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Abstract. We prove a sharp bound on the fifth moment of modular L-functions of fixed small
weight and large prime level.
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1. Introduction

Let q be a prime and κ ∈ {4, 6, 8, 10, 14}. Let Hκ(q) be the set of weight κ Hecke eigen-
forms on 00(q). For any f ∈ Hκ(q) (note that any such f is automatically a newform),
let λf (n) denote its nth Hecke eigenvalue. Our main result is the following theorem:

Theorem 1.1. We have∑
f∈Hκ (q)

L(1/2, f )5 � q1+θ+ε as q →∞ among primes. (1.1)

Here θ is the best-known progress towards the Ramanujan–Petersson conjecture.

The currently best-known value θ = 7/64 is given by the work of Kim and Sar-
nak [Kim03]. The central value L(1/2, f ) is nonnegative by [Koh85, Corollary 2] and
[Wal81], so upon dropping all but one term, we deduce:

Corollary 1.2. For any ε > 0, we have

L(1/2, f )�ε q
(1+θ)/5+ε. (1.2)

Previously, Duke, Friendlander, and Iwaniec [DFI94] bounded the amplified fourth mo-
ment in this family, and Kowalski, Michel, and VanderKam [KMV00] asymptotically
evaluated a mollified fourth moment. Recently, Balkanova and Frolenkov [BF17] im-
proved the error term in these fourth moment problems, and thereby deduced the so-far
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best-known subconvexity result of L(1/2, f ) � q
27−30θ

112−128θ . Corollary 1.2 improves this
further. Our method of proof takes a different course from these works, and we never
solve a shifted convolution problem.

This paper has some common features with the study of the cubic moment by Conrey
and Iwaniec [CI00]. Their work also bounds a moment that is 1 larger than what one
may consider the “barrier” to subconvexity. That is, for the family of L-functions they
consider, an upper bound on the second moment that is Lindelöf-on-average leads back
precisely to the convexity bound on an individualL-value. Similarly, the fourth moment is
the “barrier” in the family of Theorem 1.1. In a sense, going one full moment beyond the
barrier is a way of amplifying with the L-function itself. As far as the authors are aware,
prior to Theorem 1.1, the only known instances of a sharp upper bound on a moment that
is 1 larger than the barrier moment are the cubic moment and its generalizations [CI00],
[Ivi01], [Pet15], [You17], [PY19].

In Section 2, we give a simplified sketch of the argument. The main overall difficulty
in the problem is that we require a significant amount of cancellation in multivariable
sums with divisor functions and Kloosterman sums. The main thrust of the argument is to
apply summation formulas that shorten the lengths of summation, eventually obtaining a
sum of Kloosterman sums. To this, we apply the Bruggeman–Kuznetsov formula, which
leads to a fourth moment of Hecke–Maass L-functions twisted by λj (q), with an addi-
tional average over the level. This is another incarnation of a Kuznetsov/Motohashi-type
formula where a moment problem in one family of L-functions is related to another mo-
ment in a “dual” family (see [MV10, Section 1.1.3]). Along the way, we encounter many
“fake” main terms, which turn out to be surprisingly difficult to estimate. A straightfor-
ward bound on these would only lead to O(q5/4+ε) in Theorem 1.1, which would be
trivial. We expect that all the “fake” main terms calculated in this paper should essen-
tially cancel, but doing so is a daunting prospect. Instead, we show that with an appropri-
ate choice of weight functions in the approximate functional equations, all the fake main
terms are bounded consistently with Theorem 1.1. The amplified/mollified fourth moment
(cf. [DFI94], [KMV00]) also required a difficult analysis of the main terms, which arose
from solving the shifted convolution problem. Therefore, it is not clear how to compare
the main term calculations here with [DFI94], [KMV00]. The article [BHM07, Section
1.2] has a more thorough discussion of the main term analysis with the shifted convolution
approach.

One of the practical difficulties in applying the Bruggeman–Kuznetsov formula in
applications is that one needs to recognize the particular shape of sums of Kloosterman
sums one encounters (with coprimality and congruence conditions, etc.) as one associated
to a group 0, pair of cusps a, b, and nebentypus χ . To this end, in [KY19] we have
identified all the Kloosterman sums belonging to the congruence subgroup 00(N) and
at general Atkin–Lehner cusps (i.e., those cusps equivalent to∞ under an Atkin–Lehner
involution) with general Dirichlet characters. It turns out that there is a “correct” choice of
scaling matrix to use when computing the Fourier coefficients and Kloosterman sums, a
choice that ensures the multiplicativity of Fourier coefficients at the Atkin–Lehner cusps.
In Section 3, we record the special cases of these Kloosterman sums that are required in
this work.
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Another practical difficulty is estimating oscillatory integral transforms with weight
functions depending on multiple variables, with numerous parameters. It is desirable to
perform stationary phase analysis on a single variable at a time, yet still keep track of the
behavior of the remaining variables in a succinct way. We have codified some properties of
a family of weight functions that allows us to do this efficiently. The key stationary phase
result, which is a modest generalization of work in [BKY13], is stated as Lemma 4.3
below, with a proof appearing in [KPY19].

In the spectral analysis of a sum of Kloosterman sums, it is necessary to treat the
Maass forms, holomorphic forms, and continuous spectrum. In our situation, the Maass
forms and holomorphic forms are rather similar, and lead to a twisted fourth moment of
GL2 cuspidal L-functions. The continuous spectrum is similar in many respects, but a key
difference is that the “dual” family ofL-functions is essentially a sum of a product of eight
Dirichlet L-functions at shifted arguments. One naturally wishes to treat the continuous
spectrum on the same footing as the discrete spectrum, which requires shifting some
contour integrals past the poles of the Dirichlet L-functions (which occur only when the
character is principal). There is potentially a large loss in savings from these poles on
the 1-line compared to the contribution from the 1/2-line. Luckily, it turns out that there
is some extra savings in the residues of the Dirichlet series (essentially, from considering
only the principal characters) that balances against this loss. This savings ultimately arises
from a careful calculation of the Fourier expansion of the Eisenstein series on 00(N) with
arbitrary N , attached to an arbitrary cusp, expanded around any Atkin–Lehner cusp. This
calculation occurs in [KY19].

An astute reader may note that κ = 2 is not covered by Theorem 1.1. In fact, there
is only a single instance where our proof requires that κ > 2, namely in the study of
the continuous part of the spectrum at (11.27). Perhaps with further analysis one might
incorporate the weight 2 case, by a more careful analysis of the residues of the Dirichlet
L-functions. The restriction that q is a prime and that κ ≤ 14, κ 6= 12, means that the
cusp forms f ∈ Hκ(00(q)) are automatically newforms. It is reasonable to expect that
using a more general Petersson formula for newforms (e.g., see [PY19]) could relax these
assumptions, but the arithmetical complexity would be increased.

2. High-level sketch

Here we include an outline of the major steps used in the proof, intended for an expert
audience. By approximate functional equations and the Petersson formula, we arrive at

S :=
∑
m�q

∑
n�q3/2

∑
c≡0 (mod q)

τ(m)τ3(n)

c
√
mn

S(m, n; c)Jκ−1

(
4π
√
mn

c

)
, (2.1)

and we wish to show S � qθ+ε. The hardest case to consider is m � q, n � q3/2, and
c �
√
mn � q5/4, in which case Jκ−1(x) ≈ 1. In practice, one needs to treat the two

ranges of the Bessel function (i.e., x � 1 and x � 1) differently. In this sketch, we focus
on the transition region of the J -Bessel function where x � 1.
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The Weil bound applied to the Kloosterman sum shows S � q7/8+ε, far from qθ+ε.
The immediate problem with (2.1) is that Voronoi summation applied to m or n leads

to a dual sum that is longer than before. The conventional wisdom is that this is a bad
move. However, there do not seem to be any other moves available, so it may be necessary
to take a loss in the first step. We may attempt to minimize the loss here by opening
τ(m) =

∑
m1m2=m

1, supposingm1 ≤ m2 by symmetry, and applying Poisson summation
in m2 modulo c. This leads to

S ≈
∑

m1�q1/2

∑
c≡0 (mod q)
c�q5/4

∑
k�q3/4

∑
n�q3/2

τ3(n)
√
m1knc

e

(
m1nk

c

)
.

Note that the trivial bound now gives S � q, so we lost a factor q1/8 from going the
“wrong way” in Poisson. However, now we may gain from the structure of the arithmeti-
cal part by applying the well-known reciprocity formula

e

(
m1nk

c

)
= e

(
−
m1nc

k

)
e

(
m1n

ck

)
.

This effectively switches the roles of c and k, at the expense of introducing the potentially
oscillatory factor e

(
m1n
ck

)
into the weight function. However, when all variables are near

their maximial sizes, this factor is not oscillatory, so we shall ignore it in this sketch.

Side remark. If one applies Voronoi to the sum over m (which is more in line with
the previous works on the amplified/mollified fourth moment), then one encounters a
shifted divisor sum of the form

∑
m−n=h τ2(m)τ3(n). Such sums have been considered by

various authors, with the most advanced results being the recent work of B. Topaçoğulları
[Top16].

One way to proceed next would be to convert the additive character into Dirichlet
characters (modulo k), which has a nice benefit of separating the variables, a key step
in [CI00]. This would lead to a fifth moment of Dirichlet L-functions twisted by Gauss
sums, with an averaging over the modulus. One may check that Lindelöf applied to these
L-functions only gives S � q1/4+ε, which in a sense gets back to the convexity bound.

Now it is beneficial to apply Voronoi summation in n modulo k (one may view this as
opening τ3(n) =

∑
n1n2n3=n

1, and applying Poisson in each ni). This leads to

S ≈
∑

m1�q1/2

∑
c≡0 (mod q)
c�q5/4

∑
k�q3/4

∑
p�q3/4

τ3(p)

k
√
m1pc

S(p, cm1, k). (2.2)

The trivial bound now is q5/8, consistent with saving q1/8 in each of the ni variables, just
as we lost q1/8 by Poisson in the initial m2 variable. One could also apply Poisson in m1
to save another q1/8, but then the arithmetical sum becomes a hyper-Kloosterman sum,
which increases the difficulty of the problem (N. Pitt has studied this problem [Pit95],
but it seems very hard to obtain enough cancellation using this approach). Here we have a
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Kloosterman sum to which we may apply the Bruggeman–Kuznetsov formula of levelm1.
Using this, we obtain

S ≈
∑

m1�q1/2

∑
tj�q

ε

level m1

∑
c≡0 (mod q)
c�q5/4

∑
p1,p2,p3�q1/4

νj (p1c)νj (p2p3)
√
p1p2p3c

. (2.3)

We can essentially write this as

S ≈
∑

m1�q1/2

∑
tj�q

ε

level m1

νj (1)2
λj (q)
√
q
L(1/2, uj )4. (2.4)

Here the scaling on the spectral data is that
∑
tj�T

νj (1)2 � T 2mε1. Thus we have con-
verted to a twisted fourth moment of Maass form L-functions, and one can see how qθ+ε

emerges by bounding |λj (q)| � qθ+ε, and using a Lindelöf-on-average bound for the
spectral fourth moment (which in turn is “easy”, following from the spectral large sieve
inequality).

The above discussion implicitly assumed that the pi are nonzero. The zero frequen-
cies (where some or all pi are 0) turn out to be the “fake” main terms alluded to in the
introduction.

To handle these, we compute the weight function explicitly, and evaluate the sums
over k,m1, and c as zeta quotients. We later bound the integral by moving lines of in-
tegration, and apparent poles of the integrand are cancelled by a choice of the weight
function in the approximate functional equation. To elaborate on this point, consider an
overly simplified model with a sum of the form S =

∑
n≥1

1
√
n
V
(
n
√
q

)
, where V (x) =

1
2πi

∫
(1)

G(s)
s
x−s ds, and G(s) is analytic satisfying G(0) = 1, with rapid decay in the

imaginary direction. The trivial bound applied to S gives S = O(q1/4), using V (x) �
(1 + x)−100. Alternatively, we have S = 1

2πi

∫
(1) ζ(1/2+ s)q

s/2G(s)
s
ds, which by shift-

ing contours to the line Re(s) = ε > 0 gives S = G(1/2)q1/4
+ O(qε). If G(1/2) = 0

(which one is free to assume in the context of the approximate functional equation), then
in fact one has an improved bound of S = O(qε). This is the principal idea behind the
estimation of the fake main terms. The main difficulty in practice is that one has a much
more complicated sum with multiple variables and weight functions that arise as inte-
gral transforms, and it requires significant work to recognize instances of this basic idea.
One should also observe that the above method of estimating S is highly reliant on the
specific form of the weight function V ; if it were multiplied by a compactly supported
bump function (say one part of a dyadic partition of unity), then one could not deduce
S = O(qε) anymore. Since we shall apply dyadic partitions of unity in the forthcoming
treatment, for the purposes of estimating these fake main terms, it is crucial to re-assemble
the partitions.

The role of the m1 variable within the proof has some curious features. In the sketch
above up through (2.4), the m1 variable was hardly used. Precisely, we never applied a
summation formula nor obtained any cancellation from this variable. Nor did we use any
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reciprocity involving m1 to lower a modulus. However, nontrivial estimations involving
m1 do appear in other parts of the proof. In the evaluation of one type of fake main
term in Section 13.7, we evaluate the m1-sum similarly to the discussion in the previous
paragraph; the lack of pole at s = 1/2 amounts to square-root cancellation in this variable.
The other location is in estimating the continuous spectrum analog of (2.3) which so
far was neglected in this sketch. One may show that the continuous spectrum analog of
(2.4) is O(qε) using the fact that the number of cusps on 00(m1) is at most O(m1/2+ε

1 ).
However, on average overm1, the number of cusps isO(mε1), which leads to a bound that
saves an additional factor q1/4. In a sense, this discussion indicates that the continuous
spectrum is much smaller in measure in the level aspect than the discrete spectrum, on
average over the level.

Another point worthy of mention is that at the very first step of the proof leading to
(2.1), we may in practice apply approximate functional equations without an explicit pres-
ence of the root number. This arises because L(s, f )2 has root number +1, but vanishes
at s = 1/2 if L(s, f ) has root number −1. Therefore, when we apply an approximate
functional equation of L(1/2, f )3, we may substitute its root number as +1. As a con-
sequence, our method does not readily generalize to bound shifted fifth moments of the
form

∑
f∈Hκ (q)

∏5
i=1 L(1/2+ αi, f ). It is difficult to justify the interest in such a bound

without nonnegativity, of course. Without extensive work, it is difficult to predict how
crucial this root number trick is; there are certainly examples of moment problems where
the presence of the root number is a major obstacle.

Added in the pre-publication: Blomer and Khan [BK19] have derived an exact spectral reciprocity
formula for the twisted fourth moment, systematizing the method of proof in this paper. Summing
over the twist variable may produce an additional L-value, by which one can form the fifth moment
studied in this paper. The formula (2.4) can be seen as an impressionistic representation of their
formula. In addition, by considering an amplified fourth moment in place of the fifth moment, they
arrive at a subconvexity bound that improves on Corollary 1.2 for the present best-allowable value
of θ = 7/64, though curiously the fifth moment leads to a better result assuming θ = 0.

3. Kloosterman sums and Bruggeman–Kuznetsov formula

3.1. Cusps, scaling matrices, and Kloosterman sums

We mostly follow the notation of [Iwa02]. Let N be a positive integer and 0 = 00(N).
Let a be a cusp and 0a = {γ ∈ 0 : γ a = a} be the stabilizer of the cusp a in 0. A matrix
σa ∈ SL2(R) satisfying

σa∞ = a and σ−1
a 0aσa =

{
±
(

1 n
0 1

)
: n ∈ Z

}
(3.1)

is called a scaling matrix for the cusp a.

Definition 3.1. Let f be a Maass form for the group 0. The Fourier coefficients of f at
a cusp a, denoted ρaf (n), are defined by

f (σaz) =
∑
n 6=0

ρaf (n)e(nx)W0,itj (4π |n|y), (3.2)
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where W0,itj is the Whittaker function defined by

W0,itj (4πy) = 2
√
y Kitj (2πy).

The Fourier coefficients ρaf (n) depend on the choice of scaling matrix σa, and it may be
more accurate to denote them ρσa,f (n).

Definition 3.2. For a and b cusps for 0, we define the Kloosterman sum associated to
a, b with modulus c as

Sab(m, n; c) =
∑

γ=
(
a b
c d

)
∈0∞\σ

−1
a 0σb/0∞

e

(
am+ dn

c

)
. (3.3)

Definition 3.3. The set of allowed moduli is

Cab =
{
γ > 0 :

(
∗ ∗
γ ∗

)
∈ σ−1

a 0σb
}
. (3.4)

Notice that if γ /∈ Cab the Kloosterman sum of modulus γ is an empty sum.

3.2. Atkin–Lehner cusps

Assume thatN = rs with (r, s) = 1. We call a cusp of the form a = 1/r (with (r, s) = 1)
an Atkin–Lehner cusp. The Atkin–Lehner cusps are precisely those that are equivalent to
∞ under an Atkin–Lehner operator, justifying their name.

A newform is an eigenfunction of all the Hecke operators, as well as all the Atkin–
Lehner operators. It turns out that one may choose a scaling matrix σ1/r for the Atkin–
Lehner cusp 1/r to be an Atkin–Lehner operator (see [KY19, Section 2.2]). Therefore,
for such a choice of scaling matrix, we have

ρ 1
r
f
(n) = ηs(f )ρ∞f (n), (3.5)

where f is a newform and ηs(f ) = ±1 is the eigenvalue of the Atkin–Lehner opera-
tor Ws .

Proposition 3.4. Let N = rs with (r, s) = 1, and choose σ1/r as above. Then the set of
allowed moduli for the pair of cusps∞, 1/r is

C∞,1/r = {γ = c
√
s > 0 : c ≡ 0 (mod r), (c, s) = 1}, (3.6)

and for such γ = c
√
s ∈ C∞,1/r , the Kloosterman sum to modulus γ is given by

S∞,1/r(m, n; c
√
s) = S(sm, n; c), (3.7)

where the S on the right denotes an ordinary Kloosterman sum. Consequently,∑
(c,s)=1

c≡0 (mod r)

S(sm, n; c)f (c) =
∑

γ∈C∞,1/r
S∞,1/r(m, n; γ )f (γ /

√
s), (3.8)

where f is any function such that the sums converge.

For this computation, see [Mot07, Section 14], in particular (14.8). Note that (3.7) differs
from a formula in [Iwa97, p. 58] by an additive character, which is due to a different
choice of the scaling matrix. See also [KY19] for a generalization with different cusps
and characters.
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3.3. Bruggeman–Kuznetsov formula

We record the spectral expansion of a sum of Kloosterman sums in a spectral basis of the
space L2(00(N)). Let {uj } be a basis of cusp forms. Assume that uj is an eigenfunction
of the Laplace–Beltrami operator with eigenvalue 1/4+ t2j . Call tj the spectral parameter
of uj . Define ρaj (n) = ρuj (σa, n) as in (3.2); our choice of σa, in practice, will be an
Atkin–Lehner operator.

Likewise, write the Fourier expansion of the Eisenstein series as

Ec(σaz, u) = δacy
u
+ ρac(0, u)y1−u

+

∑
n6=0

ρac(n, u)e(nx)W0,u−1/2(4π |n|y). (3.9)

Consulting [Iwa02, Theorem 3.4], we have

ρac(n, u) =

{
φac(n, u)

πu

0(u)
|n|u−1 if n 6= 0,

δacy
u
+ φac(u)y

1−u if n = 0,
(3.10)

where

φac(n, u) =
∑

(γ,δ) such that
ρ=
(
∗ ∗
γ δ

)
∈0∞\σ

−1
c 0σa/0∞

1
γ 2u e

(
nδ

γ

)
=

∑
γ∈Cca

Sca(0, n; γ )
γ 2u , (3.11)

and φac(u) = φac(0, u). Note that our ordering of the cusps in the notation ρac, φac is
reversed from that of [Iwa02], and also that [Iwa02, (3.22)] should have Sac(n, 0; c) in
place of Sac(0, n; c) to be consistent with [Iwa02, (2.23)]. We give an explicit computa-
tion of φac(n, u) with Proposition 12.2 below.

For aesthetic purposes, define as in [Iwa02, (8.5), (8.6)]

νaj (n) =

(
4π |n|

cosh(πtj )

)1/2

ρaj (n), νac(n, u) =

(
4π |n|

cos(π(u− 1/2))

)1/2

ρac(n, u).

(3.12)
Let g ∈ H`(N), that is, let g be a holomorphic level N weight ` modular cusp form.

Define the Fourier expansion of g at a cusp a by

g|σa(z) =

∞∑
n=1

ρag(n)n
(`−1)/2e(nz).

Also define

νag(n) =

(
π−`0(`)

4`−1

)1/2

ρag(n), (3.13)

similarly to [Iwa02, (9.42)], but note that m(`−1)/2 was already extracted in the definition
of ρag(m).

With the notation as above, define for nonzero m and n,

K =
∑
γ∈Ca,b

Sab(m, n; γ )φ(γ ), (3.14)
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where φ is smooth and compactly supported on (0,∞). We then quote the literature for
a spectral formula for this sum. Many authors state the Bruggeman–Kuznetsov formula
with a weight function of the form γ−1F(4π

√
mn/γ ) in place of φ(γ ), which amounts

to the substitution F(t) = (4π
√
mn/t)φ(4π

√
mn/t).

Theorem 3.5 ([Iwa02, Chapter 9]). Let K be as in (3.14). Assuming φ is smooth with
compact support on (0,∞), we have

K = Kd +Kc +Kh.

Here Kh = 0 if mn < 0, and otherwise

Kh =
∑

`>0, even

φh(`)i
`
∑

g∈H`(N)

νbg(m)νag(n). (3.15)

The discrete spectrum contribution is

Kd =
∑
tj

φ±(tj )νbj (m)νaj (n), (3.16)

where the summation is over the spectral parameters tj of a chosen orthonormal basis
{uj }j of cusp forms. The continuous spectrum contribution is

Kc =
∑
c

1
4π

∫
∞

−∞

φ±(t)νbc(m, 1/2+ it)νac(n, 1/2+ it) dt, (3.17)

where the choice φ+ versus φ− depends on whether mn > 0 or mn < 0.
Here the integral transform for φh is given as

φh(`) =

∫
∞

0
J`−1(x)

4π
√
mn

x
φ

(
4π
√
mn

x

)
dx

x
= (J`−1 ∗ (x · φ))(4π

√
mn). (3.18)

With

B+2it (x) =
i

2 sinh(πt)
(J2it (x)− J−2it (x)),

we have

φ+(t) =

∫
∞

0
B+2it (x)

4π
√
mn

x
φ

(
4π
√
mn

x

)
dx

x
= (B+2it ∗ (x · φ))(4π

√
mn). (3.19)

Similarly, with

B−2it (x) =
2
π

cosh(πt)K2it (x),

we have

φ−(t)=

∫
∞

0
B−2it (x)

4π
√
|mn|

x
φ

(
4π
√
|mn|

x

)
dx

x
=(B−2it ∗(x ·φ))(4π

√
|mn|). (3.20)
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Remarks. Here we have implemented some corrections of [Iwa02] noted by Blomer,
Harcos, and Michel [BHM07]. Moreover, the right hand side slightly differs from the
formulas in [Iwa02] in that the roles of m and n are reversed, consistent with the remark
following Definition 3.2.

It is important to emphasize that the same scaling matrices must occur in both the
definition of the Kloosterman sum and the definition of the Fourier coefficients.

We occasionally use the above integral representations, but predominantly prefer
Mellin-type integrals, and we next state those formulas. The integral transforms φh, φ+
and φ− are realized as convolutions on the group

(
R+, dx

x

)
and therefore their Mellin

transforms can be easily computed. Let φ̃(s) =
∫
∞

0 φ(x)xs dx
x

, which on occasion we
alternatively write as M(φ, s).

Proposition 3.6. The integral transforms φh and φ± have the alternative formulas

φh(`) =
1

2πi

∫
(1)

2s−10
(
s+`−1

2

)
0
(
`+1−s

2

) φ̃(s + 1)(4π
√
mn)−s ds, (3.21)

φ±(t) =
1

2πi

∫
(2)
h±(s, t)φ̃(s + 1)(4π

√
mn)−s ds, (3.22)

where

h±(s, t) =

{
1
π

2s−1 cos(πs/2)0(s/2+ it)0(s/2− it), ± = +,
1
π

2s−1 cosh(πt)0(s/2+ it)0(s/2− it), ± = −.

