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Abstract. We develop a general minmax procedure in Euclidian spaces for constructing Willmore
surfaces of non-zero indices. We apply this procedure to the Willmore minmax sphere eversion in
the 3-dimensional Euclidian space. We compute the cost of sphere eversion in terms of Willmore

energies of the Willmore spheres in R3.
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I. Introduction

L1. The search for Willmore minmax surfaces

Finding optimal shapes is a search probably as old as mathematics and whose motivation
goes beyond the exclusive quest for beauty. It is often closely related to the understanding
of deep mathematical structures and ultimately to natural phenomena happening to be
governed by these pure ideas.

The existence of closed geodesics on arbitrary manifolds and its higher dimensional
counterpart, the existence of minimal surfaces, belongs to this search and has been since
the 19th century a very active area of research diffusing in other areas of mathematics and
science in general much beyond the field of differential geometry.

The theory of Willmore surfaces, introduced by Wilhelm Blaschke around 1920, grew
out of the attempt to merge minimal surface theory and conformal invariance.

For an arbitrary immersion @ of a given oriented abstract surface X into a Euclidian
space R Wilhelm Blaschke introduced the Lagrangian

W(d) = / |Hg|* dvoly,
)]

where Hg, and dvol,; are respectively the mean curvature vector and the volume form of
the metric induced by the immersion. He proved in particular that for a closed surface X
this Lagrangian is invariant under conformal transformations.
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The critical points to W are called “Willmore surfaces'”. The known set of criti-
cal points to the Willmore Lagrangian has been for a long time reduced to the minimal
surfaces and their conformal transformations. This maybe explains why the study of its
variations has been more or less stopped for several decades following the seminal work
of Wilhelm Blaschke which was slowly sinking into oblivion.

After the reviving work of Tom Willmore the first main contribution to “Willmore
surfaces” has been brought by Robert Bryant [11]. Using algebraic geometric techniques
he succeeded in describing all the immersed “Willmore spheres” in R as being given
exclusively by the images by inversions of simply connected complete non-compact min-
imal surfaces with planar ends. The Willmore energy of the immersed Willmore spheres
was consequently proved to be equal to 47 times the number of planar ends. Due to the
non-triviality of the space of holomorphic quartic forms on any other Riemann surface
this approach has been restricted to the sphere exclusively. Other algebraic geometric ap-
proaches for studying critical points to the Willmore Lagrangian include “spectral curve
methods” and integrable system theory, but these rather abstract methods addres issues
which are mostly local and, until now, hardly translatable into “down to earth” results ex-
hibiting new complete Willmore surfaces or characterizing the space of Willmore critical
points in a decisive way.

Besides algebraic-geometric methods a natural strategy for producing new Willmore
surfaces would consist in developing the fundamental pr1n01ples of the calculus of vari-
ations applied to the Willmore Lagrangian. Since H =27 Ag_ ®, the Willmore La-

grangian is nothing but 1/4 of the L? norm of the Laplacian of the immersion and shows
in that sense its 4th order elliptic nature. This coercive structure gives some hope for the
success of variational methods. In the pioneering work studying the variations of W, Leon
Simon [45] proved the existence of a torus minimizing the Willmore energy. This exis-
tence result was also motivated by the conjecture formulated by Willmore [51] according
to which the torus obtained by rotating around the vertical z-axis of the vertical circle
of radius 1 centered at (\/5, 0, 0) and included in the plane y = 0 would be the unique
minimizer modulo conformal transformations. This conjecture was finally proved some
years ago by Fernando Cod4 Marques and André Neves [31]. In [4] Matthias Bauer and
Ernst Kuwert succeeded in proving a succession of strict inequalities excluding possible
degeneracies and the splitting of the underlying surface which had been left open in Leon
Simon’s argument for arbitrary genus. As a consequence the authors proved the existence
of a minimizer of W for any closed orientable two-dimensional manifold X.

Leon Simon’s approach to the minimization of the Willmore energy is based on en-
ergy comparison arguments and local bi-harmonic graph approximation procedures and
in that sense is shaped for studying the ground states of index 0. This approach mostly
considers the image of the immersion, @(Z), and not the immersion per se and can be
called “ambient” for that reason. In [42] the present author gave an alternative proof to
Leon Simon’s existence result using an approach called “parametric”. In this approach the
study of the variations of the immersion is made possible by local extraction of “Coulomb

! This terminology has spread, and is now generally used, after the work [51] which relaunched
the study of these surfaces that Blaschke originally named “conformal-minimal surfaces”.
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gauges” (isothermic parametrization) and the use of the conservation laws coming from
the application of the Noether theorem combined with the integrability by compensation
theory (see also a systematic presentation of this theory and its application in Willmore
[40]). Since this approach does not make use of comparison arguments and since it is
based on a weak formulation of the Willmore Euler—Lagrange equation discovered in
[41], it gave the author hopes to apply it to more diversified calculus of variation argu-
ments than strict minimizations. This is the main achievement of the present work. More
precisely, the purpose of the paper is to present a minmax method for producing critical
points to the Willmore energy of non-zero indices.

1.2. ”Smoothers” based on the second fundamental form

As already mentioned, the Willmore energy is invariant under the action of the Mobius
group of conformal transformations of R™, which is known to be non-compact. For that
reason in particular it does not satisfy the Palais—Smale condition. This is an obstruction
to applying minmax variational principles such as the mountain pass lemma directly. We
shall therefore adopt a viscosity approach and add to the Willmore energy what we call a

“smoother” times a small “viscosity parameter” o2,

Full Energy(c_ls) = W(&D) + UZSmoother(&D),

so that for the new energy the Palais—Smale condition is satisfied. One can then apply
the mountain pass arguments to such energy and produce minmax critical points. In the
second part of the procedure one lets o tend to zero and one studies the process hopefully
converging to a Willmore minmax surface.

In a first approach, following [44], one could think of adding to W a term of the form

Smoother(®) = / (1 + [[[%)? dvolg,
D)

where ﬁ@ is the second fundamental form of the immersion ®. This will make the
new Willmore relaxed energy satisfy the Palais—Smale condition (as proved in [24], see
also [27]) but this will bring us to the study of p-harmonic systems which makes the anal-
ysis of the convergence rather involved—in particular the energy quantization—when the
small viscosity parameter o tends to zero. From that perspective of p-harmonic versus
harmonic systems, as observed below and as also used in [9], replacing the full second
fundamental form by its trace Hg and considering instead

Smoother(®) = / (1+ |Hg|H? dvolg,
D)

has the surprising effect of making the highest order term in the Euler—Lagrange equation
be A and not A, := div((1 4+ |H|?)V) if one makes use of the various conservation
laws coming from the No_@ther theorem, following the main lines of [41]. The drawback
however is that |, s (1 + |Hg |2)? fails to satisfy the Palais—Smale condition and cannot be
a smoother by itself and has to be “reinforced”.
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1.3. Frame energies

In the portfolio of surface energies, the author, in collaboration with Andrea Mondino,
introduced in [35] the notion of frame energy for an arbitrary immersion of a torus, o :
T? — R™, equipped by an orthonormal tangent frame & : T2 — "~ x §™~! where
é(x) provides an orthonormal basis of ®, T, T'2. The frame energy is then simply given by

L1 ) R
F(®,8) = Zfﬂ @]}, dvolg, > W (®). @.1)

If one considers the “Coulomb frame” associated to the conformal immersion of a fixed
flat torus,” then the frame energy F (is) = infz F (CT), ¢) defines an energy of the immer-
sion ® that happens to be more coercive than the Willmore energy itself. One could ask
whether it can be naturally extended to any other immersion of an arbitrary surface X.
This happens to be indeed the case as we explain in the following.

Let @ be an arbitrary immersion of a closed surface ¥ and denote by g a constant
scalar curvature metric of volume 1 on ¥ for which there exists @ : ¥ — R with

85 = ¢**go. 1.2)
For ¥ # S? the function « is defined without ambiguity, whereas in the sphere case we
have to deal with the action of a “gauge group”, the space M (5?) of positive conformal

transformations of $2, and « is uniquely defined modulo the action of this gauge group.
For the case of the torus one proves in this paper that

- - 1 5
F(®) = W(®) + 3 /TZ |d05|g&> dvoly, .

