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Abstract. We show that the only metric measure space with the structure of an N -cone and with
two-sided synthetic Ricci bounds is the Euclidean space RN+1 for N integer. This is based on a
novel notion of Ricci curvature upper bounds for metric measure spaces given in terms of the short
time asymptotic of the heat kernel in the L2-transport distance. Moreover, we establish rigidity
results of independent interest which characterize the N -dimensional standard sphere SN as the
unique minimizer e.g. of ∫

X

∫
X

cos(d(x, y))m(dy)m(dx)

among all metric measure spaces with dimension bounded above byN and Ricci curvature bounded
below by N − 1.
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1. Introduction

The theory of synthetic curvature-dimension bounds for non-smooth space has been very
active and successful in the last decades. It was initiated in the works of Bakry–Émery
[5] from the point of view of abstract Markov semigroups and Lott–Villani [18] and
Sturm [22] from the point of view of optimal transport and metric measure spaces. Gen-
eralized lower bounds on the Ricci curvature and upper bounds on the dimension lead
to a large number of geometric and functional inequalities and powerful control on the
underlying diffusion process. By now, many precise analytic and geometric results for
metric measure spaces under curvature-dimension bounds have been established such as
Li–Yau type estimates for the heat semigroup [11] and splitting and rigidity results [12,
16] and a clear picture of the fine structure of such spaces is emerging [19].

Recently, significant progress has been made in developing more detailed synthetic
control on the Ricci curvature in a non-smooth context. Gigli [13] and Han [15] provide
a definition of the full Ricci tensor on metric measure spaces, building upon a similar
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construction in the context of 0-calculus by Sturm [23]. Naber [20] characterized two-
sided bounds on the Ricci curvature in terms of functional inequalities in the path space;
see also recent work of Cheng–Thalmaier [9] and of Wu [26].

A drawback of the previous approaches to detailed control on Ricci is that they do
not see curvature concentrated in singular sets such as the tip of a cone. One goal of the
present article is to analyze a different concept of synthetic upper Ricci bounds introduced
recently by the second author [24] and to exhibit a remarkable rigidity: the only metric
measure spaces with cone structure and with Ricci curvature bounded above and below
are Euclidean spaces RN .

We will work in the setting of RCD∗(K ′, N ′)metric measure spaces (see Section 2 for
definitions and references). In this setting an equivalent definition of lower Ricci boundK
is the contraction estimate

W2(P̂tµ, P̂tν) ≤ e
−KtW2(µ, ν)

for the dual heat flow P̂t in L2-Wasserstein distance. The central object in [24] to define
upper Ricci bounds is a reverse estimate asymptotically for short times. More precisely,
for a mm-space (X, d,m) and x, y ∈ X consider

ϑ+(x, y) := − lim inf
t→0

1
t

log
(
W2(P̂tδx, P̂tδy)

d(x, y)

)
, ϑ∗(x) := lim sup

y,z→x
ϑ+(y, z).

For smooth Riemannian mainfolds an upper bound Ric ≤ K is equivalent to requiring
ϑ∗(x) ≤ K for all x. For an RCD space (X, d,m) we take the latter as a definition of
Ric ≤ K (see Section 2.2 for more details).

Our first main result is the following rigidity theorem for cones (cf. Definition 2.6).

Theorem 1.1. Let (Y, dY , mY ) be a mm-space satisfying the curvature-dimension condi-
tion RCD∗(K ′, N ′) for some K ′ ∈ R and N ′ ∈ [0,∞) and assume that it is the N -cone
over a mm-space (X, dX, mX) for some N ≥ 1, i.e. Y = ConN0 (X). Then either

(i) ϑ∗(o) = +∞ for o the tip of the cone, or
(ii) N is an integer and (Y, dY , mY ) is isomorphic to Euclidean space RN+1 with the

Euclidean distance and a multiple of the Lebesgue measure.

In particular, (up to isomorphism) the only N -cone with bounded Ricci curvature among
all mm-spaces is the N + 1-dimensional Euclidean space for N an integer.

Remark 1.2. If Y is not Euclidean space, we still might have special directions in which
Ricci curvature is bounded above. For instance, if N is an integer and X = ConN−1

1 (X′)

with X′ 6= SN−1, then Proposition 4.1 will show that ϑ+(o, y) = 0 for y = (r, x0)

with x0 being one of the poles of the suspension X.

An important ingredient to establish the rigidity of cones will be a novel class of rigidity
results characterizing the standard sphere SN which will be applied to characterize the
base of the cone. They are of independent interest and form the second goal of this article.
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Let f : [0, π] → R be continuous and strictly increasing and put, for a mm-space
(X, d,m) with m(X) <∞ and diam(X) ≤ π ,

Mf (X) :=
1

m(X)2

∫
X

∫
X

f (d(x, y))m(dx)m(dy),

M∗f,N :=

∫ π

0
f (r) sin(r)N−1 dr

/∫ π

0
sin(r)N−1 dr.

Theorem 1.3. Let (X, d,m) be an RCD∗(N − 1, N) space with N ≥ 1, diam(X) ≤ π .
Then Mf (X) ≤ M∗f,N . Moreover, the following are equivalent:

(i) Mf (X) = M∗f,N ,
(ii) N is an integer and X is isomorphic to the sphere SN with the round metric and a

multiple of the volume measure.

