
© 2021 European Mathematical Society
Published by EMS Press. This work is licensed under a CC BY 4.0 license.

J. Eur. Math. Soc. 23, 63–152 (2021) DOI 10.4171/JEMS/1007

Emanuele Dotto · Kristian Moi · Irakli Patchkoria · Sune Precht Reeh

Real topological Hochschild homology

Received January 8, 2018

Abstract. This paper interprets Hesselholt and Madsen’s real topological Hochschild homology
functor THR in terms of the multiplicative norm construction. We show that THR satisfies cofi-
nality and Morita invariance, and that it is suitably multiplicative. We then calculate its geometric
fixed points and its Mackey functor of components, and show a decomposition result for group
algebras. Using these structural results we determine the homotopy type of THR(Fp) and show
that its bigraded homotopy groups are polynomial on one generator over the bigraded homotopy
groups of HFp . We then calculate the homotopy type of THR(Z) away from the prime 2, and the
homotopy ring of the geometric fixed points spectrum 8Z/2 THR(Z).
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Introduction

The topological Hochschild homology spectrum THH of a ring spectrum was introduced
in [Bök86] and [BHM93] as a tool to study the algebraicK-theory of rings and connective
ring spectra by means of the trace map. The trace induces an equivalence between a
stabilized version ofK-theory and THH [DM94], and an equivalence between the relative
K-theory and the relative topological cyclic homology of a nilpotent extension [McC97,
Dun97, DGM13]. It was later discovered that THH itself carries arithmetic information,
having important relations to Witt vectors [HM97], to the de Rham–Witt complex [HM03,
HM04], and to the Hasse-Weil zeta function [Hes16].

The real topological Hochschild homology spectrum THR is a genuine Z/2-equiv-
ariant spectrum associated to a genuine Z/2-spectrum with a compatible multiplicative
structure, introduced in [HM15], [Dot12] and [Høg16]. It is a genuine equivariant refine-
ment of the antipodal map of the Hopf algebra structure on THH of commutative ring
spectra defined by Angeltveit and Rognes [AR05], of the involution on THH defined in
[Kro05], and of the involution on the Hochschild complex of a ring with anti-involution
of [Lod98]. It receives a trace map tr : KR → THR from the real K-theory spectrum
KR of [HM15], and therefore its derived fixed points spectrum THRZ/2 is the target of
a trace map from the Hermitian K-theory spectrum or Grothendieck–Witt spectrum GW
of [Sch10, HM15]. The trace map induces an equivalence of equivariant spectra after a
suitable stabilization of KR, at least when 2 is invertible [Dot12, Dot16], showing that
THR carries information about Hermitian K-theory of rings with anti-involution.

The current definition of the THR spectrum uses a construction based on the original
model of [Bök86]. Although this construction is homotopy invariant (Theorem 2.20) and
receives a trace map from KR, it is not suitable for calculations. The main purpose of
this paper is to give an alternative construction of the THR spectrum in terms of the
multiplicative norm construction of [HHR16] and [Sto11], and use this description to
carry out calculations.

The input for THR is a ring spectrum with anti-involution (A,w). A point-set model
for the homotopy theory of ring spectra with anti-involution is the category of orthogonal
Z/2-spectra A which are equipped with the structure of a ring spectrum, such that the
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involution w defines a map of ring spectra w : Aop
→ A (see §A.1). Alternatively, these

can be described as algebras in genuine Z/2-spectra over a certain Eσ -operad, where σ
is the sign representation of Z/2 (see Remark 2.3). Let NZ/2

e A be the norm construction
of the underlying ring spectrum of A. Then the Z/2-spectrum A is a module over the
Z/2-ring spectrum N

Z/2
e A via the map

N
Z/2
e A ∧ A = A ∧ A ∧ A

1∧w∧1
−−−−→ A ∧ Aop

∧ A
1∧τ
−−→ A ∧ A ∧ Aop µ

−→ A,

where τ ∈ 62 is the flip permutation and µ is the multiplication of A. This also provides
an A-module structure on the geometric fixed points of A,

A ∧8Z/2A
'
−→ 8Z/2(NZ/2

e A ∧ A) −→ 8Z/2A,

under suitable cofibrancy assumptions. Similar module structures are defined for an
(A,w)-bimodule M . The following theorem is the main outcome of §2.

Theorem. Let (A,w) be a flat ring spectrum with anti-involution, and let M be a flat
(A,w)-bimodule. There is a stable equivalence of genuine Z/2-spectra

THR(A;M) ' M ∧L
N

Z/2
e A

A,

where THR(A;M) is the Bökstedt model of real topological Hochschild homology de-
fined in [HM15], [Dot12] and [Høg16] (see also §2.3). In particular, on geometric fixed
points there is a natural stable equivalence of spectra

8Z/2 THR(A;M) ' 8Z/2M ∧L
A 8

Z/2A.

From this geometric fixed points formula one can recover the calculation of
π08

Z/2 THR(A) of [Høg17]. We prove this theorem first by comparing THR(A;M) to
the dihedral bar construction Bdi

∧ (A;M) in a way analogous to [Shi00] and [PS16] in
Theorem 2.23, and then by showing that Bdi

∧ (A;M) computes the derived smash prod-
uct. We wish to emphasize that our equivalence is implemented by a zig-zag of only two
simplicial equivalences, of the form

M ∧ A∧k
'
−→ hocolim

I×k+1
�i0+···+ik (shi0 M ∧ shi1 A ∧ · · · ∧ shik A)

'
−→ THRk(A;M).

The proof that these maps are Z/2-equivariant equivalences uses the same techniques as
the description of the Bökstedt smash product in terms of the norm in [ABG+16].

The real algebraic K-theory functor admits as input Wall antistructures, or more gen-
erally exact categories with duality. It is therefore desirable to define THR on these more
general objects. This is addressed in §3, where we extend the THR functor to a set-up of
spectrally enriched categories with duality which include Wall antistructures, their cat-
egory of modules, as well as a spectral version of Wall antistructures. We also extend
the comparison between THR and the dihedral bar construction and the calculation of its
geometric fixed points spectra to this categorical context.
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In §4 we discuss multiplicativity, cofinality, and Morita invariance for the functor
THR. If the underlying ring spectrum A is commutative, the ring spectrum with anti-
involution (A,w) is nothing but a genuine Z/2-equivariant commutative ring spectrum.
The following results are proved in §4.1.

Theorem. Let (A,w) be a commutative Z/2-equivariant ring spectrum. Then THR(A)
:= THR(A;A) is an associative Z/2-equivariant ring spectrum, and the dihedral bar
construction Bdi

∧A is a Z/2-equivariant augmented commutative A-algebra. If (A,w) is
flat, there is a stable equivalence of associative genuine Z/2-equivariant ring spectra

THR(A) ' Bdi
∧A ' A ∧

L
N

Z/2
e A

A,

and a stable equivalence of associative ring spectra 8Z/2 THR(A) ' 8Z/2A∧L
A8

Z/2A.

When A is commutative, THH(A) and the cyclic bar construction Bcy
∧ A have natural

structures of E∞-ring spectra. We are however not aware of a comparison of these ob-
jects as E∞-algebras. In our situation, Bdi

∧A is strictly commutative and therefore has an
action of the genuine Z/2-equivariant E∞-operad. It is plausible that THR(A) also has
an action of this operad which is compatible with the one on Bdi

∧A. We leave this as an
open question. In our calculations we will only use the comparison as associative rings.

Given a ring spectrum with anti-involution (A,w) we let M∨n A :=
∨
n×nA be the

non-unital matrix ring. This has an anti-involution wT obtained by applying w to the
wedge summands and by transposing, that is by applying the involution of n×n that flips
the factors. Now suppose that R is a discrete ring with anti-involution. The category of
finitely generated projective right R-modules inherits a duality D(P ) := homR(P,R),
where the left R-module homR(P,R) is regarded as a right R-module via the anti-
involution. The following is proved in §4.2 and §4.3.

Theorem (Morita invariance). If (A,w) is flat, the inclusion (A,w)→ (M∨n A,w
T ) of

the (1, 1)-wedge summand induces a stable equivalence of genuine Z/2-spectra

THR(A)
'
−→ THR(M∨n A)

for every integer n ≥ 1. Moreover THR satisfies cofinality, and it follows that there is a
stable equivalence of genuine Z/2-spectra

THR(HR)
'
−→ THR(HPR),

where H denotes the Eilenberg–MacLane construction, with fixed points spectrum
(HR)Z/2 = H(RZ/2). This equivalence in fact holds for every Wall antistructure
(R,w, ε), in the sense of [Wal70].

The construction of the trace map from KR(R,w, ε) of [HM15] and [Dot12] lands most
naturally in the spectrum THR(HPR). Thus the previous theorem is instrumental for
describing a trace map to the spectrum THR(HR).
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Remark. If (R,w) is a discrete ring with anti-involution, our geometric fixed points
formula shows that, after inverting 2, the geometric fixed points of THR vanish:

(8Z/2 THR(HR;M))[1/2] ' (8Z/2M ∧L
HR 8

Z/2HR)[1/2]

' 8Z/2M ∧L
HR 8

Z/2(HR[1/2]) ' ∗

since 8Z/2(HR[1/2]) is contractible (see Corollary 2.28). As a consequence the trace
map

L(R)⊗Q ' 8Z/2 KR(R)⊗Q tr
−→ 8Z/2 THR(HR)⊗Q ' ∗

cannot detect elements in rational L-theory. The first equivalence follows from [Lod76]
and [BF84]. This result is consistent with Cortiñas’ vanishing result for the Chern char-
acter to dihedral homology on the L-theory summand of [Cn93]. For non-discrete ring
spectra the geometric fixed points of THR need not vanish, even after inverting 2. In fact,
Dotto and Ogle [DO19] have shown that the trace for the spherical group ring S[G] is
non-trivial on rational geometric fixed points.

We now turn our attention to some calculations. From the description of THR as a derived
smash product we obtain a strongly convergent spectral sequence of Z/2-Mackey functors

Torπ∗(N
Z/2
e A)

p,q (π
∗
A,π

∗
A)⇒ πp+q THR(A),

where Tor is the left derived functor of the �-product of Mackey functors, and π
∗

is the
Z/2-Mackey functor of homotopy groups. From this spectral sequence and a calculation
of π0N

Z/2
e A similar to [HM19] we obtain the following in §5.1.

Theorem. Let (A,w) be a ring spectrum with anti-involution whose underlying orthogo-
nal Z/2-spectrum is flat and connective. Then the Mackey functor π0 THR(A) is naturally
isomorphic to the Mackey functor

π0A/[π0A,π0A]

w

WW

tran //
(π

Z/2
0 A⊗ π

Z/2
0 A)/T ,

res
oo

where [π0A,π0A] is the commutator subgroup, and T is the subgroup generated by the
relations:

(i) x ⊗ a · y − ω(a) · x ⊗ y for x, y ∈ πZ/2
0 A and a ∈ π0A, where · is a multiplicative

action of π0A on πZ/2
0 A induced by the module structure over π0N

Z/2
e A,

(ii) x ⊗ tran(a res(y)w(b))− tran(w(b) res(x)a)⊗ y for x, y ∈ πZ/2
0 A and a, b ∈ π0A.

The transfer and the restriction are defined respectively by

res(x ⊗ y) = res(x) res(y) and tran(a) = tran(a)⊗ 1,

where 1 ∈ πZ/2
0 A is defined by the unit S→ A. If A is moreover commutative then these

relations generate an ideal, (πZ/2
0 A⊗π

Z/2
0 A)/T is a commutative ring, and π0 THR(A)

is a Tambara functor. The multiplicative norm of π0 THR(A) is given by a 7→ N(a)⊗ 1,
where N is the multiplicative norm of π0A.
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A ring with anti-involution with particular geometric relevance is the group ring Z[G]
where G is a discrete group, and the anti-involution is given on generators by g 7→ g−1.
In general if M is a monoid with anti-involution ι : Mop

→ M and (A,w) is a ring
spectrum with anti-involution, one can form the monoid ring A[M] := A ∧ M+ with
anti-involution w ∧ ι. In [Høg16] Høgenhaven shows that there is an equivalence

THR(S[G]) ' 6∞Bdi
×G+

where the dihedral bar construction Bdi
×G is a model for the free loop space

Map(Sσ , BσG) with respect to the sign representation σ . We generalize this result to
arbitrary coefficients in §5.2.

Theorem. Let (A,w) be a flat ring spectrum with anti-involution, and M a well-pointed
topological monoid with anti-involution. Then the assembly map

THR(A) ∧ (Bdi
×M)+

'
−→ THR(A[M])

is a stable equivalence of genuine Z/2-spectra. IfG is a discrete group and ι is inversion,
then there is an isomorphism of Mackey functors

π0 THR(Z[G]) '=
(
Z[Gconj]

(−)−1

VV

tran //
(Z[Gconj]Z/2 ⊕ Z[GZ/2

×G G
Z/2
])/D

res
oo

)
,

where Gconj is the set of conjugacy classes of elements of G, and D is the subgroup
generated by the elements 2[g, g′] − [gg′] for all [g, g′] ∈ GZ/2

×G G
Z/2. The transfer

and restriction maps are defined in Corollary 5.12.

In Examples 5.13 and 5.14 we give explicit calculations for the cases G = Z and
G = Z/2 based on these formulas.

We recall that the homotopy groups of a Z/2-equivariant ring spectrum A form a
bigraded ring

πn,kA := [S
n,k, A]Z/2

where Sn,k = Sn−k∧Skσ and σ denotes the sign representation of Z/2. We write6n,k for
the corresponding suspension functor. Let p be a prime and let Fp have the trivial invo-
lution. We let TH Fp (S

2,1) :=
∨
∞

n=06
2n,nH Fp denote the free H Fp-algebra generated

by S2,1. The following is proved in §5.3.

Theorem. There is a stable equivalence of genuine Z/2-equivariant ring spectra
TH Fp (S

2,1)
'
−→ THR(Fp) for every prime p, and therefore an isomorphism of bigraded

rings
π∗,∗ THR(Fp) '= H Fp∗,∗[x̃],

where x̃ has bidegree (2, 1). We deduce that there are isomorphisms of graded rings

π∗ THR(Fp)Z/2 '=

{
Fp[y], |y| = 4, for p odd,
F2[x̄, y], |y| = 1, |x̄| = 2, for p = 2.

Under the restriction map π∗ THR(Fp)Z/2 → π∗ THH(Fp) '= Fp[x], the generator y
maps to x2 for p odd, and for p = 2 the element x̄ maps to x and y maps to 0.
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To prove the theorem we lift the equivalence
∨
∞

n=06
2nH Fp

'
−→ THH(Fp) of Bökstedt

[Bök86] and Breen [Bre78] to a map of Z/2-spectra, and test that it induces an equiva-
lence on geometric fixed points. If p is odd the source has trivial geometric fixed points,
and so does the target by the geometric fixed points formula for THR of §2.5. When
p = 2 we use the calculation of [HK01] of 8Z/2H F2 and the same formula to show that
the map is an equivalence on geometric fixed points.

Let Z have the trivial involution. Using a similar strategy we calculate THR(Z) local-
ized at an odd prime p, or equivalently THR(Z(p)), in §5.4.

Theorem. Let p be an odd prime. There is a stable equivalence of genuine Z/2-spectra

THR(Z)(p) ' THR(Z(p)) ' HZ(p) ∨
∨
k≥1

62k−1,kH(Z/pνp(k)),

where νp(k) is the p-adic valuation of k.

If one could show that a similar equivalence holds at the prime 2, we would get an equiv-
alence

THR(Z) ?
−→ HZ ∨

∨
k≥1

62k−1,kHZ/k.

In Theorem 5.20 we calculate the homotopy ring π∗8Z/2 THR(Z), showing in particular
that the geometric fixed points on both sides of this expression have isomorphic homotopy
groups.

Theorem. There is an isomorphism of graded rings

π∗8
Z/2 THR(Z) '= F2[b1, b2, e]/e

2,

where |b1| = |b2| = 2 and |e| = 1. The element b1 + b2 lifts to an element of
π2(THR(Z)Z/2) '= Z/2 of infinite multiplicative order.

This theorem shows in particular that the multiplication on THR(Z) is non-trivial already
at the level of homotopy groups, as opposed to the multiplication on THH(Z) which is
trivial on homotopy groups of positive degree. The remaining piece in the computation of
THR(Z) at the prime 2 is to show that the isomorphism between the homotopy groups of
the geometric fixed points can be realized by a map of Z/2-spectra. The techniques used
for the calculation at odd primes do not allow us to construct such a map. This will be the
subject of future work.

Notation and conventions

By a space, we will always mean a compactly generated weak Hausdorff topological
space. We denote by Top the category of spaces, by TopG the category of G-spaces for a
finite group G, and by Top∗ and TopG∗ the associated categories of pointed objects.

The category of orthogonal spectra will be denoted by Sp, and the category of G-
equivariant orthogonal spectra by SpG. We will mostly work with the flat stable (positive)
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model structure on the category SpG based on a complete G-universe, which we will call
genuineG-spectra. This model structure is constructed in [Sto11, BDS16] and is referred
to as the S-model structure. We prefer the term “flat” since the cofibrant objects in this
model structure behave like flat modules in algebra. The cofibrations in the flat model
structure on SpG are called flat cofibrations and the cofibrant objects are just called flat.
We will occasionally use the stable model structure on SpG from [HHR16] which is
Quillen equivalent to the flat model structure and has fewer cofibrant objects. An equiv-
alence of G-spectra will always be understood as a stable equivalence with respect to a
complete G-universe. We will mostly be concerned with the case G = Z/2.

1. Background

1.1. Equivariant diagrams and real simplicial objects

In this section we recall some of the constructions from [DM16, HM15].

Definition 1.1. Let J be a small category with an involution ω : J → J , and C a cate-
gory. A Z/2-diagram in C is a functor X : J → C together with a natural transformation
w : X→ X ◦ ω such that the composite

X
w
−→ X ◦ ω

w|ω
−−→ X ◦ ω2

= X

is the identity natural transformation. A morphism of Z/2-diagrams is a natural transfor-
mation of underlying functors f : X→ Y such that wY ◦ f = f |ω ◦ wX.

Example 1.2. Let1 be the standard skeleton for the category of non-empty finite totally
ordered sets and order-preserving maps. This category has an involution ω that is constant
on objects, and that sends a morphism α : [n] → [k] to

ω(α)(i) = k − α(n− i).

This induces a similar involution on the opposite category 1op. A Z/2-diagram
X : 1op

→ C is called a real simplicial object of C . Explicitly, it consists of a simplicial
object X together with a map w : Xop

→ X of order 2, that is, involutions wk : Xk → Xk
such that for every α : [n] → [k],

α∗wk = wn(ω(α))
∗.

A morphism of real simplicial objects is a morphism of Z/2-diagrams. The datum of a
real simplicial object can equivalently be encoded as a functor X : 1op

R → C , where 1R
is the category obtained from 1 by adding maps ωn : [n] → [n] for all n ≥ 0 which
satisfy the relations (ωn)2 = id[n] and ωn ◦ α ◦ωm = ω(α) for all α : [m] → [n]. Both of
these ways to think about real simplicial objects will be useful in this paper.

The cosimplicial object 1• : 1 → Top that sends [n] to the topological n-simplex 1n

has a canonical structure of Z/2-diagram, defined by the map w : 1n→ 1n,

w(t0, t1, . . . , tn) = (tn, . . . , t1, t0).
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Definition 1.3. Let X : 1op
R → C be a real simplicial object in a category C which is

tensored over Top. The geometric realization of X is the Z/2-object of C defined as the
coend of the underlying (non-real) diagrams,

|X| := X ⊗1 1
•,

with the diagonal Z/2-action defined in [DM16, §1.2].

Remark 1.4. Let sde : 1op
→ 1op denote the functor that sends [n] to the join [n]∗[n] =

[2n + 1], and a morphism α to α ∗ ω(α). Precomposition with this functor defines an
endofunctor on the category of simplicial objects in C , which is called the Segal edge-
wise subdivision and it is still denoted sde. This construction was introduced by Segal
in [Seg73]. It satisfies sde(Xop) = sde X, and thus a Z/2-structure w : X → Xop on a
simplicial object X induces a simplicial involution

sde X
sde w
−−−→ sde(Xop) = sde X

on the Segal edgewise subdivision. The geometric realization |sde X| inherits an involu-
tion, and it is readily verified that the canonical isomorphism |sde X| '= |X| is equivariant
with respect to the Z/2-action on |X| of Definition 1.3.

We recall that the homotopy colimit of a Z/2-diagramX : J → Top inherits a Z/2-action.
This can be explicitly defined by expressing the homotopy colimit as the realization of
the simplicial space

hocolim
J

X :=

∣∣∣ ∐
j∈N•J

Xj0

∣∣∣
as in [BK72]. The involution is then the geometric realization of the simplicial involution
that sends (j , x) to (ω(j), w(x)). The homotopical properties of this involution have been
studied in [DM16].

For a finite-dimensional Z/2-representation V , let evV : SpZ/2 → TopZ/2∗ be the
evaluation at level V functor.

Definition 1.5. A real simplicial spectrum X : 1
op
R → Sp is good if for each Z/2-

representation V the simplicial Z/2-space (evV )∗ sde X is good, that is, if for all n ≥ 0
the map of Z/2-spaces

(s2n+2−isi)V : (X2n+1)V → (X2n+3)V

is an h-cofibration of (unpointed) Z/2-spaces.

The following result follows immediately from Remark 1.4 and the fact that fixed points
of finite groups commute with geometric realizations.

Lemma 1.6. Let f : X → Y be a map of good real simplicial orthogonal spectra such
that the map fn : Xn → Yn is a stable equivalence of orthogonal Z/2-spectra. Then
|f | : |X| → |Y | is a stable equivalence of orthogonal Z/2-spectra.
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1.2. Real I -spaces

Let I be the category whose objects are the non-negative integers, and whose morphisms
i → j are the injective maps α : {1, . . . , i} → {1, . . . , j}. This category has a Z/2-action
ω : I → I which is trivial on objects and sends a map α : i → j to

ω(α)(s) = j − α(i − s + 1)+ 1.

Definition 1.7. A real I -space is a Z/2-diagram X : I → Top.

The class of examples of real I -spaces we are the most concerned with comes from Z/2-
spectra.

Example 1.8. Let E be an orthogonal Z/2-spectrum. There is an associated I -space
�IE : I → Top∗ which is defined by

(�IE)(i) = �
iEi

on objects, and as in [Sch04, §2.3] on morphisms. The I -space �IE has a Z/2-diagram
structure defined by the maps

�iEi
()◦τi
−−→ �iEi

w
−→ �iEi

�iτi
−−→ �iEi

where w denotes the Z/2-action on E. Here τi ∈ 6i is the permutation that reverses the
order on {1, . . . , i}, which is applied first to the smash factors of the sphere Si , and then to
Ei through the orthogonal structure of E. We let �∞I E be the pointed Z/2-space defined
as the homotopy colimit of this Z/2-diagram,

�∞I E := hocolim
I

�IE

(computed in the category of unpointed spaces). The involution is the one defined in the
previous section, and by abuse of notation we still denote it by w.

Remark 1.9. Since the Z/2-action on I is trivial on objects, it is the same as an en-
richment of I with Z/2-sets. A real I -space is then a functor X : I → TopZ/2 enriched
with Z/2-spaces, where TopZ/2 is the category of pointed Z/2-spaces and not necessarily
equivariant maps, with the standard enrichment in Z/2-spaces.

One may alternatively define orthogonal Z/2-spectra as enriched functors
E : JZ/2 → TopZ/2, where JZ/2 is a certain category enriched with Z/2-spaces whose
objects are finite-dimensional orthogonal Z/2-representations. Under this description the
real I -space �IE is the enriched functor

�IE : I → JZ/2
E
−→ TopZ/2

where the first map takes i to Ri with the involution which reverses the order of the
elements of the standard basis.
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We recall that the functor �∞I : Sp → Top∗ on non-equivariant spectra is lax monoidal
with respect to the smash product of orthogonal spectra and the Cartesian product
of pointed spaces, and therefore it preserves associative monoids. The equivariant lift
�∞I : SpZ/2 → TopZ/2∗ fails to be lax symmetric monoidal. This is because the natural
transformation

φ : (�∞I E)× (�
∞

I F)→ hocolim
I×I

�i+j (Ei ∧ Fj )

→ hocolim
I×I

�i+j (E ∧ F)i+j
+∗
−→ hocolim

I
�i(E ∧ F)i

uses the disjoint union functor +: I × I → I , which is not strictly equivariant. This
functor does however satisfy a compatibility condition with the Z/2-action on I , namely

ω(α + β) = ω(β)+ ω(α)

for every pair of morphisms α, β in I , and this allows us to describe its monoidal prop-
erties. Given a monoid (M,µ) in a symmetric monoidal category (C ,⊗), we let Mop

denote the object M equipped with the multiplication

M ⊗M
τ
−→ M ⊗M

µ
−→ M

where τ is the symmetry isomorphism of the symmetric monoidal structure. The follow-
ing definition is classical.

Definition 1.10. A monoid with anti-involution in a symmetric monoidal category
(C ,⊗) is a monoid M in C equipped with a morphism of monoids w : Mop

→ M

which satisfies w2
= id.

Homotopy coherent versions of this definition have been considered before (e.g. [Lur13,
Spi16, HS19]). We will however only consider this strict pointset definition, which we
will apply in the context of genuine equivariant spectra.

Proposition 1.11. Let E and F be orthogonal Z/2-spectra with Z/2-action maps w
and w′, respectively. The diagram of spaces

(�∞I E)× (�
∞

I F)

w×w′

��

φ
// �∞I (E ∧ F)

w∧w′

��

(�∞I E)× (�
∞

I F)

τ

��

�∞I (E ∧ F)

�∞I (τ )

��

(�∞I F)× (�
∞

I E)
φ
// �∞I (F ∧ E)

commutes, where w, w′ and w ∧ w′ denote the induced Z/2-action maps on the �∞I
construction. In particular, the functor �∞I : SpZ/2 → TopZ/2∗ preserves monoids with
anti-involution.
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Proof. We use the Bousfield–Kan formula to express the homotopy colimits as geometric
realizations of simplicial spaces, and we show that the diagram of the statement commutes
simplicially. An n-simplex in the simplicial space realizing to�∞I E is a pair (i, x) where
i = (i0 → · · · → in) is an n-simplex of the nerve of I , and x ∈ �i0Ei0 . The map φ is
then defined by

φ((i, x), (j , y)) = (i + j, ι(x ∧ y))

where x ∧ y : Si0+j0 → Ei0 ∧ Fj0 is the smash of the maps x and y, i + j is the value of
the simplicial map +: NI × NI → NI induced by the disjoint union functor + (where
N stands for the nerve), and ι : Ei ∧ Fj → (E ∧ F)i+j is the canonical map. The upper
composite of the diagram is then

(τ ◦ (w ∧ w′) ◦ φ)((i, x), (j , y)) = (ω(i + j), ι(w′(y) ∧ w(x))).

This follows from the definitions using the properties of the canonical map ι : Ei ∧Fj →
(E ∧ F)i+j and from the fact that the identity

χi,j τi+j = τi + τj

holds, where τk ∈ 6k is the permutation that reverses the order on {1, . . . , k} and χi,j is
the block permutation in 6i+j that swaps the first block of size i with the last block of
size j . The lower composite is

(φ ◦ τ ◦ (w × w′))((i, x), (j , y)) = φ((ω(j), w′(y)), (ω(i), w(x)))

= (ω(j)+ ω(i), ι(w′(y) ∧ w(x))).

These agree because ω(α + β) = ω(β) + ω(α). Now suppose that E is a monoid with
anti-involution, and consider the diagram

(�∞I E)× (�
∞

I E)

w×w

��

φ
// �∞I (E ∧ E)

w∧w

��

µ
// �∞I E

w

��

(�∞I E)× (�
∞

I E)

τ

��

�∞I (E ∧ E)

τ

��

(�∞I E)× (�
∞

I E)
φ
// �∞I (E ∧ E)

µ
// �∞I E

The left square commutes by the previous argument, and the right square commutes be-
cause E is a monoid with anti-involution. More precisely, the right-hand diagram com-
mutes by applying the (non-equivariant) functor�∞I to the diagram which exhibits E as a
ring spectrum with anti-involution and by observing that conjugation by τi is compatible
with the map µ : E ∧ E → E, by naturality of conjugation by τi . Thus the outer rectan-
gle also commutes, showing that the space �∞I E with its involution w and the monoid
structure µ ◦ φ is a monoid with anti-involution in the category of spaces. ut
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Remark 1.12. There is another, more conceptual explanation of why �∞I preserves
monoids with anti-involution. The functor �I from orthogonal spectra to I -spaces is lax
symmetric monoidal, where the category of I -spaces is equipped with the Day convolu-
tion product [SS12]. Thus a ring spectrum E with an anti-involution w gives an I -space
monoid �IE with an anti-involution �I (w). After passing to homotopy colimits this
gives a map

hocolim
I

�I (w) : hocolim
I

((�IE)
op)→ hocolim

I
(�IE).