Proof. By Mellin inversion, we have

φh(`) =
1

2πi

∫
(1)

M(J`−1 ∗ (x · φ), s)(4π
√
mn)−s ds. (3.23)

The Mellin transform satisfies the property M(f ∗ g, s) =M(f, s)M(g, s). The Mellin
transform of the J -Bessel function (see [EMOT54, 6.8(1)]) is given as∫

∞

0
Jν(x)x

s dx

x
=

2s−10
(
s+ν

2

)
0
(
ν−s

2 + 1
) . (3.24)

Also note that x̃φ(s) = φ̃(s + 1). Therefore (3.23) can be recast as (3.21), as desired.
For φ− we know by [EMOT54, §6.8, (26)] that∫

∞

0
K2it (x)x

s dx

x
= 2s−20(s/2+ it)0(s/2− it), (3.25)

and therefore we obtain the minus case of (3.22).
The plus case follows from using (3.24), the reflection formula for the gamma func-

tion, and the addition formulas for sine. ut
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3.4. Spectral large sieve

On 00(N), we normalize the Petersson inner product by

〈g1, g2〉 =

∫
00(N)\H

g1(z)g2(z)y
κ dx dy

y2 . (3.26)

Quoting from [BHM07], if uj (g, respectively) is an L2-normalized cuspidal Hecke–
Maass (holomorphic, resp.) newform of level N with trivial nebentypus, then

|ν∞j (1)|2 = N−1(N(1+ |tj |))o(1) and |ν∞g(1)|2 = N−1(Nk)o(1). (3.27)

With the normalization (3.12), and assuming a is an Atkin–Lehner cusp, the spectral large
sieve inequalities give∑

|tj |≤T

∣∣∣∑
m≤M

amνaj (m)

∣∣∣2 � (
T 2
+
M

N

)
(MNT )ε

∑
m≤M

|am|
2,

and∑
c

∫
|t |≤T

∣∣∣∑
m≤M

amνac(m, 1/2+ it)
∣∣∣2 dt � (

T 2
+
M

N

)
(MNT )ε

∑
m≤M

|am|
2, (3.28)

and ∑
k≤T

∑
g∈Hk(N)

∣∣∣∑
m≤M

amνag(m)

∣∣∣2 � (
T 2
+
M

N

)
(MNT )ε

∑
m≤M

|am|
2.

3.5. Newforms and oldforms

Atkin and Lehner showed the orthogonal decomposition

Sκ(N) =
⊕
LM=N

⊕
f∈H ∗κ (M)

Sκ(L; f ),

where Sκ(L; f ) is the span of the forms f|` with ` |L, where

f|`(z) = `
κ/2f (`z). (3.29)

Their proof works with virtually no changes in the case of Maass forms (which have
weight 0, in our context). For the rest of this section, we focus on the Maass case, but
with a general weight κ (in order to most easily translate the results to the holomorphic
case).

The formula (3.29) means that (let us agree to drop the subscript ∞ when working
with the Fourier expansion at∞)

νf |`(n) = `
1/2νf (n/`). (3.30)

Blomer and Milićević have shown in [BM15, Section 6] that there exists a basis of
Sκ(L; f ) of the following type. Let f ∗ denote a newform of level M |N , L2-normalized
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as a level N form, which implies |ν∞f ∗(1)|2 = N−1(N(1 + |tj |))o(1). Then there exists
an orthonormal basis for Sκ(L; f ) of the form gm =

∑
`|L c`,mf

∗
|`, where c`,m � Nε.

For an Atkin–Lehner cusp a, we have |νaf ∗(1)| = |ν∞f ∗(1)|, by (3.5) .
We need the following information on the Fourier coefficients of f ∗|` at Atkin–

Lehner cusps:

Lemma 3.7. Suppose a is an Atkin–Lehner cusp of 00(N), and f ∗ is a newform of
levelM with LM = N . Then the set of lists of Fourier coefficients {(νaf ∗|`(n))n∈N : ` |L}
is, up to signs, the same as the set {(ν∞f ∗|`(n))n∈N : ` |L}.

See [KY19, Lemma 2.5] for a proof.
It is crucial for our later purposes (specifically, in the proof of Lemma 11.1) to bound

the Hecke eigenvalues of newforms at primes dividing the level. Let f ∗ be a newform
(Maass or holomorphic) of level M , with trivial nebentypus, as above. If p |M , then

|λf ∗(p)| ≤ p
−1/2 (3.31)

(see [Li75, Theorem 3(iii)] or [AL70, Theorem 3(iii)]; the proofs carry over to Maass
forms with virtually no changes).

4. Inert functions and oscillatory integrals

4.1. Basic definition

We begin with a class of functions defined by derivative bounds. Let F be any index set
and X : F → R≥1 be a function of T ∈ F with its value at T denoted by XT.

Definition 4.1. A family {wT}T∈F of smooth functions supported on a product of dyadic
intervals in Rd>0 is called X-inert if for each j = (j1, . . . , jd) ∈ Zd

≥0 we have

C(j1, . . . , jd) := sup
T∈F

sup
(x1,...,xd )∈Rd>0

X
−j1−···−jd
T |x

j1
1 . . . x

jd
d w

(j1,...,jd )
T (x1, . . . , xd)| <∞.

(4.1)

In our desired applications, our family {wT}T∈F of inert functions will be indexed by
tuples T of the form T = (M1,M2, N1, N2, N3, C, a, . . . ), as well as some other param-
eters that arise as dual variables after Poisson summation. Each of these parameters is
polynomially bounded in q. Furthermore, the relevant values of X will be at most c(ε)qε

for some constant c(ε).
In addition, the weight functions encountered in this paper will typically be repre-

sented in the form
P(T)eiφ(x1,...,xd )wT(x1, . . . , xd), (4.2)

where P(T) is some simple function depending on the tuple T only, φ(x1, . . . , xd) is the
phase, and wT is an inert function. We wish to understand how such a function behaves
under Fourier and Mellin transformations. In Section 4.2, we analyze the Fourier and
Mellin transforms in case φ = 0, and in Section 4.3 we discuss the stationary phase
analysis of the Fourier transform in the presence of a phase φ.
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4.2. Fourier and Mellin transforms

Inert functions behave regularly under the Fourier transform. Suppose thatwT(x1, . . . , xd)

is X-inert, and let

ŵT(t1, x2, . . . , xd) =

∫
∞

−∞

wT(x1, . . . , xd)e(−x1t1) dx1

denote its Fourier transform in the x1 variable. Suppose that the support of wT is such
that xi � Xi for each i. Now ŵT is not compactly supported in t1, so it will not be
inert. However, if we let WT,Y1(t1, x2, . . . xd) = wY1(t1)ŵT(t1, x2, . . . xd) where {wY1 :

Y1 > 0} is a 1-inert family supported on t1 � Y1 (or −t1 � Y1) then X−1
1 WT,Y1 forms an

X-inert family. Moreover, by repeated integration by parts we have

WT,Y1(t1, x2, . . . , xd)� X1

(
1+
|t1|X1

X

)−A
�

(
1+

Y1X1

X

)−A
,

so that in practice we may restrict our attention to Y1 � Xqε/X1. See [KPY19] for more
details.

A similar integration by parts argument also treats the Mellin transform, and we record
the result as follows:

Lemma 4.2. Let wT(x1, . . . , xd) be a family of X-inert functions such that x1 is sup-
ported in the dyadic interval [X1, 2X1]. Let

w̃T(s, x2, . . . , xd) =

∫
∞

0
wT(x, x2, . . . , xd)x

s dx

x
.

Then we have w̃T(s, x2, . . . , xd) = Xs1WT(s, x2, . . . xn) where WT(s, · ) is a family of
X-inert functions in all the remaining xi , which is entire in s and has rapid decay for
|Im(s)| � X1+ε.

4.3. Stationary phase

Next we synthesize some results from [BKY13] and [KPY19].

Lemma 4.3. Suppose that w = wT(t, t2, . . . , td) is a family of X-inert functions sup-
ported on t � Z, ti � Xi for i = 2, . . . , d . Suppose that on the support of wT, φ satisfies

∂a1+a2+···+ad

∂ta1 . . . ∂t
ad
d

φ(t, t2, . . . , td)�
Y

Za1

1
X
a2
2 . . . X

ad
d

, (4.3)

i.e., Y−1φ is 1-inert. Suppose that Y/X2
� qδ for some δ > 0. Let

I =

∫
∞

−∞

wT(t, t2, . . . , td)e
iφ(t,t2,...,td ) dt.

(1) If
∣∣ ∂
∂t
φ(t, t2, . . . , td)

∣∣ � Y/Z for all t in the support of wT, then I �A q−A for
A > 0 arbitrarily large.



250 Eren Mehmet Kıral, Matthew P. Young

(2) If ∂2

∂t2
φ(t, t2, . . . , td)� Y/Z2 for all t, t2, . . . , td in the support ofw, and there exists

t0 ∈ R such that φ′(t0) = 0 (here, φ′ denotes the derivative with respect to t , and
note t0 is necessarily unique), then

I =
Z
√
Y
eiφ(t0,t2,...,td )WT (t2, . . . , td)+O(q

−A) (4.4)

for some X-inert family of functions WT .

Part (1) above follows from [BKY13, Lemma 8.1]. The one-variable version of (2) above
is contained in [BKY13, Proposition 8.2], which was improved to many variables in
[KPY19].

4.4. A convention

We often renormalize a family of inert functions. For a simple example to illustrate this,
say wT(x) is X-inert, supported on x � N . We can write x−1/2wT(x) = N

−1/2WT(x),
where WT(x) = (x/N)

−1/2wT(x). Then WT forms a new X-inert family with a different
list of constantsC(j). When doing this too many times it becomes difficult to find notation
for all the new functions that arise, so we may on occasion replace WT by wT, which is
supposed to represent a generic inert function.

Another useful convention is that, when focusing only a particular variable (say n),
we may write wN (n, · ) where the · is a placeholder for the remaining variables. Writing
all the variables is unwieldy, and the notion of inertness keeps track of the important
behavior of the weight function with respect to the remaining variables.

We will also say that a family {wT(x1, . . . , xd)} of inert functions such that each
variable xi is supported in [Xi, 2Xi] is very small to mean a quantity which is of size
OA((X1 . . . Xdq)

−A) for every A > 0, and uniformly in the family T ∈ F . More gener-
ally, we will use this terminology “very small” for more general quantities, not just inert
functions. In practice, we will largely ignore very small error terms.

5. Preliminaries

5.1. Petersson trace formula

The Petersson formula reads∑
f∈Hκ (q)

wf λf (m)λf (n) = δn=m + 2πi−κ
∑

c≡0 (mod q)

S(m, n; c)

c
Jκ−1

(
4π
√
mn

c

)
,

where wf = q−1+o(1) are the Petersson weights. Define

M =M(q) =
∑

f∈Hκ (q)

wfL(1/2, f )5.

Our main result, Theorem 1.1, is equivalent to

M�κ,ε q
θ+ε (5.1)

for any ε > 0.
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5.2. The approximate functional equations

Let κ be a positive even integer, q a prime, and f a Hecke cusp form of weight κ and
level q. Put

γ (s, κ) = π−s0

(
s + κ−1

2
2

)
0

(
s + κ+1

2
2

)
.

Let Gi (i = 1, 2) be an even entire function decaying rapidly in vertical strips such that
Gi(0) = 1. Define

V1(x) =
1

2πi

∫
(1)

G1(u)

u

γ (1/2+ u, κ)
γ (1/2, κ)

x−u du,

V2(x) =
1

2πi

∫
(1)

G2(u)

u

γ (1/2+ u, κ)2

γ (1/2, κ)2
x−u du.

If x � qε then by shifting the contour of integration arbitrarily far to the right, we obtain
Vi(x)�κ,A (xq)

−A. Here and throughout, we view κ as fixed, and q as becoming large.
For later use, it will be important to assume Gi(1/2) = 0.

Proposition 5.1. With notation as above, we have

L(1/2, f )2 = 2
∞∑
m=1

λf (m)τ2(m)
√
m

V

(
m

q

)
,

where τ2(m) is the (two-fold) divisor function, and

V (x) =

∞∑
(e,q)=1

V2(e
2x)/e =

1
2πi

∫
(1)
Ṽ2(u)ζq(1+ 2u)x−u du,

where ζq(s) = (1 − q−s)ζ(s) is the Riemann zeta function with the q th Euler factor
missing.

Proof. By the Hecke relation, we have

L(s, f )2 =

∞∑
m1,m2=1

∑
e|(m1,m2)
(e,q)=1

λf (m1m2/e
2)

(m1m2)s
=

∞∑
(e,q)=1

1
e2s

∞∑
m=1

τ2(m)λf (m)

ms
. (5.2)

Then from the functional equation L(s, f )2γ (s, κ)2qs =: 3(s, f )2 = 3(1 − s, f )2 we
get the formula, as in [IK04, Theorem 5.3]. ut

Proposition 5.2. Let εf be the sign of the functional equation for L(s, f ). Then

L(1/2, f )3 = (1+ εf )3
∞∑
a=1

(a,q)=1

µ(a)

a3/2

∞∑
n=1

λf (na)
√
n

τ3(n, Fa,
√
q), (5.3)
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where

τ3(n, Fa,
√
q) =

∑
n1n2n3=n

Fa

(
n1
√
q
,
n2
√
q
,
n3
√
q

)
, (5.4)

and

Fa(x1, x2, x3) =
∑

e1,e2,e3
(e1e2e3,q)=1

1
e1e2e3

V1(ax1e1e2)V1(ax2e1e3)V1(ax3e2e3)

=

∫∫∫
(1)(1)(1)

3∏
i=1

γ (1/2+ ui, κ)G(ui)
(axi)uiγ (1/2, κ)ui

ζq(1+ u1 + u2)ζq(1+ u1 + u3)ζq(1+ u2 + u3)

×
du1 du2 du3

(2πi)3
. (5.5)

Remark. One may easily check that

x
j1
1 x

j2
2 x

j3
3

∂j1+j2+j3

∂x
j1
1 ∂x

j2
2 ∂x

j3
3

Fa(x1, x2, x3)�j1,j2,j3,A,ε

3∏
i=1

(axi)
−ε(1+ axi)−A. (5.6)

In the terminology introduced later in Section 4, the property (5.6) means that Fa satisfies
the same derivative bounds as anX-inert function withX � qε, in the region xi � q−1/2,
for all i. Similar derivative bounds hold for V (x).

Proof of Proposition 5.2. Using the approximate functional equation for each L(1/2, f ),
and the Hecke relations, we obtain

L(1/2, f )3 =
∑
e1,e2

(e1e2,q)=1

(1+εf )3

e1

∑
n1,n2,n3

e2|(n1n2,n3)

λf
(
n1n2n3
e2

2

)
√
n1n2n3

V1

(
n1e1
√
q

)
V1

(
n2e1
√
q

)
V1

(
n3
√
q

)

=

∑
e1,e2

(e1e2,q)=1

(1+εf )3

e1e2

×

∑
f1f2=e2

∑
n1,n2,n3
(n1,f2)=1

λf (n1n2n3)
√
n1n2n3

V1

(
n1e1f1
√
q

)
V1

(
n2e1f2
√
q

)
V1

(
n3f1f2
√
q

)
.

Using Möbius inversion to detect the coprimality condition with
∑
a|(n1,f2)

µ(a), re-
ordering the summations, and renaming the summation variables gives the more sym-
metric form

L(1/2, f )3 = (1+ εf )3
∞∑
a=1

(a,q)=1

µ(a)

a3/2

∑
e1,e2,e3

(e1e2e3,q)=1

1
e1e2e3

×

∑
n1,n2,n3

λf (an1n2n3)
√
n1n2n3

V1

(
an1e1e2
√
q

)
V1

(
an2e1e3
√
q

)
V1

(
an3e2e3
√
q

)
.

This is seen to be equivalent to (5.3). ut
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Now apply Propositions 5.1 and 5.2 to M. There is a significant simplification in Propo-
sition 5.2, whereby we may replace 1+εf by 2, because if εf = −1, then L(1/2, f )2 = 0
anyway. Applying the Petersson trace formula then yields

1
16M = D + 2πi−κS,

where D is the diagonal term, and

S =
∞∑

(a,q)=1

µ(a)

a3/2

∑
c≡0 (mod q)

∑
n,m

τ2(m)τ3(n, Fa,
√
q)S(m, na; c)

c
√
mn

Jκ−1

(
4π
√
mna

c

)
V

(
m

q

)
.

(5.7)
It is easy to bound the diagonal term.

Lemma 5.3. For any ε > 0 we have D �ε q
ε.

This follows easily from the fact that the functions V1(y) and V2(y) decay rapidly as
y →∞, and using the bound Jκ−1(x)� x for κ ≥ 2.

Proving Theorem 1.1 is reduced to showing S � qθ+ε.

6. First Poisson summation

We continue the analysis of S from (5.7). We open up the divisor functions using
the formulas

∑
m τ2(m)f (m) =

∑
m1,m2

f (m1m2), and the definition of τ3(n, Fa,
√
q)

(see (5.4)).

6.1. Dyadic partition of unity

Throughout this paper we will apply dyadic decompositions of important variables. Call a
numberN dyadic ifN = 2k/2 for some integer k. A dyadic partition of unity is a partition
of unity of the form

∑
k∈Z ω(2

−k/2x) ≡ 1 for x > 0, where ω is a fixed smooth function
with support on the dyadic interval [1, 2]. The family ωN (x) = ω(x/N) forms a 1-inert
family of functions. Applying this to S, we have

S =
∑

M1,M2,N1,N2,N3,C dyadic

SM1,M2,N1,N2,N3,C, (6.1)

where the dyadic numbers are restricted to be ≥ 2−1/2, and where

SM1,M2,N1,N2,N3,C =

∞∑
(a,q)=1

µ(a)

a3/2

∑
c≡0 (mod q)

c�C

1
c

∑
n1,n2,n3,m1,m2

S(m1m2, n1n2n3a, c)
√
m1m2n1n2n3

×Jκ−1

(
4π
√
m1m2n1n2n3a

c

)
V

(
m1m2

q

)
Fa

(
n1
√
q
,
n2
√
q
,
n3
√
q

)
wT (m1, m2, n1, n2, n3, c).

(6.2)
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The letter T here and throughout stands for the tuple of dyadic parameters, and we may
use ST as shorthand for the left hand side of (6.2). For the main thrust of the argument,
the precise form ofwT is not important. However, when calculating certain potential main
terms, we have found it important to re-sum over the partition, in which case one should
remember that wT may be expressed as

wT(m1, m2, n1, n2, n3, c) = ω

(
m1

M1

)
. . . ω

(
c

C

)
.

Let M = M1M2 and N = N1N2N3.

Lemma 6.1. Let ε > 0. Unless

M �ε q
1+ε and Ni �ε

q1/2+ε

a
(6.3)

for all i = 1, 2, 3, we have
ST �A q

−A

for A > 0 arbitrarily large. Moreover, if C > q3, we have

ST �ε q
ε.

We will henceforth assume (6.3) (which implies N � a−3q3/2+ε), and

C ≤ q3. (6.4)

Proof of Lemma 6.1. The bounds (6.3) follow from the rapid decay of the weight func-
tions in the approximate functional equations. The bound for C > q3 holds using the
Weil bound for Kloosterman sums, and Jκ−1(x)� x. ut

By symmetry (Dirichlet’s hyperbola method), we shall assume

M1 ≤ M2. (6.5)

Note M1 � q1/2+ε.

6.2. Poisson summation

Applying Poisson summation in m2 modulo c, we obtain

ST =
∑

(a,q)=1

µ(a)

a3/2

∑
m1,n1,n2,n3

1
√
m1n1n2n3

∑
c≡0 (mod q)

1
c2

∑
k∈Z

H(k)I (k), (6.6)

where (with shorthand n = n1n2n3)

H(k) = H(k,m1, na; c) =
∑

x (mod c)

S(m1x, na; c)e

(
kx

c

)
, (6.7)
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and

I (k) = I (m1, k, n1, n2, n3, a, c) =

∫
∞

0
e

(
−kt

c

)
Jκ−1

(
4π
√
m1nat

c

)
wM2(t, ·)

dt
√
t
.

(6.8)

For the notation wM2(t, · ), recall the convention described in Section 4.4. Furthermore
note that the definition of the inert function wT has been altered to include the function V
and Fa from the second line of (6.2).

We now apply a dyadic partition of unity to the k-sum, and let ω(k/K) be a generic
such piece. To simplify the notation, we simply add K to the long tuple of parameters
already appearing in (6.2); we are already writing T as shorthand for this long tuple, and
we shall continue this practice. Let IK = I(M1,M2,N1,N2,N3,a,C,K) = ω(k/K)I . Then for
k > 0, I =

∑
K dyadic IK . By redefining the inert function in (6.8) to incorporate ω(k/K),

we may also view IK as an instance of (6.8).

Remark. We may without loss of generality assume that k > 0. The negative values of k
give rise to terms that are complex conjugates of their positive counterparts. Secondly,
H(0) = 0 unless c |m1, and those terms only contribute O(q−A) since m1 � q1/2+ε

and q | c.

6.3. The arithmetic function

We now compute the arithmetic sum H(k). Immediately from the definition, we obtain

1
c
H(k) =

1
c

∑
∗

u (mod c)

∑
x (mod c)

e

(
(m1u+ k)x + nau

c

)
=

∑
∗

u (mod c)

δm1u≡−k (mod c)e

(
nau

c

)
.

(6.9)

One would like to simply substitute u ≡ −km1 (mod c), but this is not possible
because it is not guaranteed that m1 (or k) is coprime to c. For this reason, we employ a
factorization of c and the Chinese remainder theorem as follows.

Write
c = c0c2 and k = k0k1, (6.10)

where the factorizations may be written locally, using the notation νp(n) = d for pd ‖ n,
as

c0 =
∏

νp(c)>νp(k)

pνp(c), c2 =
∏

1≤νp(c)≤νp(k)

pνp(c),

k0 =
∏

νp(k)≥νp(c)

pνp(k), k1 =
∏

1≤νp(k)<νp(c)

pνp(k).

Alternatively, using the notation n∗ =
∏
p|n p we have

(c0, k0) = 1, c2 | k0, k1k
∗

1 | c0, (6.11)
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and these conditions characterize c0, c2, k0, k1. Note that (c2, k1) = 1 automatically from
the other conditions; indeed we also have (c2, c0) = (k1, k0) = 1.

The congruence condition m1u ≡ −k (mod c) in (6.9) is solvable with (u, c) = 1 if
and only if (m1, c) = (k, c). The conditions (6.10), (6.11) give (k, c) = k1c2, and so we
impose the condition k1c2 = (m1, c0c2) =

(
m1,

c0
k1
k1c2

)
. Thus we define

m1 = k1c2m
′

1, (6.12)

where the new variable m′1 is only subject to the restriction

(m′1, c0/k1) = 1, i.e. (m′1, c0) = 1,

where we have used the fact that c0/k1 has the same prime factors as c0.

Remark. In S, we have q | c. If q | k1c2, this means q |m1, but we have m1 � q1/2+ε,
so the condition q | c may be freely replaced with q | c0, and we may assume

(q, k1) = 1. (6.13)

Proposition 6.2. Given the notation above,

1
c
H(k,m1, an; c) = e

(
−
nam′1k0

c0

)
S(na, 0; c2)k1δk1|naδ(m′1,c0)=1δc,k, (6.14)

where k0 indicates the multiplicative inverse modulo c0 and where δc,k = 1 if (6.10) and
(6.11) hold, and δc,k = 0 otherwise.

Proof. First, we note that m1u ≡ −k (mod c) (that is, m′1k1c2u ≡ −k0k1 (mod c0c2)) is
equivalent to m′1u ≡ −k0/c2 (mod c0/k1). In other words,

u ≡ −m′1 k0/c2 (mod c0/k1). (6.15)

Here k0/c2 can be taken to be the multiplicative inverse modulo c0, since every prime that
divides c0 also divides c0/k1 (via (6.11))

Now we apply the Chinese remainder theorem to the pair c0 and c2, which gives

1
c
H(k,m1, an; c) =

∑
∗

u (mod c)

δu≡−m′1k0/c2 (mod c0/k1)
e

(
nau(c0c0 + c2c2)

c0c2

)
=

∑
∗

u (mod c2)

e

(
nauc0

c2

) ∑
∗

u (mod c0)

δu≡−m′1k0/c2 (mod c0/k1)
e

(
nauc2

c0

)
.

