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Abstract. We prove that the moduli space of complete Riemannian metrics of bounded geometry
and uniformly positive scalar curvature on an orientable 3-manifold is path-connected. This gener-
alises the main result of the fourth author [Mar12] in the compact case. The proof uses Ricci flow
with surgery as well as arguments involving performing infinite connected sums with control on the
geometry.
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1. Introduction

1.1. Summary of earlier results

A classical topic in Riemannian geometry is the study of complete manifolds with pos-
itive scalar curvature. A first basic problem is that of existence: in a given dimension,
characterize the class of smooth manifolds which admit such a metric. A second one is,
given a manifold M in this class, to determine whether such a metric is unique up to
isotopy—possibly working modulo the action of the diffeomorphism group of M on the
space of metrics under consideration.

When the manifold is non-compact, each of these two problems gives rise to several
questions, according to whether one studies metrics with positive scalar curvature or uni-
formly positive scalar curvature, i.e. scalar curvature greater than some positive constant,
or restricts attention to metrics satisfying additional bounds on the geometry.

In this paper we are concerned with dimension 3. We first briefly review known re-
sults in other dimensions. The Gauss–Bonnet formula implies that S2 is the only two-
dimensional orientable compact manifold with positive scalar curvature. Weyl [Wey16]
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proved that the space of such metrics on S2 is path-connected, as a consequence of the
Uniformisation Theorem (later Rosenberg–Stolz [RS01] proved contractibility). In high
dimensions this is no longer true. The space of metrics of positive scalar curvature on
Sn is disconnected for all dimensions n ≥ 7 of the form n = 8k, n = 8k + 1 or
n = 4k − 1 (Hitchin [Hit74], Carr [Car88], Kreck–Stolz [KS88]). We would also like
to mention that similar questions have been studied in dimension 2 in a non-compact
setting, see Belegradek–Hu [BH15, BH16].

Let M be a closed, orientable, connected, smooth 3-dimensional manifold. The ques-
tion of when such a manifold admits a metric of positive scalar curvature has been studied
by Gromov–Lawson [GL80, GL83] and Schoen–Yau [SY79] in the late 1970s and com-
pletely settled by Perelman in his celebrated work on the Geometrisation Conjecture in
2003. Obvious examples of manifolds in this class are S2

× S1 and spherical manifolds
(i.e. manifolds that are diffeomorphic to metric quotients of the round 3-sphere). Gromov–
Lawson and Schoen–Yau observed independently that this class is closed under connected
sum. Perelman completed the classification:

Theorem 1.1 (Perelman [Per03]). A closed, orientable, connected 3-manifold admits a
Riemannian metric of positive scalar curvature if and only if it is a connected sum of
spherical manifolds and S2

× S1’s.

We now state the uniqueness result due to the fourth author. For this we introduce some
notation. Let σ be a positive constant. Let R+(M) (resp. Rσ (M)) denote the set of all
metrics on M which have positive scalar curvature (resp. scalar curvature ≥ σ ).

Theorem 1.2 (Marques [Mar12]). Let M be a closed, orientable, connected 3-manifold
such that R+(M) 6= ∅. Then R+(M)/Diff(M) is path-connected in the C∞ topology.

The main theorem of this article is a generalisation of Theorem 1.2 to possibly non-
compact manifolds. Before we state it, we review some results on the existence question
in the setting of open 3-manifolds.

Let M be an open, orientable, connected 3-manifold. The basic question of when
such a manifold admits a complete metric g of positive scalar curvature [Yau82, Prob-
lem 27] is still wide open. Progress has been made under the stronger hypothesis of
uniformly positive scalar curvature. In particular, Cheng, Weinberger and Yu [CWY10]
classified complete 3-manifolds with uniformly positive scalar curvature and finitely gen-
erated fundamental group. More closely related to this paper is a result of the first three
authors [BBM11] which we now state.

Recall that a Riemannian manifold is said to have bounded geometry if it has bounded
sectional curvature and positive injectivity radius. We also need to recall the definition of
a connected sum along a locally finite graph. For the moment, we will assume that the
summands are closed—later we will need to consider non-compact summands (cf. Sec-
tion 2).

Let X be a collection of closed, oriented 3-manifolds and G be a locally finite con-
nected graph. Fix a map X : v 7→ Xv which associates to each vertex of G a copy of
some manifold in X . To the pair (G,X) we associate a 3-manifold M in the following
way: for each v we let Yv be Xv with dv punctures, where dv is the degree of v. Let Y be
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the disjoint union of all Yv’s. Then M is obtained from Y by the following operation: for
each edge e ofG, let v, v′ be the vertices connected by e; choose a 2-sphere S ⊂ ∂Yv and
a 2-sphere S′ ⊂ ∂Yv′ , and glue Yv and Yv′ together along S and S′ using an orientation-
reversing diffeomorphism. We say that a 3-manifold is a connected sum of members of X
if it is diffeomorphic to a manifold obtained by this construction.

WhenG is a finite tree, we recover the usual notion of finite connected sum. When G
is a finite graph, we can turn it into a tree at the expense of adding some S2

× S1 factors.
In the reverse direction, one can add edges to the graph and remove S2

×S1 factors. Thus
the conclusion of Theorem 1.1 can be reformulated as:M is a connected sum of spherical
manifolds along a finite graph.

The generalisation of Theorem 1.1 due to the first three authors reads:

Theorem 1.3 (Bessières–Besson–Maillot [BBM11]). Let M be an orientable, con-
nected 3-manifold. Then M admits a complete Riemannian metric of uniformly positive
scalar curvature and bounded geometry if and only if there exists a finite collection F of
spherical 3-manifolds such that M is a connected sum of members of F .

An explanation on how to deduce Theorem 1.3 from the main result of [BBM11] is given
in Appendix A.

1.2. Main results of this article

Throughout this paper we make the following convention: all manifolds are assumed to
be smooth, orientable and without boundary. We will not assume that they are connected
in general.

Let M be a 3-manifold. Given σ > 0, we denote by Rbg
σ (M) the space of complete

Riemannian metrics g onM with scalar curvature≥ σ and bounded geometry. We further
set Rbg

+ (M) =
⋃
σ>0 R

bg
σ (M). We endow Rbg

+ (M) with the C∞loc topology. When M is
compact, every metric has bounded geometry, and we have R+(M) = Rbg

+ (M) and
Rσ (M) = Rbg

σ (M) for each σ .
The following is the main theorem of this article:

Theorem 1.4. Let M be a connected 3-manifold such that Rbg
1 (M) 6= ∅. Then the space

Rbg
1 (M)/Diff(M) is path-connected.

Since any metric in Rbg
+ (M) differs from a metric in Rbg

1 (M) by scaling, we obtain the
following corollary:

Corollary 1.5. LetM be a connected 3-manifold such that Rbg
+ (M) 6= ∅. Then the space

Rbg
+ (M)/Diff(M) is path-connected.

1.3. Strategy of proof

Here we explain the main difficulty in extending Theorem 1.2 to Theorem 1.4. First we
sketch the argument used in [Mar12] for proving Theorem 1.2.



156 Laurent Bessières et al.

Let M be a closed, connected 3-manifold such that R1(M) is non-empty. By Theo-
rem 1.1, M is a connected sum of spherical manifolds and S2

× S1’s. A crucial notion is
that of a canonical metric on M . To construct it, start with the unit sphere S3

⊂ R4. For
each spherical summand6i , fix a round metric on6i , a pair of points (p+i , p

−

i ) ∈ S
3
×6i

and perform a GL-sum at the points {p±i }. This notion will be explained in detail (and in
greater generality) in Section 2 below. Here we describe it informally: one removes a
small metric ball B±i around each p±i and glues a thin tube between ∂B+i and ∂B−i , pre-
serving the condition of positive scalar curvature. Finally, for each S2

× S1 summand, do
a ‘self GL-sum’ of S3, i.e. a similar operation with both points p±i in S3.

Making this construction more precise and invoking Milnor’s uniqueness theorem for
the prime decomposition, one sees that the space of canonical metrics on M is path-
connected modulo diffeomorphism. Thus, for the purpose of proving Theorem 1.2, one
can speak of ‘the’ canonical metric on M .

The bulk of the proof consists in showing that any metric in R+(M) can be isotoped
to the canonical metric. This uses a refined version of Perelman’s Ricci flow with surgery
(based on the monograph by Morgan and Tian [MT07]) as well as conformal deforma-
tions.

In the non-compact case, we can use Theorem 1.3 to recognise the topology of the
manifold M . However, there is no uniqueness theorem for a presentation of M as a con-
nected sum of spherical manifolds. Thus as soon as the topology of M becomes intricate,
it is unclear how to define a canonical metric.

We shall define a special subset of Rbg
1 (M), consisting of what we call GL-metrics

(see below). The proof has two parts. In the first part, we show that any two GL-metrics
can be connected to each other (modulo diffeomorphism). In the second part, we show
that any metric in Rbg

1 (M) can be deformed into a GL-metric. We use arguments similar to
those of [Mar12], based on the version of Ricci flow with surgery developed in [BBM11].

1.4. Main technical results

To make the above discussion more precise, we need to define GL-metrics. In order to do
this, we need a topological notion, that of a spherical splitting of a 3-manifold, and the
geometric notion of straightness with respect to a Riemannian metric.

Definition 1.6. Let M be a 3-manifold. A spherical system in M is a (possibly empty)
locally finite collection S of pairwise disjoint embedded 2-spheres in M . The members
of S are called its components. We denote by M \ S the complement in M of the union
of all components of S.

A spherical system S inM is called a spherical splitting if each connected component
of M \ S is relatively compact in M .

In particular, the empty set is a spherical splitting if and only if M is compact.
Let g be a Riemannian metric onM . An embedded 2-sphere S ⊂ M is called straight

with respect to g (or just straight when the metric is understood) if S has an open tubular
neighbourhood U , called a straight tube, such that there is an isometry f : U0 → U ,
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where U0 is a Riemannian product of a round 2-sphere with an interval, and the preimage
of S has the form S2

× {∗}. A spherical system is called straight with respect to g if all of
its components are.

Definition 1.7. Let M be a 3-manifold. A Riemannian metric g ∈ Rbg
+ (M) is called a

GL-metric if M admits a spherical splitting which is straight with respect to g.

We say that two metrics g, g′ ∈ Rbg
1 (M) are isotopic if there exists a continuous path

gt ∈ Rbg
1 (M), for t ∈ [0, 1], such that g0 = g and g1 = g

′. We say that g, g′ are isotopic
modulo diffeomorphism if g is isotopic to a metric that is isometric to g′. One of the main
technical results of this paper is the following:

Theorem A. Let M be a 3-manifold and g, g′ ∈ Rbg
1 (M) be two GL-metrics. Then g is

isotopic to g′ modulo diffeomorphism.

In order to state our second main technical result, we introduce more notation and termi-
nology. For C > 0 we say that a metric on M has geometry bounded by C if the norm
of the curvature tensor is ≤ C and the injectivity radius is ≥ C−1/2. Given σ,C > 0
we denote by RC

σ (M) the set of complete Riemannian metrics on M which have scalar
curvature ≥ σ and geometry bounded by C. Two metrics g, g′ ∈ RC

σ (M) are said to be
isotopic in RC

σ (M) if there exists a continuous path gt ∈ RC
σ (M), t ∈ [0, 1], such that

g0 = g and g1 = g
′.

Theorem B. For everyA > 0 there exists B = B(A) ≥ A such that for every 3-manifold
M and every metric g ∈ RA

1 (M), there exists a GL-metric g′ ∈ RB
1 (M) which is isotopic

to g in RB
1 (M).

It is immediate that Theorems A and B together imply Theorem 1.4.

Remark 1.8. Theorem B is stronger than what is needed to prove Theorem 1.4 since we
have a uniform bound on the geometry. If Theorem A could be similarly improved, i.e. if
one could show that for each A > 0 there is B ≥ A such that for any 3-manifold M ,
any two GL-metrics in RA

1 (M) are isotopic in RB
1 (M), then one would get the stronger

conclusion that for every A > 0 there is a B ≥ A such that the map RA
1 (M)/Diff(M)→

RB
1 (M)/Diff(M) induced by inclusion is 0-connected.

Let us denote by Diff+(M) the group of orientation-preserving diffeomorphisms of M .
One of the main ingredients for proving Theorem A is a version of the main result
of [Mar12] which is slightly different from Theorem 1.2. We state it below for future
reference.