The homotopy colimit functor from I -spaces to spaces is not lax symmetric monoidal
but just lax monoidal. Thus, given an I -space monoid X, there is no immediate rela-
tion between hocolimI (X

op) and (hocolimI X)
op. However, the involution ω : I → I

provides such an identification. We recall that this involution satisfies ω(α + β) =
ω(β) + ω(α), or in other words it is a strictly monoidal isomorphism of monoidal cate-
gories ω : (I,+)op

→ (I,+), where (I,+)op is the category I with the monoidal struc-
ture n+op m := m+ n. Moreover the (I,+)-space monoid X defines an (I,+)op-space
monoid X̂, which is X as a functor and with the monoid structure

X̂n × X̂m = Xn ×Xm '= Xm ×Xn→ Xm+n = X̂n+opm.

It follows from the definitions that there are isomorphisms of monoids

(hocolim
I

X)op
= (hocolim

(I,+)
X)op '= hocolim

(I,+)op
(X̂)op

ω∗
−→ hocolim

(I,+)
((X̂)op

◦ ω) '= hocolim
(I,+)

Xop,

where the monoidal products in the indexing refer to the induced monoid structures on the
Bousfield–Kan construction over I . The last isomorphism is induced by the isomorphism
of I -space monoids (X̂)op

◦ ω '= Xop, given by the isomorphisms X(τi) : Xi → Xi . It is
worth remarking that the morphism X(τi) : Xi → Xi defines a Z/2-diagram structure on
any I -space X (not necessarily a monoid). By inspection, one sees that the action coming
from this canonical Z/2-diagram structure combined with the involution of E is exactly
the involution of �∞I E.

The aim of the remainder of this section is to prove that�∞I has the equivariant homotopy
type of the genuine infinite loop space functor.

Theorem 1.13. Let E be an orthogonal Z/2-spectrum. There is a natural equivalence of
Z/2-spaces

�∞ρE := hocolim
n∈N

�nρEnρ
'
−→ �∞I E

where ρ denotes the regular representation of Z/2. In particular if A is a ring spectrum
with anti-involution, then �∞I A is a monoid with anti-involution model for �∞ρA.

As in the classical theory of I -spaces (see e.g. [Shi00, 2.2.9]), Theorem 1.13 will follow
from a comparison of the homotopy colimit of a real I -space with the homotopy colimit
of its restriction to the subcategory of natural numbers N. The difference between these
homotopy colimits is measured by an equivariant version of the injection monoid.
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Given a natural number n, we write [−n, n] = {−n, . . . ,−1, 0, 1, . . . n} for the sym-
metric interval with 2n + 1 elements. We will also write n for the set {1, . . . , n}. For
convenience, we will systematically identify 2n+ 1 in the order-preserving way with
[−n, n] so that the involution on the morphisms of I becomes conjugation by −1. We let
ι : N→ I be the functor that sends n to 2n + 1, and the unique morphism n ≤ m to the
canonical inclusion [−n, n] ⊂ [−m,m]. Clearly ι is Z/2-equivariant with respect to the
trivial involution on N, thus providing a Z/2-equivariant map

ι∗ : hocolim
N

ι∗X→ hocolim
I

X

for every real I -space X : I → Top. Now let MR = Inj(Z,Z) be the monoid of self-
injections of the integers, and MRZ/2 the submonoid of Z/2-equivariant maps with re-
spect to the involution on Z given by multiplication by −1. For every element f of MR

we define
f · n := max |f ([−n, n])|,

which is a map of posets, f : (N,≤)→ (N,≤). The injection f : [−n, n]→[−(f ·n), f ·n]
induces a map

f · (−) : hocolim
N

ι∗X
X(f )
−−−→ hocolim

N
f ∗ι∗X

f∗
−→ hocolim

N
ι∗X,

which is equivariant if f lies in MRZ/2.

Proposition 1.14. Let X : I → Top be a real I -space whose underlying I -space is
semistable (see e.g. [SS13, §2.5]). Suppose that for every injection f in MRZ/2 the map
f · (−) is an equivalence on Z/2-fixed points. Then the canonical map

ι∗ : hocolim
N

ι∗X
'
−→ hocolim

I
X

is an equivalence of Z/2-spaces.

Proof. We start by showing that ι∗ is an equivalence on fixed points, by adapting the ar-
gument of [Shi00, 2.2.9]. The idea of the proof is to replace N by a category I o/ω with an
action of MRZ/2, and the fixed points category IZ/2 with the Grothendieck construction
MRZ/2

o (I o/ω).
We let I o/ω be the category whose objects are the pairs (n, α), where n is a non-

negative integer and α : [−n, n] � Z is an equivariant injective map. A morphism
(n, α) → (n′, α′) in I o/ω is an injective equivariant map β : [−n, n] � [−n′, n′] such
that α = α′◦β. The category I o/ω has a strict left action of MRZ/2, which is given on ob-
jects by f (n, α) = (n, f ◦ α) and on morphisms by f (β) = β. The functor ι : N→ IZ/2

factors as
N ι //

γ
��

IZ/2

I o/ω
δ //MRZ/2

o (I o/ω)

π

OO
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Here γ sends an object n to the inclusion [−n, n] ⊂ Z, and the morphism n ≤ m to
the inclusion [−n, n] ⊂ [−m,m]. The functor δ is the canonical inclusion of the fiber
over the unique object of MRZ/2 and π sends an object (n, α) to 2n + 1. A morphism
(n, α) → (n′, α′) in the Grothendieck construction is a pair (f, β) where f ∈ MRZ/2

and β : [−n, n]� [−n′, n′] is equivariant and such that f ◦ α = α′ ◦ β. This is sent to β
by π .

We prove in Lemma 1.16 below that γ and π are homotopy right cofinal. Thus the
vertical maps in the commutative diagram

hocolim
N

ι∗XZ/2 ι∗ //

γ∗ '

��

hocolim
IZ/2

XZ/2'= (hocolimI X)
Z/2

hocolim
I o/ω

δ∗π∗XZ/2 δ∗ // hocolim
MRZ/2o(I o/ω)

π∗XZ/2

π∗'

OO

// BMRZ/2
' ∗

are weak equivalences. The classifying space of the injection monoid BMRZ/2 is con-
tractible by Lemma 1.15. The bottom sequence is equivalent to the sequence

hocolim
I o/ω

δ∗π∗XZ/2
→ hocolim

MRZ/2

(
hocolim
I o/ω

δ∗π∗XZ/2
)
→ BMRZ/2

' ∗.

We now show that MRZ/2 acts by equivalences on hocolimI o/ω δ∗π
∗XZ/2. The action of

an element f of MRZ/2 is by definition the bottom horizontal composite of the diagram

hocolim
N

γ ∗δ∗π∗XZ/2

f ·(−)

'
++

X(f )
//

γ∗'

��

X(π(f,id))|γ **

hocolim
N

f ∗γ ∗δ∗π∗XZ/2 f∗ //

(γf )∗

""

hocolim
N

γ ∗δ∗π∗XZ/2

γ∗'

��

hocolim
N

γ ∗f ∗δ∗π∗XZ/2

γ∗

��

X(πδ(ξ))

OO

(f γ )∗

((

hocolim
I o/ω

δ∗π∗XZ/2 X(π(f,id))
// hocolim

I o/ω
f ∗δ∗π∗XZ/2 f∗ // hocolim

I o/ω
δ∗π∗XZ/2

and the composite of the top row is an equivalence by assumption. Here the bottom left
horizontal map is induced by the morphism (f, id) : α → f α of MRZ/2

o (I o/ω). The
upward map in the middle column is induced by the natural transformation

ξn : f · γ (n) = f · (n, [−n, n] ⊂ Z) = (n, f |[−n,n])
f |[−n,n]
−−−−→ (f · n, [−f · n, f · n] ⊂ Z) = γ (f · n)
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in I o/ω. Thus (γf )∗ ◦ X(πδ(ξ)) is homotopic to (f γ )∗. The rest of the diagram com-
mutes strictly. A version of Quillen’s theorem B [Qui73, p. 98] then applies to show that
the sequence above is a fiber sequence, showing that ι∗ is an equivalence on fixed points.

We must show that ι∗ is a non-equivariant equivalence. Let c : N→ I be the standard
inclusion that sends n ≤ m to the inclusion n ⊂ m. Since the I -space X is semistable, the
map

c∗ : hocolim
N

c∗X→ hocolim
I

X

is a non-equivariant equivalence by [SS13, Prop. 2.10]. Thus it remains to compare the
maps c∗ and ι∗. Let φ : N → Z be the bijection that sends 2i + 1 to −i and 2i to i. The
restriction of φ to the subset n defines a natural transformation

λn := φ|n : c(n) = n→ 2n+ 1 = ι(n),

and this gives rise to a homotopy commutative diagram

hocolimN c∗X
c∗

'
//

λ

��

hocolimI X

hocolimN ι∗X

ι∗

55

We now show that λ is an equivalence on homotopy colimits. The restriction φ−1
n of

φ−1
: Z→ N to the interval [−n, n] defines a commutative diagram

· · · // Xn
c //

λn

��

Xn+1
c // · · ·

c // X2n+1
c //

λ2n+1

��

· · ·

· · · // X2n+1 ι
//

φ−1
n

33

X2n+3 ι
// · · ·

ι
// X4n+3 ι

// · · ·

The upper triangle commutes by definition, and it is not hard to see that the lower triangle
commutes as well. Thus φ−1 provides an ind-inverse for λ, which is therefore a homeo-
morphism. ut

Lemma 1.15. Let MR0 ⊂ MR be the Z/2-submonoid of injections that send zero to
zero. Both BMR0 and BMR are weakly Z/2-contractible.

Proof. Our argument is an adaptation of [Sch08, 5.2]. We first consider the monoid MR

of all injections Z → Z, and we construct a functor F :MR → MR defined on each
injection f : Z→ Z by

F(f )(t) :=

{
2f (t/2) if t is even,
t if t is odd.

The injective map θ(t) := 2t then defines a natural transformation θ : IdMR0 ⇒ F .
At the same time, the injective map ψ(t) := 2t + 1 defines a natural transformation
ψ : CidZ ⇒ F to F from the constant functor that sends every f to the identity map on Z.
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The two natural transformations θ and ψ together give a zigzag that contracts BMR

non-equivariantly. We still need to argue that the fixed points (BMR)Z/2 ' B(MRZ/2)
are contractible as well. Note however that MRZ/2 is the monoid of Z/2-equivariant
injections Z → Z, and any equivariant map has to send zero to zero, hence MRZ/2

=

MR
Z/2
0 . We will study the fixed points MR

Z/2
0 below.

Next we consider the submonoid MR0 of injections that send zero to zero. The func-
tor F restricts to an endofunctor on MR0, and θ ∈ MR0 still gives a natural transfor-
mation θ : IdMR0 ⇒ F . However, the map ψ does not send zero to zero, so we need a
different transformation. We define ϕ ∈MR0 by

ϕ(t) :=


2t − 1 if t > 0,
0 if t = 0,
2t + 1 if t < 0.

Because we are working in MR0 where all maps send zero to zero, ϕ defines a natural
transformation ϕ : CidZ ⇒ F in MR0. As above, the two natural transformations θ and ϕ
give a zigzag that contractsBMR0. Since F , θ and ϕ are Z/2-equivariant,BMR0 is even
equivariantly contractible, and therefore the fixed point space BMR

Z/2
0 is contractible as

well by the same natural transformations θ and ϕ. ut

Lemma 1.16. The functors γ : N → I o/ω and π :MRZ/2
o (I o/ω) → IZ/2 from the

proof of Proposition 1.14 are homotopy right cofinal.

Proof. For each object (n, α) of I o/ω, the under-category (n, α)/γ is isomorphic to the
poset of non-negative integers m such that α([−n, n]) ⊂ [−m,m]. This has an initial
object max[−n,n] |α|, and it is therefore contractible.

The under category n/π has objects the triples (k, α, γ ) where α : [−k, k]� Z and
γ : n � 2k + 1 are equivariant injections. A morphism (k, α, γ ) → (k′, α′, γ ′) is a
pair (f, β) where f ∈MRZ/2 and β : [−k, k] � [−k′, k′] is equivariant and such that
f ◦ α = α′ ◦ β and γ ′ = βγ .

First suppose that n = 2j+1 is odd. We show that the inclusion of the endomorphisms
of the object (j, [−j, j ] ⊂ Z, idn) into n/π is a homotopy retract. The endomorphisms
of (j, [−j, j ] ⊂ Z, idn) form the submonoid of MRZ/2 of those injections that restrict
to the identity on the interval [−j, j ]. There is a retraction

R : n/π → End(j,[−j,j ]⊂Z,idn)

defined as follows. For every equivariant injection α : [−j, j ]� Z we choose an equiv-
ariant bijection fα : Z→ Z which extends α. If α is the canonical inclusion [−j, j ] ⊂ Z,
then we choose fα = id. Now we define R by sending a morphism (f, β) : (k, α, γ ) →

(k′, α′, γ ′) to
R(f ) := f−1

α′γ ′
ffαγ .

This is a well-defined endomorphism since on the interval [−j, j ] we have

f−1
α′γ ′

ffαγ |[−j,j ] = f
−1
α′γ ′

f αγ = f−1
α′γ ′

α′βγ = f−1
α′γ ′

α′γ ′ = id.
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It is easy to verify that R is a functor and a retraction for the inclusion of the endomor-
phisms. Moreover, the morphism

(fαγ , γ ) : (j, [−j, j ] ⊂ Z, idn)→ (k, α, γ )

defines a natural transformation from R to the identity. Thus the inclusion of the endo-
morphisms induces a homotopy equivalence on classifying spaces

∗ ' BMRZ/2 '= B End(j,[−j,j ]⊂Z,idn)
'
−→ B(n/π)

where the isomorphism between the endomorphisms and MRZ/2 collapses the interval
[−j, j ] to zero.

If n = 2j is even, we consider the object (j, [−j, j ] ⊂ Z, c) where c : 2j '=
[−j, j ]−0 ⊂ [−j, j ] '= 2j + 1 is the equivariant inclusion which restricts to the standard
inclusion j → j + 1. Similarly to the odd case, the inclusion End(j,[−j,j ]⊂Z,c) → n/π

admits a homotopy retraction. The endomorphisms of (j, [−j, j ] ⊂ Z, c) are again the
submonoid of MRZ/2 of the injections that restrict to the identity on [−j, j ]. The retrac-
tion is defined in a similar manner, by extending each equivariant map α : [−j, j ] − 0
� Z to an equivariant bijection on Z. The key observation is that the map c can be
extended to the identity of Z. Thus there is an equivariant homotopy equivalence

∗ ' BMRZ/2 '= B End(j,[−j,j ]⊂Z,c)
'
−→ B(n/π). ut

Proof of Theorem 1.13. Let E be an orthogonal Z/2-spectrum with associated real I -
space �IE : I → Top. Let us start by identifying the restriction ι∗�IE along the equiv-
ariant inclusion ι : N→ I . The involution on the spaces

(ι∗�IE)n = �
2n+1E2n+1

is defined by conjugating the levelwise involution of E with the flip permutations on
S2n+1 andE2n+1. These are precisely the Z/2-spaces�nρ+1Enρ+1, where ρ is the regular
representation of Z/2. Therefore suspension by the trivial representation defines a weak
equivalence

�∞ρE
'
−→ hocolim

n∈N
�nρ+1Enρ+1 = hocolim

N
ι∗�IE.

It remains to show that ι∗ : hocolimN ι∗�IE → hocolimI �IE is an equivariant equiv-
alence. We will prove this using Proposition 1.14. The underlying I -space is equiv-
alent to the I -space associated to the orthogonal spectrum E, and it is therefore
semistable. An equivariant injection f ∈MRZ/2 acts trivially on the homotopy groups
of (hocolimn∈N�nρ+1Enρ+1)

Z/2 at the canonical basepoint. This is because every or-
thogonal Z/2-spectrum is semistable; see [Sch13, 3.4] for a proof. To show that f acts
by equivalences it therefore suffices to show that it acts by a loop map. Recall that f · n
is the smallest integer such that f ([−n, n]) ⊂ [−f · n, f · n]. The action of f is then the
top row of the commutative diagram
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hocolim
n∈N

�nρ+1Enρ+1
X(f )

//

'

��

hocolim
n∈N

�(f ·n)ρ+1E(f ·n)ρ+1
f∗ //

'

��

hocolim
n∈N

�nρ+1Enρ+1

'

��

� hocolim
n∈N

�nρEnρ+1
�X(f0)// � hocolim

n∈N
�(f ·n)ρE(f ·n)ρ+1

�(f0)∗ // � hocolim
n∈N

�nρEnρ+1

where f0 : [−n, n]−0→ [−f ·n, f ·n]−0 is the restriction of f (we observe that since
f is equivariant it sends zero to zero). ut

Remark 1.17. A statement similar to Theorem 1.13 holds for symmetric Z/2-spectra if
one assumes suitable semistability conditions.

2. Real topological Hochschild homology

2.1. Ring spectra with anti-involution

A ring spectrum with anti-involution is a genuine Z/2-equivariant spectrum with a com-
patible multiplicative structure. It is a direct generalization of the notions of discrete and
simplicial rings with anti-involution [BF84], and a spectral version of “Hermitian Mackey
functors” (see 5.6).

Definition 2.1. A ring spectrum with anti-involution is a monoid with anti-involution in
the symmetric monoidal category of orthogonal spectra and smash product (see Defini-
tion 1.10). Explicitly, this is a pair (A,w) consisting of an orthogonal ring spectrum A

and a morphism of orthogonal ring spectra w : Aop
→ A such that w2

= id.

We remark that since the involution on A is strict, the map w defines a Z/2-action on the
underlying orthogonal spectrum of A, and thus it determines a genuine Z/2-equivariant
homotopy type. The constructions of this paper will take this underlying genuine Z/2-
equivariant homotopy type into account.

Definition 2.2. A morphism of ring spectra with anti-involution f : (A,w) → (B, σ )

is a morphism of orthogonal ring spectra f : A → B which commutes strictly with the
involutions. We say that f is a stable Z/2-equivalence if the underlying map of Z/2-
spectra is an equivalence in the stable model structure of orthogonal Z/2-spectra induced
by a complete Z/2-universe.

Remark 2.3. The resulting category of ring spectra with anti-involution can be described
as a category of algebras over a certain equivariant version of the associative operad
Assoc. Let Assocσ be the symmetric operad in the category of Z/2-sets whose underlying
operad of sets is Assoc, and with the involution on Assocn = 6n defined by sending σ to
τn ◦ σ , where τn is the permutation of {1, . . . , n} that reverses the order. This is a discrete
model for the operad Eσ of little discs in the sign representation of Z/2. Then the cate-
gory of Assocσ -algebras in Z/2-spectra is isomorphic to the category of ring spectra with
anti-involution.
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We further observe that there is a map of symmetric operads of Z/2-spaces Assocσ

→ E
Z/2
∞ , where EZ/2

∞ is the model for the Z/2-genuine E∞-operad of [GMM17]. The n-
th space of EZ/2

∞ is the classifying space of the functor category Fun(EZ/2, E6n), where
EG = G o G is the translation groupoid of the left G-action on the finite group G. The
map

Assocσn → Fun(EZ/2, E6n)

sends an element σ ∈ 6n to the functor EZ/2→ E6n that sends the unit 1 to σ and −1
to τn ◦ σ . Thus genuinely commutative Z/2-equivariant orthogonal ring spectra give rise
to ring spectra with anti-involution by forgetting structure.

Example 2.4. (i) Let R be a discrete or simplicial ring with an anti-involution
w : Rop

→ R. The Dold–Thom construction (see e.g. [Sch13, Example 2.13]) of the
Eilenberg–MacLane spectrum H : Ab → Sp is lax symmetric monoidal, and hence
HR is a ring spectrum with anti-involution. By [dS03] the underlying Z/2-spectrum is
the Eilenberg–MacLane spectrum of the Z/2-Mackey functor with underlying abelian
group R and fixed points group RZ/2. Throughout the paper, we will always consider the
Eilenberg–MacLane spectrumHR as a ring spectrum with anti-involution in this manner.

(ii) Any Z/2-equivariant commutative orthogonal ring spectrum is a ring spectrum
with anti-involution, for example the Eilenberg–MacLane spectrum of a Tambara functor
as constructed by Ullman [Ull13b].

(iii) The suspension spectrum S[G] := S∧G+ of a topological groupG is an orthog-
onal ring spectrum, where the multiplication is defined from the multiplication onG. The
inversion map ι : Gop

→ G defines an anti-involution on S[G].

Let (A,w) be a ring spectrum with anti-involution andM an A-bimodule. We letMop be
the A-bimodule with left module structure

A ∧M
τ
−→ M ∧ A

id∧w
−−−→ M ∧ A

µr
−→ M

where τ is the symmetry isomorphism and µr is the rightA-module action, and with right
A-module structure

M ∧ A
τ
−→ A ∧M

w∧id
−−−→ A ∧M

µl
−→ M

where µl is the left A-module action.

Definition 2.5. Let (A,w) be a ring spectrum with anti-involution. An (A,w)-bimodule
is a pair (M, j) of an A-bimodule M and a map of A-bimodules j : Mop

→ M that
satisfies j2

= id.
A morphism from an (A,w)-bimodule (M, j) to a (B, σ )-bimodule (N, k) is a pair

(f, φ) where f : (A,w)→ (B, σ ) is a morphism of ring spectra with anti-involution and
φ : M → f ∗N is a map of A-bimodules which commutes with the involutions j and k
(where f ∗ denotes restriction of scalars). We say that (f, φ) is a stable Z/2-equivalence
if both f and φ are stable Z/2-equivalences of the underlying orthogonal Z/2-spectra.
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Definition 2.6. We say that a ring spectrum with anti-involution (A,w) is flat if its un-
derlying orthogonal Z/2-spectrum is flat (see Appendix). Similarly, an (A,w)-bimodule
(M, j) is flat if its underlying orthogonal Z/2-spectrum is flat.

Remark 2.7. We will build real topological Hochschild homology out of indexed smash
products, and flatness is a convenient condition that makes these constructions homotopi-
cally well-behaved. In Proposition A.2 we construct a model structure on the category
of ring spectra with anti-involution where the equivalences are the stable equivalences
of genuine Z/2-spectra. In particular this will show that any ring spectrum with anti-
involution can be replaced by a flat one, up to stable Z/2-equivalence.

Remark 2.8. In our calculations of THR(Z) and THR(Fp) we will need to know that if
a ring spectrum with anti-involution happens to be commutative, then a flat replacement
can be carried out without loosing commutativity. This can be achieved by taking a cofi-
brant replacement in the flat positive model structure on Z/2-equivariant commutative
orthogonal ring spectra of [Sto11] and [BDS16].

In particular, any Z/2-equivariant commutative ring R admits a Z/2-equivariant com-
mutative orthogonal ring spectrum model for its Eilenberg–MacLane spectrumHR (even
though the classical construction of the Eilenberg–MacLane spectrum provides a flat Z/2-
equivariant symmetric spectrum, by [Sch07, Example 2.7], it is unclear to the authors if it
is flat as a Z/2-equivariant orthogonal spectrum).

2.2. The dihedral bar construction

We use the norm construction of [HHR16] and [Sto11] to show that the cyclic bar con-
struction on a ring spectrum A inherits the structure of a Z/2-spectrum from an anti-
involution on A.

For every non-negative integer k, we let k = {1, . . . , k} denote the Z/2-set with the
involution that sends i to k + 1 − i. Given a ring spectrum with anti-involution (A,w),
we let A∧k be the corresponding indexed smash product as defined in [HHR16]. The
following is a straightforward generalization of the involution on the Hochschild complex
of a ring with anti-involution of [Lod98, 5.2.1].

Definition 2.9. Let (M, j) be an (A,w)-bimodule. The dihedral nerve of (A,w) with
coefficients in (M, j) is the real simplicial orthogonal spectrum Ndi

∧ (A;M) with k-sim-
plices

Ndi
∧ (A;M)k = M ∧ A

∧k,

and the levelwise involution given by the involution j on M and by the involution on the
indexed smash product A∧k. The simplicial structure is the standard simplicial structure
on the cyclic nerve (see e.g. [Lod98]). We let Bdi

∧ (A;M) be the orthogonal Z/2-spectrum
defined by the geometric realization of Ndi

∧ (A;M). When A = M we write Bdi
∧A for

Bdi
∧ (A;A), or Bdi

∧ (A,w) if we want to emphasize the anti-involution.

Remark 2.10. WhenM = A, the simplicial spectrumNdi
∧A has a dihedral structure, and

therefore its realization Bdi
∧A is an S1 oZ/2-spectrum. In the present paper we will focus

on the Z/2-action and neglect the cyclic structure.
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We note that the dihedral bar construction in orthogonal spectra, together with its naïve
Z/2-equivariant homotopy type, has already been considered by Kro in [Kro05]. We will
focus on the genuine Z/2-equivariant homotopy type of the dihedral bar construction
Bdi
∧ (A;M).

We now give a homotopical interpretation of the dihedral nerve of a ring spectrum
with anti-involution (A,w). Let NZ/2

e A be the multiplicative norm of the underlying or-
thogonal spectrum A [HHR16]. We recall that this is the ring spectrum A ∧ A with the
componentwise multiplication, and the Z/2-action defined by the flip permutation τ . We
note that NZ/2

e A does not depend on the involution w, but it is isomorphic to the envelop-
ing algebra Ae := A ∧ Aop via the map

1 ∧ w : NZ/2
e A

'=
−→ Ae.

Now let (M, j) be an (A,w)-bimodule. The Z/2-spectrum (M, j) has the structures of a
left and a right Z/2-equivariant NZ/2

e A-module, defined respectively by the maps

N
Z/2
e A ∧M = A ∧ A ∧M

1∧w∧1
−−−−→ A ∧ Aop

∧M
1∧τ
−−→ A ∧M ∧ Aop µ

−→ M

and

M ∧N
Z/2
e A = M ∧ A ∧ A

1∧1∧w
−−−−→ M ∧ A ∧ Aop (τ∧1)◦(1∧τ)

−−−−−−−→ Aop
∧M ∧ A

µ
−→ M.

In particular the (A,w)-bimodule (A,w) becomes a left and a right NZ/2
e A-module.

Proposition 2.11. There is a natural isomorphism of simplicial Z/2-equivariant orthog-
onal spectra

sde Ndi
∧ (A;M)

'= N∧(M,N
Z/2
e A,A)•

between the Segal edgewise subdivision of the dihedral bar construction and the two-
sided bar construction in the category of Z/2-spectra.

Proof. Define for every k ≥ 0 an isomorphism

M ∧ A∧2k+1
→ M ∧ (A ∧ Aop)∧k ∧ A

1∧(1∧w)∧k∧1
−−−−−−−−→ M ∧ (N

Z/2
e A)∧k ∧ A,

where the first map is the permutation

x0 ∧ x1 ∧ · · · ∧ x2k+1 7→ x0 ∧ (x1 ∧ x2k+1) ∧ (x2 ∧ x2k) ∧ · · · ∧ (xk ∧ xk+2) ∧ xk+1.

These maps are Z/2-equivariant isomorphisms and they are compatible with the simpli-
cial structure. ut

Corollary 2.12. Let (A,w) be a flat ring spectrum with anti-involution and (M, j) a flat
(A,w)-bimodule. Then there is a stable equivalence of Z/2-spectra

Bdi
∧ (A;M) ' M ∧

L
N

Z/2
e A

A

where the right-hand term is the derived smash product of left and right NZ/2
e A-modules.

In particular the functor Bdi
∧ preserves stable Z/2-equivalences of flat ring spectra with

anti-involution.
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Proof. Since the unit map S → A is an underlying flat cofibration, it follows from
[Sto11, Theorem 3.4.22-23] and [BDS16, Theorem 3.2.14] that the unit S → N

Z/2
e A

is a Z/2-equivariant flat cofibration. In particular, the spectrum N
Z/2
e A is flat. It follows

that B∧(M,N
Z/2
e A,A) and the derived smash product M ∧L

N
Z/2
e A

A are equivalent: see
Lemma 2.13 below. ut

The following result is classical. In the context of S-modules it is proved in [EKMM97,
Proposition IX.2.3] and for symmetric spectra in [Shi00, Lemma 4.1.9].