The sum modulo c2 is a Ramanujan sum, and for the sum modulo c0 we replace u by u,
which gives

1
c
H(k,m1, an; c) = S(na, 0; c2)

∑
∗

u (mod c0)

δu≡−m′1(k0/c2) (mod c0/k1)
e

(
nauc2

c0

)
.
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The congruence restriction on u modulo c0 may be expressed as

u ≡ −m′1(k0/c2)+ v
c0

k1
(mod c0) with v (mod k1). (6.16)

Here v runs over all residue classes modulo k1, because as long as u is coprime to c0/k1
it is also coprime to c0. Thus

1
c
H(k,m1, an; c) = S(na, 0; c2)

∑
v (mod k1)

e

(
na(−m′1(k0/c2)+ vc0/k1)c2

c0

)

= S(na, 0; c2)e

(
−
nam′1k0

c0

)
k1δk1|na . ut

Inserting the conclusion of Proposition 6.2 into (6.6), and imposing (6.13), we get

ST =
∑

(a,q)=1

µ(a)

a3/2

∑
m′1,n1,n2,n3

1√
m′1n1n2n3

∑
(c0,m

′

1)=1
c0≡0 (mod q)

∑
(k0,c0)=1

∑
k1|c0/k

∗

1
(k1,q)=1

k
1/2
1 δk1|na

×

∑
c2|k0

1

c0c
3/2
2

e

(
−
n1n2n3am

′

1k0

c0

)
S(n1n2n3a, 0; c2)I (m

′

1k1c2, k0k1, n1, n2, n3, a, c0c2)

(6.17)

plus a small error term.

6.4. Analysis of integral transform

The asymptotic behavior of IK depends on whether
√
aMN/C � qε or not, since this

dictates whether the Bessel function is oscillatory or not.

Lemma 6.3 (Pre-transition). Let IK(k) be defined via (6.8). If for any ε > 0,
√
aMN/C �ε q

ε, (6.18)

then
M

1/2
2 IK(k) = (

√
aMN/C)κ−1M2wT(m1, k, n1, n2, n3, a, c), (6.19)

where wT(·) is a qε
′

-inert function. Furthermore, IK is very small unless

KM2/C � qε. (6.20)

Lemma 6.4 (Post-transition). If for any ε > 0,
√
aMN/C �ε q

ε, (6.21)

then

M
1/2
2 IK(k) =

CM2

(aMN)1/2
e

(
m1na

ck

)
wT(m1, k, n1, n2, n3, a, c)+O((kq)

−A), (6.22)

where wT(·) is a qε
′

-inert function. Furthermore, IK is very small unless

K � (aMN)1/2/M2. (6.23)
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Proof of Lemma 6.3. Suppose that (6.18) holds. Then the Bessel function is not oscil-
latory, and Jκ−1(x) = xκ−1W(x) where xj d

j

dxj
W(x) � Xj with X � qε (note that if

1 � x � qε, it is still valid to factor out xκ−1 though there is a small loss of efficiency
by doing so). This is the same derivative bound as for an X-inert function, so it may be
absorbed into the inert function wT. Then by the discussion in Sections 4.2 and 4.4, we
have

M
1/2
2 IK(k) = (

√
aMN/C)κ−1M2wT(·), (6.24)

and IK(k)� (kq)−A if K � C
M2
qε. Here wT is qε

′

-inert. ut

Proof of Lemma 6.4. Now suppose that (6.21) holds. Then we use the fact that for x � 1,

Jκ−1(x) =
∑
±

x−1/2e±ixW±(x),

where W± satisfies the same derivative bounds as a 1-inert function. Thus√
M2IK(k) =

∑
±

C1/2

(aMN)1/4

∫
∞

−∞

wM2(t, · )e

(
−kt

c

)
e

(
±2
√
tm1na

c

)
dt,

where wT(t) is qε-inert (in all previously declared variables), and supported on t � M2.
Since k > 0, if the ± sign is −, then Lemma 4.3(1) shows that the integral is very

small. Therefore, we focus on the case where the sign is +, in which case we obtain an
oscillatory integral with phase

φ(t) = −
kt

c
+

2
√
tm1na

c
.

We have

φ′(t) = −
k

c
+

√
m1na

c
√
t
, φ′′(t) = −

√
m1na

2ct3/2
.

There is a unique point t0 where φ′(t0) = 0, namely

t0 =
m1na

k2 .

If it is not the case that t0 � M2 (with large but absolute implied constants), then we have
|φ′(t)| �

√
aMN
cM1

throughout the support of the weight function, and Lemma 4.3(1) again
shows the integral is small. If t0 � M2, then the location of t0 is compatible with the
support of φ, and stationary phase (Lemma 4.3(2)) shows that∫

∞

−∞

wT(t)e

(
−kt

c

)
e

(
2
√
tm1na

c

)
dt

=
C1/2M2

(aMN)1/4
e

(
m1na

ck

)
wT

(
m1na

k2 , ·

)
+O((kq)−A),

where wT on the right hand side is qε-inert, and supported on m1na/k
2
� M2. ut
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7. Reciprocity and other arithmetical manipulations

Next we reorder the summation ST in (6.17). We bring the sum over n = n1n2n3 to the
inside, and open up the Ramanujan sum S(na, 0; c2) =

∑
d|(na,c2)

dµ(c2/d). This gives

ST =
∑

(a,q)=1

µ(a)

a3/2

∑
c2

1

c
3/2
2

∑
d|c2

dµ(c2/d)
∑

(k1,q)=1

k
1/2
1

∑
m′1

S ′√
m′1

+O(q−A), (7.1)

where

S ′ =
∑

(c0,m
′

1)=1
c0≡0 (mod qk1k

∗

1 )

1
c0

∑
(k0,c0)=1

k0≡0 (mod c2)

∑
n1n2n3a≡0 (mod k1)
n1n2n3a≡0 (mod d)

e
(
−
n1n2n3am

′

1k0
c0

)
√
n1n2n3

IK(m
′

1k1c2, k0k1, n1, n2, n3, a, c0c2).

We shall not obtain any significant cancellation in the outer summation variables appear-
ing in S (except for a “fake” main term, in Section 13.7) , but substantial cancellation is
required in c0, k0, and the ni .

Note that since d | c2, c2 | k0, k1 | c0, and (c0, k0) = 1, we have (d, k1) = 1. Then the
congruences in the sum over n = n1n2n3 are equivalent to an ≡ 0 (mod dk1), which in
turn is equivalent to n ≡ 0 (mod δ1), where

δ1 =
k1d

(a, k1d)
. (7.2)

Note that (δ1, q) = 1 and (k0, q) = 1.
Since (c0, k0) = 1, we have the reciprocity formula

−
k0

c0
≡
c0

k0
−

1
c0k0

(mod 1).

Define

J (n1, n2, n3, a,m
′

1, c0, k0, c2, k1) = e

(
−
nam′1
c0k0

)
IK(m

′

1k1c2, k0k1, n1, n2, n3, a, c0c2)

= e

(
−
nam1

ck

)
IK(m1, k, n1, n2, n3, a, c), (7.3)

where in the second line we have expressed J in terms of the earlier variable names
(6.10), (6.12). This is sometimes convenient for tracking the sizes of certain quantities,
for example, nam

′

1
c0k0
�

NaM1
CK

.
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Our next goal is to apply Poisson summation in the n variables, and to do that we need
some preparatory moves. First, consider a formal sum of the form∑

η1,η2,η3≥1
η1η2η3≡0 (mod r)

J (η1, η2, η3). (7.4)

The product η1η2η3 runs over integers of the form ηr with η ≥ 1. Now define

r1 = (η1, r), η1 = η
′

1r1,

so (η′1, r/r1) = 1. Then η′1η2η3 = (r/r1)η. Continuing this process, define r2 =
(η2, r/r1), η2 = η

′

2r2, so η′1η
′

2η3 =
r
r1r2

n with
(
η′2,

r
r1r2

)
= 1. Finally, let r3 =

(
η3,

r
r1r2

)
,

and set η3 = η
′

3r3, whence
(
η′3,

r
r1r2r3

)
= 1. Now η′1η

′

2η
′

3 =
r

r1r2r3
η, and the coprimality

conditions mean that
(
η′1η
′

2η
′

3,
r

r1r2r3

)
= 1, so r1r2r3 = r .

Therefore, translating this discussion into formulas, we find that (7.4) equals∑
r1r2r3=r

∑
(η′1,r2r3)=1

∑
(η′2,r3)=1

∑
η′3

J (r1η
′

1, r2η
′

2, r3η
′

3).

Using Möbius inversion, we see that (7.4) equals∑
r1r2r3=r

∑
e1|r2r3

µ(e1)
∑
e2|r3

µ(e2)
∑

n1,n2,n3≥1

J (r1e1n1, r2e2n2, r3n3). (7.5)

Applying this formula to S ′, we obtain

S ′ =
∑

r1r2r3=δ1

∑
e1|r2r3

∑
e2|r3

µ(e1)µ(e2)S ′′, (7.6)

where

S ′′ =
∑

(c0,m
′

1)=1
c0≡0 (mod qk1k

∗

1 )

1
c0

∑
(k0,c0)=1

k0≡0 (mod c2)

∑
n1,n2,n3≥1

e
( e1e2δ1am

′

1n1n2n3c0
k0

)
√
δ1e1e2n1n2n3

× J (r1e1n1, r2e2n2, r3n3, a,m
′

1, c0, k0, c2, k1).

We remark that in doing so we changed variables by

n1 7→ r1e1n1, n2 7→ r2e2n2, n3 7→ r3n3. (7.7)

With the earlier definition of n as n1n2n3, (7.7) is equivalent to n 7→ e1e2δ1n.
Next define g0 = (e1e2δ1am

′

1, k0), and write

k0 = g0k
′

0 and δ2 =
e1e2δ1am

′

1
g0

.
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There are some implicit conditions on the variables that we wish to record explicitly. Note
that since (k1, k0) = 1 and d | c2 | k0, we may write g0 as

g0 =

(
e1e2

ad

(a, d)
m′1, k0

)
= d

(
e1e2

a

(a, d)
m′1,

k0

d

)
,

and in particular d | g0, a property that will be important in Section 11.7. Also note that
since none of the factors of δ2 is divisible by q (since q is prime, (a, q) = 1, and the
original m1 and ni variables are� q1/2+ε), we have

(δ2, q) = 1. (7.8)

We may also observe that (g0, qk1) = 1 since g0 | k0, (k0, c0) = 1, and c0 ≡ 0
(mod qk1k

∗

1). From k1 | aδ1, we also conclude that

k1 | δ2. (7.9)

Therefore,
S ′′ =

∑
g0|e1e2δ1am

′

1
g0≡0 (mod d)

S ′′′, (7.10)

where

S ′′′ =
∑

(c0,g0m
′

1)=1
c0≡0 (mod qk1k

∗

1 )

1
c0

∑
(k′0,δ2c0)=1

k′0≡0 (mod c2
(g0,c2)

)

∑
n1,n2,n3≥1

e
(
δ2n1n2n3c0

k′0

)
√
δ1e1e2n1n2n3

× J (r1e1n2, r2e2n2, r3n3, a,m
′

1, c0, g0k
′

0, c2, k1). (7.11)

8. Triple Poisson

8.1. Poisson summation formula

Our next step is to apply Poisson summation in n1, n2, n3 modulo k′0 to (7.11), to which
end we state the following general version.

Proposition 8.1. Let J be any smooth and compactly supported function on (0,∞)3, and
suppose (α, k) = 1. Then∑
n1,n2,n3≥1

e

(
n1n2n3α

k

)
J (n1, n2, n3) =

1
k3

∑
p1,p2,p3∈Z

A(p1, p2, p3;α; k)B(p1, p2, p3; k),

where

A(p1, p2, p3;α; k) =
∑

x1,x2,x3 (mod k)

e

(
x1x2x3α − x1p1 − x2p2 − x3p3

k

)
, (8.1)

B(p1, p2, p3; k) =

∫
∞

0

∫
∞

0

∫
∞

0
J (t1, t2, t3)e

(
p1t1

k
+
p2t2

k
+
p3t3

k

)
dt1 dt2 dt3.

An evaluation for A is given in Lemma 8.2 below (see also Lemma 13.2).
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In view of (7.11), we need to evaluate A(p1, p2, p3; δ2c0; k
′

0), and analyze

B(p1, p2, p3; k
′

0) =

∫
(R+)3

J (r1e1t1, r2e2t2, r3t3, a,m
′

1, c0, g0k
′

0, c2, k1)

× e

(
p1t1

k′0
+
p2t2

k′0
+
p3t3

k′0

)
dt1 dt2 dt3
√
e1e2δ1t1t2t3

, (8.2)

where r1r2r3 = δ1 (see (7.6)).

8.2. The evaluation of A

Lemma 8.2. Suppose (α, k) = 1. Then

A(p1, p2, p3;α; k) = k
∑

f |(p2,p3,k)

f S

(
p1α,

p2p3

f 2 ;
k

f

)
,

where S(m, n; c) is the standard Kloosterman sum.

Proof. By first evaluating the sum over x3, we derive

A(p1, p2, p3;α; k) = k
∑

x1,x2 (mod k)
x1x2α≡p3 (mod k)

e

(
x1p1 + x2p2

k

)
.

At this point we decompose the sum by letting (x1, k) = f with f | k. Say x1 = fy with
y running over reduced residue classes modulo k/f . Note that necessarily f | (p3, k),
and x2 ≡ αy

p3
f
(mod k/f ). Therefore, we may write x2 = αy

p3
f
+ v k

f
where v runs

modulo f . Hence,

A(p1, p2, p3;α; k) = k
∑

f |(p3,k)

∑
∗

y (mod k/f )

e

(
yp1

k/f

)
e

(
αy

p3
f
p2

k

) ∑
v (mod f )

e

(
p2v

f

)
.

The sum over v detects f |p2, and so the formula follows. ut

8.3. Asymptotics of B

Let us begin by unraveling the definition of B. First we recall its definition from (8.2),
(7.3), and (6.8). Let us also pull out a factorN−1/2 coming from (e1e2δ1t1t2t3)

−1/2. Recall
that IK(k) has a built-in inert function. One may change this inert function appropriately
to achieve that B takes a simplified form:

N1/2B(p1, p2, p3; k
′

0)=

∫
(R+)3

e

(
−e1e2δ1t1t2t3am

′

1
c0k0

)
I ∗(m1, k, r1e1t1, r2e2t2, r3t3a, c)

× e

(
p1t1

k′0
+
p2t2

k′0
+
p3t3

k′0

)
dt1 dt2 dt3,
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where I ∗ has the same properties as I given in Lemmas 6.3 and 6.4 (since only the
definition of the inert function has changed). Note that the support of the inert function is
such that ti � N ′i , say, where

N ′1 =
N1

e1r1
, N ′2 =

N2

e2r2
, N ′3 =

N3

r3
.

Define N ′ = N ′1N
′

2N
′

3. In the analytic aspect, it is usually most convenient to work with
the original variable names (we may perform the substitutions later, after analyzing the
integral transform). Let

h = e1e2r1r2r3 = e1e2δ1,

and note that
N ′h = N.

The terms with some pi = 0 will be treated in Section 13, using a more elementary
approach than the method used in the analysis of the nonzero terms with p1p2p3 6= 0.
For the nonzero terms, we apply dyadic partitions of unity to each pi variable, for the
positive and negative values separately. For P = (P1, P2, P3), let BP be the same as B
but multiplied by one function from this partition of unity with |pi | � Pi , i = 1, 2, 3; we
also assume that the sign of each pi is fixed by the partition, but suppress the signs in the
notation of BP. As a convention, we may incorporate the case pi = 0 by setting Pi = 0.

Lemma 8.3 (Post-transition). Suppose (6.21) holds. Then

M
1/2
2 N1/2BP(p1, p2, p3; k

′

0) =
C

(aMN)1/2
M2N

′wT(·), (8.3)

where wT is qε-inert, N ′ = N ′1N
′

2N
′

3, and where BP(p1, p2, p3) is very small unless

Pi �
k′0
N ′i
qε and K �

(aMN)1/2

M2
. (8.4)

Proof of Lemma 8.3. The main observation is that the exponential factor appearing in
(6.22) cancels the exponential factor in the definition of J in (7.3). Therefore, B is a
Fourier transform of a qε-inert function supported on ti � N ′i , and hence by the discussion
in Section 4.2, (8.3) follows. ut

Lemma 8.4 (Pre-transition, non-oscillatory). Suppose (6.18) holds, and additionally

NaM1

CK
�ε q

ε. (8.5)

Then BP(p1, p2, p3; k
′

0) is very small unless

N ′iPi

k′0
�ε q

ε, i = 1, 2, 3, and
KM2

C
�ε q

ε,
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in which case

M
1/2
2 N1/2BP(p1, p2, p3; k

′

0) =

(√
aMN

C

)κ−1

M2N
′wT(·), (8.6)

where wT is qε-inert.

Proof. In this case, the exponential factor in the definition of BP is essentially not oscil-
latory, because of the condition (8.5). For this, it is again helpful to remember that

e1e2δ1t1t2t3am
′

1
c0k0

�
NaM1

CK
.

Since (8.5) holds, the exponential factor may be included into the definition of the inert
weight function, which is qε-inert. As in the case of Lemma 8.3, we again obtain the
Fourier transform of a qε-inert function, and hence we obtain the claimed estimates. ut

We record for later use that under the conditions of Lemmas 8.3 and 8.4, we have

P1P2P3 �ε q
ε h

N

(
k

k1g0

)3

� qε
K3

N

h

(k1g0)3
. (8.7)

Lemma 8.5 (Pre-transition, oscillatory). Suppose (6.18) holds, and additionally

NaM1

CK
� qε. (8.8)

Then BP(p1, p2, p3; k
′

0) is very small unless each pi > 0 and

Pi �
NaM1k

′

0
CKN ′i

, i = 1, 2, 3, and
KM2

C
�ε q

ε, (8.9)

in which case

M
1/2
2 N1/2BP(p1, p2, p3; k

′

0) = O
(
q−A

3∏
i=1

(1+ |pi |)−A
)

+

(√
aMN

C

)κ−1

M2N
′

(
CK

aM1N

)3/2

e

(
2(p1p2p3ck)

1/2

(am1hk
′3
0 )

1/2

)
wT(·), (8.10)

where wT is qε-inert.

For later use, it is convenient to observe the identity

2(p1p2p3ck)
1/2

(am1hk
′3
0 )

1/2
=

2(p1p2p3c0)
1/2

k′0(ahm
′

1/g0)1/2
=

2(p1p2p3c0)
1/2

k′0δ
1/2
2

. (8.11)

The explicit oscillatory rate of BP seen in (8.10) is exactly that of a Whittaker function
W
( 4π
√
|p1p2p3c0|

k′0δ
1/2
2

)
. This suggests that at this point of the proof the situation is ripe for the
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application of the Bruggeman–Kuznetsov formula. From this observation we can heuris-
tically infer that the variables p1, p2, p3 and c0 are playing similar roles, that sums over
each variable will reconstitute one of the four copies of the L-functions mentioned in
(2.4), and k′0 is the modulus variable in the geometric side of the Bruggeman–Kuznetsov
formula.

Proof of Lemma 8.5. In this case, the phase arising from reciprocity is oscillatory, and is
not cancelled by a corresponding phase from the kernel function IK . By (6.19) and (7.3),
we have

M
1/2
2 N1/2BP =

(√
aMN

C

)κ−1

M2

×

∫
R3
wT(t1, t2, t3, · )e

(
−t1t2t3am1h

ck

)
e

(
t1p1 + t2p2 + t3p3

k′0

)
dt1 dt2 dt3.

The behavior of this oscillatory integral is derived as an example in [KPY19]. ut

8.4. Mellin transform of B

For many of our later purposes, we prefer to work with the Mellin transform of BP instead
of BP itself. Of course, BP depends on a number of variables, and what is meant here is
the Mellin transform in terms of k′0. Define

B̃P(s) :=

∫
∞

0
BP(p1, p2, p3; x)x

s dx

x
, (8.12)

which is the Mellin transform of BP in k′0. Recalling k = g0k1k
′

0, note that

x �
K

g0k1
.

Let us combine the results from Lemmas 8.3 and 8.4. In these two cases, we have

M
1/2
2 N1/2BP(p1, p2, p3; k

′

0) =

(√
aMN

C

)δ
M2N

′wT(·), (8.13)

where δ = −1 in Lemma 8.3, and δ = κ−1 in Lemma 8.4. In both cases, pi are supported
on |pi | � Pi � (k′0/N

′

i )q
ε, but there are different constraints on the parameters. In any

event, in terms of k′0, BP is qε-inert, so we group these two cases together under the
heading of “non-oscillatory”. Lemma 4.2 then leads to the following.

Lemma 8.6 (Non-oscillatory). Suppose the conditions of Lemma 8.3 or Lemma 8.4
hold, and put δ = −1 or δ = κ − 1 in the respective cases. Then

M
1/2
2 N1/2B̃P(s) =

(√
aMN

C

)δ
M2N

′

(
K

g0k1

)s
wT(s, · ),

where wT is qε-inert in all the variables except for s, and entire in terms of s. Moreover,
wT(·, σ + it) is very small unless |t | �σ q

ε.
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In the case where BP is oscillatory, it turns out to be easier to use the Bessel integral
representations (9.8), (9.10) in the Bruggeman–Kuznetsov formula, and so we may avoid
the Mellin transform analysis of BP. See the introductory paragraphs of Section 10.2 for
more explanation.

9. Application of Bruggeman–Kuznetsov

Write TP for the terms from S ′′′ with B replaced by BP (in particular, p1p2p3 6= 0).
Therefore,

TP =
∑

(c0,g0m
′

1)=1
c0≡0 (mod qk1k

∗

1 )

1
c0

∑
(k′0,δ2c0)=1

k′0≡0 (mod c2
(g0,c2)

)

1

k′30

×

∑
p1,p2,p3 6=0

A(p1, p2, p3; δ2c0; k
′

0)BP(p1, p2, p3; k
′

0).

Applying Lemma 8.2, and moving the sum over k′0 to the inside, we obtain

TP =
∑

(c0,g0m
′

1)=1
c0≡0 (mod qk1k

∗

1 )

1
c0

∑
p1,p2,p3 6=0

∑
f |(p2,p3)

∑
(k′0,δ2c0)=1

k′0≡0 (mod c2
(g0,c2)

)

k′0≡0 (mod f )

f

k′20
S

(
p1c0δ2,

p2p3

f 2 ;
k′0
f

)
BP(p1, p2, p3; k

′

0).

We absorb k′−2
0 � (g0k1)

2/K2 into the inert function which changes the definition of BP
(call the new function BP,∗), but not any of the analytic properties it satisfies (cf. Section
4.4), giving

TP =
(g0k1)

2

K2

∑
(c0,g0m

′

1)=1
c0≡0 (mod qk1k

∗

1 )

1
c0

∑
p1,p2,p3 6=0

∑
f |(p2,p3)

f
∑

(k′0,δ2c0)=1
k′0≡0 (mod c2

(g0,c2)
)

k′0≡0 (mod f )

S

(
p1c0δ2,

p2p3

f 2 ;
k′0
f

)
BP,∗(p1, p2, p3; k

′

0).

Let k′0 = f k
′′

0 , so that the inner sum over k′0 becomes

δ(f,δ2c0)=1
∑

(k′′0 ,δ2c0)=1
k′′0≡0 (mod δ3)

S

(
p1c0δ2,

p2p3

f 2 ; k
′′

0

)
BP,∗(p1, p2, p3, f k

′′

0 ),
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where we have defined

δ3 =
c2/(g0, c2)

(f, c2/(g0, c2))
. (9.1)

Finally, to ease a later summation over c0, we detect the condition (k′′0 , c0) = 1 with
Möbius inversion, say over the variable δ4. Then we reverse the order of summations, and
define

c0 = δ4c
′

0, δ5 = [δ3, δ4]. (9.2)

We record that the summation conditions in the sum over k′′0 are empty unless

(δ2, δ5) = 1, i.e. (δ2, δ3δ4) = 1.