We generalize the frame energy for any surface of genus larger than 1 as follows: F :=
W + O where

-1
O(CD)ZE /E |da|§$ dvoly. +Ky, /E e dvoly, —27 'Ky, 10g< /E dvolg&)>, (1.3)

where K, is the constant scalar curvature metric of go. The reason for adding to the
Dirichlet energy of « the term

Kgo/ e dvolgé
o

comes from the fact that the first variation can be expressed miraculously by local quan-
tities! (although the operation which to g¢ assigns « is highly non-local—see for in-
stance [50]). Finally, the reason for adding the third term is twofold: it makes the energy
scaling invariant and non-negative as a direct application of Jensen’s inequality when
K, < 0.

Finally, when ¥ = $2 we define the frame energy to be

Y - 7 1 2 —2a
F(®) = WD)+ 2 /52 |da|g&> dvolg;p + 47 /;2 ae dvolg&) — 27 log</S2 dvolg&,)

Besides the fact that it naturally generalizes to S? the Dirichlet energy of Coulomb frames
on tori, there are four main reasons for considering this special expression with these

2 By the uniformization theorem such a parametrization always exists.
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particular coefficients:

(i) F— W isthe well known Onofri energy of « (see [37] and a more recent presentation
in [14]) and satisfies®

2 1 2 -2
o) := 3 /SZ |da|gc_p dvolgé +4n /52 ae ¥ dvolgé -2 1og</s2 dvolga)) >0
1.4)

Observe that the Lagrangian O(Cf)) viewed as a functional depending on P is nothing
but the main term in the Polyakov-Alvarez formula of the zeta regularized determi-
nant of the Laplacian of the underlying Riemannian two-dimensional manifold. This
formula is also named the Polyakov—-Alvarez conformal anomaly formula in confor-
mal field theory (see [39]).

(ii) The first variation of F is explicit and can be expressed using local quantities.*

(iii) The energy O(CTD) is gauge invariant with respect to the action of the Mobius group
on S and is independent of the choice of o and g satisfying (1.2) and depends only
on ®.

(iv) The F-energy is dilation invariant: F (e’ CB) =F (CTD) for any r € R.

Open Problem 1. It would be interesting to study the existence of minimizers of the
frame energy F in each regular homotopy class of immersions of spheres in R*. Since
the work of Stephen Smale [46] we have known that there exist countably many of them
given by m2 (V4 2(R)) = Z, the second homotopy class of the Stiefel manifold of 2-frames
in R*. It would also be interesting to study the asymptotic dependence on the class of the
infimum of the F-energy as the class goes to infinity (whether the dependence is linear or
sublinear).

Finally, for a given immersion ® it would be interesting to study the minimal Dirichlet
energy of any bundle map from 7'Y into R3? x R3 which is an isometry from each fiber
(T, T, gg) into CI> T, C G»(R?) and which prOJGCtS onto ®—the map (¢> de) is one
of such maps of course. Starting from (d>, d CIJ) such a bundle map is just given by the
choice of an S! rotation at each point.

In the case of ¥ = T2 this coincides with the Dirichlet energy of an optimal global
frame and is equal to F (CTD).

1.4. A viscous approximation of Willmore energy

Inspired by the discussion above we propose to consider the following approximation of
the Willmore energy:

- - - 1 -
FO (D) := W (D 2/1 H*)?dvol: + ———— O(d
(®) (®)+o0o Z( + |H|%) v0¢+10g(1/0) (P)

where (’)(CTD) is given by (1.4) if £ = $? or by the expression (I.3) otherwise.

3 This inequality is not a direct consequence of the Jensen inequality when Kg, > 0 and requires
more elaborate arguments.

4 Thisisa very striking fact which is going to make the analysis simpler in the following sections.
It very much depends on the choice of the coefficient of each main term of the energy.
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We prove in Section V that F? satisfies the Palais—Smale condition. One can then
apply minmax arguments to F'° for any admissible family. One of the main achievements
of the present work is the proof of e-regularity independent of o (see Lemma IV.1). It
makes use of the special choice we made of the logarithmic dependence on the viscosity
parameter o of the small coefficient of O. This e-regularity permits one to pass to the
limit in the equation for well chosen sequences of minmax critical points of F as o goes
to zero. The last main lemma in the paper is an energy quantization result when ¥ = §?
(see Lemma VI.1). It roughly says that no energy can be dissipated in neck regions.

We then have the main tools for performing minmax procedures for the Willmore
energy of spheres. To that end we introduce the space of W2>#(S%, R™) immersions of >
into R™, which we denote Ex »(R™). This space is equipped with the W2* topology. It is
proved in [44] that this defines a Banach manifold with a Finsler structure. Before giving
the statement of our main result we will recall the definition of admissible families.

Definition I.1. A family A C P (M) of subsets of a Banach manifold M is called an
admissible family if for every homeomorphism E of M isotopic to the identity we have

VAe A E(A) € A. O

Our main result is the following.

Theorem I.1 (Willmore minmax procedures for spheres). Letm > 3 and k > 1. Let A
be an admissible family of W>* immersions of the sphere S* into R™. Let

Bo := inf max W(&D).

AeA pea
Then there exist finitely many Willmore immersions é’ Ly onns g?n of §? minus finitely many
points such that
po= Z W) —4mN (L5)
i=1
for some N € N. O

Remark I.1. Theorem I.1 involves a “bubble tree convergence” of a sequence of minmax
critical points of F o* for some well chosen sequence 0¥ tending to zero. This convergence
produces asymptotically a “bubble tree” of Willmore spheres some of them being shrunk
to zero. Among the ones which shrink to zero there might be non-compact (after asymp-
totic rescaling) simply connected Willmore surfaces with ends at infinity that we have to
invert in order to make them Willmore spheres. This operation produces energy given by
an integer multiple of 4. That is why such a quantity is subtracted in (I.5). One of the
hard parts in the whole proof is to show that between two successive asymptotic Willmore
spheres in that “bubble tree” no energy is lost in the limit. This is the so called “no neck
energy’”’ property.
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True Willmore surfaces. It has been recently proved in [33] by the author in collabo-
ration with Alexis Michelat that the maps é} obtained after inversions in the bubble tree
define “true” Willmore immersions, possibly branched. By “true” we mean that the first
residue’ defined in [41],

/(avﬁ — 35 (3yH) + 3.7 A H)dl,
r

is zero for any closed curve I' avoiding the center of the inversion. The inversion of
the catenoid is not a “true” Willmore surface in that sense whereas the inversion of the
Enneper surface is a “true” Willmore sphere with a branch point of multiplicity 3 at the
origin (see [7]).

Open Problem 2. Extend the previous result to general surfaces. The “only” obstruction
comes from the energy quantization result which is missing when the conformal class of
the minmax sequence of F' ot possibly degenerates. The recent progress made in [29] and
[30] should be of help in overcoming this difficulty.

One consequence of the previous result is the following corollary. One considers the fam-
ily A of loops into Imm(S?, R3) ~pom SO(3) x Q%(SO(3)) realizing a non-trivial element
of 1 (Imm(S2, R3)) ~ Z, x Z. It is proved in [3] that for instance the Froisart—-Morin
sphere eversion followed by the mirror image of the time reversal of the same eversion
generates 71 (Imm(S2, R3)). In order to avoid uninteresting loops coming from the action
of Diff(S?) one should rather work modulo the action of reparametrization of the sphere
and consider the infinite orbifold® Imm(S?, R3)/Diff(S?) instead of Imm(S2, R?) which
is an open subspace of the Banach space W>*(52, R%).

One can then take A to be the canonical projections onto Imm(S?, R3)/Diff(5?)
of paths from [0, 1] into Imm(S?, R3) homotopic to a non-trivial element in the group
71 (Imm(S?, R3)/Diff(5%)) = Z. The projection of the Froisart—Morin sphere eversion
gives such a loop for instance.’

Corollary I.1 (The cost of sphere eversion). Let Q2 be the space of continuous paths of
C? immersions into R> joining the standard sphere S* with the two opposite orienta-
tions and homotopic to the Froisart—Morin sphere eversion. Define the “cost of sphere

5 In three dimension this residue is also a multiple of the one that can be deduced from the
integration of the 1-form (4.5) in [25].