Theorem 1.9. Let M be a closed, oriented 3-manifold such that R1(M) 6= ∅. Then
R1(M)/Diff+(M) is path-connected in the C∞ topology.

An explanation of how to deduce this from the arguments in [Mar12] is given in Ap-
pendix B.
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The proof of Theorem A relies on cut-and-paste arguments, which in our context
means surgeries and GL-sums. Let us sketch this proof. Fix an orientation of M and
consider two GL-metrics g, g′ on M . Suppose first that g, g′ have a common straight
splitting S = {Sα}, and that g coincides with g′ on a neighbourhood of S. Perform
metric surgeries along S , cutting and gluing back standard caps. The resulting manifold
M# carries two metrics g# and g′# of positive scalar curvature coming from g and g′

respectively. All the connected components of M# are closed. Theorem 1.9 applied to
each component of M# gives an isotopy modulo positive diffeomorphisms between g#
and g′#. Although we do not a priori have a uniform upper bound on the geometry along
this path of metrics, a reparametrisation trick (cf. Subsection 4.1) allows us to perform
GL-sums so as to obtain a path in Rbg

1 (M) connecting g to g′ modulo diffeomorphism.
In the general case of two arbitrary GL-metrics g, g′, the idea is to deform one of them
so as to obtain two metrics which coincide near a straight splitting, as above. The proof
is also by reduction to the compact case.

The proof of Theorem B uses surgical solutions, a version of Ricci flow with surgery
developed in [BBM11]. Starting from a Riemannian manifold (M0, g0) with bounded
geometry, it produces a sequence (Mk, gk(t))t∈[tk,tk+1] of Ricci flows with uniformly
bounded geometry, the jump from one interval to the next being realised by perform-
ing metric surgeries and discarding components with ‘nice’ metrics. When the scalar
curvature of the initial metric satifies Rg0 ≥ 1, the solution becomes extinct in finite
time (Mk = ∅ for some k), and the last metric before extinction is nice enough so that
it is straightforward to isotope it to some GL-metric. The construction of the isotopy to
g0 then uses a backward induction argument similar to the one of [Mar12], performing
GL-sums of paths to GL-metrics. A technical issue here is to realise this while keeping
uniform bounds on the geometry. This requires arguments which are more involved than
the ones needed for Theorem A, and are carried out in Section 6.

The paper is organised as follows. In Section 2, we define the notion of GL-sum
of Riemannian manifolds and prove some useful results about it. Section 3 is devoted
to metric surgery. Theorem A is proven in Section 4. In Section 5 we discuss surgical
solutions of Ricci flow. Finally, Sections 6 and 7 contain the proof of Theorem B.

2. GL-sums

In this section we give some details on the Gromov–Lawson connected sum construction
from [GL80] (see also [Mar12]), which we adapt to our context of non-compact mani-
folds.

2.1. Topological aspects

Let M be a (possibly disconnected) oriented 3-manifold. Let {(p−α , p
+
α )}α be a finite or

countable family of pairs of points of M . Assume that all these points are distinct and
denote by P the set of all these points. Further assume that every point of P is isolated.
Choose a family of pairwise disjoint neighbourhoods U±α around these points, each dif-
feomorphic to the closed 3-ball. Denote by M#({p

±
α }, {U

±
α }) the manifold obtained by
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removing the interior of the U±α ’s and for each α, gluing together ∂U−α and ∂U+α along
an orientation-reversing diffeomorphism. Since the space of orientation-reversing diffeo-
morphisms of S2 is path-connected, the diffeomorphism type of this manifold does not de-
pend on the choice of gluing diffeomorphisms. We refrain from calling M#({p

±
α }, {U

±
α })

a ‘connected sum’, since it need not be connected.

Remark 2.1. This construction is more general than the notion of connected sum along
a graph from [BBM11] described in the introduction of this paper in two respects: the
pieces need not be compact, and the resulting manifold need not be connected. The moti-
vation for this greater generality comes from surgical solutions: this operation is the one
needed to reconstruct the manifold before surgery from the manifold after surgery in the
backward inductive arguments in Section 7.

The manifold M#({p
±
α }, {U

±
α }) may a priori depend on the choice of the points {p±α }

and the open sets {U±α }. First we show that, up to diffeomorphism, it does not depend
on {U±α }:

Lemma 2.2. Let M be an oriented 3-manifold and {p±α } be as above. Let {U±α }
(resp. {V ±α }) be a family of pairwise disjoint neighbourhoods of the points p±α , each
of which is diffeomorphic to a closed 3-ball. Then M#({p

±
α }, {U

±
α }) is diffeomorphic to

M#({p
±
α }, {V

±
α }).

Proof. Without loss of generality we may assume that V ±α ⊂ U
±
α for every α. By Alexan-

der’s theorem,U±α \
◦

V ±α is diffeomorphic to S2
×[0, 1]. HenceM\

⋃
U±α is diffeomorphic

to M \
⋃
V ±α . ut

As a result, we will sometimes abuse notation by writingM#({p
±
α }) forM#({p

±
α }, {U

±
α }).

By contrast, the diffeomorphism type of M#({p
±
α }) may in fact depend on the choice

of basepoints. We illustrate this in the following example.

Example. LetM be the disjoint union ofM0 = S
2
×R and an infinite sequence {Xi}i≥1

of copies of RP 3. Choose a point p−i in each Xi and a sequence of distinct points p+i in
M0 exiting every compact set. Let us denote byL (resp.R) the half-cylinder S2

×(−∞, 0]
(resp. S2

× (0,∞)). We distinguish three cases:

• If all but finitely many of the p+i ’s are in L, we obtain a manifold M1
# .

• If all but finitely many of the p+i ’s are in R, we obtain a manifold M2
# .

• Otherwise we call the result M3
# .

ThenM1
# is not diffeomorphic toM3

# , since S2
×[0,∞) properly embeds intoM1

# but not
into M3

# . The manifolds M1
# and M2

# are diffeomorphic, although Proposition 2.3 below
does not apply.

We now show that the construction does not depend on the choice of basepoints under an
additional hypothesis:
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Proposition 2.3. LetM be an oriented 3-manifold and {p±α } and {q±α } be two families of
pairs of points as above. Suppose that there is a locally finite family of pairs of continuous
curves {γ±α }, parametrised by [0, 1] and such that for each α, we have γ+α (0) = p+α ,
γ+α (1) = q+α , γ−α (0) = p−α , and γ−α (1) = q−α . Then M#({p

±
α }) is diffeomorphic to

M#({q
±
α }).

Proof. Without loss of generality we may assume that the curves γ±α are either constant
maps or embeddings. Furthermore we may assume that they are pairwise disjoint ex-
cept maybe at the endpoints. By symmetry it is sufficient to prove that M#({p

±
α }) and

M#({γ
±
α (1/2)}) are diffeomorphic.

Let {W±α } be a family of closed pairwise disjoint neighbourhoods of γ±α ([0, 1/2])
diffeomorphic to a closed 3-ball. It is clear then that M#({p

±
α }, {W

±
α }) is diffeomorphic

to M#({γ
±
α (1/2)}, {W

±
α }). ut

2.2. GL-parameters and GL-sums

We present below the construction of connected sums with precise control of the scalar
curvature. We restrict the discussion to 3-manifolds, although part of the construction
works in any dimension n ≥ 3.

Definition 2.4. Let (M, g) be a Riemannian 3-manifold, p be a point of M and {ek} be
an orthonormal basis of TpM . A triple (ρ0, σ, η) of positive real numbers is called a set
of GL parameters at p (with respect to g) if the following requirements are met:

• ρ0 ≤ min{ 12 injM(p), 1};
• the scalar curvature of g is greater than σ on the ball Bρ0(p);
• the C2 norm of g in exponential coordinates in the basis {ek} is bounded from above

by η−1.

The motivation comes from the following result, which is essentially due to Gromov and
Lawson, although the precise control of the geometry is not made explicit in their paper.

Proposition 2.5. For all ρ0, σ, η > 0 there exists ρ2 = ρ2(ρ0, σ, η) ∈ (0, ρ0) such that
the following holds. Let (M, g) be a Riemannian 3-manifold of positive scalar curvature,
p be a point of M and {ek} be an orthonormal basis of TpM . If (ρ0, σ, η) is a set of GL-
parameters at p, then there is a metric g′ on Bρ0(p) \ {p} with the following properties:

• the metric g′ coincides with g near ∂Bρ0(p);
• (Bρ2(p) \ {p}, g

′) is isometric to a half-cylinder;
• the scalar curvature of g′ is greater than 9

10σ .

Moreover, if |DkRmg| ≤ Ck on Bρ0(p) for k ∈ {0, 1, . . . , k̄}, then |DkRmg′ | ≤ C
′

k on
Bρ0(p) \ {p}, where C′k depends on C0, . . . , Ck and ρ0, σ, η.

Proof. The main step is the construction of a submanifoldM ′ of the Riemannian product
Bρ0(p)×R. This manifold is obtained by revolution along the R axis of a carefully chosen
planar curve γ ⊂ R2. We identify Bρ0(p) with Bρ0(0) ⊂ R3 using exponential normal
coordinates in the basis {ek}. This being fixed, [GL80] proves the existence of a curve
γ ⊂ R2 with the following properties:
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(1) the image of γ is contained in the region {(ρ, t) : ρ ≥ 0, t ≥ 0};
(2) the image of γ contains the horizontal half-line {ρ ≥ ρ1, t = 0} for some 0<ρ1 <ρ0;
(3) the image of γ contains the vertical half-line {ρ = ρ2, t ≥ t2} for some 0 < ρ2 < ρ1

and t2 > 0;
(4) the induced metric on M ′ = {(x, t) : (|x|, t) ∈ γ } as a submanifold of the Rieman-

nian product Bρ0(p)× R has positive scalar curvature.

The curve γ satisfying (1)–(4) is not unique. Inspecting the construction in [GL80,
pp. 425–429], we see that the choice of γ can be refined so that M ′ has scalar curva-
ture greater than 9

10σ .
By choosing the radius ρ2 small enough depending on η, the induced metric on M ′ ∩

{t ≥ t2} can be made arbitrarily close to the cylindrical metric on S2
ρ2
(0)× [0,∞), where

S2
ρ2
(0) ⊂ R3 is the standard sphere of radius ρ2. Using a cutoff function, we can deform

the induced metric on M ′ ∩ {t2 ≤ t ≤ t3}, for some t3 > t2, into a metric gM ′ which
agrees with the original metric for t ≤ t2 and is isometric to S2

ρ2
(0)×[t3,∞)when t ≥ t3.

Identifying Bρ0(p) \ {p} ≈ Bρ0(0) \ {0} and M ′ in such a way that Sρ2(p) = ∂Bρ2(p)

corresponds to M ′ ∩ {t = t3 + 1}, we obtain the required metric g′ on Bρ0(p) \ {p} by
pulling back gM ′ . Once γ (ρ0, σ, η) and the cutoff function are chosen, the estimates on
the derivatives of the curvature of g′ follow from the definition ofM ′ as a submanifold of
the product Bρ0(p)× R. ut

Throughout the paper, we fix for each triple (ρ0, σ, η) a curve γ = γ (ρ0, σ, η) satisfying
properties (1)–(4) in the proof of Proposition 2.5, in such a way that for given positive
numbers ρ̄, σ̄ , η̄, whenever ρ0 ≥ ρ̄, σ ≥ σ̄ and η ≥ η̄, then g′ is controlled in terms of
the geometry of g and ρ̄, σ̄ , η̄. We call such γ ’s GL-curves.

We now define the notion of GL-sum. Let C, σ be two positive constants and (M, g)
be an oriented Riemannian 3-manifold with geometry bounded by C and scalar curva-
ture greater than σ . Let {(p−α , p

+
α )}α be a finite or countable family of pairs of points

of M . For each α and each ε ∈ {±} fix a positive orthonormal basis {eεα,k} at TpεαM . Let
{(ρα, σα, ηα)}α be a family of triples of positive real numbers such that for each α, the
triple (ρα, σα, ηα) is a set of GL-parameters at both p+α and p−α . Further assume that the
balls Bρα (p

±
α ) are all pairwise disjoint, and that inf ρα = ρ > 0 and inf ηα = η > 0 (one

also has inf σα ≥ σ ). For each α, let ρ2,α = ρ2,α(ρα, σα, ηα) be given by Proposition 2.5
and denote by U±α the closure of B(p±α , ρ2,α).