In particular, we see that for N ∈ N the standard sphere SN is the unique maximizer of
the expected distance between points and of the variance among RCD∗(N−1, N) spaces,
choosing f (r) = r or f (r) = r2 respectively. We also establish a corresponding almost
rigidity theorem (see Theorem 3.1). It is easy to see that the extremum of Mf among
RCD∗(N − 1, N) spaces is attained also for non-integer N . It would be an interesting
question to characterize the extremizers in this case.

The proof of Theorem 1.3 will rely on the maximal diameter theorem obtained by
Ketterer [16], which in turn stems from Gigli’s non-smooth splitting theorem [12]. In fact,
we will see that (i) will imply that every point in X will have a partner at the maximal
distance π . Also, the other known rigidity results for RCD∗(K,N) spaces with K > 0,
namely Ketterer’s non-smooth Obata theorem [17] for spaces with extremal spectral gap
and the rigidity of spaces saturating the Lévy–Gromov isoperimetric inequality [7], are
based on the maximal diameter theorem.

An analogous statement (with Mf (X) ≥ M∗f,N in place of Mf (X) ≤ M∗f,N ) holds
for strictly decreasing f . Of particular interest is the case f = cos, which leads to
M∗cos,N = 0.

Corollary 1.4. Let (X, d,m) be an RCD∗(N − 1, N) space with N ≥ 1, diam(X) ≤ π .
Then the following are equivalent:

(i)
∫
X

∫
X

cos(d(x, y))m(dx)m(dy) = 0.
(ii) N is an integer and X is isomorphic to the sphere SN with the round metric and a

multiple of the volume measure.

Note the condition diam(X) ≤ π is only required in the case N = 1. For N > 1, it
already follows from the RCD∗(N − 1, N) condition.

In order to obtain Theorem 1.1 from this corollary, note that the distance on the cone
Y is built from the distance on X via the law of cosines. We will show that as long as

a :=

∫
X

cos(d(x, y))m(dy) > 0
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for some point x ∈ X, we have for p = (r, x) in the cone Y the estimate

W2(P̂tδo, P̂tδp)
2
≤ d(o, p)2 − ca

√
t +O(t)

for some constant c > 0, which implies that ϑ(o, p) = +∞.

Organization

The article is organized as follows. In Section 2 we recall definitions and results con-
cerning synthetic curvature-dimension bounds for metric measure spaces, as well as the
notion of upper bounds on the Ricci curvature considered here. The proof of Theorem 1.3
will be given in Section 3 together with the corresponding almost rigidity statements. In
Section 4 we give the proof of Theorem 1.1.

2. Preliminaries

2.1. Synthetic Ricci bounds for metric measure spaces

We briefly recall the main definitions and results concerning synthetic curvature-dimen-
sion bounds for metric measure spaces that will be used in what follows.

A metric measure space (mm-space for short) is a triple (X, d,m) where (X, d) is a
complete and seperable metric space andm is a locally finite Borel measure onX. In addi-
tion, we will always assume the integrability condition

∫
X

exp(−cd(x0, x)
2) dm(x) <∞

for some c > 0 and x0 ∈ X. We denote by P2(X) the space of Borel probability measures
on X with finite second moment and by W2 the L2-Kantorovich–Wasserstein distance.

The Boltzmann entropy of µ ∈ P(X) is defined by Ent(µ) =
∫
ρ log ρ dm provided

µ = ρm is absolutely continuous with respect to m and
∫
ρ(log ρ)+ dm <∞; otherwise

Ent(µ) = +∞. The Cheeger energy of f ∈ L2(X,m) is defined by

Ch(f ) = lim inf
g→f inL2(X,m)
g∈Lip(X,d)

1
2

∫
|∇g|2 dm,

where |∇g| denotes the local Lipschitz constant. A mm-space is called infinitesimally
Hilbertian if Ch is quadratic. In this case, Ch gives rise to a strongly local Dirichlet form.
The associated generator1 is called the Laplacian and the associated Markov semigroup
(Pt )t≥0 on L2(X,m) is called the heat flow on (X, d,m) (see [2] for more details).

For κ ∈ R and θ ≥ 0 define the functions

sκ(θ) =


1
√
κ

sin(
√
κ θ), κ > 0,

θ, κ = 0,
1
√
−κ

sinh(
√
−κ θ), κ < 0,
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and cκ(θ) =
d
dθ
sκ(θ). Moreover, for t ∈ [0, 1] define the distortion coefficients

σ (t)κ (θ) =


sκ (tθ)
sκ (θ)

, κθ2
6= 0 and κθ2 < π2,

t, κθ2
= 0,

+∞, κθ2
≥ π2.

Definition 2.1. (i) A metric measure space satisfies the condition CD∗(K,N) with
K ∈ R and N ∈ [1,∞) if for each pair µ0 = ρ0m and µ1 = ρ1m in P2(X) there
exists an optimal coupling q of µ0, µ1 and a geodesic µt = ρtm connecting them such
that∫

ρ
−1/N ′
t ρt dm ≥

∫
[σ
(1−t)
K/N ′

(d(x0, x1))ρ
−1/N ′
0 + σ

(t)

K/N ′
(d(x0, x1))ρ

−1/N ′
1 ] dq(x0, x1)

for all t ∈ [0, 1] and all N ′ ≥ N (see [4]).
(ii) A mm-space satisfies the condition RCD∗(K,N) for K ∈ R and N ∈ [1,∞) if it

is infinitesimally Hilbertian and satisfies CD∗(K,N).

