
© 2021 European Mathematical Society
Published by EMS Press. This work is licensed under a CC BY 4.0 license.

J. Eur. Math. Soc. 23, 315–347 (2021) DOI 10.4171/JEMS/1012

Hugo Duminil-Copin · Alexander Glazman · Ron Peled · Yinon Spinka

Macroscopic loops in the loop O(n) model
at Nienhuis’ critical point

Received November 16, 2017

Abstract. The loopO(n)model is a model for a random collection of non-intersecting loops on the
hexagonal lattice, which is believed to be in the same universality class as the spin O(n) model. It
has been predicted by Nienhuis that for 0 ≤ n ≤ 2, the loopO(n) model exhibits a phase transition
at a critical parameter xc(n) = 1/

√
2+
√

2− n. For 0 < n ≤ 2, the transition line has been further
conjectured to separate a regime with short loops when x < xc(n) from a regime with macroscopic
loops when x ≥ xc(n).

In this paper, we prove that for n ∈ [1, 2] and x = xc(n), the loop O(n) model exhibits macro-
scopic loops. Apart from the case n = 1, this constitutes the first regime of parameters for which
macroscopic loops have been rigorously established. A main tool in the proof is a new positive
association (FKG) property shown to hold when n ≥ 1 and 0 < x ≤ 1/

√
n. This property im-

plies, using techniques recently developed for the random-cluster model, the following dichotomy:
either long loops are exponentially unlikely or the origin is surrounded by loops at any scale (box-
crossing property). We develop a “domain gluing” technique which allows us to employ Smirnov’s
parafermionic observable to rule out the first alternative when n ∈ [1, 2] and x = xc(n).

Keywords. Loop O(n) model, two-dimensional critical phenomena, FKG inequality, Russo–
Seymour–Welsh theory, spin representation, parafermionic observable, dichotomy theorem, con-
formal invariance, macroscopic loops, dilute Potts model, Kosterlitz–Thouless phase transition

1. Introduction

1.1. Historical background

After the introduction of the Ising model [41] and Ising’s conjecture that it does not un-
dergo a phase transition, physicists tried to find natural generalizations of the model with
richer behavior. In [34], Heller and Kramers described the classical version of the cele-

H. Duminil-Copin: Institut des Hautes Études Scientifiques, Bures-sur-Yvette, France, and
Département de mathématiques, Université de Genève, Genève, Switzerland;
e-mail: duminil@ihes.fr
A. Glazman: Faculty of Mathematics, University of Vienna,
Wien, Austria; e-mail: alexander.glazman@univie.ac.at
R. Peled: School of Mathematical Sciences, Tel Aviv University,
Tel Aviv, Israel; e-mail: peledron@post.tau.ac.il
Y. Spinka: Department of Mathematics, University of British Columbia,
Vancouver, Canada; e-mail: yinon@math.ubc.ca

Mathematics Subject Classification (2020): Primary 60K35; Secondary 82B20, 82B27

https://creativecommons.org/licenses/by/4.0/


316 Hugo Duminil-Copin et al.

brated quantum Heisenberg model, where spins are vectors in the (two-dimensional) unit
sphere in dimension three. In 1966, Vaks and Larkin introduced the XY model [57], and
a few years later, Stanley proposed a more general model, called the spin O(n) model,
allowing spins to take values in higher-dimensional spheres [55]. We refer the interested
reader to [54] for a history of the subject. On the hexagonal lattice, the spin O(n) model
can be related to the so-called loopO(n) model introduced in [16] (see also [20] for more
details on this connection and [47] for a survey).

More formally, the loop O(n) model is defined as follows. Consider the triangular
lattice T composed of vertices with complex coordinates r + eiπ/3s with r, s ∈ Z, and its
dual lattice, the hexagonal lattice H. Since T and H are dual to each other, we call vertices
of T hexagons to highlight the fact that they are in correspondence with faces of H.

A loop configuration is a spanning subgraph of H in which every vertex has even
degree. Note that a loop configuration can a priori consist of loops (i.e., subgraphs which
are isomorphic to a cycle) together with isolated vertices and infinite paths. For a finite
set � of edges of the hexagonal lattice H and a loop configuration ξ , let E(�, ξ) be
the set of loop configurations coinciding with ξ outside �. Let n and x be positive real
numbers. The loop O(n) measure on � with edge-weight x and boundary conditions ξ is
the probability measure Pξ�,n,x on E(�, ξ) defined by the formula

Pξ�,n,x(ω) :=
x|ω|n`(ω)

Z
ξ
�,n,x

for every ω ∈ E(�, ξ),

where |ω| is the number of edges ofω∩�, `(ω) is the number of loops ofω intersecting�,
and Zξ�,n,x is the unique constant making Pξ�,n,x a probability measure.

The physics predictions on the loop O(n) model are quite mesmerizing. Nienhuis
conjectured [44, 42] the following behavior: for n ≤ 2 and x strictly smaller than

xc(n) :=
1√

2+
√

2− n
,

the probability that a given vertex is on a long loop decays exponentially fast in the length
of the loop (subcritical regime), while for x ≥ xc(n) it decays as a power law. For n > 2,
the decay is expected [8] to be exponentially fast for all x > 0.

In the regime of power-law decay (sometimes called the critical regime), the scaling
limit of the model should be described by (see e.g. [38, Section 5.6]) a Conformal Loop
Ensemble (CLE) of parameter κ equal to

κ =

{
4π

2π−arccos(−n/2) ∈ [8/3, 4] if x = xc(n),
4π

arccos(−n/2) ∈ [4, 8] if x > xc(n).

The regime x = xc(n) is sometimes referred to as the dilute critical regime (the limiting
curves are simple) while the regime x > xc(n) is called the dense critical regime.

While the physical understanding of the loopO(n)model is very advanced, the math-
ematical understanding remains mostly limited to specific values of n:
• For n = 1, x = 1, the model is equivalent to site percolation on the triangular lattice

and it is proven [50, 10] that it converges to CLE(6) in the scaling limit.
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• For n = 1, 0 < x < 1, the model is in correspondence with the ferromagnetic Ising
model on the triangular lattice. It is proven that for 0 < x < xc(1) = 1/

√
3 the model

is in the subcritical regime [2], for x = 1/
√

3 it converges to CLE(3) in the scaling
limit [52, 15, 14, 5], and for 1/

√
3 < x < 1 the model exhibits macroscopic loops

(follows from the proof in [56]). Remarkably, the question of convergence to CLE(6)
for 1/

√
3 < x < 1 remains open.

• For n = 0, the model is called the self-avoiding walk model (one has to make sense of
the fact that the configuration does not contain any loops). It is known that the critical
point is equal to xc(0) [23] and that the model is in a dense phase for x > xc(0) [19].
• For large values of n and suitable boundary conditions, it is proved [20] that for any
x > 0, the probability that the loop passing through a given vertex in � is of length k
decays exponentially fast in k (though a phase transition of the hard-hexagon type [3,
Chapter 14] takes place).
• Finally, it is easy to show that there is exponential decay of loop lengths for all n > 0

when x is sufficiently small (see, e.g., [20, Corollary 3.2]).

The goal of this paper is to study the loop O(n) model in a wider regime of parameters.
More precisely, we study the model for n ≥ 1 and x ≤ 1/

√
n.

1.2. Main results for the loop O(n) model

As mentioned above, the mathematical understanding of the model is quite limited, and
until now, the loop O(n) model was not shown to exhibit macroscopic loops for n ∈
(1, 2] at any x > 0. The next theorem states that this holds at Nienhuis’ critical point.
A measure P on loop configurations on H is called a Gibbs measure for the loop O(n)
model with edge-weight x if for P-almost any loop configuration ξ and any finite subset�
of edges of H,

P[· | E(�, ξ)] = Pξ�,n,x .

For k ∈ N, let3k be the ball in T of radius k around the origin for the graph distance, and
let Ak be the annulus in H made up of the edges of H between any two vertices belonging
to some hexagon in 32k \3k .

Theorem 1. For n ∈ [1, 2] and x = xc(n), there exists c > 0 such that for any k > 1
and any loop configuration ξ ,

c ≤ PξAk,n,x[∃ a loop in Ak surrounding 0] ≤ 1− c.

In particular, the Gibbs measure is unique and its samples almost surely have infinitely
many loops going around the origin.

One can view Theorem 1 as evidence of a scale-invariant behavior, supporting the con-
formal invariance conjecture of [38] stated above, at least for n ∈ [1, 2] and x = xc(n).
In light of the conjecture, one expects that the conclusion of Theorem 1 remains in effect
also for n ∈ [0, 2] and x ≥ xc(n), while exponential decay of loop lengths takes place
when x < xc(n). While it is expected that when increasing x the model cannot transition
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from power law decay of loop lengths to exponential decay, this seems difficult to prove
(the measure Pξ�,n,x is in general not monotonic in x) and is currently only known for
n = 1 and x ≤ 1 (the ferromagnetic Ising model). Still, the theorem implies that (at least
one) transition occurs for n ∈ [1, 2]: Exponential decay takes place for small x while
power law decay is present at x = xc(n).

Fig. 1. A sample of a random loop configuration on the critical line: n = 1.4 and x = xc(n)
≈ 0.6. The longest loops are highlighted (from longest to shortest: red, blue, green, purple, orange).
Theorem 1 shows that long loops are likely when n ∈ [1, 2] and x = xc(n).

The proof of Theorem 1 combines probabilistic techniques with parafermionic ob-
servables. These observables first appeared in the context of the Ising model (where they
are called order-disorder operators) and dimer models. They were later extended to the
random-cluster model and the loop O(n) model by Smirnov [51] (see [22] for more de-
tails). They also appeared in a slightly different form in several physics papers going back
to the early eighties [26, 7] as well as in more recent papers studying a large class of mod-
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(a) n = 1.4 and x = 0.57 < xc(n). (b) n = 1.4 and x = 0.63 > xc(n).