6 While the quotient Imm(SZ2, R3)/Difft (52) of Imm(S52, R3) by the group of positive diffeo-
morphisms of § 2 has a nice bundle structure due to the free action of Diff™ (Sz) on Imm(Sz, ]R3),
this is not the case anymore for Imm(Sz, R3)/Diff(S2). The latter space is an infinite orbifold
obtained by quotienting Imm(S2, R3) /Difft (52) by the map x +— —x. This induces a 2-sheet
covering away from the subspace of singular orbits which happens to have infinite codimension
(see [12, Section 3]). Because of the smallness of the size of singular orbits, using transversality
arguments one can compute homotopy groups of Imm(S2, R3) /Diff(Sz) as if this covering map
were without singularities.

7 The canonical projection 7 of Imm(S2, R3) onto the infinite orbifold Imm(S2, R3)/Diff(5?2)
induces a morphism 7y: 71 Imm(S2, R3)) = Z x Z — 7 (Imm(S2, R3)/Diff(5%)) = Z equal
to multiplication by 2.
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eversion” by
Bo := inf max W (D).
WER Pegy
Then there exist finitely many Willmore immersions 51, ceey §n of §? minus finitely many
points such that

n
Bo=Y W(E)—4nN
i=1
for some N € N.

Remark I.2. Performing the Willmore minmax sphere eversion has been originally pro-
posed by Robert Kusner. O

Open Problem 3. Is it true that in Corollary 1.1,
Bo =167 ?

A topological result [3] (see also the enlightening proof in [22]) asserts that any element
in Q has to contain at least one immersion with a point of self-intersection of order 4
(i.e. a quadruple point). Hence using Li—Yau’s result we deduce that Sy > 16z.In [18] a
candidate for the realization of By is proposed. It is the inversion of a simply connected
complete minimal surface with four planar ends. Hence the Willmore energy of this can-
didate is 167r. Interesting computations reinforcing this conjecture are performed in that
work. Establishing an upper bound of the lowest energy minmax sphere eversion is made
difficult by the fact that producing concrete sphere eversions is highly challenging and
has been at the origin of many rigorous works, computer simulations and videos, starting
from the first example given by Arnold Shapiro (see for instance [36], [16], [38], [2], [17],
[49], [1D).

Remark LI.3. In a recent work [33] the author, in collaboration with Michelat, extends
Bryant’s classification to “true”, possibly branched Willmore spheres.

Remark I.4. An interesting upper bound of the cost of the total curvature minmax sphere
eversion is presented in [15]. It is proved in particular that

inf max |Kz|dvol,. < 8m
weR Pew J§2 @ b

where K g is the Gauss curvature of ®.

Open Problem 5. It would be interesting to study the cost of the frame energy W + O
minmax sphere eversion. As we saw above, this energy is closely related to the mini-
mizing Dirichlet energy among the bundle maps injections induced by (53, d<f>), used by
Smale to compute the homotopy type of the space of immersions.

Open Problem 6. It would be interesting, besides the study of Willmore minmax sphere
eversion, to also explore the Willmore minmax for A corresponding to other non-trivial
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classes in x (Imm(S2, R?)) = ;. (SO(3) x Q2(SO(3))) for arbitrary k. How would their
indices be related to k?

Open Problem 7. Explore the topology of Imm(S2, R?) using W as some kind of
“quasi® Morse function”. For instance we could ask if all the Willmore immersions of S2
into R (described by Robert Bryant) are related to a minmax procedure involving various
classes of various groups 7 Imm(S2, R3)). A first instructive step would consist in com-
puting the indices of the Willmore sphere immersions in R3. Of course one would have
also to complete the space of immersions by considering possibly branched immersions
and, up to now, there is no general result about the extension of Bryant classification
of Willmore immersed spheres in R to Willmore branched spheres, except some very
special cases treated in [26].

Most of the proofs below are presented in the particular case m = 3 in order to make the
presentation more accessible. The general case m > 3 is very similar but requires the use
of the conservation laws in arbitrary codimensions introduced in [41], whose formulation
involves the use of multi-vectors instead of vectors; this makes the argument a bit more
tedious but does not bring any new fundamental difficulties.

II. The space of immersions into R with L¢ bounded second fundamental form

Fork €e Nand 1 < g < 400, we recall the definition of Wk-4 Sobolev functions on a
closed smooth surface X (i.e. ¥ is compact without boundary). To that end we take some
reference smooth metric gg on X and set

Wk (s, R) := {f measurable ; (Vgo)kf e L1(Z, go)}

where (Vgo)k denotes the k-th iteration of the Levi-Civita connection associated to gg.
Since the surface is closed, the space defined in this way is independent of gg.

For p > 1, following [42] in which the case p = 1 was considered, we define the
space &y, of weak immersions of % into R3 with L*P bounded second fundamental form
as follows:

Es,pi= {&J € WI’OO(Z,R3); ic > 1 C_lgo < @*gRs < Cgpa.e.,
and the Gauss map ﬁ@ isin Wh2P(x, Grg(R3))}.

For any P e s, p, starting from the equation Ag, ® = 2H, classical elliptic estimates

permit one to bootstrap (in the case p > 1) and infer that ® is in fact in W22P (T, R3)
(see [40]). It is then not difficult to observe that &x_, is in fact, for p > 1, an open subset
of the Banach space W27 (%, R3). The border line case p = 1 is more delicate; it was
introduced first in [42] as being of primary interest for studying the variations of Willmore
energy and is extensively presented also in [40].

8 “Quasi” because we know that 32W has at least the null directions given by the action of
Mobius transformations.
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II1. Frame energies

For any weak immersion ® in Es,p we denote by A the connection 1-form—which
lives on X since the tangent bundle is abelian—equal to the difference between the Levi-
Civita connection V#é defined by gg and the Levi-Civita connection V40,

Ag. = V86 — V&0
8% ° ’

where go is a constant scalar curvature metric of volume 1 on ¥ for which there exists
a : ¥ — R such that

g5 = ¢ go.
For ¥ # 52 the function « is defined without ambiguity, whereas in the sphere case we
have to deal with the action of a “gauge group”, the space M*(S2) of positive conformal

transformations of $2, and « is uniquely defined modulo this action. We shall now express
|Ags |§5> locally using moving frames. Let (e1, e2) be an orthonormal local frame” for the

metric gz. We have!?

2
: 2 ; 2
V8 — VR = D (V58 = V¥e; - ¢l
i,j=1
Since ¢; is a unit vector field for gz we have (V8de;, e;) = 0, and since f; := e%¢; is a

unit vector field for g° we have
(Ve e)) = e (VS fi, fi)gs — € “de(ei, fi)gy = —da.
Hence
2
Yo I(VEE = Ve el = 2ldal} .
i=1
In order to compute [((V8& — V80)e; - ez)|2&) we choose local conformal coordinates

(x1, x2) for gg. Then locally there exists 1 such that g5 = o2t [d)c]2 + dx%] and gg =
e [dx]2 + dx%]. We choose e; := e”*7#0,, and thus f; = e "9y,. Using the classical
computation of the Levi-Civita connection of a metric in conformal charts (see [40]) we
have

(V8¢ re2)g; =*xd(+ ) and (VE f1 - f2)g = *d .

Since e and e; are orthogonal to each other with respect to go, we have

(V&% - e2)gs = (V8% - €2) gy = (VE f1 - f2) g = *d 1.

9 We denote by (€1, €2) the push-forward by d—its realization in R3—of the “abstract” or-
thonormal frame (e, e3).
10" We shall denote by “.” the scalar product in the tangent space, by “,” the scalar product in the

@,

cotangent space and by “;” the combination of the two scalar products.
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Hence
(V& — V80)gy ce2)gy = *da.

Combining the above we obtain

2
V86 — V803 = D I(VES = VE)e, ep)ly, =4ldaly . (IIL.1)
ij=1

For any C! function f we consider the following “frame energy”:
b -— -3 2
Fr(®) ._/E[f(Hgé)+2 |Ag&>|g&)]dvolg&).

Observe that in the case of £ = T2 and f(r) = t2, for some global Coulomb frame ¢é
(see [35]) we have

- 1
_ 2 -3 2 _ =12
F2(®) —/T2[|H%| + 27 Ag; 7 1dvolg; = Z/ﬂ |dé |* dvol, , (I11.2)

which is nothing but the Dirichlet energy of the frame and justifies the name “frame
energy’.