It has been shown in [10] that the RCD∗(K,N) condition can be formulated equivalently
in terms of evolution variational inequalities. In particular, for each µ0 ∈ P2(X) there
exists a (unique) EVI gradient flow emanating from µ0, denoted by P̂tµ0 and called the
heat flow acting on measures. For µ0 = fm with f ∈ L2(X,m) it coincides with the heat
flow [2], i.e. P̂t (fm) = (Ptf )m. It has been shown ([3, Thm. 6.1], [1, Thm. 7.1]) that
the RCD condition entails several regularization properties for Pt . For instance, Ptf (x) =∫
f dP̂tδx form-a.e. x for every f ∈ L2(X,m). This representation of Ptf has the strong

Feller property, that is, x 7→
∫
f dP̂tδx is bounded and continuous for any bounded

f ∈ L2(X,m). In particular, we have the following estimate for the quadratic variation.

Lemma 2.2. Let X be an RCD∗(0, N) space. Then for µ ∈ P2(X) and all t > 0,

W2(P̂tµ,µ)
2
≤ 2Nt.

Proof. Choosing K = 0, ν = µ and s = 0 (or more precisely, considering the limit
s ↘ 0) in [10, Thm. 4.1] yields the claim. ut

The CD∗(K,N) condition is a priori slightly weaker than the original condition
CD(K,N) given in [22], where the coefficients σ (t)K/N (θ) are replaced by τ (t)K/N (θ) =
t1/Nσ

(t)
K/(N−1)(θ)

1−1/N . Recently, however, Cavalletti and Milman [6] succeeded in show-
ing that CD∗(K,N) is in fact equivalent to CD(K,N) provided (X, d,m) is non-
branching, which in particular will be the case if it is infinitesimally Hilbertian. Thus
in turn RCD∗(K,N) will imply the sharp Bonnet–Myers diameter and Bishop–Gromov
volume comparison estimates (see also [8, 22] for an alternative argument). Given
x0 ∈ supp[m] and r > 0 we denote by v(r) := m(B̄r(x0)) the volume of the closed
ball of radius r around x0 and by

s(r) := lim sup
δ→0

1
δ
m(Br+δ(x0) \ Br(x0))

the volume of the corresponding sphere.
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Proposition 2.3. Assume that (X, d,m) is non-branching and satisfies CD∗(K,N). Then
each bounded closed subset of supp[m] is compact and has finite volume. For each
x0 ∈ supp[m] and 0 < r ≤ R ≤ π

√
N/(K ∧ 0) we have

s(r)

s(R)
≥

(
sK/(N−1)(r)

sK/(N−1)(R)

)N−1

and
v(r)

v(R)
≥

∫ r
0 sK/(N−1)(t)

N−1 dt∫ R
0 sK/(N−1)(t)N−1 dt

.

Moreover, if K > 0 then supp[m] is compact and its diameter is bounded by π
√
N/K .

2.2. Upper Ricci bounds

Here, we briefly introduce the synthetic notion of upper Ricci curvature bounds consid-
ered in this paper. For more details we refer to [24]. Let us mention that also other ap-
proaches in terms of the behaviour of the entropy along Wasserstein geodesics and their
relations are discussed there.

Let (X, d,m) be an RCD∗(K ′, N ′) mm-space and let P̂t denote the dual heat flow
acting on measures. For points x, y ∈ X we set

ϑ+(x, y) := − lim inf
t→0

1
t

log
(
W2(P̂tδx, P̂tδy)

d(x, y)

)
, ϑ∗(x) := lim sup

y,z→x
ϑ+(y, z).

It is shown in [24, Thm. 2.10] that a lower bound ϑ+(x, y) ≥ K is equivalent to
the RCD∗(K,∞) condition and in particular to the following Wasserstein contraction
estimate: W2(P̂tµ, P̂tν) ≤ e

−KtW2(µ, ν) for all µ, ν ∈ P2(X) and all t > 0.
If (X, d,m) = (M, d, e−V vol) is a smooth weighted Riemannian manifold we have

the following precise estimate on ϑ+ in terms of the Bakry–Émery Ricci curvature
Ricf = Ric+Hess f .

Theorem 2.4 ([24, Thm. 3.1]). For all pairs of non-conjugate points x, y ∈ M ,

Ricf (γ ) ≤ ϑ+(x, y) ≤ Ricf (γ )+ σ(γ ) tan(
√
σ(γ )d(x, y)/2)2,

where γ = (γ a)a∈[0,1] is the (unique) constant speed geodesic connecting x and y,

Ricf (γ ) =
1

d(x, y)2

∫ 1

0
Ricf (γ̇ a, γ̇ a) da,

and σ(γ ) denotes the maximal modulus of the Riemann tensor along the geodesic γ .

In particular one sees that an upper bound Ricf ≤ K for some K ∈ R is equivalent to the
estimate ϑ∗(x) ≤ K for all x ∈ M . This motivates the following definition.