For later use, we also record that

(δ4, k1) = 1, (9.3)

since k1 | δ2, and (δ2, δ4) = 1. Using this, and moving the sum over f to the outside, with
the definitions

p2 = fp
′

2, p3 = fp
′

3,

we obtain

TP =
(g0k1)

2

K2

∑
δ3|

c2
(g0,c2)

∑
(δ4,δ2g0m

′

1)=1

µ(δ4)

δ4

∑
(f,δ2δ4)=1
(9.1) is true

f
∑

(c′0,fg0m
′

1)=1
δ4c
′

0≡0 (mod qk1k
∗

1 )

1
c′0

∑
p1,p

′

2,p
′

3 6=0

KP,

(9.4)
where

KP =
∑

(k′′0 ,δ2)=1
k′′0≡0 (mod δ5)

S(p1δ4c
′

0δ2, p
′

2p
′

3; k
′′

0 )BP,∗(p1, fp
′

2, fp
′

3; f k
′′

0 ). (9.5)

Consulting Proposition 3.4, we may now realize the Kloosterman sum in question as
one belonging to the group 0 = 00(δ2δ5) with the pair of cusps∞, 1/δ5 (note that these
are Atkin–Lehner cusps, since (δ2, δ5) = 1). Hence

KP =
∑

k′′0
√
δ2∈C∞,1/δ5

S
∞,1/δ5

(p1δ4c
′

0, p
′

2p
′

3; k
′′

0

√
δ2)BP,∗(p1, fp

′

2, fp
′

3; f k
′′

0 ).

According to Theorem 3.5, write KP = Kd +Kc+Kh, and accordingly write TP = Td +
Tc + Th. We furthermore decompose KP =

∑
ε1,ε2,ε3∈{−1,1}K

ε1,ε2,ε3
P , where the meaning

is εipi ≥ 1 for i = 1, 2, 3, and likewise decompose Kd , etc. To simplify the notation
and reduce the number of cases to investigate, let K+ denote the terms with pi ≥ 1 for
all i, and K− the terms with p1 ≤ −1 and p2, p3 ≥ 1. The other sign combinations may
be easily treated by symmetry, since the Kloosterman sum is unchanged when reversing
the signs on two of the pi , and since Lemmas 8.3 and 8.4 are insensitive to the signs of
the pi , while Lemma 8.5 requires all pi > 0, which is covered by K+.
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We have

K±d =
∑

tj level δ2δ5

ν∞,j (p1δ4c
′

0)ν1/δ5,j (p
′

2p
′

3)W±(p1, fp
′

2, fp
′

3; tj ), (9.6)

where

W±(p1, fp
′

2, fp
′

3; tj ) =∫
(2θ+ε)

h±(s, tj )
(
4π
√
δ4c
′

0|p1|p
′

2p
′

3
)−s˜̃
BP,∗(p1, fp

′

2, fp
′

3; s + 1) ds,

(recall h± was defined by (3.6)), and where

˜̃
BP,∗(p1, fp

′

2, fp
′

3; s + 1) :=
∫
∞

0
BP,∗(p1, fp

′

2, fp
′

3; fy/
√
δ2)y

s+1 dy

y
.

Here the “double tilde” notation for B is meant to indicate the Mellin transform of B with
respect to γ = k′′0

√
δ2 (where γ ∈ Cab as in (3.14)), because we have already reserved B̃

for the Mellin transform in the k′0 variable (as in Section 8.4). The relationship between
these two transforms is ˜̃

BP,∗(s + 1) = (
√
δ2/f )

s+1B̃P,∗(s + 1).

Simplifying, we obtain

W±(p1, p2, p3; tj ) =

√
δ2

f

∫
(2θ+ε)

h±(s, tj )

( √
δ2√

δ4c
′

0|p1|p2p3

)s
B̃P,∗(s + 1) ds. (9.7)

The holomorphic case is similar, but with a different integral kernel than h±(s, tj ).
We may also prefer to use the Bessel integral representation for W , which we do in

case BP,∗ is oscillatory. For instance, we have

Wh(p1, fp
′

2, fp
′

3; `) =

∫
∞

0
J`−1

(
4π
√
p1δ4c

′

0p
′

2p
′

3
y

)
BP,∗(p1, fp

′

2, fp
′

3; fy/
√
δ2) dy.

Changing variables, we obtain

Wh(p1, fp
′

2, fp
′

3; `)

=

√
δ2

f

∫
∞

0
J`−1

(
4π
√
f 2p1p

′

2p
′

3δ4c
′

0√
δ2 y

)
BP,∗(p1, fp

′

2, fp
′

3; y) dy. (9.8)

Note that, in terms of the older variable names, we have

f 2p1p
′

2p
′

3δ4c
′

0
δ2

=
p1p2p3c0

ahm′1/g0
. (9.9)
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Similarly, in the +Maass case, we have

W+(p1, fp
′

2, fp
′

3; tj )

=

√
δ2

f

∫
∞

0
B+2itj

(
4π
√
f 2p1p

′

2p
′

3δ4c
′

0√
δ2 y

)
BP,∗(p1, fp

′

2, fp
′

3; y) dy. (9.10)

10. Asymptotics of W

Here we analyze the various W -functions appearing in the Bruggeman–Kuznetsov for-
mula.

10.1. Non-oscillatory cases

First suppose the conditions of Lemma 8.3 or Lemma 8.4 hold, so that Lemma 8.6 gives
the behavior of B̃. Continuing from (9.7), we have

W±(p1, p2, p3; tj )

=
(
√
aMN/C)δM2N

′K

M
1/2
2 N1/2

√
δ2

fg0k1

∫
(2θ+ε)

h±(s, tj )

( √
δ2K

g0k1
√
δ4c
′

0|p1|p2p3

)s
wT(s, · ) ds.

(10.1)

Here wT is qε-inert in all variables except s. It is entire in s, with rapid decay for
|Im(s)| � qε.

As shorthand, let

Y =
g0k1

√
CP1P2P3√
δ2c2K

�

( √
δ2K

g0k1
√
δ4c
′

0|p1|p2p3

)−1

. (10.2)

Our goal now is to show

Lemma 10.1 (Non-oscillatory). Suppose the conditions of Lemma 8.3 or Lemma 8.4
hold. If |tj | � (1+ Y )qε, then W±(tj , · ) is very small. Similarly, if `� (1+ Y )qε, then
Wh(`, · ) is very small.

Proof. If s = σ + it and |t | � (|tj |q)
ε, then by the rapid decay of wT, we conclude that

this part of the integral is bounded in a satisfactory manner. In the complementary region,
we know from Stirling that

h±(σ + it, tj )�σ q
ε(qε + |tj |)

σ−1.

Side remark: The exponential factor implicitly appearing in Stirling’s bound on h±(s, tj )
is � 1, and one cannot do better in general, because in one of the two cases of ± sign,
the exponential factor is exactly 1.
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Now if |tj | � (1 + Y )qε, we shift the contour far to the left and bound it trivially.
In doing so, one encounters poles at s/2 ± itj = 0,−1,−2, . . . . However, these all
have large imaginary part and wT is very small here, so these residues are bounded in a
satisfactory manner. The integral on the new line is very small since |tj |/Y � qε.

Next consider Wh(`). The analysis is similar, except one replaces h±(s, tj ) by

h(s, `) := 2s−1 0
(
s+`−1

2

)
0
(
−s+`+1

2

) .
Stirling’s formula gives, for σ �

√
|`+ it |,

|h(σ + it, `)| � (max(`, |t |))σ−1.

As before, if ` � (1 + Y )qε, then we may move the contour far to the left (some large
constant not growing with q). Then Wh(`) is small, by the same type of reasoning as in
the Maass case. ut

Now we reap the reward of the language of inert functions. Since wT is inert in all vari-
ables, we may apply the Mellin inversion formula together with Lemma 4.2, which gives

W±(p1, p2, p3; tj ) =

(√
aMN

C

)κ−1

(M2N)
1/2K

√
δ2

hfg0k1

∫
(2θ+ε)

h±(s, tj )

×

∫ ( √
δ2K

g0k1
√
δ4c
′

0|p1|p2p3

)s
w̃T(s,u, · )

(
P1

|p1|

)u1
(
P2

p2

)u2
(
P3

p3

)u3
(

C

δ4c
′

0c2

)u4

du ds,

(10.3)

plus a small error term, where u = (u1, u2, u3) and is integrated over an arbitrary product
of lines with Re(ui) fixed, for i = 1, 2, 3. Here w̃T is very small except if the imaginary
parts of all the variables are� qε.

10.2. Oscillatory case

Now we consider W± and Wh when B is given by Lemma 8.5. The first significant point
is thatW− is small, because this corresponds to the case where p1p2p3 < 0, which means
pi < 0 for some i, in which case B is small. Indeed, B is small unless pi > 0 for all i,
and so the only relevant functions are W+ and Wh.

It is inconvenient to use (9.7) in the oscillatory case. The problem is that the oscillatory
nature of B means that we may no longer restrict |Im(s)| to be O(qε), which in turn has
an effect on the behavior of h+(s, r) and h(s, `). Namely, it is no longer true that h+(s, r)
and h(s, `) satisfy analogous asymptotic formulas (due to the use of Stirling with ir large
vs. ` large), and so it appears difficult to unify these two cases. In addition, one is forced
to confront some tricky oscillatory integrals. To sidestep these problems entirely, we shall
use the Bessel integral formula for W instead. The oscillatory behavior of B is actually
beneficial and causesW to be essentially inert (in both the Maass and holomorphic cases).
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Let us begin with Wh. Using (9.8), (9.9), and (8.11) to match phases, we have

Wh(p1, p2, p3; `) =

(√
aMN

C

)δ√
M2N

(
CK
aM1N

)3/2√
δ2
f h
Z

plus a small error term, where

Z =

∫
∞

0
J`−1

(
4π
√
p1p2p3δ4c

′

0√
δ2y

)
e

(
2
√
p1p2p3δ4c

′

0√
δ2y

)
wT(y, · ) dy. (10.4)

Here we recall thatwT has support on y � K
g0k1

. The fact that the phases match is pleasant.
Recall the integral representation

J`−1(x) =
∑
±

c`,±

∫ π/2

0
cos((`− 1)θ)e±ix cos θ dθ, c`,± =

e∓i(`−1)π/2

π
. (10.5)

This gives

Z =
∑
±

∫ π/2

0
c`,± cos((`− 1)θ)

∫
∞

0
e

(
z(1± cos θ)

y

)
wT(y, · ) dy dθ

with

z =
2
√
p1p2p3δ4c

′

0√
δ2

.

Changing variables y = K
g0k1x

now gives x � 1, and the inner integral is a Fourier
transform of an inert function. Hence

Z =
K

g0k1

∑
±

∫ π/2

0
c`,± cos((`− 1)θ)ŵT

(
zg0k1

K
(1± cos θ)

)
dθ,

where we have redefined wT (see Section 4.4). Using δ4c
′

0 = c0 = c/c2, δ2 = ham
′

1/g0,
m′1 =

m1
k1c2

, (8.9), and k′0 =
k
k1g0

, we check the size of

zg0k1

K
�

√
P1P2P3Ck

3
1g

3
0

K
√
haM1

�
NaM1

CK
,

which is� qε because we are operating under the conditions of Lemma 8.5.
Now we observe that the integrand is very small unless

NaM1

CK
|1± cos θ | � qε.

Hence, the sign must be −, and we must have

θ �

(
CK

NaM1

)1/2

qε
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(which is O(q−δ) for some δ > 0). This means that by using a Taylor expansion, we
may develop the ŵT part into an asymptotic expansion with leading term given by the
substitution 1− cos θ 7→ θ2/2. Therefore,

Z =
K

g0k1

∫
∞

−∞

cos((`− 1)θ)
(
ŵT

(
zg0k1

K
θ2
)
+ · · ·

)
dθ,

where we were able to extend the integral to +∞ since ŵT is small otherwise, and also
extend to −∞ by symmetry (we have also redefined the inert function to absorb con-
stants).

As another shorthand, let

Q =
zg0k1

K
�
NaM1

CK
.

Then Z takes the form

Z =
K

g0k1
√
Q

∫
∞

−∞

exp
(
i
(`− 1)√

Q
θ

)
ŵT(θ

2) dθ + · · · .

If we let g(θ) = ŵT(θ
2), then g(j)(θ) �j,A Xj (1 + θ)−A for arbitrary j, A, where

X � qε. Therefore, this is another Fourier transform of a function with controlled deriva-
tives, and so by the discussion in Section 4.2, it takes the form

K

g0k1
√
Q
G

(
`− 1√
Q
, ·

)
plus a very small error term, where G would be qε-inert (in `) if it had dyadic support. It
is qε-inert in all the other variables, however.

Regrouping, we have

Wh =

(√
aMN

C

)κ−1√
M2N

(
CK
aM1N

)2

K
√
δ2

fg0k1h
G

(
`−1
√
Q
, ·

)
plus a very small error term, where G is very small unless

`�

(
M1aN

CK

)1/2

qε.

Then we may take the Mellin transform in p1, p2, p3, c0, which gives

Wh(p1, p2, p3; c
′

0; `) =

(√
aMN

C

)κ−1√
M2N

(
CK
aM1N

)2

K
√
δ2

fg0k1h

×

∫
(σ )

w̃T(u, `, · )
(
P1

|p1|

)u1
(
P2

p2

)u2
(
P3

p3

)u3
(

C

δ4c
′

0c2

)u4

du (10.6)

plus a small error term, where
∫
(σ )

is integration over the line Re(ui) = σ , i = 1, 2, 3, and
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σ ∈ R is arbitrary to be chosen later. Now we turn to W+. Since the details are similar to
the previous case, the exposition is brief. We follow through the steps used forWh, where
the alteration in the first step is replacing J`−1 by B+2ir(x). In place of (10.5), we have
instead

J2ir(x)− J−2ir(x)

sinh(πr)
=

2
πi

∫
∞

−∞

cos(x cosh v)e
(
rv

π

)
dv.

We shall use this for real values of r . Although this integral does not converge absolutely,
we have ∣∣∣∣∫

|v|≥V

cos(x cosh v)e
(
rv

π

)
dv

∣∣∣∣� 1+ |r|
x sinhV

, (10.7)

from integration by parts.
Forming the analog of Z from Wh, and keeping the same definition of z, we have

(absorbing the absolute constant into the inert function)

Z =

∫
∞

−∞

e

(
rv

π

)∫
∞

−∞

e

(
z

y

)
cos
(

2π
z

y
cosh(v)

)
wT(y, · ) dy dv,

using (10.7) to reverse the order of integrations. Next write cos u = 1
2e
iu
+

1
2e
−iu; the

part with eiu is very small as in the Wh case. From this point on, the analysis is nearly
identical to that of Wh, and the conclusion is that W+ is very small unless

|tj | �

(
M1aN

CK

)1/2

qε,

and W+ satisfies a formula identical to that in (10.6).
In the exceptional eigenvalue case where ir ∈ R, the final shape of the formula forW+

is the same as (10.6), but the above arguments would need modification since e(rv/π)
is no longer bounded. There is a more direct route, however. We have the asymptotic
expansion (see [GR00, (8.451.1)])

J2ir(x)− J−2ir(x)

sinh(πr)
∼

∑
±

e±ix
∑
ν

P±(r, ν)

x1/2+ν ,

where P±(r, ν) is a polynomial in r and ν. This is certainly valid for r = O(1) and x � 1
(in the present context, x � qε). With this, it is easy to estimate Z directly, showing that
it is of the form K

g0k1
√
Q

times a qε-inert function, plus a small error term. Therefore,
applying Mellin inversion in the appropriate variables, we obtain an expression of the
same form as (10.6).
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11. Regrouping after Bruggeman–Kuznetsov

11.1. Non-oscillatory Maass cases

Here we consider the contribution to Td from the parameters where B is non-oscillatory.
By (9.4), (9.6), and (10.3), we obtain

T ±d =
g0k1

K

∑
δ3|

c2
(g0,c2)

∑
(δ4,δ2g0m

′

1)=1

µ(δ4)

δ4

∑
(f,δ2δ4)=1
(9.1) is true

∑
(c′0,fg0m

′

1)=1
δ4c
′

0≡0 (mod qk1k
∗

1 )

1
c′0

∑
±p1,p

′

2,p
′

3≥1

∑
tj level δ2δ5

ν∞,j (p1δ4c
′

0)ν1/δ5,j (p
′

2p
′

3)

(√
aMN

C

)δ
(M2N)

1/2

√
δ2

h

∫
(2θ+ε)

h±(s, tj )

×

∫
(σ )

( √
δ2K

fg0k1
√
δ4c
′

0|p1|p
′

2p
′

3

)s
w̃T(s,u, · )

×

(
P1

|p1|

)u1
(
P2

fp′2

)u2
(
P3

fp′3

)u3
(

C

δ4c
′

0c2

)u4

du ds (11.1)

plus a very small error term. In the above expression, we could take Re(s) > 2θ without
crossing any poles coming from exceptional Laplace eigenvalues (recall (3.6) for the defi-
nition of h±), and σ ∈ R is arbitrary to be chosen later. By Lemma 10.1, we may truncate
at |tj | � (1+ Y )qε with a small error term. Now we move the sums over p1, p

′

2, p
′

3, and
c0 to the inside, change variables ui 7→ ui − s/2, and bound everything at that point with
absolute values. In this way, we obtain

T ±d � qε
g0k1c2

KC

(√
aMN

C

)δ
(M2N)

1/2

√
δ2

h

∑
δ3|

c2
(g0,c2)

∑
(δ4,δ2g0m

′

1)=1

∑
(f,δ2δ4)=1
(9.1) is true

∑
tj level δ2δ5
|tj |�(1+Y )qε

1
1+ |tj |

∫
(2θ+ε)

∫
(σ )

(
tj

Y

)2θ+ε

|w̃T(s,u− s/2, · )|
∣∣∣∣P u1

1

(
P2

f

)u2
(
P3

f

)u3
(
C

δ4c2

)u4
∣∣∣∣

× |Zj (u)| du ds (11.2)

plus a very small error term, where

Zj (u) =
∑

(c′0,fg0m
′

1)=1
δ4c
′

0≡0 (mod qk1k
∗

1 )

∑
p1,p

′

2,p
′

3≥1

ν∞,j (p1δ4c
′

0)ν1/δ5,j (p
′

2p
′

3)

p
u1
1 p
′u2
2 p

′u3
3 c
′u4
0

. (11.3)

Our plan is to relate Zj (u) to L-functions, and use a large sieve inequality to bound it on
average over tj .



The fifth moment of modular L-functions 275

11.2. Non-oscillatory holomorphic cases

These cases are nearly identical to those in Section 11.1, but the bounds will turn out
to be even better due to the applicability of Deligne’s bound. The key point is that for
`� (1+ Y )qε, we may claim the bound

|h(s, `)| � `σ−1,

which is entirely analogous to |h(s, tj )| � tσ−1
j . We omit the details for brevity.

11.3. Oscillatory Maass cases

As in Section 11.1, we use (9.4) and (9.6), but instead of (10.3) we use (10.6) (which, as
discussed in Section 10.2, holds also for W+ in place of Wh). Also recall that only the +
sign enters the picture in the oscillatory case. Thus we obtain

T +d �
g0k1c2

KC

(√
aMN

C

)δ
(M2N)

1/2

√
δ2

h

∑
δ3|

c2
(g0,c2)

∑
(δ4,δ2g0m

′

1)=1

∑
(f,δ2δ4c

′

0)=1
(9.1) is true∑

tj level δ2δ5
|tj |�Y

′qε

(
CK

aM1N

)2 ∫
(σ )

|w̃T(tj ,u, · )|
∣∣∣∣P u1

1

(
P2

f

)u2
(
P3

f

)u3
(
C

δ4c2

)u4
∣∣∣∣|Zj (u)| du,

(11.4)

where

Y ′ =

(
M1aN

CK

)1/2

qε.

11.4. Oscillatory holomorphic cases

These are similar to (but easier than) the oscillatory Maass cases, and so we omit them.

11.5. Continuous spectrum

First consider the non-oscillatory cases. Then analogously to (11.1), we have

T ±c =
g0k1

K

∑
δ3|

c2
(g0,c2)

∑
(δ4,δ2g0m

′

1)=1

µ(δ4)

δ4

∑
(f,δ2δ4)=1
(9.1) is true

∑
(c′0,fg0m

′

1)=1
δ4c
′

0≡0 (mod qk1k
∗

1 )

1
c′0

∑
±p1,p

′

2,p
′

3≥1

∑
c

∫
∞

t=−∞

ν∞,c(p1δ4c
′

0, 1/2+ it)ν1/δ5,c(p
′

2p
′

3, 1/2+ it)
(√

aMN

C

)δ
(M2N)

1/2

√
δ2

h

×

∫
(ε)

h±(s, t)

∫
(1+ε)

( √
δ2K

fg0k1
√
δ4c
′

0|p1|p
′

2p
′

3

)s
w̃T(s,u, · )

×

(
P1

|p1|

)u1
(
P2

fp′2

)u2
(
P3

fp′3

)u3
(

C

δ4c
′

0c2

)u4

du ds dt. (11.5)
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Now we move the sums to the inside, getting

T ±c � qε
g0k1c2

KC

(√
aMN

C

)δ
(M2N)

1/2

√
δ2

h

∑
δ3|

c2
(g0,c2)

∑
(δ4,δ2g0m

′

1)=1

∑
(f,δ2δ4)=1
(9.1) is true

∫
|t |�(1+Y )qε

1
1+ |t |

∫
(ε)

∫
(1+ε)
|w̃T(s,u− s/2, · )|

∣∣∣∣P u1
1

(
P2

f

)u2
(
P3

f

)u3
(
C

δ4c2

)u4
∣∣∣∣

×

∑
c

|Zc,t (u)| du ds, (11.6)

where

Zc,t (u) =
∑

(c′0,fg0m
′

1)=1
δ4c
′

0≡0 (mod qk1k
∗

1 )

∑
p1,p

′

2,p
′

3≥1

ν∞,c(p1δ4c
′

0, 1/2+ it)ν1/δ5,c(p
′

2p
′

3, 1/2+ it)

p
u1
1 p
′u2
2 p

′u3
3 c
′u4
0

.

(11.7)

The oscillatory case is similar, leading to

T +c �
g0k1c2

KC

(√
aMN

C

)κ−1

(M2N)
1/2

√
δ2

h

∑
δ3|

c2
(g0,c2)

∑
(δ4,δ2g0m

′

1)=1

∑
(f,δ2δ4c

′

0)=1
(9.1) is true

∫
|t |�Y ′qε

(
CK

aM1N

)2 ∫
(1+ε)
|w̃T(t,u, · )|

∣∣∣∣P u1
1

(
P2

f

)u2
(
P3

f

)u3
(
C

δ4c2

)u4
∣∣∣∣∑

c

|Zc,t (u)| du dt.

(11.8)

11.6. Claiming bounds on Zj , and estimating T

In Section 12, we will show

Lemma 11.1. The function Zj (u) defined by (11.3) has analytic continuation to Re(u) ≥
σ > 1/2. In this region it satisfies the bound∑

tj level δ2δ5
|tj |≤T

|Zj (u)| �σ,ε q
θ−1/2 (δ4, q)

1/2

(k1k
∗

1)
1/2δ

1/2
4

T 2+εqε Poly(|u|), (11.9)

where Poly(|u|) is some fixed polynomial in the absolute values of the coordinates of u.

The key feature is that this bound saves a factor δ1/2
4 . This saving comes from the fact

that one of the Fourier coefficients in (11.3) houses a δ4 in the Fourier coefficient νj . For
newforms, the fact that δ4 divides the level gives us the δ−1/2

4 savings, since δ5 = [δ3, δ4]

and (3.31) is a bound for such Hecke eigenvalues. This side of the Bruggeman–Kuznetsov
formula is a spectrally complete sum over all Maass forms of level δ2δ5, including old-
forms. The savings from bounding the Fourier coefficients of an oldform is even better, as
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the normalized Fourier coefficients of oldforms decrease proportionally with the increase
in volume of the fundamental domain. We make this oldform-newform interplay precise
in Section 12.1 below with the AB = δ2δ5 consideration.