Then the GL-sum associated to the above data is the Riemannian 3-manifold (M#, g#),
where M# = M#({p

±
α }, {U

±
α }) is the manifold defined in Subsection 2.1, and g# is as fol-

lows: for each α, we glue together (Bρ0(p
+
α ) \Bρ2(p

+
α ), g

′) and (Bρ0(p
−
α ) \Bρ2(p

−
α ), g

′)

(with the metric g′ given in each case by Proposition 2.5) by identifying their boundaries,
which are isometric to Sρ2(0) ⊂ Rn, by the orientation-reversing isometry obtained by
composing exponential maps and the identification of the tangent spaces given by the
linear map sending {e+α,1, e

+

α,2, e
+

α,3} to {−e−α,1, e
−

α,2, e
−

α,3}.
Sometimes we will use the notation (M, g)# for (M#, g#). When we need to be more

precise, we will specify the basepoints and use the notation (M#({p
±
α }), g#({p

±
α }) or

(M, g)#({p
±
α }), or even indicate all parameters: (M, g)#({(ρα, σα, ηα)}, {p±α }, {e

±

k,α}). In
the special case of a classical connected sum M1 #M2 we use the notation g1 # g2.
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Remark 2.6. By construction, each sphere along which some gluing has been done is
straight with respect to g#. As a consequence, if (M#, g#) is a GL-sum of closed mani-
folds, then g# is a GL-metric (cf. Definition 1.7.)

Observe that the metric g# has scalar curvature ≥ 9
10σ , and geometry bounded by a con-

stant C′ depending only on C, ρ, σ, η. However, the bounded geometry of (M, g) alone
does not suffice to control η. In order to do this, we need bounds on the derivative of the
curvature.

From Hamilton [Ham95, Corollaries 4.11 and 4.12] we have the following:

Lemma 2.7. For each n ≥ 2 there is a universal constant c(n) ∈ (0, 1/2) with the fol-
lowing property. Let C0, C1, C2 be positive numbers and let (M, g) be an n-dimensional
Riemannian manifold such that |DkRm| ≤ Ck for k = 0, 1, 2. Then the C2 norm of g in
exponential coordinates is bounded from above in B

c(n)C
−1/2
0

(p) by a constant depending
only on C0, C1, C2.

Therefore when |DkRm| ≤ Ck , k = 0, 1, 2, and ρα < c(3)C−1/2
0 , we have a positive

lower bound for η. In the context of a Ricci flow with bounded curvature, the extra bounds
on the derivatives of the curvature are provided by the so-called Shi estimates [Shi89]. We
note that the GL-sum construction preserves bounds on the derivatives of the curvature, as
remarked in Proposition 2.5. Therefore starting from a metric with bounds on the deriva-
tives of the curvature, Lemma 2.7 and Proposition 2.5 imply that one can iterate the GL
construction keeping the geometry under control.

2.3. Continuity of the GL-sum construction

We give below a generalisation of [Mar12, Proposition 6.1] that we will need.
Let (M, g) be a Riemannian 3-manifold and k̄ be a natural number. Given a finite

family Ak , k ∈ {0, 1, . . . , k̄}, of positive real numbers, we denote Ak̄ = (Ak)
k̄
k=0 and

we say that g has geometry bounded by Ak̄ if inj(g) ≥ A
−1/2
0 and |DkRm(g)| ≤ Ak

for k ∈ {0, 1, . . . , k̄}. Generalising the definition of the space RC
σ (M), we denote by

RAk̄
σ (M) the space of complete Riemannian metrics on M with scalar curvature ≥ σ and

geometry bounded by Ak̄ . In Section 5.2 we will fix k̄ = [ε−1
] (the integer part of ε−1),

where ε > 0 is a small parameter depending on the interpolation lemmas of [Mar12] and
on the metric surgery process. We may denote Ā = A[ε−1], omitting the index. Given
Ak̄ and n ≤ k̄, let An := (Ak)

n
k=0. With these notations, when g has geometry bounded

by A2, Lemma 2.7 gives a lower bound η(A2) > 0 for the parameter η in balls of radius
less than c(3)A−1/2

0 .

Proposition 2.8. Let k̄ be a natural number. For every Ak̄ = (Ak)
k̄
k=0, ρ ∈

(0,min{c(3)A−1/2
0 , 1}), and σ, η > 0, there exist A#

k̄
= A#

k̄
(Ak̄, ρ, σ, η) = (A#

k)
k̄
k=0

with the following property. LetM be an oriented 3-manifold and gt a continuous path of
metrics with scalar curvature ≥ σ and geometry bounded by Ak̄ . Let p±α,t be continuous
paths of points of M , and {e±k,α(t)} be continuous paths of positive orthonormal bases of
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(Tp±α,t
M,gt ). Let (ρα, σα, ηα) be a triple which is for each t a set of GL-parameters at

p±α,t with respect to gt . Suppose that ρα ≥ ρ, σα ≥ σ , ηα ≥ η and there exist pairwise
disjoint closed 3-balls {W±α } such that Bgt (p

±
α,t , 2ρα) ⊂ W±α for all t . Let (M#,t , g#,t )

denote the GL-sum (M, gt )#({(ρα, σα, ηα)}, {p
±
α,t }, {e

±

k,α(t)}). Then there exist positive
diffeomorphisms φt : M#,0 → M#,t such that

(1) φt is the identity on M \
⋃
W±α ⊂ M#,0 ∩M#,t ;

(2) the pulled-back metrics φ∗t (g#,t ) define a continuous path on M#,0, with scalar cur-
vature ≥ 9

10σ and geometry bounded by A#
k̄
;

(3) φ∗t (g#,t ) = gt on M \
⋃
W±α ⊂ M#,0.

Proof. It is enough to argue in a pair W
±

α . By standard arguments there is an isotopy ht
from W±α into itself which is the identity on ∂W±α such that

• ht maps p±α,0 to p±α,t ;
• (ht )∗ sends {e±k,α(0)} to {e±k,α(t)};
• ht coincides with expt ◦ (ht )∗ ◦ exp−1

0 from Bg0(p
±

α,0, ρα) to Bgt (p
±
α,t , ρα).

The isotopy is compatible with the identifications of the GL-sum construction and yields
the required family of diffeomorphisms. ut

Remark 2.9. It follows that t 7→ g#,t is a continuous path in R
A#
k̄

9σ/10(M#,0)/Diff(M#,0).
Another consequence is that up to isotopy and diffeomorphism, a GL-sum
(M, g)#({(ρα, σα, ηα)}, {p

±
α }, {e

±

k,α}) does not depend on the positive orthonormal ba-
sis {e±k,α}. Therefore we will frequently drop the mention of the basis, which implicitly
will always be positive and orthonormal. We observe that taking a negative basis may
change the diffeomorphism type of the resulting manifold.

2.4. Two lemmas

For later reference we collect two technical results from [Mar12]. For simplicity let us
introduce a notation. If (ρ, σ, η) are GL-parameters with respect to some Riemannian
manifold and γ = γ (ρ, σ, η) is the associated GL-curve, we denote by #γ the associated
GL-sum operation (for some choice of basepoints and of orthonormal bases).

Lemma 2.10 (cf. [Mar12, p. 835]). Let B− and B+ be balls of constant sectional cur-
vature in (0, A], and let p± ∈ B±. Let γ1 = γ (ρ1, σ1, η1) and γ2 = γ (ρ2, σ2, η2) be two
GL-curves, where (ρi, σi, ηi) are GL-parameters suitable for both balls, i = 1, 2. Then
the GL-sums B− #γ1 B

+ and B− #γ2 B
+ performed at p± are isotopic, without changing

the metric near ∂B±, through metrics of scalar curvature ≥ σ̄ = min
{ 9

10σ1,
9

10σ2
}
> 0

and geometry bounded by Ā = Ā(A, γ1, γ2) <∞.

The following lemma shows that, applying [Mar12, Prop. 3.3], we can continuously de-
form a standard cylinder in such a way that in its middle it becomes isometric to a subset
of a round sphere.
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Lemma 2.11 (cf. [Mar12, Prop. 3.3]). Let (S3, h) be a standard 3-sphere of scalar cur-
vature σ and let x ∈ S3. Denote by h′ the metric on S3

\ {−x, x} obtained by applying
the GL-sum construction with parameters (ρ, σ, η) at both x and −x, and let σ̄ ′ be the
(constant) scalar curvature of h′ near ±x. Let (S2

× (a, b), g) be a standard cylinder
of scalar curvature σ̄ ′, and let (a′, b′) ⊂ [a, b]. Then there exists an isotopy (gt ) on the
cylinder such that
(1) gt = g on S2

× (a, a′) and S2
× (b′, b);

(2) g0 = g and (S2
× (a′, b′), g1) is isometric to a subset of (S3

\ {−x, x}, h′);
(3) each metric gt has scalar curvature greater than ¯̄σ = ¯̄σ(ρ, σ, η) > 0 and geometry

bounded by ¯̄A = ¯̄A(ρ, σ, η) <∞.

3. Metric surgery

In this section, we recall some notions and results from [BBM11]. Throughout the paper
we denote by dθ2 the round metric of scalar curvature 1 on S2, and whenever I ⊂ R is
an open interval, we denote by gcyl the product metric dθ2

+ ds2 on S2
× I . We also use

this notation on R3
\ {0}, working in polar coordinates. The origin 0 of R3 is called the

tip and the radial coordinate is denoted by r .
A standard initial metric is a complete metric on R3 which is rotationally symmet-

ric, has bounded non-negative sectional curvature, is isometric to gcyl on some neigh-
bourhood of infinity and is round on some neighbourhood of the tip. As in [BBM11,
Section 3.2] (cf. also [BB+10, Section 7.1]), we fix a particular standard initial met-
ric gu which is cylindrical outside B(0, 3) and round of sectional curvature 1/2 near
the tip. We also fix a smooth, nonincreasing function f : [0,∞) → [0,∞) with sup-
port in [0, 5], and set gstd = e

−2f (r)gu. The function f is chosen so that metric surgery
is distance-nonincreasing and preserves the so-called Hamilton–Ivey pinching property,
none of which is important in the present paper. The metric gstd is also a standard initial
metric. It has scalar curvature≥ 1 everywhere and positive sectional curvature onB(0, 5).

Let g be a Riemannian metric on S2
× (−4, 4) which is ε-close to the metric gcyl in

the C[ε−1
] topology. We now describe a surgery operation which turns (S2

× (−4, 4), g)
into a Riemannian manifold (S− t S+, gsurg), where S− t S+ is a disjoint union of
copies of the open ball B(0, 9) ⊂ R3 and the metric gsurg is defined as follows. Let
ψ− : S2

× (−4, 4) → B(0, 9) be the embedding given by (θ, s) 7→ (5 − s, θ) in polar
coordinates. Fix a function χ : B̄(0, 9)→ [0, 1] such that χ ≡ 0 on B(0, 3) and χ ≡ 1
outside B(0, 4).

Let g−surg be the Riemannian metric on S− defined as follows:

g−surg =


gstd on B(0, 3),
χe−2f (ψ−)∗g + (1− χ)gstd when 3 ≤ r ≤ 4,
e−2f (ψ−)∗g when 4 ≤ r ≤ 5,
(ψ−)∗g when 5 ≤ r ≤ 9.

If g = gcyl, one can check that g−surg = gstd. More generally, g−surg is δ′(ε)-close to
gstd for some δ′(ε) going to zero with ε. Notice that the metric on S2

× (−4, 0) remains
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unchanged (up to a diffeomorphism). This construction thus amounts to capping off an
‘almost standard cylinder’.

Likewise, we define a metric g+surg on S+ using the embedding ψ+ : S2
× (−4, 4)→

B(0, 9) given in polar coordinates by (θ, s) 7→ (5 + s, θ). Finally, we let gsurg be the
metric on S− t S+ whose restriction to S− (resp. to S+) is g−surg (resp. g+surg).

From [BBM11, section 3.3], we get the following result. Let ε0 > 0 be the number
defined in [BBM11, Lemma 3.6].

Theorem 3.1. There exists δ0 ∈
(
0, ε0

10

)
and a function δ′ : (0, δ0] → (0, ε0/10) go-

ing to zero at zero with the following property. Let δ ∈ (0, δ0) and let g be a metric
on S2

× (−4, 4) which is δ-close to gcyl. Then the Riemannian manifold (S−, g−surg)

(resp. (S+, g+surg)) has the following properties:

(1) All sectional curvatures are positive on B(0, 4).
(2) The scalar curvature is ≥ Rg on r−1((4, 9)).
(3) The smallest eigenvalue of the curvature operator of g±surg is larger than or equal to

the smallest eigenvalue of Rmg on r−1((4, 9)).
(4) The metric g±surg is δ′(δ)-close to gstd.