Definition 2.5. We say that a number K ∈ R is a synthetic upper Ricci bound for the
mm-space (X, d,m) if

ϑ∗(x) ≤ K for all x ∈ X.
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2.3. Cones and suspensions

We recall the construction of cones for metric measure spaces.

Definition 2.6. For a metric measure space (X, dX, mX) and K ≥ 0, N ≥ 1 the (K,N)-
cone ConNK(X) = (C, dC, mC) over (X, dX, mX) is defined by

C =

{
[0, π/

√
K] ×X/({0, π/

√
K} ×X), K > 0,

[0,∞)×X/({0} ×X), K = 0,

with mC(dr, dx) = sK(r)
Ndr mX(dx) and dC given for (r, x), (s, y) ∈ C by

dC((r, x), (s, y)) =

{
c−1
K [cK(r)cK(s)+KsK(r)sK(s) cos(dX(x, y) ∧ π)], K > 0,√
r2 + s2 − 2rs cos(dX(x, y) ∧ π), K = 0.

We refer to the (0, N)-cone simply as the N -cone of X and to the (1, N)-cone as the
N -spherical suspension of X.

Curvature-dimension bounds for cones are intimately related to curvature-dimension
bounds for the base space. We recall the following result by Ketterer [16].

Theorem 2.7. Let (X, dX, mX) be a metric measure space and let K ≥ 0 and N ≥ 1.
Then the (K,N)-cone ConNK(X) satisfies RCD∗(KN,N + 1) if and only if X satisfies
RCD∗(N − 1, N) and diam(X) ≤ π .

In fact, any curvature-dimension bound on the cone is sufficient to infer bounds on the
base space, as we will show here. More precisely, the following generalization holds.

Theorem 2.8. Let (X, dX, mX) be a metric measure space and let N ≥ 1. Then the
following statements are equivalent:

(i) The (K,N)-cone ConNK(X) satisfies RCD∗(K ′, N ′) for some K ′ ∈ R and N ′ ≥
N + 1.

(ii) X satisfies RCD∗(N − 1, N) and diam(X) ≤ π .

In this case ConNK(X) satisfies RCD∗(KN,N + 1).

A close inspection of the proof in [16] reveals that, at least in the case of the Euclidean
cone K = 0, the arguments there already show that RCD∗(0, N ′) on the cone implies
RCD∗(N − 1, N) on the base space, although this is not explicitly stated. Since the argu-
ment is quite technical and involved we sketch the main steps for the reader’s convenience
and highlight the modifications. See the proof of [16, Thm. 1.2] for more details. To ob-
tain the statement in the caseK > 0 and under the relaxed curvature boundK ′ we provide
additional arguments.

Proof of Theorem 2.8. We only need to treat the implication (i)⇒(ii). We proceed in
three steps.
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Step 1: Let us first consider the case K = 0 and assume that ConN0 (X) satisfies
RCD∗(0, N ′).

(a) Following the argument of Bacher and Sturm [4] one finds that the CD∗(0, N ′)
condition for C = ConN0 (X) implies that diam(X) ≤ π and hence C coincides with
the warped product [0,∞) ×Nid X. Corollary 5.15 in [16] shows that X is infinitesimally
Hilbertian. Proposition 5.11 and Corollary 5.12 in [16] show that the Cheeger energy
of C coincides with the skew product of the Dirichlet forms on [0,∞) and X and that
the intrinsic distance of the latter coincides with dC . Moreover, with I = [0,∞) one has
C∞0 (I ) ⊗ D(0

X
2 ) ⊂ D(0

C
2 ) and 1 ⊗ Db,2+ (LX) ⊂ D

b,2
+ (LC). Here Db,2+ (L) denotes the

set of non-negative bounded functions φ in the domain of L such that Lφ is bounded.
Finally, [16, Thm. 4.26] implies that the Bakry–Émery condition BE(0, N ′) holds for the
Dirichlet form on C.

(b) Following the proof of [16, Thm. 3.23], using the explicit expression of the 02-
operator on C (see [16, (27)]):

0C2 (u⊗ v) =

(
(u′′)2 +

N

r2 (u
′)2
)
v2
+

1
r4 u

20X2 (v)−
N − 1
r4 u20X(v)

+
2
r3 uu

′LX(v)v +

(
2
r2 (u

′)2 −
4
r3 uu

′
+

2
r4 u

2
)
0X(v),

choosing in particular u(r) = r locally, and using the Bochner inequality with parameters
(0, N ′) in C one arrives at the following integrated estimate for v ∈ D(0X2 ) and a test
function φ ∈ Db,2+ (LX):∫
LXφ0X(v) dmX −

∫
0X(v, LXv)φ dmX

≥ (N − 1)
∫
0X(v)φ dmX +

1
N ′

∫
(LXv +Nv)2φ dmX

−

∫
φ(v2N + 2vLXv) dmX

= (N − 1)
∫
0X(v)φ dmX +

1
N

∫
(LXv +Nv)2φ dmX

−

∫
φ(v2N + 2vLXv) dmX −

N ′ −N

N ′N

∫
(LXv +Nv)2φ dmX

= (N − 1)
∫
0X(v)φ dmX +

1
N

∫
(LXv)2φ dmX

−
N ′ −N

N ′N

∫
(LXv +Nv)2φ dmX. (2.1)

(c) It remains to get rid of the last term in (2.1) in order to conclude that X satisfies
RCD∗(N −1, N). For a given point x0 one could simply replace v by v− (1/N)LXv(x0)

in order to make the last term vanish at x0 leaving all other terms invariant. However,
since the Bochner inequality is an integrated estimate, more care is needed.
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One deduces from (2.1) the gradient estimate

|∇PXt v|
2
+
c(t)

N

(
(LXPXt v)

2
−
N ′ −N

N
PXt (L

Xv +Nv)2
)
≤ PXt |∇v|

2.