Fig. 2. Samples of random loop configuration below and above the critical line.

els of two-dimensional statistical physics [36, 48, 49, 11, 37]. They have been the focus of
much attention in recent years and became a classical tool for the study of these models.

The precise property of these observables that will be used in this article is the fact
that discrete contour integrals of parafermionic observables vanish for the special value
of parameters 0 ≤ n ≤ 2 and x = xc(n). Such an input was already used in [23, 29] for
the self-avoiding walk model, and in [21, 18] for random-cluster models. In our model,
additional difficulties arise from the rigid structure of loop configurations. In order to
overcome these difficulties, we develop a gluing technique, which we hope to be useful
in the study of the loop O(n) model also when x 6= xc(n).

The result for the loopO(n)model on Nienhuis’ critical line is derived from a clearer
picture of the loop O(n) model in the wider regime of parameters, n ≥ 1, x ≤ 1/

√
n.

This picture, in turn, is based on positive association (strong FKG) properties of the spin
representation described in the next section. These yield the following result, which in-
cludes the uniqueness of the translation-invariant (or even periodic) infinite-volume loop
measure, as well as a dichotomy between two possible behaviors of the model: exponen-
tial decay of loop lengths (A1) vs. Russo–Seymour–Welsh type behavior (A2). The two
alternatives correspond to the predicted subcritical and critical (dilute or dense) behaviors
of the model.

Let R be the largest diameter of a loop surrounding the origin (where R = 0 if there
is no such loop, and R = ∞ if there are infinitely many of them). A measure is periodic
if it is invariant under translations in a full-rank lattice.
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Theorem 2. For n ≥ 1, x ≤ 1/
√
n, there exists a unique periodic Gibbs measure Pn,x

for the loop O(n) model with edge-weight x. The measure Pn,x is supported on loop
configurations with no infinite paths, is extremal, is invariant under all automorphisms
of H, and can be obtained as a thermodynamical limit under empty boundary conditions.
Furthermore, exactly one of the following occurs:

A1. There exists c > 0 such that Pn,x[R ≥ k] ≤ exp(−ck) for any k ≥ 1.
A2. There exists c > 0 such that for any k > 1 and any loop configuration ξ ,

c ≤ PξAk,n,x[∃ a loop in Ak surrounding 0] ≤ 1− c. (1)

In particular, Pn,x is the unique Gibbs measure and R = ∞ almost surely.

Both (1) and P5 of Theorem 5 below (from which (1) is derived) should be understood as
a box-crossing property; they imply many other properties of the model, including mixing
at a power law rate and fractal subsequential scaling limits. We refer to the correspond-
ing results in [21] for details. Also note that for n � 1, the model was proved [20] to
satisfy A1 for any x ∈ (0,∞).

When alternative A2 holds, (1) implies the stronger statement that the weak limit of
finite-volume measures under any boundary conditions is Pn,x . On the other hand, when
alternative A1 holds, we do not rule out the existence of non-periodic Gibbs measure. We
mention that in the case of n = 2, x = 1, it is known that there is a unique Gibbs measure,
but it remains open whether all weak limits coincide with it [31].

Alternative A1 implies that the probability of having a loop surrounding the ori-
gin and entirely contained in a given domain is exponentially small for some boundary
conditions. We expect this to hold for any boundary conditions and any (possibly non-
simply-connected) domain whenever A1 is realized; see [30] for the proof for n ≥ 1
and x < 1/

√
3+ ε.

Remark. One may speculate that the length of loops in a domain is reduced, in a suit-
able sense, by adding a hole to the domain (with vacant boundary conditions along it).
A natural attempt to prove such a statement then goes through the positive association
of the spin representation described in the next section. This, however, does not seem to
lead to the desired conclusion as the addition of the hole may be interpreted as restricting
the spins on its boundary to take the same value, and such a restriction is not of “definite
sign” and thus does not lead to a comparison with the initial distribution.

We end this part of the introduction with a discussion of related models. First, for certain
values of n, the loop O(n) model admits a nearest-neighbor representation. More pre-
cisely, when n is the largest eigenvalue of the adjacency matrix of a graph, the loop O(n)
model is represented as the domain walls for a model on the triangular lattice with nearest-
neighbor interactions (more precisely, face interactions). Taking the graph to be one of
the ADE diagrams yields a representation with n ∈ [1, 2]. Special cases include the dilute
Potts model (about which more is said in the next section), the restricted Solid-On-Solid
models and integer-valued Lipschitz height functions. ADE models were originally intro-
duced in [46]; see [12, 45] and [47, Section 3.3.2] for more information. Our results can
then be recast in the language of these models.
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We elaborate on the special case of Lipschitz height functions, arising when n = 2.
The functions are defined at the faces of 3k , are normalized to 0 on the boundary of 3k
and differ by 1, 0 or −1 at any two neighboring faces. The probability of each function F
is proportional to x to the number of pairs of adjacent faces u and v where F(u) 6= F(v).
The loops represent the level lines of the height function, with each level line equally
likely to be increasing or decreasing. Theorem 1 then implies that at x = 1/

√
2 there

are typically log k level lines surrounding the origin and thus the height at the origin has
fluctuations of order

√
log k. Recently, the same statement was proven in [31] for x = 1

(uniform distribution over Lipschitz height functions); in contrast, the fluctuations were
shown in [30] to be bounded when x < 1/

√
3 + ε (corresponds to alternative A1 in

Theorem 2).
Our results may further be compared with the phase diagram of the spin O(2)

model (the XY model). Following Berezinskii [6], Kosterlitz and Thouless [39, 40],
and the celebrated rigorous proof by Fröhlich and Spencer [27], the two-dimensional
XY model is known to exhibit a phase transition from a regime with exponential decay
of correlations at high temperature to a regime with power-law decay of correlations at
low temperature—the so-called Berezinskii–Kosterlitz–Thouless (BKT) transition. The
loopO(n)model is only an approximate graphical representation of the spinO(n)model,
so results do not transfer between them. Still, the spin-spin correlation of the XY model is
approximately, in the same sense as before, equal to the ratio between the partition func-
tion of the loop O(2) model augmented by an additional path and the partition function
of the usual loop O(2) model; see [20, (2)] for the precise formula. Similar ratios are
considered in Section 4.1 where they are shown to have a power-law lower bound. It is
worth mentioning that obtaining such a lower bound is the main difficulty in the proof of
the BKT transition for the XY model and that this is achieved, in [27], via the analysis
of an integer-valued height function which is in an exact correspondence with the XY
model. We mention that a different graphical representation is employed in [13] to study
ratios of partition functions of the XY model.

1.3. The spin representation

As mentioned above, the loop O(1) model can be seen as the Ising model on the tri-
angular lattice T. More formally, the set of spin configurations σ = (σx : x ∈ T) in
{−1, 1}T is in bijection with the set E(H,∅) × {−1, 1} of all loop configurations on H
via the mapping σ 7→ (ω(σ ), σ0), where ω(σ) is the loop configuration composed of
edges of H separating two hexagons u and v with σu 6= σv . In words, ω(σ) is the loop
configuration obtained by taking the boundary walls between pluses and minuses. We use
the denomination plus and minus for a vertex x to denote the fact that the spin σx is equal
to +1 or −1, respectively.

In this section, we extend this correspondence to the loop O(n) model for any n > 0,
by introducing a probability measure on spin configurations which is closely related to
the loop O(n) measure. We call this the spin representation of the loop O(n) model.

For τ ∈ {−1, 1}T and G ⊂ T finite, let 6(G, τ) ⊂ {−1, 1}T be the set of spin
configurations that coincide with τ outside of G. The spin representation measure with
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(a) The spin representation. (b) Loops and spins.

Fig. 3. Loop configurations on the hexagonal lattice are in bijection with colorings of the dual
triangular lattice by two colors (up to a global permutation of the two colors): the loops are obtained
from the coloring as the boundaries of clusters, and the coloring is obtained from the loops by
switching color every time an edge of a loop is crossed.

edge-weight x > 0 and loop-weight n > 0 is the probability measure µτG,n,x on 6(G, τ)
defined by the formula

µτG,n,x(σ ) :=
nk(σ )xe(σ )

ZτG,n,x
for every σ ∈ 6(G, τ), (2)

where k(σ )+1 is the sum of the number of connected components of pluses and minuses
in σ that intersect G or its neighborhood, e(σ ) :=

∑
u∼v 1σu 6=σv is the number of edges

{u, v} that intersectG and have σu 6= σv , and ZτG,n,x is the unique constant makingµτG,n,x
a probability measure. Clearly, both k(σ ) and e(σ ) depend on G, but we omit it in the
notation for brevity.

The next proposition states that (2) indeed defines a representation of the loop O(n)
model.

Proposition 3. Let G ⊂ T be finite and let � be the set of edges of H bordering a
hexagon in G. Then, for any τ ∈ {−1, 1}T and any n, x > 0, if σ has law µτG,n,x , then

ω(σ) has law Pω(τ)�,n,x .

Proof. The following combinatorial relations hold:

e(σ ) = |ω(σ)| and k(σ )− `(ω(σ)) = #{infinite paths in ω(σ) intersecting �},
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where the first equality is trivial and the second can be obtained by iteratively flipping
signs in all finite clusters of σ which intersect G or are adjacent to G. Noting that the
quantity on the right-hand side is constant for σ ∈ 6(G, τ) finishes the proof. ut

An important property of the Ising model is its monotonicity (FKG inequality and mono-
tonicity with respect to boundary conditions). This tool has become central in the study
of the Ising model and luckily for us the spin representation shares this property with the
Ising model for certain values of x and n. Define a partial order on {−1, 1}T as follows:
τ ≤ τ ′ if τx ≤ τ ′x for all x ∈ T. We say that A ⊂ {−1, 1}T is increasing if its indicator
function is an increasing function for this partial order.