Our next goal is to define metric surgery on a neck in a Riemannian manifold. For tech-
nical reasons, it is useful to allow the length of the neck to vary.

Definition 3.2. Let ε, L be positive real numbers and (M, g) be a Riemannian 3-mani-
fold. An (ε, L)-neck in M is an open subset N ⊂ M for which there is a C[ε−1

]+2 diffeo-
morphism φ : S2

× (−L,L) → N , called a parametrisation, and a number λ > 0 such
that λφ∗g is ε-close to gcyl in the C[ε−1

]+2 topology (defined by gcyl). The set φ(S2
×{0})

is called the middle sphere of N . When L = ε−1 we simply say that N is an ε-neck.

We recall that ε-closeness in the C[ε−1
]+2 topology between the metrics yields control on

the derivatives of the curvature up to order [ε−1
]. In what follows, ε-closeness will always

be understood in this topology.
Let (M, g) be a Riemannian 3-manifold, and N ⊂ M be an (ε, 4)-neck. Let φ, λ be

as above and S be the middle sphere of the neck. We let metric surgery on N (or along S)
be the procedure of replacing (M, g) by the Riemannian manifold (M+, g+), where

M+ = ((M \ S) t S− t S+)/∼

identifying φ(S2
× (−4, 0]) with S− \ B(0, 5) via ψ− ◦ φ−1 and φ(S2

× [0, 4)) with
S+ \ B(0, 5) via ψ+ ◦ φ−1, and{

g+ = g on M \ S,
g+ = λ

−1(λφ∗g)surg on S− t S+.

Remark 3.3. If g is C∞-smooth, then the manifold (M+, g+) is C[ε−1
]+2-smooth. Fur-

thermore if g satisfies |DkRm| ≤ Ak for k ≤ [ε−1
], then g+ satisfies |DkRm| ≤ Bk for

k ≤ [ε−1
], where B = {Bk} depends on A = {Ak} only.
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Remark 3.4. The value 4 above can be replaced by any positive value L (replacing S±
with B(0, 5+L) if L < 4). In particular this works for L = ε−1, so that we have defined
the notion of surgery on an ε-neck.

In some sense, the metric surgery process can be reversed by the GL-sum construction,
as shown by the following result. Choose orientations on the manifolds S2

× (−4, 4), S−
and S+ in such a way that the diffeomorphisms ψ− and ψ+ are positive. Let S− #S+ be
the connected sum with basepoints the tips. We choose once and for all an identification
between S2

× (−4, 4) and S− # S+ which coincides with ψ− and ψ+ near the boundary
(as in [Mar12, proof of Lemma 6.2]). This does not depend on the choice of orientations.
Let ε3 be the constant given by [Mar12, Lemma 6.3]. From that lemma we get

Lemma 3.5. Let ε ∈ (0, ε3). Let g be a Riemannian metric on S2
× (−4, 4) which

is ε-close to gcyl on S2
× (−4, 4). Then (S− # S+, g−surg # g+surg) can be continuously

deformed back into (S2
× (−4, 4), g) through metrics which all coincide with g near the

ends of S2
× (−4, 4), have scalar curvature greater than 9/10 and geometry bounded by

some B[ε−1].

If N is an (ε, 4)-neck we use its parametrisation to identify it with S− # S+. Finally, if
(M+, g+) is obtained from (M, g) by surgery in a family of disjoint necks, then we can
identify (M+)# with M canonically. This identification is the identity on the complement
of the necks. The above lemma shows that (g+)# is isotopic to g.

4. Connecting two GL-metrics: proof of Theorem A

The aim of this section is to prove Theorem A. This theorem follows immediately from
Lemma 4.1 and Proposition 4.2 below, which are proven in Subsections 4.1 and 4.2 re-
spectively.

Given a spherical splitting S = {Sα} of a 3-manifold M and two metrics g, h on M ,
we will say that g = h near S if for every α there is a neighbourhood of Sα on which g
and h coincide.

Lemma 4.1. Let M be a non-compact 3-manifold. Let (g, h,S) be a triple such that g
and h are GL-metrics on M that belong to Rbg

1 (M), and S is a spherical splitting which
is straight for both g and h. Suppose that g = h near S. Then g is isotopic to h modulo
diffeomorphism.

Proposition 4.2. Let M be a non-compact 3-manifold, let g, g′ ∈ Rbg
1 (M) be two GL-

metrics on M and let S ′ be a spherical splitting straight for g′. Then there exists a metric
h ∈ Rbg

1 (M), isotopic to g modulo diffeomorphism, such that h = g′ near S ′. (In partic-
ular, S ′ is straight for h.)

4.1. Proof of Lemma 4.1

We start with a lemma which allows us to combine paths of metrics defined on compact
submanifolds in an exhaustion. In what follows, the support of a path of metrics gt on a
manifold M is the closure of the subset of M where t 7→ gt fails to be constant.
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Lemma 4.3. LetM be a 3-manifold and C be a positive constant. Let ∅ = K−1 ⊂ K0 ⊂

K1 ⊂ · · · be an exhaustion of M by compact submanifolds. Suppose we are given a
sequence of continuous paths h(`) :

[
`
`+1 ,

`+1
`+2

]
→ Rbg

1 (M) such that

(i) for each ` we have h(`)
(
`+1
`+2

)
= h(`+1)( `+1

`+2

)
;

(ii) for each `, the path h(`) has support in K` \K`−1;
(iii) for each `, the metric h(`)

(
`+1
`+2

)
has geometry bounded by C.

Then there is a unique continuous path h : [0, 1] → Rbg
1 (M) which extends the h(`)’s.

Furthermore, h(1) has geometry bounded by C.

Proof. By (i) there is a unique extension h of the paths h(`) to the interval [0, 1). By (ii),
h(t) has a limit in the C∞loc topology when t goes to 1. We set h(1) equal to this limit,
thus obtaining a continuous map defined on [0, 1]. Condition (iii) ensures that h(1) has
geometry bounded by C. ut

Remark 4.4. A typical application of Lemma 4.3 is as follows: M is a disjoint union
of closed manifolds M` for ` ∈ N; we have a metric g ∈ Rbg

1 (M), which we wish to
deform to another metric with nice properties, and we are given a collection of paths
g(`) : [0, 1] → R1(M`) such that g(`)(0) ≡ g on M` for all `, and all final metrics
g(`)(1) have geometry uniformly bounded by some constant C. We first reparametrise
those paths so that the domain of g(`) is

[
`
`+1 ,

`+1
`+2

]
for every `. We then extend them to

continuous paths h(`) :
[
`
`+1 ,

`+1
`+2

]
→ Rbg

1 (M) constant outside M`. We stay in Rbg
1 (M)

due to the hypothesis that g has bounded geometry together with the fact that each path
has compact support. Note that we are not claiming that the paths have image in RC′

1 (M)

for a uniform C′. We then set K` :=
⋃
k≤`Mk for all ` and apply Lemma 4.3 to obtain

the global deformation of g.
Note that the ‘obvious’ way of combining the paths, without reparametrising, could

lead to a path of metrics which does not stay in Rbg
1 (M).

Below, we sometimes have paths of metrics which lie in Rbg
9/10(M) rather than Rbg

1 (M),
because we take GL-sums. This is not a problem because of the following lemma.

Lemma 4.5. Let M be a 3-manifold. Let g, g′ be two metrics in Rbg
1 (M). If there exists

σ > 0 such that g, g′ are isotopic in Rbg
σ (M), then g, g′ are isotopic in Rbg

1 (M).

Proof. Let gt be an isotopy from g to g′ in Rbg
σ (M). For each t we have

√
σ gt ∈

Rbg
1 (M). Hence we can isotope g linearly to

√
σ g, follow

√
σ gt , and finally isotope

√
σ g′ to g′. ut

The following technical result will allow us to obtain an isotopy on a GL-sum manifold
from isotopies on its components.

Lemma 4.6. Let M be an oriented 3-manifold which is a disjoint union of closed man-
ifolds. Let {p±α } and {q±α } be two families of pairs of points of M such that for every
ε ∈ {±} and every α, the points pεα and qεα lie in the same connected component of M .
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Let gt be a path of metrics in Rbg
1 (M). Let ρ and η be positive numbers such that (ρ, 1, η)

is a set of GL-parameters at {p±α } with respect to g0 (resp. at {q±α } with respect to g1) and
such that the 2ρ-balls for g0 centred at {p±α } (resp. the 2ρ-balls for g1 centred at {q±α })
are round and pairwise disjoint.

Then there is a continuous path of metrics g#(t) on M# = M#({(ρ, 1, η)}, {p±α })
with scalar curvature greater than 9/10 and bounded geometry such that g#(0) =
(g0)#({(ρ, 1, η)}, {p±α }) and (M#, g#(1)) is isometric to (M, g1)#({(ρ, 1, η)}, {q±α })).

Proof. In the compact case this follows from Proposition 2.8, so we assume that M is
non-compact and denote by {M`}`∈N its components, which by hypothesis are closed.
We begin by some reductions.

Up to slightly moving points of {p±α } and applying Proposition 2.8 to get a corre-
sponding deformation of (g0)#({p

±
α }), we can assume that for all x ∈ {p±α } and y ∈ {q±α }

one has x 6= y.
Without loss of generality we may assume that the support of the restriction of gt to

the interval
[
`
`+1 ,

`+1
`+2

]
is contained in M`. As g0 and g1 have geometry bounded by a

constant C, it follows that gt has geometry bounded by a constant depending on ` when
t ∈

[
`
`+1 ,

`+1
`+2

]
.

We then deform (M#({p
±
α }), (g0)#({p

±
α })) = (M, g0)#, up to diffeomorphism, as fol-

lows. We apply Lemma 2.11 to deform each GL-neck Bg0(p
−, ρ) # Bg0(p

+, ρ), where
p± ∈ {p±α }, into the GL-sum

Bg0(p
−, ρ) # S3(p±) # Bg0(p

+, ρ)

where S3(p±) is a round 3-sphere of scalar curvature 1, and the GL-sum is made at
{(p−, x(p−)), (p+, x(p+))} where x(p−) = −x(p+) ∈ S3(p±). This has the effect of
replacing (M, g0)# by the GL-sum (M t X, g0 t gX)#({(p

−
α , x(p

−
α )), (p

+
α , x(p

+
α ))}α),

where (X, gX) is the disjoint union of the round 3-spheres S3(p±α ). This allows us to con-
sider the GL-sums made on a component (M`, gt ) independently of the other components
of M , the component M` being connected to a fixed disjoint union of 3-spheres along the
path.

We now begin the construction of the isotopy, with initial point the manifold (M tX,
g0 t gX)#. In every component M`, choose pairwise disjoint paths [0, 1] → pεα,t , con-
stant outside [ `

`+1 ,
`+1
`+2 ], connecting pεα to qεα (the paths are disjoint thanks to the first

simplification above; we also choose paths of positive orthonormal bases which we do
not mention). By compactness of M` ×

[
`
`+1 ,

`+1
`+2

]
, there exist ρ(`), η(`) > 0 such that

(ρ(`), 1, η(`)) is a set of GL-parameters at pεα,t with respect to every metric gt such that
t ∈

[
`
`+1 ,

`+1
`+2

]
. Moreover, we choose ρ(`) small enough so that there exists a fam-

ily of pairwise disjoint 3-balls W ε,(`)
α ⊂ M` such that Bgt (p

ε
α,t , 2ρ`) ⊂ W

ε,(`)
α for all

t ∈
[
`
`+1 ,

`+1
`+2

]
.

