → S. Therefore

W ×S Tγ = p
−1
1 (W) ∩ Tγ .

Consequently, V ∩ Tγ ⊂ W ×S Tγ (where the fibre product notation ×S Tγ refers to the
projection p1|Tγ : Tγ → S).

Choose an irreducible component Z ⊂ W ×S Tγ such that s ∈ Z. Since W is defined
over K and Tγ is defined over Q ⊂ K , Z is defined over K . Because p1|Tγ : Tγ → S is a
finite open map in the complex topology, dimZ = 1.

Since V is Hodge generic in S×S, it is not contained in Tγ . Since V is an irreducible
algebraic curve, it follows that V ∩Tγ is finite. Since V is defined overL and Tγ is defined
over Q, the intersection V ∩ Tγ is defined over L. We conclude that s ∈ Z(L).

Therefore we can apply Lemma 6.7 to s ∈ Z(L) \ Z(K). We get

#(Aut(C/L) · s) ≥ C21 gonC(Z).

By Proposition 6.6 we have

gonC(Z) ≥ C19 [0 : 0 ∩ γ
−10γ ].

Combining these inequalities proves the proposition. ut

Using the notation of Theorem 1.4, for each point (s1, s2) ∈ 6 let N(s) denote the small-
est b-th-power-free positive integer n such that there exists a polarised isogenyAs1 → As2
of degree n.

Corollary 6.9. Let6 ⊂ Ag×Ag be the set defined in Theorem 1.4. Let V ⊂ Ag×Ag be
a curve satisfying the hypotheses of Theorem 1.4. Suppose that p1|V is not constant. Let
L be a finitely generated field over which V is defined. There exists a constant C23 > 0
depending only on V and L such that, for every s ∈ V ∩6,

#(Aut(C/L) · s) ≥ C23N(s)
1/g.

Proof. By Lemma 4.2, if s ∈ 6 then s ∈ Tγ for some γ ∈ GSp2g(Q)+ ∩ M2g(Z)
with det γ = N(s). Using Lemma 4.1, we can see that 0(q) ⊂ 0 ∩ γ−10γ where
q = ν(γ ) = N(s)1/g . Because N(s) is b-th-power-free, q is db/ge-th-power-free and so
we can apply Proposition 6.8 to all s ∈ V ∩ Tγ . Combining this with Lemma 4.4 proves
the corollary. ut

Proof of Theorem 1.4. The case in which p1|V is constant is easily dealt with: Let w be
the image of p1|V . By hypothesis (i), w ∈ Ag(K). Then every abelian variety isogenous
toAw is defined overK , so every point of V ∩6 is defined overK . But by hypothesis (ii),
V is a curve not defined over K , so V ∩6 must be finite.

Otherwise, when p1|V is not constant, we use Theorem 3.4 and Corollary 6.9. Let
(G, X) be the Shimura datum (GSp2g,H±g ) × (GSp2g,H±g ) and let (H, XH) ⊂ (G, X)
be the diagonal sub-Shimura datum. Let

� = {(1, γ ) ∈ G(Q)+ : γ ∈ GSp2g(Q)+ ∩M2g(Z) and det γ is b-th-power-free}.
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For each γ ∈ GSp2g(Q)+, the special subvariety SH,(1,γ ) defined in Set-up 3.1 is equal to
the Hecke correspondence Tγ . Thus by Lemma 4.2,

⋃
γ∈� SH,γ is the same as the set 6

defined in Theorem 1.4. Furthermore the complexity functionsN(s) defined in Set-up 3.1
and Corollary 6.9 are the same.

Conjecture 3.2 holds in this setting by Corollary 6.9 (which we can apply because
p1|V is not constant) and Conjecture 3.3 holds by Lemma 4.3. Therefore we can apply
Theorem 3.4 to prove Theorem 1.4. ut
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[SGV12] Salehi Golsefidy, A., Varjú, P. P.: Expansion in perfect groups. Geom. Funct. Anal. 22,
1832–1891 (2012) Zbl 1284.20044 MR 3000503
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