IIL.1. The first variation of frame energies

We shall now compute the first variation of Fr. We first concentrate on the second part

Y - 2
C(P) ._/2|Ag&)|g&>dvolg&),

which we call connection energy. We observe that locally for any unit vector field e for
the metric gg one has

2 2
dalg, = |dlelg, |, -
We consider a perturbation ®, := & + 1w. Recall the Liouville equation
-2
—Ag =Ky —e “ Ko (I11.3)

where A, is the negative Laplace-Beltrami operator. Observe that K, is independent
of t. We then have

d o da ng@,
E[Ag@;a’] +2Kg e “E = — i (II1.4)
Hence
do Ly da d dKgs,
Aga’t E + 2Kg0€ E = _E[Agéz ]Ol — di . (IIIS)
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In other words, we have

da da o0 d 2 dKg,
Agoz +2Kg05 = —e ad_t[Agi’t]a — e 0[7’. (Hlé)
In a local chart we have
Kgé; dvolgét =101 X O, dx; Adxs. (I1L.7)
Since .
dn a N =
E(O) =—(n ~dw,dCI>)ga), (111.8)
we deduce
d(Kgi) dvolg&) ) L - R .
# = —(n-dw, d®)g; - 0,11 X dy,idx1 Adxz
— [ii - By, (i1 - dib, d®) gy X Dyt + 71 - D71 X Oy (it - db, dD) g 1dx1 A dxs.
We have

—(ii - diD, d®) gy - Iy, 71 X dyyii = 0. (111.9)
We choose a chart in which ® is conformal and we denote
83 = e”‘[dxl2 + dx%] and g9 = ez"[d)cl2 + dx%],
thus « = A — . We have on the one hand

2
—7i - By (71 - diD, dP) gy X Dyt = — Y Dy (€7 i - Dy Wi - Dy, B X Dy
1

i
=Y e i b it 97 B X Dy,
i=1
A= - oA -
=1 0y, (e "n - 0y, w) —Ip1 Oy, (e™ "1 - Oy, w)

2

2
— (it - dib, dA) g 7i - 0, D X Dyt — Y e i 0 32, @ -0, ®Tp,  (IIL10)
i=1

and on the other hand

2
it Dyt X Dy (i1 dD, dD) gy = Dy (€771 - Dy )i O, B X Dy i
i=I
2 -
+ Y e i dgwii - 07, D X Oyt
i=1
= T11 By (e 271 - Oy 1) — Ty Oy (€47 - Oy 1)

2
+ (i - dib, dN) g7 - D, ® X it — Y e Vi O 0p @0y @ L. (L1

XiX2
i=1
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Summing (II1.9)-(I11.11) gives
d(Kgcﬁ, dvolg&)t) Y . T R
B Pa—— [I220x, (™" 1 - Oy, w) + 110y, (6”711 - Oy, w)]dx1dx2
— Ty2[ 8y, (67241 - 03y W) + By, (e~ 271 - By, W) |dx1dx2
+2He™ (i - dw, d)) g, dx1dx). (1L.12)
Recall Codazzi:
3y, Inp — 0,12 = Hoy, e (L13)
L1t — 0, T12 = Hoyye? '
Hence we have proved the following lemma:
Lemma IIL.1. Under the above notations we have
d(Kg;ptdvolgét) e . e .
— = [0x, (Inze™ "1 - Oy, w) + Oy, (M11e” "1 - Oy, w)]dx1 A dxa
— [0y, (T12e ™21 - 8y, ) + O, (o€ 2470 - 3, W)]dxy A dxy.  (IIL14)
O
Recall
) - W | dx) Adxy = D, di g dVolg . .
(d lo;)(0) = 8 D9 d d (d®, dw),. dvol (II1.15)
Hence
21 ng&)t —2%= - —2%= -
er— = Oy, (Ipze™ "1 - Oy w) + 0y, (I11e” "1 - Oy, w)
2 -
— 0y, (Tie™ 2t - 0y ) — Oy (Iige™ 271 Oy, ) — Ky 0, @ - 0. (IIL16)
Recall
2
Agf = (det(gu)) ™% Y 9y (det(gun)) '/ gV 0y, f) (IL.17)
i,j=1
and
dg,'j N - N -
7(0) = O W - Oy; D + Oy, W - Oy, P. (II1.18)
Since Y, gkig" = &, and gi; = ¢**8y;, we have
dgi > - > .
i(O) —e M 0y B Oy D+ O, B - Dy B, (I11.19)
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Thus in particular

d - _ dg dg
° (det(giy)' = 27 (et() l/w[_“ +_22}

dt dt

3y, @ - 0,1, (I11.20)

Il
i

and

d 2 )
E(det(g,-j))*‘/z = —¢ % Zaxicb B, . (111.21)

Combining (II1.17)—(III.21) we obtain

Lemma IIL.2. Under the previous notations, for any function f independent of t on &
we have'!

d(Dgg ) f
dt

where we have explicitly in conformal coordinates

= (d(dD. dib)gy. df ), — % d¥[[dDOAD+dDSIP] gy df].  (1122)

x5 d5[[dD & diD + diD @ dP] L df]

2
=2 Z Oy, (€77 (B, @ - ;W + 0y, D - O, W) Dy, ). O
i, j=1
‘We have
d doil d(dvoly. )
—[/ \day 2. dvol. ] f &8 9 dyadvoly, / daf?, ——
dt|Js 83, @ T dt
i,j=1
d(x,
) @ Agg—- dvolgs. (I11.23)

We first have, using (I11.19),
/ —— Oy, 00 Oy advolg‘ = —2/ (d&b,da)% . (dﬂ),dot)gi) dvolg&). (111.24)
)
Then, by (II1.15),

d(dvolg ) .
/ lda|?. —— 2% :f lda|2 (d®, db),. dvolg. . (I1.25)
5 P dt 5 8% ) )

11" The contraction operator I—g@ between a quadratic form and a 1-form is defined as follows:

a® bl—gg, c:= (b, c)gza.
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Using now (III.5) we have
dOlt dOl[
-2 Ay, ——dvolg. = =2 Ay, —— dvol
/Zoz % gy volg. /zoe 0, volg,

da d(Agér)a ngét
= 4KgO/EaE dvolg, +2/EaT dvolg, —I—Z/Za T dvolg,.  (II1.26)
From Lemma II1.2 we obtain

d(Dg, . .
2/ o ————— dvolg. = —2/ ldal, (d®,dw),, dvolg,
s dt ) 5 3 ) d

—2/ alg a(d®, div)y, dvolg, +4/ (d®, da)g, - (d, da)g, dvolg,.  (I127)
z z

Now (II1.16) yields

dK,. 2
P _ o2k 0 2
2/;0: r dvolg&) = —ZiZI;/Zsze n- 8x1'+1w8x,'+1adx

+ 2/ Type 2471 - [Oy, W By, & + Oy, D Dy, ] dx?
z

-2 / aKg, (d®, dib)g, dvoly, . (111.28)
b
Combining (II1.26)—(II1.28) gives, using Agéa + Kg&) =e Ky,
2 9% ol 2 2 (dd, dib 1
— : O‘Ag&)EdVO gy = — : |doz|g&)(d<l>, dw)g&) dvo 2
2
+ 4/ (d®, da)g, - (d, dat) g, dvolg, — 22/ Tiie 27 - Oy, Wy, , o dx*
= o /=
+ 2/ Tipe™ 241 - [0y, W By, & + Oy, D Dy, ] dx?
=
=20/ 7 % - do
— 2Ky | ae " ({dP,dw)g. dvolg. +4Kg) | a——dvolg,. (II1.29)
) (] o] ) dt