Lemma 2.13. Let (C,∧, I) be a cofibrantly generated simplicial monoidal model cate-
gory. Suppose thatR is a monoid object in C such that the unit map I→ R is a cofibration
and R is underlying cofibrant in C. Further, let M be a right R-module and N be a left
R-module and assume that M and N are cofibrant as underlying objects of C. Then
the two-sided bar construction B∧(M,R,N) is weakly equivalent to the derived smash
product M ∧L

R N .

We will need to ensure that the geometric realization of Ndi
∧ (A;M) is homotopically

well-behaved.

Lemma 2.14. Suppose (A,w) and (M, j) are flat. Then the real simplicial spectrum
Ndi
∧ (A;M) is good.

Proof. Since a flat cofibration of orthogonal Z/2-spectra is a levelwise h-cofibration, it
is sufficient to show that the degeneracy maps of the subdivision of Ndi

∧ (A;M) are flat
cofibrations. By the isomorphism of Proposition 2.11 these are the degeneracies

si : M ∧ (N
Z/2
e A)∧k ∧ A→ M ∧ (N

Z/2
e A)∧k+1

∧ A

of the two-sided bar construction, which insert the unit NZ/2
e η : S '= NZ/2

e S → N
Z/2
e A

in the (i + 1)-st component. Since the underlying ring spectrum of A is flat, the unit
η : S → A is automatically a flat cofibration of orthogonal spectra, and thus NZ/2

e η is
a flat cofibration of orthogonal Z/2-spectra. Finally, since (A,w) and (M, j) are flat,
smashing with them preserves flat cofibrations. ut

2.3. Bökstedt’s model of real topological Hochschild homology

Let I be the category of finite sets and injective maps with the Z/2-action ω : I → I

defined in §1.2. The dihedral bar construction of I is the real simplicial category Ndi
• I

with k-simplices
Ndi
k I = I

×k+1

and the standard faces and degeneracy maps of the cyclic bar construction for the sym-
metric monoidal structure (I,+, 0). The real structure on Ndi

• I is defined by the natural
transformation

ωk : I
×k+1

∏
k+1 ω
−−−−→ I×k+1 1×τk

−−−→ I×k+1
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where τk : I×k
→ I×k is induced by the permutation in 6k that reverses the order.

We denote the resulting categories with Z/2-action by I×1+k. We let 1op
o NdiI be

the Grothendieck construction of the real simplicial category Ndi
• I : 1

op
R → Cat (see

[Tho79]). This category inherits an evident Z/2-action from the Z/2-structure of Ndi
• I

(see [DM16, Section 2.5] for the details). We remark that for every integer k ≥ 0 the
inclusion ιk : I×1+k

→ 1op
oNdiI is Z/2-equivariant.

Proposition 2.15. Let X : 1op
o NdiI → Sp be a Z/2-diagram of orthogonal spectra.

Then the collection of Z/2-spectra

THRk(X) = hocolim
I 1+k

ι∗kX,

together with the simplicial structure induced byNdi
• I , define a real simplicial orthogonal

spectrum THR•(X). A natural transformation f : X → Y of Z/2-diagrams 1op
o NdiI

→ Sp induces a natural map of real simplicial orthogonal spectra

f∗ : THR•(X)→ THR•(Y ).

Proof. The spectra THR•(X) admit a simplicial structure by [PS16]. The map induced
by a morphism α : [k] → [l] in 1 is

α∗ : hocolim
I 1+l

ι∗l X
λα
−→ hocolim

I 1+l
α∗ι∗kX

α∗
−→ hocolim

I 1+k
ι∗kX

where α∗ is the pushforward along the functor α : I 1+l
→ I 1+k from the simplicial

structure of Ndi
• I . The first map is the natural transformation λα : X ◦ ιl → X ◦ ιk ◦ α

induced by the morphisms (α, id) : i → αi in 1op
o NdiI , for i ∈ I 1+l. The levelwise

involutions are the maps

wk : hocolim
I 1+k

ι∗kX
w
−→ hocolim

I 1+k
ω∗k ι
∗

kX
(ωk)∗
−−−→ hocolim

I 1+k
ι∗kX

where the first map is induced by the natural transformation w : X → X ◦ ω from
the Z/2-structure of X, and the second map is the pushforward along the involution
ωk : I

1+k
→ I 1+k.

We verify that wkα∗ = ω(α)∗wl , that is, the outer rectangle in the following diagram
commutes:

hocolim
I 1+l

ι∗l X

w

��

λα // hocolim
I 1+l

α∗ι∗kX
α∗ //

w|α

��

hocolim
I 1+k

ι∗kX

w

��

hocolim
I 1+l

ω∗l ι
∗

l X

(ωl)∗

��

λω(α)|ωl // hocolim
I 1+l

ω∗l (ω(α))
∗ι∗kX

α∗ //

(ωl)∗

��

hocolim
I 1+k

ω∗k ι
∗

kX

(ωk)∗

��

hocolim
I 1+l

ι∗l X
λω(α)

// hocolim
I 1+l

ω(α)∗ι∗kX
ω(α)∗ // hocolim

I 1+k
ι∗kX
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The vertical map w|α and the horizontal map α∗, respectively in and out of the central
term, are well-defined since ω∗l (ω(α))

∗
= α∗ω∗k . The upper right and bottom left squares

commute because of the interaction between the push forward maps on homotopy colimits
and the maps induced by natural transformations. The bottom right square commutes
because ωkα = ω(α)ωl as functors I 1+l

→ I 1+k. The upper left square commutes
because X is a Z/2-diagram, and the involution of1op

oNdiI sends the morphism (α, id)
to (ω(α), id). ut

Remark 2.16. The homotopy colimit of Proposition 2.15 is taken in the category of or-
thogonal spectra, and this is computed levelwise as a homotopy colimit of pointed spaces.
In order to use the results of §1.2, which are about the homotopy type of the homotopy col-
imit taken in the category of unpointed spaces, we need to observe that ifX : I → Top∗ is
a Z/2-diagram whereXi is a well-pointed Z/2-space for every i ∈ I , then the comparison
map ∣∣∣ ∐

i∈N•I

Xi0

∣∣∣→ ∣∣∣ ∨
i∈N•I

Xi0

∣∣∣
from the unpointed homotopy colimit to the pointed homotopy colimit is an equivariant
equivalence. Indeed, this map is the cofiber of the h-cofibration |N•I | ↪→ |

∐
i∈N•I

Xi0 |,
and the source is equivariantly contractible since I has a Z/2-fixed initial object. We
will implicitly use the results of §1.2 for the pointed homotopy colimit, under this well-
pointedness assumption.

Example 2.17. Let (A,w) be an orthogonal spectrum with anti-involution and (M, j)
an (A,w)-bimodule. There is a Z/2-diagram�•I (A;M;S) : 1

op
oNdiI → Sp defined on

objects by sending ([k], i) to

�•I (A;M;S)i := �
i0+···+ik (S ∧Mi0 ∧ Ai1 ∧ · · · ∧ Aik )

(see [PS16]). The associated simplicial spectrum is Bökstedt’s model for topological
Hochschild homology [Bök86]. This diagram has a Z/2-structure �•I (A;M;S)i →
�•I (A;M;S)ωk i which postcomposes a loop with the map

Mi0 ∧ Ai1 ∧ · · · ∧ Aik
j∧w∧k

//

,,

Mi0 ∧ Ai1 ∧ · · · ∧ Aik
1∧τk // Mi0 ∧ Aik ∧ · · · ∧ Ai1

τi0∧τik∧···∧τi1

��

Mi0 ∧ Aik ∧ · · · ∧ Ai1

and precomposes it with

Si0 ∧ Si1 ∧ · · · ∧ Sik
1∧τk
−−→ Si0 ∧ Sik ∧ · · · ∧ Si1

τi0∧τik∧···∧τi1
−−−−−−−−−→ Si0 ∧ Sik ∧ · · · ∧ Si1 ,

where τj is the permutation of {1, . . . , j} that reverses the order. The associated real
simplicial spectrum was introduced by Hesselholt and Madsen [HM15, §10].
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Definition 2.18. Let (M, j) be an (A,w)-bimodule. The Bökstedt model of the real topo-
logical Hochschild homology of A with coefficients in M is the geometric realization of
the real simplicial spectrum

THR•(A;M) := THR•�•I (A;M;S),

which we denote by THR(A;M). When A = M we write THR(A) for THR(A;A), or
THR(A,w) if we want to emphasize the anti-involution.

Example 2.19. Let (A,w) be an orthogonal ring spectrum with anti-involution and
(M, j) an (A,w)-bimodule. Consider the Z/2-diagram�•I (A;M; sh) : 1op

oNdiI → Sp
defined by sending ([k], i) to

�•I (A;M; sh)i := �i0+···+ik (shi0 M ∧ shi1 A ∧ · · · ∧ shik A),

where shi X denotes the shifted spectrum, given by the sequence of Z/2-spaces
(shi X)n = Xi+n. This diagram has a Z/2-structure given by postcomposing a loop with
the map

shi0 M ∧ shi1 A ∧ · · · ∧ shik A
j∧w∧k

//

((

shi0 M ∧ shi1 A ∧ · · · ∧ shik A

1∧τk
��

shi0 M ∧ shik A ∧ · · · ∧ shi1 A

τi0∧τik∧···∧τi1
��

shi0 M ∧ shik A ∧ · · · ∧ shi1 A

and precomposing it with

Si0 ∧ Si1 ∧ · · · ∧ Sik
1∧τk
−−→ Si0 ∧ Sik ∧ · · · ∧ Si1

τi0∧τik∧···∧τi1
−−−−−−−−−→ Si0 ∧ Sik ∧ · · · ∧ Si1 .

We will show in Theorem 2.23 that the THR spectrum associated to �•I (A;M; sh) is
equivalent to THR(A;M).

The Bökstedt model THR(A;M) is homotopically better behaved than the dihedral bar
construction Bdi

∧ (A;M), essentially because it incorporates the derived indexed smash
product of Z/2-spectra. We will spend the rest of the section proving the homotopy invari-
ance of this model, as stated in Theorem 2.20 below. Let (M, j) be an (A,w)-module. We
say that the Z/2-spectrum (M, j) is levelwise well-pointed if for every finite-dimensional
Z/2-representation V the pointed Z/2-space MV obtained by evaluating M at V is well-
pointed. We say that (A,w) is levelwise very well-pointed if it is levelwise well-pointed
and if the unit map S0

→ A0 is an h-cofibration of Z/2-spaces.

Theorem 2.20. Let f : (A,w)→ (B, σ ) be a stable Z/2-equivalence of levelwise very
well-pointed ring spectra with anti-involution, and φ : (M, j)→ f ∗(N, l) a stable Z/2-
equivalence of levelwise well-pointed (A,w)-modules. Then the induced map

(f, φ)∗ : THR(A;M)→ THR(B;N)

is a stable equivalence of Z/2-spectra.
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In order to prove this theorem we need to understand the levelwise homotopy type of the
real simplicial spectrum THR•(A;M).

Lemma 2.21. Let (M, j) be a levelwise well-pointed (A,w)-bimodule, and suppose that
(A,w) is levelwise very well-pointed. Then THR•(A;M) is a good real simplicial spec-
trum. Moreover, if (M, j) and (A,w) are flat, then THR•�•I (A;M; sh) is a good real
simplicial spectrum.

Proof. We prove that the composition of degeneracies s2s0 : THR1(A;M) →

THR3(A;M) is a levelwise h-cofibration of Z/2-spectra; the argument for the other de-
generacies is similar. This map can be written, at a Z/2-representation V , as the composite

hocolim
I×I

�i0+i2(SV ∧Mi0 ∧ Ai2)
// hocolim

I×I
�i0+i2(SV ∧Mi0 ∧ A0 ∧ Ai2 ∧ A0)

F∗

��

hocolim
I×I×I×I

�i0+i1+i2+i3(SV ∧Mi0 ∧ Ai1 ∧ Ai2 ∧ Ai3)

where the second map is the pushforward by the functor F : I × I → I × I × I × I

given by F(i0, i2) = (i0, 0, i2, 0), and the first map is induced by smashing with the unit
map S0

→ A0. Since S0
→ A0 is an h-cofibration, the Ai and Mi are well-pointed

Z/2-spaces, and loop spaces preserve h-cofibrations, the map

�i0+i2(SV ∧Mi0 ∧ S
0
∧ Ai2 ∧ S

0)→ �i0+i2(SV ∧Mi0 ∧ A0 ∧ Ai2 ∧ A0)

is a pointwise h-cofibration of Z/2-diagrams. That is, it is an equivariant h-cofibration
with respect to the action of the stabilizer group of the object (i0, i2) ∈ I × I . We show
more generally that if F : A→ B is an equivariant functor which is faithful and injective
on objects, Y : B → Top∗ and X : A→ Top∗ are Z/2-diagrams, and f : X → F ∗Y is a
pointwise h-cofibration of pointwise well-pointed Z/2-diagrams, then the maps∨

a∈NkA

Xa0

∨fao
−−−→

∨
a∈NkA

YF(a0)
F∗
−→

∨
b∈NkB

Yb0

are Reedy cofibrations of simplicial Z/2-spaces. The composite will then induce an h-
cofibration on geometric realizations between the homotopy colimits, concluding the
proof. The Reedy conditions for these maps amount to showing that the maps∨

a∈(NkA)
d

YF(a0) ∨

∨
a∈(NkA)

nd

Xa0

id∨
∨
fa0

−−−−−−→

∨
a∈NkA

YF(a0),∨
b∈(NkB)

nd∪NkF(A)

Yb0 →

∨
b∈NkB

Yb0

are h-cofibrations of Z/2-spaces, where (−)nd and (−)d denote respectively the subsets
of non-degenerate and degenerate simplices. It is easy to verify that the indexed wedge
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∨
a fa0 of pointwise h-cofibrations is an h-cofibration of pointed Z/2-spaces. Thus the

first map is a pointed h-cofibration. The second map is the inclusion of a wedge summand,
and therefore it is also a pointed h-cofibration. Since all the Z/2-spaces involved are well-
pointed, these are also unpointed h-cofibrations.

An analogous argument shows that THR•�•I (A;M; sh) is a good real simplicial spec-
trum. One will need to observe that the shift functor shi preserves flat Z/2-spectra. This
is done in Appendix A.2. ut

The following result describes the levelwise homotopy type of THR•(A;M). It is at the
heart of the proof of the comparison Theorem 2.23 and it is very similar to [ABG+16,
Theorems 3.6 and 4.3]. As we are currently not able to reduce it to these results, we
include a proof, where we use semistability techniques as opposed to Bökstedt’s approx-
imation lemma.

Lemma 2.22. Let (M, j) be a levelwise well-pointed (A,w)-bimodule, and suppose that
(A,w) is levelwise very well-pointed. The functor ι : N → I that sends n to 2n + 1,
composed with the diagonal 1 : I → I×1+k, induces a natural stable equivalence of
Z/2-spectra

hocolim
n∈N

�nρ(1+k)(S ∧Mnρ ∧ A
∧k
nρ )

'
−→ THRk(A;M),

where the involution on k = {1, . . . , k} reverses the order, and ρ is the regular represen-
tation of Z/2.

If (A,w) and (M, j) are moreover flat, the functors ι and 1 also induce a natural
stable equivalence of Z/2-spectra

hocolim
N

�nρ(1+k)(shnρM ∧ (shnρ A)∧k)
'
−→ THRk �•I (A;M; sh).

Proof. The argument is analogous to the one of Theorem 1.13. The first map is the com-
posite of the stabilization with the trivial representation and the map

(1ι)∗ : hocolim
N

�(nρ+1)(1+k)(S ∧Mnρ+1 ∧ A
∧k
nρ+1)→ THRk(A;M).

We show that (1ι)∗ is an equivalence of Z/2-spectra in each simplicial level. Non-
equivariantly it is equivalent to the map

c×k+1
∗ : hocolim

N×1+k
�n(1+k)(S ∧Mn ∧ A

∧k
n )

'
−→ THHk(A;M)

induced by the functor c : N → I of the proof of Proposition 1.14, which is a level
equivalence of spectra because A and M are orthogonal spectra, and hence semistable.
We show that the evaluation of (1ι)∗ at any Z/2-representation V is an equivalence on
fixed points. We treat the case where k = 2q + 1 is odd; the even case is analogous. The
fixed points category of I×1+2q+1 is isomorphic to IZ/2 × I×q × IZ/2, and there is a
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homotopy commutative diagram

hocolimN×q+2 (ι×q+2)∗XZ/2 (ι×1+2q+1)
Z/2
∗ // THR2q+1(A;M)

Z/2
V

hocolimN×q+2 (ι× c×q × ι)∗XZ/2
(ι×c×q×ι)∗

33

'id×λ×q×id

OO

where Xi = �i0+···+i2q+1(SV ∧Mi0 ∧ Ai1 ∧ · · · ∧ Ai2q+1). Here λ : c → ι is the natural
transformation of the proof of Proposition 1.14, which induces an ind-equivalence on the
homotopy colimit systems.

We need to show that (ι × c×q × ι)∗ is an equivalence. We recall from Lemma 1.16
that there are cofinal functors π :MRZ/2

o (I o/ω)→ IZ/2 and γ : N→ I o/ω. Similarly,
there are cofinal functors p :M o (I/ω) → I and d : N → I/ω where I/ω has objects
the injections α : n� N and M = Inj(N,N) acts by postcomposition. The maps p and d
send α to n and n to n ⊂ N, respectively, and they are right homotopy cofinal essentially
by [Shi00, 2.2.9] (or by an argument completely analogous to that for Lemma 1.16).
Therefore we obtain a right homotopy cofinal functor

(π × p×q × π) : G→ IZ/2 × I×q × IZ/2 '= (I×1+2q+1)Z/2

where G = (MRZ/2
× M×q

× MRZ/2) o ((I o/ω) × (I/ω)×q × (I o/ω)) is the
Grothendieck construction with respect to the componentwise action of the product
monoid bZ/2q M := (MRZ/2

×M×q
×MRZ/2). This gives a commutative diagram

hocolim
N×q+2

(ι×c×q×ι)∗XZ/2 (ι×c×q×ι)∗ //

(γ×d×q×γ )∗ '

��

hocolim
IZ/2×I×q×IZ/2

XZ/2

hocolim
(I o/ω)×(I/ω)×q×(I o/ω)

(π×p×q×π)∗XZ/2 // hocolim
G

(π×p×q×π)∗XZ/2

(π×p×q×π)∗'

OO

// B(b
Z/2
q M)'∗

If we can show that bZ/2q M acts by equivalences on hocolimN×q+2(ι× c×q × ι)∗XZ/2, the
Lemma in [Qui73, p. 98] will show that the bottom sequence is a fiber sequence, which
concludes the proof.

We recall that hocolimN×q+2(ι× c×q × ι)∗XZ/2 is the space

hocolim
N×q+2

(
�n0ρ+1+ρ⊗(n1+···+nq )+nq+1ρ+1(SV ∧Mn0ρ+1 ∧ A

∧Z/2
n1 ∧ · · ·

∧ A
∧Z/2
nq ∧ Anq+1ρ+1)

)Z/2
,

and that the monoid bZ/2q M acts componentwise. By a simple induction argument we can
reduce our claim to showing that MRZ/2 and M act trivially on the homotopy groups of
spaces of the form

hocolim
N

(�nρ+1Enρ+1)
Z/2 and hocolim

N
(�nρE

∧Z/2
n )Z/2,
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respectively, where E is an orthogonal Z/2-spectrum. The action on MRZ/2 on the first
space is trivial on homotopy groups by semistability ofE (see [Sch13, 3.4]), and it acts by
loop maps by the argument of Theorem 1.13. We are not quite able to reduce the triviality
of the M-action on the second space to a statement about semistability, so we adapt the
argument of [Sch13, 3.4] to our situation.

The action of an injection f : N → N on the homotopy groups of the second homo-
topy colimit is defined as follows. Let

α : St+nρ → E
∧Z/2
n

be a continuous equivariant map. The restriction of f to the subset n = {1, . . . , n} defines
an inclusion f : n � m for some integer m ≥ n, and thus an equivariant isometric
embedding

(f ⊗ ρ) : nρ → mρ.

This further determines an isomorphism Smρ '= S(m−n)ρ ∧ Snρ . The action of f on the
homotopy class of α is the homotopy class of the map f∗α defined as the composite

f∗α : S
u+mρ

'=
−→ S(m−n)ρ ∧ St+nρ

id∧α
−−−→ S(m−n)ρ ∧ E

∧Z/2
n
'= (S

(m−n)
∧ En)

∧Z/2

σ∧σ
−−→ E

∧Z/2
m

where σ is the structure map of the orthogonal Z/2-spectrum E. Thus we need to show
that f∗α and α are stably homotopic. Let i1 : m → m + m be the standard inclusion, so
that

(i1 ⊗ ρ) : mρ → (m+m)ρ '= mρ ⊕mρ

is the first summand inclusion, and (i1)∗ is suspension by Smρ . By [Sch13, 3.4] we can
choose an automorphism γ of Rm such that γ ◦ f : Rn → Rm is the standard inclusion
j , and i1 ◦ γ and i1 are homotopic isometric embeddings. Then ([−] denotes the stable
homotopy class)

[f∗α] = [(i1)∗f∗α] = [(i1 ◦ f )∗α] = [(i1 ◦ γ ◦ f )∗α] = [(i1 ◦ j)∗α] = [α]

where the third equality holds since if Ht is a one-parameter family of isometric embed-
dings from i1 to i1 ◦ γ , then (Ht )∗ defines an equivariant homotopy. Thus f acts trivially
on the homotopy groups based at the canonical basepoint. Moreover it acts by loop maps,
since the diagram

hocolim
n∈N

�nρ(E
∧Z/2
n )

f ·(−)
//

'

��

f ·(−) ++

hocolim
n∈N

�nρ(E
∧Z/2
n )

hocolim
n≥f (1)

�nρ(E
∧Z/2
n )

'
��

'

OO

� hocolim
n∈N

�σ+(n−1)ρ(E
∧Z/2
n )

�f1·(−) // � hocolim
n≥f (1)

�σ+(n−1)ρ(E
∧Z/2
n )
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commutes, where σ ⊂ ρ is the sign representation, the left vertical map is induced by
the splitting Sρ '= S1

∧ Sσ of the first copy of ρ in nρ, and the lower right verti-
cal map by the same splitting for the copy of ρ in nρ indexed by f (1) ∈ n. The map
f1 : n − 1 → f · n − f (1) is the restriction of f , and f1 · (−) is defined in a manner
completely analogous to f · (−).

The proof for the spectrum THRk �•I (A;M; sh) is analogous. One uses the argu-
ment above to reduce the proof to the triviality of the action of f ∈ MRZ/2 on the
fixed points space of hocolimn∈N�nρ((shn E)∧Z/2)V , for some flat orthogonal Z/2-spec-
trum E. Since E is flat, the canonical map

hocolim
n∈N

�nρ((shn E)∧Z/2)
'
−→ hocolim

n∈N
�nρ shnρ(E∧Z/2)

is an equivalence. Under this equivalence the action of f sends a map α : Snρ →

shnρ(E∧Z/2)V = (E∧Z/2)nρ+V to the composite

f∗α : S
mρ
'=
−→ S(m−n)ρ ∧ Snρ

id∧α
−−−→ S(m−n)ρ ∧ (E∧Z/2)nρ+V → (E∧Z/2)mρ+V

where the last map is the structure map of the orthogonal spectrum E∧Z/2. This is trivial
on homotopy groups by a similar argument. ut

Proof of Theorem 2.20. The real simplicial spectra THR•(A;M) and THR•(B;N) are
good by Lemma 2.21, and it is thus sufficient to show that the map

hocolim
i∈I×1+2k+1

�i0+···+i2k+1(S ∧Mi0 ∧ Ai1 ∧ · · · ∧ Ai2k+1)

→ hocolim
i∈I×1+2k+1

�i0+···+i2k+1(S ∧Ni0 ∧ Bi1 ∧ · · · ∧ Bi2k+1)

is an equivalence for every integer k ≥ 0. This map is naturally equivalent to the map

hocolim
N

�nρ⊗(kρ+2)(S ∧Mnρ ∧ A
∧2k+1
nρ )→ hocolim

N
�nρ⊗(kρ+2)(S ∧Nnρ ∧ B∧2k+1

nρ )

by Lemma 2.22, where the action on 2k+ 1 reverses the order. This is a non-equivariant
weak equivalence by [Shi00, 3.1.2]. We verify that it also induces a weak equivalence on
geometric fixed points. The natural transformation 8Z/2�V → �V

Z/2
8Z/2 is a stable

equivalence of spectra. Moreover, the fixed points of the representation nρ ⊗ (kρ + 2) is

(nρ ⊗ (kρ + 2))Z/2 '= (nkρ ⊗ ρ)Z/2 + (2nρ)Z/2 '= 2nk + 2n = 2n(k + 1).

Thus on geometric fixed points the map above is equivalent to

hocolim
N

�2n(k+2)(S∧MZ/2
nρ ∧A

∧k
2n ∧A

Z/2
nρ )→ hocolim

N
�2n(k+2)(S∧NZ/2

nρ ∧B
∧k
2n ∧B

Z/2
nρ ).
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The diagonal map N→ N×k+2 induces an equivalence between this map and

hocolim
n0,...,nk+1∈N

�n0+2(n1+···+nk)+nk+1(S ∧MZ/2
n0ρ ∧ A2n1 ∧ · · · ∧ A2nk ∧ A

Z/2
nk+1ρ)

��

hocolim
n0,...,nk+1∈N

�n0+2(n1+···+nk)+nk+1(S ∧NZ/2
n0ρ ∧ B2n1 ∧ · · · ∧ B2nk ∧ B

Z/2
nk+1ρ)

A simple inductive argument shows that this map is an equivalence, provided we can
prove that for every well-pointed spaceX and equivalence of levelwise well-pointed Z/2-
spectra A→ B, the maps

hocolim
n∈N

�2n(X ∧ A2n)→ hocolim
n∈N

�2n(X ∧ B2n),

hocolim
n∈N

�n(X ∧ A
Z/2
nρ )→ hocolim

n∈N
�n(X ∧ B

Z/2
nρ )

are equivalences of spaces. The first map is an equivalence because smashing with a well-
pointed space preserves stable equivalences of spectra. The second map is the infinite loop
space of the map of the geometric fixed points of the map of Z/2-spectraX∧A→ X∧B,
and smashing with a well-pointed space preserves stable equivalences of Z/2-spectra. ut

2.4. The comparison of the Bökstedt model and the dihedral bar construction

In this section we will show that the models for real topological Hochschild homology
previously defined in §2 give rise to equivalent Z/2-spectra, under suitable flatness con-
ditions.

Theorem 2.23. Let (A,w) be a flat ring spectrum with anti-involution and (M, j) a flat
(A,w)-bimodule (see Definition 2.6). Then there is a natural zig-zag of stable equiva-
lences of Z/2-spectra

THR(A;M) ' Bdi
∧ (A;M).

Remark 2.24. Given any ring spectrum with anti-involution (A,w) which is levelwise
well-pointed, Theorem 2.23 together with the homotopy invariance of THR of Theorem
2.20 give a stable equivalence of Z/2-spectra

THR(A) ' THR(A[) ' Bdi
∧ (A

[),

where A[
'
−→ A is a flat ring spectrum with anti-involution replacement of (A,w), from

Remark A.3.

Proof of Theorem 2.23. In order to simplify the notation we assume that (M, j) =
(A,w), the proof of the general case is formally identical. For an object i = (i0, . . . , ik)
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of I×1+k we denote by�i := �i0+···+ik the associated loop space. For any integer k ≥ 0,
we consider the zig-zag

A∧1+k
→ (hocolim

I
�i shi A)∧1+k

→ hocolim
I×1+k

�i(shi0 A ∧ · · · ∧ shik A)

hocolim
I×1+k

�i6∞(Ai0 ∧ · · · ∧ Aik )

OO

where the first map is the (1+k)-fold smash power of the map t : A
'
−→ hocolimI �

i shi A.
We observe that even though t is an equivalence by Theorem 1.13, the target of t is in
general not flat, and therefore the map t∧k+1 is not necessarily a weak equivalence. The
second map is the canonical map that commutes the smash product with the homotopy
colimits and the loops. The upward map is induced by the map 6∞(Ai0 ∧ · · · ∧ Aik )→
shi0 A ∧ · · · ∧ shik A which is adjoint to the identity map

Ai0 ∧ · · · ∧ Aik = (shi0 A)0 ∧ · · · ∧ (shik A)0 = (shi0 A ∧ · · · ∧ shik A)0.