Now we use Lemma 11.1 to estimate T ±d , and eventually S. We do not require the fac-
tor (k1k

∗

1)
−1/2 appearing in (11.9), and in order to unify the treatment with the continuous

spectrum, we shall only use a weaker bound with this factor omitted.
First consider the non-oscillatory Maass cases. Inserting the bound from Lemma

11.1 into (11.2) (taking σ = 1/2+ ε) gives

T ±d � qε
g0k1c2

KC

(√
aMN

C

)δ
(M2N)

1/2

√
δ2

h

∑
δ3|

c2
(g0,c2)

∑
(δ4,δ2g0m

′

1)=1

∑
(f,δ2δ4)=1
(9.1) is true∫

(2θ+ε)

∫
(σ )

|w̃T(s,u− s/2, · )|
(P1P2P3C)

1/2

f δ
1/2
4 c

1/2
2

qθ−1/2 (δ4, q)
1/2

(k1k
∗

1)
1/2δ

1/2
4

(Y−2θ
+ Y )

× Poly(|u|) du ds, (11.10)

by considering the two cases Y � 1 and Y � 1 separately (recall Y was defined in
(10.2)). Summing over δ4 (here is where the savings of δ1/2

4 is important, as the δ4-sum
is now essentially a harmonic series with a benign extra factor (δ4, q)

1/2), f , and δ3, and
integrating over s and u, we obtain

T ±d � qε
g0k1c2

KC

(√
aMN

C

)δ
(M2N)

1/2

√
δ2

h
(Y−2θ

+ Y )(P1P2P3)
1/2
(
C

c2

)1/2

qθ−1/2.

(11.11)
Let us write S±d for the contribution to S from this part. Applying the additional summa-
tions that led from S to S ′′′ (see (7.10), (7.6), (7.1)), we obtain

S±d � qε
∑
a

1
a3/2

∑
c2

1

c
3/2
2

∑
d|c2

d
∑
k1

k
1/2
1

∑
m′1

1√
m′1

∑
r1r2r3=δ1

∑
e1|r2r3

∑
e2|r3

∑
g0|e1e2δ1am

′

1
g0≡0 (mod d)

g0k1c2

KC

(√
aMN

C

)δ
(M2N)

1/2

√
δ2

h
(Y−2θ

+ Y )(P1P2P3)
1/2
(
C

c2

)1/2

qθ−1/2.

Convention. Here and below, we have not written the truncation points for these outer
summation variables. In almost all cases, all that is necessary is to recall that all the
variables may be bounded by some fixed power of q. The only exception is that for some
estimates we need to use m′1 � M1/(k1c2).

For convenience, we gather some of the previous definitions:

h = e1e2r1r2r3, δ1 = r1r2r3 =
k1d

(a, k1d)
, δ2 =

e1e2δ1am
′

1
g0

=
ham′1
g0

,

N ′h = N, m1 = k1c2m
′

1, Y =
g0k1

√
CP1P2P3√
δ2c2K

.

(11.12)



278 Eren Mehmet Kıral, Matthew P. Young

With these substitutions, we obtain√
δ2 (Y

−2θ
+ Y )(P1P2P3)

1/2
(
C
c2

)1/2

=
δ2K
g0k1

(Y 1−2θ
+ Y 2),

and hence

S±d � qε
∑
a

1
a3/2

∑
c2

1

c
3/2
2

∑
d|c2

d
∑
k1

k
1/2
1

∑
m′1

1√
m′1

∑
r1r2r3=δ1

∑
e1|r2r3

∑
e2|r3

∑
g0|e1e2δ1am

′

1
g0≡0 (mod d)(√

aMN

C

)δ
M

1/2
2 N1/2 c2

C

am′1
g0

(Y 1−2θ
+ Y 2)qθ−1/2. (11.13)

Now we note that in this non-oscillatory case, we see from (8.7) that

P1P2P3(g0k1)
2

δ2c2
�ε q

ε K3

NaM1
,

which in particular means that Y �ε

(
CK
NaM1

)1/2
qε, which is independent of g0, k1, c2,

etc. Now it is evident that the sums over g0, e1, e2, r1, r2, r3 contribute at mostO(qε), and
the fact that d | g0 will cancel the other visible factor of d in (11.13). With this observation,
and performing minor simplifications, we have

S±d � qε
∑
a

1
a1/2

∑
c2

1

c
1/2
2

∑
d|c2

∑
k1

k
1/2
1

∑
m′1

√
m′1

×

(√
aMN

C

)δM1/2
2 N1/2

C
qθ−1/2

(( √
CK√
NaM1

)1−2θ

+

( √
CK√
NaM1

)2)
.

Trivially summing over m′1 (recall m′1 � M1/(k1c2)), k1, d, c2, and finally a, we derive

S±d �

qε max
a
M

3/2
1

(√
aMN

C

)δM1/2
2 N1/2a1/2

C
qθ−1/2

(( √
CK√
NaM1

)1−2θ

+

( √
CK√
NaM1

)2)
.

Now we split into the cases of Lemmas 8.3 and 8.4. In the case of Lemma 8.3, we
have δ = −1, and

M
3/2
1

(√
aMN

C

)δM1/2
2 N1/2a1/2

C
qθ−1/2

=
M1

q1/2−θ .

Meanwhile, using K � M−1
2

√
aMN (see (6.23)), we have

CK

NaM1
�

C√
aMN

� qε
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via (6.21). Therefore, in this case

S±d �ε

M1

q1/2 q
θ+ε
�ε q

θ+ε. (11.14)

In the case of Lemma 8.4, we have CK
NaM1

� q−ε, and δ = κ − 1 ≥ 1, so with easy
simplifications, we derive

S±d �ε q
ε max

a

M2K

C

M1q
θ

q1/2 .

Since KM2/C � qε in this case, we obtain the same bound as in (11.14).
The non-oscillatory holomorphic cases are nearly identical, so we omit the proofs.
Now consider the oscillatory Maass case, where we treat (11.4). Following the same

steps as in the non-oscillatory cases, we obtain

T +d �
g0k1

K

(√
aMN

C

)δ
(M2N)

1/2

√
δ2

h

(
CK

aM1N

)
(P1P2P3)

1/2
(
c2

C

)1/2
qθ

q1/2 .

After some simplifications, we have

S+d � qε
∑
a

1
a3/2

∑
c2

1

c
3/2
2

∑
d|c2

d
∑
k1

k
1/2
1

∑
m′1

1√
m′1

∑
r1r2r3=δ1

∑
e1|r2r3

∑
e2|r3

∑
g0|e1e2δ1am

′

1
g0≡0 (mod d)

g0k1

K

(√
aMN

C

)δ
(M2N)

1/2
(
c2

C

)1/2 √
δ2

h

(
CK

aM1N

)
(P1P2P3)

1/2 q
θ

q1/2 . (11.15)

We need to remember the origins of these variables. We have

P1P2P3 �
(NaM1)

3k′30
C3K3N ′

�

(
NaM1

CK

)3
K3

N

h

(g0k1)3
. (11.16)

Thus the bound becomes

S+d � qε
∑
a

1
a3/2

∑
c2

1

c
3/2
2

∑
d|c2

d
∑
k1

k
1/2
1

∑
m′1

1√
m′1

∑
r1r2r3=δ1

∑
e1|r2r3

∑
e2|r3

∑
g0|e1e2δ1am

′

1
g0≡0 (mod d)

g0k1

K

(√
aMN

C

)δ
(M2N)

1/2
(
c2

C

)1/2
√
ham′1
g0

(
NaM1

CK

)1/2(
K3

N

h

(g0k1)3

)1/2
qθ

hq1/2 .

We see that the sum over g0 gives O(d−1qε), and the h-dependence cancels out entirely,
so that the δ1-dependence is also essentially gone. Thus, we obtain

S+d � qε
qθ

q1/2

∑
a

1
a

∑
c2

1
c2

∑
d|c2

∑
k1

(k1k
∗

1)
−1/2

×

∑
m′1

(M2N)
1/2

KC1/2

(√
aMN

C

)δ(
NaM1

CK

)1/2(
K3

N

)1/2

.
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Now we sum over all the remaining variables, which gives in all

S+d � qε
M1q

θ

q1/2
(M2N)

1/2

KC1/2

(√
aMN

C

)δ(
NaM1

CK

)1/2(
K3

N

)1/2

.

Simplifying (in particular, δ = κ − 1 here), we obtain

S+d �ε q
εM1q

θ

q1/2
MaN

C2 .

Since
√
MaN �ε Cq

ε (see (6.18)), we obtain the same bound as in (11.14). The oscil-
latory holomorphic case is similar, but even simpler.

In summary, this shows the desired bound for the Maass forms and holomorphic
forms.

11.7. Claiming bounds on Zc,t , and estimating Tc
Recall the definition (11.5). Define flrt to be the multiplicative function defined on prime
powers by

flrt(pα) = pbα/2c. (11.17)

Lemma 11.2. The function Zc,t (u) has a decomposition

Zc,t (u1, u2, u3, u4) = (Z
0
1(u2, u3)+ Z

∗

1(u2, u3))(Z
0
2(u1, u4)+ Z

∗

2(u1, u4)),

where for i = 1, 2, Z∗i (α, β) has analytic continuation to Re(α, β) ≥ σ > 1/2, and
Z0
i (α, β) is analytic for Re(α, β) ≥ σ > 1. For Re(u) ≥ σ > 1/2, we have∫
|t |≤T

∑
c

|Z∗1(u2, u3)Z
∗

2(u1, u4)| dt �u,ε q
εT 2+ε

(
(δ4, q)

q

)1/2 flrt(δ2)flrt(δ3)
3/2√

δ2δ5
.

(11.18)
For Re(u) ≥ σ > 1, we have∑

c

|Z0
1(u2, u3)Z

0
2(u1, u4)| �u,ε (q(1+ |t |))ε

(δ4, q)

q
√
k1k
∗

1

1
δ2δ5

. (11.19)

For Re(u1, u4) ≥ σ > 1 and Re(u2, u3) ≥ σ
′ > 1/2, we have∫

|t |≤T

∑
c

|Z∗1(u2, u3)Z
0
2(u1, u4)| dt �u,ε q

εT 1+ε (δ4, q)

q
√
k1k
∗

1

flrt(δ2)
√

flrt(δ3)

δ2
√
δ5

. (11.20)

For Re(u2, u3) ≥ σ > 1 and Re(u1, u4) ≥ σ
′ > 1/2, we have∫

|t |≤T

∑
c

|Z0
1(u2, u3)Z

∗

2(u1, u4)| dt �u,ε q
εT 1+ε

(
(δ4, q)

q

)1/2 flrt(δ2)flrt(δ3)

δ2δ5
.

(11.21)
The implied dependence on u is at most polynomial, as in Lemma 11.1.
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We comment on some important features of the above bounds. In (11.18) and (11.21) we
require a factor δ−1/2

5 (or better) to secure convergence of the sum over δ4. The overall
power of k1 is also important for securing convergence in each case. In terms of the
final power of q that occurs in our bound on Sc, the most important feature is the power
of δ2. This is because δ2 contains the m′1 variable which can be as large as q1/2+ε. Note
that although flrt(n) may occasionally be as large as

√
n, it is small on average, indeed∑

n≤x flrt(n)� x log x.
Using Lemma 11.2, we bound Tc. For the non-oscillatory cases, we return to (11.6).

Technically, we should return to (11.5), decompose T ±c according to Zc,t = (Z∗1 +

Z0
1)(Z

∗

2 + Z
0
2) into four pieces, shift contours to the lines allowed by Lemma 11.2, and

only then apply the absolute values. We found it a bit easier to bound Z0
1 and Z0

2 slightly
to the right of the 1-line instead of bounding the residues of Z1 and Z2, but this is more
or less equivalent.

Then (note that the sum over f converges absolutely, and the t-integral is easily esti-
mated, so we may simplify a bit in these aspects)

T ±c � qε
g0k1c2

KC

(√
aMN

C

)δ
(M2N)

1/2

√
δ2

h

∑
δ3|

c2
(g0,c2)

∑
(δ4,δ2g0m

′

1)=1

flrt(δ2)flrt(δ3)

×

(
(δ4, q)

1/2

q1/2 (1+ Y )
(P1P2P3C)

1/2 flrt(δ3)
1/2√

δ2δ4δ5c2
+
(δ4, q)

q

P1P2P3C

δ2δ4δ5c2
√
k1k
∗

1

+
P1(P2P3)

1/2C

δ2δ4c2
√
δ5

(δ4, q)

q
√
k1k
∗

1

+
P

1/2
1 P2P3C

1/2

δ
1/2
4 c

1/2
2 δ2δ5

(δ4, q)
1/2

q1/2

)
.

Using δ5 ≥
√
δ3δ4 (recall that δ5 = [δ3, δ4]), the sums over δ3 and δ4 are easily evaluated,

and lead to a factor of size at most O(qε); the only slightly tricky case uses instead

flrt(δ3)
1/2
∑
δ4

(δ4, q)
1/2√

δ4δ5
= flrt(δ3)

1/2
∑
δ4

(δ4, δ3q)
1/2

δ4
√
δ3

� flrt(c2)
(δ3q)

ε√
δ3

. (11.22)

It is helpful to observe the following nice simplification. At this point we can see
that the first term within the parentheses which occurred from Z∗1Z

∗

2 will lead to the
same bound we obtained on T ±d , by comparison to (11.11). The only difference is the
benign factor of flrt(c2), which does not make the sum over c2 appreciably larger, since∑
c2
c−1

2 flrt(c2) � qε. Actually, apart from flrt(c2), the bound is better in two ways:
firstly, the factor qθ may be omitted, and secondly, instead of using flrt(δ2)/

√
δ2 ≤ 1, we

could use that flrt(n) isO(nε) on average, which could lead to a saving of the factorM1/2
1 .

Instead of carrying through the calculations, we will simply abbreviate this term by (∗∗)
in the forthcoming displays.

Next we wish to sum over the outer variables that make Sc from Tc. To this end, we
need to write the Pi , Y , and δ2 variables in terms of these outer ones. Let

P ∗i = K/Ni, i = 1, 2, 3, (11.23)



282 Eren Mehmet Kıral, Matthew P. Young

so that Pi � qεP ∗i
hi
g0k1

where h1 = e1r1, h2 = e2r2, and h3 = r3 (so h = h1h2h3). With
this, we obtain

T ±c � qε
g0k1c2

KC

(√
aMN

C

)δ
(M2N)

1/2

√
δ2

h
flrt(δ2)

×

[
(∗∗)+

h

(g0k1)3

P ∗1 P
∗

2 P
∗

3 C

qδ2c2
√
k1k
∗

1

+
h1(h2h3)

1/2

(g0k1)2

P ∗1 (P
∗

2 P
∗

3 )
1/2C

qδ2c2
√
k1k
∗

1

+
h

1/2
1 h2h3

(g0k1)5/2

(P ∗1 )
1/2P ∗2 P

∗

3 C
1/2

q1/2c
1/2
2 δ2

]
.

Recall that

S±c � qε
∑
a

1
a3/2

∑
c2

1

c
3/2
2

∑
d|c2

d
∑
k1

k
1/2
1

∑
m′1

1√
m′1

∑
r1r2r3=δ1

∑
e1|r2r3

∑
e2|r3

∑
g0|e1e2δ1am

′

1
g0≡0 (mod d)

T ±c ,

and that δ2 = ham
′

1/g0 and h = e1e2δ1 = e1e2r1r2r3.
Next we analyze the sum over g0 in all four terms. For the flrt part, we use flrt(δ2) =

flrt(e1e2δ1am
′

1/g0) ≤ flrt(e1e2δ1am
′

1) = flrt(ham′1), and otherwise we see that the over-
all power of g0 is negative in all terms, and so the smallest value of g0, namely d, leads
to the dominant part.

Putting this together, and simplifying, we obtain

S±c � qε
∑
a

1
a3/2

∑
c2

1

c
3/2
2

∑
d|c2

d
∑
k1

k
3/2
1

∑
m′1

1√
m′1

×

∑
r1r2r3=δ1

∑
e1|r2r3

∑
e2|r3

(M2N)
1/2

CK

(√
aMN

C

)δ flrt(ham′1)√
ham′1

×

[
(∗∗)+

P ∗1 P
∗

2 P
∗

3 C

qd3/2c2k
3
1

√
k1k
∗

1

+
P ∗1 (P

∗

2 P
∗

3 )
1/2C

qk2
1c2
√
dh2h3k1k

∗

1

+
(P ∗1 )

1/2P ∗2 P
∗

3 C
1/2

dk
5/2
1

√
qh1c2

]
.

Our next goal is to estimate the sum over m′1. Since m′1 is independent of δ1 (and
hence e1, e2), we may move the sum over m′1 to the inside. We shall use the following
estimate: ∑

n≤X

flrt(nN)
n

� flrt(N)(XN)ε,

which can be proved by elementary methods. Applying this to the sums over m′1, we
obtain with easy simplifications
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S±c � qε
∑
a

1
a3/2

∑
c2

1

c
3/2
2

∑
d|c2

d
∑
k1

k
3/2
1

∑
r1r2r3=δ1

∑
e1|r2r3

∑
e2|r3

(M2N)
1/2

CK

(√
aMN

C

)δ
×

flrt(ha)√
ha

[
(∗∗)+

P ∗1 P
∗

2 P
∗

3 C

qd3/2c2k
3
1

√
k1k
∗

1

+
P ∗1 (P

∗

2 P
∗

3 )
1/2C

qc2k
2
1

√
dh2h3k1k

∗

1

+
(P ∗1 )

1/2P ∗2 P
∗

3 C
1/2

dk
5/2
1

√
qh1c2

]
.

(11.24)

Using flrt(ha) ≤
√
ha, we can easily see that the outer variables sum to give no significant

contribution. Therefore, we have

S±c � qε max
a

(M2N)
1/2

CK

(√
aMN

C

)δ
×
[
(∗∗)+ q−1P ∗1 P

∗

2 P
∗

3 C + q
−1P ∗1 (P

∗

2 P
∗

3 )
1/2C + q−1/2(P ∗1 )

1/2P ∗2 P
∗

3 C
1/2].

Substituting for P ∗i and simplifying, we obtain

S±c � qε max
a

(M2N)
1/2

CK

(√
aMN

C

)δ[
(∗∗)+

K3C

Nq
+

K2C

qN1
√
N2N3

+
K5/2C1/2

q1/2N
1/2
1 N2N3

]
.

(11.25)

Now we split once more into the two types of non-oscillatory behavior. The post-
transition case from Lemma 8.3 has

√
aMN/C � qε, which leads to δ = −1 and

K � (aMN)1/2/M2. Therefore,

S±c � qε max
a
(M2N)

1/2
[
(∗∗)+

aMN

M2
2Nq

+

√
aMN

qM2N1
√
N2N3

+

√
aMN

q1/2M
3/2
2 N

1/2
1 N2N3

]
.

This simplifies to give

S±c � qε
[

1+

√
M1√
M2

√
M1a

2N

q
+
M

1/2
1

√
aN2N3

q
+

√
M1√
M2

√
aN1√
q

]
. (11.26)

UsingM1 � M2,M1 � q1/2+ε, and aNi � q1/2+ε, we deduce that S±c � qε. One may
observe that the part of S±c arising from Z∗1Z

0
2 and Z0

1Z
∗

2 contributes at mostO(q−1/4+ε).
With some additional work, one could show the contribution from Z∗1Z

∗

2 is also at most
O(q−1/4+ε).

For the non-oscillatory pre-transition case from Lemma 8.4 with δ = κ − 1 ≥ 2
(here is the only place where the choice of κ = 2 does not work), we haveK � qεC/M2

and C � qε
√
aMN , so we obtain

S±c � qε max
a
(M2N)

1/2
[
(∗∗)+

aMN

M2
2Nq

+

√
aMN

qM2N1
√
N2N3

+

√
aMN

M
3/2
2 q1/2N

1/2
1 N2N3

]
.

(11.27)
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This is precisely the same bound as in (11.26), and so S±c � qε. Actually, we only need
κ − 1 ≥ 2 for the term arising from Z0

1Z
0
2 .

Finally, we consider the oscillatory case (where recall δ = κ − 1 and only the + sign
enters). For this, we return to (11.8), that is,

T +c �
g0k1c2

KC

(√
aMN

C

)κ−1

(M2N)
1/2

√
δ2

h

∑
δ3|

c2
(g0,c2)

∑
(δ4,δ2g0m

′

1)=1

∑
(f,δ2δ4c

′

0)=1
(9.1) is true

∫
|t |�Y ′qε

(
CK

aM1N

)2 ∫
(1+ε)
|w̃T(t,u, · )|

∣∣∣∣P u1
1

(
P2

f

)u2
(
P3

f

)u3
(
C

δ4c2

)u4
∣∣∣∣∑

c

|Zc,t (u)| du dt,

where again we should technically move the contours before applying the absolute values.
Then we obtain

T +c � qε
g0k1c2

KC

(√
aMN

C

)κ−1

(M2N)
1/2

√
δ2

h

∑
δ3|

c2
(g0,c2)

∑
(δ4,δ2g0m

′

1)=1

(
CK

aM1N

)2

× flrt(δ2)flrt(δ3)

[
(δ4, q)

1/2

q1/2 Y ′2
(P1P2P3C)

1/2 flrt(δ3)
1/2√

δ2δ4δ5c2
+ Y ′

(δ4, q)

q

P1P2P3C

δ2δ4δ5c2
√
k1k
∗

1

+ Y ′
P1(P2P3)

1/2C

δ2δ4c2
√
δ5

(δ4, q)

q
√
k1k
∗

1

+ Y ′
P

1/2
1 P2P3C

1/2

δ
1/2
4 c

1/2
2 δ2δ5

(δ4, q)
1/2

q1/2

]
.

Luckily, we may reuse some of the previous analysis in the non-oscillatory cases. We
wish to sum over all the outer variables. Note that Y ′ is independent of them, and we have

Pi �
NaM1
CK

k′0
N ′i

; previously we had Pi � k′0/N
′

i , so the only difference here is the extra

factor NaM1
CK

(which happens to be Y ′2). Therefore, the previous method of bounding the
outer variables works identically as in this case. This time the term arising from Z∗1Z

∗

2 is
identical to (11.15), save for flrt(c2). We again denote it by (∗∗). Therefore, by altering
(11.25) with the appropriate factors of Y ′ we have

S±c � qε max
a

(M2N)
1/2

CKY ′4

×

(√
aMN

C

)κ−1[
(∗∗)+

Y ′7K3C

Nq
+

Y ′5K2C

qN1
√
N2N3

+
Y ′6K5/2C1/2

q1/2N
1/2
1 N2N3

]
.

Substituting for Y ′, simplifying, and using K � qεC/M2, this becomes

S±c � qε max
a
(M2N)

1/2
(√

aMN

C

)κ−1

×

[
(∗∗)+

(M1aN)
3/2

CM
1/2
2 Nq

+
(M1aN)

1/2

qM
1/2
2 N1

√
N2N3

+
M1aN

q1/2CM
1/2
2 N

1/2
1 N2N3

]
.
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Using C � q−ε
√
MaN and κ − 1 ≥ 1, this gives

S±c � qε max
a

[
1+

M1

M2

(M2a
2N)1/2

q
+
(M1aN2N3)

1/2

q
+

√
M1√
M2

√
aN1√
q

]
.

Again as in the non-oscillatory case, we see that S±c � qε.

12. Bounding the Dirichlet series

12.1. Discrete spectrum

In this section we prove Lemma 11.1. Towards this, we develop some properties of an
auxiliary Dirichlet series.

Lemma 12.1. Suppose N = LM , f ∗ is a newform of level M , and d,Q are nonzero
integers. For ` |L, let f = f ∗|`, write d/` = d1/`1 in lowest terms (so d = (d, `)d1,
` = (d, `)`1), and let d1 = dMd0 with dM |M∞ and (d0,M) = 1. Define the Dirichlet
series

Zd,`,Q(s, u) :=
∑
m,n≥1
(n,Q)=1

νf ∗|`(dmn)

msnu
,

initially for Re(s),Re(u) large. Then Zd,`,Q has analytic continuation to Re(s),Re(u) ≥
σ > 1/2, wherein it satisfies the bound

|Zd,`,Q(s, u)| �σ,ε |νf ∗(1)|(d, `)1/2d
−1/2
M dθ0 (dNQ)

ε
|L(f ∗, s)L(f ∗, u)|. (12.1)

For the proof of Lemma 11.1, in a short while we will apply (12.1) twice. Within the
confines of this section, N refers to the level of f ∗|` and not to a dyadic variable. We will
substitute N = δ2δ5, Q = fg0m

′

1. In the two cases this lemma will be used, we have
d = 1 and also d = Dδ4/(D, δ4) where D = qk1k

∗

1 .

Proof of Lemma 12.1. Firstly, from (3.30), we have

Zd,`,Q(s, u) =
∑
m,n≥1
(n,Q)=1

`1/2νf ∗(dmn/`)

msnu
.