Observe that

o R d
—ZKgO/ oze_zo‘(dCD,dw)g- dvolg. +4Kg0/ et dvoly,
% ) 4 dt

)
d(dvol
— ok, [ «%9¥%) 30
80 d
) t

and since g is normalized to have volume 1, we have

d(dvol
/ d(dvolg) _ o (IT.31)
) dt
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which is consistent with the fact that the operation of adding a constant to « (i.e. dilations
of ®) generates a null direction for the Lagrangian C. Combining now (II1.23)—(IIL.25)
and (II1.29) we obtain

d 2 2 a3 o
E[/z |da,|g5)t dVOlgi)[jI = _/2 |dal,. (d®, dw)gy dvolg,

2/ (d®, da)g, - (dib, dat)g, dvoly, +2/ ([ Lgy (kgzdar)) Adib
z
L da
— 2Ky, f ae 2 (dd, dib),. dvoly. + 4Ky, / a— dvoly, (IL.32)
5 d 3 s dt

where we have explicitly, in positive conformal coordinates,

2
2Ly, (rgyda) Adid = —2[2 Tie 2 - 3y, ax,.ﬂa] dxy A dx
i=1
+ 20y 27 - [0y, W By + Oy W Dy, ] dxy Adxy  (ITL33)

where A is the combination of the exterior product in the domain and the scalar product
of vectors in the target. Moreover do/dt solves the following PDE:

da da -
Agyr +2Kg o = —(d((d®, db)gy), dar),
+ gy g [P & diD + did @ dP] L, da]
+ gy d[TL gy (i kg, dD)] + Ko (d D, dib)g,. (I11.34)
Observe that

d 1
E[—Z/;:[Zoz,e_z‘x’ —i—e_z""]dvol&)t]

- / dvolg0 / [2oe™ + e~ )(dD, dib) g, dvolg,.  (IIL3S)
)

Hence
da =20/ 7 F, -
4K g, . oz% dvolg, — 2K, . e {dP, dw)g, dvolg,

d
= —|:—Kg0/ [Roye 2% + 6_2“’]dvolét:|
)

dt
+ Koy /E ae‘z"(di,d@g&) dvolg . (I11.36)
Observe that
/e_af dVOl&) :/ dVOlg(); =1. (IH37)
E t E 3

Combining (I11.32), (II1.36) and (II1.37) we obtain
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Lemma IIL.3. Under the previous notations we have

d 2 20,
EUEW“"%, +2Kg 04e t]dVOIg@ri|
= /E(|da|§&)*g&)d&>) Adi — 2/2((d<i>, da)g, g do) A dib
+ 2[2(]'11 Lgs |Crgzde)) Adib — Ky, /E(oze_zo‘*%d&)) A dib.
This lemma justifies the introduction of the following modified frame energy:
Fp(®) := /E Lf (Hg,) + 2—3|Ag$|25> + Kgyae ] dvol,,
= /;:[f(Hgi)) + 2_1|doz|§é + Kgye > dvol, .

Lemma IIL4. Let © be an immersion of the sphere S* and go be a metric of constant
curvature equal to 4w and volume 1 such that there exists a function o satisfying

g =g

Then the Polyakov—Alvarez Lagrangian

L(CTD, g0) = /s2 21 |doe|§,&> dvolg, + 471/ o dvoly,

S2

is independent of the choice of gy and in this sense is gauge invariant for the gauge group
given by the Mébius group of positive conformal transformations, M7 (S?).

Proof. Let a(t) and go(¢) be smooth functions such that

20 (t)

g5 = e go(1).

We have

d - do da _, )
—L(®D, go(t)) = — /52 Ag&)a(t) Zdvolgé +4rr/ E[e % _dae a]dvolgé

d[ S2
A da g da (1) dvol 4 da dvol

=— — +8r— VO +4r — dvo .

52 gO(t) dt dt o gO(t) S2 dt gO(t)

Since [, dvolg, ) = 1 we have on the one hand

d d
== [ e dyol,. = —2 / £2 dvol gy
dt S2 @ s2 dt

The Liouville equation gives on the other hand

0

0= Ag a(t) + Ky, —4me 20,
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Taking the derivative gives
d d
0= Agéd_otl + 8ne*2a(t)d_0; = 672o((t) |:Ag0(t)_ + 87— |.

All the above says that L(CTD, go(1)) is independent of ¢ and Lemma II1.4 is proved. ]

Definition ITL.2. Let ® be a weak immersion in £ 52,1 and consider « such that there
exists go of constant curvature 47 and volume 1 such that

g5 = ¢ g0. (I11.38)

We define an Aubin gauge to be a choice of « and W e Diff(5?) such that

Wrgo = 52 and Vje({l,2, 3} / xje2°V ™) dvolg = 0, (I11.39)
47'[ SZ
where g2 is the standard metric on $2. O

We have the following theorem by E. Onofri.

Theorem II1.1 ([37]). For any weak immersion ) of §? and any « satisfying (111.38),

/S i 27! |doz|§&> dvolg, + 47 /S _advoly, > 21 log( /S i e dvolgo). (111.40)

Moreover for any ® there exists an Aubin gauge (V, ) satisfying (111.39).

We are going to use the following result proved by N. Ghoussoub and C. S. Lin.
Theorem IIL1.2 ([19]). For any weak immersion ) of S2 and any « satisfying (111.38)
and (111.39),

/52 3—1|da|2&) dvolg, +4m /52 a dvolg, > 27 log /S2 o2 dvoly,. (IIL.41)
m}

It is suggested by A. Chang and P. Yang [13, Section 3] that the constant 3~! could be
replaced by 47! in (IIL41).

II1.2. The variation of the mean curvature

‘We have

_ :_nglj .. _Z l]dHlJ
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and p 4
8ij = - - - - -
d—;’ = (O @y - O ®1) = 010 - By B+ 0y B - Dy,
Since i
oy, d8ik dg"
2A L 2A
L =2 8 =0,
¢ dr T g ok
we have .
dg'l . - - .
% = —e [y B - 8y, P + 0, P - Oy, B].
So
dg/ 1 R - - R R - _ R -
- Z —4 5 Z[a’”w 0y, + 0y P - 0y W] By i - 0, @ = e Vi - VO,
l’.]

We have moreover

dll;; dﬁ, -
— = (8x,nt axj q)t) =

di Py O S
Combining the previous assertions we get
dH e e _di, _- o oz
—_— == Vn-Vw — V— Vb +e “Vn- -Vo.
dt 2 2 dt
Since ‘L’li—f CAD = 0, we obtain
dH e __ . e  [dn, -
— = Vvn-Vw — div| — - Vo |.
dt 2 2 dt
As % — —e 2% . V)V, it follows that

dn = S oo
d1v< e V<D> = —div(n - Vw).
dt
Combining the above gives

dH e

o [div(7i - V) + Vi - VW]

= —27'd"% (i - d) + 27 (d; dii) g . (111.42)
Hence, for any C ! function f,
d —1 ’ ¥go o> 1o
Z[/E f(H@t)dvol@t] =-2 /E f(H)d®%(n-dw) dvolgé
+2_1/2f/(H)(d17;;dﬁ)g&) dvolg, +f2f(H)(dzD;d<f>)gi) dvolg,.  (IIL43)

We can therefore deduce the following result.
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Lemma IIL5. Let f be a C! function. Under the above notations we have
4 f(H,- Ydvol,. | =271 [ (x,.d[f'(H)A]) AdW
di | s 83, 8, | = 58
— / (f'(H)xgdit) A dib — / (f (H)xg,d®) A di, O
b =

Observe moreover that from (II1.20) we can also deduce the following elementary lemma.

Lemma II1.6. Under the above notations we have

d _ PR
E1og[/E e2“dvolg0] =[Az(D)] ]/E(d@,dw)gé dvolg,

Az / [g5d D] A i, (IIL.44)
)
where Az (%) = [, e* dvoly, = Is dvolg is the area of the immersion .