The rightmost spectrum is the k-simplices of the Bökstedt model of THR(A;A) from
Example 2.18. The middle spectrum is the k-simplices of the real simplicial spectrum
associated to the functor �•I (A;A; sh) : NdiI → Sp of Example 2.19. The upward map
is induced by a morphism of Z/2-diagrams, and it is therefore a map of real simplicial
spectra. It is immediate to see that the composite of the right-pointing maps is also a map
of real simplicial spectra. Moreover under our flatness assumptions these real simplicial
spectra are good (Lemmas 2.14 and 2.21), and therefore our theorem follows if we can
show that the two maps in the zig-zag above are equivariant weak equivalences for every
fixed simplicial degree k.

The right-pointing map of the zig-zag factors as

A∧1+k //

'

��

hocolim
I×1+k

�i(shi0 A ∧ · · · ∧ shik A)

hocolim
n∈N

�nρ(1+k)(A ∧ Snρ)∧1+k ' // hocolim
n∈N

�nρ(1+k)(shnρ A)∧1+k

' 2.22

OO

where the left vertical map is the canonical equivalence of the loop-suspension adjunction,
and the lower horizontal map is induced by the equivalence of orthogonal spectra c : A∧
Smρ → shmρ A (see [Sch13]). Since both suspensions and shifts preserve flatness (see
Appendix A.2), the (1 + k)-fold smash power c∧1+k is also an equivalence; and the
right vertical map is an equivalence by Lemma 2.22. Thus the top horizontal map is an
equivalence.

The proof that that the upward map of the zig-zag is an equivalence is more involved.
Our strategy consists in replacing the loop spaces �i with the equivalent free spectra Fi .
The advantage of doing this is that Fi commutes strictly with the smash product and pre-
serves flatness. This follows from [Sto11, Section 2.3.3]. The trade-off is that the combi-
nation of Fi and shi is not fully functorial in N, and we need to work in the triangulated
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homotopy category Ho(SpZ/2). We recall that for any Z/2-representation V , the free
spectrum functor FV is the left adjoint of the shift functor shV . The functors �nρ(−) and
Fnρ(−) = Fnρ ∧ − are homotopical, i.e. they preserve Z/2-equivariant stable equiva-
lences. For �nρ(−) this follows from [Sch13, 5.4] and for Fnρ(−) from the facts that
Fnρ is flat and that smashing with flat equivariant spectra is homotopical ([Sch18, Section
III.V] and [BDS16, Proposition 2.10.1]). Hence these functors descend to the homotopy
category

�nρ(−), Fnρ(−) : Ho(SpZ/2)→ Ho(SpZ/2).

The shift shnρ is also homotopical, it descends to an equivalence of categories on the
homotopy category shnρ : Ho(SpZ/2) → Ho(SpZ/2). These observations can be now
used to define a natural transformation ξn : Fnρ(−)→ �nρ(−) in the homotopy category
Ho(SpZ/2). We point out that this natural transformation is not the canonical one which
is adjoint to Fnρ ∧ Snρ ∧ A→ A, but it is defined in the following way. We consider the
map in SpZ/2 defined as the composite of stable equivalences of Z/2-spectra

Fρ(shρ A)
'
−→ A

'
−→ �ρ shρ A.

Since shρ : Ho(SpZ/2) → Ho(SpZ/2) is an equivalence of categories, by precomposing

this map with the inverse (shρ)−1, we get a natural isomorphism ξ = ξ1 : Fρ(−)
'=
−→

�ρ(−) in the homotopy category Ho(SpZ/2). By iterating this process we obtain a natural
isomorphism

ξn : Fnρ(−)
'=
−→ �nρ(−)

of endofunctors of Ho(SpZ/2). We will use this isomorphism to replace�nρ by Fnρ in the
homotopy colimits of our zig-zag.

Next, we recall a way of computing the sequential homotopy colimit in the triangu-
lated homotopy category, from [BN93]. The homotopy colimit of a sequence of maps

X0
α0
−→ X1

α1
−→ X2 → · · ·

in Ho(SpZ/2) is defined by the mapping cone sequence∨
n∈N

Xn
1−α
−−→

∨
n∈N

Xn→ hocolim1

N
X→ 6

∨
n∈N

Xn,

where α sends the wedge summand Xn to the summand Xn+1 via αn. The symbol 1 in
hocolim1

N X suggests that we are using the triangulated structure to define this object. We
note that hocolim1

N X comes with canonical maps ιnXn → hocolim1
N X for every n ≥ 0,

such that the diagrams

Xn
ιn //

αn
))

hocolim1
N X

Xn+1
ιn+1

44
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commute. We also note that hocolim1
N X is a generalization of the classical Bousfield–

Kan construction of the homotopy colimit. If the maps αn are honest maps in SpZ/2, there
is an isomorphism

Xn→ hocolim
N

1X
'=
−→ hocolim

N
X,

where the composite is the canonical map.
Now we go back to the proof of the desired result. We define a commutative diagram

in the homotopy category

hocolim
I×1+k

�i(shi0 A ∧ · · · ∧ shik A) hocolim
I×1+k

�i6∞(Ai0 ∧ · · · ∧ Aik )
oo

hocolim
n∈N

�nρ(1+k)(shnρ A)∧1+k

'=2.22

OO

hocolim
n∈N

�nρ(1+k)6∞A∧1+k
nρ

'=2.22

OO

oo

hocolim
n∈N

1�nρ(1+k)(shnρ A)∧1+k

'=

OO

hocolim
n∈N

1�nρ(1+k)6∞A∧1+k
nρ

'=

OO

oo

hocolim
n∈N

1 Fnρ(1+k)(shnρ A)∧1+k

I
OO

hocolim
n∈N

1 Fnρ(1+k)6
∞A∧1+k

nρ

II
OO

oo

hocolim
n∈N

1 (Fnρ shnρ A)∧1+k

'=

OO

hocolim
n∈N

1 (Fnρ6
∞Anρ)

∧1+k

'=

OO

IIIoo

where the top row is the map of our zig-zag, and the maps labeled I, II and III are iso-
morphisms. The horizontal map in the second row is induced by the canonical map from
suspension spectra to shifts, and therefore the upper square commutes. The middle hor-
izontal arrow is then uniquely defined in the homotopy category Ho(SpZ/2). For conve-
nience let us write l = 1+ k. The source of the map I is defined as the homotopy colimit
of the bottom row of the commutative diagram

A∧l A∧l // �ρl(shρ A)∧l �ρl(shρ A)∧l // �2ρl(sh2ρ A)∧l · · ·
'=oo

A∧l (Fρ(S
ρ
∧A))∧l

'=oo
'= // (Fρ shρ A)∧l

'=

OO

(F2ρ(S
ρ
∧shρ A))∧l

'=oo
'= // (F2ρ sh2ρ A)∧l

'=

OO

· · ·
'=oo

and the map I is induced by the vertical maps, which are the composite of the isomorphism
ξn : Fnρ(−)→ �nρ(−) and of the map that commutes the loops and the smash products.
It is an isomorphism since the composite

(FnρX)
∧l '
← (FnρX)

∧Ll → (�nρX)∧Ll → (�nρX)∧l → �nρl(X∧l)
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is an isomorphism in the homotopy category for any flat X, where ∧Ll denotes the de-
rived indexed smash product. Here we are using the fact that shifts preserve flatness (see
Proposition A.4). Similarly, the map II is induced by the commutative diagram

6∞A∧l0 6∞A∧l0
// �ρl6∞A∧lρ �ρl6∞A∧lρ

// �2ρl6∞A∧l2ρ · · ·
'=oo

6∞A∧l0 (FρS
ρ
∧6∞A0)

∧l
'=oo // (Fρ6

∞Aρ)
∧l

'=

OO

(F2ρS
ρ
∧6∞Aρ)

∧l
'=oo // (F2ρ6

∞A2ρ)
∧l

'=

OO

· · ·
'=oo

and it is an isomorphism on homotopy colimits. This diagram commutes because in the
homotopy category,

6∞X0 // �ρ shρ 6∞X0 // �ρ6∞Xρ

Fρ(S
ρ
∧6∞X0)

OO

// Fρ shρ 6∞X0 //

ξ

OO

Fρ6
∞Xρ

ξ

OO

commutes by construction of ξ . Finally, the two bottom horizontal arrows are uniquely
determined by the fact that the vertical maps are equivalences. It remains to show that III
is an isomorphism. We treat the case l = 1 first. By construction the diagram

hocolim
n∈N

1 Fnρ6
∞Anρ

III // hocolim
n∈N

1 Fnρ shnρ A
'= // A

Fnρ6
∞Anρ

c //

OO

Fnρ shnρ A

OO

'=

66

commutes in the homotopy category for all n ≥ 0, where c is the canonical map from the
suspension to the shift, and the diagonal morphism is induced by the canonical equiva-
lence of flat equivariant spectra Fnρ shnρ A→ A. We recall that on equivariant homotopy
groups there is an isomorphism π

(−)
∗ (hocolim1

N X)
'= colimN π

(−)
∗ X. Under this isomor-

phism the composite

hocolim
n∈N

1 Fnρ6
∞Anρ

III
−→ hocolim

n∈N
1 Fnρ shnρ A

'=
−→ A

is the canonical homotopy presentation of A (see [HHR16, B.4.3]), which is an isomor-
phism. For l ≥ 1, the composite

(hocolim
n∈N

1 Fnρ6
∞Anρ)

∧l '= hocolim
n∈N

1 (Fnρ6
∞Anρ)

∧l

III
−→ hocolim

n∈N
1 (Fnρ shnρ A)∧l

'=
−→ A∧l

is the l-fold smash power of the canonical presentation. Since A and Fnρ6∞Anρ are flat,
this is an equivalence. ut
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2.5. The geometric fixed points of THR

The main tool used in the calculations of §5 is a formula for the geometric fixed points of
THR. Given a Z/2-spectrum X, we let 8Z/2X denote its derived geometric fixed points
spectrum. If (A,w) is a flat ring spectrum with anti-involution and (M, j) is a flat (A,w)-
bimodule, we want a model for 8Z/2M which has the structure of an A-module. For
concreteness, we define

8Z/2M := 8Z/2
M (Mc),

where Mc is a cofibrant replacement of M as a right NZ/2
e A-module for the module

structure of §2.2, and 8Z/2
M denotes the Mandell–May monoidal geometric fixed points

[MM02, Section V.4] (see also [HHR16, Appendix B]). Then the spectrum 8Z/2M is a
right A-module via the map

8
Z/2
M (Mc) ∧ A '= 8

Z/2
M (Mc) ∧8

Z/2
M (N

Z/2
e A)→ 8

Z/2
M (Mc

∧N
Z/2
e A)→ 8

Z/2
M (Mc),

where the isomorphism is given by the diagonal map A → 8
Z/2
M (N

Z/2
e A) of [HHR16,

Proposition B.209] (see [BDS16, Theorem 3.2.16], [Sto11, Proposition 3.4.28] for this
result for flat objects). The last map is the geometric fixed points of the module struc-
ture. Similarly, 8Z/2

M (Ac) is a left A-module, where Ac is a cofibrant replacement in the

category of left NZ/2
e A-modules.

Remark 2.25. The spectrum8
Z/2
M (Mc) is a model for the derived geometric fixed points

spectrum of M . It is therefore fully homotopical and agrees up to equivalence with the
geometric fixed points spectra of [LMSM86] and [Sch13]. To see this, let C

'
−→ N

Z/2
e A

be a cofibrant replacement ofNZ/2
e A in the model category of Z/2-equivariant associative

algebras [MM02, III.7]. Then C is cofibrant as a Z/2-spectrum, and the induced map

8
Z/2
M (C)

'
−→ 8

Z/2
M (N

Z/2
e A)

is a weak equivalence of associative ring spectra. This uses the fact that NZ/2
e A is built

out of induced regular cells in the sense of [BDS16, Theorem 3.2.14] and [Sto11, Propo-
sition 3.4.25]. It follows from this equivalence and [BM15, A.1 Lemma] that 8Z/2

M (Mc)

is equivalent to the derived geometric fixed points of M , by considering Mc as a retract
of a cellular NZ/2

e A-module. Similarly, 8Z/2
M (Ac) computes the derived geometric fixed

points of A.

Theorem 2.26. Let (A,w) be a flat ring spectrum with anti-involution and (M, j) a flat
(A,w)-bimodule. Then there is a natural zig-zag of stable equivalences

8Z/2 THR(A;M) ' 8Z/2M ∧L
A 8Z/2A.

Proof. By Theorem 2.23 and Corollary 2.12 we need to compute the geometric fixed
points

8Z/2(M ∧L
N

Z/2
e A

A).
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Let Mc and Ac denote cofibrant replacements of M and A, as right and left NZ/2
e A-

modules, respectively. Then the derived smash product M ∧L
N

Z/2
e A

A is modeled by

Mc
∧
N

Z/2
e A

Ac.

Now we consider Mc and Ac as right and left C-modules respectively, via the cofibrant
replacement map C

'
−→ N

Z/2
e A. Let Mc and Ac denote the cofibrant replacements of Mc

and Ac as C-modules. Then Lemma 2.13 implies that there is a natural stable equivalence
of Z/2-spectra

Mc
∧
N

Z/2
e A

Ac ' Mc ∧C Ac.

Since Mc ∧C Ac is cofibrant as a Z/2-spectrum, we have equivalences

8Z/2(M ∧L
N

Z/2
e A

A) ' 8
Z/2
M (Mc ∧C Ac).

For the right-hand term we have an equivalence

8
Z/2
M (Mc ∧C Ac) '= 8

Z/2
M (Mc) ∧

8
Z/2
M (C)

8
Z/2
M (Ac)

'
−→ 8

Z/2
M (Mc) ∧A 8

Z/2
M (Ac) = 8Z/2M ∧A 8

Z/2A,

where the isomorphism is from the proof of [HHR16, Proposition B.203]. Indeed, the
maps 8Z/2

M (Mc)→ 8
Z/2
M (Mc) and 8Z/2

M (Ac)→ 8
Z/2
M (Ac) are equivalences by Remark

2.25. Now the map above can be seen to be an equivalence by comparing the bar con-
structions for the smash products, and by using Lemma 2.13 since all the Z/2-spectra
involved are flat. ut

Remark 2.27. The proof above shows that the spectrum 8
Z/2
M (Mc

∧
N

Z/2
e A

Ac) has the
correct homotopy type. More precisely, there is a commutative diagram

8
Z/2
M (Mc) ∧

8
Z/2
M (C)

8
Z/2
M (Ac)

' //

'=

��

8
Z/2
M (Mc) ∧A 8

Z/2
M (Ac)

'=

��

8
Z/2
M (Mc ∧C Ac) // 8

Z/2
M (Mc

∧
N

Z/2
e A

Ac)

where the vertical maps are isomorphisms by [HHR16, Proposition B.203] and [BDS16,
Theorem 3.2.16]. It follows that the bottom horizontal map is an equivalence. Since
Mc∧C Ac is a cofibrant replacement ofMc

∧
N

Z/2
e A

Ac as a Z/2-spectrum, this shows that
8

Z/2
M (Mc

∧
N

Z/2
e A

Ac) computes the derived geometric fixed points of Mc
∧
N

Z/2
e A

Ac.

Corollary 2.28. Let (A,w) be a flat ring spectrum with anti-involution and (M, j) a flat
(A,w)-bimodule. Suppose that the underlying Z/2-spectrum of (A,w) is a module over
HZ[1/2], where Z[1/2] has the trivial involution. Then the geometric fixed points spec-
trum8Z/2 THR(A;M) is contractible. This is for example the case when A = HR is the
Eilenberg–MacLane spectrum of a discrete ring with anti-involution, with 1/2 ∈ R.
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Proof. Since (A,w) is a module over HZ[1/2], the geometric fixed points 8Z/2A are
a module over 8Z/2HZ[1/2], which is contractible. It follows that 8Z/2A is also con-
tractible. Now the geometric fixed point formula of Theorem 2.26 gives a stable equiva-
lence

8Z/2 THR(A;M) ' 8Z/2M ∧L
A 8Z/2A,

and the smash factor on the right-hand side is contractible. ut

3. THR of Wall antistructures and categories with duality

A more general input for real K-theory than a ring with anti-involution is a Wall anti-
structure [Wal70]. This structure allows one to “twist” Hermitian forms by a unit in the
underlying ring. We present a variation of our construction of THR which accepts this
more general input.

3.1. Categories with duality

Let C be a category enriched with orthogonal spectra. We recall that a duality on C is
an enriched functor D : C op

→ C together with a natural isomorphism η : id → D2

such that D(ηc)ηDc = id. We say that the duality is strict if η is the identity natural
transformation.

Definition 3.1. Let (C ,D, η) be a spectral category with duality. A (C ,D, η)-bimodule
is a functor M : C op

∧C → Sp with an enriched natural transformation J : M (c, d)→

M (Dd,Dc) such that

M (c, d)
J //

η◦(−)

��

M (Dd,Dc)

J

��

M (c,D2d)
(−)◦η−1

//M (D2c,D2d)

commutes. We observe that if the duality on C is strict, then J 2
= id.

We remark that the mapping spectra of the form C (Dc, c), as well as the spectra
M (c,Dc), inherit strict Z/2-actions defined by the maps

C (Dc, c)
D
−→ C (Dc,D2c)

η−1
◦(−)

−−−−−→ C (Dc, c),

M (c,Dc)
J
−→M (D2c,Dc)

η∗

−→M (c,Dc).

The construction of THR we will propose depends on the genuine equivariant homotopy
types of these spectra.
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Example 3.2. (i) A spectral category with duality with one object is a triple (A,w, ε)
consisting of an orthogonal ring spectrumA, a unit ε ∈ A×0 , and a morphism of orthogonal
ring spectra w : Aop

→ A such that w2(a) = εaε−1 and w(ε) = ε−1. The Eilenberg–
MacLane construction of a Wall antistructure as defined in [Wal70], or of a simplicial ring
with involution as in [BF84], provides such an object. We will therefore call a spectral
category with duality with one object a spectral antistructure.

An example of interest of a spectral antistructure that does not arise as an Eilenberg–
MacLane construction is the spherical group ring. IfG is a well-pointed topological group
and ε an element in the center of G, the triple (S ∧G+, w, ε) is a spectral antistructure,
where w is induced by inversion in G.

(ii) Let R be a discrete ring. A wall antistructure (R,w, ε) defines a duality on the
category PR of finitely generated projective right R-modules. It is defined on objects by
the abelian group of morphisms of R-module maps

DP := homR(P,R),

where R is a right R-module by ar = w(r)εa, and R acts on DP by pointwise right
multiplication on R. There is an isomorphism η : P → D2P that sends p to the map
that sends λ : P → R to w(λ(p))ε. This is a linear category with duality in the sense
of [Sch10], and applying the Eilenberg–MacLane construction on the abelian groups of
morphisms gives rise to a spectral category with duality.

Remark 3.3. One may wish to consider a framework where the spectral category C has
a notion of weak equivalence as in [BM12], and where the map η is required only to
be a weak equivalence. The construction of this section require η to be invertible, but
an extension of our constructions to an appropriate context with weak equivalences is
suggested in Remark 3.15.

There is a variation of the Segal edgewise subdivision of the spectrally enriched cyclic
nerve Ncy

∧ (C ;M ) which supports a strict Z/2-action. Namely, we define a simplicial
spectrum with k-simplices∨

(c0,...,c2k+1)

M (c0,Dc2k+1) ∧ C (c1, c0) ∧ · · · ∧ C (ck, ck−1)

∧ C (Dck+1, ck) ∧ C (Dck+2,Dck+1) ∧ · · · ∧ C (Dc2k+1,Dc2k)

and the standard simplicial structure of the Segal edgewise subdivision of Ncy
∧ (C ;M ).

Since the wedge summands are reindexed from the usual summands of the cyclic nerve
via an equivalence of categories, it easy to see that this simplicial spectrum is equivalent
to the Segal edgewise subdivision of Ncy

∧ (C ;M ). By abuse of notation we represent an
element of the cyclic nerve as a string of composable arrows

(m, f ) =(
Dc2k+1

m
←− c0

f1
←− c1 ← · · · ← ck

fk+1
←−− Dck+1

fk+2
←−− Dck+2 ← · · ·

f2k+1
←−−− Dc2k+1

)
.

(1)
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The simplicial spectrum above has a simplicial involution, which is defined by sending
the (c0, . . . , c2k+1)-summand to the (c2k+1, . . . , c0)-summand via the map which sends
(m, f ) to

Dc0 c2k+1
J (m)η
oo c2k

η−1D(f2k+1)η
oo · · ·oo ck+1

η−1D(fk+2)η
oo

Dc0
Df1 // Dc1

Df2 // · · · // Dck−1
Dfk // Dck

η−1D(fk+1)

OO

Definition 3.4. The resulting Z/2-spectrum is called the dihedral bar construction of
(C ,D, η) with coefficients in (M, J ). It is denoted Bdi

∧ (C ;M , η), or by Bdi
∧ (C , η) when

(M , J ) = (HomC (−,−),D). We will write Bdi
∧ (A,w, ε) for the dihedral bar construc-

tion of a spectral antistructure (A,w, ε).

Similarly, the variation of the diagram I×2k+2
→ Sp that defines the Bökstedt model

�i0+···+i2k+1
∨

c0,...,c2k+1∈Ob C

S∧M (c0,Dc2k+1)i0∧C (c1, c0)i1∧· · ·∧C (Dc2k+1,Dc2k)i2k+1

from [DM96] admits an analogous Z/2-structure. It is defined by replacing the map
Mi0 ∧ Ai1 ∧ · · · ∧ Ai2k+1 → Mi0 ∧ Ai2k+1 ∧ · · · ∧ Ai1 of Example 2.17 with the map

M (c0,Dc2k+1)i0 ∧ C (c1, c0)i1 ∧ · · · ∧ C (Dc2k+1,Dc2k)i2k+1

��

M (c2k+1,Dc0)i2k+1 ∧ C (c2k, c2k+1)i2k ∧ · · · ∧ C (Dc0,Dc1)i0

that sends m ∧ f1 ∧ · · · ∧ f2k+1 to

J (m)η ∧ η−1D(f2k+1)η ∧ · · · ∧ η
−1D(fk+2)η ∧ η

−1D(fk+1) ∧D(fk) ∧ · · · ∧D(f1).

Definition 3.5. The resultingZ/2-spectrum is denoted by THR(C , η;M ), or THR(C , η)
if (M , J ) = (HomC (−,−),D). We will write THR(A,w, ε) in the case of a spectral
antistructure (A,w, ε).

Definition 3.6. We say that a spectral category with duality (C ,D, η) is flat if the map-
ping spectra are flat and the mapping spectra of the form C (c,Dc) are flat as orthogonal
Z/2-spectra for every object c in C , with respect to the involutions defined after Defini-
tion 3.1. Similarly, a (C ,D, η)-bimodule (M , J ) is flat if it takes values in flat orthogonal
spectra and the orthogonal Z/2-spectra M (c,Dc) are flat.

The proof of Theorem 2.23 can be adapted to the categorical framework, giving the fol-
lowing.

Theorem 3.7. Let (M , J ) be a flat bimodule over a flat spectral category with duality
(C ,D, η). Then there is a zig-zag of stable equivalences of Z/2-spectra

THR(C , η;M ) ' Bdi
∧ (C , η;M ). ut
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Corollary 3.8. Under the assumptions of Theorem 3.7, 8Z/2 THR(C , η;M ) is equiva-
lent to the geometric realization of the simplicial spectrum∨
c0,...,ck∈Ob C

8Z/2(M (c0,Dc0)) ∧ C (c1, c0) ∧ · · · ∧ C (ck, ck−1) ∧8
Z/2(C (Dck, ck)).

The first and last face maps are induced by maps 8Z/2(M (c,Dc)) ∧ C (d, c) →
8Z/2(M (d,Dd)) and C (c, d)∧8Z/2(C (Dc, c))→ 8Z/2(C (Dd, d)) defined in a man-
ner analogous to 2.26.

Proof. By Theorem 3.7 the geometric fixed point spectrum of THR(C ;M ) is equiva-
lent to the geometric fixed points of the realization of the Segal edgewise subdivision of
Ndi
∧ (C ;M ). Since the geometric fixed points functor commutes with realizations, this is

the geometric realization of a simplicial spectrum with k-simplices

8Z/2
( ∨
c0,...,c2k+1∈Ob C

M (c0, c2k+1) ∧ C (c1, c0) ∧ · · · ∧ C (c2k+1, c2k)
)
.

The geometric fixed points commute with indexed coproducts, in the sense that
8G(

∨
i∈I Xi) '

∨
i∈IG 8

G(Xi) for every finite G-set I and I -indexed family {Xi} of
spectra. Thus the spectrum above is equivalent to∨

8Z/2(M (c0,Dc0) ∧ C (c1, c0) ∧ · · · ∧ C (ck, ck−1)

∧ C (Dck, ck) ∧ C (Dck−1,Dck) ∧ · · · ∧ C (Dc0,Dc1)
)
,

where the wedge runs through the collections of objects c0, . . . , ck ∈ Ob C . The action
on the smash product is indexed over the involution on {1, . . . , 2k+1} which reverses the
order, which has a unique fixed point k + 1. Thus the spectrum above is equivalent to∨
c0,...,ck∈Ob C

8Z/2(M (c0,Dc0))∧C (c1, c0)∧· · ·∧C (ck, ck−1)∧8
Z/2(C (Dck, ck)). ut

3.2. Functoriality of THR

We will explain the functoriality of the THR construction for categories with duality, and
determine which natural transformations induce equivariant homotopies on THR.

Definition 3.9 ([Sch10, 3.2]). A morphism of spectral categories with non-strict duality
is a pair (F, ξ) : (C ,D, η)→ (C ′,D′, η′) of a spectrally enriched functor F : C → C ′

and a natural isomorphism ξ : FD→ D′F such that

F(c)
F(ηc) //

η′
F(c)

��

FD2(c)

ξDc

��

(D′)2F(c)
D′ξc // D′FD(c)

commutes for every object c of C .
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A morphism (F, ξ) : (C ,D, η) → (C ′,D′, η′) induces a map of Z/2-spectra on THR
and on the dihedral nerves. It sends a string of arrows (m, f ) as in (1) to

D′Fc2k+1
ξF (m)
←−−− Fc0

F(f1)
←−−− · · ·

F(fk)
←−−− Fck

F (fk+1)ξ
−1

←−−−−−−− D′Fck+1
ξF (fk+2)ξ

−1

←−−−−−−− · · ·
ξF (f2k+1)ξ

−1

←−−−−−−−− D′Fc2k+1.

Definition 3.10. Let (F, ξ), (G, χ) : (C ,D, η) → (C ′,D′, η′) be two morphisms of
spectral categories with non-strict duality. Given a natural transformation U : F → G

we let U : G→ F be the natural transformation defined as the composite

U : G(c)
G(ηc)
−−−→ G(D2c)

χDc
−−→ D′GD(c)

D′UDc
−−−−→ D′FD(c)

ξ−1
Dc
−−→ FD2(c)

F(η−1
c )

−−−−→ F(c).

We say that a natural isomorphism U : F → G is equivariant if U = U−1.

Proposition 3.11. Let (F, ξ), (G, χ) : (C ,D, η) → (C ′,D′, η′) be two morphisms of
spectral categories with non-strict duality, and U : F → G an equivariant natural iso-
morphism. Then the induced morphisms

F∗,G∗ : THR(C , η)→ THR(C ′, η′) and F∗,G∗ : B
di
∧ (C , η)→ Bdi

∧ (C
′, η′)

are equivariantly homotopic.

Proof. We prove the proposition for the dihedral nerve; the argument for THR is anal-
ogous. We show that the Segal edgewise subdivisions of F∗ and G∗ are simplicially
equivariantly homotopic. We define a simplicial homotopy in degree k by sending
((m, f ), σ ∈ 11

k) to F∗(m, f ) if σ = 0, to G∗(m, f ) if σ = 1, and to the string of
morphisms

D′Fc2k+1 Fc0
ξF (m)
oo Fc1

F(f1)oo · · ·
F(f2)oo Fcnσ−1

F(fnσ−1)
oo

Gck
G(fk) // Gck−1 // · · · //// Gcnσ+1

G(fnσ+1)
// Gcnσ

UG(fnσ )

OO

D′Gck+1

G(fk+1)χ
−1

OO

D′Gck+2
χG(fk+2)χ

−1
oo · · ·oo D′Gc2k+1−nσ

oo

D′Fc2k+1
χF(f2k+1)χ

−1
// · · · // D′Fc2k+3−nσ

χF(f2k+3−nσ )χ
−1

// D′Fc2k+2−nσ

χG(f2k+2−nσ )χ
−1D′U

OO

otherwise, where 0 < nσ < k+ 1 is the cardinality of the preimage of 0 of σ : [k] → [1].
ut

Remark 3.12. It is possible to have homotopies on THR induced by natural transfor-
mations which are not isomorphisms, if one is willing to work with non-unital functors.
Namely, a functor (F, ξ) : (C ,D, η)→ (C ′,D′, η′) which does not preserve the identi-
ties still induces a morphism of semisimplicial objects on the dihedral nerve and THR•,
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and therefore a map of Z/2-spectra on thick realizations. If the categories are flat this is
equivalent to the thin realization. Given a natural transformationU : F → G, one requires
that the diagrams

F(c)

F(f )

��

Uc // G(c)

U c
��

F(d) F (c)
F(f )
oo

G(c)

G(f )

��

G(f )
// G(d)

Ud
��

G(d) F (d)
Udoo

commute for every morphism f : c → d in C . Then a formula similar to the one of the
proof of Proposition 3.11 defines a semisimplicial homotopy between the maps induced
by F and G. We will find ourselves in a similar situation in the proof of the cofinality
Theorem 4.6.