From here one can follow the argument in [16] to deduce the usual gradient estimate with-
out the extra term −N

′
−N
N

PXt (L
Xv + Nv)2, which in turn implies the RCD∗(N − 1, N)

condition.

Step 2: Let us still consider the case K = 0 but assume that ConN0 (X) satisfies
RCD∗(K ′, N ′) for some K ′ ∈ R. For λ > 0 consider the homothety 8λ of ConN0 (X)
given by 8λ(s, y) = (λs, y) and note that it maps geodesics to geodesics. Consequently,
also the induced map from P(ConN0 (X)) to itself acting by push-forward maps W2-
geodesics to W2-geodesics. Let (µt )t∈[0,1] be a W2-geodesic and let µλt = (8λ)#µt . By
the RCD∗(K ′, N ′) condition the entropy is (K ′, N ′)-convex along the geodesic µλt . One
finds that Ent(µλt ) = Ent(µt )− (N + 1) log λ and thatW2(µ

λ
0, µ

λ
1) = λW2(µ0, µ1). This

implies (K ′λ2, N ′)-convexity of the entropy along the original geodesic (µt ). Since (µt )
was arbitrary, letting λ → 0 shows that ConN0 (X) satisfies RCD∗(0, N ′) and we apply
the first step.

Step 3: Let us finally consider the case K > 0 and assume that ConNK(X) satis-
fies RCD∗(K ′, N ′). The result will follow from a simple blow-up argument. Note that
the pointed rescaled spaces (ConN

K/n2(X), o) converge in pointed measured Gromov–

Hausdorff sense to the pointed Euclidean cone (ConN0 (X), o) and that they satisfy
RCD∗(K ′/n2, N ′). By the stability of the conditions CD∗(K,N) and RCD∗(K,∞) un-
der pointed measured Gromov–Hausdorff convergence (see [25, Thm. 29.25] and [14,
Thm. 7.2, Prop. 3.33]) we deduce that ConN0 (X) satisfies RCD∗(0, N ′). From the first
part of the proof we infer that X satisfies RCD∗(N − 1, N). ut

3. Rigidity of the standard sphere

Here, we give the proof of the rigidity theorem for the standard sphere, Theorem 1.3.
Then, we formulate an almost rigidity statement.

Proof of Theorem 1.3. Without restriction we can assume that m(X) = 1. Possibly
adding a constant to f we can assume that f (0) = 0.

Recall that the Bishop–Gromov volume comparison (Proposition 2.3) asserts that for
any x ∈ X,

mX(B̄r(x))

mX(B̄R(x))
≥

∫ r
0 sin(t)N−1 dt∫ R
0 sin(t)N−1 dt

=:
V ∗r

V ∗R
. (3.1)
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Fix x ∈ X and put g(y) = f (dX(x, y)). Using mX(X) = 1 and D := max {d(x, y) :
y ∈ X} ≤ π we can estimate∫

X

g(y)mX(dy) =
∫
∞

0
mX({g ≥ s}) ds =

∫ f (D)

0
mX(B̄

c
f−1(s)

(x)) ds

=

∫ f (D)

0
(1−mX(B̄f−1(s)(x))) ds ≤

∫ f (π)

0

(
1−

V ∗
f−1(s)

V ∗π

)
ds

=

∫ π

0
f (r) sin(r)N−1 dr

/∫ π

0
sin(r)N−1 dr = M∗f,N .

Integrating over x then yields the first statement.
Let us now prove the rigidity statement. From the above argument we also see that the

equality Mf (X) = M∗f,N implies that for mX-a.e. point x there must exist a point x′ with
dX(x, x

′) = π . But then this must hold even for every x ∈ X. Indeed, given x we can
find a sequence of points xn with d(x, xn) → 0 and x′n such that d(xn, x′n) = π . Since
X is compact, we can assume that d(x′n, x

′) → 0 for some x′ ∈ X. But then we have
d(x, x′) = limn d(xn, x

′
n) = π .

Now, we can show that N is an integer and that X is isomorphic to SN by iteratively
applying the maximal diameter theorem [16, Thm. 1.4]. Indeed, recall that the existence
of points x1, x

′

1 with dX(x1, x
′

1) = π implies that

(a) if N ∈ [1, 2) then either X is isomorphic to the interval [0, π] or N = 1 and X is
isomorphic to the circle S1 with normalized Hausdorff measure;

(b) if N ≥ 2, then X is isomorphic to a spherical suspension ConN−1
1 (Y ) for some

RCD∗(N − 2, N − 1) space (Y, dY , mY ) with diam(Y ) ≤ π and m(Y) = 1.