II1.3. The first variation of frame energies and conservation laws

Combining Lemmas I11.3 and III.5 we obtain

Lemma IIL7. Let ¥ be a closed oriented two-dimensional manifold. Let f be a C!
Sfunction on R, let ®d be an immersion of X into R3, and let g% be the induced metric
on X. Let go be a constant Gauss curvature metric'> of volume 1 on = such that there
exists o with gz = e>® go. The immersion is a critical point of

FfA(é) = /E [f(H) + 2_1|dcx|§,&> + Kgyae **]dvolg, — A log< /E e dvolgo>

(I11.45)
if and only if the following conservation law (i.e. closedness of a 1-form) holds:
d[#g,df'(H)A] — 2 f' (H)xg  dri
+ (=21 (H) + |dal}, — Kgoe ™ +2A[Ag(2)] Ty, dP
—2(d®, da) g, #g; da + 20 g, (kg da)] = 0. (I1L.46)
O

12 Observe that go is unique if ¥ has non-zero genus. When ¥ =~ S2 it is unique modulo the
action of the M&bius group M (82). Nevertheless, because of Lemma 1114, the Lagrangian, and
hence the Euler-Lagrange equation, is insensitive to the gauge action.
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Assume @ is a critical point of F ]ﬁ\ given by (II1.45) and denote locally
dL = xg d[ f'(H)ii) — 2f(H)xg dii
2 -2 2y1-1 3

+ [-2f(H) + |da| 5~ Kgae *+2A[A5(57)] ]*g&)dCD

—2(d®, dat) g gy da + 20 Lg, (g, da). (IIL.47)
In conformal coordinates this gives

0y L = =05, f'(H)7i + f'(H) 7t
2 -2 2y1-1 3
—[-2f(H) + |d| 5~ Kgae ™ +2A[A5(S)] ]9, @

2
+2(d®. dat) gy D00 + 264 i (kg dar);, (111.48)
i=1
and
du, L = by, f'(H)ii — f'(H) dy, i
+[-2fH) + |doe|§,&> — Kgoae 2 +2A[A5(5H17'] 0y, @
2
—2(d D, da) gy Dy +2e7 D i (g der):. (I11.49)
i=1
We have

dd AdL :=[3y, D - 0y, L — 05, ® - 9y, L]1dx| A dxa
=2(f'(H)H — 2f (H) — Kgyoe > + 2A[A5(5H)] ) dvol,,.  (I1.50)
We also have
dD AdL = [3,, D x dy, L — 3, ® x y, L]dx| A dxy
= 04, ® x [3y, f'(H)ii — f'(H)dy i — 2(d D, dat) g, Oy, 0] dx1 Adxa

2
+2e7 D "0, @ x Ij (kg der); dxy Adxs
i=1

+ 06, ® X [0, f'(H)ii — f'(H)dx,ii — 2(d®, der) g D] dxy A dixy
2
=27 "0, ® x L (kggda); dxy A dxy. IIL.51)
i=1
This gives
dd AdL = [3,, D dy, f/(H) — 05, ® 0y, f'(H)dx; Adxy

2
— 27 3 I (g de) B, ® dx; A dxs. (I11.52)
i,j=1
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We have

2
~2e7 3 I (kg da) By, D = 20, 2l 12 0y, B + 0P 12 8, B
ij=1 —200le Iy 85, ® + e I12 0, @], (IIL53)

We compute

e 0, [e P 112 8y, @ + e Inp 0, ®] — € 0y [e P 11 0, @ + e 24 115 0y, ]
= 0, P[—20,, A I12 + 8, L1p 4+ e I1n aj}zi 0, @+ e 82 P - 0y, P

-

+ 0, P20, A Tg + 0y Ton + € 2 g 07, @ - 0, ® + € [12 0%, - 0, D]
1

X1X2

— By, D20, 11 + D, I11 + e 241y 92

3 54 2k 2 r
i, ® 0 P t+e ]1128)(%(1)-8)5161)]
— B, P[—20,, A [ + O, l12 + ¢~ 1 ajgci 0,® + e P 92 P - By, B,
(I11.54)
Making use of the Codazzi identity (III.13) we finally obtain

e 05,6 112 0, @ + e P g 0, B — €2 By [e 2 1y By, D + e 2 112 0y, B
= 8y D[ H dy,e™* + 85,4 [Too + [111] + 8, @[ H 8y, ** — 84,4 [To2 + I11]1]
=0.

-

Hence there exists locally D such that (see also [35, Lemma III.2])

_ S - (IIL55)
=[e 1128, ® + e P 1p3 8y, D).

9, D = [e 2} 111 0y, D + e 2 1 0y, DI,
D :
Combining all the above we obtain the following lemma.

Lemma IIL8. Let X be a closed two-dimensional manifold. Let f be a C' function on R,
let ® be an immersion of ¥ into R3, let 83 be the induced metric on X. Let go be a
constant Gauss curvature metric of volume 1 on % such that there exists a with gz =

€2 go. Assume the immersion ® is a critical point of
E;‘(é) = /E[f(H) + 2_1|da|§,é + Kgye **]dvolg, — A 1og(f)S e dvolgo>,

and following Lemma 111.7 introduce locally L by
dL = gy d[f'(H)ii] = 2 f'(H)%g, dii
+[-2f(H) + |da|25> — Kgoore 2 + 2A[Ag(SH] ™ [, d®
—2(d®, da) g, #g da + 20 g, (kg dar). (IIL.56)
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Then the following almost conservation law holds:
d® AdL =2(f'(H)H —2f (H) — Kge > + 2A[Ag(SH] ") dvoly,,  (IL57)

and the following exact conservation law holds:

d® AdL =d® Adf'(H) +2da AdD, (I11.58)

where D satisfies
dD =1L, d®. (111.59)
O

Remark IIl.1. The three conservation laws or almost conservation laws (I11.56)—(I11.58)
can be deduced from the Noether theorem (see [5]). More Irecisely, the existence of L
satisfying the first conservation law (II1.56) is due to the translation invariance of the
Lagrangian F ;\, (II1.57) instead is related to the lack of invariance of the Lagrangian
under dilation, whereas (II1.58) is related to the rotation invariance of the Lagrangian. O

II1.4. Various bounds involving frame energies

First of all we establish the following lemma.

Lemma IIL.9. Under the previous notations we have, for any o > 0,

lo €2 dvol log(0? [« (1 + H*)? dvol,.)
eUs: 1 | 5y 08 Js 1 8~ (I1L60)
log log —
Proof. Obviously
20 2 252 1
log e dvolg, | <log| o 1+ H?) dvolg&) +2log —. (I11.61)
S2 S2 o
We also have
2
1672 < H2 dvol,. </ 22 dvol /Hi‘d .. 11162
b2 _<S2 <1>V0g<p> < Sze volg, o 3 dvolg, ( )
Hence
1
210g<—> + log(oZ/ (1+ Hz)zdvolg&)) > —log(/ e dvolg0> + log 1672,
o S2 S2
(I11.63)
Combining (II1.61) and (I11.63) gives (II1.60), and Lemma II1.9 is proved. ]

The following useful lemma is a direct consequence of Theorem III.2.
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Lemma IIL10. Let & be a weak immersion of 8% and (¥, ) be an Aubin gauge satisfy-
ing (I1I1.39). Then

6! /S 2 (|2, dvoly,

< / 27! |da|§€b dvolg, + 4x / advolg, — 27 1og< / e dvolgo>. (111.64)
S2 S2 S2

O

For ¥ being an arbitrary closed surface we denote
o2 1 -1 ~Kgy =
FO(®) :=(log—| F,7(®)
o o
!
= <10g ;) fz [fo (Hgy) + 27 ldaly, + Kgyae ] dvolg,

1 —1
— 271Ky, <log —) 10g< / e dvolgo) (I1.65)
o z

where f, () = log(a_l)[t2 + 02(1 + 1?)?]. First, in the particular case ¥ = S2 we have

Lemma IIL11. Let ® be a weak immersion of % in & 522 and go be a constant Gauss
curvature metric on S* of volume 1 such that 85 = e*go. For o € (0, 1) we have

W(®) + o> / (1+ H*)?dvolg, < F°(®) (I1L.66)
S2
and for any Aubin gauge we have
1\! - -
<log —) / |dcx|§,< dvoly. < 6[F7(®) — W(P)]. (11.67)
o S2 @ ¢
Also, for any gauge,
) 1 5 1 5 -
xlensf2a > 3 log Ag(S87) — 7 /;2 ldalg, dvolg, — C[1+ W(®)] (111.68)

and

1\
10 — %)
( gg) loll oo s2)

1\ ! - log Az (S2
< C<log —) [/ (a2 dvol,. + W(<I>)} + gé"(l) (I11.69)
o 52 ® ® 2log
where C is a positive universal constant. Moreover,
log Az (S? 1\"! - .
gé"(l) <1+ <1og —) log[ F° (&) — W(®)]. (I11.70)
2log o

O
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Proof. First of all, the Onofti inequality (I11.40) implies
F(®) > W(®) + o2 / (14 H?*)*dvolg, . (1I.71)
S2
We also have

- . 1\ ! B B
Fo(®) — W(D) > (log g) /52[2 1|da|§,&> + Kgyae za]dvolg&)

1 -1
— 27 <1og —) log < / e dvolg0>. (111.72)
o S2

Then we obtain (II1.67) directly from (II1.64).