For each t ∈
[
`
`+1 ,

`+1
`+2

]
, define the Riemannian manifold (M(`)

#,t , g
(`)
#,t ) as the GL-sum

(M t X, gt t gX)#({(p
−
α,t , x(p

−
α ), (p

+
α,t , x(p

+
α )}α), using GL-parameters (ρ(`), 1, η(`))

when pεα ∈ M` and (ρ, 1, η) when pεα /∈ M`. From Proposition 2.8, each metric g(`)#,t has
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scalar curvature greater than 9/10 and geometry bounded by a constant depending on `;
moreover, there exist diffeomorphisms φ(`)t : M

(`)
#,`/(`+1) → M

(`)
#,t such that the pulled-

back metrics (φ(`)t )∗g
(`)
#,t define a continuous path on M(`)

#,`/(`+1). The manifolds M(`)

#, `+1
`+2

and M(`+1)
#, `+1
`+2

differ only on a union of GL-necks connected to M` and to M`+1, due to

the difference in the GL-parameters used to define these necks: from (ρ(`), 1, η(`)) to
(ρ, 1, η) in the case of M` and from (ρ, 1, η) to (ρ(`+1), 1, η(`+1)) in the case of M`+1.
We identify them by identifying the corresponding necks. Pulling back the paths g(`)#,t

by diffeomorphisms φ(`−1)
`/(`+1) ◦ · · · ◦ φ

(0)
1/2 and concatenating, we obtain on the manifold

M
(0)
#,0 a piecewise continuous path of metrics defined on [0, 1). Now, the GL-sums are

made with different parameters creating discontinuities of the path at times `+1
`+2 ; thanks

to Lemma 2.10 they can be smoothed out and we obtain a continuous path g#(t) de-
fined on [0, 1), with scalar curvature greater than 9/10 and bounded geometry. From the
construction above, for any exhaustion K0 ⊂ K1 ⊂ · · · of M(0)

#,0 by compact subsets,
t 7→ g#(t) is constant on Kj for all t close enough to 1. It follows that t 7→ g#(t)

extends continuously to the interval [0, 1]. Moreover, denoting (M(∞)
#,1 , g

(∞)
#,1 ) the GL-

sum (M t X, g1 t gX)#({(ρ, 1, η)}, {(p−α,1, x(p
−
α ), (p

+

α,1, x(p
+
α )}α), then the sequence

of diffeomorphisms φ(`)`/(`+1) ◦ · · · ◦ φ
(0)
1/2 converges to an isometry from (M

(0)
#,0, g#(1)) to

(M
(∞)
#,1 , g

(∞)
#,1 ). It is easy to further deform (M

(∞)
#,1 , g

(∞)
#,1 ) into (M#({q

±
α }), (g1)#({q

±
α })),

using Lemma 2.11. This concludes the proof of Lemma 4.6. ut

Proof of Lemma 4.1. Fix an orientation of M . Let (M̂, ĝ) (resp. (M̂, ĥ)) be the oriented
Riemannian manifold obtained from (M, g) (resp. (M, h)) by metric surgery along S . By
construction, each of the metrics ĝ, ĥ has scalar curvature greater than or equal to 1 and
geometry bounded by some constant C.

Since S is a spherical splitting, every component of M̂ is closed. We denote by {M`}

the collection of those components. Applying Theorem 1.9 to each M`, we get a family
of continuous paths ĝ(`)t in R1(M̂`) and positive diffeomorphisms ψ̂ (`) : M̂`→ M̂` such
that for each l, we have ĝ(`)0 = ĝ|M`

and ψ̂ (`)∗ ĝ
(`)
1 = ĥ|M`

.

Applying Lemma 4.3 and Remark 4.4, we get a path ĥt in Rbg
1 (M̂). Denote by p±α the

tips in M̂ of the caps S±α added by the metric surgery process. Note that the tips are the
same with respect to both metrics ĝ and ĥ, as also are the balls B2ρC (p

±
α ) for a suitable

radius ρC ; furthermore, these balls are round and pairwise disjoint.
Denote by ĝ# = (ĝ)#({p

±
α }) (resp. ĥ# = (̂h)#({p

±
α })) the GL-sum metric constructed

with GL-parameters (ρC, 1, ηC) for an appropriate ηC . We identify the corresponding
manifold M̂# with M as in the last paragraph of Section 3.

We deduce from Lemma 3.5 that ĝ# is isotopic to g and that ĥ# is isotopic to h (with
uniformly bounded geometry). To finish the proof, we need to isotope ĝ# to ĥ# modulo
diffeomorphism.

Let ψ̂ : M̂ → M̂ be the positive diffeomorphism defined by setting ψ̂ = ψ̂ (`)

on M̂`. Define q±α = ψ̂−1(p±α ). For each α and each ε ∈ {+,−}, choose a positive
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orthonormal basis {eεk,α} at pεα . Set f±k,α = ψ̂∗(e±k,α). Since ψ̂ is a positive isometry
from (M̂, ĝ1) to (M̂, ĥ) sending {q±α } to {p±α } and {f±k,α} to {e±k,α}, it induces an isom-
etry from (M̂, ĝ1)#({q

±
α }), {f

±

k,α}) to (M̂, ĥ)#({p±α }, {e
±

k,α})) = (M̂#, ĥ#). As a conse-
quence of Lemma 4.6, we can isotope the former manifold—modulo diffeomorphism—
to (M̂, ĝ0)#({p

±
α }) = (M#, g#). This completes the proof of Lemma 4.1. ut

4.2. Proof of Proposition 4.2

We start with a technical lemma.

Lemma 4.7. Let M be a 3-manifold. Let (g,S, g′,S ′) be a quadruple such that

(i) g ∈ Rbg
1 (M) is a GL-metric and S = {Sα} is a spherical splitting straight for g;

(ii) g′ ∈ Rbg
1 (M) and S ′ = {S′β} is a spherical system straight for g′;

(iii) the components of S and S ′ are mutually disjoint.

Then there exists h = h(g,S, g′,S ′) ∈ Rbg
1 (M) such that h = g near S and h = g′

near S ′.

Proof. By assumption,M admits a metric g of bounded geometry and uniformly positive
scalar curvature. Theorem 1.3 then implies that each connected component Mi of M is a
connected sum of members of a finite familly Fi of spherical manifolds. But [BBM11,
Theorem 1.4] shows that Fi depends only on the bound on the geometry and the lower
bound on the scalar curvature. Therefore there exists a finite collection F of spherical
manifolds such that M is a connected sum of members of F .

For each α, β, let Uα (resp. U ′β ) be a straight tube with respect to g containing Sα
(resp. with respect to g′ containing S′β ). Assume that all theses tubes are pairwise disjoint.
Let M̂ be a 3-manifold obtained from M , by splitting every Uα and U ′β along a pair of
straight spheres on each side of the Sα and of the S′β , and glueing 3-balls to the boundary.
All components of M̂ are closed. All components containing some Sα or some S′β are
topological 3-spheres. All other components are connected sums of members of F .

We define a metric ĥ on M̂ as follows. On components containing some Sα (resp. S′β )
we let ĥ be the metric obtained from g (resp. g′) by metric surgery on the straight tubes.
In particular ĥ = g near Sα and ĥ = g′ near S′β . On the other components we let ĥ be a
GL-sum of round metrics on members of F , of uniformly bounded geometry and scalar
curvature ≥ 2.

Finally, we define h ∈ Rbg
1 (M) by doing the GL-sum of (M̂, ĥ) in such a way that

h = g near Sα and h = g′ near S′β . ut

Proof of Proposition 4.2. Let S = {Sα} be a spherical splitting that is straight for g. By
local finiteness of S and S ′, up to replacing S by a subsystem there exists a subsystem
S ′′ ⊂ S ′ such that every component of S is disjoint from every component of S ′′.

By Lemma 4.7 there exists a metric h′ = h(g,S, g′,S ′) ∈ Rbg
1 (M) such that h′ = g

near S and h′ = g′ near S ′′. Applying Lemma 4.1 to the triple (h′, g,S) we see that h′

and g are isotopic modulo diffeomorphism.
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By Lemma 4.7 there exists a metric h = h(h′,S ′′, g′,S ′ \ S ′′) ∈ Rbg
1 (M) such that

h = h′ near S ′′ and h = g′ near S ′ \ S ′′. Since h′ = g′ near S ′′, we deduce that h = g′

near S ′. It follows from Lemma 4.1 applied to (h, h′,S ′′) that h is isotopic to h′ modulo
diffeomorphism. Hence h is isotopic to g modulo diffeomorphism, as required. ut

5. Surgical solutions of Ricci flow

In this section we recall the basic properties of the surgical solutions constructed in
[BBM11].

5.1. Evolving metrics and surgical solutions

Definition 5.1. An evolving Riemannian 3-manifold is a family {(M(t), g(t))}t∈I of
(possibly empty or disconnected) Riemannian 3-manifolds indexed by an interval I ⊂ R.
It is piecewise C1-smooth if there exists a subset J of I which is discrete as a subset of R
and satisfies the following conditions:

(i) On each connected component of I \ J , t 7→ M(t) is constant and t 7→ g(t) is
C1-smooth.

(ii) For each t0 ∈ J , M(t) = M(t0) for all t < t0 close enough to t0 and t 7→ g(t) is
left-continuous at t0.

(iii) For each t0 ∈ J \ sup I , t 7→ (M(t), g(t)) has a right limit at t0, denoted by
(M+(t0), g+(t0)).

A time t ∈ I is singular if t ∈ J and regular otherwise.

Definition 5.2. A piecewise C1-smooth evolving 3-manifold (M(t), g(t)) is called a sur-
gical solution if the following hold:

(i) The Ricci flow equation dg
dt
= −2 Ricg(t) is satisfied at all regular times.

(ii) For each singular time t we have Rmin(g+(t)) ≥ Rmin(g(t)).
(iii) For each singular time t there is a locally finite collection S(t) of disjoint embedded

2-spheres in M(t) and a manifold M ′(t) such that

(a) M ′(t) is obtained from M(t) \ S(t) by capping off 3-balls;
(b) M+(t) is a union of connected components of M ′(t) and g+(t) = g(t) on

M+(t) ∩M(t);
(c) each component ofM ′(t)\M+(t) is spherical or diffeomorphic to R3, S2

×S1,
S2
× R, RP 3 # RP 3 or a punctured RP 3.

For a singular time t , the components ofM ′(t) \M+(t) are called discarded components.
The surgical solution is extinct if for some t , all components are discarded, i.e. M+(t) =
M(t) = ∅.

Remark 5.3. When the initial metric has uniformly positive scalar curvature and each
g(t) is complete with bounded sectional curvature, we deduce from the maximum princi-
ple and property (ii) a lower bound for the scalar curvature which blows up in finite time;
thus under these hypotheses the solution must be extinct.
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In [BBM11] we constructed a special class of surgical solutions. These are known as
(r, δ, κ)-surgical solutions and use the same three parameters as Perelman’s Ricci flow
with surgery and one more which serves as a curvature threshold to trigger the surgery.
We will not need the precise definition here. For us, the two main properties of (r, δ, κ)-
solutions are that whenever t is a singular time, the manifold (M+(t), g+(t)) is obtained
from (M(t), g(t)) by metric surgery on ε-necks, and the discarded components are cov-
ered by so-called canonical neighbourhoods. We have already reviewed metric surgery in
Section 3. In the next subsection, we discuss the notion of a canonical neighbourhood.

5.2. Canonical neighbourhoods and locally canonical metrics

Let (M, g) be a Riemannian 3-manifold and ε, C > 0 be constants. There are four types
of canonical neighbourhoods: necks, caps, ε-round components and C-components. We
already defined the notion of an ε-neck in Section 3. A component X of M is ε-round if
after scaling to make R(x) = 1 at some point,X is ε-close to a round metric of scalar cur-
vature one. A component ofM is a C-component if it is diffeomorphic to S3 or RP 3, and
has positive sectional curvature and geometry bounded by C after scaling. More preci-
sion can be given on the geometry of these neighbourhoods (see e.g. [BB+10, Definition
4.2.8] or [Mar12, p. 837]).

An ε-cap is an open subset C ⊂ M diffeomorphic to a 3-ball or to RP 3 minus a 3-ball,
with an ε-neck N ⊂ C such that Y = C \ N is a compact submanifold with boundary.
The boundary ∂Y of the core Y (interior of C \ N ) is required to be the middle sphere
of an ε-neck. An (ε, C)-cap is an ε-cap such that, after rescaling so that R(x) = 1 for
some point x in the cap, the diameter, volume and curvature ratios at any two points are
bounded by C.

Definition 5.4. A point x in (M, g) is said to be the centre of an (ε, C)-canonical neigh-
bourhood if it lies in the middle sphere of an ε-neck, or in the core of an (ε, C)-cap, or
in an ε-round component or in a C-component. If each point of (M, g) is the centre of an
(ε, C)-canonical neighbourhood, we will say that g is ε-locally canonical.

We now fix the constants ε, C, refining the choice made in [BBM11], so that the inter-
polation lemmas of [Mar12] hold. Set ε = min(δ0, ε3), where δ0 is the constant from
Theorem 3.1 and ε3 is from [Mar12, Lemma 6.3]. Then set C = max(100, 2Csol(ε/2),
2Cst(β(ε)ε/2)) as in [BBM11, p. 947].