Theorem 4. Fix n ≥ 1 and nx2
≤ 1. Then for any finite G ⊂ T,

• (strong FKG inequality) for any τ ∈ {−1, 1}T and any two increasing eventsA and B,

µτG,n,x(A ∩ B) ≥ µ
τ
G,n,x(A) · µ

τ
G,n,x(B); (FKG)

• (comparison between boundary conditions) for any τ ≤ τ ′ and any increasing
event A,

µτG,n,x(A) ≤ µ
τ ′

G,n,x(A).

While fairly simple to prove, this theorem is our main toolbox for the study of the
loop O(n) model. In particular, it allows us to use techniques developed in [21] to prove
the following dichotomy theorem for the spin representation. Before stating it, we remark
that following this work, a similar FKG inequality was shown [31] to hold when n ≥ 2,
(n − 1)x2

≤ 1 and, through more intricate considerations, it allowed deriving the di-
chotomy theorem for n = 2, x = 1 (uniform Lipschitz functions).

By Theorem 6 below, infinite-volume limits µ+n,x and µ−n,x of µ+G,n,x and µ−G,n,x as
G↗ T are well-defined, invariant under translations and ergodic. Recall that 3k ⊂ T is
the ball of radius k around the origin. Write V ↔ W if some vertex of V is connected to
some vertex of W by a path of adjacent pluses. We also write v ↔∞ for the event that v
is in an infinite connected component of pluses.

Theorem 5. For n ≥ 1 and x ≤ 1/
√
n, the following conditions are equivalent:

P1. µ+n,x[0↔∞] = 0.
P2. µ−n,x = µ+n,x .
P3.

∑
v∈T µ

−
n,x[0↔ v] = ∞.

P4. For any v ∈ T,
lim
k→∞
−

1
k

logµ−n,x[0↔ kv] = 0.

P5. There exists c > 0 such that for any k ≥ 1,

µ−32k,n,x
[∃ a circuit of neighboring pluses surrounding 3k in 32k] ≥ c.

Similarly to the discussion of the box-crossing property in Theorem 2, we wish to high-
light the importance of property P5. It implies the decay of the probability of having an
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arm to distance k, as well as many other properties such as tightness of interfaces, univer-
sal exponents, etc. We again refer to [21] for examples (and proofs) of applications in the
context of the random-cluster model. Let us also remind the reader that P5 is equivalent to
the following box-crossing property (which is itself related to the Russo–Seymour–Welsh
property, see [24] for a review of recent advances on the subject): for ρ, ε > 0, there
exists c = c(ρ, ε) > 0 such that for all k ≥ 1 and any τ ∈ {−1, 1}T,

c ≤ µτ
Rk,n,x

[∃ a path of pluses crossing Rk from left to right] ≤ 1− c, (3)

where Rk and Rk are “rectangles of T” defined by

Rk := {r + e
iπ/3s : 0 ≤ r ≤ k, 0 ≤ s ≤ ρk},

Rk := {r + e
iπ/3s : −εk ≤ r ≤ (1+ ε)k, −εk ≤ s ≤ (ρ + ε)k}.

We also remark that Theorem 1 shows that, when n ∈ [1, 2] and x = xc(n), condition P5
holds, and hence also conditions P1–P4.

To better understand the critical nature of the loop O(n) model it is useful to view
it as a particular case of a wider family of models, which is obtained when certain pa-
rameters are tuned to specific values (in the spirit of adding a magnetic field to a spin
system, or viewing the critical random-cluster model as a line in the general q, p param-
eter space). To this end, it is natural to introduce two external fields h, h′, as follows. The
spin representation measure with edge-weight x > 0, loop-weight n > 0 and external
fields h, h′ ∈ R is the probability measure µτ

G,n,x,h,h′
on 6(G, τ) defined by the formula

µτG,n,x,h,h′(σ ) :=
nk(σ )xe(σ )ehr(σ )+h

′r ′(σ )

Zτ
G,n,x,h,h′

, (4)

where r(σ ) :=
∑
u∈G σu is the sum of spins of σ inG, r ′(σ ) := 1

2
∑
t={u,v,w} σu1σu=σv=σw

is one-half of the difference between the number of plus and minus monochromatic tri-
angles that intersectG (where a monochromatic triangle is a set of three mutually adjacent
vertices with equal spins), and Zτ

G,n,x,h,h′
is the unique constant making µτ

G,n,x,h,h′
a

probability measure.
We detail two motivations for the above model. First, in [43], Nienhuis discusses the

dilute Potts model. Its vacancy/occupancy representation is in a direct correspondence
with the model (4), allowing our results to be interpreted in that context. The loop O(n)
model can be viewed as the self-dual surface of the vacancy/occupancy representation
as the distribution at h = h′ = 0 is invariant under a global spin flip. Nienhuis predicts
that this surface is also critical and that the line x = xc(n) is tricritical in the sense
that the order of the phase transition changes there. Our theorems partially confirm these
predictions.

A second motivation comes from the Hammersley–Clifford theorem [33], which
shows that if a Markov random field on the triangular lattice has positive density then
this density factorizes as a product over triangle interaction terms. This implies that, in
the case n = 1, the representation (4) is the most general form of a homogeneous {−1, 1}-
valued Markov random field with a positive probability density.
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In Proposition 8, we show that the strong FKG inequality extends to the case of the
spin representation measure with an external field if nx2

≤ e−|h
′
|. This enables us once

again to use the techniques developed for the random-cluster model and to define Gibbs
measures µ+

n,x,h,h′
and µ−

n,x,h,h′
for the spin representation as weak limits as G ↗ T

of finite-volume measures µ+
G,n,x,h,h′

and µ−
G,n,x,h,h′

, corresponding to τ ≡ +1 and to
τ ≡ −1, respectively.

Theorem 6. For any (n, x, h, h′) such that n ≥ 1 and nx2
≤ e−|h

′
|, there exists a Gibbs

measure µ+
n,x,h,h′

for the spin representation satisfying the following properties:

• µ+
n,x,h,h′

is the weak limit of the measure µ+
G,n,x,h,h′

as G↗ T.
• µ+

n,x,h,h′
is extremal and invariant under all automorphisms of T.

• The µ+
n,x,h,h′

-probability that there exists both an infinite connected component of
pluses and an infinite connected component of minuses is 0.

Similarly, there exists a measure µ−
n,x,h,h′

(possibly equal to µ+
n,x,h,h′

) satisfying the anal-
ogous properties.

Moreover, any periodic Gibbs measure for the spin representation is a mixture
of µ+

n,x,h,h′
and µ−

n,x,h,h′
. We use the notation µ+n,x := µ

+

n,x,0,0 and µ−n,x := µ
−

n,x,0,0.

We remark that since r(σ ) and r ′(σ ) are anti-symmetric, the map σ 7→ −σ takes the
measure µτ

G,n,x,h,h′
to µ−τ

G,n,x,−h,−h′
. In particular, h = h′ = 0 is a self-dual surface

in the space of parameters. Recall that h can be interpreted as an external field favoring
pluses over minuses. Comparing the spin representation defined above to the well-known
random-cluster model (also known as the FK-model), h plays an analogous role to the
parameter p of the random-cluster model (more precisely, eh should be compared to p

1−p ).
Similarly, + and − boundary conditions correspond respectively to the wired and free
boundary conditions of the random-cluster model. For certain properties, the analogy is
rather direct: one may use the suitably modified techniques of the random-cluster model—
the key point is to obtain the monotonicity properties of the spin representation (the FKG
inequality and the comparison between boundary conditions stated above). However, in
order to show for n ∈ [1, 2] and x = xc(n) the existence of macroscopic clusters of
pluses in case of minus boundary conditions (P5 of Theorem 5), we found it necessary to
consider the specific properties of the loop O(n) model and develop the gluing technique
(see Section 4).

The next theorem shows that within the h′ = 0 surface, the self-dual line h = 0 is
critical.

Theorem 7. For n ≥ 1 and x ≤ 1/
√
n,

• if h > 0, then µ−n,x,h,0[0↔∞] > 0;
• if h < 0, then there exists ch > 0 such that for all v ∈ T,

µ+n,x,h,0[0↔ v] ≤ exp[−ch d(v, 0)].
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This result is similar to the recent developments in the understanding of random-cluster
models, for which the critical point was computed on the square lattice [4, 25].

Organization. The paper is organized as follows. The next two sections are devoted to
the proofs of Theorems 2–7. The last section introduces parafermionic observables and
presents the proof of Theorem 1.

2. FKG inequality and comparison between boundary conditions

This section is devoted to monotonicity properties of the spin representation. Theorem 4
follows directly from Proposition 8 and Corollary 10 below. We start by proving the
Fortuin–Kasteleyn–Ginibre lattice condition which is known to imply (FKG) by [32, The-
orem (2.19)]. For σ, σ ′ ∈ {−1, 1}T, we define σ ∨ σ ′ and σ ∧ σ ′ by

(σ ∨ σ ′)(v) := max{σ(v), σ (v′)}, (σ ∧ σ ′)(v) := min{σ(v), σ (v′)}, v ∈ T.

Proposition 8 (FKG lattice condition). Fix (n, x, h, h′) with n ≥ 1 and nx2
≤ e−|h

′
|.

Let B ⊂ T be such that any two neighboring vertices in B have a common neighbor
inside B. Let G ⊂ B be finite, and τ ∈ {−1, 1}B . Then, for every σ, σ ′ ∈ {−1, 1}B such
that σ|B\G = σ ′|B\G,

µτG,n,x,h,h′ [σ ∨ σ
′
] · µτG,n,x,h,h′ [σ ∧ σ

′
] ≥ µτG,n,x,h,h′ [σ ] · µ

τ
G,n,x,h,h′ [σ

′
]. (5)

Remark. The previous proposition states the strong FKG inequality for the spin rep-
resentation defined by (4) in the case B = T. When extending the inequality to the
case B ⊂ T, we slightly abuse notation by using µτ

G,n,x,h,h′
(σ ) for σ, τ defined only

on a subset B of T containing G. By this we mean that µτ
G,n,x,h,h′

(σ ) is defined by (4),
where k(σ ), e(σ ), r(σ ) and r ′(σ ) are defined in the same way. This extension will be
instrumental in Corollary 10, where we prove monotonicity in boundary conditions.