In case (a), we must have N = 1 and X isomorphic to S1 since otherwise there would be
points that do not have a partner at distance π . In case (b) we pick x2 ∈ X of the form
x2 = (π/2, y2) and x′2 such that dX(x2, x

′

2) = π . Then we have x′2 = (π/2, y′2) and
dY (y2, y

′

2) = π . We then repeat the previous argument inductively. After bNc steps we
arrive at case (a). Thus, we conclude that N is an integer and that X is the N − 1-fold
spherical suspension over S1, i.e. X is isomorphic to SN . ut

We have the following almost rigidity statement.

Theorem 3.1. For all ε > 0 and integer N ≥ 1 there exists δ > 0 depending only on ε
and N such that the following holds: If X is an RCD∗(N − 1 − δ,N + δ) space with
m(X) = 1 and M∗f,N −Mf (X) ≤ δ, then dmGH(X,SN ) ≤ ε, where SN is the standard
N -sphere with normalized volume.

Proof. Assume on the contrary that there is ε0 > 0 and a sequence Xn of normalized
RCD∗(N − 1− 1/n,N + 1/n) spaces with M∗f,N −Mf (Xn) ≤ 1/n and dmGH(Xn,SN )
≥ ε0 for all n. By compactness of the class of RCD∗(K,N) spaces, there exists a nor-
malized RCD∗(N − 1, N) space X such that Xn converges to X in mGH-sense along a
subsequence. Obviously, we still have dmGH(X, SN ) > ε0. On the other hand, sinceMf is
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readily checked to be continuous with respect to measured Gromov–Hausdorff conver-
gence, Mf (X) = limnMf (Xn) = 0. But then, by the rigidity result of Theorem 1.3, X is
isomorphic to SN , a contradiction. ut

Let us give an alternative proof of Theorem 1.3 in the special case f = cos that will yield
the rigidity of cones with bounded Ricci curvature. In this case M∗cos,N = 0. The proof is
based on a slightly different induction argument, noting that the condition Mcos(X) = 0
directly implies Mcos(Y ) = 0 if X is a suspension over Y .

Proof of Theorem 1.3 for f = cos. First note that by Bishop–Gromov volume compari-
son we have, for any x0 ∈ X,∫

X

cos(dX(x0, y))mX(dy) ≥ 0.

Indeed, denote by s(r) the volume of the sphere of radius r around x0 in X. Since X
satisfies RCD∗(N − 1, N), the Bishop–Gromov volume comparison (Proposition 2.3)
asserts that for all 0 < r ≤ R ≤ π ,

s(r)

s(R)
≥

(
sin(r)
sin(R)

)N−1

. (3.2)

Thus we obtain∫
X

cos(dX(x0, y))mX(dy) =
∫ π

0
cos(r)s(r) dr

=

∫ π/2

0
cos(r)s(r) dr +

∫ π

π/2
cos(r)s(r) dr

=

∫ π/2

0
cos(r)[s(r)− s(π − r)]dr ≥ 0. (3.3)

Here we have used cos(r) = − cos(π − r) and s(r) ≥ s(π − r) for r ≤ π/2 by (3.2).
The previous argument also shows that in order forMcos(X)=0 to hold, for a.e. x∈X

there must exist a point x′ ∈ X at maximal distance, i.e. with dX(x, x′) = π . But then
again by compactness and continuity this must hold for every x. The maximal diameter
theorem [16, Thm. 1.4] again shows that one of the two cases (a), (b) above must hold
and that in case (a) we must have N = 1 and X isomorphic to S1.

In case (b), from the definition of distance and measure in the spherical suspension
we have

0 =
∫
X

∫
X

cos(dX(x, y))mX(dx)mX(dy)

=

∫ π

0

∫
Y

∫ π

0

∫
Y

[cos(r) cos(s)+ sin(r) sin(s) cos(dY (θ, φ))]

× sin(s)N−1 sin(r)N−1 ds dr mY (dθ)mY (dφ)

= A2
∫
Y

∫
Y

cos(dY (θ, φ))mY (dθ)mY (dφ),
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with

A =

∫ π

0
sin(s)N ds > 0.

This implies that also Mcos(Y ) = 0 holds and we repeat the previous argument induc-
tively. After bNc steps we arrive at case (a) and conclude that N is an integer and that X
is the N − 1-fold spherical suspension over S1, i.e. X is isomorphic to SN . ut

4. Rigidity of cones with bounded Ricci curvature

Here, we give the proof of the rigidity for cones with bounded Ricci curvature, Theo-
rem 1.1. A crucial ingredient in the proof will be the relation between the vanishing of
the integral ∫

X

cos(d(x, y))m(dy) = 0 (4.1)

and the asymptotic behaviour as t → 0 of W2(P̂tδo, P̂tδq) for the vertex o of the cone
and the points q = (r, x). We will first prove the following pointwise equivalence which
is somewhat stronger than what is needed in the proof of Theorem 1.1.

Proposition 4.1. Let (X, dX, mX) be an RCD∗(N−1, N) space withN≥1 and diam(X)
≤ π . Then for any p0 = (r0, x0) ∈ ConN0 (X) and o the vertex, one of the following
statements holds:

(i)
∫
X

cos(dX(x0, y))mX(dy) = 0 and ϑ+(o, p0) = 0.
(ii)

∫
X

cos(dX(x0, y))mX(dy) > 0 and ϑ+(o, p0) = +∞.