3.3. Strictification of the duality

A spectral category with non-strict duality (C ,D, η) can be replaced with an equivalent
spectral category with strict duality (DC ,D). We finish the section with a comparison of
the corresponding real topological Hochschild homologies.

The spectral category DC has objects the triples (c, d, φ) where c and d are objects
of C and φ : d → Dc is an isomorphism in the underlying morphism set C (d,Dc)0. The
spectrum of morphisms from (c, d, φ) to (c′, d ′, φ′) is defined as the pullback

DC ((c, d, φ), (c′, d ′, φ′)) //

��

C (c, c′)

D(−)◦φ′

��

C (d ′, d)
'=

φ◦(−)
// C (d ′,Dc)

The strict duality is the enriched functor that sends an object (c, d, φ) to (d, c,Dφ ◦ ηc),
and a morphism (f, g) to (g, f ). The projection onto the first coordinate defines an en-
riched equivalence DC → C . In particular the corresponding topological Hochschild
homologies and cyclic nerves are equivalent.

Corollary 3.13. Let (C ,D, η) be a spectral category with non-strict duality. There are
natural stable equivalences of Z/2-spectra

THR(C , η) ' THR(DC , id) and Bdi
∧ (C , η) ' B

di
∧ (DC , id).

Proof. We prove the claim for the dihedral bar construction. The functor p : DC → C
can be lifted to a morphism of categories with duality, by the natural isomorphism

ξ = φ : pD(c, d, φ) = d → Dc.

The functor p has an inverse s : C → DC that sends c to (c,Dc, idDc) and a morphism
f to (f,Df ). Moreover s admits a natural isomorphism

χ = (idDc, η) : sDc = (Dc,D2c, idD2c)→ Dsc = (Dc, c, η)
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which defines a morphism of categories with duality. Clearly ps is the identity, and there
is a natural isomorphism

U = (idc, φ) : sp(c, d, φ) = (c,Dc, idDc)→ (c, d, φ).

By Proposition3.11 it suffices to verify that U is equivariant. The natural transformation
U : id→ sp is the composite

U : (c, d, φ)
DUD=(Dφ◦η,idd )
−−−−−−−−−−→ (Dd, d, ηd)

((Dφ◦η)−1,φ−1)
−−−−−−−−−→ (c,Dc, idDc)

and therefore U = U−1. ut

Remark 3.14. Let (R,w, ε) be a Wall antistructure and C = HPR the Eilenberg–
MacLane construction of the linear category PR of finitely generated projective R-
modules, with the duality discussed in Example 3.2. The spectrum THR(DHPR, id)
is the natural recipient of a trace map from the real K-theory spectrum KR(R,w, ε)
([Dot12], [HM15]). On the other hand by Morita invariance the Z/2-spectra
THR(HPR, η) and THR(HR,w, ε) are equivalent (see Theorem 4.9). Combined with
Corollary 3.13, this produces a natural map

tr : KR(R,w, ε)→ THR(HR,w, ε)

in the homotopy category of Z/2-spectra.

Remark 3.15. The construction DC makes sense also when the map η : id → D2 is
required only to be a weak equivalence instead of an isomorphism. The cyclic nerve
N

cy
∧ C and THH(C ) themselves do not support a strict involution in this case, since our

definition of involution requires inverting η. In this case one should take Ndi
∧ (DC , id), or

the equivalent THR(DC , id), as models for real topological Hochschild homology.

4. Fundamental properties of THR

4.1. Multiplicative structures

Let (A,w) and (B, σ ) be two ring spectra with anti-involution. The smash product A∧B
is canonically a ring spectrum, and the map w ∧ σ defines an anti-involution on A ∧ B.
This makes the category of ring spectra with anti-involution into a symmetric monoidal
category. We observe that there is a natural isomorphism

Bdi(A ∧ B,w ∧ σ) '= B
di(A,w) ∧ Bdi(B, σ ),

induced by the levelwise shuffling of the smash factors

(A ∧ B)∧1+k '= A∧1+k
∧ B∧1+k

and by commuting the smash product with the geometric realizations. This isomorphism
makesBdi into a symmetric monoidal functor from the category of orthogonal ring spectra
with anti-involution to the category of orthogonal Z/2-spectra.

If the underlying ring spectrum A is commutative, the map w is simply a multiplica-
tive involution on A, and (A,w) is a commutative orthogonal Z/2-ring spectrum.
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Proposition 4.1. Let (A,w) be a commutative orthogonal Z/2-ring spectrum. Then
Bdi(A,w) is a commutative augmented A-algebra in the category of orthogonal Z/2-
spectra.

Proof. A commutative orthogonal Z/2-ring spectrum (A,w) defines a commutative
monoid object in the category of ring spectra with anti-involution. Since Bdi is a sym-
metric monoidal functor it follows that Bdi(A,w) is a commutative orthogonal Z/2-ring
spectrum.

The algebra structure is induced by the inclusion of the zero-simplices A →
Bdi(A,w), which is a monoidal natural transformation. The augmentation map
Bdi(A,w) → A is the geometric realization of the map of real simplicial spectra de-
fined levelwise by the iterated multiplication µ : A∧1+k

→ A. ut

There is a similar lax monoidal structure on the Bökstedt model THR defined in [HM97,
1.7.1], which we recall below. We prove in Theorem 4.4 below that the comparison of
Theorem 2.23 is in fact lax monoidal (see Remark 4.3 for a remark about the commutative
structures). The natural transformation THR(A,w)∧THR(B, σ )→ THR(A∧B,w∧σ)
is obtained by geometrically realizing the maps of Z/2-spectra(

hocolim
I×1+k

�i(S ∧ Ai0 ∧ · · · ∧ Aik )
)
∧

(
hocolim
I×1+k

�j (S ∧ Bj0 ∧ · · · ∧ Bjk )
)

'=

��

hocolim
I×1+k×I 1+k

(�i(S ∧ Ai0 ∧ · · · ∧ Aik )) ∧ (�
j (S ∧ Bj0 ∧ · · · ∧ Bjk ))

��

hocolim
I×1+k×I 1+k

�i+j ((S ∧ Ai0 ∧ · · · ∧ Aik ) ∧ (S ∧ Bj0 ∧ · · · ∧ Bjk ))

'=

��

hocolim
I×1+k×I 1+k

�i+j (S ∧ Ai0 ∧ Bj0 ∧ · · · ∧ Aik ∧ Bjk )

��

hocolim
I×1+k×I 1+k

�i+j (S ∧ (A ∧ B)i0+j0 ∧ · · · ∧ (A ∧ B)ik+jk )

+∗

��

hocolim
I 1+k

�l(S ∧ (A ∧ B)l0 ∧ · · · ∧ (A ∧ B)lk ) (2)

where the isomorphisms are the canonical ones. The first non-isomorphism commutes
smash products and loops and the second is the canonical bimorphism of the smash prod-
uct of orthogonal spectra. The map labeled +∗ is the pushforward on homotopy colimits
induced by the addition functor +: I × I → I . It is immediate to verify that this natu-
ral transformation is equivariant for the Z/2-action on THR (cf. the proof of Proposition
1.11). Thus this natural transformation makes THR into a lax monoidal functor from or-
thogonal ring spectra with anti-involution to orthogonal Z/2-spectra.
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Corollary 4.2. Let (A,w) be a commutative orthogonal Z/2-ring spectrum. Then
THR(A,w) is an associative Z/2-equivariant ring spectrum. ut

Remark 4.3. The transformation THR(A,w) ∧ THR(B, σ )→ THR(A ∧ B,w ∧ σ) is
lax monoidal, but it is not symmetric. The problem can be traced back to the fact that the
monoidal structure +: I × I → I is not strictly symmetric. Nevertheless, THH(A) has
an E∞-structure when A is commutative (see [HM97, 1.7.1]). A comparison of the E∞-
structures on THH(A) and of an infinity-categorical version of the cyclic bar construction
BcyA is carried out in [NS18].

In our equivariant context, the dihedral bar construction Bdi(A,w) is strictly com-
mutative, hence it admits an action of the Z/2-equivariant E∞-operad. We believe that
THR(A,w) also admits such an action, and we leave the comparison of these two struc-
tures as an open question. In the following result we prove that the comparison of The-
orem2.23 holds as associative monoids. We see this result as allowing a transition from
the Bökstedt model to the more manageable dihedral bar construction, and we will only
make use of the commutative structure on the latter.

Theorem 4.4. The equivalence of Theorem 2.23 is lax monoidal. In particular if (A,w)
is a commutative flat orthogonal Z/2-ring spectrum, then THR(A,w) and Bdi(A,w) are
equivalent as associative orthogonal Z/2-ring spectra.

Proof. We need to show that the middle functor of the zig-zag

A∧1+k
→ hocolim

I×1+k
�i(shi0 A ∧ · · · ∧ shik A)← hocolim

I×1+k
�i(S ∧ Ai0 ∧ · · · ∧ Aik )

from Theorem 2.23 admits a lax monoidal structure, and that the maps are monoidal. The
lax monoidal structure is defined by a sequence of maps analogous to the one of THR
from diagram (2), except that the fourth map is replaced with the one induced by the
maps

(shi A) ∧ (shj B)→ shi+j (A ∧ B).

These are the maps which correspond to the bimorphism

(shi A)n ∧ (shj B)m = Ai+n ∧ Bj+m

→ (A ∧ B)i+n+j+m '= (A ∧ B)i+j+n+m = (shi+j (A ∧ B))n+m,

where the isomorphism is induced by the block permutation that shuffles j and n.
The multiplicativity of the left-pointing map can be easily reduced to the commuta-

tivity of the square

(shi A) ∧ (shj B)

��

S ∧ Ai ∧ Bjoo

��

shi+j (A ∧ B) S ∧ (A ∧ B)i+joo
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The horizontal maps are adjoint to the maps Ai ∧ Bj = (shi A)0 ∧ (shj A)0 = (shi A ∧
shj B)0, and therefore this square commutes because the square

(shi A ∧ shj B)0

��

(shi A)0 ∧ (shj A)0 Ai ∧ Bj

��

(shi+j (A ∧ B))0 (A ∧ B)i+j

commutes.
The right-pointing map is the canonical map induced by the inclusion of the object

i = (0, . . . , 0) into I×1+k. To show that this map is multiplicative we need to show that
the diagram

A∧1+k
∧ B∧1+k //

'=
��

hocolim
I×1+k×I 1+k

�i+j (shi0 A ∧ · · · ∧ shik A ∧ shj0 B ∧ · · · ∧ shjk B)
'=
��

(A ∧ B)∧1+k //

##

hocolim
I×1+k×I 1+k

�i+j (shi0 A ∧ shj0 B ∧ · · · ∧ shik A ∧ shjk B)

��

hocolim
I×1+k×I 1+k

�i+j (shi0+j0(A ∧ B) ∧ · · · ∧ shik+jk (A ∧ B))

+∗
��

hocolim
I 1+k

�l(shl0(A ∧ B) ∧ · · · ∧ shlk (A ∧ B))

commutes. This is clear since all the non-vertical maps are the inclusion of the objects
i = j = (0, . . . , 0) and the two lowest vertical maps are the identity on these objects. ut

Let (A,w) be a commutative orthogonal Z/2-ring spectrum. ThenA is an algebra over the
norm N

Z/2
e A in orthogonal Z/2-spectra (see §2.2), and it can be replaced by a cofibrant

associative NZ/2
e A-algebra Ac. Thus the derived smash product

A ∧L
N

Z/2
e A

A := Ac ∧
N

Z/2
e A

Ac

has the structure of an associative Z/2-equivariant ring spectrum. Similarly, the geo-
metric fixed points spectrum 8

Z/2
M Ac is a 8Z/2

M N
Z/2
e A-algebra, and if A is flat then

8
Z/2
M N

Z/2
e A '= A. Thus the derived smash product

8Z/2A ∧L
A 8

Z/2A := 8Z/2
M Ac ∧A 8

Z/2
M Ac

is an associative ring spectrum.

Corollary 4.5. Let (A,w) be a commutative orthogonal Z/2-ring spectrum whose
underlying Z/2-spectrum is flat. There is a stable equivalence of associative Z/2-
equivariant ring spectra

THR(A) ' A ∧L
N

Z/2
e A

A,

and a stable equivalence of associative ring spectra between the corresponding geometric
fixed points,

8Z/2 THR(A) ' 8Z/2A ∧L
A 8

Z/2A.
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Proof. Theorem 4.4 identifies THR(A) and BdiA multiplicatively, and the argument of
Corollary 2.12 shows that BdiA computes the derived smash product as associative rings.
Next, the proof of Theorem 2.26 and Remark 2.27 show that the derived geometric fixed
points spectrum 8Z/2 THR(A) is equivalent as an algebra to 8Z/2

M (Ac ∧
N

Z/2
e A

Ac) by
making sure that all the cofibrant replacements take place in the category of associa-
tive algebras. But the latter is isomorphic to the derived smash 8Z/2

M Ac ∧A 8
Z/2
M Ac by

[HHR16, Proposition B.203]. ut

4.2. Cofinality

We recall that a full subcategory B ⊂ C is cofinal if every object in C is a retract of an
object in B. Given a spectral category C , we say that a full subcategory B ⊂ C is cofinal
if the inclusion of the underlying categories B ⊂ C, obtained by taking the 0-th space of
the mapping spectra, is cofinal.

Theorem 4.6. Let (C ,D, η) be a flat spectral category with duality, and B ⊂ C a
cofinal subcategory which is invariant under the duality. Then the inclusion ι : B → C
induces a stable equivalence of Z/2-spectra

ι : THR(B, η)
'
−→ THR(C , η).

Proof. For every object c in C choose an object r(c) in B and maps ic : c → r(c),
pc : r(c) → c such that pc ◦ ic = idc. We make this choice in such a way that if c is an
object of B then r(c) = c and ic = pc = idc. We define a map r : sde Ndi

∧ C → sde Ndi
∧B

as follows. By abuse of notation we represent an element of sde Ndi
∧ C as a string of arrows

f =
(
Dc2k+1

f0
←− c0

f1
←− c1 ←− . . .

fk
←− ck

fk+1
←−− Dck+1

fk+2
←−− . . .

f2k+1
←−−− Dc2k+1

)
.

For simplicity let us denote pj := pcj and ij := icj . Then r sends f to

Drc2k+1 rc0
D(p2k+1)f0p0

oo rc1
i0f1p1oo · · ·

i1f2p2oo rck
ik−1fkpk
oo

Drc2k+1
D(p2k)f2k+1D(i2k+1)

// Drc2k // · · ·
D(pk+1)fk+2D(ik+2)

// Drck+1

ikfk+1D(ik+1)

OO

The compositions with the maps in the underlying category are defined by the maps of
spectra

C (d, c)0 ∧ C (c′, d)→ C (c′, c)

obtained by restricting the composition maps, and similarly for the left compositions. It
is easy to verify that this map commutes with the anti-involution regardless of the choices
of r(c), ic and pc, and that it commutes with the face maps. This map does not preserve
degeneracies, but since (C ,D, η) is flat we can just as well work with thick realizations,
by Lemma 2.14. Since we chose r(c) = c when c lies in B, the map r is a retraction for ι.
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We recall that a homotopy of semisimplicial objects is a collection of maps
hk+1,l : Xk → Yk+1, for 0 ≤ l ≤ k, that satisfies the compatibility conditions with
the face maps of [May92, 5.1]. In the presence of degeneracies this is the same datum as
a simplicial map X × 11

→ Y , but for semisimplicial objects there is generally more
structure. Such a collection of maps induces a homotopy from the thick realization of
d0hk+1,0 : Xk → Yk to the thick realization of dk+1hk+1,k : Xk → Yk (see e.g. [ERW19]).

Our goal is to construct a homotopy between the identity functor of C and the com-
posite ι ◦ r . We define a semisimplicial homotopy on the subdivided dihedral nerve

hk+1,l : (N
di
∧ C )2k+1 → (Ndi

∧ C )2k+3

by a formula similar to the homotopy of Proposition 3.11. We send f to

Drc2k+1 rc0
D(p2k+1)f0p0

oo rc1
i0f1p1oo · · ·

i1f2p2oo rcl
il−1flpl
oo

ck
fk // ck−1

fk−1
// · · ·

fl+2
// cl+1

fl+1
// cl

il

OO

Dck+1

fk+1

OO

Dck+2
fk+2

oo · · ·
fk+3

oo Dc2k+1−l
f2k+1−l

oo

Drc2k+1
D(p2k)f2k+1D(i2k+1)

// · · · → Drc2k+2−l
D(p2k+1−l)f2k+2−lD(i2k+2−l)

// Drc2k+1−l

D(i2k+1−l)

OO

A direct calculation shows that the maps hk+1,l are equivariant and that they define a
simplicial homotopy. The map d0hk+1,0 sends f to

d0
(
Drc2k+1

D(p2k+1)f0p0
←−−−−−−−− rc0

i0
←− c0

f1
←− c1 ← · · ·

f2k+1
←−−− Dc2k+1

D(i2k+1)
←−−−−− Drc2k+1

)
= f .

The map hk+1,k sends f to

Drc2k+1 rc0
D(p2k+1)f0p0

oo rc1
i0f1p1oo · · ·oo rck

ik−1fkpk
oo ck

ikoo

Drc2k+1
D(p2k)f2k+1D(i2k+1)

// · · ·
D(pk+1)fk+2D(ik+2)

// Drck+1
D(ik+1)

// Dck+1

fk+1

OO

and therefore dk+1hk+1,k is equal to ι ◦ r . ut

Let (R,w, ε) be a Wall antistructure. We recall from Example 3.2 that the category PR of
finitely generated projective R-modules inherits a non-strict duality. We let FR be the full
subcategory of PR of free R-modules. This is clearly a cofinal subcategory, and therefore
Theorem 4.6 gives the following.

Corollary 4.7. The inclusion FR ⊂ PR induces a stable equivalence of Z/2-spectra

THR(HFR, η)
'
−→ THR(HPR, η). ut
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4.3. Morita invariance

We prove that the dihedral bar construction satisfies a real version of Morita invariance,
and we deduce that the dihedral bar construction of a discrete ring is equivalent to the
the dihedral bar construction of its category of finitely generated projective modules. The
analogous statements for the Bökstedt model of THR have been proven in the first author’s
thesis [Dot12].

Let (A,w) be an orthogonal ring spectrum with anti-involution, and n ≥ 1 an integer.
We consider the non-unital ring spectrum M∨n A :=

∨
n×nA as a model for the matrix

ring of A. We recall that its multiplication is defined by the map(∨
n×n

A
)
∧

(∨
n×n

A
)
'=

∨
n×n×n×n

A ∧ A→
∨
n×n

A

which sends the (i, j, k, l)-summand to the (i, l)-summand via the multiplication map of
A if j = k, and to the basepoint otherwise. This ring spectrum has an anti-involution

wT :
∨
n×n

A

∨
w
−−→

∨
n×n

A
τ
−→

∨
n×n

A

where τ is the automorphism of n× n that swaps the product factors.

Remark 4.8. Let (R,w) be a discrete ring with anti-involution. The matrix ring MnR =⊕
n×n R has an anti-involution defined by applying w to the entries and by transposing

the matrix. The inclusion of indexed wedges into indexed products defines an equivalence
of ring spectra with anti-involution

M∨n HR
'
−→

∏
n×n

HR '= HMnR.

Now suppose that (A,w, ε) is a spectral antistructure. Since M∨n A does not contain the
diagonal matrices, ε does not define a unit in (M∨n A)0 and M∨n A cannot be considered
as a spectral antistructure in the sense of Example 3.2. However, ε acts on M∨n A by
entrywise left and right multiplication, and the definition of the involution on Ndi

∧ of §3.1
makes sense for M∨n A. Moreover, since M∨n A is not unital the dihedral nerve Ndi

∧M
∨
n A

does not have degeneracies. We define the dihedral bar construction Bdi
∧M

∨
n A to be the

thick geometric realization of the semisimplicial spectrum defined by the Segal edgewise
subdivision of Ndi

∧M
∨
n A. The same considerations apply to Bökstedt’s model.

Theorem 4.9. Let (A,w, ε) be a flat spectral antistructure. Then the inclusion A →
M∨n A of the (1, 1)-wedge summand induces a homotopy equivalence of Z/2-spectra

THR(A,w, ε)
'
−→ THR(M∨n A,w

T , ε) for every n ≥ 1.

Remark 4.10. An analogous statement holds for THR with coefficients in an (A,w, ε)-
bimodule (M, j), as well as for categories with duality (see [Dot12]).
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Remark 4.11. Even though M∨n A is not unital, the geometric fixed points of
Bdi
∧ (M

∨
n A,w

T , ε) are equivalent to the realization of a simplicial spectrum. We recall
that there is an isomorphism of semisimplicial orthogonal spectra between the geometric
fixed points of Bdi

∧ (M
∨
n A,w

T , ε) and the thick realization of the two-sided bar construc-
tion

8Z/2 sde Ndi
∧M

∨
n A
'= N∧(8

Z/2M∨n A,M
∨
n A,8

Z/2M∨n A).

Since geometric fixed points commute with indexed coproducts, there is an isomorphism

8Z/2M∨n A = 8
Z/2

∨
n×n

A '=
∨
n

8Z/2A.

Under this isomorphism the left action of M∨n A on 8Z/2M∨n A of Theorem 2.26 corre-
sponds to the action

M∨n A ∧
∨
n

8Z/2A '=
∨

n×n×n

A ∧8Z/2A→
∨
n

8Z/2A

which sends the summands (i, j, j) to the i-summand via the action map A ∧8Z/2A→
8Z/2A of Theorem 2.26, and it is trivial on the components (i, j, k)with k 6= j . The right
action admits a similar description. This gives an isomorphism of semisimplicial spectra

8Z/2 sde Ndi
∧M

∨
n A
'= N∧

(∨
n

8Z/2A,M∨n A,
∨
n

8Z/2A
)
.

Now we observe that the left action of M∨n A on
∨
n8

Z/2A above extends to an action of
the unital matrix ring MnA =

∏
n

∨
nA, by the composite(∏

n

∨
n

A
)
∧

(∨
n

8Z/2A
)
→

∨
n

∏
n

∨
n

(A ∧8Z/2A)→
∨
n

8Z/2A

of the canonical map and the map that sends the (k, j1, . . . , jn)-summand to the jk-
summand via the action map A ∧ 8Z/2A → 8Z/2A. A similar extension exists for the
right action. Thus the equivalence M∨n A

'
−→ MnA induces a levelwise equivalence of

spectra

8Z/2Bdi
∧M

∨
n A
'= B∧

(∨
n

8Z/2A,M∨n A,
∨
n

8Z/2A
)

'
−→ B∧

(∨
n

8Z/2A,MnA,
∨
n

8Z/2A
)
,

where the target admits degeneracies.
Proof of Theorem 4.9. We drop the anti-involution w and the unit ε from the notation.
By Lemma 2.14 the thick and the standard realizations of the Segal edgewise subdivision
of Ndi

∧A are equivalent. It is therefore sufficient to show that the map

ι : sde Ndi
∧A→ sde Ndi

∧M
∨
n A

induces an equivalence on thick geometric realizations. The k-simplices of the dihedral
nerve Ndi

∧M
∨
n A are isomorphic to

(Ndi
∧M

∨
n A)k = ((n× n)+ ∧ A)

∧k+1 '= (n× n)
×k+1
+ ∧ A∧k+1.
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We define a “trace” map tr : sde Ndi
∧M

∨
n A→ sde Ndi

∧A by sending the summand indexed
by (i, j) = (i2k+2, j0), (i1, j1), . . . , (i2k+1, j2k+1) to

tr(i, j , x) =

{
x if j0 = i1, j1 = i2, . . . , j2k = i2k+1, j2k+1 = i2k+2,

∗ otherwise.

This is analogous to the trace map for Hochschild homology, defined for example in
[Lod98, 1.2.1]. A similar map is defined in [DM96, 1.6.18] for THH but it is unfortunately
not semisimplicial. The map tr is clearly an equivariant retraction for ι.

We define a semisimplicial homotopy hk+1,l : (N
di
∧M

∨
n A)2k+1 → (Ndi

∧M
∨
n A)2k+3

on the subdivided dihedral nerve. We define C0 = (n × n)×2k+2, and for ev-
ery 1 ≤ l ≤ k we let Cl be the subset of C0 consisting of the sequences
(i2k+2, j0), (i1, j1), . . . , (i2k+1, j2k+1) ∈ n× n that satisfy

j0 = i1, j1 = i2, . . . jl−1 = il,

i2k+2 = j2k+1, i2k+1 = j2k, . . . i2k+3−l = j2k+2−l .

We define hk+1,l by sending (i, j , x) = ((i2k+2, j0), (i1, j1), . . . , (i2k+1, j2k+1), x) to

((1, 1),

l︷ ︸︸ ︷
(1, 1), . . . , (1, 1), (1, jl), (il+1, jl+1), . . . ,

(i2k+1−l, j2k+1−l), (i2k+2−l, 1),

l︷ ︸︸ ︷
(1, 1), . . . , (1, 1), slx)

if (i, j) ∈ Cl , and to the basepoint otherwise. Here sl : A∧2k+1
→ A∧2k+3 is the l-

degeneracy map of the subdivision of Ndi
∧A. It is straightforward to verify that these

maps define a semisimplicial homotopy, and that d0hk+1,0 = id. The map dk+1hk+1,k
sends (i, j , x) to

dk+1dk+2(

k+1︷ ︸︸ ︷
(1, 1), . . . , (1, 1), (1, jk), (ik+1, jk+1), (ik+2, 1),

k︷ ︸︸ ︷
(1, 1), . . . , (1, 1), skx)

= (

2k+2︷ ︸︸ ︷
(1, 1), . . . , (1, 1), x)

if (i, j) ∈ Ck and jk = ik+1, jk+1 = ik+2, and to the basepoint otherwise. This is
precisely the map ι ◦ tr. ut

Now let (R,w, ε) be a Wall antistructure, considered as an Ab-enriched category with
duality with one object. Let (PR,D, η) be the category of finitely generated projective
right R-modules with the duality that sends an R-module P to the R-module

D(P ) := homR(P,R)

of Example 3.2. There is a morphism of categories with duality ι : R → PR whose
underlying functor sends the unique object toR with right multiplication, and a morphism
r ∈ R to r · (−) : R → R. The compatibility between the dualities is given by the
canonical isomorphism R '= homR(R,R) that sends 1 to w.
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Corollary 4.12. The functor ι : R→ PR induces a stable equivalence of Z/2-spectra

THR(R,w, ε)
'
−→ THR(HPR,D, η).

Proof. Let FR be the category of free modules, and F≤nR its full subcategory of modules
of rank less than or equal to n. The duality of PR restricts to both FR and F≤nR and the
map ι factors as

Bdi
∧ (R,w, ε)

ι

��

' // hocolimn B
di
∧ (M

∨
n (HR),w, ε)

' // hocolimn B
di
∧ (HMnR,w, ε)

��

Bdi
∧ (HPR,D, η) Bdi

∧ (HFR,D, η)oo hocolimn B
di
∧ (HF≤nR ,D, η)oo

where the homotopy colimits are taken with respect to the maps M∨n HR → M∨n+1HR,
MnR → Mn+1R and F≤nR → F≤n+1

R that increase the size of a matrix by adding a row
and a column of zeros. These operations are not unital, and therefore the spectra of the
diagrams are all obtained by taking thick realizations. The top row of the diagram consists
of equivalences by Theorem 4.9 and Remark 4.8.

The inclusion MnR → F≤nR is clearly cofinal, and therefore the vertical map is an
equivalence by Theorem 4.6. Similarly, the last map is an equivalence by Corollary4.7.
The remaining map is the thick realization of the equivalence

hocolim
n

∨
0≤a0,...,ak≤n

(HMa0,akR) ∧ · · · ∧ (HMak,ak−1R)

'
−→

∨
0≤a0,...,ak

(HMa0,akR) ∧ · · · ∧ (HMak,ak−1R)

where Ma,bR :=
⊕

a×b R is the abelian group of a × b-matrices. ut

5. Calculations

5.1. The Mackey functor of components of THR

Let (A,w) be a flat ring spectrum with anti-involution whose underlying Z/2-spectrum
is connective. The aim of this section is to compute the Mackey functor of components

π0 THR(A)

w

XX

tran //
π
Z/2
0 THR(A)

res
oo

based on the description of THR(A) as the derived smash product A ∧L
N

Z/2
e A

A.