Proof of Proposition 8. By [32, Theorem (2.22)], it is enough to show the inequality for
any two configurations which differ in exactly two places, i.e., for any σ ∈ 6(G, τ) and
u 6= v in G,

µτG,n,x,h,h′ [σ
++
] · µτG,n,x,h,h′ [σ

−−
] ≥ µτG,n,x,h,h′ [σ

+−
] · µτG,n,x,h,h′ [σ

−+
],

where σ ηη
′

is the configuration coinciding with σ except (possibly) at u and v, and such
that σ ηη

′

u = η and σ ηη
′

v = η
′. Equivalently, one needs to prove that

(log n)1k + (log x)1e + h1r + h′1r ′ ≥ 0, (6)

where
1k := k(σ++)+ k(σ−−)− k(σ+−)− k(σ−+),

and 1e, 1r and 1r ′ are defined similarly. Observe that 1r = 0 so that we may drop this
term in (6).
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Write 1k = 1k+ +1k−, where 1k+ and 1k− take into account the plus or minus
connected components separately. Clearly, only plus-clusters containing u or v or adjacent
to one of these vertices contribute to 1k+. It is easy to see that each such cluster in σ+−

or σ−+ is also a cluster in σ−− as long as it does not intersect {u, v}. The number of
plus-clusters intersecting {u, v} is equal to 1 in σ+− and σ−+ and is at least 1 in σ++,
whence 1k+ ≥ −1. Moreover, 1k+ = −1 only if there are no plus-clusters in σ−− that
are adjacent to both u and v, and if u and v are in the same plus-cluster of σ++. In other
words, 1k+ < 0 implies that 1k+ = −1, u and v are adjacent, and common neighbors
of u and v have spin −1. The analogous statement holds for 1k−.

We now divide the study into three cases.

• Assume u and v are not neighbors. Then 1e = 1r ′ = 0 and 1k+,1k− ≥ 0. The
assumption that n ≥ 1 immediately implies (6).
• Assume u and v are neighbors and have two common neighbors with different spins.

Then 1r ′ = 0, 1e = −2 and 1k ≥ 0. Since n ≥ 1 and nx2
≤ 1, we get (6).

• Assume u and v are neighbors, and common neighbors of u and v have the same spin.
Then |1r ′| ≤ 1, 1e = −2 and 1k ≥ −1 (since either 1k+ or 1k− is non-negative).
Since n ≥ 1 and nx2

≤ e−|h
′
|, we get (6). ut

Remark. It is easy to see that the conditions n ≥ 1 and nx2
≤ e−|h

′
| are necessary in

order for the FKG lattice condition to hold for arbitrary G ⊂ T.

The following corollary will be important in the proof of Lemma 12. It compares the
probabilities of the events that the spins of two sets U and V are equal to a certain value.

Corollary 9. Fix (n, x, h, h′) such that n ≥ 1 and nx2
≤ e−|h

′
|. Let G ⊂ T be finite and

τ ∈ {−1, 1}T. Then, for every σ, σ ′ ∈ 6(G, τ) and U,V ⊂ G,

µτG,n,x,h,h′ [σ|U = σ|V = 1] · µτG,n,x,h,h′ [σ|U = σ|V = −1]

≥ µτG,n,x,h,h′ [σ|U = 1, σ|V = −1] · µτG,n,x,h,h′ [σ|U = −1, σ|V = 1]. (7)

Proof. Trivially, (5) implies that the FKG lattice condition is satisfied also for the con-
ditioned measure ν := µτ

G,n,x,h,h′
[ · | σ|U ≡ const, σ|V ≡ const], and hence this mea-

sure satisfies the FKG inequality (see [32, Theorem (2.19)]), i.e., for any two increasing
events A,B ⊂ {−1, 1}T,

ν[A ∩ B] ≥ ν[A] · ν[B].

Applying this inequality to A := {σ|U = 1} and B := {σ|V = 1} yields

ν[σ|U = σ|V = 1] ≥ ν[σ|U = 1] · ν[σ|V = 1],

which can be written in the form (7), where µτ
G,n,x,h,h′

is replaced with ν. Removing the
redundant condition finishes the proof. ut
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In order to treat boundary conditions, we recall the following domain Markov property
(the proof is straightforward and therefore omitted). For any (n, x, h, h′), any finite H ⊂
G ⊂ T and any τ, σ ∈ {−1, 1}T,

µτG,n,x,h,h′ [σ | σ|T\H = τ|T\H ] = µ
τ
H,n,x,h,h′ [σ ].

Remark. As a consequence of this property and the definition of the measure, the model
has the finite energy property: for any τ ∈ {−1, 1}T and σ ∈6(G, τ),µτ

G,n,x,h,h′
[σ ]≥ ε|G|

for a constant ε > 0 depending only on (n, x, h, h′).

Let us conclude this section by observing that the domain Markov property together with
the FKG lattice condition imply the following comparison between boundary conditions.

Corollary 10 (Comparison between boundary conditions). Consider G ⊂ T finite and
fix (n, x, h, h′) such that n ≥ 1 and nx2

≤ e−|h
′
|. For any increasing event A and any

τ ≤ τ ′,
µτG,n,x,h,h′ [A] ≤ µ

τ ′

G,n,x,h,h′ [A].

Proof. There exists B ⊂ T finite such that G ⊂ B and for any σ ∈ 6(G, τ) ∪6(G, τ ′),
the number k(σ ) is not changed by removing all hexagons outside B. It is enough to
prove the inequality for measures µτ

G,n,x,h,h′
and µτ

′

G,n,x,h,h′
on configurations restricted

to B. As in Proposition 8, we abuse notation and keep denoting measures in the same
way. Consider the finite set H := {x ∈ B \G : τx < τ ′x}. The domain Markov property
implies that

µτG,n,x,h,h′ = µ
τ
G∪H,n,x,h,h′ [ · | σ|H = −1], µτ

′

G,n,x,h,h′ = µ
τ
G∪H,n,x,h,h′ [ · | σ|H = 1].

As a consequence, the FKG inequality (5) applied to configurations restricted to the set B
implies that

µτG,n,x,h,h′ [A] ≤ µ
τ
G∪H,n,x,h,h′ [A] ≤ µ

τ ′

G,n,x,h,h′ [A]. ut

3. Proofs of Theorems 2 and 5–7

Now that we are in possession of the FKG inequality and the comparison between bound-
ary conditions, the proofs of Theorems 5–7 follow standard paths already described in
detail in the literature. For this reason, we only outline the arguments and give the rele-
vant references.

Proof of Theorem 6. We fix n, x, h, h′ and omit them everywhere in the notation. The
first two items are very simple consequences of the comparison between boundary condi-
tions (Corollary 10) and the domain Markov property. In particular, proofs that are valid
for the random-cluster model also apply here. We refer to [32, Theorem (4.19) and Corol-
lary (4.23)]. The extremality ofµ+ andµ− implies that these measures inherit the positive
association property of their finite-volume counterparts µ−G and µ+G.

Let us now turn to the third item. First, the measure is ergodic and has the finite en-
ergy property. As a consequence, the Burton–Keane argument [9] shows that the infinite
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connected component of pluses, when it exists, is unique (see [32, Theorem (5.99)] for
the argument). Similarly, the infinite connected component of minuses, when it exists, is
unique. Thus, there cannot be coexistence of an infinite connected component of pluses
and an infinite connected component of minuses, since Zhang’s construction [32, Theo-
rem (6.17)] would imply the existence of more than one infinite connected component of
pluses.

As for the random-cluster model [32, Theorem (4.31)], any weak limit of finite-
volume measures which has at most one infinite cluster (of each sign) is a Gibbs measure.
Thus, by what we have shown above, µ+ is a Gibbs measure.

Corollary 10 implies that for any finite G and τ ∈ {−1, 1}T, the measure µτG is
stochastically between µ−G and µ+G. Thus if µ− = µ+ then the model has a unique
infinite-volume limit, and in particular a unique Gibbs measure.

It remains to consider the case µ− 6= µ+ and prove that any periodic Gibbs measure
is a mixture of these two measures. For the two-dimensional Ising model, the stronger
statement that any (possibly non-periodic) Gibbs measure is a mixture of the plus and
minus measures, was proven by Aizenman [1] and Higuchi [35]. Both these proofs rely
on particular properties of the Ising model and do not apply to our case. Instead, we adapt
the later proof by Georgii–Higuchi [28], which is more geometric and can be extended
to the context of dependent models on the triangular lattice. Specifically, we adapt the
proofs of Lemmas 2.1, 2.2, 3.1 and Corollary 3.2 of [28] to our situation. Below, we use
the notation of [28], replacing *-connectivity in Z2 with standard connectivity in T.

The main difference between the spin representation and the Ising model is that the
latter has the domain Markov property, which states that the distribution in finite volume
with prescribed boundary values is completely determined by one layer of spins on the
boundary of the volume. The formula (4) shows that this is not the case for the spin
representation, as the quantity k(σ ) (defined after (2)) which appears there may depend
on the boundary values beyond the first layer. Nevertheless, a partial Markov property is
available for the spin representation, which suffices to adapt the proofs of [28]. For a finite
G ⊂ T and τ ∈ {−1, 1}T, the finite-volume measure µτG depends on τ only through its
first layer of spins outside G when that first layer can be partitioned into two connected
sets such that τ is constant on each of these sets. Indeed, it is straightforward that in this
case k(σ ) does not depend on the spins in τ beyond the first layer.