Proof. Step 1: Fix p0 = (r0, x0) ∈ C = ConN0 (X). Recall from (3.3) that

a :=
1

mX(X)

∫
X

cos(dX(x0, y))mX(dy) ≥ 0.

Step 2: Assume first that a > 0. We claim that as t → 0 we have

W2(P̂tδo, P̂tδp0)
2
≤ dC(o, p0)

2
−O(

√
t), (4.2)

which immediately implies that−∂−t |t=0 logW2(P̂tδo, P̂tδp0) = +∞. To this end, denote
by νtp = P̂tδp the heat kernel measure at time t centred at p = (r, x) ∈ ConN0 (X). Denote
by ν̄tp its marginal in the radial component. Further we consider the desintegration νtp,s
of νtp after ν̄tp, i.e. νtp,s are measures on ConN0 (X) such that

νtp =

∫
∞

0
νtp,s dν̄tp(s).
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Lemma 4.2 below shows that for p = o, using polar coordinates we have νto,s(ds
′, dy) =

δs(ds′)m̄X(dy) with m̄X = mX(X)−1mX. Let now π = νtp0
⊗νto be the product coupling.

We obtain

W2(P̂tδo, P̂tδp0)
2
≤

∫
d2
C dπ

=

∫
[r2
+ s2
− 2rs cos(dX(x, y))] νtp0

(dr, dx) νto(ds, dy)

=

∫
r2 ν̄tp0

(dr)+
∫
s2 ν̄to(ds)

− 2
∫
rs cos(dX(x, y)) νtp0

(dr, dx)ν̄to(ds) m̄X(dy)

=

∫
r2 ν̄tp0

(dr)+
∫
s2 ν̄to(ds)− 2

∫
f dνtp0

(∫
s ν̄to(ds)

)
,

where we have set f (r, x) = r
∫
X

cos(dX(x, y)) m̄X(dy). Note that f (p0) = r0a. By
Lemma 4.3 (and Jensen’s inequality) f is a 1-Lipschitz function on ConN0 (X). From
Lemma 2.2 we infer that∣∣∣∣∫ f dνtp0

− f (p0)

∣∣∣∣ ≤ √W2(νtp0
, δp0) ≤

√
2Nt.

Thus, using the moment estimates from Lemma 4.2 we obtain

W2(P̂tδo, P̂tδp0)
2
≤ r2

0 + t · 4(N + 1)− 2c
√
t(r0a −

√
2Nt)

for a constant c > 0. This proves (4.2).

Step 3: Let us now assume that
∫
X

cos(dX(x0, y))mX(dy) = 0. We claim that

W2(P̂tδo, P̂tδp0) ≥ dC(o, p0)+O(t), (4.3)

which immediately implies that −∂−t |t=0 logW2(P̂tδo, P̂tδp0) ≤ 0. To this end, consider
the function φ : ConN0 (X) → R given by φ(s, y) = s cos(dX(x0, y)). By Lemma 4.3,
φ is 1-Lipschitz with respect to the cone distance. Hence, by Kantorovich–Rubinstein
duality, we obtain

W2(P̂tδo, P̂tδp0) ≥ W1(P̂tδo, P̂tδp0) ≥

∫
φ d(νtp0

− νto) =

∫
φ dνtp0

=: g(t).

Using the definition of the cone distance and Lemma 4.2 we obtain

2r0g(t) = −
∫
dC(p0, ·)

2 dνtp0
+ r2

0 +

∫
s2 ν̄tp0

(ds)

= −

∫
dC(p0, ·)

2 dνtp0
+ 2r2

0 + t · 2(N + 1).

From Lemma 2.2 we infer that g(t) = r0 +O(t), which yields (4.3).
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Step 4: Finally, recall that the RCD∗(0, N + 1) property of ConN0 (X) implies the con-
traction estimate

W2(P̂tδp, P̂tδq) ≤ dC(p, q) ∀p, q ∈ C,

which implies that −∂−t |t=0 logW2(P̂tδo, P̂tδp0) ≥ 0. ut

Proof of Theorem 1.1. If Y is isomorphic to RN+1, it satisfies RCD∗(0, N + 1) and it is
isomorphic to the N -cone ConN0 (S

N ). Moreover,

W2(P̂tδp, P̂tδq) = dY (p, q)

for all p, q and hence ϑ+(o, y) = 0 for all y ∈ Y .
Let us now assume that (i) does not hold, i.e. ϑ∗(o) = k < ∞. In particular,

this implies that lim supr→0 ϑ
+(o, (r, x)) ≤ k for all x ∈ X. By Theorem 2.8, X sat-

isfies RCD∗(N − 1, N). Since, by Proposition 4.1 we have either ϑ+(o, y) = 0 or
ϑ+(o, y) = +∞, we infer that ϑ+(o, (r, x)) = 0 for all x and all r sufficiently small
(in fact, this holds for all r, x by the scaling property of the heat flow on the cone). Thus,
again by Proposition 4.1,∫

X

cos(dX(x, y))mX(dy) = 0 ∀x ∈ X,

and in particular (4.1) holds. Theorem 1.3 with f = cos shows that N is an integer and X
is isomorphic to SN with the round metric and a multiple of the volume measure. Hence Y
is isomorphic to RN+1 with Euclidean distance and a multiple of the Lebesgue measure,
i.e. (ii) holds. ut

Let (X, dX, mX) be an RCD∗(N − 1, N) space and let C = ConN0 (X). Further let B
denote the RCD∗(0, N+1) space ([0,∞), | · |, rN dr), where | · | stands for the Euclidean
distance. Denote by PBt , PXt , and PCt the heat semigroups on the spaces B, X, and C
respectively and denote their adjoints acting on measures by P̂Bt , P̂Xt , and P̂Ct .