We have νf ∗(dmn/`) = νf ∗(d1mn/`1) = λf ∗(dM)νf ∗(d0mn/`1), and so

Zd,`,Q(s, u) = `
1/2λf ∗(dM)νf ∗(1)

∑
m,n≥1
(n,Q)=1

λf ∗(d0mn/`1)

msnu
.

Using (3.31), and complete multiplicativity of Hecke eigenvalues for primes dividing M ,
we get |λf ∗(dM)| ≤ d

−1/2
M .
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By an exercise in the Hecke relations (somewhat in the spirit of (5.2)), one may derive
the analytic continuation and the bound∑

m,n≥1
(n,Q)=1

λf ∗(d0mn/`1)

msnu
�σ

(dNQ)ε

`
1/2
1

dθ0 |L(f
∗, s)L(f ∗, u)|,

where recall that Re(s),Re(w) ≥ σ > 1/2. ut

Now we proceed to prove Lemma 11.1. Recall the definition (11.3), which factors as

Zj (u) =
( ∑

(c′0,fg0m
′

1)=1
δ4c
′

0≡0 (mod qk1k
∗

1 )

∑
p1≥1

ν∞,j (p1δ4c
′

0)

p
u1
1 c
′u4
0

)( ∑
p2,p3≥0

ν1/δ5,j (p2p3)

p
u2
2 p

u3
3

)
. (12.2)

We begin by decomposing into newforms. By the choice of basis from Section 3.5, we
have

∑
|tj |≤T

|Zj (u)| �
∑

AB=δ2δ5

∑
f ∗ new, level B
|tf ∗ |≤T

∑
`|A
`′|A

∣∣∣∣( ∑
(c′0,fg0m

′

1)=1
δ4c
′

0≡0 (mod qk1k
∗

1 )

∑
p1≥1

ν∞,f ∗|`(p1δ4c
′

0)

p
u1
1 c
′u4
0

)

×

( ∑
p2,p3≥0

ν1/δ5,f ∗|`′
(p2p3)

p
u2
2 p

u3
3

)∣∣∣∣. (12.3)

By Lemmas 3.7 and 12.1 with the choice d = 1, we see that the sum over p2, p3 has
analytic continuation to the desired region, and satisfies∑

p2,p3≥1

ν1/δ5,f ∗|`′
(p2p3)

pα2p
β

3

� |νf ∗(1)| |L(f ∗, α)L(f ∗, β)|,

uniformly in `′ and δ5.
The first product in (12.3) is a bit trickier. Recall from (6.13) that (q, k1) = 1 and from

(7.9) that k1 | δ2. Let D = qk1k
∗

1 and note that the divisibility condition in the sum can
be rewritten as D/(δ4,D) | c

′

0. Pulling the factor D/(D, δ4) from the c′0 term, we apply
(12.1) with d = Dδ4/(D, δ4). This gives

∑
(c′0,fg0m

′

1)=1
δ4c
′

0≡0 (mod qk1k
∗

1 )

∑
p1≥1

νf ∗|`(p1δ4c
′

0)

p
u1
1 c
′u4
0

� qε|νf ∗(1)|
(
(D, δ4)

D

)1/2 (d, `)1/2dθ0

d
1/2
B

|L(f ∗, u1)L(f
∗, u4)|,

where d/` = d1/`1 is in lowest terms, and then we factor d1 = dBd0 where dB |B∞ and
(d0, B) = 1.
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Using |νf ∗(1)|2 = (AB)−1qo(1) via (3.27), we then have

∑
tj level δ2δ5
|tj |≤T

|Zj (u)| � qε
(
(D, δ4)

D

)1/2 ∑
AB=δ2δ5

∑
`|A

(d, `)1/2d
−1/2
B dθ0

×
1
AB

∑
f ∗ new, level B
|tf ∗ |≤T

|L(f ∗, u1)L(f
∗, u2)L(f

∗, u3)L(f
∗, u4)|.

A standard argument with the spectral large sieve (e.g., see [Mot97, Theorem 3.4] for the
level 1 case) implies∑
tj level δ2δ5
|tj |≤T

|Zj (u)|�u,ε T
2+εqε

(
(D, δ4)

D

)1/2 ∑
AB=δ2δ5

1
A

∑
`|A

(d, `)1/2d
−1/2
B dθ0 ; (12.4)

here and throughout the implied dependence on u is at most polynomial.
At this point, the proof of Lemma 12.1 has reduced to elementary estimates with

arithmetic functions. The factorization d = (d, `)dBd0 depends on `, so it takes some
work to estimate the sum over `. To this end, we also factor d in an alternative way,
independently of `, by d = d ′fgh where (d ′, AB) = 1, f |A∞, (f, B) = 1, g |B∞,
(g,A) = 1, and h |A∞ and h |B∞. Note that (f, g) = (f, h) = (g, h) = 1. Then writing
the old variables in terms of these, we have

d = (f, `)(h, `)︸ ︷︷ ︸
(d,`)

g
h

(h, `)︸ ︷︷ ︸
dB

d ′
f

(f, `)︸ ︷︷ ︸
d0

.

Inserting this into (12.4), and summing over ` |L, we obtain∑
tj level δ2δ5
|tj |≤T

|Zj (u)| �u,ε T
2+εqεd ′θ

(
(D, δ4)

D

)1/2 ∑
AB=δ2δ5

1
A

(f,A)1/2−θf θ (h,A)√
gh

.

Writing d ′f = D
(D,δ4)

δ4
1
gh

, we obtain

∑
tj level δ2δ5
|tj |≤T

|Zj (u)| �u,ε T
2+εqε

(
(D, δ4)

D

)1/2−θ

δθ4

∑
AB=δ2δ5

1
A

(f,A)1/2−θ (h,A)

(gh)1/2+θ
.

Now let us pause to gauge our progress towards (11.9). The inner sum over A easily
gives O(qε), and so if we trivially bound this part, and use D = qk1k

∗

1 (also recall
(k1, δ4) = 1 from (9.3)), we get the bound∑

tj

|Zj (u)| �u,ε q
θ−1/2 1

(k1k
∗

1)
1/2 (q, δ4)

1/2−θ (k1k
∗

1)
θδθ4T

2qε.

so we need to save δ1/2+θ
4 (k1k

∗

1)
θ , which will come from better estimating the sum overA.
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This inner sum overA,B may be factored into prime powers. For the primes p - k1δ4,
all we use is that the local factor is ≤ 1 (leading to an O(qε) bound from these primes,
by the observation in the previous paragraph). Recall δ4 | δ2δ5 since δ5 = [δ3, δ4] (see
(9.2)), and δ4 | d, so δ4 | fgh. For p | δ4, say pν ‖ δ4, pf ‖ f , and so on for g, h, A, and B,
by an abuse of notation. Now the variables in the exponents are written additively. Since
δ4 | fgh, in additive notation we have f + g + h ≥ ν. Also, A+ B ≥ ν, since δ4 | δ2δ5.

In the case B = 0, we have g = h = 0 and the local factor is

1
pA
(pf , pA)1/2−θ ≤ pν(−1/2−θ),

which is the local factor of δ−1/2−θ
4 . In the case A = 0, the local factor is no larger than

the local factor of δ−1/2−θ
4 , as can be seen easily. Finally, if A,B > 0, then f = g = 0,

h ≥ ν, and so the local factor equals

1
pA

min(ph, pA)p−h(1/2+θ) ≤ p−ν(1/2+θ).

Now suppose that p | k1. Then since k1 | δ2 and k1 | d (whence k1 | fgh), essentially
the same proof used for δ4 shows the local factors for primes dividing k1 give O(k−1/2

1 ).
In summary, this shows∑

tj level δ2δ5
|tj |≤T

|Zj (u)| �u,ε T
2qε

(
(q, δ4)

qk1k
∗

1

)1/2−θ

(k1δ4)
−1/2.

Using (k1k
∗

1)
θ
≤ k2θ

1 ≤ k
1/2
1 gives (11.9), as desired.

12.2. Continuous spectrum

In this section we prove Lemma 11.2.

12.2.1. Fourier coefficients of Eisenstein series. Here we quote an explicit evaluation of
the Fourier coefficients of φac(n, u), where a = 1/r is an Atkin–Lehner cusp, and c is
an arbitrary cusp of 00(N). The proof appears in [KY19]. Let c = v/f where f |N ,
(v, f ) = 1, and v runs modulo (f,N/f ); by [Iwa97, Proposition 2.6], every cusp c may
be represented in this form. Let

N ′ = N/f , N ′′ = N ′/(f,N ′), (12.5)

and write
fr = (f, r), fs = (f, s), r = frr

′, s = fss
′.

In addition, write

fr = f
′
rf0, where (f0, r

′) = 1 and f ′r | (r
′)∞,

and similarly
s′ = s′f s0, where (s0, fs) = 1 and s′f | f

∞
s .
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Proposition 12.2. Let notation be as above. Then φac(n, u) = 0 unless

n =
f ′r

(f ′r , r
′)

s′f

(s′f , fs)
k

for some integer k. In this case, write k = krks`, where

kr = (k, (f
′
r , r
′)), ks = (k, (s

′

f , fs)).

Then

φac(n, u) =
S(`, 0; s0f0)

(N ′′sf 2
r )
u

f ′r

(f ′r , r
′)

s′f

(s′f , fs)

∑
d|k

(d,fsr
′)=1

d1−2u 1

ϕ
( (f ′r ,r ′)

kr

) 1

ϕ
( (s′f ,fs )

ks

)×
∑

χ
(

mod (f ′r ,r
′)

kr

) ∑
ψ
(

mod
(s′
f
,fs )

ks

) (χψ)(`)τ (χ)τ(ψ)L(2u, χ2ψ2χ0)
(χψ)(s0f0d2v)χ(−ks(s

′

f , fs))ψ(kr(f
′
r , r
′)),

(12.6)

where χ0 is the principal character modulo fsr ′.

For later calculations, it will be useful to notice that the condition (k/kr , (f ′r , r
′)/kr) = 1

(and similarly in the s-aspect) is automatic from the presence of (χψ)(`). Moreover, we
have (f ′r , r

′) = (fr , r/fr), and similarly (s′f , fs) = (fs, s/fs), and so (f ′r , r
′)(s′f , fs) =

(f,N/f ). Note the condition d | k together with (d, fsr ′) = 1 implies d | `.

12.2.2. Proof of Lemma 11.2. By (3.10) and (3.12), we have

νab(n, u) = α(u)φab(n, u)|n|
u−1/2, where α(u) =

2πu+1/2

0(u)(cos(π(u− 1/2)))1/2
.

Note that |α(1/2+ it)| is independent of t ∈ R. Define

Z1 = Z1(α, β) =
∑
m,n≥1

ν1/r,c(mn, 1/2+ it)
mαnβ

,

Z2 = Z2(α, β) =
∑
m,n≥1

δm≡0 (modD)
(m,Q)=1

ν∞,c(δmn, 1/2+ it)
mαnβ

,

where we assume the level is N as in Section 12.2.1. This meaning of N is valid only
within the confines of this subsection, and hence should not be confused with the dyadic
variable N in the rest of the article. For Lemma 11.2, we shall need N = δ2δ5, Q =
fg0m

′

1, D = qk1k
∗

1 , δ = δ4, and r = δ5, but we do not need to make these specifications
yet. With this notation, we have Zc,t (u) = Z1(u2, u3)Z2(u1, u4).

The plan of the proof is to first derive bounds on Z0
1, Z

∗

1 , Z
0
2, Z

∗

2 individually, and
follow this with estimates for the sums over c.
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Using Proposition 12.2, we have (with u = 1/2+ it)

Z1 =
f ′r

(f ′r , r
′)

s′f

(s′f , fs)

α(u)

(N ′′sf 2
r )
u

∑
kr |(f ′r ,r

′)

∑
ks |(s

′
f ,fs )

1

ϕ
( (f ′r ,r ′)

kr

) 1

ϕ
( (s′f ,fs )

ks

)
×

∑
χ
(

mod (f ′r ,r
′)

kr

) ∑
ψ
(

mod
(s′
f
,fs )

ks

) τ(χ)τ(ψ)

L(2u, χ2ψ2χ0)
(χψ)(s0f0w

′)χ(−ks(s
′

f , fs))ψ(kr(f
′
r , r
′))

×

∑
(d,fsr ′)=1

(χψ)(d2)d1−2u
∑
m,n≥1
(∗)

(χψ)(`)S(`, 0; s0f0)

mαnβ
(mn)u−1/2.

Here (∗) stands for the following conditions:mn = f ′r
(f ′r ,r

′)

s′f

(s′f ,fs )
krks` and ` ≡ 0 (mod d).

Write Z1 = Z
0
1 + Z

∗

1 where Z0
1 corresponds to the part with both χ and ψ principal.

By a trivial bound, we have for Re(α),Re(β) ≥ σ > 1,

|Z0
1 | �σ

Nε

fr
√
sN ′′ (f ′r , r

′)(s′f , fs)

1
|ζ(1+ 2it)|

�σ

(N(1+ |t |))ε

(f,N/f )fr
√
sN ′′

. (12.7)

Meanwhile, we have

|Z∗1 | �
f ′r

(f ′r , r
′)

s′f

(s′f , fs)

Nε

fr
√
sN ′′

∑
kr |(f ′r ,r

′)

∑
ks |(s

′
f ,fs )

1

ϕ
( (f ′r ,r ′)

kr

) 1

ϕ
( (s′f ,fs )

ks

)
×

∑
′

χ
(

mod (f ′r ,r
′)

kr

) ∑
′

ψ
(

mod
(s′
f
,fs )

ks

) |τ(χ)τ(ψ)|

|L(1+ 2it, χ2ψ2χ0)|
|Y1|,

where the notation
∑
′ means the principal character is omitted, and with

V =
f ′r

(f ′r , r
′)

s′f

(s′f , fs)
krks

we let

Y1 =
∑

(d,fsr ′)=1

(χψ)(d2)d1−2u
∑

mn≡0 (mod dV )

(χψ)
(
mn
V

)
S
(
mn
V
, 0; s0f0

)
mαnβ

(mn)u−1/2.

Moreover, the analytic continuation of Z∗1 will be inherited from that of Y1.
Similarly to (7.4) and (7.5), one can show the formal identity∑

mn≡0 (modD)

f (m, n) =
∑

CAB=D

µ(C)
∑
m,n

f (CAm,CBn). (12.8)
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Applying this to Y1 with D = dV , we obtain

Y1 = V
u−1/2

∑
(d,fsr ′)=1

(χψ)(d)d1/2−u
∑

CAB=dV

µ(C)(χψ)(C)Cu−1/2

AαBβCα+β

×

∑
m,n

(χψ)(mn)S(Cdmn, 0; s0f0)

mαnβ(mn)1/2−u
.

One can readily observe that (d, V ) = 1 and (V , s0f0) = 1. In the factorization CAB =
dV , one may split each of C,A,B uniquely into its part dividing d and dividing V sepa-
rately, and thereby factor the sum. In this way, we obtain (with Re(u) = 1/2)

|Y1| �
Nε

V σ

∣∣∣∣ ∑
(CAB,fsr ′)=1

µ(C)(χψ)(AB)

AαBβCα+β(AB)u−1/2

∑
m,n

(χψ)(mn)S(C2ABmn, 0; s0f0)

mαnβ(mn)1/2−u

∣∣∣∣.
Next we open the Ramanujan sum as a divisor sum, which gives

|Y1|

�
Nε

V σ

∑
g|s0f0

g

∣∣∣∣ ∑
(CAB,fsr ′)=1

∑
m,n

C2ABmn≡0 (mod g)

µ(C)(χψ)(AB)

AαBβCα+β(AB)u−1/2
(χψ)(mn)

mαnβ(mn)1/2−u

∣∣∣∣.
Now it is not difficult to see the analytic continuation of Y1 to Re(α, β) ≥ σ = 1/2 + ε,
and therein we obtain the bound

|Y1| � Nε

(
(f ′r , r

′)

f ′r

(s′f , fs)

s′f

)1/2
(s0f0)

1/2

(krks)1/2

× |L(α − it, χψ)L(α + it, χψ)L(β − it, χψ)L(β + it, χψ)|.

We recall the well-known bound on the fourth moment of Dirichlet L-functions:∑
χ (modN)

|L(σ + it, χ)|4 �σ,ε (1+ |t |)1+εN1+ε (12.9)

for σ ≥ 1/2. Moreover, we have the hybrid version∫
|t |≤T

∑
χ (modN)

|L(σ + it, χ)|4 �σ,ε (1+ T )1+εN1+ε. (12.10)

For references, consult [Mon71, Chapter 10] or [Gal70, Theorem 2]; the statements in
these sources do not precisely claim these bounds, but the methods can be easily modified.
In addition, we have

1
|L(1+ 2it, χ)|

� (1+ |t |)εNε,
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for which see [MV07, Theorem 11.4]. Thus applying Hölder’s inequality and the bound
(12.9) we obtain

|Z∗1 | �α,β,ε

Nε(1+ |t |)1+ε

fr
√
sN ′′

(frs
′)1/2 =

Nε(1+ |t |)1+ε√
fN ′′

. (12.11)

Using (12.10), we alternatively have∫
|t |≤T

|Z∗1 | �α,β,ε

qεT 1+ε√
fN ′′

. (12.12)

Next we study Z2, which is more difficult than Z1. We have a = ∞ ∼ 1/N , so r = N
and s = 1, and also fr = f , r ′ = N ′. First we perform a minor simplification by writing
the congruence δm ≡ 0 (mod D) as m ≡ 0 (mod D

(δ,D)
) (so necessarily (Q, D

(δ,D)
) = 1

as otherwise the sum is empty). Then we have

Z2 =

(
(D, δ)

D

)α
Y2, where Y2 :=

∑
m,n≥1
(m,Q)=1

ν∞,c(amn, 1/2+ it)
mαnβ

,

and where
a =

δD

(δ,D)
= [δ,D].

Applying Proposition 12.2, we obtain

Y2 =
f ′N

(f ′N , N
′)

α(u)

(N ′′f 2)u

∑
kN |(f

′
N ,N

′)

1
ϕ((f ′N , N

′)/kN )

∑
χ (mod (f ′N ,N

′)/kN )

τ(χ)χ(−f0w
′)

L(2u, χ2χ0)

×

∑
(d,N ′)=1

d1−2uχ(d2)
∑
(∗)

χ(`)S(`, 0; f0)

mαnβ
(amn)u−1/2.

Now (∗) stands for the following conditions: amn = f ′N
(f ′N ,N

′)
kN`, amn ≡ 0 (mod d), and

(m,Q) = 1. From the condition (d,N ′) = 1, we equivalently obtain ` ≡ 0 (mod d).
Define

b =
f ′N

(f ′N , N
′)
kN =

f ′N

(f ′N , N
′)/kN

, (12.13)

and write
a = (a, b)a′ and b = (a, b)b′, (12.14)

so that the condition b | amn is equivalent to b′ |mn. Then ` = a′mn
b′

, and we have

Y2 =
f ′N

(f ′N , N
′)

α(u)au−1/2

(N ′′f 2)u

×

∑
kN |(f

′
N ,N

′)

1
ϕ((f ′N , N

′)/kN )

∑
χ (mod (f ′N ,N

′)/kN )

τ(χ)χ(f0w
′a′)

L(2u, χ2χ0)
X2,
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where

X2 :=
∑

(d,N ′)=1

d1−2uχ(d2)
∑

mn≡0 (mod b′)
amn≡0 (mod d)

χ(mn/b′)S(a′mn/b′, 0; f0)

mαnβ
(mn)u−1/2.

Here (b′, f0d) = 1, since b | (N ′)∞. Opening the Ramanujan sum, we have

X2 =
∑
e|f0

eµ(f0/e)
∑

(d,N ′)=1

d1−2uχ(d2)
∑

mn≡0 (mod b′)
amn≡0 (mod d)
a′mn≡0 (mod e)

χ(mn/b′)

mαnβ
(mn)u−1/2.

Let g = (a, d), so that

X2 =
∑
g|a

(g,N ′)=1

g1−2uχ(g2)
∑
e|f0

eµ(f0/e)
∑

(d,N ′a/g)=1

d1−2uχ(d2)

×

∑
mn≡0 (mod b′)
mn≡0 (mod d)
a′mn≡0 (mod e)

χ(mn/b′)

mαnβ
(mn)u−1/2.

Applying (12.8) to X2 with the modulus d , we obtain

X2 =
∑
g|a

(g,N ′)=1

g1−2uχ(g2)
∑
e|f0

eµ(f0/e)
∑

(d,N ′a/g)=1

d1−2uχ(d2)
∑

CAB=d

µ(C)

×

∑
Cdmn≡0 (mod b′)
a′Cdmn≡0 (mod e)

χ(Cdmn/b′)

(CAm)α(CBn)β
(Cdmn)u−1/2.

Since C | d, (d,N ′) = 1, and b′ | (N ′)∞, the congruence Cdmn ≡ 0 (mod b′) is equiva-
lent to mn ≡ 0 (mod b′). We can then write

X2 =
∑
g|a

(g,N ′)=1

g1−2uχ(g2)
∑
e|f0

eµ(f0/e)
∑

(CAB,N ′a/g)=1

µ(C)χ(AB)(AB)1/2−u

Cα+βAαBβ

×

∑
mn≡0 (mod b′)

a′C2ABmn≡0 (mod e)

χ(mn/b′)

mαnβ
(mn)u−1/2.
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Next we use (12.8) again, this time on the congruence modulo b′, which gives

X2 = (b
′)u−1/2

∑
g|a

(g,N ′)=1

g1−2uχ(g2)
∑
e|f0

eµ(f0/e)
∑
xyz=b′

µ(x)χ(x)xu−1/2

xα+βyαzβ

×

∑
(CAB,N ′a/g)=1

µ(C)χ(AB)(AB)1/2−u

Cα+βAαBβ

∑
a′C2ABxb′mn≡0 (mod e)

χ(mn)

mαnβ
(mn)u−1/2.

Similarly to the Z1 case, one can see the meromorphic continuation with a pole only
in case χ is principal. In addition, we have the bound (with u = 1/2+ it)

|X2| �σ

Nε

(b′)σ
|L(α − it, χ)L(α + it, χ)L(β − it, χ)L(β + it, χ)|

∑
e|f0

e

(
(a′, e)

e

)σ
.

Note ∑
e|f0

e

(
(a′, e)

e

)σ
� Nε(a′, f0)

σ (1+ f0)
1−σ .

Now write Z2 = Z0
2 + Z

∗

2 where Z0
2 corresponds to the principal characters, and

similarly write Y2 = Y
0
2 + Y

∗

2 . For Re(α, β) ≥ σ = 1+ ε, we have trivially

X2 � Nε (a
′, f0)

b′
= Nε (a, f0b)

b
,

recalling (12.14). Thus

Y 0
2 �

f ′N

(f ′N , N
′)

Nε√
N ′′f 2

∑
kN |(f

′
N ,N

′)

kN

(f ′N , N
′)

(f ′N , N
′)(a, f0b)

f ′NkN
.

Here b is a function of kN (cf. (12.13)), and is maximal when kN = (f ′N , N
′), in which

case b = f ′N . Recalling f0f
′

N = f , which implies (a, f0b) ≤ (a, f ), and using (f ′N , N
′)

= (f,N/f ), in all we obtain

Y 0
2 �

Nε(a, f )

(f,N/f )
√
N ′′f 2

1
|ζ(1+ 2it)|

.

Finally,

Z0
2 �

Nε(1+ |t |)ε

(f,N/f )f
√
N ′′

([δ,D], f )
(δ,D)

D
. (12.15)

Using (12.9) and Hölder’s inequality, we have, with σ = 1/2+ ε,

|Y ∗2 | �α,β,ε

f ′N

(f ′N , N
′)

Nε(1+ |t |)1+ε

(N ′′f 2)1/2

∑
kN |(f

′
N ,N

′)

(
(f ′N , N

′)

kN

)1/2 (a′, f0)
1/2f

1/2
0

b′1/2
.
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Note the simplification

f ′N

(f ′N , N
′)

(
(f ′N , N

′)

kN

)1/2 f
1/2
0
b′1/2

= f 1/2 (a, b)
1/2

kN
.

We have (a′, f0) = (a, f0) since (b, f0) = 1, and (a, b)1/2/kN ≤ (a, f ′N )
1/2. Thus

|Y ∗2 | �α,β,ε

Nε(1+ |t |)1+ε

(N ′′f )1/2
(a, f )1/2.