Lemma 2.1 of [28] states that any Gibbs measureµ 6= µ− gives positive probability to
the event that an infinite +1 cluster exists. Its statement and proof apply to our situation
verbatim, using the partial Markov property above. In particular, as we have assumed
that µ− 6= µ+, the lemma implies that samples from µ+ have an infinite +1 cluster
and samples from µ− have an infinite −1 cluster, almost surely. Consequently, as there
is no coexistence of infinite clusters of both signs, the measures µ+ and µ− are not
invariant under the T transformation (flipping of all signs). This is used in [28, proof
of Lemma 3.1].

The statement of Lemma 2.2 needs to be modified as follows: Let ω be sampled
from a Gibbs measure µ, let π be a half-plane in T and let R be the reflection through
the boundary of π (so that π and R(π) cover the entire plane and have a line of T in
common). Suppose that for every finite 1 ⊂ π there is a finite, connected, R-invariant G
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with 1 ⊂ G such that ω ≡ 1 on the part of the external vertex boundary of G which is
in π . Then µ stochastically dominates µ ◦ R ◦ T .

The proof is a modification of the argument in [28]: First find, in a largeR-invariant3,
the maximal connected, R-invariant G ⊂ 3 for which the assumption holds. Such a G
exists with probability close to 1 when 3 is large and we proceed on the event that it
exists. Condition on ω outside ofG and note that the distribution of ω|G equals µωG by the
maximality of G (as its boundary can be explored from the outside). Thus, Corollary 10
implies that the distribution of ω|G stochastically dominates µω

′

G , where ω′ coincides
with ω on π and equals −1 elsewhere. Since the parts of the external vertex boundary
ofG in π and R(π)\π are necessarily connected (by the maximality ofG), by the partial
Markov property above we have µω

′

G = µ
τ
G, where τ equals +1 on π and −1 elsewhere.

Consequently, R(T (ω)) is stochastically dominated by µR(T (τ))G . However, Corollary 10
also implies that µτG stochastically dominates µR(T (τ))G . The lemma follows by taking a
sequence of 3n exhausting T.

Lemma 3.1 of [28] states that samples from every Gibbs measure have, almost surely,
an infinite butterfly, i.e., a pair of conjugate half-planes which contain infinite clusters of
the same sign. The statement and proof of the lemma apply verbatim to our situation,
making use of the modified Lemma 2.2.

Corollary 3.2 of [28] is what we need when proving that every periodic Gibbs measure
is a mixture of µ− and µ+. Again, its statement and proof apply to our situation verbatim,
finishing the argument. ut

We remark that the proofs leading to the full characterization of Gibbs measures in [28]
apply to our situation with the exception of Lemma 5.5 there. Adapting the latter to our
model seems more delicate due to our weaker domain Markov property.

Proof of Theorem 5. Again, the analogy with the random-cluster model suggests that the
proofs of [21] apply in our context. Indeed the choice of n ≥ 1 and x ≤ 1/

√
n implies

that the associated spin representation enjoys the FKG inequality and the comparison
between boundary conditions. It is in fact the case that the proofs of [21] apply here, with
additional simplifications: one does not need to work both with the square lattice and its
dual, and one can focus on the triangular lattice solely (since the duality here is simply
flipping the spins). For this reason, we do not write out the proof. In order to illustrate
one of the aspects of the argument though, we define the notion of symmetric domain and
state an important lemma used repeatedly in the proof of [21].

A symmetric domain S (see Fig. 4) is the collection of hexagons fully contained (all
six edges) in the finite connected component of H \ P for some self-avoiding polygon P
in H which is symmetric with respect to the y-axis. Fix four points a, b, c, d on P , with b
symmetric to d , and a and c the unique points on the y-axis. Define (ab), (bc), (cd) and
(da) to be the arcs from a to b etc. in P . Also, define the mixed boundary conditions to
be made up of pluses on hexagons bordering (ab) or (cd), and minuses everywhere else.

Lemma 11. Consider a symmetric domain S. Then

µmix
S,n,x[∃ a path of pluses from (ab) to (cd)] ≥ 1

1+n . (8)
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c

a

bd

y

Fig. 4. A symmetric domain S (hexagons inside the dashed boundary) surrounded by a polygonal
boundary P (bold boundary) with points a, b, c, d on it. The y-axis is depicted in the middle. The
boundary conditions are defined as follows: next to the arcs (ab) and (cd) the spins are 1 (marked
with gray color) and the rest are −1 (marked with dashed gray). Inside the domain the event of the
crossing is depicted.

Proof. The complement of the event that (ab) is connected to (cd) by a path of pluses is
the event that (bc) and (da) are connected by a path of minuses. The symmetry between
the pluses and minuses (note that the pluses may even have a slight advantage if there are
hexagons of (ab) or (cd) intersecting the y-axis) and the fact that (bc) and (da) are in the
same connected component of minuses outside of S imply that the complement event has
probability at most n times the probability of our event. The proof follows readily. ut

Again, we highlight that this lemma is even more convenient than the corresponding claim
in [21], since it does not involve the dual lattice. With this lemma at hand, the rest of the
proof of [21] is simple to adapt and we refer to the original article for details. ut

Remark. Removing spins in all hexagons outside of P in the same way as in Proposi-
tion 8 and a remark after it, one obtains 1/2 on the right-hand side of (8) using a complete
symmetry of the pluses and minuses in the spin representation. We prefer keeping minus
boundary conditions outside in order to be closer to the setup in [21].

We now show how to derive Theorem 2 using Theorems 6 and 5. Recall that 3k is the
ball of size k around the origin, and denote ∂3k := 3k \3k−1.

Proof of Theorem 2. One simply defines Pn,x to be the pushforward of µ+n,x (or µ−n,x) by
the map σ 7→ ω(σ). The convergence of finite-volume measures with empty boundary
conditions follows directly from the corresponding statement for µ+n,x . The fact that con-
figurations do not contain infinite paths follows from the fact that there is no coexistence
of infinite connected components of pluses and minuses. Then, by [20, Lemma 3.7], Pn,x
is a Gibbs measure, since it is obtained as a weak limit of finite-volume measures and is
supported on configurations with no infinite paths.
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We now show that Pn,x is the unique periodic Gibbs measure for the loopO(n)model
with edge-weight x. Assume there exists a periodic Gibbs measure P 6= Pn,x . Let ω be
sampled from P and independently uniformly sample S ∈ {−1, 1}. Let σ be the unique
spin configuration having ω(σ) = ω and σo = S, where o ∈ T is the origin. Let µ be the
law of σ . It is easy to see that µ is a periodic Gibbs measure for the spin representation.
Hence, Theorem 6 implies that µ can be written as a linear combination of µ+n,x and µ−n,x .
The pushforward of each of these measures is Pn,x . Thus, P = Pn,x , a contradiction.

In order to show the dichotomy, we use the alternative provided by Theorem 5. Fix
n ≥ 1 and x ≤ 1/

√
n. If none of the properties of Theorem 5 are satisfied, then P4 is not

satisfied and therefore there exists c = c(n, x) > 0 such that

µ−n,x[a ↔ ∂3k(a)] ≤ exp(−ck)

for all k ≥ 1, where a ∈ T and 3k(a) is the translation of 3k that maps 0 to a. With
the map ω 7→ σ , one easily sees that if the loop passing through a point a has diameter
at least k, then there exists a path of pluses from one of the three hexagons bordering a,
going to distance k from a. Applying the previous displayed inequality to all points in3k ,
we obtain the first item of Theorem 2.

If all the properties of Theorem 5 are satisfied, we can prove that the second item
of Theorem 2 is satisfied as follows. Fix k and τ ∈ {−1, 1}T. Recall that Ak is the set
of edges of H belonging to a hexagon in A′k := 32k \ 3k . Set B := 33k/2 \ 3k and
B ′ := 32k \ 33k/2. Let E be the event that there exists a circuit of neighboring pluses
in B surrounding the origin. Similarly, let F be the event that there exists a circuit of
neighboring minuses in B ′ surrounding the origin. Then, P5 (more precisely (3) and the
FKG inequality) implies that µ−B,n,x[E] ≥ c and µ+

B ′,n,x
[F] ≥ c. Then, conditioning on

the values of the spins in B and using the domain Markov property, we obtain

µτ
A′k,n,x

[E ∩ F] =
∑

τ ′∈{−1,1}B
1τ ′∈E · µ

τ
A′k,n,x

[σ|B = τ
′
] · µτ

A′k,n,x
[F | σ|B = τ ′]

≥

∑
τ ′∈{−1,1}B

1τ ′∈E · µ
τ
A′k,n,x

[σ|B = τ
′
] · µ+

B ′,n,x
[F]

= µ+
B ′,n,x
[F] · µτ

A′k,n,x
[E] ≥ c2,

where both inequalities are obtained using the comparison between the boundary condi-
tions. Note that by writing τ ′ ∈ E for τ ′ ∈ {−1, 1}B , we are slightly abusing the notation,
since E is an event on {−1, 1}H. Nevertheless, as E is completely defined by the values of
spins in B, this does not lead to any ambiguity.

To conclude the proof, observe that on E ∩F , the configuration ω(σ) contains a loop
which is contained in Ak and surrounds the origin, so that (1) follows from Proposition 3.
Finally, since P2 holds, the above argument showing uniqueness of the periodic Gibbs
measure implies uniqueness of the Gibbs measure (as every Gibbs measure for the spin
representation lies stochastically between µ−n,x and µ+n,x). ut

Proof of Theorem 7. We may apply mutatis mutandis the existing arguments for show-
ing that the critical point of random-cluster models on the square lattice is equal to the
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self-dual point. We even have several ways to proceed. Rather than using the original
argument [4], we choose to use a recent short proof of this statement [25].

First, note that the choice of n ≥ 1 and x ≤ 1/
√
n guarantees that the associated

spin representation satisfies the FKG lattice condition. Since it is also strictly positive by
the finite energy property (each configuration in 6(G, τ) has positive probability), we
deduce by [32, Theorem (2.24)] that it is monotonic. A direct application of the result of
[25] (with eh playing the role of p

1−p ) thus implies the existence of hc ∈ R such that:

1. There exists c > 0 such that for all h ≥ hc, µ+n,x,h,0[0↔∞] ≥ c(h− hc).
2. For h < hc, there exists ch > 0 such that for any k ≥ 1,

µ+32k,n,x,h,0
[0↔ ∂3k] ≤ exp(−chk).