We start by describing the multiplicative structure on π0A induced by the multipli-
cation of A. The abelian group π0A has a ring structure, and π0(w) = w is an anti-
involution. There is also a multiplicative action

π0A⊗ π
Z/2
0 A

N⊗id
−−−→ π

Z/2
0 (N

Z/2
e A)⊗ π

Z/2
0 A

∧
−→ π

Z/2
0 (N

Z/2
e A ∧ A)→ π

Z/2
0 A,
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whereN is the external norm and the last map is the leftNZ/2
e A-module structure on A of

§2.2. We will denote the value of this map at an element (a, x) by a · x. Although πZ/2
0 A

is a priori not a ring, it still has a preferred unit element 1 ∈ πZ/2
0 A which restricts to

1 ∈ π0A. This element is given by the homotopy class of the Z/2-equivariant unit map
S → A. Combining the action above with the unit 1 ∈ πZ/2

0 A, we get a multiplicative
transfer

N : π0A→ π
Z/2
0 A

by sending a to its multiplicative action on the unit a · 1. When (A,w) is a commutative
Z/2-equivariant ring spectrum this multiplicative transfer coincides with the multiplica-
tive norm defined in [Bru07].

Theorem 5.1. Let (A,w) be a flat ring spectrum with anti-involution whose underlying
orthogonal Z/2-spectrum is connective. Then the Mackey functor π0 THR(A) is naturally
isomorphic to the Mackey functor

π0A/[π0A,π0A]

w

WW

tran //
(π

Z/2
0 A⊗ π

Z/2
0 A)/T ,

res
oo

where [π0A,π0A] is the commutator subgroup, and T is the subgroup generated by the
following elements:

(i) x ⊗ a · y − ω(a) · x ⊗ y for x, y ∈ πZ/2
0 A and a ∈ π0A;

(ii) x ⊗ tran(a res(y)w(b))− tran(w(b) res(x)a)⊗ y for x, y ∈ πZ/2
0 A and a, b ∈ π0A.

The restriction and the transfer are given respectively by

res(x ⊗ y) = res(x) res(y) and tran(a) = tran(a)⊗ 1,

where 1 ∈ πZ/2
0 A is the above mentioned unit.

Corollary 5.2. Let (A,w) be a connective Z/2-equivariant commutative ring spectrum
with flat underlying Z/2-spectrum. Then [π0A,π0A] = 0, and the relations in Theorem
5.1 simplify as follows:

(i) x ⊗N(a)y − xN(a)⊗ y, where N : π0A→ π
Z/2
0 A is the multiplicative norm;

(ii) x ⊗ tran(a)y − x tran(a)⊗ y.

Moreover the additive relations (i) and (ii) generate an ideal, and (πZ/2
0 A⊗π

Z/2
0 A)/T is

a commutative ring. The Tambara structure on π0 THR(A) from Proposition 4.1 is given
by the multiplicative transfer a 7→ N(a)⊗ 1.

The rest of the subsection is devoted to the proof of these two results. We will make use
of the box product � of Mackey functors (see e.g. [Lew81] and [Bou97]), and the fact
that the monoids for � are the Green functors. We recall that the structure of a Z/2-Green
functor on a Mackey functor

M =
(
M(Z/2)

τ

WW

tran //
M(∗)

res
oo

)
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is the datum of ring structures on M(∗) and M(Z/2) such that the restriction
res : M(∗)→ M(Z/2) and involution τ : M(Z/2)→ M(Z/2) are ring homomorphisms,
and where the Frobenius reciprocity relations

tran(a res(x)) = tran(a)x and tran(res(x)a) = x tran(a)

hold for all a ∈ M(Z/2) and x ∈ M(∗). It follows from [LM06] that the graded homotopy
Mackey functor π

∗
is a lax symmetric monoidal functor with respect to the smash and

the box product. In particular π0 sends equivariant ring spectra to Green functors and
equivariant module spectra to Mackey modules over Green functors.

Let (A,w) be a flat ring spectrum with anti-involution whose underlying Z/2-
spectrum is connective. We know from [LM06] that there is a strongly convergent Kün-
neth spectral sequence of Mackey functors

Torπ∗(N
Z/2
e A)

p,q (π
∗
A,π

∗
A)⇒ πp+q(A ∧

L
N

Z/2
e A

A),

where Tor is the left derived functor of the �-product of Mackey functors. It follows
immediately from this spectral sequence that we get an isomorphism of Mackey functors

π0 THR(A) '= π0(A ∧
L
N

Z/2
e A

A) '= π0(A) �π0(N
Z/2
e A)

π0(A).

In order to make the latter expression more computable we have to understand the
Green functor π0(N

Z/2
e A) and the left and right π0(N

Z/2
e A)-module structures on π0A.

The Mackey functor of components of the norm construction has already been computed
in several places in the literature in terms of the norm of Mackey functors; see for example
[Hoy14, HM19, Ull13a]. For the purpose of our computation it is convenient to give an
explicit description of π0(N

Z/2
e A) in terms of generators and relations, which is similar

to a ring of 2-truncated Witt vectors. This is essentially contained in [HM19, BGHL19],
but we spell out the details since these calculations become very explicit in the special
case of the cyclic group of order 2.

Definition 5.3. Let S be a ring. We let (S ⊗ S)Z/2 denote the coinvariants with respect
to the flip automorphism τ(a ⊗ b) = b ⊗ a of S ⊗ S. The 2-truncated non-commutative
ring of Witt vectors W⊗2 (S) is the set S × (S ⊗ S)Z/2 with the ring structure defined by
the operations

(i) (a, c)+ (a′, c′) = (a + a′, c + c′ − a ⊗ a′),
(ii) (a, c)(a′, c′) = (aa′, (a ⊗ a)c′ + c(a′ ⊗ a′)+ cc′ + cτ(c′)),

for all a, a′ ∈ S and c, c′ ∈ (S ⊗ S)Z/2. We note the expression (ii) is symmetric, since
τ(c)c′ = cτ(c′) in (S ⊗ S)Z/2.

It is easy to check that these formulas give an associative ring with zero (0, 0) and unit
(1, 0). We also note that the expressions

(a ⊗ a)c′, c(a′ ⊗ a′) and cc′ + cτ(c′)

are well-defined in (S⊗S)Z/2 (here we use the ring structure on S⊗S) although (S⊗S)Z/2
is not a ring itself.
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Remark 5.4. If the ring R is commutative and solid, i.e. the multiplication R⊗ZR→ R

is an isomorphism, then W⊗2 (R) is isomorphic to the ring of 2-truncated Witt vectors
W2(R). For example, we see that W⊗2 (F2) '= Z/4 and W⊗2 (Fp) '= Fp × Fp for every
odd prime p. There are also lifts of the ghost coordinates and of the Verschiebung to the
non-commutative case. These are given by the ring homomorphisms

W⊗2 (S)
(w0,w1)
−−−−→ S × (S ⊗ S)Z/2

defined by w0(a, c) = a and w1(a, c) = a ⊗ a + c + τ(c), for every a ∈ S and c ∈
(S ⊗ S)Z/2, and by

V : S ⊗ S
(0,id)
−−−→ S × S ⊗ S → W⊗2 (S),

respectively, where the second map is the product of the identity and the projection map
S ⊗ S → (S ⊗ S)Z/2.

The ring W⊗2 (S) is in fact part of a Z/2-Green functor W⊗2 (S), which is defined by

W⊗2 (S) =
(
S ⊗ S

τ

YY

V //
W⊗2 (S)w1

oo

)
.

Checking the Frobenius reciprocity laws is straightforward. The Mackey functor π0A is
naturally a left and right module over the Green functor W⊗2 (π0A), where π0A is just
considered as a ring (without an anti-involution). The action maps of the left module
structure are

(π0A⊗ π0A)⊗ π0A
µl1
−→ π0A, W⊗2 (π0A)⊗ π

Z/2
0 A

µl2
−→ π

Z/2
0 A,

a ⊗ a′ ⊗ b 7→ abw(a′), (a, c)⊗ x 7→ a · x + tran(µl1(c ⊗ res(x))),

where a ∈ π0A and c ∈ (π0A ⊗ π0A)Z/2. We show that this is a well-defined module
structure at the end of the section by using that π0A has a natural “Hermitian struc-
ture” (see Proposition 5.7). We also remark that since the transfer is constant on orbits,
the expression tran(µl1(c ⊗ res(x))) is independent of the representative of c. The right
W⊗2 (π0A)-module structure on π0A is defined similarly by the formulas

µr1(b ⊗ a ⊗ a
′) = w(a′)ba and µr2(x ⊗ (a, c)) = w(a) · x + tran(µr1(res(x)⊗ c)).

Proposition 5.5. Let A be a flat connective orthogonal ring spectrum. Then the Green
functor π0(N

Z/2
e A) is naturally isomorphic to the Green functor W⊗2 (π0A).

Proof. Isotropy separation gives a short exact sequence

0→ (π0(A)⊗ π0(A))Z/2
t
−→ π

Z/2
0 (N

Z/2
e A)

8Z/2
−−−→ π0(A)→ 0

and the external norm
N : π0(A)→ π

Z/2
0 (N

Z/2
e A)

splits 8Z/2. Hence any element x of πZ/2
0 (N

Z/2
e A) can be uniquely written as

x = N(a)+ t (c),
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where a = 8Z/2x ∈ π0A and t (c) = x − N8Z/2x. This determines a bijection
π
Z/2
0 (N

Z/2
e A) '= W

⊗

2 (π0A), which is additive since

N(a)+ t (c)+N(a′)+ t (c′) = N(a + a′)+ t (c + c′ − a ⊗ a′).

To compare the multiplications we use Frobenius reciprocity and that N is multiplicative:

(N(a)+ t (c))(N(a′)+ t (c′)) = N(aa′)+ t (c res(tran(c′))+c res(N(a′))+ res(N(a))c′)

= N(aa′)+ t
(
cc′+cτ(c′)+c(a′⊗a′)+(a⊗a)c′

)
.

This shows that the bijection above is a ring isomorphism π
Z/2
0 (N

Z/2
e A) '= W

⊗

2 (π0A).
Now we compare the Mackey structures. The underlying ring of the Green functor

π0(N
Z/2
e A) is π0(A)⊗ π0(A), with the involution τ . The pair of ring isomorphisms

W⊗2 (π0A)
'=
−→ π

Z/2
0 (N

Z/2
e A), π0(A)⊗ π0(A)

id
−→ π0(A)⊗ π0(A)

is clearly compatible with the involution and with the transfers. The compatibility with
the restrictions follows from

res(N(a)+ t (c)) = a ⊗ a + c + τ(c)

for c ∈ (π0(A)⊗ π0(A))Z/2 and a ∈ π0A. ut

Now let (A,w) be a ring spectrum with anti-involution such that A is flat and connective
as a Z/2-spectrum. It remains to show that the W⊗2 (π0A)-module structures on π0A

are well-defined, and that they agree with the π0(N
Z/2
e A)-module structures under the

isomorphism of Proposition 5.5. It is convenient to isolate the structure on π0A that is
used to define the actions of W⊗2 (π0A).

Definition 5.6 ([DO19]). A Hermitian Mackey functor is a Z/2-Mackey functorM with
a multiplicative monoid structure onM(Z/2) which makes it into a ring, and a left action
of this monoid on the abelian group M(∗), denoted by a · x, satisfying the following
properties:

(i) w(ab) = w(b)w(a) for a, b ∈ M(Z/2) and w(1) = 1, where w is the involution on
M(Z/2). In other words, M(Z/2) is a ring with the anti-involution w;

(ii) res(a · x) = a res(x)w(a) for a ∈ M(Z/2) and x ∈ M(∗);
(iii) tran(abw(a)) = a · tran(b) for a, b ∈ M(Z/2);
(iv) (a + b) · x = a · x + b · x + tran(a res(x)w(b)) for a, b ∈ M(Z/2) and x ∈ M(∗).

Proposition 5.7. Let (A,w) be a flat ring spectrum with anti-involution whose underly-
ing orthogonal Z/2-spectrum is connective. Then π0(A) has a natural Hermitian Mackey
functor structure.

Proof. As we saw above, the Z/2-equivariant left module structure (NZ/2
e A) ∧ A → A

gives the multiplicative action

π0(A)⊗ π
Z/2
0 (A)→ π

Z/2
0 (A)
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defined by a · x := N(a)x, where a ∈ π0(A) and x ∈ πZ/2
0 (A). The first axiom is clear

since w is an anti-involution on A. The second and third axioms,

res(N(a)x) = a res(x)w(a) and N(a) tran(b) = tran(abw(a)),

hold because π0(A) is a π0(N
Z/2
e A)-module. Finally, the fourth axiom follows from the

formula N(a + b) = N(a)+N(b)+ t (a ⊗ b). ut

A Hermitian Mackey functor M is a left module over the Green functor W⊗2 (M(Z/2)),
where M(Z/2) is just considered as a ring (without an anti-involution). The action maps
are

M(Z/2)⊗M(Z/2)⊗M(Z/2)
µl1
−→ M(Z/2), W⊗2 (M(Z/2))⊗M(∗)

µl2
−→ M(∗),

a⊗a′⊗b 7→ abw(a′), (a, c)⊗x 7→ a ·x+tran(µl1(c⊗res(x))).

Axioms (ii) and (iii) ensure that the action is compatible with the transfers and the re-
strictions of the Mackey structures, and axiom (iv) implies that the action is compatible
with the addition in W⊗2 (M(Z/2)). We also see that when M = π0A this is precisely
the W⊗2 (π0A)-module structure defined at the beginning of the section. Using the anti-
involution w one can also define a right W⊗2 (M(Z/2))-module structure onM . This gen-
eralizes the right module structure described above for M = π0A. Hence for any Hermi-
tian Mackey functor M we can define the canonical box product M �W⊗2 (M(Z/2))

M .

Proof of Theorem 5.1. Using Proposition 5.5 and the above mentioned Künneth spectral
sequence argument, one gets a natural isomorphism of Mackey functors:

π0 THR(A) '= π0(A) �W⊗2 (π0A)
π0(A).

Frobenius reciprocity implies that

(N(a)+ t (c))x = N(a)x + tran(c res(x)),

which is equivalent to the statement that the left W⊗2 (π0A)-module and π0(N
Z/2
e A)-

module structures on π0A are compatible under the isomorphism W⊗2 (π0A)
'=
−→

π0(N
Z/2
e A) of Proposition 5.5.

An analogous argument holds for the right actions as well. This can be deduced from
the relation N(a)x = xN(w(a)), which follows from the following observation: There
is a Z/2-equivariant map (in fact an anti-homomorphism) � : NZ/2

e R→ N
Z/2
e R sending

a ∧ b to ω(b) ∧ ω(a) such that the diagram

N
Z/2
e R ∧ R //

�∧1
��

R

N
Z/2
e R ∧ R

twist // R ∧N
Z/2
e R

OO
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commutes. The essential extra structure which allows us to further simplify the box prod-
uct

π0(A) �W⊗2 (π0A)
π0(A)

is the unit 1 ∈ πZ/2
0 A, with the property that res(1) = 1 in π0A. The value of the box

product at the Z/2-set (Z/2)/(Z/2) = ∗ (see e.g. [Bou97, Proposition 1.5.1]) is

[(π0A⊗ π0A)⊕ (π
Z/2
0 A⊗ π

Z/2
0 A)]/R,

where the subgroup R is generated by the relations:

(i) ω(a)⊗ ω(b)− a ⊗ b for a, b ∈ π0A;
(ii) x ⊗ tran(a)− res(x)⊗ a and tran(a)⊗ x − a⊗ res(x) for a ∈ π0A and x ∈ πZ/2

0 A;
(iii) x ⊗ a · y − ω(a) · x ⊗ y for x, y ∈ πZ/2

0 A and a ∈ π0A;
(iv) x ⊗ tran(a res(y)w(b))− tran(w(b) res(x)a)⊗ y for x, y ∈ πZ/2

0 A and a, b ∈ π0A.
(v) a ⊗ ba′b′ − b′ab ⊗ a′ for a, a′, b, b′ ∈ π0A.

These relations can be substantially simplified using the unit 1 ∈ πZ/2
0 A. Indeed, we

see that any element a ⊗ b ∈ π0A ⊗ π0A is getting identified to some element in
π
Z/2
0 A⊗ π

Z/2
0 A via the chain of equivalences

a ⊗ b ' ab ⊗ 1 = ab ⊗ res(1) ' tran(ab)⊗ 1.

Hence (π0(A) �W⊗2 (π0A)
π0(A))(∗) is in fact a quotient of πZ/2

0 A ⊗ π
Z/2
0 A. We claim

that after this identification all the relations follow from (iii) and (iv). This follows from
the equivalences

res(x)⊗ a ' tr(res(x)a)⊗ 1 = tran(w(1) res(x)a)⊗ 1
' x ⊗ tran(a res(1)w(1)) = x ⊗ tran(a),

tran(ab)⊗ 1 = tran(w(w(a)) res(1)b)⊗ 1 ' 1⊗ tran(b res(1)w(w(a))) = 1⊗ tran(ba).

This completes the additive identification of the box product at (Z/2)/(Z/2) = ∗. The
value at Z/2 is simply the quotient of π0A⊗π0A by the relation (v). This gives the usual
formula for the zeroth Hochschild homology group

π0A/[π0A,π0A].

Finally, the structure maps are readily identified using the formulas in [Bou97, Proposition
1.5.1]. ut

We note that the previous argument applies to any Hermitian Mackey functor with a unit,
i.e. with an element 1 ∈ M(∗) such that res(1) = 1 inM(Z/2). That is, the relations in the
canonical box productM�W⊗2 (M(Z/2))

M can be simplified as in the proof of Theorem 5.1
in the presence of this extra unit.

Proof of Corollary 5.2. The simplification of the relations follows from the defini-
tion of the norm and from Frobenius reciprocity. The claim about the ring structure of
(π

Z/2
0 A ⊗ π

Z/2
0 A)/T is clear. The formula for the norm follows from [Str12, Proposi-

tion 9.1]. ut
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5.2. Group rings

Let M be a topological monoid with an anti-involution ι : Mop
→ M . The case we will

be most interested in is whenM is a topological group and ι is the inversion map. Given a
ring spectrum with anti-involution (A,w)we can form the monoid ringA[M] := A∧M+.
This is a ring spectrum with the multiplication

A[M] ∧ A[M] '= A ∧ A ∧ (M ×M)+→ A ∧M+

where the last map is the smash product of the multiplications of A and M . The ring
spectrum A[M] acquires an anti-involution

A[M]op '= A
op
∧M

op
+

w∧ι
−−→ A ∧M+ = A[M].

Example 5.8. Let (R,w) be a discrete ring with anti-involution, and (M, ι) a dis-
crete monoid with anti-involution. The Eilenberg–MacLane functor H from Z/2-abelian
groups to orthogonal Z/2-spectra commutes up to homotopy with indexed coproducts, so
we get a stable equivalence of ring spectra with anti-involution

(HR)[M] =
∨
M

HR
'
−→ H

(⊕
M

R
)
= H(R[M])

where R[M] =
⊕

M R is the monoid ring, with the anti-involution induced by sending
r ·m to w(r) · ι(m).

The following result was originally proved in [Høg16] when A = S, by working directly
on the Bökstedt model.

Proposition 5.9. Let (A,w) be a flat ring spectrum with anti-involution and (M, ι)

a topological monoid with anti-involution which is well-pointed at the identity as a
Z/2-space. Then the assembly map

THR(A) ∧ (Bdi
×M)+

'
−→ THR(A[M])

is a stable equivalence. In particular we recover the equivalence THR(S[M]) '
6∞(Bdi

×M)+ from [Høg16].

Remark 5.10. When the monoid M is group-like, the dihedral bar construction Bdi
×M

is a model for the free loop space Map(Sσ , BσM), where Sσ is the sign-representation
sphere and BσM is the realization of the real simplicial space NM with levelwise invo-
lution

M×k
ι×k

−→ M×k
τk
−→ M×k.

Here τk is the permutation of k = {1, . . . , k} that reverses the order. This is proved as in
[Goo85] by comparing the sequences

M

��

// Bdi
×M

��

// BσM

�σBσM // Map(Sσ , BσM) ev // BσM
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where the middle vertical map is induced by the S1-action on Bdi
×M . The lower sequence

is a fiber sequence. When M is group-like the upper one is also a fiber sequence and the
map on fibers is a Z/2-equivalence by [Dot12, §6.2] and [Sti13].

Proof of Proposition 5.9. The assembly map of the statement is defined as the composite

THR(A) ∧ (Bdi
×M)+

id∧γ
−−−→ THR(A) ∧ THR(S[M])→ THR(A[M])

where γ : 6∞(Bdi
×M)+→ THR(S[M]) is adjoint to the geometric realization of the map

(M×1+k)+→ hocolim
I×1+k

�i0+···+ik ((Si0 ∧M+) ∧ · · · ∧ (S
ik ∧M+))

induced by the inclusion of (0, . . . , 0) in I×1+k. The second map is the lax monoidal
structure of §4.1. A similar assembly map can be constructed for the middle spectrum in
the zig-zag of the comparison Theorem 2.23, using the lax monoidal structure of Theo-
rem 4.4 and the equivalence 6∞(Bdi

×M)+
'= Bdi

∧6
∞M+ → THR(�•I (A;M; sh)) of the

proof of Theorem 2.23. Finally, the dihedral bar construction also has an assembly map,
defined by the shuffle isomorphism

(Ndi
∧A) ∧ (N

di
×M)+

'= (N
di
∧A) ∧N

di
∧ (M+)

'=
−→ Ndi

∧ (A ∧M+) = N
di
∧A[M].

By construction the maps γ agree under the equivalence of Theorem 2.23, and the lax
monoidal structures agree by Theorem 4.4. Thus the assembly maps of THR and Bdi

∧

agree and the latter is an isomorphism. ut

From now on we will denote Bdi
×M by BdiM keeping in mind that the dihedral bar con-

struction is taken with respect to the Cartesian product.
We will now analyze the Mackey functor π0 THR(A[M]), the fundamental case is

when A = S. Assume from now on that M is cofibrant as a Z/2-space. The space of
fixed points of M under the Z/2-action m 7→ ι(m) = m̄ has a left M-action given by
m · n = mnm̄ and a right action given by n · m = m̄nm. There is a natural homeo-
morphism (BdiM)Z/2 '= B(MZ/2,M,MZ/2), obtained by subdividing the dihedral bar
construction on M and taking Z/2-fixed points levelwise before geometric realization.
We write (π0M)conj for π0B

diM . When π0M is a group, this is just the set of conjugacy
classes of elements of π0M . Proposition 5.9 and the tom Dieck splitting give a sequence
of stable equivalences

THR(S[M])Z/2 ' (6∞BdiM+)
Z/2
' 6∞((BdiM)hZ/2)+ ∨6

∞B(MZ/2,M,MZ/2)+.

It follows that the Mackey functor π0 THR(S[M]) can be presented as

π0(6
∞BdiM+)

'=

(
Z[(π0M)conj]

π0(ι)

VV

tran // Z[(π0M)conj]Z/2 ⊕ Z[π0(M
Z/2)×π0M π0(M

Z/2)]
res

oo

)
,
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where Z[−] denotes the free abelian group functor. The involution is well defined on
conjugacy classes and gives the action π0(ι) of Z/2 on Z[(π0M)conj]. The transfer is just
the projection map to the coinvariants, and the restriction map is given by the additive
norm on Z[(π0M)conj]Z/2 and by [m,m′] 7→ [mm′] on the basis elements [m,m′] of the
free abelian group Z[π0M

Z/2
×π0M π0M

Z/2
].

Corollary 5.11. Let (A,w) be a flat ring spectrum with anti-involution whose underlying
orthogonal Z/2-spectrum is connective and let (M, ι) be a topological monoid with anti-
involution which is cofibrant as a Z/2-space. Then there is an isomorphism of Mackey
functors

π0 THR(A[M]) '= π0 THR(A) � π0(6
∞BdiM+),

where π0 THR(A) is calculated in Theorem 5.1 and π0(6
∞BdiM+) is calculated above.

Proof. This follows immediately from Proposition 5.9 and the Künneth spectral sequence
for a smash product of Z/2-spectra. ut

When M is discrete, we denote by Z[M] the associated monoid ring with anti-involution
of Example 5.8. We write THR(Z[M]) := THR(HZ[M]) for the THR spectrum of the
associated Eilenberg–MacLane ring spectrum with anti-involution of Example 2.4.

Corollary 5.12. Let G be a discrete group with the inversion involution. Then there is a
natural isomorphism

π0 THR(Z[G]) '=
(
Z[Gconj]

(−)−1

VV

tran //
(Z[Gconj]Z/2 ⊕ Z[GZ/2

×G G
Z/2
])/D

res
oo

)
,

where D is the subgroup generated by the elements 2[g, g′] − [gg′] for all [g, g′] ∈
GZ/2

×G G
Z/2. The Mackey structure maps are the same as in Corollary 5.11.

Proof. The identification of the groups follows from Corollary 5.11 and the explicit for-
mula for the box product [Bou97, 1.5.1]. To see that the restriction map vanishes on D,
note that for [g, g′] ∈ GZ/2

×G G
Z/2 we have res([g · g′]) = [gg′] + [(gg′)−1

] = 2[gg′]
and res([g, g′]) = [g · g′]. ut

We end this section with two instructive examples.

Example 5.13. Let G = Z = 〈t〉 be the cyclic group of infinite order with the in-
version involution. We write S[t, t−1

] := S[Z] for the corresponding spherical group
ring, where the involution sends t to t−1. By Remark 5.10 there is a weak equivalence
BdiZ ' Map(Sσ , BσZ). We claim there is a weak equivalence BσZ ' S1, where S1

denotes the usual circle with trivial Z/2-action. To see this, note that there are homeo-
morphisms

(BσZ)Z/2 '= B(∗,Z,ZZ/2) '= BZ,
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where the right-hand homeomorphism comes from ZZ/2
= {0}. The inclusion of fixed

points gives an equivariant map S1
' BZ → BσZ which induces an equivalence on

Z/2-fixed points. We must see that it also induces an equivalence on underlying spaces.
For this we consider the fiber sequence of pointed Z/2-spaces

�σBσZ→ BσZ→ Map∗(Z/2+, BσZ).
Since there is an equivalence �σBσZ ' Z, we see from the induced fiber sequence
on Z/2-fixed points that the inclusion (BσZ)Z/2 → BσZ induces an equivalence on
underlying spaces, which proves the claim. There is also an equivalence Map(Sσ , S1) '

Z×S1, where Z has the inversion action. Combining these equivalences gives a sequence
of equivalences of Z/2-spectra

THR(S[t, t−1
]) ' 6∞BdiZ+ ' 6∞Map(Sσ , S1)+ ' 6

∞(Z× S1)+.

There is an isomorphism of Mackey functors

π0(THR(S[t, t−1
])) '=

(
Z[t, t−1

]

Z[tn 7→t−n]

XX

tran // Z[t, t−1
]Z/2 ⊕ Z

res
oo

)
,

where the transfer maps trivially into the second summand. With integral coefficients, we
get the formula

π0(THR(Z[t, t−1
])) '=

(
Z[t, t−1

]

Z[tn 7→t−n]

XX

tran //
tZ[t] ⊕ Z

res
oo

)
,

where the transfer sends tn and t−n to tn in the first summand for n > 0, and it sends 1
to 2 in the second summand.

Example 5.14. Let G = C2, the cyclic group of order 2. Note that every involution on
this group is trivial. There is a weak equivalence

BdiC2 ' C2 × B
σC2,

since C2 is abelian and has the trivial involution. By Corollary 5.11 we get a stable equiv-
alence of Z/2-spectra THR(S[C2]) ' 6∞(C2 × B

σC2)+. With sphere coefficients we
get

π0(THR(S[C2])) '=

(
Z[C2]

id

XX

tran // Z[C2] ⊕ Z[C2 × C2]
res

oo

)
,

and with integer coefficients

π0(THR(Z[C2])) '=

(
Z[C2]

id

XX

tran // Z[C2] ⊕ (Z/2)2
res

oo

)
,

where the transfer is the multiplication by 2 map into the first summand and the 0 map to
the second summand, and res is projection on the first summand.
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5.3. The homotopy type of THR(Fp)

Let p be a prime number. Since H Fp is a commutative ring spectrum, THH(Fp) is a
ring spectrum. Bökstedt [Bök] and Breen [Bre78] showed that there is an isomorphism
of graded rings π∗ THH(Fp) '= Fp[x], where x is a generator in π2 THH(Fp) '= Fp.
The purpose of this section is to carry out an analogous calculation for THR(Fp) :=
THR(H Fp), where H Fp is the Z/2-equivariant commutative Eilenberg–MacLane ring
spectrum of Fp with the trivial anti-involution, as in Example 2.4. Our calculations will
rely on the knowledge of the results of Bökstedt and Breen.