By the uniformization theorem on 52, modulo the action of a conformal diffeomor-
phism, we can assume go = gg2/(47) where g is the standard metric on $2. The
immersion ® is then conformal from the standard sphere into R3.

The Liouville equation reads in this gauge

—Agya = ezo‘Ki) — 4.
A standard elliptic estimate on S gives

lderl 2 2, < CEDAg@lLy (s

(82
Hence there exists a constant C(S?) such that

el 2o 2) < C(SH[1 + W (D)] (I11.73)

Y

where the norm is taken with respect to the metric gog. We cover S by a finite, controlled

family of geodesic convex balls for the metric gg and for each of these balls we choose

a conformal chart ¥; : D> — ¥ such that the ¥; (D1 5) still cover $2. We consider

any of these balls and we continue to write ® for the comp0s1t1on of ® with ;. Denote
J = e 0, ; ® where ¢* = log |0y j<I>|. Then (é1, €;) realizes a moving frame and

IVE;|? = |ii - V&[> + VA%
We have
—Aa = Ap + (Véy; V4iey).

Using the Wente estimates together with the classical elliptic estimates we get the exis-
tence of o € R such that

floe — a”[po(p%ﬂ) = C[||Va”L2v°°(D2) + ”V/L”LOO(DZ) + ”Vﬁ”%z(l)z)]
1 2
+ I Lz |doz|g0 dvolg,. (I11.74)
Since fz dvolg, = 1, there exists x € X such that

ax) =14 log Area(&J(Sz)). (I11.75)
Combining (II1.74) and (II1.75) we get (I11.68), and Lemma III.11 is proved.
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Lemma IIL.12. Let X be a closed oriented surface and ® be a weak immersion in Ex .
Let gy be a constant Gauss curvature metric of volume 1 on X such that there exists o for
which gg = e*go. If genus(X) > 1 then

Kg, /E advoly, > 27 Ky, log( /E dvolgé) (IIL.76)
Proof. We have to bound

4 (1 —genus(E))/ a dvolg,
b

from below. Since we fixed [y, dvolg, = 1, using the convexity of exp and the Jensen
inequality we have

exp(ZfE ozdvolg()) §Leza dvolg, =fzdvolg&). (II1L.77)

Then for K¢, < 0,

KgO/ advolg, > 2m(1 — genus(E))log(/ dvolgé>. (II1.78)
b)) )

This concludes the proof. O
Combining (III.65), (II1.69) and (II1.76) we obtain

Lemma IIL.13. Let X be a closed surface of non-zero genus, ® a weak immersion in
Es 2, and gy the constant Gauss curvature metric on T of volume 1 such that g = e*g.
Then for o € (0, 1),

. 1\! .
W (D) +02/E(1 + H? dvolg, + <210g ;) /Z a2 dvolg; < F(®) (IIL79)

and

1\
(log —> lloell oo sy
o

1\ R
< C(log ;) UE |doz|§i) dvolg, + W(d>):| +

where C is a positive universal constant. O

(I11.80)

logAé(Z)‘
210g%

IV. Uniform regularity for critical points to frame energies approximating the
Willmore energy

IV.1. Some Banach spaces relevant to the proof

We shall make use of some Banach spaces whose definitions we recall. For any domain
Q € R? the weak L? space LP>*°(R) is given by

LP®°(Q) = {f measurable ; |f|p.00 :=supt|{x € Q; [f(x)] > t}|1/p < +oo}.
t>0
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For p € (1, +00) the quasi-norm | - |, o is equivalent to a norm and the normed vector

space LP-%°(2) is complete (see for instance [20]). It is the dual space to LP/'l(Q), the
set of measurable functions f such that

+00 1y
Lflpa :=/0 [ 1f 0] > 1} '7 di < +o0.

The quasi-norm | - |, 1 is equivalent to a norm denoted || - || 7,1 and the space Lp/’l(Q)
equipped with this norm is complete (see for instance [20]).
We shall also make use of the space

LZ,OO + 0_1/2L4/3(D2)

= [f measurable; || fll 2.0 o-1/2743 == inf (||f1||2,<>o+U_1/2||f2||4/3) < -i—oo},
f=hH+12

which is dual to

L*' no!'2LY(D?) := {f measurable; || £l 2101224 := | fllo1 + 02 flla < +o0}.

IV.2. Uniform e-regularity

In this section we shall consider critical points of the following family of Lagrangians
where o € [0, 0p):

o2 1 -1 o
F(®) = (log—) F, (@)
1 -1
= <log ;) /E [fo(Hg,) +27" |da|§&> + Kgye > dvol,,

1 —1
— 271Ky, (log —> log( / e dvolgo) (IV.1)
o z

where f; () = log(a_l)[t2 +02(1+1%)?]. Recall that for any domain U of $2 we denote
Ag(U) == Area(d(V)).
The goal of this subsection is to establish the following result:

Lemma IV.1 (Uniform e-regularity). Forany Cy > O, there exist e > 0 and oo > 0 such
that for any o € (0, og) the following holds. Let ® be a critical point of F° satisfying

Fo(®) < C). (IV.2)

We keep denoting by ® the expression of this immersion in a conformal chart from D?
into R3. Write

83 = ezk[dx% + dxzz] and go = 62”[(13612 + dx%]
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and moreover I, := (log é)_l. Assume that o, |, i and H satisfy

infa > logo — C1, ||Vl L(p2) < Cl, (IV.3)
D
and
o lote™ || oo p2y +/ (\Vi|? + o2[1 + H*]e*) dx? < e. (IV.4)
DZ

Then for any j € N,
IVIHP0) + VI (H (1 + 207 (1 + H?)2(0) + o H> (1 + H?)?e*(0)

2 2
< 6,-[ |vﬁ|2dx2+é,-[az H4ez)‘dx2j| +é,~[z(,/ |Va|2dx2}
D? D? ’ D?

52 =2 L 20 du 4 - ,[Ag(DH7?
+ Cj [l(7 |Ol| + lo. ||€ ||L°°(D2)]||e ||L°°(D2) + C] lo — (IVS)
Ag (%)
- __ 2 -1
where a = |D1/2| fDlz/z o and
] . . 2
I, VIt a2(0) < cjlg/ IVa|? dx? + C; [/ |Vr'i|2dx2]
D? D?
4 2\ 4
~ ~ ~ Az (D?)
+C; [02 f H*e? dxz] + Cjlolle* [l oo p2) + Cj lji[ @ } (IV.6)
D2 Ag (%)
where C i only depends on C and j. O

Proof. In the first part of the proof, following the original ideas of [41], we derive from
(II1.50) more conservation laws. We do it first formally, not worrying about regularity. In
the second part of the proof we will revisit each step with estimates in relevant Banach
spaces.

Step 1. Let

VL := 1,V (fL(H)it) — 2Ly fL(H)VY i — 26 1,V - VaVia

+ U [2f5 (H) e P |Va? =K gpae 2+ Ko Az (3) VD42, e P IL Vi,
(IV.7)

Equation (II1.50) gives
VO - VAL = 2,e™(2f, (H) — HfL(H) + Kgoae ™ — KgyAg(2)™).  (IV.8)
Let Y be the solution of

—AY =21, Qf5(H) — HfL(H) + Kgyae > — Koy Ag(2)™") in D?,
Y=0 on 9 D?. (Iv-9)
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Observe that 2 f, (H) — Hf.(H) = 2I;'0?(1 — H*). So Y satisfies
25 a0y

—AY = 4e? 0 (1 — HY) + 2 Kggae? — 2K g loe™ Ag (D)™
on D2,

et
Using the Poincaré lemma we deduce the existence of a function S such that
VS=L.-Vd+V'y. (IV.11)
Equation (II1.58) in conformal coordinates gives
VO x VL = —1,V® - Vf (H)+2Va - V1D, (IV.12)
(Iv.13)

where
2 2
VD = (zoe—” 3 L o @ loe ™Y Iy, ci>).
i=1

i=1
Using again the Poincaré lemma on D? we obtain the existence of V such that
(Iv.14)

VV:=LxV®+I, fL(HV® -2 —a)VD.
(IV.15)

Using the explicit expression of vD given by (II1.59) we obtain
B-VV=i-(LxV®) =L -Vtd=vis+Vy.