We now prove that hc = 0 in two steps. Consider the event Vk that there exists a path
of pluses in the trapeze {r + eiπ/3s : r, s ∈ J0, kK} from the top side to the bottom side.
The complement of this event is the existence of a path of minuses from the left side to
the right side so that, using the symmetry of the trapeze,

µ+n,x[Vk] + µ−n,x[Vk] = 1.

By the comparison between boundary conditions, we deduce that, for h ≥ 0,

µ+32k,n,x,h,0
[0↔ ∂3k] ≥

1
k
· µ+n,x[Vk] ≥ 1

2k .

This immediately implies that hc ≤ 0 by item 2 above.
We now prove that µ−n,x,h,0[0↔∞] > 0 for any h > hc. This property immediately

implies that hc ≥ 0, since otherwise there would be both infinite connected components
of pluses and minuses for the measure µ+n,x . To show that µ−n,x,h,0[0↔∞] > 0, observe
that the proof of [32, Theorem (4.63)] or [17, Theorem 1.12] applied to our context shows
that for any fixed n and x, µ+n,x,h,0 6= µ−n,x,h,0 for at most countably many values of h.
Therefore, there exists h′ ∈ (hc, h) such that µ+

n,x,h′,0 = µ
−

n,x,h′,0 so that

µ−n,x,h,0[0↔∞] ≥ µ
−

n,x,h′,0[0↔∞] = µ
+

n,x,h′,0[0↔∞] > 0. ut

4. Proof of Theorem 1

The proof of Theorem 1 is a combination of several ingredients. We will work by contra-
diction, assuming that scenario A1 of Theorem 2 is realized and all loops are small, and
then proving that the probability of large loops is not exponentially small. In order to do
so, we will invoke so-called parafermionic observables to prove that weighted sums (de-
fined below) of loop configurations with an additional path between two vertices on the
boundary of a domain are not much smaller than weighted sums of loop configurations.
Then, intuitively, the idea is to glue several domains together and combine these long
paths into the large loop that we are looking for. The main problem here is that there can
be loops exactly at the place of gluing. The solution is to use the fact that these loops are
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small by assumption, to condition on them, and, through the use of probabilistic estimates
on relative weights of paths (see definition below), to show that long paths still exist with
good probability and can be combined into a large loop. We start the proof by studying
these relative weights in the next two sections.

In this section, we always assume that n ≥ 1 and x ≤ 1/
√
n. We sometimes specify in

addition that n ∈ [1, 2] and that x = xc(n), which is always at most 1/
√
n. To lighten the

notation, we will drop n and x from the subscript in the measures or partition functions.

4.1. Relative weight of a path

In this section, a finite subset of edges � of H is also seen as a subgraph of H with vertex
set given by the endpoints in �. For a subset A of vertices of �, introduce the weighted
sum

ZA� :=
∑

ω∈E(�,A)
x|ω|n`(ω),

where E(�,A) is the set of subgraphs of � with even vertex degree for v /∈ A and vertex
degree 1 for v ∈ A; as before, |ω| and `(ω) denote the number of edges and loops in ω.
Note that ZA� = 0 unless |A| is even. When A consists of two vertices a and b, we write
Z
a,b
� for Z{a,b}� . Define also the relative weight of a path γ in � to be

W�(γ ) = x
|γ |
·
Z∅�\γ

Z∅�

,

where � \ γ is the subset of edges of H obtained from � by removing all the edges
in γ and the four additional edges incident to the endpoints of γ . We extend the above
definition to the case when γ is a subset of � consisting of disjoint paths, in which case
� \ γ is obtained by removing all edges in γ and the edges incident to the endpoints of
the paths.

Remark. When n = 1 and vertices in A are allowed to have degree 3, the sums and
weights above are related via the Kramers–Wannier duality to spin correlations in the
Ising model on H. More precisely, the ratio of ZA� and Z∅� is then simply the average of
the random variable

∏
x∈A σx . In particular, it is always smaller than 1. The properties

of W�(γ ) are well-understood in this context, and are also related to the weights of the
backbone in the random-current representation of the model [2, pp. 353–355]. In the
following sections, we extend some of these properties to the regime n ≥ 1 and nx2

≤ 1.

Let us conclude this section by introducing notation. We write γ : a → b if γ starts at a
and ends at b, and similarly we write γ : a→ B if γ starts at a and ends at some b ∈ B.
We also write γ ◦ η for the concatenation of the paths γ and η (when η starts at the end
of γ ). Note that by definition, the weights satisfy the chain rule,

W�(γ ◦ η) = W�(γ ) · W�\γ (η) = W�\η(γ ) · W�(η).
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Note also the simple relation for any vertices a, b ∈ �:

Z
a,b
�

Z∅�

=

∑
γ⊂�
γ :a→b

W�(γ ). (9)

4.2. Probabilistic estimates on weights

We will restrict ourselves to special subsets � of H. We refer to Fig. 6 for an illustration
(in the case of a triangular domain). A subset � of edges of H is called a domain if there
exists a self-avoiding polygon P in H such that � is the set of edges with at least one
endpoint in the finite connected component of H \ P . Let ∂� be the set of vertices of P
neighboring a vertex in �. Note that the vertices of ∂� are incident to exactly one edge
of �.

In the next two lemmas, we refer to sums of weights of configurations of the loop
O(n) and its spin representation. We recall the notation and emphasize the difference:
ZA� was defined in the previous subsection and refers to the loopO(n) model (note that it
is different from Z

ξ
�,n,x defined in the introduction), and Z−G refers to the spin represen-

tation and is defined by (2). We shall also use the notation Z−G[·] := µ
−

G,n,x[·] · Z
−

G,n,x .

Lemma 12. Fix n ≥ 1 and x ≤ 1/
√
n. Then for any domain � and any A ⊂ ∂�,

ZA�

Z∅�

≤
ck

nk/2
,

where k := |A|/2 and ck := 1
k+1

(2k
k

)
is the k-th Catalan number.

Proof. Assume first that k = 1 so that A = {a, b} for some a, b ∈ ∂�. Let P be the
polygon defining the domain � and consider the set G of hexagons having all their six
edges in �∪P (see Fig. 4). Let (ab) (resp. (ba)) be the set of hexagons inside P border-
ing the edges of P contained in the arc between a and b when going counter-clockwise
around P (resp. b and a). Proposition 3 describes a measure preserving bijection between
the loop O(n) model and its spin representation. Moreover, the proof implies that the
partition functions coincide, whence

Z∅� = Z−G[σ|(ab) = −, σ|(ba) = −],

xmn · Z
a,b
� = Z−G[σ|(ab) = +, σ|(ba) = −],

xm
′

n · Z
a,b
� = Z−G[σ|(ab) = −, σ|(ba) = +],

xm+m
′

n · Z∅� = Z−G[σ|(ab) = +, σ|(ba) = +],

where m and m′ are the lengths of P -arcs between a and b, and between b and a. The
additional x terms appear due to the fact that certain edges of P are separating hexagons
bearing different spins and they are not counted in Za,b� and Z∅�. The additional n terms
appear because the exterior loop is not counted in Za,b� and Z∅�.
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Applying Corollary 9 for U = (ab) and V = (ba) gives

µ−G,n,x[σ
++
]µ−G,n,x[σ

−−
] ≥ µ−G,n,x[σ

+−
]µ−G,n,x[σ

−+
],

where σ ηη
′

is the configuration coinciding with σ except that it is equal to η on (ab) and
η′ on (ba). Using the four displayed equalities above, we obtain

(xm+m
′

n · Z∅�) · (Z
∅

�) ≥ (x
mn · Z

a,b
� ) · (xm

′

n · Z
a,b
� ).

The term xm+m
′

n cancels out and we obtain

Z
a,b
�

Z∅�

≤
1
√
n
. (10)

Assume now that k ≥ 2. Since ck counts the number of connectivity patterns on
vertices of A induced by k (non-intersecting) paths linking them inside �, it suffices to
show that, for any partition {a1, b1}, . . . , {ak, bk} of A arising from such a connectivity
pattern, ∑

γ1,...,γk⊂�
∀i γi : ai→bi

W�(γ1 ∪ · · · ∪ γk) ≤
1
nk/2

,

where the sum is over collections {γ1, . . . , γk} of non-intersecting paths. Yet, the chain
rule gives

W�(γ1 ∪ · · · ∪ γk) = W�(γ1) · W�\γ1(γ2) · · ·W�\(γ1∪···∪γk−1)(γk),

so that the lemma follows by iteratively summing over γk up to γ1 and using (9) and (10),
noting also that if �′ ⊂ � is obtained by removing a path from ∂� to itself, then each
connected component of �′ is also a domain. ut

We now compare the relative weights of a path in different domains.

Lemma 13. Fix n ≥ 1 and x ≤ 1/
√
n. Then for any two domains � ⊂ 3 and any path

γ ⊂ �,
W3(γ ) ≤ 2W�(γ ).

Furthermore, if γ starts and ends in ∂� ∩ ∂3, then W3(γ ) ≤ W�(γ ).

Proof. We have
W�(γ )

W3(γ )
=
Z∅�\γ

Z∅3\γ

·
Z∅3

Z∅�

.