We recall that the homotopy groups of a Z/2-equivariant ring spectrum A naturally
form a Z × Z-graded ring, whose (n, k)-graded piece is the group of equivariant stable
homotopy classes of maps

πn,kA := [S
n,k, A]Z/2,

where Sn,k = Sn−k ∧ Skσ and σ denotes the sign representation of Z/2. We write 6n,k

for the corresponding suspension functor. We let

TH Fp (S
2,1) =

∞∨
n=0

62n,nH Fp

denote the free associative H Fp-algebra on S2,1.

Theorem 5.15. There is a stable equivalence of Z/2-equivariant ring spectra

TH Fp (S
2,1)

'
−→ THR(Fp).

In particular, there is an isomorphism of bigraded rings H Fp∗,∗[x̃] '= π∗,∗ THR(Fp),
where x̃ has bidegree (2, 1).

Before giving a proof of this theorem we deduce the associative ring structures on the
fixed point spectrum of THR(Fp).

Corollary 5.16. For p odd there is an isomorphism of graded rings

π∗(THR(Fp)Z/2) '= Fp[y],

where y is a generator in degree 4 which maps to x2 in Fp[x] '= π∗ THH(Fp) under the
restriction map.

Proof. Since p is odd, there is an isomorphism (H Fp)∗,∗ '= Fp[u±1
] with u in bidegree

(0,−2) (see [Dug05, Theorem 2.8(b)]). Therefore Theorem 5.15 gives an isomorphism
π∗,0 THR(Fp) '= Fp[y], where y = u · x̃2. ut

Corollary 5.17. There is an isomorphism of graded rings

π∗(THR(F2)
Z/2) '= F2[x̄, y],

where y is of degree 1 and x̄ is of degree 2. Under the restriction map the element x̄ maps
to the multiplicative generator x of F2[x] '= π∗ THH(F2) and y maps to 0.
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Proof. The bi-negative part of (H F2)∗,∗ is a polynomial ring on the Euler class a, which
has bidegree (−1,−1), and a generator u of bidegree (0,−1) (see [HK01, Proposition
6.2]). From this and Theorem 5.15 we see that

π∗,0 THR(F2) '= F2[x̄, y],

where x̄ = x̃u and y = x̃a.
From the proof of Theorem 5.15 we will see that the map π2,0 THR(F2) →

π2 THH(F2) sends x̄ = x̃u to x. Since the restriction of the Euler class a is 0 it fol-
lows that y = x̃a also maps to 0. ut

The strategy of the proof of Theorem 5.15 is to construct a map TH Fp (S
2,1)→ THR(Fp)

exploiting the fact that TH Fp (S
2,1) is a freeH Fp-algebra, and then show that this map in-

duces an equivalence on geometric fixed points by means of Theorem 2.26. The following
key lemma will allow us to construct the map.

Lemma 5.18. (i) π1,1 THR(Fp) = 0.
(ii) The restriction map π2,1 THR(Fp)→ π2 THH(Fp) is surjective.

Proof. To see that (i) holds, consider the exact sequence of homotopy groups

π1 THH(Fp)→ π1,1 THR(Fp)→ π0,0 THR(Fp)→ π0 THH(Fp).

The left-hand group is trivial and the right-hand map is an isomorphism, by Theorem 5.1
and Corollary 5.2. Hence the claim follows. To prove (ii) we note that the 0-simplices
of the dihedral bar construction of H Fp are H Fp, so that there is an induced map of
Z/2-spectra H Fp → THR(Fp). Since the Z/2-action on the target extends to an action
of the semidirect product Z/2 n S1, there is an induced map of Z/2 n S1-objects

(Z/2 n S1
+) ∧Z/2 H Fp → THR(Fp),

which after restricting to Z/2 < Z/2 n S1 gives a map of Z/2-spectra S1,1
+ ∧ H Fp →

THR(Fp). The left-hand side splits stably as S1,1
+ ∧H Fp ' H Fp ∨61,1H Fp and we are

interested in the map out of the suspended part. Modding out p gives a map

(61,1H Fp)/p→ (THR(Fp))/p,

where the source again splits as (61,1H Fp)/p ' 61,1H Fp ∨62,1H Fp. We consider
the resulting map α : 62,1H Fp → THR(Fp)/p. On homotopy groups there is an induced
diagram

π2,16
2,1H Fp

��

α∗ // π2,1 THR(Fp)/p

��

π26
2H Fp

α∗ // π2 THH(Fp)/p

The left-hand vertical map is an isomorphism since it is equivalent to the restriction of the
constant Mackey functor Fp. The lower horizontal map is an isomorphism by Bökstedt’s
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calculation [Bök] (see also [HM97, Section 5.2]), and hence the right-hand vertical map
is surjective. The natural map THR(Fp)→ THR(Fp)/p induces a diagram of homotopy
groups

π2,1 THR(Fp)

��

// π2,1 THR(Fp)/p

��

π2 THH(Fp) // π2 THH(Fp)/p

where the lower horizontal map is an isomorphism. We have just seen that the right-hand
vertical map is surjective. The top horizontal map is surjective, since its cokernel injects
into π2,16

1,0 THR(Fp) '= π1,1 THR(Fp), which is zero by (i). The result follows. ut

By the previous lemma we can choose a lift x̃ ∈ π2,1 THR(Fp) of the generator x ∈
π2 THH(Fp). Since THR(Fp) is an H Fp-algebra by Corollary 4.2, the map x̃ : S2,1

→

THR(Fp) induces an algebra map from the free associative H Fp-algebra

Tx̃ : TH Fp (S
2,1)→ THR(Fp).

In order to show that this map induces an equivalence on geometric fixed points, we start
by computing the homotopy groups of the geometric fixed points of THR(Fp) abstractly.

Proposition 5.19. For p an odd prime, the spectrum 8Z/2 THR(Fp) is contractible. For
p = 2 there is an isomorphism of graded rings

π∗8
Z/2 THR(F2) '= F2[w1, w2],

where |w1| = |w2| = 1.

Proof. By Theorem 2.26 and Corollary 4.5 there is a natural equivalence of associative
ring spectra

8Z/2 THR(Fp) ' 8Z/2H Fp ∧L
H Fp8

Z/2H Fp

for every prime, where H Fp is a flat model for the Eilenberg–MacLane spectrum of Fp
as a commutative Z/2-orthogonal ring spectrum (see Remark 2.8). If p is odd8Z/2H Fp
is contractible and thus so is 8Z/2 THR(Fp). For p = 2 the Künneth formula gives an
isomorphism

π∗(8
Z/2H F2 ∧

L
H F2

8Z/2H F2) '= (π∗8
Z/2H F2)⊗F2 (π∗8

Z/2H F2)

and it follows from [HK01] (see also [Wil17]) that 8Z/2H F2 '= F2[w], where |w| = 1.
The result follows. ut

Proof of Theorem 5.15. The map induces a stable equivalence of underlying non-
equivariant spectra by Bökstedt’s calculations. It therefore suffices to show that it also
induces a stable equivalence on Z/2-geometric fixed points.
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When p is odd this holds because the geometric fixed points of both the source and the
target are contractible. For p = 2 by identifying 8Z/2(TH F2(S

2,1)) ' T8Z/2(H F2)
(S1),

we get an isomorphism

π∗8
Z/2(TH F2(S

2,1)) '= π∗(8
Z/2H F2)[v] '= F2[v,w].

To see that the map π∗8Z/2(TH F2(S
2,1)) → π∗8

Z/2 THR(F2) is an isomorphism,
it suffices to show that it is an isomorphism in degree 1, since the source and the target
are both polynomial rings over F2 on two generators in that degree. By considering the
long exact sequences of homotopy groups associated to the isotropy separation sequence
we see that it suffices to prove that the map π1,0TH F2(S

2,1) → π1,0 THR(F2) is an iso-
morphism. Since the canonical map 62,1H F2 → TH F2(S

2,1) induces an isomorphism
on π1,0 it remains to show that the map x̃ : 62,1H F2 → THR(F2) induces an isomor-
phism on π1,0. There is a commutative diagram with exact rows

π26
2H F2

'=
��

tran=0 // π2,16
2,1H F2
��

��

'= // π1,06
2,1H F2

��

// π1H F2 = 0

π2 THH(F2)
0 // π2,1 THR(F2)

'=

f
// π1,0 THR(F2) // π1 THH(F2) = 0

The upper middle horizontal map is an isomorphism since the transfer map tran is equal
to 2 and hence to 0, and the map f is surjective, since π1 THH(F2) = 0. The left-hand
vertical map is an isomorphism, hence the lower left-hand horizontal map is zero. It fol-
lows that f is an isomorphism. From the commutative square

π2,16
2,1H F2

'= //

x̃
��

π26
2H F2

x'=
��

π2,1 THR(F2) // π2 THH(F2)

we see that the map x̃ is injective in π2,1. Therefore the map π1,06
2,1H F2 →

π1,0 THR(F2) is an injective map with the source isomorphic to F2. Thus it remains to
show that π1,0 THR(F2) is isomorphic to F2.

We argue by considering the isotropy separation sequence of THR(F2) and the equiv-
ariant map H F2 → THR(F2). In low degrees this is the sequence

π1 THR(F2)hZ/2 // π1,0 THR(F2) // π18
Z/2 THR(F2) // π0 THR(F2)hZ/2 // π0,0 THR(F2)

F2 // ? // F2⊕F2 // F2 0
// F2

The description of the first and fourth term in this sequence follows from the homotopy
orbit spectral sequence. The third group is identified using Proposition 5.19 and the last
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term is computed using Theorem 5.1. We claim that the first map in this sequence is zero.
Indeed, the map H F2 → THR(F2) induces a commutative diagram

π1((H F2)hZ/2) //

'=

��

π1,0H F2 = 0

��

π1 THR(F2)hZ/2 // π1,0 THR(F2)

The left-hand vertical map is an isomorphism by the homotopy orbit spectral sequence.
Thus the lower horizontal map is zero, and we get a short exact sequence

0 // π1,0 THR(F2) // // F2⊕F2 // // F2 // 0.

This shows that π1,0 THR(F2) is isomorphic to F2, which concludes the proof. ut

5.4. Towards THR(Z)

This section describes parts of the homotopy type and multiplicative structure of
THR(Z) := THR(HZ), where HZ is the Z/2-equivariant commutative Eilenberg–
MacLane ring spectrum of Z with the trivial anti-involution, as in Example 2.4. We begin
by computing its Z/2-geometric fixed points and go on to describe the Z/2-equivariant
homotopy type of THR(Z)[1/2].

Theorem 5.20. There is an isomorphism of graded rings

π∗8
Z/2 THR(Z) '= F2[b1, b2, e]/e

2,

where |b1| = |b2| = 2 and |e| = 1.

Proof. The formula from Theorem 2.26 gives an equivalence of orthogonal ring spectra

8Z/2 THR(Z) ' 8Z/2HZ ∧L
HZ 8

Z/2HZ.

We compute the homotopy ring π∗(8Z/2HZ∧L
HZ 8

Z/2HZ) by means of the multiplica-
tive Künneth spectral sequence of [EKMM97, IV.4.1] (see [Til16] for the multiplicative
statement)

E2
p,q = TorZp,q(π∗(8

Z/2HZ), π∗(8Z/2HZ))⇒ πp+q(8
Z/2HZ ∧L

HZ 8
Z/2HZ).

This spectral sequence collapses at the E2-term since the ring Z has global dimension 1,
and the E2-page has only two potentially non-trivial columns p = 0 and p = 1. By the
computations of [HK01] the graded ring π∗(8Z/2HZ) is a polynomial algebra over F2
on one generator b of degree 2. It follows that there is an isomorphism of bigraded rings

E2
∗,∗
'= TorZ∗,∗(F2[b],F2[b]) '= F2[b1, b2, ε]/(ε

2),

where |b1| = |b2| = (0, 2) and |ε| = (1, 0). The only non-trivial terms are thus concen-
trated at the entries (0, 2k) and (1, 2k), for k ≥ 0, and there are no additive extensions.
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Let bi denote the element in π2(8
Z/2HZ ∧L

HZ 8
Z/2HZ) which is detected by bi and

e denote the element in π1(8
Z/2HZ ∧L

HZ 8
Z/2HZ) which is detected by ε. The mul-

tiplicativity of the spectral sequence implies that the polynomial algebra F2[b1, b2] is a
subalgebra of π∗(8Z/2HZ∧L

HZ8
Z/2HZ) (this also follows from the Künneth theorem).

The multiplicativity of the filtration tells us that the composition

F2[b1, b2] ⊂ π∗(8
Z/2HZ ∧L

HZ 8
Z/2HZ) e·(−)

−−−→ π∗(8
Z/2HZ ∧L

HZ 8
Z/2HZ)

is injective and that

π∗(8
Z/2HZ ∧L

HZ 8
Z/2HZ) = F2[b1, b2] ⊕ e F2[b1, b2].

It remains to prove that e2
= 0. This is the only multiplicative extension problem of the

Künneth spectral sequence, and it needs an extra input.
We solve the multiplicative extension problem by exploiting our knowledge of

8Z/2 THR(F2). The mod 2 reduction map red : HZ → H F2 induces a multiplicative
map of orthogonal ring spectra

(8Z/2 red) ∧red (8
Z/2 red) : 8Z/2HZ ∧L

HZ 8
Z/2HZ→ 8Z/2H F2 ∧

L
H F2

8Z/2H F2 .

On homotopy groups the morphism 8Z/2 red : 8Z/2HZ → 8Z/2H F2 induces the ho-
momorphism of graded rings F2[b] → F2[w] which sends b to w2. It follows that the
map

π∗(8
Z/2HZ ∧L

HZ 8
Z/2HZ)→ π∗(8

Z/2H F2 ∧
L
H F2

8Z/2H F2) '= F2[w1, w2]

sends b1 to w2
1 and b2 to w2

2 (see Proposition 5.19 for the computation of the geometric
fixed points of THR(F2)). If we can show that the map

π1(8
Z/2HZ ∧L

HZ 8
Z/2HZ)→ π1(8

Z/2H F2 ∧
L
H F2

8Z/2H F2)

is zero, we would have e2
= 0. Indeed, if e2

6= 0 it must be either b1, b2 or b1 + b2. But
all these elements map to non-trivial elements in π∗(8Z/2H F2 ∧

L
H F2

8Z/2H F2), which
will contradict the fact that e maps to zero.

In order to show the vanishing statement for the induced homomorphism on π1, we
need to analyze the map

8Z/2 red : 8Z/2HZ→ 8Z/2H F2 .

The multiplication maps define maps of Z/2-equivariant commutative orthogonal ring
spectra fZ : N

Z/2
e HZ → HZ and fF2 : N

Z/2
e H F2 → H F2 which we call the Frobe-

nius maps, following the terminology of [NS18]. These Frobenius maps induce maps of
algebras on geometric fixed points

8Z/2fZ : HZ→ 8Z/2HZ and 8Z/2fF2 : H F2 → 8Z/2H F2,

which induce HZ and H F2-module structures on 8Z/2HZ and 8Z/2H F2, respectively.
These are the module structures of Theorem 2.26, and we refer to them as the Frobenius
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module structures. Since any H F2-module splits uniquely up to homotopy, the Frobe-
nius module structure of 8Z/2H F2 determines a unique isomorphism θ : 8Z/2H F2 '=∨
n≥06

nH F2 in the homotopy category of H F2-modules. It follows from the universal
coefficient theorem that any HZ-module with homotopy groups concentrated in even de-
grees splits uniquely, up to automorphisms of the summands. Thus the Frobenius module
structure on 8Z/2HZ determines a unique isomorphism ζ : 8Z/2HZ '=

∨
n≥06

2nH F2
in the homotopy category of HZ-modules. Under these decompositions, the map

π1(8
Z/2HZ ∧L

HZ 8
Z/2HZ)→ π1(8

Z/2H F2 ∧
L
H F2

8Z/2H F2)

corresponds to the map

π1

( ∨
m,n≥0

62m+2nH F2 ∧
L
HZH F2

)
→ π1

( ∨
k,l≥0

6k+lH F2 ∧
L
HZH F2

)
→ π1

( ∨
k,l≥0

6k+lH F2 ∧
L
H F2

H F2

)
,

where the first map is induced by θ(8Z/2 red)ζ−1
∧ θ(8Z/2 red)ζ−1 and the second map

is the change of base. The only summands which can affect π1 are m = n = 0 and
k, l ∈ {0, 1}. In other words, we need to show that the map

π1(H F2 ∧
L
HZH F2)→ π1(H F2 ∧

L
H F2

H F2)

⊕ π1(6H F2 ∧
L
H F2

H F2)⊕ π1(H F2 ∧
L
H F2

6H F2)

is zero. The first component of this map is zero because π1(H F2 ∧
L
H F2

H F2) =

π1(H F2) = 0. The other two components are zero by Lemma 5.21 below. ut

Lemma 5.21. The composite

H F2
incln=0
−−−−→

∨
n≥0

62nH F2
θ8Z/2(red)ζ−1

−−−−−−−−→

∨
n≥0

6nH F2
projn=1
−−−−→ 6H F2

is equal to zero.

Proof. We begin by choosing exact triangles respectively in the homotopy category of
N

Z/2
e HZ and NZ/2

e H F2-modules,

FZ→ N
Z/2
e HZ

fZ
−→ HZ→ 6FZ and FF2 → N

Z/2
e H F2

fF2
−−→ H F2 → 6FF2 .

By pulling back the second triangle with respect to the mod 2 reduction map we can
regard it as a triangle in the homotopy category ofNZ/2

e HZ-modules. We get a morphism
of triangles in the homotopy category of NZ/2

e HZ-modules

FZ //

r

��

N
Z/2
e HZ

fZ //

N
Z/2
e (red)
��

HZ //

red

��

6FZ

6r

��

FF2
// N

Z/2
e H F2

fF2 // H F2 // 6FF2
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where r is the map induced on homotopy fibers. From this we obtain a commutative
diagram of HZ-modules on geometric fixed points

8Z/2FZ //

8Z/2r
��

HZ
8Z/2fZ //

red
��

8Z/2HZ //

8Z/2(red)
��

68Z/2FZ

68Z/2r
��

8Z/2FF2
// H F2

8Z/2fF2 // 8Z/2H F2 // 68Z/2FF2

where the rows are exact triangles. We want to identify this diagram under the splittings
provided by θ and ζ . Since the bottom row is pulled back from a triangle in the homotopy
category of H F2-modules, it splits as

8Z/2FF2
//

'=θF

��

H F2

id
��

8Z/2fF2 // 8Z/2H F2 //

'=θ

��

68Z/2FF2

'=6θF

��∨
n≥16

n−1H F2
0 // H F2

incln=0 //
∨
n≥06

nH F2
projn≥1

//
∨
n≥16

nH F2

where the homotopy type of the fiber8Z/2FF2 is determined by the fact that8Z/2fF2 cor-
responds to a summand inclusion. Similarly, the top row splits in the homotopy category
of HZ-modules

8Z/2FZ //

'=ζF
��

HZ
8Z/2fZ //

id
��

8Z/2HZ //

'=ζ

��

68Z/2FZ

'=6ζF
��

HZ∨
∨
n≥16

2n−1H F2
2∨0 // HZ red∨0// H F2 ∨

∨
n≥16

2nH F2
β∨id
// 6HZ∨

∨
n≥16

2nH F2

where β is the Bockstein and the isomorphisms here are easily seen to be unique by the
universal coefficient theorem. Now combining the latter three diagrams we get a mor-
phism of exact triangles of HZ-modules

HZ∨
∨
n≥16

2n−1H F2
2∨0 //

θF (8
Z/2r)ζ−1

F

��

HZ

red

��

red∨0 // H F2 ∨
∨
n≥16

2nH F2
β∨id
//

θ8Z/2(red)ζ−1

��

6HZ∨
∨
n≥16

2nH F2

6θF (8
Z/2r)ζ−1

F

��∨
n≥16

n−1H F2
0 // H F2

incl // H F2 ∨
∨
n≥16

nH F2
proj

//
∨
n≥16

nH F2

From the commutativity of the rightmost square it follows that the composite

H F2
incl
−−→ H F2 ∨

∨
n≥1

62nH F2
θ8Z/2(red)ζ−1

−−−−−−−−→ H F2 ∨
∨
n≥1

6nH F2
projn=1
−−−−→ 6H F2
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is equal to zero if and only if π1(6θF8
Z/2(r)ζ−1

F ) = 0 and hence π0(θF8
Z/2(r)ζ−1

F )

= 0, or equivalently if π0(8
Z/2r) = 0. Since the Frobenius maps fZ and fF2 are iso-

morphisms on π0 of the underlying spectra, we must have π0(FZ) = 0 and π0(FF2) = 0.
This implies that the horizontal maps in the commutative diagram

π
Z/2
0 (FZ)

'= //

π
Z/2
0 (r)

��

π0(8
Z/2FZ)

π0(8
Z/2r)

��

π
Z/2
0 (FF2)

'= // π0(8
Z/2FF2)

are isomorphisms, and therefore we can equivalently show that πZ/2
0 (r) = 0. From Propo-

sition 5.5 we see that πZ/2
0 (r) coincides up to isomorphism with the map induced on the

kernels in the diagram

0 // Z

��

i // W2(Z)

red
��

w1 // Z

red
��

// 0

0 // F2
j
// W2(F2)

w1 // F2 // 0

where w1 denotes the first ghost map, given by w1(a, b) = a
2
+2b. It is easy to calculate

that i(m) = (2m,−2m2) and j (l) = (0, l). It follows that the dashed arrow is equal to
zero, and hence πZ/2

0 (r) = 0. ut

Proposition 5.22. There are isomorphisms of abelian groups

π0(THR(Z)Z/2) '= Z,

π1(THR(Z)Z/2) '= Z/2,

π2(THR(Z)Z/2) '= Z/2.

The generator of π1(THR(Z)Z/2) maps to e ∈ π18
Z/2 THR(Z) and squares to 0. The

generator of π2(THR(Z)Z/2) maps to b1 + b2 ∈ π28
Z/2 THR(Z) and has infinite multi-

plicative order.

Proof. The π0-statement follows immediately from Theorem 5.1. For the remaining iso-
morphisms we consider the long exact sequence of homotopy groups for the isotropy
separation sequence of THR(Z). In the subsequence

π28
Z/2 THR(Z)� π1(THR(Z)hZ/2)

0
−→π1(THR(Z)Z/2)

'=
−→ π18

Z/2 THR(Z)
0
−→ π0(THR(Z)hZ/2),

the rightmost map is 0, because the transfer map on π0 is injective, by Theorem 5.2. It
follows that the third map is surjective. Using the unit map HZ→ THR(Z) we see that
the leftmost map is surjective and so, by exactness, the third map is an isomorphism. By
Theorem 5.20 the target group π18

Z/2 THR(Z) is isomorphic to Z/2.
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The long exact sequence continues to the left with

0 = π2(THR(Z)hZ/2)→ π2(THR(Z)Z/2)

↪→ π28
Z/2 THR(Z)� π1(THR(Z)hZ/2) '= Z/2,

and we have already seen that the right-hand map is surjective. From the homotopy orbit
spectral sequence for THR(Z) we see that π2(THR(Z)hZ/2) = 0 and π1(THR(Z)hZ/2) '=
Z/2. Since π28

Z/2 THR(Z) is isomorphic to Z/2 ⊕ Z/2 it follows by exactness that
π2(THR(Z)Z/2) is isomorphic to Z/2.

Using the fact that the canonical map S1,1
+ ∧ HZ → THR(Z) induces an isomor-

phism on π28
Z/2(−) one can check that the kernel of the right-hand map is a copy

of Z/2 generated by b1 + b2. The generator b of π2(THR(Z)Z/2) maps to the element
b1+b2 of π28

Z/2 THR(Z), which has infinite multiplicative order. Since THR(Z)Z/2 →
8Z/2 THR(Z) is a map of ring spectra, the element b must also have infinite order.
The generator e′of π1(THR(Z)Z/2) maps to e ∈ π18

Z/2 THR(Z). Since e does not
divide b1 + b2 it follows that e′ cannot divide b. Hence there is no room for (e′)2 in
π2(THR(Z)Z/2) '= Z/2{b} to be non-zero. ut

Remark 5.23. Bökstedt [Bök] showed that THH(Z) is equivalent to the wedge of
Eilenberg–MacLane spectra

THH(Z) ' HZ ∨
∨
k≥1

62k−1HZ/k.

Hence, for parity reasons the multiplication in π∗ THH(Z) must be zero in positive de-
grees. However, the multiplicative structure on the spectrum THH(Z) is far from trivial,
as can be seen by taking homology with Fp coefficients. Theorem 5.20 and Proposition
5.22 show that in the Z/2-equivariant case the complexity of the multiplicative structure
is apparent already at the level of homotopy groups. In future work we hope to calculate
the full bigraded homotopy ring π∗,∗ THR(Z) and determine the Z/2-equivariant homo-
topy type of THR(Z). Based on the calculations of this section we conjecture that there is
a stable equivalence of Z/2-equivariant spectra

THR(Z) ' HZ ∨
∨
k≥1

62k−1,kHZ/k.

We show now that this formula holds after localizing at an odd prime p.

Theorem 5.24. Let p be an odd prime. There is a stable equivalence of Z/2-spectra

THR(Z)(p) ' THR(Z(p)) ' HZ(p) ∨
∨
k≥1

62k−1,kH(Z/pνp(k))

where νp(k) is the p-adic valuation of k.

Combining the results for the individual primes gives the following.

Corollary 5.25. There is a stable equivalence of Z/2-spectra

THR(Z)[1/2] ' THR(Z[1/2]) ' HZ[1/2] ∨
∨
k≥1

62k−1,kH(Z/k)[1/2].
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The proof of this theorem is similar in spirit to the computation of THR(Fp). The main
difference is that since the wedge of Eilenberg–MacLane spectra in question is not a free
algebra, we need to define a map individually on each summand. We start by identifying
the action of Z/2 on the underlying homotopy type of THR(Z).

Lemma 5.26. Let p be an odd prime. The map w : THH(Z(p))→ THH(Z(p)) is equiv-
alent in the stable homotopy category to the wedge product

1 ∨
∨
k≥1

(−1)k : HZ(p) ∨
∨
k≥1

62k−1HZ/pνp(k)→ HZ(p) ∨
∨
k≥1

62k−1HZ/pνp(k).

In other words, w acts by the identity in degree 0 and in degrees 3 mod 4, and by −1 in
degrees 1 mod 4 (in the degrees where the p-adic valuation is zero, the groups are trivial
and −1 = 1).

Proof. Since HZ(p) is a Z/2-equivariant commutative ring spectrum, it follows from
Corollary 4.2 that THR(Z(p)) is anHZ(p)-module. The involution on Z(p) is trivial, so we
see that w : THH(Z(p))→ THH(Z(p)) is HZ(p)-linear. According to [Bök] the splitting

THH(Z(p)) ' HZ(p) ∨
∨
k≥1

62k−1HZ/pνp(k)

is HZ(p)-linear, i.e. it is an equivalence in the homotopy category of HZ(p)-modules.
But the latter is triangulated equivalent to the classical derived category of Z(p) (see
[SS03]) and hence admits universal coefficient exact sequences. Given two HZ(p)-
modules X and Y , the sequence looks as follows:

0→ Ext1Z(π∗X[1], π∗Y )→ [X, Y ] → HomZ(π∗X,π∗Y )→ 0,

where [X, Y ] stands for morphisms in the homotopy category of HZ(p)-modules. This
implies that w splits in the homotopy category of HZ(p)-modules as a wedge

w0 ∨
∨
k≥1

wk : HZ(p) ∨
∨
k≥1

62k−1HZ/pνp(k)→ HZ(p) ∨
∨
k≥1

62k−1HZ/pνp(k),

and that each wi is in fact an integer. Indeed, the potential non-diagonal terms correspond
to elements in Ext-groups, and since there is a shift involved, these Ext-terms vanish
for k ≥ 2 for degree reasons. Additionally, when X = HZ(p) the Ext-term obviously
vanishes.