Lemma 4.2. Let νtp = P̂Ct δp for p = (r, x) ∈ C and denote by ν̄tp its marginal in the
radial component. Further, let νtp,s ∈ P(C) be the desintegration of νtp with respect to ν̄tp,
i.e.

νtp(dq) =
∫
∞

0
νtp,s(dq) ν̄

t
p(ds).

Then ν̄tp = P̂Bt δr for any p ∈ C. For p = o we have ν̄to,s(ds
′, dy) = δs(ds′)̄ mX(dy)

with m̄X = mX(X)−1
· mX. Finally, consider the moments mα(p, t) :=

∫
sα dν̄tp(s) for

α > 0. Then

m2(p, t) = r
2
+ t · 2(N + 1), m1(o, t) =

√
t ·m1(o, 1).
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Proof. First, we recall from [16, Sec. 2.3] that the generator LC of the semigroup PCt is
given explicitly on functions u⊗v of product form with u ∈ C∞0 (0,∞)) and v ∈ D(LX)
by

(LCu⊗ v)(r, x) = (LBu)(r)+
1
r2 (L

Xv)(x),

where LB and LX denote the Laplacians on B and X respectively, i.e. the generators
of PBt and PXt . Note that

(LBu)(r) = u′′(r)+
N

r
u′(r).

It follows that PCt (u⊗ 1) = (PBt u)⊗ 1. Thus for all suitable u,∫
u dν̄tp =

∫
u⊗ 1 d(P̂Ct δp) = P

C
t (u⊗ 1)(p) = PBt u(r) =

∫
u dP̂Bt δr ,

and hence ν̄tp = P̂
B
t δr .

Let us prove the second statement. To this end, we first consider measures µ ∈ P2(C)

of the form µ = (ρ ⊗ 1)mC with ρ ∈ C∞0 ((0,∞)). Its marginal in the radial component
is µ̄(ds) := mX(X)ρ(s)sN ds. Then

P̂Ct µ = [P
C
t (ρ ⊗ 1)]mC = [(PBt ρ)⊗ 1]mC =

∫
∞

0
(δs ⊗ m̄X) P̂

B
t µ̄(ds).

The claim of the lemma follows by approximating δo with such measures µ.
To calculate the moments of ν̄tp, we employ a stochastic argument. The stochastic

process associated with the generator 1
2L

B is the (N + 1)-dimensional Bessel process,
which is the solution to the Itô stochastic differential equation

Yt = Y0 +
N

2

∫ t

0

1
Ys

ds + Bs,

with Bs a standard Brownian motion (see e.g. [21, Chap. XI] for details on Bessel pro-
cesses; for N integer this process can be realized as the absolute value of an (N + 1)-
dimensional Brownian motion). In particular∫

u dν̄tp = E[u(Y2t )],

where Yt is the above process with Y0 = r . We then obtain mα(p, t) by choosing
u(r) = rα . The second moment is given by m2(p, t) = r2

+ 2t (N + 1). One way to
see this is to observe that Y 2

t = Y
2
0 + 2

∫ t
0 Yt dBs + t (N + 1). To obtain m1(o, t) we use

the fact that Yt has the Brownian scaling property, i.e. if Y0 = 0, then Yt has the same law
as
√
t Y1. This yields m1(o, t) =

√
t ·m1(o, 1). ut
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Lemma 4.3. Let (X, dX, mX) be a metric measure space with diam(X) ≤ π and x ∈ X.
Then the function φ : ConN0 (X)→ R given by

(s, y) 7→ s cos(dX(x, y))

is 1-Lipschitz with respect to the cone distance.

Proof. Let (s, y), (s′, y′) ∈ C = ConN0 (X) and set α = dX(x, y), α′ = dX(x, y
′) and

β = dX(y, y
′). Note that α, α′, β ≤ π and β ≥ |α − α′|. Let p, p′ ∈ R2 be points at

angle α and α′ to the first coordinate axis respectively and ‖p‖ = s, ‖p′‖ = s′. Now, we
have

dC((s, y), (s
′, y′))2 = s2

+ (s′)2 − 2ss′ cosβ ≥ s2
+ (s′)2 − 2ss′ cos |α − α′|

= ‖p − p′‖2.

On the other hand,

|φ(s, y)− φ(s′, y′)| = |s cosα − s′ cosα′| = ‖q − q ′‖ ≤ ‖p − p′‖,

where q and q ′ are the projections of p and p′ respectively onto the first coordinate axis.
ut

Example 4.4. Consider the special case X = S2(1/
√

3) × S2(1/
√

3) equipped with the
Cartesian product of the standard Riemannian distances on the spheres S2(1/

√
3) with

radius 1/
√

3 and the normalized product measure, which is an RCD∗(3, 4) space. Hence,
the 4-cone over S2(1/

√
3)×S2(1/

√
3) is an RCD∗(0, 5) space with Ricci curvature +∞

at the tip.
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