Hence

|Z∗2 | �α,β,ε

(
(δ,D)

D

)1/2
Nε(1+ |t |)1+ε

(N ′′f )1/2

(
δD

(δ,D)
, f

)1/2

. (12.16)

Also, in a similar way to the Z∗1 case,∫
|t |≤T

|Z∗2 | dt �α,β,ε

(
(δ,D)

D

)1/2
NεT 1+ε

(N ′′f )1/2

(
δD

(δ,D)
, f

)1/2

. (12.17)

Now we proceed to prove the desired bounds in Lemma 11.2. The cusps may be
parameterized by v/f with f |N and v (mod (f,N/f )) (with v coprime to f ). During
the course of the proof, it will be helpful to refer to the following divisor-sum bounds:∑

d|N

(d,N/d)2

N
� Nε flrt(N)√

N
and

∑
d|N

(d,N/d)2d1/2

N
� Nε flrt(N)3/2√

N
, (12.18)

each of which can be checked prime-by-prime by multiplicativity. If desired, the former
inequality could be bounded by Nεflrt(N)2/N . Along the same lines, we note∑

d|N

(d,N/d)2

d1/2N
� Nε flrt(N)3/2

N
, (12.19)

as well as∑
d|N

(d,N/d)d1/2

N
� Nε

√
flrt(N)√
N

and
∑
d|N

(d,N/d)

N
� Nε flrt(N)

N
. (12.20)

Combining (12.12) and (12.16), we obtain∫
|t |≤T

∑
c

|Z∗1Z
∗

2 | dt �u,ε N
εT 2+ε

(
(δ,D)

D

)1/2∑
f |N

(f,N/f )2

N

(
δD

(δ,D)
, f

)1/2

.

We have N = δ2δ5, D = qk1k
∗

1 , δ = δ4 | δ5. With these substitutions, and recalling
(δ4, k1) = 1, we obtain∫
|t |≤T

∑
c

|Z∗1Z
∗

2 | dt �u,ε q
εT 2+ε

(
(δ4, q)

qk1k
∗

1

)1/2 ∑
f |δ2δ5

(f, δ2δ5/f )
2

δ2δ5

(
k1k
∗

1
δ4q

(δ4, q)
, f

)1/2

.
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By multiplicativity, and using (δ2, δ5) = 1 = (δ2, q), and k1 | δ2, the inner sum over f
factors and simplifies as

∑
f |δ2δ5

(f, δ2δ5/f )
2

δ2δ5

(
k1k
∗

1
δ4q

(δ4, q)
, f

)1/2

=

(∑
g|δ2

(g, δ2/g)
2(g, k1k

∗

1)
1/2

δ2

)(∑
h|δ5

(h, δ5/h)
2

δ5

(
δ4q

(δ4, q)
, h

)1/2)
.

Using (g, k1k
∗

1)
1/2
≤

√
k1k
∗

1 ,
( δ4q
(δ4,q)

, h
)1/2
≤ h1/2, and (12.18), we obtain∫

|t |≤T

∑
c

|Z∗1Z
∗

2 | dt �u,ε N
εT 2+ε

(
(δ4, q)

qk1k
∗

1

)1/2 flrt(δ2)flrt(δ5)
3/2√

δ2δ5

√
k1k
∗

1 . (12.21)

Recall that δ5 = [δ3, δ4], and that δ4 is square-free. Therefore, [δ3, δ4] = δ3
δ4

(δ3,δ4)
where(

δ3,
δ4

(δ3,δ4)

)
= 1. Since flrt is multiplicative, and trivial on square-free numbers, this im-

plies

flrt(δ5) = flrt(δ3)flrt
(

δ4

(δ3, δ4)

)
= flrt(δ3), (12.22)

a simplification we will make repeatedly below. Applying (12.22) to (12.21) gives (11.18).
Combining (12.7) and (12.15) and specializing the variables, we obtain∑

c

|Z0
1Z

0
2 | � (q(1+ |t |))ε

(
(δ4, q)

qk1k
∗

1

)∑
c

(f, [δ4, qk1k
∗

1 ])

(f,N/f )2N ′′s1/2frf
.

Using (12.5) and summing over u (mod (f,N/f )), we obtain∑
c

(f, [δ4, qk1k
∗

1 ])

(f,N/f )2N ′′s1/2frf
≤

1
N

∑
f |N

(f, [δ4, qk1k
∗

1 ])

s1/2fr
.

Using the coprimality conditions, we have [δ4, qk1k
∗

1 ] = k1k
∗

1 [δ4, q], which in turn di-
vides k1k

∗

1 [δ5, q]. Now k1 is in the s-part of the level (since s = δ2 and k1 | δ2), while we
also have (q, δ2) = 1 by (7.8) so that [δ4, q] is coprime to s, and hence to fs . Now we
may see that the sum above factors as

1
N

∑
f |N

(f, [δ4, qk1k
∗

1 ])

s1/2fr
≤

(∑
fr |r

(fr , [δ4, q])

rfr

)(∑
fs |s

(fs, k1k
∗

1)

s3/2

)
.

Using (fr , [δ4, q]) ≤ fr and (fs, k1k
∗

1) ≤ f
1/2
s

√
k1k
∗

1 ≤
√
sk1k

∗

1 leads immediately to
(11.19).

Finally, we examine the two cross terms. From (12.12) and (12.15), and using simpli-
fications as in the above cases, we have∫

|t |≤T

∑
c

|Z∗1Z
0
2 | dt �u,ε

(
(δ4, q)

qk1k
∗

1

)
qεT 1+ε

∑
f |δ2δ5

(f, δ2δ5/f )

δ2δ5
√
f

(f, k1k
∗

1 [δ4, q]).
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The inner sum factors as(∑
g|δ2

(g, δ2/g)

δ2
√
g
(g, k1k

∗

1)

)(∑
h|δ5

(h, δ5/h)

δ5
√
h

(h, [δ4, q])

)
.

Using (g, k1k
∗

1) ≤
√
gk1k

∗

1 , (h, [δ4, q]) ≤ h, and (12.20), we have

∑
f |δ2δ5

(f, δ2δ5/f )

δ2δ5
√
f

(f, k1k
∗

1 [δ4, q])� qε

√
flrt(δ5)flrt(δ2)

δ2
√
δ5

√
k1k
∗

1 .

On account of (12.22), (11.20) follows.
Similarly, combining (12.7) and (12.16), we have

∫
|t |≤T

∑
c

|Z0
1Z
∗

2 | dt �u,ε

(
(δ4, q)

qk1k
∗

1

)1/2

qεT 1+ε
∑
f |N

f (f,N/f )
(
k1k
∗

1
δ4q
(δ4,q)

, f
)1/2

frN
√
sf

.

Following the discussion of the Z0
1Z

0
2 case (recall r = δ5 and s = δ2), the inner sum over

f factors as

(∑
g|δ2

(g, δ2/g)(k1k
∗

1 , g)
1/2g1/2

δ
3/2
2

)(∑
h|δ5

(h, δ5/h)
( δ4q
(δ4,q)

, h
)1/2

δ5
√
h

)
.

Using (12.20) and (12.22), we find that this is

� qε
√
k1k
∗

1

√
flrt(δ2)flrt(δ3)

δ2δ5
.

Hence we obtain (11.21) (in fact, with a slightly better power of flrt(δ2)).

13. Zero terms

13.1. Overview

In this section, we analyze the contribution to S from the terms with some pi zero. Recall
the original expression for S ′′′ from (7.11), and Proposition 8.1.

Let us write
S ′′′ =

∑
P

TP + S ′′′0,0,0 + S ′′′0,0 + S ′′′0 ,

where
∑

P TP corresponds to the terms with all pi nonzero, S ′′′0,0,0 corresponds to the terms
with all three pi zero, S ′′′0,0 corresponds to the terms with exactly two pi zero, and finally
S ′′′0 has the terms with exactly one pi zero. Recall that the sum over P is the sum over
the dyadic partitions of unity. The partition is mainly beneficial for estimating TP, and we
usually wish to remove the partition as much as possible when estimating the zero terms.
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Applying the additional summations that led from S to S ′′′ (see (7.10), (7.6), (7.1) or
alternatively (13.8) and (13.9) below), we likewise define S0,0,0, S0,0, and S0. Implicit in
the definition of these quantities is that prior to the definition of S ′′′, we applied a partition
of unity. When it is necessary to emphasize this, we may write S(T)0,0,0 where T stands

for the tuple (M1,M2, C,N1, N2, N3,K), and likewise for S0,0 and S0. Then
∑

T S(T)0,0,0
represents the quantity after reassembling the partition. For simplicity of notation we may
on occasion drop the superscript T.

Our primary goal is to show

Theorem 13.1. With an appropriate choice of Gi(s) in the approximate functional equa-
tions, we have ∑

T
S(T)0,0,0 � qε.

We will show the same bounds for S0,0 and S0. We make extensive use of the assumption

Gi(1/2) = 0. (13.1)

Next we specialize Lemma 8.2 to degenerate pi .

Lemma 13.2. Let (α, k) = 1. If some pi is zero, then A(p1, p2, p3;α; k) does not de-
pend on α. Furthermore,

1
k
A(0, 0, 0;α; k) = (Id ∗ ϕ)(k), (13.2)

where ∗ indicates Dirichlet convolution, Id(n) = n, and ϕ is Euler’s totient function.

This is a short calculation, so we omit the proof. If some pi is zero then since A does not
depend on α, by abuse of notation we may drop α from the notation.

13.2. The case with all pi zero

The case with p1 = p2 = p3 = 0 is surprisingly delicate. It turns out that trivially
bounding these terms leads only to S0,0,0 � q1/4+ε. Therefore, we have to make use of
some further cancellation.

For notational simplicity, let us write A(0, 0, 0; ∗; k′0) = A(k
′

0) and B(0, 0, 0; k′0) =
B(k′0). We then have

S ′′′0,0,0 =
∑

(c0,g0m
′

1)=1
c0≡0 (mod qk1k

∗

1 )

1
c0

∑
(k′0,δ2c0)=1

k′0≡0 (mod c2/(g0,c2))

1

k′30
A(k′0)B(k

′

0). (13.3)

The function B depends on a choice of a partition of unity in the n1, n2, n3 variables (as
well as c, k, m1, m2, but here the focus is on the ni). Our next goal is to recombine the
partitions of unity in the dyadic numbers N1, N2, N3.
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13.3. Recombining partitions of unity

We write the weight function explicitly. Say

J (n1, n2, n3) = J∗(n1n2n3, a,m
′

1, c0, g0k
′

0, c2, k1)Fa

(
n1√
q
,
n2√
q
,
n3√
q

)
ω
(
n1
N1
,
n2
N2
,
n3
N3

)√
n1n2n3

,

where ω(t1, t2, t3) = ω(t1)ω(t2)ω(t3) (recall ω gave rise to the dyadic partition of unity),
and

J∗(n, · ) = e

(
−
nam1

ck

)∫
∞

0
e

(
−kt

c

)
Jκ−1

(
4π
√
m1nat

c

)
wM2(t, · )

dt√
t
.

Here the weight function wM2 is a piece of a dyadic partition of unity in the m1, m2, c,
and k variables times V (m1m2/q). The function J∗ has n = n1n2n3 appearing as a block.

By (8.2), we have (introducing subscripts on B now to emphasize the choice of the
partition of unity)

BN1,N2,N3(k
′

0) =

∫∫∫
(R+)3

J∗(e1e2δ1t1t2t3, a,m
′

1, c0, g0k
′

0, c2, k1)√
δ1e1e2

× Fa

(
t1r1e1√
q
,
t2r2e2√
q
,
t3r3√
q

)
ω

(
t1e1r1

N1
,
t2e2r2

N2
,
t3r3

N3

)
dt1 dt2 dt3√

t1t2t3
. (13.4)

The c, k,m1, m2 partitions are implicit in the definition of J∗.
Next we sum over all dyadic numbers N1, N2, N3 ≥ 2−1/2, and thereby partially

reconsititute the partition of unity originally applied in Section 6.1. Note that any error
term obtained from the restriction (6.3) is very small. We obtain∑
2−1/2≤N1,N2,N3 dyadic

BN1,N2,N3(k
′

0)

=

∫∫∫
(R+)3

J∗(t1t2t3, a,m
′

1, c0, g0k
′

0, c2, k1)

δ1e1e2

× Fa

(
t1√
q
,
t2√
q
,
t3√
q

)
W(t1, t2, t3)

dt1 dt2 dt3√
t1t2t3

, (13.5)

where W(t1, t2, t3) =
∑

2−1/2≤N1,N2,N3 dyadic ω(t1/N1, t2/N2, t3/N3). Note that the func-
tion 1 −W(t1, t2, t3) is 0 if ti ≥ 1 for all i. It is a slightly subtle point that it is not true
that W(t1, t2, t3) = 1 for all ti > 0.

Our immediate goal is to replace theW function by 1, and estimate the error. The basic
idea is that 1−W(t1, t2, t3) should save a factor q1/4 from the fact that at least one of the

ti is ≤ 1, in place of q1/2+ε. Here this numerology comes from
∫ q1/2

1 t−1/2 dt � q1/4, but∫ 1
0 t
−1/2 dt � 1. In light of the claim that the trivial bound on S0,0,0 leads to O(q1/4+ε),

one naturally expects that this reasoning should lead to an acceptable final bound. Our
next order of business is to confirm this expectation.
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Lemma 13.3. Let

B1(k
′

0) =

∫∫∫
(R+)3

J∗(t1t2t3, a,m
′

1, c0, g0k
′

0, c2, k1)

δ1e1e2

× Fa

(
t1√
q
,
t2√
q
,
t3√
q

)
(1−W(t1, t2, t3))

dt1 dt2 dt3√
t1t2t3

.

Let S ′′′1 be as in (13.3) but with B replaced with B1. Then

S ′′′1 � qε
(g0, c2)

Cc2k1k
∗

1

m
1/2
1 M2

a3/2δ1e1e2
. (13.6)

Proof. Notice that the support of 1 − W(t1, t2, t3) is essentially included in the union
of domains where one of the variables is in [0, 1] and the other two are restricted to
[0, q1/2+ε/a]. The bound on the other two variables comes from the dropoff due to the
function Fa,√q(t1, t2, t3).

Using only the trivial bound Jκ−1(x)� x and |I | = |J∗|, we derive from (6.8) (which
we bound trivially) that

|J∗(t1t2t3, am
′

1, c0, g0k
′

0, c2, k1)| � M2
√
m1at1t2t3/C. (13.7)

Therefore, using the above restrictions on the size of the ti , and (5.6), we derive

B1(k
′

0)� qε
qm

1/2
1 M2

a3/2δ1e1e2C
.

For the arithmetical part, we have

1

k′30
A(k′0)�

τ(k′0)

k′0
.

Hence

S ′′′1 � qε
∑

(c0,g0m
′

1)=1
c0≡0 (mod qk1k

∗

1 )

1
c0

∑
(k′0,δ2c0)=1

k′0≡0 (mod c2
(g0,c2)

)

qm
1/2
1 M2

a3/2δ1e1e2C

τ(k′0)

k′0
,

which quickly leads to (13.6). ut

Recall that

S ′′0,0,0 =
∑

g0|e1e2δ1am
′

1
g0≡0 (mod d)

S ′′′0,0,0, S ′0,0,0 =
∑

r1r2r3=δ1

∑
e1|r2r3

∑
e2|r3

µ(e1)µ(e2)S ′′0,0,0, (13.8)

S0,0,0 =
∑

(a,q)=1

µ(a)

a3/2

∑
c2

1

c
3/2
2

∑
d|c2

dµ(c2/d)
∑
k1

k
1/2
1

∑
m′1

1√
m′1

S ′0. (13.9)
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Let S ′′1,S
′
1 and S1 be defined similarly. Using Lemma 13.3 and (g0, c2) ≤ c2 then

implies that

S1 � qε
∑
a

1
a3/2

∑
c2

1

c
3/2
2

∑
d|c2

d
∑
k1

k
1/2
1

∑
m′1

1√
m′1

(m′1k1c2)
1/2M2

Ck1k
∗

1a
3/2 .

Using m1 = m
′

1k1c2 � q1+ε/M2 and C � q, we obtain

S1 � q1+ε/C � qε.

Define S ′′′0,0,0 to be the same as S ′′′0,0,0 but with W replaced by 1, so that

S ′′′0,0,0 = S ′′′0,0,0 + S ′′′1 ,

and similarly for S ′′0,0,0, etc. To show Theorem 13.1, we therefore need to show∑
T S0,0,0 �ε q

ε.

13.4. The function B(k′0)

From now on, we let B(k′0) be the function obtained from the right hand side of (13.5)
after replacing W by 1, and summing over the dyadic variables C and K . This has the
shape

B(k′0) =

∫∫∫
(R+)3

J∗(t1t2t3, a,m
′

1, c0, g0k
′

0, c2, k1)

δ1e1e2
Fa

(
t1√
q
,
t2√
q
,
t3√
q

)
dt1 dt2 dt3√

t1t2t3
,

(13.10)

where we did not give a new name to J∗ after summing over C andK . This is the relevant
function for evaluating S0,0,0.

Proposition 13.4. Denote

H(s, w, u, κ) = (−1)κ/2
(2π)s+w+u−10(s + w + u)0(κ/2− w − u)0(κ/2− s)

0(κ/2+ s)0(κ/2+ w + u)
.

(13.11)
Here H is holomorphic in the region

Re(s),Re(w + u) < κ/2 and Re(s + w + u) > 0,

with polynomial growth in Im(s), Im(w), and Im(u) in vertical strips. With this notation,

B(k′0) =
1

δ1e1e2

∫
(1−ε)

γ (1/2+ s, κ)3G(s)3

γ (1/2, κ)3s3 ζq(1+ 2s)3q3s/2a−3s

×

∫
(1−2ε)

Ṽ (w)

(
m1

q

)−w ∫
(−2ε)

Mu
2 ω̃(u, · )

1
ks−w−u

(am1)
s−1/2

cs+w+u−1

×H(s, w, u, κ)
du dw ds

(2πi)3
,

where k = g0k
′

0k1, m1 = m
′

1k1c2, c = c0c2, and ω̃(u, · ) = ω̃(u)ω(m1/M1).



302 Eren Mehmet Kıral, Matthew P. Young

Proof. Note that in (13.10), the factor t1t2t3 shows up as a block in both J and the de-
nominator. Letting y = t1t2t3 (viewing t2 and t3 as fixed), we have

B(k′0)

=

∫
∞

0

J∗(y, a,m
′

1, c0, g0k
′

0, c2, k1)

δ1e1e2

∫
∞

0

∫
∞

0
Fa

(
y/(t2t3)√

q
,
t2√
q
,
t3√
q

)
dt2

t2

dt3

t3

dy√
y
.

We first claim that∫
∞

0

∫
∞

0
Fa

(
y/(t2t3)√

q
,
t2√
q
,
t3√
q

)
dt2

t2

dt3

t3

=

∫
(2)

q3s/2

(a3y)s
γ (1/2+ s, κ)3G(s)3

γ (1/2, κ)3s3 ζq(1+ 2s)3
ds

2πi
.

This is an exercise in Mellin inversion, directly using the definition (5.5). Secondly, we
claim∫
∞

0
J∗(y, a,m

′

1, c0, g0k
′

0, c2, k1)y
−1/2−sdy

=

∫
(1−2ε)

Ṽ (w)

(
m1

q

)−w ∫
(−2ε)

Mu
2 ω̃(u, · )

1
ks−w−u

(am1)
s−1/2

cs+w+u−1 H(s, w, u, κ)
du dw

(2πi)2
.

(13.12)

Putting these two claims together then completes the proof.
Now we show (13.12). From (7.3) and (6.8), and summing over the C and K parti-

tions, we have

J∗(y, a,m
′

1, c0, g0k
′

0, c2, k1) = e

(
−
yam′1
c0g0k

′

0

)
I (m′1k1c2, g0k

′

0k1, ya, c0c2)

=

∫
∞

0
e

(
−
yam′1
c0g0k

′

0

)
e

(
−g0k

′

0k1t

c0c2

)
Jκ−1

(
4π
√
m′1k1c2yat

c0c2

)
V1

(
m′1k1c2t

q

)
ωM2(t, ·)

dt√
t

=

∫
∞

0
e

(
−
yam1

ck

)
e

(
−kt

c

)
Jκ−1

(
4π
√
m1yat

c

)
V1

(
m1t

q

)
ωM2(t, · )

dt√
t
,

where for simplicity in the final line above we have written the expression in terms of
the earlier variable names, and where ωM2(t, · ) = ω(t/M2)ω(m1/M1) (since we have
summed over C and K , as well as the Ni). Therefore, (13.12) equals∫
∞

0

∫
∞

0
e

(
−
yam1

ck

)
e

(
−kt

c

)
Jκ−1

(
4π
√
m1yat

c

)
V1

(
m1t

q

)
ωM2(t, ·)

dt√
t
y−s

dy√
y
.

Changing variables by y = z/t (after interchanging the order of integration) shows that
(13.12) equals∫

∞

0

∫
∞

0
e

(
−
zam1

ckt

)
e

(
−kt

c

)
Jκ−1

(
4π
√
m1za

c

)
V1

(
m1t

q

)
ωM2(t, ·)t

s dt

t
z−s

dz√
z
.
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Rewriting V1 and ωM2 in terms of their Mellin transforms, we find that (13.12) is∫
(1−2ε)

Ṽ (w)

(
m1

q

)−w ∫
(−ε)

Mu
2 ω̃(u, · )I

du dw

(2πi)2
, (13.13)

where

I=
∫
∞

0
Jκ−1

(
4π
√
m1az

c

)
z−s

(∫
∞

0
e

(
−
m1az

ckt

)
e

(
−kt

c

)
t s−w−u

dt

t

)
dz√
z
. (13.14)

We will derive an explicit formula for I by consulting tables of integrals.

Lemma 13.5. For |Re(s − w − u)| < 1, we have∫
∞

0
e

(
−
m1az

ckt

)
e

(
−kt

c

)
t s−w−u

dt

t

= −iπ

(√
m1az

k

)s−w−u
e−πi

s−w−u
2 H

(2)
s−w−u

(
4π
√
m1az

c

)
.

Here H (2)
ν (z) = Jν(z)− iYν(z) is the Hankel function of the second kind.

Proof. This follows from [GR00, (3.871.1), (3.871.2)], or formulas (17) and (36) in
[EMOT54, Section 6.5]. ut

Even though the original calculation requires |Re(s −w − u)| < 1 for convergence, note
that the Hankel functionH (2)

ν (x), for any x > 0, is an entire function of ν [DLMF, Section
10.2] and hence we may move our lines of integration in s, w and u to any location without
encountering any poles from the Hankel function.

Inserting this evaluation into (13.14), we have

I = −iπe−πi
s−w−u

2

∫
∞

0

(√
m1az

k

)s−w−u
H
(2)
s−w−u

(
4π
√
m1az

c

)
× Jκ−1

(
4π
√
m1az

c

)
z1/2−s dz

z
.

The Bessel and Hankel functions have the same argument, which is quite pleasant. By
changing variables, we have

I =
−ie−πi

s−w−u
2

2ks−w−u
(am1)

s−1/2(4π)s+w+u

cs+w+u−1

∫
∞

0
H
(2)
s−w−u(z)Jκ−1(z)z

1−s−w−u dz

z
.

(13.15)
The z-integral may be evaluated in closed form.