Now since Z(p) has the trivial involution, we see that w0 = 1. Moreover the identity
w2
= 1 implies that w2

k = 1 mod pνp(k) for any k ≥ 1. From now on we consider only
those degrees k for which νp(k) 6= 0. We observe that since p is odd, if an integer a
satisfies the equation a2

= 1 mod pl for some l ≥ 1 we must have a = ±1 mod pl . We
conclude that wk = ±1 for any k ≥ 1.
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To determine the sign of wk we use Bökstedt’s result [Bök], which implies that the
map THH(Z(p)) → THH(Fp) is a product of Bocksteins. Moreover by Corollary 5.16
the involution on π2k THH(Fp) is (−1)k , and we obtain a commutative diagram

62k−1HZ/pνp(k)
β
//

wk

��

62kHFp

(−1)k

��

62k−1HZ/pνp(k)
β
// 62kHFp

where β is the Bockstein. It follows that (wk − (−1)k)β = 0. Since wk = ±1, the
difference wk − (−1)k can be 0, −2 or 2. But the latter two cases are impossible since p
is odd and the Bockstein is non-trivial. Hence wk − (−1)k = 0, which proves our claim.

ut

Proof of Theorem 5.24. The equivalence

THH(Z)(p) ' HZ(p) ∨
∨
k≥1

62k−1HZ/pνp(k)

gives maps inclk : 62k−1HZ/pνp(k) → THH(Z)(p) for k ≥ 1. By the restriction-
induction adjunction we get maps in the Z/2-equivariant stable homotopy category:

Z/2+ ∧62k−1HZ/pνp(k)
˜inclk // THR(Z)(p)

for k ≥ 1. Composing with the morphisms

S2k−1,k
∧HZ/pνp(k)→ Z/2+ ∧62k−1HZ/pνp(k)

we obtain maps in the Z/2-equivariant stable homotopy category

inclk : S2k−1,k
∧HZ/pνp(k)→ THR(Z)(p).

Together with the unit map HZ(p)→ THR(Z(p)) they assemble into a map

HZ(p) ∨
∨
k≥1

62k−1,kHZ/pνp(k)→ THR(Z)(p).

We will now argue that this map is a genuine Z/2-equivariant equivalence. The Z/2-
geometric fixed points of both sides vanish since p is odd. Hence it suffices to show that
this map is an underlying equivalence. We observe that on the underlying spectra the map
tran : S0

→ Z/2+ is the stable pinch map, and the map S2k−1,k
→ Z/2+ ∧ S2k−1 is

equivalent as a map on non-equivariant spectra to the map

(1, (−1)k) : S2k−1
→ S2k−1

∨ S2k−1.
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Using this and Lemma 5.26, we see that on the underlying spectra the map inclk is the
composite

62k−1HZ/pνp(k) (1,(−1)k)
−−−−−→ 62k−1HZ/pνp(k) ∨62k−1HZ/pνp(k)

(inclk,(−1)k inclk)
−−−−−−−−−−→ THH(Z(p))

for all k ≥ 1, which is equal to 2 inclk . By construction the maps inclk assemble into an
equivalence of spectra. Since p is odd, 2 is invertible and hence so do the maps inclk . This
completes the proof. ut

Appendix A. Flatness and ring spectra with anti-involution

In this appendix we prove some technical results on ring spectra with anti-involution
and on flatness of orthogonal G-spectra. We recall some definitions, from [MM02],
[MMSS01] and [Sto11, Sch18].

LetG be a compact Lie group. Similar to Definition 2.1, we model equivariant spectra
by the category of G-objects in orthogonal spectra, with the model structure induced by
a complete G-universe. Thus for us an orthogonal spectrum is a Top∗-enriched functor

X : O → TopG∗ ,

whereO is the category whose objects are the finite-dimensional real inner product spaces
and where the space of morphisms O(V,W) is the Thom space of the orthogonal com-
plement bundle over the Stiefel manifold L(V,W) of linear isometric embeddings of V
into W . This space consists of the unique point∞ at infinity and pairs (α, x) of a linear
isometric embedding α : V → W and x ∈ W − α(V ). The category of orthogonal G-
spectra is the Top∗-enriched functor category SpG := Fun(O,TopG∗ ). Let O≤m−1 denote
the full subcategory of O spanned by the vector spaces of dimsension ≤ m − 1. The
inclusion ιm−1 : O

≤m−1 ↪→ O induces an adjunction

SpG = Fun(O,TopG∗ )
ι∗
m−1

// Fun(O≤m−1,TopG∗ ),
(ιm−1)!

oo

where (ιm−1)! is the Top∗-enriched left Kan extension. We recall that the (m−1)-skeleton
of a G-spectrum X is defined by

skm−1X := (ιm−1)!ι
∗

m−1X.

The counit of the adjunction is a map of orthogonalG-spectra εX : skm−1X→ X, which
evaluated at Rm gives a G×O(m)-equivariant map (skm−1X)(Rm)→ X(Rm).
Definition A.1. The m-th latching space of an orthogonal G-spectrum Y is defined by

LmX := (skm−1X)(Rm).

The orthogonal G-spectrum X is called flat (or S-cofibrant) if the latching map LmX→
X(Rm) is a G×O(m)-cofibration, for every m ≥ 0.
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The notion of S-cofibrant G-spectra was first introduced in [Sto11, Section 2.3.3]. It co-
incides with the notion of flat G-spectrum of [Sch18, Proposition 5.9]. We note that this
definition does not depend on the choice of universe. The term “flat” is justified by the
fact that the functorX∧− preserves genuineG-equivariant stable equivalences whenever
X is a flat G-spectrum (see [Sch18, Theorem 5.10] and [BDS16, Proposition 2.10.1]).

A.1. A model structure on ring spectra with anti-involution

Let f : (A,w)→ (B, σ ) be a morphism of ring spectra with anti-involution. We say that
f is a stable Z/2-equivalence if the underlying map of orthogonal Z/2-spectra is a stable
equivalence with respect to a complete universe of Z/2-representations.

Proposition A.2. There is a cofibrantly generated model structure on the category of
orthogonal ring spectra with anti-involution, where the weak equivalences are the stable
Z/2-equivalences and the cofibrations are the cofibrations of [HHR16, B.63].

Remark A.3. It follows immediately from Proposition A.2 that any ring spectrum with
anti-involution can be replaced up to equivalence by one whose underlying Z/2-spectrum
is cofibrant in the sense of [HHR16, B.63], and therefore flat.

A similar model structure where the cofibrations are the flat cofibrations would exist if
one can prove that the flat model structure on orthogonal Z/2-spectra satisfies the indexed
version of the pushout product axiom of [HHR16, B.97–B.102].

The argument is essentially the one of [SS00, 4.1(3)]. Let T σ : SpZ/2 → SpZ/2 be the
twisted tensor algebra functor, which sends X in SpZ/2 to

T σ (X) =
∨
n≥0

X∧n.

The Z/2-action on T σ (X) preserves the summands, and is given on the n-th summand by
the map

X∧n
w∧n

−−→ X∧n
τn
−→ X∧n,

where w is the involution of X and τn is the permutation of n = {1, . . . , n} that re-
verses the order. The usual concatenation product µX : T σ (T σ (X)) → T σ (X) is Z/2-
equivariant, as is the rest of the monad structure on T σ . It is not hard to see that T σ (X) is
the free Assocσ -algebra on X and that ring spectra with anti-involution are precisely the
algebras for T σ (cf. Remark 2.3). We write Monσ (SpZ/2) for the category of T σ -algebras,
and

Monσ (SpZ/2)
U

// SpZ/2
T σoo

for the corresponding free-forgetful adjunction.

Proof of Proposition A.2. To show that there is such a model structure on Monσ (SpZ/2)
we follow the argument of [SS00, 4.1(3)] and test the conditions of [SS00, 6.2]. The non-
trivial condition to verify is the analogue of [SS00, 6.2], which is based on the construc-
tion of a filtration of the pushouts of the form X← T σ (K)→ T σ (L) in the category of
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ring spectra with anti-involution, where K → L is a map of orthogonal Z/2-spectra. The
filtration

X =: P0 → P1 → · · · → Pn→ · · · → P

of the pushout P is constructed in [SS00, Section 6] inductively as follows. Let P(n)
denote the poset of subsets of n = {1, . . . , n} ordered by inclusion. The authors define an
n-cube Wn : P(n)→ Sp of spectra by sending a subset S of n to the spectrum

Wn(S) := X ∧ C1 ∧X ∧ C2 ∧X ∧ · · · ∧X ∧ Cn ∧X

where Ci = L if i ∈ S and Ci = K otherwise. The spectrum Pn is then defined as the
pushout

Qn
//

��

X∧n+1
∧ L∧n

��

Pn−1 // Pn

where Qn := colimP1(n)Wn and P1(n) is the subposet of P(n) obtained by removing
the terminal object. The left-hand vertical map is defined in the proof of [SS00, 6.2]. The
authors show that the colimit spectrum P = colimn Pn is a monoid, and that it satisfies
the universal property for the pushout of X ← T σ (K)→ T σ (L) in the category or ring
spectra.

We show that the spectra Pn carry Z/2-actions that induce an anti-involution on P ,
and that this defines the pushout ofX← T σ (K)→ T σ (L) in the category of ring spectra
with anti-involution. The cubes Wn are naturally Z/2-equivariant cubes, where the poset
P(n) has the involution induced by the involution τn of n that reverses the order. The
Z/2-structure is defined by the natural transformation

Wn(S) = X
∧n+1
∧

∧
i∈S

L ∧
∧
i /∈S

K → X∧n+1
∧

∧
i∈τnS

L ∧
∧
i /∈τnS

K = Wn(τnS)

which is the smash of the following maps. On theX∧n+1-factor it is the map τn+1◦w
∧n+1,

where w is the involution of X. On the S-indexed smash it sends the i-factor to the τni-
factor by the involution of L. On the smash factor indexed by the complement of S it
sends the i-factor to the τni-factor by the involution of K . The colimit colimP1(n)Wn

therefore inherits a Z/2-action, and the map to the terminal vertex

colim
P1(n)

Wn→ X∧n+1
∧ L∧n

is equivariant. It is straightforward to show that the left vertical map of the square above
is also equivariant, and therefore the pushout defining Pn from Pn−1 is a pushout of Z/2-
spectra. This defines a filtration of Z/2-spectra

X =: P0 → P1 → · · · → Pn→ · · · → P := colim
n

Pn.

Let us now verify that the resulting involution on the colimit P reverses the order of
multiplication. The multiplication on P is defined in the proof of [SS00, 6.2] by maps
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µn,m : Pn ∧ Pm → Pn+m. For n + m = 0 we have Pn ∧ Pm = X ∧ X and we take µ0,0
to be the multiplication map of X. For n+m > 0 we define µn,m by induction on n+m
by expressing Pn ∧ Pm as an iterated pushout where the building blocks are themselves
pushouts of terms that depend only on Pk ∧ Pl where k + l < n + m. In order to verify
the compatibility between these maps and the involution it is convenient to write Pn∧Pm
as the colimit of the diagram of Z/2-spectra

Wn,m =

Pn−1∧Pm−1 Qn∧Pm−1oo // X∧n+1
∧L∧n∧Pm−1

Pn−1∧Qm

OO

��

Qn∧Qm
oo //

OO

��

X∧n+1
∧L∧n∧Qm

OO

��

Pn−1∧X
∧m+1

∧L∧m Qn∧X
∧m+1

∧L∧moo // X∧n+1
∧L∧n∧X∧m+1

∧L∧m


.

The map Pn ∧ Pm → Pn+m is then determined by the following maps out of the four
outer corners ofWn,m, where µl,k : Pl ∧Pk → Pl+k has already been inductively defined
for l + k < n+m:

Pn−1 ∧ Pm−1
µn−1,m−1
−−−−−→ Pn+m−2 → Pn+m,

X∧n+1
∧ L∧n ∧ Pm−1 → Pn ∧ Pm−1

µn,m−1
−−−−→ Pn+m−1 → Pn+m,

Pn−1 ∧X
∧m+1

∧ L∧m→ Pn−1 ∧ Pm
µn−1,m
−−−−→ Pn−1+m→ Pn+m,

X∧n+1
∧ L∧n ∧X∧m+1

∧ L∧m→ X∧n+m+1
∧ L∧n+m→ Pn+m.

The first map in the last composite swaps the L∧n and X∧m+1 factors and multiplies the
last factor of X∧n+1 and the first factor of X∧m+1. These maps define a monoid structure
on the colimit P . The compatibility of this multiplication with the involution reduces to
the commutativity of the diagram

Pn ∧ Pm '= colim
P1(2)×2

Wn,m

τ

��

w∧w //

��

colim
P1(2)×2

Wn,m

µn,m

��

Pm ∧ Pn '= colim
P1(2)×2

Wm,n

µm,n
// Pm+n

w // Pn+m

where the middle vertical map is the composite of the maps

colim
P1(2)×2

Wn,m→ colim
P1(2)×2

τ ∗Wm,n
τ∗
−→ colim

P1(2)×2
Wm,n

of the pushforward by the functor τ : P1(2)×2
→ P1(2)×2 that switches the product

factors, and of the natural transformation Wn,m → τ ∗Wm,n that permutes the two smash
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factors in each entry of Wn,m. It is immediate to see that the left-hand square commutes.
The right-hand square commutes essentially because the order-reversing permutations
τn ∈ 6n satisfy

τn × τm = τn+m ◦ χn,m

where χn,m ∈ 6n+m switches the blocks of the first n elements and the last m elements.
This shows that the colimit P is a ring spectrum with anti-involution. In order to show

that P is the pushout of X← T σ (K)→ T σ (L) in the category Monσ (SpZ/2), we notice
that the morphisms set in Monσ (SpZ/2) from (A,w) to (B, σ ) is the fixed point set of the
involution on the morphism set of underlying ring spectra that sends f : A→ B to σfw.
Therefore it suffices to show that the bijection

HomMon(Sp)(X← T (K)→ T (L),A = A = A) '= HomMon(Sp)(P,A)

established in [SS00, 6.2] is equivariant. This is readily verified.
It remains to verify the analogue of [SS00, 6.2]. That is, we need to prove that if

K → L is an acyclic cofibration of orthogonal Z/2-spectra with cofibrant source, then
the map X → P is an acyclic cofibration of the underlying orthogonal Z/2-spectra. The
argument is identical to the one of [SS00, 6.2], by using the equivariant version of the
pushout product axiom of [HHR16, B.102]. ut

A.2. Shifts preserve flatness of orthogonal Z/2-spectra

Let G be a compact Lie group. Recall that an orthogonal G-spectrum Y can be evaluated
on a real n-dimensional G-representation V by the formula

Y (V ) = L(Rn, V )+ ∧O(n) Yn,

where L(Rn, V )+ is the space of linear isometries from Rn to V with a disjoint base-
point, and the G-action is diagonal. The shift functor shV : SpG → SpG is defined by
precomposing with the functor (V ⊕−) on O, that is,

(shV Y )n = Y (V ⊕ Rn).

The goal of this section is to prove the following.

Proposition A.4. Let f be a flat cofibration of orthogonal Z/2-spectra, and V a finite-
dimensional orthogonal Z/2-representation. Then the map shV f is a flat cofibration.

Remark A.5. The proof we propose works for any compact Lie group G, up until the
description of the coequalizer in the proof of Lemma A.9, where we use the fact that the
irreducible representations of Z/2 are one-dimensional. We believe that with more work
the argument can be modified to apply to any compact Lie group.

We begin with a lemma of point-set topology. This is a stable analogue of [SS12, Propo-
sition 3.11] and [Sch18, Proposition 1.3.6].
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Lemma A.6. Let Y be an orthogonal spectrum satisfying the following properties:

(i) Y (Rn) is compact Hausdorff for all n ≥ 0.
(ii) For any morphism (α, x) : V → W in O the induced map (α, x)∗ : Y (V )→ Y (W)

is injective.
(iii) Suppose we are given morphisms in O

V
(α,x)
−−−→ W

(α′,x′)
←−−− V ′,

where α and α′ are subspace inclusions, and let ι : V ∩V ′→ V and ι′ : V ∩V ′→ V ′

be the inclusions. Then there exist v ∈ V − V ∩ V ′ and v′ ∈ V ′ − V ∩ V ′ such that
x + α(v) = x′ + α(v′) and the canonical map into the pullback

Y (V ∩ V ′)

(ι,v)∗

))

(ι′,v′)∗ //

// P //

��

Y (V )

(α,x)∗
��

Y (V ′)
(α′,x′)∗ // Y (W)

is surjective.

Then the map LmY → Y (Rm) is a closed inclusion for all m ≥ 0.

Proof. The latching space LmY can be calculated as a coequalizer∨
0≤s≤l≤m−1

O(Rl,Rm) ∧O(Rs,Rl) ∧ Y (Rs)⇒
∨

0≤l≤m−1

O(Rl,Rm) ∧ Y (Rl)→ LmY,

hence LmY is compact. Since Y (Rm) is Hausdorff, it suffices to show that the map
LmY → Y (Rm) is injective. Let (φ, t) ∈ O(Ri,Rm), y ∈ Y (Ri) and (φ′, t ′) ∈

O(Rj ,Rm), y′ ∈ Y (Rj ) be such that

(φ, t)∗(y) = (φ
′, t ′)∗(y

′) ∈ Y (Rm), (3)

and let us show that the elements ((φ, t), y) and ((φ′, t ′), y′) are identified in the co-
equalizer. We set V = φ(Ri) and V ′ = φ′(Rj ) and factor φ as an isomorphism φ̄ onto V
followed by an inclusion j , and similarly φ′ = j ′ ◦ φ̄′.

Consider the morphisms in O

V
(j,t)
−−→ Rm

(j ′,t ′)
←− V ′.

By (3) it follows that (j, t)∗(φ̄, 0)∗(y) = (j ′, t ′)∗(φ̄′, 0)∗(y′) as elements of Y (Rm).
Condition (iii) now gives a commutative diagram

V ∩ V ′
(ι′,v′)

//

(ι,v)

��

V ′

(j ′,t ′)

��

V
(j,t)

// Rm
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and a point z ∈ Y (V ∩ V ′) mapping to (φ̄, 0)∗(y) ∈ Y (V ) and (φ̄′, 0)∗(y′) ∈ Y (V ′)
respectively by (ι, v)∗ and (ι′, v′)∗. Set k = dim(V ∩V ′) and let h : Rk → Ri be a linear
isometry for which there is a factorization

Rk

∃β '=
��

h // Ri

φ

��

V ∩ V ′
� � // Rm

Let h′ be the composite Rk
β
−→ V ∩ V ′ ↪→ V ′

φ̄′
−1

−−→ Rj , and take w = φ̄−1(v) and
w′ = φ̄′

−1
(v′). Then there are commutative diagrams in O

Rk
(β,0)

//

(h′,w′)
##

V ∩ V ′
(ι′,v′)

// V ′

(j ′,t ′)

��

Rj
(φ′,t ′)

// Rm

Rk
(β,0)

//

(h,w)
##

V ∩ V ′
(ι,v)

// V

(j,t)

��

Ri
(φ,t)

// Rm

Setting u = (β, 0)−1
∗ (z) ∈ Y (Rk), we get

(φ, t)∗(h,w)∗(u) = (j, t)∗(ι, v)∗(z) = (j, t)∗(φ̄, 0)∗(y) = (φ, t)∗(y).

By condition (ii) we have (h,w)∗(u) = y, and similarly (h′, w′)∗(u) = y′. Finally, we
have

((φ, t), y) = ((φ, t), (h,w)∗(u))

' ((φ, t) ◦ (h,w), u) = ((j, t) ◦ (ι, v) ◦ β, u) = ((j ′, t ′) ◦ (ι′, v′) ◦ β, u)

and by a similar argument ((j ′, t ′) ◦ (i′, v′) ◦ β, u) ' ((φ′, t ′), y′). ut

The evaluation functor evn : SpG→ TopG×O(n)∗ that sends aG-spectrum Y to Y (Rn) has
a Top∗-enriched left adjoint, which we denote byGn. Spectra of the formGn(Z), for Z a
pointed G×O(n)-space, are called semifree. We recall that this left adjoint is described
by the formula

Gn(Z)(V ) = O(Rn, V ) ∧O(n) Z.

Lemma A.7. Let Z be a finite G×O(n)-CW complex and U a G-representation. Then
the latching maps for shU Gn(Z) are closed inclusions.

Proof. We check that the underlying (non-equivariant) spectrum of shU Gn(Z) satisfies
the conditions of Lemma A.6. The spaces

(shU Gn(Z))(Rm) = O(Rn, U ⊕ Rm) ∧O(n) Z

are all compact Hausdorff, so condition (i) is satisfied. Condition (ii) is clear. It remains
to check condition (iii).
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Suppose we are given maps

V
(α,x)
−−−→ W

(α′,x′)
←−−− V ′,

where α and α′ are subspace inclusions, and points [φ, y, z] ∈ O(Rn, U ⊕ V ) ∧O(n) Z
and [φ′, y′, z′] ∈ O(Rn, U ⊕ V ′) ∧O(n) Z are such that

(α, x)∗[φ, y, z] = (α
′, x′)∗[φ

′, y′, z′] ∈ O(Rn, U ⊕W) ∧O(n) Z.

This means that there is a g ∈ O(n) such that(
(1U ⊕ α) ◦ φ, x + (1U ⊕ α)(y), z

)
=
(
(1U ⊕ α′) ◦ φ′ ◦ g−1, x′ + (1U ⊕ α′)(y′), gz′

)
in O(Rn, U ⊕W) ∧ Z.

Since α and α′ are subspace inclusions, there is a unique map φ̄ : Rm→ V ∩V ′ such
that the diagram

U ⊕ V

1⊕α

**
Rn

φ

55

φ̄
//

φ′◦g−1
))

U ⊕ (V ∩ V ′)
?�

OO

//
� _

��

U ⊕W

U ⊕ V ′
1⊕α′

44

commutes. We have decompositions y = e+v and y′ = e′+v′ where e, e′ ∈ U⊕V ∩V ′,
v ∈ U⊕V−U⊕(V∩V ′) and v′ ∈ U⊕V ′−U⊕(V∩V ′). Note thatU⊕V−U⊕(V∩V ′) =
V − (V ∩ V ′) and similarly for V ′. From this we get

x + (1⊕ α)(e)+ (1⊕ α)(v) = x′ + (1⊕ α′)(e′)+ (1⊕ α′)(v′).

Applying the orthogonal projection onto U ⊕ (V ∩V ′) we get (1⊕α)(e) = (1⊕α′)(e′),
which implies e = e′. This shows that the diagram in O

V ∩ V ′
(ι′,v′)

//

(ι,v)

��

V ′

(α′,x′)

��

V
(α,x)

// W

commutes, and that the point [φ̄, e, z] ∈ O(Rn, U ⊕ V ∩ V ′) ∧O(n) Z maps to [φ, y, z]
and [φ′, y′, z′] respectively by the maps (ι, v)∗ and (ι′, v′)∗. ut

Lemma A.8. Let 0 be a compact Lie group and let i : M → N be a smooth, 0-
equivariant embedding of smooth compact closed 0-manifolds. Then i is a 0-cofibration.

Proof. We will factor i as a composite of two relative 0-CW complexes. The 0-manifold
M is a 0-CW complex by Illman’s equivariant triangulation theorem [Ill83, 7.2]. Choose
an equivariant Riemannian metric on N and an equivariant tubular neighborhood of M ,
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identified with the normal bundle ν of the embedding (see e.g. [Kan07]). The closed unit
disc bundle D(ν) inherits an equivariant cell structure from M such that the zero section
M ↪→ D(ν) is a relative 0-CW complex (see e.g. [LO01, Lemma 1.1]). The space N can
be written as a pushout

S(ν) //

��

D(ν)

��

N − D̊(ν) // N

where S(ν) is the unit sphere bundle of ν and D̊(ν) is the open disc bundle. The left
vertical map is the inclusion of the boundary in a smooth, compact 0-manifold and is
therefore a relative 0-CW complex by Illman’s theorem [Ill83, 7.2]. By cobase change it
follows that the inclusion D(ν)→ N is also a relative 0-CW complex. The map i is the
composite M → D(ν)→ N and is therefore a 0-cofibration. ut

Lemma A.9. Let Z be a finite Z/2 × O(n)-CW complex and U a Z/2-representation.
Then the Z/2-spectrum shU Gn(Z) is flat.

Proof. Any Z/2-representation U decomposes as a direct sum of one-dimensional rep-
resentations. An isomorphism U '= U1 ⊕ · · · ⊕ Ud induces an isomorphism of functors
shU '= shU1 ◦ · · · ◦ shUd , so we may assume that U is one-dimensional.

Let Y = shU Gn(Z). We must show that for each m ≥ 0 the latching map LmY →
Y (Rm) is a Z/2 × O(m)-cofibration. The latching space LmY is the coequalizer of the
diagram∨

0≤k≤l≤m−1

O(Rl,Rm) ∧O(Rk,Rl) ∧O(Rn, U ⊕ Rk) ∧O(n) Z

⇒
∨

0≤l≤m−1

O(Rl,Rm) ∧O(Rn, U ⊕ Rl) ∧O(n) Z,

which is isomorphic to the value of the functor −∧O(n) Z on the coequalizer Wm of∨
0≤k≤l≤m−1

O(Rl,Rm) ∧O(Rk,Rl) ∧O(Rn, U ⊕ Rk)

⇒
∨

0≤l≤m−1

O(Rl,Rm) ∧O(Rn, U ⊕ Rl).

The latching map can be written as the value of the functor −∧O(n) Z on a G×O(n)×
O(m)-equivariant map fm : Wm→ O(Rn, U ⊕Rm). Since−∧O(n)Z preserves cofibra-
tions, it suffices to show that fm is a G×O(n)×O(m)-cofibration.

If m < n− 1, then there are no linear embeddings of Rn into U ⊕ Rm and fm is just
∗ → ∗, which is a cofibration. Ifm = n−1 thenWm = ∗ and the map fm is the inclusion
of the basepoint into O(Rn, U ⊕ Rn−1) = L(Rn, U ⊕ Rn−1)+, which is a cofibration,
since the space L(Rn, U⊕Rn−1) of linear isometries is aG×O(n)×O(n−1)-manifold,
and hence cofibrant, by Illman’s theorem [Ill83].
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On the other hand if m > n, then we claim that fm is a homeomorphism. To see this,
first note that the map fm agrees at the point set level with the latching map for the G-
spectrum shU Gn(O(n)+), and is therefore a closed embedding by Lemma A.6. Since all
the spaces involved are compact Hausdorff, it now suffices to show that fm is surjective.
Take any point

(α, x) ∈ O(Rn, U ⊕ Rm)

and let V denote the image of the map Rn α
−→ U ⊕ Rm

proj
−−→ Rm. Let v = dimV ; then

v ≤ n ≤ m− 1. The map α factors as

Rn

ᾱ
##

α // U ⊕ Rm

U ⊕ Rv
idU⊕β

99

where β is an isometry with image V . The vector x can be decomposed as a sum x =

x′ + x′′, where x′ ∈ U ⊕ V and x′′ ∈ U ⊕Rm−U ⊕ V = Rm−V . Now if y′ is a vector
in U ⊕ Rv which maps to x′ then the class in Wm of the point

(β, x′′) ∧ (ᾱ, y′) ∈ O(Rv,Rm) ∧O(Rn, U ⊕ Rv)

is mapped to (α, x) by fm.
We are left with the case m = n. The space Wm is homeomorphic to

O(Rn−1,Rn) ∧O(n−1) O(Rn, U ⊕ Rn−1)

and fm is the map on Thom spaces induced by a map of vector bundles which is also a
pullback diagram

E

��

// γ (U ⊕ Rn)⊥

��

L(Rn−1,Rn)×O(n−1) L(Rn, U ⊕ Rn−1) // L(Rn, U ⊕ Rn)

where γ (U ⊕ Rn)⊥ is the orthogonal complement bundle. The lower horizontal map is
a smooth map between smooth manifolds which is G × O(n) × O(n)-equivariant and
also a closed embedding. By Lemma A.8 it is therefore an equivariant cofibration and it
follows that the induced map on Thom spaces is a cofibration as well (see e.g. [LO01,
Lemma 1.1]). ut

Proof of Proposition A.4. We will now show that shifts preserve flat cofibrations (S-
cofibrations) of orthogonal Z/2-spectra. The functor shU commutes with colimits, hence
it suffices to show that shU sends generating flat cofibrations to flat cofibrations. The
generating flat cofibrations have the form

i ∧ 1 : A ∧Gn(Z)→ B ∧Gn(Z),
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where i : A→ B is a (non-equivariant) cofibration of spaces and Z is a finite G×O(n)-
CW complex. The map shU (i ∧ 1) is isomorphic to the map

i ∧ 1 : A ∧ shU (Gn(Z))→ B ∧ shU (Gn(Z)).

Lemma A.9 implies that shU (Gn(Z)) is flat, and since the S-model structure is topological
[Sto11], the latter map is a flat cofibration. ut
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