Denote by �• (resp. 3•) the set of hexagons fully contained in � (resp. 3). Let S be
the set of hexagons having a vertex in common with γ , and denote T := 3• \ �•. By
Proposition 3,

Z∅3 = Z−3• ,

Z∅� = Z−3• [σ|T = −],

Z∅�\γ = Z−3• [σ|T = −, σ|S = −] + Z−3• [σ|T = −, σ|S = +] ≥ Z−3• [σ|T = −, σ|S = −].
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Furthermore, the ± symmetry and the comparison between boundary conditions imply
that

µ−3• [σ|S = +] = µ
+

3• [σ|S = −] ≤ µ
−

3• [σ|S = −],

from which we deduce that

Z∅3\γ = Z−3• [σ|S = −] + Z−3• [σ|S = +] ≤ 2Z−3• [σ|S = −]. (11)

Overall, we have

Z∅�\γ

Z∅3\γ

≥
1
2 · P

−

3• [σ|T = − | σ|S = −]
(FKG)
≥

1
2 · P

−

3• [σ|T = −] =
Z∅�

2Z∅3
.

If γ starts and ends in ∂� ∩ ∂�′, we have Z∅3\γ = Z−3• [σ|S = −] (the spins in S cannot
be+1 since S is touching the boundary), so that we do not lose the factor of 2 in (11). ut

Let us mention an important (technical) consequence of the above lemmas (see Fig. 5).

Λ

Ωa

c

d

b

γ

ψ

ψ′γ′

Fig. 5. The domain 3 and the subdomain � (hexagons inside it are marked with gray). The
points a, b are in ∂3, the points c, d are in ∂�, the path γ ⊂ � has endpoints c, d, the path γ ′ ⊂ 3
contains γ as a subpath and has endpoints a, b. The path γ ′ can visit� several times. The points c, d
are connected to ∂3 by the paths ψ and ψ ′ (the wavy paths in the figure) of length at most k. The
paths ψ and ψ ′ can intersect γ .

Corollary 14. Fix n ≥ 1 and x ≤ 1/
√
n. There exists a constantC = C(n) > 0 such that

the following holds. Consider two domains � ⊂ 3 with two boundary points a, b ∈ ∂3
and two points c, d ∈ ∂� at distance less than k from ∂3 in 3. Then for any path γ in �
from c to d ,

W�(γ ) ≥ e
−Ck

∑
γ ′∈0′

W3(γ
′),

where 0′ is the set of paths in 3 from a to b that contain γ as a subpath.
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Proof. Observe that the right-hand side of the inequality can be expressed as a sum
over configurations in E ′ :=

⋃
γ ′∈0′ E(3 \ γ ′, {a, b}). Fix two paths ψ and ψ ′ in 3

of length less than k, going from ∂3 to c and d respectively. For ω ∈ E ′, define ω1 :=

ω \ (γ ∪ψ ∪ψ ′) and ω2 := ω ∩ (ψ ∪ψ
′), and let A be the set of degree 1 vertices in ω1

so that ω1 ∈ E(3 \ (γ ∪ ψ ∪ ψ ′), A). Note that A ⊂ {a, b} ∪ V , where V is the set of
endpoints of edges of ω2 in ψ ∪ψ ′. Observe that3 \ (γ ∪ψ ∪ψ ′) is a union of domains
with disjoint boundaries. Note also that |V | ≤ 2k + 2 and `(ω) ≤ `(ω1) + 2k. Since
ω = ω1 ∪ ω2 ∪ γ for ω ∈ E ′, the map ω 7→ (ω1, ω2) is injective on E ′. Thus, summing
over the choices of ω1, ω2 and A, and using Lemma 12, we obtain∑

γ ′∈0′

W3(γ
′) =

1

Z∅3

∑
ω∈E ′

x|ω|n`(ω)

≤
x|γ |

Z∅3

· n2k
·

∑
A⊂{a,b}∪V

ω1∈E(3\(γ∪ψ∪ψ ′),A)

x|ω1|n`(ω1) ·

∑
ω2⊂ψ∪ψ ′

x|ω2|

≤
x|γ |

Z∅3

· n2k(1+ x)2k ·
∑

A⊂{a,b}∪V

ZA3\(γ∪ψ∪ψ ′)

≤
x|γ |

Z∅3

· (2n)2k ·
k+2∑
`=0

(
2k + 4

2`

)
c`

n`/2
· Z∅3\(ψ∪γ∪ψ ′)

≤ (2n)2k · ck+2 · 22k+4
· W3(γ ),

where, in the last inequality, we have used Z∅3\γ ≥ Z∅
3\(ψ∪γ∪ψ ′)

to obtain the term
W3(γ ). We conclude the proof by noting that W3(γ ) ≤ 2W�(γ ) by Lemma 13 and that
all the constant terms above are bounded by exp[O(k)]. ut

4.3. The input from the parafermionic observable

Fix k even. Consider the equilateral triangular domain Tk of side length k (see
Fig. 6) defined as the set of edges of H with at least one endpoint in the subset
{0 < y <

√
3(k/2 − |x − k/2|)} of R2. Let Bk , Lk and Rk be the bottom, left and

right parts of ∂Tk . Also, let a be the point of Cartesian coordinates ((k + 1)/2,−1/2) (it
is in the middle of Bk).

Proposition 15. Fix n ∈ [1, 2] and x = xc(n). Then, for any even integer k ≥ 1,∑
γ⊂Tk
γ :a→Lk

WTk (γ ) ≥ x
2.

Proof. In order to prove this statement, we use the parafermionic observable. Set

σ = σ(n) := 1− 3
4π arccos(−n/2).

For this proof only, the paths γ will be considered as going from the center z0 of an edge
to the center z of another edge. Define 0z = 0z(�, z0) for the set of paths in � from z0
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Lk

Rk

Bk

a

z0

z

a

Tk

0

Fig. 6. Domain � = Tk : the polygon P around it is in bold, the edges of Tk are all those that lie
inside P (note that the edges of P are not in�), the boundary vertices ∂Tk are marked with bullets,
three different sides of ∂Tk are denoted by Bk , Lk , Rk , each containing k hexagons, where k is
even. The origin is located at the center of the leftmost hexagon on the bottom side, the vertex a is
in the middle of Bk and z0 is the midpoint of the edge in Tk emanating from a. The path depicted
starts at z0 and ends at the midpoint z of an edge inside Tk (as in the definition of the parafermionic
observable). Furthermore, it has winding 2π at z.

to z. For any γ ∈ 0z, W�(γ ) is computed as in the case where z0 and z are vertices, and
the notion of length |γ | is naturally extended by making the starting and ending half-edges
contribute 1/2 instead of 1.

Given a domain� and a center z0 of an edge incident to ∂�, define the parafermionic
observable for any center z of an edge in � as follows:

F(z) :=
∑
γ∈0z

e−iσ wind(γ )W�(γ ),

where wind(γ ) is the total rotation when traversing γ from z0 to z.
It is by now classical (see [53, Lemma 4]) that F satisfies the following relations when

x = xc(n): for the centers p, q, r of the three edges incident to a vertex v ∈ � \ ∂�,

(p − v)F (p)+ (q − v)F (q)+ (r − v)F (r) = 0,

where p − v, q − v or r − v are seen as complex numbers.
We now focus on the domain Tk and z0 = ((k + 1)/2, 0) (which is therefore the

center of the edge of Tk incident to a). Summing the previous relation over all vertices
v ∈ Tk \ ∂Tk , we find that the contributions of each inner edge to the relations around its
endpoints cancel each other out, whence

e−2πi/3
∑
z∈Lk

F(z)+ e2πi/3
∑
z∈Rk

F(z)+
∑
z∈Bk

F(z) = 0, (12)
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where Lk (resp. Rk and Bk) denotes the set of centers of edges with one endpoint in Lk
(resp. Rk and Bk).

Now, if z ∈ Lk ∪ Rk ∪ Bk then the observable can be computed simply using the
observation that the winding of paths going from z0 to z is constant, i.e., does not depend
on the path. More precisely, if b is the vertex of ∂Tk associated to z (recall that a is
associated to z0), we obtain

F(z) =
1
x
· e−iσw(z)

∑
γ⊂Tk
γ :a→b

WTk (γ ),

where w(z) is equal to π/3 on Lk ,−π/3 on Rk , and±π on Bk depending on whether z is
on the left or right of z0. Note that the term 1/x comes from the two missing half-edges
necessary to complete γ to a path from a to b. In particular, we obtain

e−2πi/3
∑
z∈Lk

F(z)+ e2πi/3
∑
z∈Rk

F(z)

=
1
x
· 2 cos((2+ σ)π/3)

∑
γ⊂Tk
γ :a→Lk

WTk (γ ) = −
1
x2

∑
γ⊂Tk
γ :a→Lk

WTk (γ ),

where we use − cos((2+ σ)π/3) = cos((1− σ)π/3) =
√

2+
√

2− n/2 = 1
2xc
=

1
2x .

Since the empty walk is the only possible path from z0 to z0, we find F(z0) = 1. This,
together with σ ≤ 1/2, implies that∑

z∈Bk

F(z) = F(z0)+
1
x
· cos(σπ) ·

∑
γ⊂Tk

γ :a→Bk\{a}

WTk (γ ) ≥ 1.

Plugging this inequality and the previous displayed equation in (12) completes the proof.
ut

4.4. Wrapping up the proof

Fix n ∈ [1, 2] and x = xc(n) ≤ 1/
√
n. For convenience, we will write ZA�[E] for the

weighted sum over configurations in E ⊂ E(�,A). Fix a large even integer k and define

r := k/log k and ` := (log k)2.

We remark that the precise values of r and k are not important, we just need k/r , r/` and
`/log k to be sufficiently large. For 1 ≤ s < k, set Tk,s to be the domain Tk−s translated
so that it is centered in the middle of Tk .

Proposition 15 implies that ∑
γ⊂Tk
γ :a→Lk

WTk (γ ) ≥ x
2.

We split the proof into two cases: either the paths γ staying in Tk \ Tk,r contribute at
least half of the above sum, or the paths γ intersecting Tk,r do. We will show that both
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of these cases are impossible when k is large. We start with the case where the paths
intersecting Tk,r contribute substantially, since this is from our point of view the most
conceptual part of the argument.

Case 1. Assume that (see Fig. 7) ∑
γ⊂Tk
γ :a→Lk
γ∩Tk,r 6=∅

WTk (γ ) ≥ x
2/2 .