From [BBM11, Section 5.2] we have the following existence result, which can be
taken as a black box for the rest of the paper:

Theorem 5.5. Given a positive number A, there exist a positive number τ and a tuple
Q = Q[ε−1] with the following property. Let (M, g) be a complete Riemannian man-
ifold with geometry bounded by A, and with scalar curvature greater than or equal
to 1. Then there exists an extinct surgical solution (M(·), g(·)) defined on [0, 2] such
that (M(0), g(0)) = (M, g) and satisfying the following properties:

(1) For all t ∈ [0, 2], we have g(t) ∈ RQ0
1 (M(t)).
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(2) The solution is smooth on [0, τ ] and, for all t ∈ [τ, 2], we have g(t) ∈ RQ
1 (M(t)).

(3) At each singular time t , the manifoldM ′(t) has a metric g′(t) ∈ RQ
1 (M

′(t)) obtained
from g(t) by metric surgeries in ε-necks, and such that

(a) g+(t) = g′(t) on M+(t);
(b) all discarded components of (M ′(t), g′(t)) are ε-locally canonical.

(4) The number of singular times is finite and bounded by a constant depending on A.

In the proof of Theorem B, Theorem 5.5 will allow us to isotope an arbitrary metric
to a GL-sum of ε-locally canonical ones. Thus it is useful to be able to isotope locally
canonical metrics to GL-metrics. This is the purpose of the next lemma:

Lemma 5.6. Given A[ε−1] there exists B[ε−1] such that the following holds. Let M
be a connected 3-manifold and let g be an ε-locally canonical metric belonging to

R
A
[ε−1]

1 (M). Then there exists an isotopy gt ∈ R
B
[ε−1]

1 (M) such that g0 = g and g1
is a GL-metric.

Proof. If M is compact, every metric is a GL-metric (the empty collection is a spherical

splitting), so we assume that M is non-compact. Let g ∈ R
A
[ε−1]

1 (M) be an ε-locally
canonical metric. From [BBM11, proof of Proposition 7.2] we have three cases:

1. M is covered by ε-necks and is diffeomorphic to S2
× R, or

2. M is covered by ε-necks and one ε-cap diffeomorphic to B3, and M is diffeomorphic
to R3, or

3. M is covered by ε-necks and one ε-cap diffeomorphic to RP 3
\ {point}, and M is

diffeomorphic to RP 3
\ {point}.

Take a maximal family of disjoint ε-necks. From the above we see that the middle spheres
of these necks form a spherical splitting of M . Thus it suffices to deform the metric g to
a metric with respect to which these spheres are straight.

In each neck we apply the following deformation. We use the parametrisation to iden-
tify a neighbourhood of the middle sphere with S2

× (−4, 4). Let h be the pulled-back
rescaled metric on S2

× (−4, 4). Now, we choose a cutoff function η : (−4, 4)→ [0, 1]
such that η(s) = 1 on [−2, 2] and η(s) = 0 when |s| is close to 4. Then for t ∈ [0, 1]
we set ht = (1 − η(s)t)h + η(s)tgcyl, where s is the radial coordinate. We observe that
h1 = gcyl on S2

× [−2, 2] and that the deformation ht is constant near the boundary of
S2
×(−4, 4). It follows that the rescaled pushed-forward metric onM defines the required

isotopy. ut

6. Isotopies of uniformly bounded geometry

In this section we show that if (M, g) is isotopic to a GL-metric in some RA
σ (M) then,

after a GL-sum for suitable parameters, (M#, g#) is isotopic to a GL-metric in some
RB
σ ′
(M#), with B and σ ′ depending on A, σ and the parameters. The following proposi-

tion gives a more precise statement.
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Proposition 6.1. Let σ > 0. For all A = A[ε−1] and ρ ∈ (0,min{c(3)A−1/2
0 , 1}), there

exist Ā#
= Ā#

[ε−1]
and η > 0 with the following property. Let (M, g) be an oriented

3-manifold and {(p−α , p
+
α )} be a family of pairs of points. Set P = {p±α } ⊂ M and

(M#, g#) = (M, g)#({(ρ, σ, η)}, {p
±
α }). Suppose that

(a) for all x, y ∈ P , if x 6= y, then Bg(x, 3ρ) ∩ Bg(y, 3ρ) = ∅, and g is round on
Bg(x, 3ρ);

(b) g is isotopic in RA
σ (M) to some GL-metric.

Then g# is isotopic in RĀ#

9σ/10(M#) to some GL-metric.

We first explain some of the key ideas informally. Let gt be an isotopy in RA
σ (M) from g

to some GL-metric. We would like to apply Proposition 2.8, moving basepoints p±α along
continuous paths if necessary, to get a continuous GL-sum (M, gt )#. The main difficulty is
that we have no control of dgt (x, y) for x 6= y ∈ P . For example, a compact component of
M containing an unspecified number of p±α could have a diameter becoming small along
the path of metrics gt ; therefore the points p±α become close to each other. Moreover, a
reparametrisation trick, as in Lemma 4.6, is not possible as we are dealing with possibly
non-compact components and the metric g1 need not a priori satisfy assumption (a).

The trick is to first deform continuously (M#, g#) into a manifold which is obtained
by connecting sum around points which are far away. Looking at p+α and p−α , the GL-
sum gives rise to a metric on the cylinder joining neighbourhoods of these two points
which is close to gcyl. We modify it continuously, applying twice Lemma 2.11, so that it
becomes Bρ(p−α ) #S3(p−α ) #S3(p+α ) #Bρ(p+) where S3(p±α ) are round 3-spheres which
will undergo only very small deformations during the process (see Sublemma 6.5). Then
we perform a surgery on this topological cylinder by cutting it between the two spheres
and glueing 3-balls on either side.

Doing this for every α creates some distance between the points p+α and p−α , so that we
can deal with them separately. Note that they may remain in the same connected compo-
nent or not. The next step is to produce a set Psep ⊂ P whose points remain sufficiently
separated during the isotopy (see Lemma 6.3). Each p0 ∈ Psep has a neighbourhood
which contains only finitely many points of P , say (p1, . . . , pn). We then do the GL-sum
of S3(p0) with n round spheres and we continuously move each pi in one of them. They
will be only slightly deformed and hence the points will remain far apart.

This process deforms (M#, g#) into a manifold isometric to a GL-sum (M t X,

g t gX)#, where (X, gX) is a GL-sum of round spheres, and where the connected sum
is made between M and X along a sparse set of points, which remain far from each
other along gt t gX. We can then safely apply Proposition 2.8 to get a continuous path
(gt t gX)# with controlled geometry. We summarise the idea by saying that it amounts to
‘externalising’ the connected sum.

We now turn to the formal proof.

Proof of Proposition 6.1. Let A, ρ and σ be as in the statement of Proposition 6.1 and
let gt be an isotopy in RA

σ (M) such that g0 = g and g1 is a GL-metric.
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Let η = η(A2) be the constant given by Lemma 2.7. Let A′ = A#(A, ρ, σ, η) be the
constant of Proposition 2.8. Set σ ′ = 9

10σ . Then (M#, g#) = (M, g)#({(ρ, σ, η)}, {p
±
α })

has scalar curvature greater than σ ′ and geometry bounded by A′. Let ρ′ =
min

{
c(3)A′0

−1/2
, 1

10ρ
}
, η′ = η(A′2) be the constant given by Lemma 2.7, and σ̄ and

Ā be the constants given by Lemma 2.10 applied to γ1 = γ (ρ, σ, η), γ2 = γ (ρ
′, σ ′, η′).

We denote by ¯̄σ = ¯̄σ(ρ, σ, η) and ¯̄A = ¯̄A(ρ, σ, η) the constants given by Lemma 2.11.
We then define A′′ = min{A#(A′, ρ′, σ ′), Ā, ¯̄A} and σ ′′ = min{(9/10)2σ, ¯̄σ }.

Definition 6.2. We say that a subset P ⊂ M is ρ-separated for an isotopy gt if

∀x 6= y ∈ P,
⋃
t

Bgt (x, ρ) ∩
⋃
t

Bgt (y, ρ) = ∅.

In particular, if P = {p±α } is 3ρ-separated, then there exist pairwise disjoint topological
3-balls W±α such that Bgt (p

±
α , 2ρ) ⊂ W±α for all t , as in the assumptions of Proposition

2.8 (with fixed p±α ).
The first step is to divide points of P into disjoint open connected subsets Uj of M ,

each containing finitely many elements of P , and in some sense not too close to each
other. This will allow us, by moving the basepoints independently in each Ui , to deform
the GL-sum g# with controlled geometry.

Lemma 6.3. Up to moving points of P a distance less than 20ρ′ ≤ 2ρ, there exist a
subset Psep ⊂ P , a family (Uj )j∈J⊂N of disjoint open connected subsets of M and a
family (Ok) of open subsets of M such that

• Psep is 1-separated for gt , for all t;
• the 7ρ′-neighbourhood of P is contained in

⋃
j∈J Uj and for all j , |P ∩Uj | <∞ and

|Psep ∩ Uj | = 1;
•
⋃
k Ok =

⋃
j Uj and each Ok is a union of finitely many Uj ;

• for all k 6= l, dg(Ok,Ol) ≥ 6ρ′.

Proof. Without loss of generality, we assume that M is connected. If P is finite, then we
set U0 = M , O0 = U0 and Psep = {p0}, where p0 is an arbitrary point of P .

Suppose that P is infinite. Up to slightly moving some points of P , we will define
Psep = {p0, p1, . . .} ⊂ P and (Uj )j∈N with Psep ∩ Uj = {pj }. We use the following
property, which is easily derived from the continuity of t 7→ gt and the compactness of
[0, 1]: for every p ∈ M and R0 > 0, there exist a compact subset K ⊂ M and R1 > 0
such that

∀s, t ∈ [0, 1], Bgs (p,R0) ⊂ K ⊂ Bgt (p,R1).

This property implies that for R large enough depending on p, for any x ∈ M the inequal-
ity dg(p, x) ≥ R implies that {p, x} is 1-separated for gt . Fix some p = p0 ∈ P and a
radiusR0 > 1. Set R̃0 = R0−20ρ′. Up to moving points of (Bg(p0, R0)\Bg(p0, R̃0))∩P
inside Bg(p0, R̃0), we can assume that the closed annulus Bg(p0, R0) \Bg(p0, R̃0) does
not intersect P . Let Ũ0 = Bg(p0, R̃0 + 7ρ′). We add to Ũ0 all the connected compo-
nents ofM \ Ũ0 containing only finitely many elements of P; there are finitely many such
components. This defines an open connected subset U0 ⊂ M such that



176 Laurent Bessières et al.

• the set U0 ∩ P is finite;
• for every component C of M \ U0, the set C ∩ P is infinite;
• ∂U0 ⊂ ∂B(p0, R̃0 + 7ρ′);
• the 7ρ′-neighbourhood of P ∩ U0 is contained in U0.

SetO0 = U0. LetC1, . . . , Ck be the connected components ofM\(B(p0, R0−7ρ′)∪O0).
Note that dg(Ci,O0) ≥ 6ρ′ and the 7ρ′-neighbourhood of ∂Ci does not intersect P . For
each i ∈ {1, . . . , k} choose a point pi ∈ Ci far enough from ∂Ci and such that for every
t ∈ [0, 1], the set {p0, p1, . . . , pk} is 1-separated with respect to gt . Choose a radius
R1 > 2d(pi, ∂Ci) for all i ≥ 1. Set R̃1 = R1 − 20ρ′, and for every i, set Ũi :=
Int(Ci)∩B(pi, R̃1+ 7ρ′). Perform, after restriction to Int(Ci), the previous construction
starting from Int(Ci) ∩ B(pi, R1), i.e. move points of Int(Ci) ∩ B(pi, R1) ∩ P inside
Int(Ci) ∩ B(pi, R̃1).

Define Ui ⊂ Int(Ci) by adding to Ũi the connected components of Int(Ci) \ Ũi
containing finitely many elements of P . Thus Ui ∩ P is finite, and for each component
C of Int(Ci) \ Ui , the set C ∩ P is infinite. Furthermore, ∂Ui ∩ Int(Ci) is contained in
∂B(pi, R̃1 + 7ρ′), and the 7ρ′-neighbourhood of P ∩ Ui is contained in Ui .