Lemma 13.6. For Re(±ν − µ) < Re(λ) < 1, we have∫
∞

0
H (2)
ν (x)Jµ(x)x

λ dx

x

=
i2λ−10(1− λ)0

(
ν+µ+λ

2

)
0
(
µ−ν+λ

2

)
π0
(
ν+µ−λ

2 + 1
)
0
(
µ−ν−λ

2 + 1
) e−

π
2 i(µ−ν+λ). (13.16)
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Proof. We may use formulas (33) and (36) of [EMOT54, Section 6.8] (but note (36) is
missing a 0(1− λ) term), and simplifying using gamma function identities. ut

Substituting

λ = 1− s − w − u, ν = s − w − u, µ = κ − 1,

we find that the region of convergence corresponds to

Re(s),Re(w + u) < κ/2 and Re(s + w + u) > 0, (13.17)

which are satisfied by the lines of integration given in (13.13). Furthermore,

I =
(−i)κeπi

s+w+u
2

ks−w−u

(am1)
s−1/2

cs+w+u−1

(2π)s+w+u−10(s + w + u)0
(
κ
2 − w − u

)
0
(
κ
2 − s

)
0
(
κ
2 + s

)
0
(
κ
2 + w + u

) ,

giving

I =
H(s, w, u, κ)
ks−w−u

(am1)
s−1/2

cs+w+u−1 . (13.18)

An application of Stirling’s approximation shows the growth in Im(s), Im(w) and Im(u)
is bounded by a polynomial. Inserting the formula for I into (13.13) completes the proof
of Proposition 13.4. ut

13.5. Bounding the zero term

Now let us recall that k = g0k
′

0k1, m1 = m′1k1c2 and c = c0c2. We will substitute
the evaluation of B into S ′′′0,0,0 which was defined as (13.3) (with the partition of unity
removed). This gives

S ′′′0,0,0 =
1

δ1e1e2

∑
(c0,g0m

′

1)=1
c0≡0 (mod qk1k

∗

1 )

1
c0

∑
(k′0,δ2c0)=1

k′0≡0 (mod c2
(g0,c2)

)

A(k′0)

k′30

∫
(1−ε)

γ (1/2+ s, κ)3G(s)3

γ (1/2, κ)3s3

× ζq(1+ 2s)3q3s/2a−3s
∫
(1−2ε)

Ṽ (w)

(
q

m′1k1c2

)w ∫
(−2ε)

Mu
2 ω̃(u, · )

×
H(s, w, u, κ)
(g0k

′

0k1)s−w−u

(am′1k1c2)
s−1/2

(c0c2)s+w+u−1
du dw ds

(2πi)3
. (13.19)

Next examine the Dirichlet series

Z(s, w, u) = ζq(1+ 2s)3
∑

(c0,g0m
′

1)=1
c0≡0 (mod qk1k

∗

1 )

1
cs+w+u0

∑
(k′0,δ2c0)=1

k′0≡0 (mod c2
(g0,c2)

)

1
k′30
A(k′0)

k′s−w−u0
.
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Using the evaluation A(k′0) = k
′

0
∑
d|k′0

dϕ(k′0/d) (from Lemma 13.2) and Möbius inver-
sion to remove the condition (k′0, c0) = 1, one may derive

Z(s, w, u) =
ζ(1+ s − w − u)2ζ(s + w + u)

cs−w−u+1
2 (qk1k

∗

1)
s+w+u

(g0, c2)
s−w−u+11(s,w, u), (13.20)

where 1(s,w, u) is analytic for

Re(s) > 0, Re(u+ w) < 1+ Re(s), Re(s + w + u) > 0, (13.21)

and bounded by O(qε) in that region. The sum defining Z(s, w, u) converges absolutely
for Re(s + w + u) > 1 and Re(w + u) < Re(s).

Inserting (13.20) into (13.19), we obtain

S ′′′0,0,0 =
∫
(1−ε)

γ (1/2+ s, κ)3G(s)3

δ1e1e2γ (1/2, κ)3s3
q3s/2

a3s

∫
(1−2ε)

Ṽ (w)

(
q

m′1k1c2

)w ∫
(−2ε)

Mu
2 ω̃(u, · )

×
ζ(1+ s − w − u)2ζ(s + w + u)

cs−w−u+1
2 (qk1k

∗

1)
s+w+u

(g0, c2)
s−w−u+1

×
1H(s, w, u, κ)
(g0k1)s−w−u

(am′1k1c2)
s−1/2

cs+w+u−1
2

du dw ds

(2πi)3
. (13.22)

Now move the contour of integration in w to the line Re(w) = 4ε. In doing that note
that we still have Re(s+w+u) = 1−ε+4ε−ε = 1+2ε > 1 and Re(s−w−u+1) =
1− ε− 4ε+ 2ε+ 1 = 2− 3ε > 1, so we do not pass over any poles. Now move the line
of integration in s to Re(s) = 3ε. By doing so, we pick up the residue from the simple
pole at s = 1− w − u.

The remaining integral. The contribution from the final integral to S ′′′0,0,0 is

�ε

(g0, c2)q
ε

δ1e1e2
√
am′1k1c2

, (13.23)

for any ε > 0. The contribution to S0,0,0 from this part is then calculated (recall that
δ1 = k1d/(a, k1d) and δ2 = e1e2δ1am

′

1/g0) to be at most

∑
a

1
a3/2

∑
c2

1

c
3/2
2

∑
d|c2

d
∑
k1

k
1/2
1

∑
m′1

1√
m′1

∑
r1r2r3=δ1

∑
e1|r2r3

∑
e2|r3

∑
g0|e1e2δ1am

′

1

(g0, c2)q
ε

δ1e1e2
√
am′1k1c2

� qε
∑
a

1
a2

∑
c2

1
c2

2

∑
d|c2

∑
k1

(k1d, a)

k1

∑
m′1

1
m′1

∑
e1|r2r3

∑
e2|r3

1
e1e2

∑
g0|e1e2δ1am

′

1

(g0, c2),

where all the summations may be truncated at some fixed power of q (cf. the convention
in Section 11.6). Summing over everything trivially using (g0, c2) ≤ c2 shows that the
integral contribution to S0,0,0 is O(qε).
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The s = 1− w − u residue. This residue contributes to S ′′′0,0,0 the following:

∫
(4ε)

γ (3/2− w − u, κ)3G(1− w − u)3

δ1e1e2γ (1/2, κ)3(1− w − u)3
Ṽ (w)

(
1

m′1k1c2

)w
×

∫
(−2ε)

Mu
2 ω̃(u, · )

q
1−w−u

2 −u

a3(1−w−u)
ζ(2− 2w − 2u)2

c2−2w−2u
2 (k1k

∗

1)
(g0, c2)

2−2w−2u

×
1H(s, w, u, κ)
(g0k1)1−2w−2u (am

′

1k1c2)
1/2−w−u du dw

(2πi)2
. (13.24)

Now move the line of integration in w to Re(w) = 1− ε. This will pass over an apparent
double pole of ζ(2− 2w − 2u) but the triple zero of G(1− w − u)3 cancels it. Then by
a trivial bound, the residue is

�
g0q

ε

δ1e1e2a1/2c
3/2
2 k

3/2
1 k∗1m

′3/2
1

. (13.25)

The contribution coming from the residue can be bounded by∑
a

1
a2

∑
c2

1

c3
2

∑
d|c2

d
∑
k1

1
k1k
∗

1

∑
m′1

1
m′21

∑
r1r2r3=δ1

1
δ1

∑
e1|r2r3

∑
e2|r3

1
e1e2

∑
g0|e1e2δ1am

′

1

g0.

Let us trivially bound g0 ≤ e1e2δ1am
′

1. All the remaining sums are easily bounded, so
this part is also O(qε).

This completes the proof of Theorem 13.1.

13.6. One of the pi is zero

This case is the easiest, since (as it turns out) we may bound everything trivially and
obtain the desired bound S0 � qε.

The original sum is symmetric in p1, p2 and p3, so it suffices to estimate the terms
with p3 = 0 and p1, p2 6= 0 (the expression for A from Lemma 8.2 may not appear
symmetric in the pi , but of course it must be due to the original definition (8.1)). We
apply a dyadic partition of unity to the p1 and p2 variables. Let P1, P2 6= 0, set P3 = 0,
let P = (P1, P2, 0) and consider

S ′′′P =
∑

(c0,g0m
′

1)=1
c0≡0 (mod qk1k

∗

1 )

1
c0

∑
(k′0,δ2c0)=1

k′0≡0 (mod c2
(g0,c2)

)

∑
p1�P1
p2�P2

1

k′30
A(p1, p2, 0; k′0)B(p1, p2, 0).

Here
A(p1, p2, 0; k′0) = k

′

0

∑
f |(p2,k

′

0)

f S(p1, 0; k′0/f )� k′1+ε0 (p1p2, k
′

0).
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Note that we only need to consider the non-oscillatory cases for B, where B is given
by (8.13), since in the oscillatory case all the pi must be nonzero or else B is very small.
Then

S ′′′P �
∑

(c0,g0m
′

1)=1
c0≡0 (mod qk1k

∗

1 )

1
c0

∑
(k′0,δ2c0)=1

k′0≡0 (mod c2
(g0,c2)

)

1
k′20

∑
p1,p2 6=0

(√
aMN

C

)δ√
M2N

h
(p1p2, k

′

0),

where recall δ = κ − 1 ≥ 1 in the pre-transition non-oscillatory range, and δ = −1 in the

post-transition range. Recall P1P2 � qε
k′20
N ′2N

′

3
� qε

k′20 h

N2N3
. Therefore,

S ′′′P � qε
(√

aMN

C

)δ√
M2N

N2N3

K(g0, c2)

g0k1c2

1
qk1k

∗

1
.

It is then not difficult to see that

SP � qε max
a

(√
aMN

C

)δ √
M2N K

qN2N3
√
a

√
M1.

In the post-transition case, this bound becomes

SP � qε max
a

M1N1

q
� qε.

A calculation shows the pre-transition non-oscillatory case leads to the same bound.
In all cases, summing over the dyadic tuples of P gives S0 �ε q

ε, as desired.

13.7. Two of the pi are zero

We finally consider the case where say p1 6= 0 and p2 = p3 = 0. This case leads to
some new subtleties not present in the case with all pi zero. The first step is to extend the
sum to all p1 ∈ Z, and then subtract back the term with p1 = 0. We already showed with
Theorem 13.1 that the term with all pi zero is bounded in an acceptable way. After this,
we apply Poisson summation backwards. The net effect is precisely the same as when
only applying Poisson summation in the n2 and n3 variables, and setting p2 = p3 = 0
(up to the term with all pi zero).

It is perhaps easiest to return to (7.11). Define Q to be the term we get from this, after
Poisson in n2 and n3, and substitution of p2 = p3 = 0, so that

Q =
∑

(c0,g0m
′

1)=1
c0≡0 (mod qk1k

∗

1 )

1
c0

∑
(k′0,δ2c0)=1

k′0≡0 (mod c2
(g0,c2)

)

∑
n1≥1

A∗(n1; k
′

0)B
∗(n1)√

n1
,

where

A∗(n1; k
′

0) =
1
k′20

∑
x2,x3 (mod k′0)

e

(
δ2n1x2x3c0

k′0

)



308 Eren Mehmet Kıral, Matthew P. Young

and

B∗(n1) =
1√
δ1e1e2

∫
∞

0

∫
∞

0
Fa

(
r1e1n1√

q
,
r2e2t2√
q
,
r3t3√
q

)
ω

(
n1e1r1

N1
,
t2e2r2

N2
,
t3r3

N3

)
× J∗(e1e2δ1n1t2t3, a,m

′

1, c0, g0k
′

0, c2, k1)
dt2 dt3√
t2t3

.

Since some of the details are similar to the case where all pi are zero (and easier), we will
be more brief in such occasions. We may evaluate A∗ directly from the definition, using
a similar method to the proof of Lemma 8.2, which gives

A∗(n1; k
′

0) =
1
k′0

∑
f |k′0

ϕ(k′0/f )δ(n1 ≡ 0 (mod k′0/f )).

We have J∗(· · · )� M
1/2
2 , which follows from bounding Jκ−1(x)� 1, and so

B∗(n1)�

(
M2N2N3

r1r2r3e1e2e2r2r3

)1/2

.

In turn, this leads to the estimate

Q�ε q
ε

√
M2N (g0, c2)

δ1e1e2qk1k
∗

1c2
.

Then the contribution to S from Q is seen to be O(q−1+ε(MN)1/2) = O(q1/4+ε).
The next step is to replace the sum of the P2, P3 partitions of unity by 1, as in Section

13.3. Since Q �ε q
1/4+ε, the error in doing so is expected to be at most O(qε), as de-

scribed in the paragraph preceding Lemma 13.3. We omit the details, as this case is easier
than the case with all pi zero. Since n1 ≥ 1 automatically, we may easily sum over theN1
partition (avoiding the analytic problems near the origin). We also reassemble the C and
K partitions, at no cost. Define Q to be the sum obtained after all these partitions are re-
moved, and B∗(n1) to be the new function. For simplicity of notation we will not change
the name of the function J∗. Then by the change of variables y = e1e2δ1n1t2t3 (viewing
t3 as fixed), we have

B∗(n1)=

∫
∞

0

∫
∞

0

J∗(y, a,m
′

1, c0, g0k
′

0, c2, k1)

δ1e1e2
√
n1

Fa

(
r1e1n1√

q
,

y
e1r1r3n1t3√

q
,
r3t3√
q

)
dt3

t3

dy√
y
.

By an exercise in Mellin inversion, one may show∫
∞

0
Fa

(
r1e1n1√

q
,

y
e1r1n1r3t3√

q
,
r3t3√
q

)
dt3

t3

=

∫
(1)

∫
(1)

γ (1/2+ s1, κ)G(s1)
γ (1/2, κ)s1

γ (1/2+ s, κ)2G(s)2

γ (1/2, κ)2s2

× a−2s−s1ζq(1+ s1 + s)2ζq(1+ 2s)
( √

q

e1r1n1

)s1(qe1r1n1

y

)s
ds1 ds

(2πi)2
.
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Then using (13.12), we derive

B∗(n1) =

∫
(1−2ε)

Ṽ (w)

δ1e1e2
√
n1

∫
(1)

γ (1/2+ s1, κ)G(s1)
γ (1/2, κ)s1

∫
(1)

γ (1/2+ s, κ)2G(s)2

γ (1/2, κ)2s2

×

∫
(0)
Mu

2 ω̃(u, · )a
−2s−s1ζq(1+ s1 + s)2ζq(1+ 2s)

( √
q

e1r1n1

)s1
(qe1r1n1)

s

×

(
q

m1

)wH(s, w, u, κ)
ks−w−u

(am1)
s−1/2

cs+w+u−1
du ds ds1 dw

(2πi)4
,

where recall that k = g0k
′

0k1, m1 = m
′

1k1c2, and c = c0c2. Moreover, as in Section 13.5,
we have ω̃(u, · ) = ω̃(u)ω(m1/M1), since we have summed over N1, N2, N3, C, and K .

Applying these changes of variables, and inserting this into the definition of Q, we
obtain

Q =
1

δ1e1e2

∑
(c0,g0m

′

1)=1
c0≡0 (mod qk1k

∗

1 )

1
c0

∑
(k′0,δ2c0)=1

k′0≡0 (mod c2
(g0,c2)

)

1
k′0

∑
f |k′0

ϕ

(
k′0
f

) ∑
n1≡0 (mod k′0/f )

1
n1

×

∫
(1−2ε)

Ṽ (w)

∫
(1)

γ (1/2+ s1, κ)G(s1)
γ (1/2, κ)s1

∫
(1−ε)

γ (1/2+ s, κ)2G(s)2

γ (1/2, κ)2s2

×

∫
(0)
Mu

2 ω̃(u)a
−2s−s1ζq(1+ s1 + s)2ζq(1+ 2s)

( √
q

e1r1n1

)s1
(qe1r1n1)

s

×

(
q

m′1k1c2

)w H(s, w, u, κ)
(g0k

′

0k1)s−w−u

(am′1k1c2)
s−1/2

(c0c2)s+w+u−1
du ds ds1 dw

(2πi)4
.

With the displayed lines of integration, all the outer sums converge absolutely. Indeed,
we have

∑
(c0,g0m

′

1)=1
c0≡0 (mod qk1k

∗

1 )

1
cs+w+u0

∑
(k′0,δ2c0)=1

k′0≡0 (mod c2/(g0,c2))

1

k′1+s−w−u0

∑
f |k′0

ϕ

(
k′0
f

) ∑
n1≡0 (mod k′0/f )

1

n
1+s1−s
1

=ζ(1+s1−s)
∑

(c0,g0m
′

1)=1
c0≡0 (mod qk1k

∗

1 )

1
cs+w+u0

∑
(f,δ2c0)=1

1
f 1+s−w−u

∑
(`,δ2c0)=1

`≡0

(
mod

c2
(g0,c2)

(f,
c2

(g0,c2)
)

)
ϕ(`)

`2+s1−w−u
.

(13.26)

As long as we assume that

Re(1+ s1 − w − u) > 0, Re(1+ s − w − u) > 0, Re(s + w + u) > 0,
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the coprimality conditions are benign. Then the Dirichlet series in (13.26) is of the form

ζ(1+s1−s)
ζ(s + w + u)

(qk1k
∗

1)
s+w+u

ζ(1+s−w−u)ζ(1+s1−w−u)
(
(g0, c2)

c2

)1+min(s,s1)−w−u

1,

where 1 is holomorphic and bounded by qε, and min(s, s1) means the variable with the
smaller real part. The factors ζq(1+ s1+ s)2ζq(1+ s)may be absorbed into the definition
of 1 provided that Re(s),Re(s1) > 0.

Moving the summations to the inside, we derive

Q =
∫
(1−2ε)

Ṽ (w)

δ1e1e2

∫
(1)

γ (1/2+ s1, κ)G(s1)
γ (1/2, κ)s1

∫
(1−ε)

γ (1/2+ s, κ)2G(s)2

γ (1/2, κ)2s2

∫
(0)
Mu

2 ω̃(u)

×
ζ(1+ s1 − s)

a2s+s1

ζ(s + w + u)

(qk1k
∗

1)
s+w+u

ζ(1+ s − w − u)ζ(1+ s1 − w − u)(qe1r1)
s

( √
q

e1r1

)s1
×

(
(g0, c2)

c2

)1+min(s,s1)−w−u( q

m′1k1c2

)w
1H(s, w, u, κ)
(g0k1)s−w−u

(am′1k1c2)
s−1/2

cs+w+u−1
2

du ds ds1 dw

(2πi)4
.

(13.27)

For ease of reference, we list all the constraints on the variables (using κ ≥ 2):

0 < Re(s + w + u), Re(s) < 1,
Re(w + u) < 1+min(Re(s),Re(s1)), Re(s),Re(s1) > 0.

(13.28)

Now we move the contours as follows. First, move w from 1 − 2ε to 4ε, which does
not involve crossing any poles. Following this, move s1 to 5ε, which crosses a pole at
s1 = s only. Next, move s to 6ε, which crosses a pole at s + w + u = 1 only. We will
deal with this pole momentarily.

The pole at s1 = s. This contributes to Q

1
δ1e1e2

∫
(4ε)

Ṽ (w)

∫
(1−ε)

γ (1/2+ s, κ)3G(s)3

γ (1/2, κ)3s3

∫
(0)
Mu

2 ω̃(u)
ζ(s + w + u)

(qk1k
∗

1)
s+w+u

q3s/2

×
ζ(1+ s − w − u)2

a3s

(
(g0, c2)

c2

)1+s−w−u(
q

m′1k1c2

)w
×
1H(s, w, u, κ)
(g0k1)s−w−u

(am′1k1c2)
s−1/2

cs+w+u−1
2

du ds dw

(2πi)3
.

A careful scrutiny of this formula shows that is is essentially identical to (13.22) (we did
not check that the 1 function is literally equal in the two cases, but this would not be
surprising). Here we need that we can move w to 4ε and then u to −2ε without crossing
any poles; this move in w was our first step following (13.22), so this is easily checked.
Therefore, by the work in the case with all pi zero, the contribution to S0,0 from this pole
is O(qε).
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The new contour. On the new line, with all the variables having real parts at multiples
of ε, the contribution to Q is

� qε
1

δ1e1e2

c
1/2
2

(am′1k1)1/2
(g0, c2)

c2
.

Recalling that δ1 = k1d/(a, k1d), it is not hard to see that inserting this bound into (7.10),
(7.6), (7.1) gives a final contribution to S0,0 of size O(qε).

The pole at s = 1− u− w. Denote this contribution to Q by QRes. Then

QRes =

∫
(4ε)

Ṽ (w)

δ1e1e2

∫
(5ε)

γ (1/2+ s1, κ)G(s1)
γ (1/2, κ)s1

γ (3/2− u− w, κ)2G(1− u− w)2

γ (1/2, κ)2(1− u− w)2

×

∫
(0)
Mu

2 ω̃(u)
ζ(s1 + u+ w)

(qk1k
∗

1)
ζ(2− 2w − 2u)ζ(1+ s1 − w − u)

×

(
(g0, c2)

c2

)1+min(1−u−w,s1)−w−u( √q
e1r1

)s1 (qe1r1)
1−u−w

as1+2(1−u−w)

×

(
q

m′1k1c2

)w
1H(1− u− w,w, u, κ)

(g0k1)1−2w−2u (am′1k1c2)
1/2−u−w du ds1 dw

(2πi)3
.

The constraints Re(w + u) < 1+ Re(s) and 0 < Re(s) < 1 with s = 1− u− w simply
become 0 < Re(u+ w) < 1.

Finally, we move w to 1− 10ε, crossing a pole at w = s1 − u only. On the new lines
of integration, the contribution to Q is

� qε
g0k1

δ1e1e2

1
k1k
∗

1

1
m′1k1c2

1√
am′1k1c2

�
a1/2qε

c
3/2
2

√
m′1 k

∗

1k
3/2
1

,

using only the weak bound g0 ≤ δ1e1e2m
′

1a. It is easy to see that the final contribution to
S0,0 from this is O(qε).

The pole at w = s1 − u. This contributes

QRes′ :=
1

δ1e1e2

∫
(5ε)

Ṽ (s1 − u)
γ (1/2+ s1, κ)G(s1)

γ (1/2, κ)s1

γ (1/2+ 1− s1, κ)2G(1− s1)2

γ (1/2, κ)2(1− s1)2

×

∫
(0)
Mu

2 ω̃(u)
ζ(2s1)ζ(2− 2s1)

(qk1k
∗

1)

(
(g0, c2)

c2

)1+min(1−s1,s1)−s1( √q
e1r1

)s1
(qe1r1)

1−s1

×

(
q

m′1k1c2

)s1−u1H(1− s1, s1 − u, u, κ)
(g0k1)1−2s1as1+2(1−s1)

(am′1k1c2)
1/2−s1 du ds1

(2πi)2
.

In terms of q, this part is O(qε), but the problem now is that the sum over m′1 will not be
absolutely convergent. The way around this roadblock is to move the contour to a location
where the m′1-sum converges absolutely, and shift the contour back. Having G(1/2) = 0
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once again is crucial. To this end, it is important to sum over the partition of unity in the
M1 and M2 variables.

One may check that H(1 − s1, s1 − u, u, κ) is actually independent of u. Therefore,
it is easy to sum QRes′ over M2: It is not hard to show that if D(u) is a Dirichlet series
absolutely convergent on the line Re(u) = 0, then∑

M2 dyadic

1
2πi

∫
(0)
Mu

2 ω̃(u)D(u) du = D(0).

Now we move the s1-contour to 3/4 (crossing no poles since G(1/2) = 0), and sum
over m′1 and M1, which gives

∑
M1

∑
m′1

ωM1(m
′

1)√
m′1

∑
M2

QRes′ =
1

δ1e1e2

∫
(3/4)

Ṽ (s1 − u)
γ (1/2+ s1, κ)G(s1)

γ (1/2, κ)s1

×
γ (3/2− s1, κ)2G(1− s1)2

γ (1/2, κ)2(1− s1)2
ζ(2s1)2ζ(2− 2s1)

qk1k
∗

1

(
(g0, c2)

c2

)1+min(1−s1,s1)−s1

×

( √
q

e1r1

)s1 (qe1r1)
1−s1

as1+2(1−s1)

(
q

k1c2

)s1 1H(1− s1, s1, 0, κ)
(g0k1)1−2s1

(ak1c2)
1/2−s1 ds1

2πi
.

Now we move the s1-contour back to ε, which shows that this term is bounded by

qε

δ1e1e2

1
k1k
∗

1

(g0, c2)

c2

e1r1

g0k1

1
a2 (ak1c2)

1/2.

Using the crude bounds (g0,c2)
g0
≤ 1, e1r1

δ1e1e2
≤ 1, and summing trivially over k1, d, c2, and

a shows that this part contributes O(qε) to S0,0.
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[EMOT54] Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F. G.: Tables of Integral Trans-
forms. Vol. I. McGraw-Hill, New York (1954) Zbl 0055.36401 MR 0061695

[Gal70] Gallagher, P. X.: A large sieve density estimate near σ = 1. Invent. Math. 11, 329–339
(1970) Zbl 0219.10048 MR 0279049

[GR00] Gradshteyn, I. S., Ryzhik, I. M.: Table of Integrals, Series, and Products. 6th ed., Aca-
demic Press, San Diego, CA (2000) Zbl 0981.65001 MR 1773820
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