Since any path γ ′ in Tk from a to Lk intersecting Tk,r contains a subpath included in Tk,`
also intersecting Tk,r , there must exist b ∈ Lk and c, d ∈ ∂Tk,` satisfying

∑
γ ′∈0′bcd

WTk (γ
′) ≥

x2

18k3 , (13)

where 0′bcd is the set of paths γ ′ in Tk from a to b containing a subpath in Tk,` from c to
d intersecting Tk,r . Note that we have used the fact that there are less than k possibilities
for b and less than 3k possibilities for each of c and d . In what follows, it will only
be important whether c and d are on the same part or on different parts of ∂Tk,`. Using
symmetry, we may assume that c is on the bottom and d on the bottom or the left of ∂Tk,`.

c1

c2
c3

c4
c5

c6

d1
d2

d3

d4

d5
d6

Tk

Tk,r

Tk,`

(a) The point c is on the bottom side of T`
k

and d is on the left
side of T`

k
.

c1

c2
c3

c4
c5

c6

d1

d2
d3

d4
d5

d6

(b) Both c and d are on the bottom side of T`
k

.

Fig. 7. Case 1 of the proof. The triangle Tk = T1
k

is colored gray. The triangles in both pictures
represent Tj

k
(big triangles), Tj

k,`
(middle triangles), Tj

k,r
(smallest triangles). The set S is shown

by dashed lines. Paths from cj to dj in Tj
k,`

and crossing Tj
k,r

have a big relative weight. Points of
the setA = {c1, d1, . . . , c6, d6} are paired by short paths. The way vertices are paired by τ depends
on the location of points c = c1 and d = d1.
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Set T1
k = Tk , c1 = c and d1 = d. Also, define Tj+1

k , cj+1 and dj+1 to be the
reflections of Tjk , cj and dj with respect to ejπi/3R. Denote 3′k :=

⋃6
j=1 T

j
k (this is

the domain induced by the polygon surrounding 3k) and A := {c1, d1, . . . , c6, d6}. We
define Tjk,s similarly for s ≥ 1 (in particular, for s = r, `). Let S be the set of edges of H
belonging to the hexagons intersecting R ∪ eiπ/3R ∪ e2iπ/3R.

For ω ∈ E(3′k,∅), define ∂ω to be the union of all loops of ω that intersect S. Let E
be the set of ω ∈ E(3′k,∅) that contain only loops of diameter less than `. We will later
use the fact that the probability of E is close to 1 if A1 of Theorem 2 holds. Note that
ω \ ∂ω ⊂ T1

k,1 ∪ · · · ∪ T6
k,1 for all ω ∈ E(3′k,∅), and ∂ω ∩ (T1

k,` ∪ · · · ∪ T6
k,`) = ∅

for ω ∈ E . Now, for j = 1, . . . , 6, let Intj (ω) denote the connected component of the
set Tjk,1 \ ∂ω that contains Tjk,`. Note that by the definition of E , the set Intj (ω) is well-
defined for any ω ∈ E . One may also check that Intj (ω) is in fact a domain. Define
also Int(ω) := Int1(ω) ∪ · · · ∪ Int6(ω). We extend these definitions for configurations in
E(3′k, A): we write EA for the set of ω ∈ E(3′k, A) that contain only loops of diameter
less than ` and paths which do not intersect S, and define Int(ω) in an analogous way.

Consider� such that for someω ∈ E one has� = Int(ω), and denote�j := �∩T
j
k =

Intj (ω). Corollary 14 and (13) imply the existence of constants C,C′ such that

∀j = 1, . . . , 6,
∑
γ⊂Tjk,`
γ :cj→dj

γ∩Tjk,r 6=∅

W�j (γ ) ≥ e
−C′`

∑
γ ′∈0′bcd

WTk (γ
′) ≥ e−C

′`
·
x2

18k3 ≥ e
−C` .

(14)
Denote by F the set of configurations ω ∈ EA which contain six paths, such that for
all j = 1, . . . , 6, one of these paths goes from cj to dj in Tjk,` and intersects Tjk,r . Then,
applying (14) six times, we obtain

ZA�[F ∩ E(�,A)] ≥ e
−6C`Z∅�[E ∩ E(�,∅)].

Now, we use the fact that {Int(·) = �} is “measurable from outside �”, together with the
domain Markov property of the loop model. More precisely, for any two configurations
ω,ω′ ∈ E∪EA which coincide on3′k \�, we have Int(ω) = � if and only if Int(ω′) = �.
In addition, if ω ∈ E ∪ EA satisfies Int(ω) = �, then ω decomposes into two loop
configurations ω ∩� and ω \�, the latter belonging to E . Using these observations, and
denoting E� := {ω \� : ω ∈ E, Int(ω) = �}, we obtain

ZA
3′k
[{ω ∈ F : Int(ω) = �}] = Z∅

3′k\�
[E�]ZA�[F ∩ E(�,A)]

≥ e−6C`Z∅
3′k\�
[E�]Z∅�[E ∩ E(�,∅)] = e

−6C` Z∅
3′k
[{ω ∈ E : Int(ω) = �}].

Summing over all � ∈ {Int(ω) : ω ∈ E}, we deduce that

ZA
3′k
[F] ≥ e−6C`Z∅

3′k
[E].
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We now wish to go back to configurations in E(3′k,∅). Fix a collection τ of six paths,
each of length 2`, pairing the vertices of A together in one of the following two ways:
if d is on the bottom side of Tk,`, then we choose τ in such a way that the pairing is
(c1, c6), (d1, d6), (c2, c3), (d2, d3), (c4, c5), (d4, d5); if d is on the left side of Tk,`, then
we consider a pairing (d1, d2), (c2, c3), (d3, d4), (c4, c5), (d5, d6) and (c6, c1). Let G be
the set of ω ∈ E(3′k,∅) containing a loop of diameter at least r−`. Observe that ω4τ ∈ G
as soon as ω ∈ F . Moreover, ω 7→ ω 4 τ defines an injective map from F to G and the
number of edges and loops in ω 4 τ and ω each differ by at most 12`, whence

Z∅
3′k
[G] ≥ (x/n)12`ZA

3′k
[F].

Overall, using the previous two displayed inequalities and dividing by Z∅
3′k

gives

P∅
3′k
[G] ≥ (x/n)12`e−6C`P∅

3′k
[E].

Recall now the choice of r and `, and note that if A1 of Theorem 2 is satisfied, then P∅
3′k
[G]

decays exponentially fast in r , and P∅
3′k
[E] tends to 1. This is contradictory for k large.

Case 2. Assume that (see Fig. 8) ∑
γ⊂Tk\Tk,r
γ :a→Lk

WTk (γ ) ≥ x
2/2.

In this case, a path from a to Lk staying in Tk \ Tk,r must intersect the left or right
boundary of the domain Rectk enclosed in [4r, k − 4r] × [0, 4r]. Thus, similarly to (13),

Tk

Tk,r

Rectk

a

b

d

a1d1

(a) Paths from a to b contained in Tk \ Tk,r
have a large relative weight in Tk . The point d
on the left (or right) side of rectangle Rectk is
such that paths from a to d have a large rela-
tive weight in Rectk .

a

a1

d

d1

S

Rectk
(b) Here we zoom in on Rectk . Points a1, d1 are symmetric to a, d with
respect to line S. Points a, a1, as well as points d, d1, are linked by short
straight paths (shown in gray) possibly intersecting paths a → d and a1 →
d1. In any case, after removing the double edges these four paths create a big
loop.

Fig. 8. Case 2 of the proof.
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we find that there exist b ∈ Lk and d contained in the left or right boundary of Rectk such
that ∑

γ ′∈0′bd

WTk (γ ) ≥
x2

4rk
,

where 0′bd is the set of paths γ ′ in Tk from a to b containing a subpath γ in Rectk \ Tk,r
from a to d . Here, we have used the fact that there are k choices for b and 2r choices
for d. Below, we assume that d is contained in the left boundary of Rectk , the case of the
right boundary being completely analogous. In the same way as in the derivation of (14),
Corollary 14 implies that∑

γ⊂Rectk\Tk,r
γ :a→d

WRectk (γ ) ≥ e
−C′r

∑
γ ′∈0′bd

WTk (γ ) ≥ e
−Cr . (15)

Consider a1 and d1, the reflections of a and d with respect to the horizontal line {(x, y) ∈
R2
: y = 2r}, and let S be the set of edges of H belonging to the hexagons intersecting

this line. Similarly to Case 1, define E to be the set of ω ∈ E(Rectk,∅) that contain only
loops of diameter less than `, and for ω ∈ E(Rectk,∅), let ∂ω be the union of all loops of
ω intersecting S. For ω ∈ E , define Int(ω) ⊂ Rectk to be the union of the two connected
components (each of which is a domain) in Rectk \ ∂ω that contain the top and bottom
sides of Rectk . Note that d is an endpoint of an edge in Int(ω), as the distance from d to S
is at least r .

By decomposing with respect to Int(ω) and using (15) twice, we get

ZARectk [F] ≥ e
−2CrZ∅Rectk [E],

where A := {a, d, a1, d1} and F is the set of configurations ω ∈ E(Rectk, A) such that
both paths avoid S (hence, the one from a to d stays below S, and the one from a1 to d1
stays above S). Taking the symmetric difference with a configuration τ made up of two
paths, each of length at most 8r , pairing a to a1, and d to d1, we obtain

Z∅Rectk [G] ≥ (x/n)
16rZARectk [F],

where G is the set of configurations ω ∈ E(Rectk,∅) containing a loop of diameter at least
k/2− 20r . Combining the previous two displayed inequalities gives

P∅Rectk [G] ≥ (x/n)
16re−2CrP∅Rectk [E].

We conclude as in Case 1: if A1 of Theorem 2 is satisfied, P∅Rk [G] decays exponentially
fast in k, and P∅Rectk [E] tends to 1. This is contradictory for large k.
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