Observe that the Ui’s are pairwise disjoint. Setting O1 = U1 ∪ · · · ∪ Uk , we have
d(O0,O1) ≥ 6ρ′. We now iterate the construction onM \ (O0 ∪O1 ∪B(p0, R0− 7ρ′)∪
· · · ∪ B(pi, R1 − 7ρ′)). ut

Up to deforming g# slightly by moving the basepoints, we can assume that P ⊃ Psep as
given by Lemma 6.3. The deformation of g# which ‘externalises’ most of its GL-sums is
given by the following lemma.

Lemma 6.4. There exist a 3-manifold X, a GL-metric gX ∈ RA
1 (X), and an injective

map x : Psep → X with the following properties:

(1) x(Psep) ⊂ X is 3ρ-separated for gX, and gX is round on its 3ρ-neighbourhood.
(2) The GL-sum (M t X, g t gX)#({(ρ, σ, η)}, {(p, x(p)) : p ∈ Psep}) has scalar cur-

vature greater than σ ′ and geometry bounded by A′, and (M tX)# is diffeomorphic
to M#.

(3) (M#, g#) is isotopic modulo diffeomorphism to (MtX, gtgX)# through metrics with
scalar curvature greater than σ ′′ and geometry bounded by A′′.

Proof. We construct an isotopy {gt#}t∈[0,5] onM#, and a manifold (X, gX) as above, such
that (M#, g

5
#) is isometric to (M tX, g t gX)#.

Recall that the GL-sum construction associates to each pair p± ∈ {p±α } a GL-neck

Bρ(p
−) # Bρ(p+) ≈ S2

× I ⊂ M#

where the metric g# is cylindrical near the middle of the neck. For each p± we denote by
S3(p−) and S3(p+) two round 3-spheres with scalar curvature σ , and we fix two points
x(p−) ∈ S3(p−) and x(p+) ∈ S3(p+).
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Sublemma 6.5. There exists an isotopy {gt#}t∈[0,1] which deforms each GL-neck
Bρ(p

−) # Bρ(p+), without changing the metric near the boundary, through metrics with
scalar curvature ≥ ¯̄σ and geometry bounded by ¯̄A, into the GL-sum

Bρ(p
−) # S3(p−) # S3(p+) # Bρ(p+)

made with parameters (ρ, σ, η) at {(p−, x(p−)), (−x(p−),−x(p+)), (x(p+), p+)}.

Proof. Apply Lemma 2.11 twice. ut

Undoing each GL-sum S3(p−) # S3(p+) of (M#, g
1
#) splits the manifold into a manifold

(M̂, ĝ1) where M̂ is diffeomorphic to M and ĝ1 ∈ RA′
σ ′
(M̂). Our goal is to construct an

isotopy {ĝt }t∈[1,5] on M̂ . The isotopy gt# will be obtained from ĝt by reconnecting each
pair S3(p−) # S3(p+).

Observe that (M̂, ĝ1) is simply the manifold obtained from (M, g) by replacing each
ball Bρ(p) by Bρ(p) # S3(p), for all p ∈ {p±α }. We denote by H(p) ⊂ S3(p) the
hemisphere centred on −x(p) (which is on the opposite of the hemisphere connected to
Bρ(p)). Therefore H(p) ⊂ Bρ(p) # S3(p) ⊂ M̂ .

Sublemma 6.6. There exist a 3-manifold X̂ and a GL-metric gX̂ ∈ RA′
σ ′
(X̂), an injective

map x̂ : Psep → X̂ and an isotopy (ĝt )t∈[1,5] on M̂ such that

(1) Psep is 3ρ-separated for (ĝt ), and x̂(Psep) is 3ρ-separated for gX̂;
(2) ĝt = ĝ1 on all hemispheres H(p−) and H(p+);
(3) ĝt , resp. ĝ5, has scalar curvature greater than σ ′′ (resp. σ ′) and geometry bounded

by A′′ (resp. A′);
(4) (M̂, ĝ5) is isometric to (M t X̂, gtgX̂)#({(p, x̂(p)) : p ∈ Psep}). MoreoverH(p) ⊂

X̂ for all p ∈ P .

Proof. By Lemma 6.3, the set P is divided into open connected subsetsUj ofM and these
subsets are gathered into open subsetsOk such that eachOk is a union of finitely many Ui
and d(Ok,Ol) ≥ 6ρ′ when k 6= l. Let Vk ⊂ (M, g) denote the 3ρ′-neighbourhood ofOk .
By construction, the Vk’s are pairwise disjoint. For each k, let V̂k be the corresponding
subset in M̂ . The V̂k’s are also pairwise disjoint.

We will construct isotopies (ĝV̂kt )t∈[1,5] on M̂ , with support in V̂k , and then define the
isotopy (ĝt )t∈[1,5] on M̂ by {

ĝt = ĝ
V̂k
t on V̂k, ∀k,

ĝt = ĝ1 on M̂ \
⋃
k V̂k.

The (ĝV̂kt ) are constructed independently of each other. Fix k and the subset V̂k . For the
sake of simplicity we now drop the index k. To V̂ = V̂k we associate a compact GL-
manifold (X̂V̂ , gX̂V̂ ), which in fact is simply a (possibly non-connected) GL-sum of a
finite number of round 3-spheres, and an isotopy ĝV̂t defined on M̂ with support in V̂ ,
starting from ĝ1. The set V = Vk is the 3ρ′-neighbourhood of O = Ok . The open set O
is a union Ui1 ∪ · · · ∪ UiN .
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For simplicity, we first discuss the case where N = 1 and perform a four-step defor-
mation of ĝ1 into a metric ĝ5. The general case will be tackled later.

Dropping indices again, we consider U = Ui1 and denote P ∩ U = {p1, . . . , pn}

where Psep = {p1}. We denote by can(n) a metric on S3 # · · · # S3 obtained by GL-sum
of n round 3-spheres of scalar curvature σ , made with parameters (ρ, σ, η).

Step 1. Deform (Bρ(p1) # S3(p1), ĝ1), without changing the metric near the boundary
or on the hemisphere H(p1), through metrics with scalar curvature ≥ ¯̄σ and geometry
bounded by ¯̄A, into the GL-sum

(Bρ(p1) # S3 # · · · # S3︸ ︷︷ ︸
n spheres

, g # can(n))

Let ĝV̂2 ∈ RA′
σ ′
(M̂) be the resulting metric.

Proof. Apply Lemma 2.11 (n− 1 times). ut

Next we choose points x′(p2), . . . , x
′(pn) ∈ Bρ(p1)#S3(p1) so that the ballsB6ρ(x

′(pi))

(for the metric g # can(n)) are round, pairwise disjoint and at distance ≥ 6ρ′ from H(p1)

(this is possible since the number of 3-spheres is large enough). Our next goal is to de-
form ĝV̂2 by moving each basepoint pi to x′(pi), using paths in V # S3(p1). Before doing
that, we need to adjust the parameters of the GL-sum to be compatible with the metric
g # can(n) (a priori, the parameters (ρ, σ, η) we begin with are compatible with g only).
Note that the metric g # can(n) has scalar curvature greater than σ ′ and geometry bounded
by A′. Hence it admits (ρ′, σ ′, η′) as GL-parameters at any point, by definition of ρ′

and η′.

Step 2. For each i ∈ {2, . . . , n}, deform ĝV̂2 on Bρ(pi) # S3(pi), without changing the
metric near the boundary or on the hemisphere H(pi), through metrics with scalar cur-
vature greater than σ̄ and geometry bounded by Ā, into the GL-sum made at {(pi, x(pi))}
with parameters (ρ′, σ ′, η′). Let ĝV̂3 ∈ RA′′

σ ′′
(M̂) be the resulting metric.

Proof. Apply Lemma 2.10. ut

The crucial step is the following.

Step 3. There is an isotopy (ĝV̂t )t∈[3,4] with scalar curvature greater than σ ′′ and geome-
try bounded by A′′, which is constant on the hemispheresH(pi), i ≥ 1, such that (V̂ , ĝV̂4 )
is isometric to the GL-sum(

V # S3(p1) #
⊔
i≥2

S3(pi), g # can(n) #
⊔
i≥2

can
)

made at (p1, x(p1)) and {(x′(pi), x(pi)) : i ≥ 2} (with parameters (ρ, σ, η) for i = 1
and (ρ′, σ ′, η′) for i ≥ 2).

Proof. Recall that can(n) is a metric on S3 isometric to a GL-sum of n round spheres
of scalar curvature σ . We will apply Proposition 2.8 iteratively on the manifold M #



Deforming 3-manifolds of bounded geometry and uniformly positive scalar curvature 179

S3(p1) t
⋃
i≥2 S

3(pi) with parameters (ρ′, σ ′, η′), moving points pi ; x′(pi) along
paths in V #S3(p1). The proposition cannot be applied a priori by moving simultaneously
the n− 1 paths, because this would require having pairwise disjoint 3ρ′-neighbourhoods
for these paths. As the paths must traverse the neck Bρ(p1) # Bρ(x(p1)), this cannot be
achieved with a radius ρ′ independent of n. The trick is to apply the proposition iter-
atively by moving only one point at a time, i.e. we move pi ; x′(pi), the other points
x′(p2), . . . , x

′(pi−1), pi+1, . . . , pn being fixed. In order to do this, it is sufficient to check
the following claim:

Claim. For each i ≥ 2, there exists a continuous path from pi to x′(pi) in

(V # S3(p1)) \
⋃

j≥2, j 6=i

B6ρ′(pj ) ∪ B6ρ′(x
′(pj ))

and whose 3ρ′-neighbourhood is contained in V # S3(p1) \H(p1).

Let us prove this claim. Let i ≥ 2. To begin we prove that there exists a path in U from
pi to p1, which remains at distance ≥ 6ρ′ from all pj (j ≥ 2, j 6= i). By definition of U
(cf. Lemma 6.3), each ball B6ρ′(pj ) is compactly contained in U . Note that d(pj , pk) ≥
12ρ′ for k 6= j , and 6ρ′ is smaller than the injectivity radius. Since U is connected, there
is a path in U from pi to p1. If it intersects B6ρ′(pj ), we can replace the part of the path
in B6ρ′(pj ) by an arc in the boundary sphere S6ρ′(pj ). This arc is contained in U and
at distance ≥ 6ρ′ from any other pk . Hence U \

⋃
j≥2, j 6=i B6ρ′(pj ) is path-connected.

Similarly in (S3(p1), can(n)), there exists a path joining x(p1) to x′(pi), disjoint from
B6ρ′(x

′(pj )) (j ≥ 2, j 6= i) and at distance≥ 6ρ′ fromH(p1). Using these two paths, we
can find a path in the connected sum U #S3(p1) (made at (p1, x(p1)) joining pi to x′(pi)
and at distance ≥ 6ρ′ from pj , x′(pj ) and H(p1). Recalling that the 3ρ′-neighbourhood
of U is contained in V , it follows that the 3ρ′-neighbourhood of the path is contained in
V # S3(p1) \H(p1). This proves the claim, and concludes the proof of Step 3. ut

Step 4. For each i ∈ {2, . . . , n}, deform ĝV̂4 on Bρ(x′(pi)) # S3(pi), without chang-
ing the metric near the boundary or on the hemisphere H(pi), through metrics with
scalar curvature greater than σ̄ and geometry bounded by Ā, into the GL-sum made
at {(x′(pi), x(pi))} with parameters (ρ, σ, η). Let ĝV̂5 ∈ RĀ′

σ ′
(M̂) be the resulting metric.

Proof. Apply Lemma 2.10 again. (Note: There is an abuse of notation in the statement:
ĝV̂4 is a metric defined on M̂ , and in particular on its submanifold Bρ(pi) # S3(pi), but
can be seen as a metric on Bρ(x′(pi)) # S3(pi) only modulo the isometry of Step 3. )

ut

We define (X̂V̂ , gX̂V̂ ) as the GL-sum

(S3(p1) # S3(p2) # · · · # S3(pn), can(n) # can # · · · # can) (1)

made at {(x′(pi), x(pi)) : i ≥ 2} with parameters (ρ, σ, η). Then (V̂ , ĝV̂5 ) is isometric to
the GL-sum

(V t X̂V̂ , g t gX̂V̂
)#({(p1, x(p1)})

where the point x(p1) ∈ S
3(p1) is considered as a point of XV̂ .
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This concludes the construction of ĝV̂t and (X̂V̂ , gX̂V̂ ) when N = 1.
Let us now deal with the general case. Write [1, 5] as a union of successive intervals,

[1, 5] = I1 ∪ · · · ∪ IN . Recall that O = Ok = Ui1 ∪ · · · ∪ UiN , and V is the 3ρ′-
neighbourhood of O. On I1 we use the four-step procedure above (modulo the obvious
reparametrisation) on the set Ui1 . Let t1 = max I1. The metric (V̂ , ĝV̂t1 ) is isometric to
the GL-sum of (V , g) with (X1, gX1) (a finite connected GL-sum of round 3-spheres as
in (1)) and a finite number of round 3-spheres S3(pα). The points used for this GL-sum
are the elements of (Psep ∩ Ui1) ∪ (P ∩ (Ui2 ∪ · · · ∪ UiN )) and corresponding points in
X1 and the S3(pα). Starting from this new GL-sum, apply on Ui2 during the interval I2
the four-step procedure as above. Then pull back the deformation to V̂ by the isometry.
Let (X2, gX2) be the compact connected GL-sum of round 3-spheres created at this step.
Iterate. The GL-manifold (X̂V̂ , gX̂V̂ ) is then defined as the disjoint union

⋃N
i=1(Xi, gXi ).

Having defined isotopies (ĝV̂kt )t∈[1,5] on M̂ , with support in V̂k , we thus define the
isotopy (ĝt )t∈[1,5] on M̂ by {

ĝt = ĝ
V̂k
t on V̂k,∀k,

ĝt = ĝ1 on M̂ \
⋃
k V̂k.

We define (X̂, gX̂) as the disjoint union of the (X̂V̂k , gX̂V̂k
). For each p ∈ Psep the point

x(p) ∈ S3(p) can be considered as a point in X̂, and we set x̂(p) = x(p). That finishes
the proof of Sublemma 6.6. ut

We conclude the proof of Lemma 6.4. To define {gt#}t∈[1,5], we reconnect (M̂, ĝt )
into (M#, g

t
#) by doing the GL-sum H(p−) # H(p+) for all pairs of hemispheres,

with parameters (ρ, σ, η) (recall that ĝt is constant on the hemispheres). Thus
we set gt# = (gt )#({(−x(p

−
α ),−x(p

+
α ))}α). Similarly, we define (X, gX) to be

(X̂, gX̂)#({(−x(p
−
α ),−x(p

+
α ))}α). ut

We conclude the proof of Proposition 6.1 using Lemmas 6.3 and 6.4. These lemmas
imply that Pseptx(Psep) ⊂ M tX is 3ρ-separated for gt tgX. Therefore Proposition 2.8
applies on the manifold (M tX, gt tgX) with basepoints {(p, x(p)) : p ∈ Psep}) (which
are fixed), and with parameters ρ, σ, η. This proposition gives a deformation (M t X,
gt tgX)#, with scalar curvature greater than σ ′ and geometry bounded by A′, towards the
GL-sum (M tX, g1 t gX)#, where g1 and gX are GL-metrics. Denote by SM (resp. SX)
a straight spherical splitting of (M, g1) (resp. (X, gX)). After slightly deforming the GL-
sum (g1 t gX)# by moving basepoints (p, x(p)) (for p ∈ Psep), we can assume that
SM tSX embeds in (M tX)# and is straight for (g1 t gX)#. Denoting by S# a collection
of straight spheres associated to the GL-sum at {(p, x(p)) : p ∈ Psep}, S#

t SM t SX is
a straight spherical splitting of (M t X, g1 t gX)#. By applying dilations, we can finally
arrange that the isotopy starting from g# has scalar curvature greater than 9σ/10, and
geometry bounded by some Ā#. ut

7. Isotopy to a GL-metric: proof of Theorem B

The goal of this section is to prove Theorem B, which we restate below.
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Theorem 7.1. For every A > 0 there exists B = B(A) > 0 such that for every 3-
manifoldM and every metric g ∈ RA

1 (M), there exists aGL-metric g′ ∈ RB
1 (M) isotopic

to g in RB
1 (M).

Proof. Let A > 0. Theorem 5.5 gives a number τ > 0 and a tuple Q = Q[ε−1].
Let M be a 3-manifold and g ∈ RA

1 (M). Fix an orientation of M . By Theorem 5.5
and Remark 5.3 we get a surgical solution (M(·), g(·)) with geometry bounded by Q0
and singular times 0 < t1 < · · · < tj+1 < 2 such that M(t) = ∅ when t ∈ (tj+1, 2].
Thanks to Theorem 5.5, the number j+1 of surgeries is bounded by a number depending
on A only. Let us set t0 = 0.

For convenience we setM0 = M and g0(t) = g(t) on [t0, t1]. Moreover we set, for all
i ≥ 1,Mi = M+(ti); we define gi on [ti, ti+1] by gi(ti) = g+(ti) and, for all t ∈ (ti, ti+1],
gi(t) = g(t). We set (M ′i , g

′

i) = (M ′(ti), g
′(ti)). Recall that M ′(ti) is the union of the

post-surgery manifold Mi and all discarded components. Finally, we set Mj+1 = ∅.
Let (Pi) be the following property:

(Pi) There exist Bi = (Bik)0≤k≤[ε−1] and a map hi : [ti, 2] → RBi0
1 (Mi) such that

(1) hi(ti) = gi(ti) and each component of (Mi, hi(2)) is a GL-metric;
(2) hi(t) has geometry bounded by Bi when t ∈ [max(ti, τ ), 2].

We will prove that (Pi) holds for all i ∈ {0, . . . , j} by backward induction. This will
show that (P0) is true, which gives the required conclusion.

Let us first prove that (Pj ) holds. We consider the Riemannian manifold (Mj , gj (tj )).
We need to construct a metric isotopy hj (t) on Mj for t ∈ [tj , 2].

We set hj (t) = gj (t) on [tj , tj+1]. Item (1) of Theorem 5.5 shows that this path lies
in RQ0

1 (Mj ), and item (2) of that theorem proves that (2) of Property (Pj ) holds after
restriction to [max(tj , τ ), tj+1]. We want to extend hj to the interval [tj+1, 2]. Recall
that the split Riemannian manifold (M ′j+1, g

′

j+1) is ε-locally canonical since Mj+1 = ∅.
Lemma 5.6 then applies to each component of (M ′j+1, g

′

j+1) and provides an isotopy

[tj+1, 2] 3 t 7→ g′j+1(t) ∈ RB′
1 (M

′

j+1), where B′ = B(Q), such that each component
of (M ′j+1, g

′

j+1(2)) is a GL-metric. We denote by (M ′j+1)# the manifold obtained from
(M ′j+1, g

′

j+1) by GL-sum at tips of pairs of caps produced by the metric surgery for
appropriate parameters. We now identify (M ′j+1)# with Mj . Applying Proposition 6.1

and a rescaling, we deduce an isotopy [tj+1, 2] 3 t 7→ h′j (t) ∈ RB′′
1 (Mj ), starting from

the GL-sum ((M ′j+1)#, g
′

j+1(tj+1)#), such that each component of (Mj , h′j (2)) is a GL-
metric. Using Lemma 3.5 in a small interval near tj+1 in [tj+1, 2], we isotope each surgery
neck of (Mj , hj (tj+1)) to the corresponding GL-sum of caps of (Mj , h′j (tj+1)). Denoting
by hj the corresponding isotopy on [tj+1, 2], we obtain a continuous path hj on [tj , 2].
This proves property (Pj ).

Let us now prove that (Pi+1) ⇒ (Pi). We assume that (Pi+1) holds. Then there

exists Bi+1
= (Bi+1

k )0≤k≤[ε−1] and a continuous path hi+1 : [ti+1, 2] → RBi+1
0

1 (Mi+1)

satisfying (1) and (2). We have to prove that there exists Bi such that each connected

component of (Mi, gi(ti)) is isotopic in RBi0
1 to a GL-metric by an isotopy satisfying (2).
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On [ti, ti+1] we set hi(t) = gi(t) as before. Then M ′i+1 ⊃ Mi+1 and M ′i+1 \ Mi+1 is
the union of the discarded components. The components of (M ′i+1, g

′

i+1) are now of two
types: those of Mi+1, which satisfy (Pi+1) by the induction assumption, and those of
M ′i+1 \ Mi+1, which are ε-locally canonical for g′i+1. On Mi+1 we denote by g′i+1(t)

an isotopy defined for t ∈ [ti+1, 2] and given by (Pi+1). On M ′i+1 \ Mi+1 we denote
by g′i+1(t) the isotopy defined for t ∈ [ti+1, 2] and given by Lemma 5.6. As above we
obtain an isotopy h′i(t) on Mi defined for t ∈ [ti+1, 2], by applying Proposition 6.1 and a
rescaling to (M ′j+1, g

′

j+1). We conclude again using Lemma 3.5.
This completes the proof of Theorem 7.1. ut

Appendix A. Construction of metrics with uniformly positive scalar curvature

We prove Theorem 1.3, which we restate for the convenience of the reader.

Theorem A.1. Let M be an oriented, connected 3-manifold. Then M admits a complete
Riemannian metric of uniformly positive scalar curvature and bounded geometry if and
only if there exists a finite collection F of spherical 3-manifolds such that M is a con-
nected sum of members of F .

Proof. The ‘only if’ part is proven in [BBM11], except that the conclusion there allows
for factors which are diffeomorphic to S2

× S1. Those factors can be removed by adding
extra edges in the graph.

We prove the ‘if’ part using the material of Section 2. Let (G,X) be a pair present-
ing M as a connected sum. First we notice that the graph can be modified so that every
vertex has degree at most 3: for each vertex v of degree d ≥ 4 (if any), replace v by a
finite tree Tv with d leaves and such that every vertex of Tv has degree at most 3; for
each such v, fix an arbitrary vertex wv of Tv; then associate Xv to wv and S3 to the other
vertices of Tv . The resulting manifold is diffeomorphic to M .

Next we put on each Xv an arbitrary Riemannian metric with scalar curvature ≥ 1,
geometry bounded by some constant C and such that eachXv contains a disjoint union of
three metric balls of radiusC−1/2. We fix a number ρ ∈ (0, C−1/2). In eachXv we choose
a finite set of points xi with cardinality the degree of v, and such that the metric balls of
radius ρ around the xi’s are pairwise disjoint. We remove those metric balls, getting a
collection of punctured 3-manifolds. Let Y be their disjoint union. Finally, we choose a
neckNe for each edge ofG and glueNe to the corresponding boundary spheres of Y . The
resulting manifold is diffeomorphic to M; by our generalisation of the Gromov–Lawson
construction (see Subsection 2.2), it carries a complete metric with uniformly positive
scalar curvature and bounded geometry. ut

Appendix B. Deforming metrics of positive scalar curvature on closed manifolds

We explain how to prove Theorem 1.9, which we restate for convenience:

Theorem B.1. Let M be a closed, oriented 3-manifold such that R1(M) 6= ∅. Then
R1(M)/Diff+(M) is path-connected in the C∞ topology.
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Proof. There are three differences between Theorems 1.2 and 1.9: (1) the manifold M
need not be connected; (2) we work with R1(M) as opposed to R+(M); (3) we work
with Diff+(M) instead of Diff(M).

Point (1) does not pose any problem since we can work with each component sepa-
rately. Point (2) is dealt with by the following trick:

Lemma B.2. Let g, g′ be two metrics in R1(M) which are isotopic in R+(M). Then they
are isotopic in R1(M).

Proof. Let gt be an isotopy from g to g′. Since M is compact, there exists σ > 0 such
that gt ∈ Rσ for all t . Thus Lemma 4.5 applies. ut

To deal with point (3) above, we need to track down all places in [Mar12] where dif-
feomorphisms are introduced. Recall that the proof has two parts: showing that any
g ∈ R+(M) is isotopic to a canonical metric; and showing that canonical metrics
on M are isotopic modulo diffeomorphism. Canonical metrics are defined on pages 841
and 842: a metric g onM is canonical if it is isometric to (M̂, ĝ), a GL-sum of a standard
S3
⊂ R4 and of spherical manifolds with constant sectional curvature metrics (for some

choice of basepoints and orthonormal bases). We can always assume this isometry to be
positive, orienting M̂ by the choice of the bases, reversing all bases if necessary. The im-
portant point is that arguments on page 842, based on Milnor’s and de Rham’s theorems,
imply that any two canonical metrics on M lie in the same path-connected component of
the moduli space R+(M)/Diff+(M). For the second part of the proof, it is thus unneces-
sary to control the sign of diffeomorphisms, if any. ut
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