(Iv.16)

We also have
ixVV=—(L i)V -l fL(H)V'® — 2(a — a@)ii x VD.
Denoting by 7 (VJ-V) the tangential projection of V- \7, we have
ar(VEV) = (L - i)V + Iy fL(H)VED = 2(@ —@)V'D. (IV.17)
(IV.18)

Hence
X VV =-VV -2 —a) (VLD +17i x VD) —i#(VS — V1Y)

Let v be the unique solution to
. Dz’
g; -~ (IV.19)

AT = V1Y . Vi
=0

(IV.20)

Using once more the Poincaré lemma we obtain u such that
AVYY = Vi + V&

Finally, let R := V — ii. We h
X VV =i x VR+17 x Vii =it x VR +1i x V15, (IV21)
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Hence (IV.18) becomes
i X VR +7ix V5 = —VIR + V3 —iVS — 2(@ —@)(VED +7 x VD),  (IV.22)
which gives

AS = —Vii - VIR + div(ii - Vi — 2(a — @)ii - VD),

AR = Vii x VIR 4+ Vi - V1S + div(—ii x Vi + 2(a — @) (=VD + i x V1D)).
Taking the vectorial product between (IV.14) and VL ® we obtain

VV x VE® = (L-Vi®) - V& — 2, fL (H)e* i — 2(@ —@)VD x V-

=VLS. VO + VY VO -2, f.(H)e?ii —2(a —@)VD x V' &.

(IV.23)
‘We also have
VV x V1® = VR x V1 + Vi x V1D
= VR X VI® + Vi x VID + VY - (7i x V- )
= VR X V'® +VixVD+VY. V. (IV.24)

Combining (IV.23) and (IV.24) gives
2y fL(H)e? i = VS VO—2(—a)VDXx VIS VR VIO -Vix VD, (IV.25)

We have explicitly I, f, (H) =2H (1 + 202(1 + H?)); moreover, a straightforward com-
putation gives
—VD x V*® =2I,He** = I, AD. (IV.26)

Inserting (IV.26) in (IV.25) gives
20042021+ HY) — Iy (0 —@) A® = VIS VO VR xVId-—Vix VD, (IV.27)
Step 2. We now prove that, for ¢ small enough, VS and VR are in L2.

Since f D2 |Vﬁ|2dx2 < ¢, for & small enough, following Hélein’s construction of
energy controlled moving frames (see [21]), we get the existence of ¢; such that

¢ xéy=n and / Ve > dx? < c/ |Vi|? dx?. (IV.28)
D? D?
Using the assumptions (IV.2) we have
2C1 > W(P) +02/ (1+ H?)? dvol,,
S2

+ Iy |:/;2 71 |dot|§5) dVOlg&) + Kgooze*Za — -1 K, log A&;(E)i|. (Iv.29)
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Using the Onofri inequality (I11.40) we deduce that
W(d) + 02/ (14 H?)?dvoly; <2C;. (IV.30)
SZ

Since W(&>) < 2C; by (II1.73), we obtain the existence of a constant C depending only
on C; such that
VAl 2.00(p2y = C. (Iv3n

Recall (see for instance [40]) that for &; := e™* 0y, ® the Liouville equation giving the
expression of the Gauss curvature in conformal coordinates is equivalent to

— AL = (Vé;; V1ey). (IV.32)

Let v be the solution of

(Iv.33)

—Av = (Vé;; V&) in D?,
v=0 on 9 D2

Using the Wente inequality we get

2
IVl 2p2) + IVl oo (p2) < CZ/2 Ve |>dx? < c/2 |Vi|2dx? <e. (IV.34)
i=1vD D

Since A — v is harmonic and
IV = W)l 2002y < C, (IV.35)

we have

Hence, by (IV.34), there exists A= (L —v)(0) € R such that

Ix— MlLOO(D%/z) <C. Iv.37)
Since || Vu|leo < C1, we have the existence of it € R such that
Hence we deduce the existence of @ € R such that

” a||L00(D2 ) = <C. (IV39)
We rescale the domaln so that D1 1 becomes D2. We now proceed to the introduction of

LY, V,%,ii, R, Sasin Step 1. First of all using classical elliptic estimates we deduce
from (IV.10), using the hypothesis (IV.4) and for o small enough

R 2
Az (D7) < ce,

A5(%)
(IV.40)

IVY I f2.00(p2) < c/ o1+ HYe* dx2+Cl(,|&|/ e dx* 4 Cl,
D? D2
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and using (IV.19) we deduce by means of the Wente estimates

IVl 2p2) < ClIViill 2p2, [/202[1+H4]e”dx2+lg|a|f2ezﬂ dx2+lg}. (IV.41)
D D

Recall that for any XelL! (R?, R?) there exists a unique pair a, b € L>> such that
X=Va+V'h and |all2e@e) + 101 200@2) < CIX L1 g2)-
This pair is explicitly given by
1 10 .3 119 .2
a:=——-—%X and b:=-— - — X" .
2 r Or 27 r Or

We apply this decomposition to each coordinate of the restriction to D? of

2Uye fL(H)VYi — 26 P, VD - VaVie + 2,0 P I VEia
+ 1, =2y (H) + e 2 |Val® — Kgyae 2 + KeAz (D)7 VD,  (1v.42)

and we get the existence of @ and bin L2’°°(D2, R3) such that
V(*L) — VE(,e fL(H)i) = Va + V'b  in D?,
and

@l p2.00(p2y + 1Dl 200 p2y < ClIVEl 2 p2) + ClaIIValliz(Dz)
Ag(D?)

—_—. 1v.43
A5(2) (IV.43)

+ Clg|&|/ et dx? + C[/ 02| Vii[*e™ 2 dx2:| + Cly
D? D2

We know that both e* L +a and ly e fiL(H)n +b are harmonic conjugate to each other. Let
H be the operator which sends a harmonic function on D? of average 0 to its harmonic
conjugate'? of average 0. We have

L +a=Hlye fL(H)i +b),

Calderén—Zygmund theory shows that 4 maps continuously L>°(D?) into itself and
L*3(D?) into itself: there exists C such that, for any harmonic function f in D2,

MO L200p2) < Cllfll 2002y and  [[H(I43p2) < CUF Il L4 p2)-

Let f be a harmonic function in L2°°(D?) + o~ 1/2L*3(D?). To any decomposition
f = f1+ f> we assign b(f1) and b( f2), the respective Bergman projections of f; and f>.

13 ¢ is also the operator which to the real part of a holomorphic function on D? assigns its
imaginary part.
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We have of course b(f) = f, and the L” boundedness of the Bergman projection gives

16(fDll2,00 < Cllfill2,00 and [[b(f2)llay3 < Cll f2ll4/3-
Combining all the above gives
IHO N 200 p2) 10172043 p2) = IHOUDI L2.00(p2) 401720453 (D2)
< IHGUD) 2o p2) + 0~ PIHOGUD) | a3 (p2)
< CUb(Dll 202y + 0~ UDC | a3 p2)]
< Clllfill 2o 2y + 021 fall a2y -

Since this holds for any decomposition f = f+ f>, we deduce that H maps continuously
L>%°(D?) + o~ 1/2L*/3(D?) into itself with a constant independent of 0. Hence

||e)‘L + Zz||L2»°°(D2)+a*1/2L4/3(D2)
< ClIbll 200 (p2) + lle* Hll 200 p2y + 02l o H (1 + H?) | 45 p2)]-

Combining this with (IV.43) gives

||e)LL||Lz,oo+571/2L4/3(D2) < C||V71||L2(D2) + Clg||V(x||iz(D2) +C / . 0'2|Vﬁ|4g_2)t dx?
D

Ag(D3)
Az (2)

3/4
+ Cl, || f . M dx? + C[ / o 2| Vii|*e ™ dx2] +Cl, (IV.44)
D3 D?

Combining Lemma VII.3 with (IV.3) gives

2
02/ [Vii|*e 2 dx? < CUZ/ H*e? dx2+c[f |Vfi|2dx2:| < Ce. (IV.45)
D? D? D}

2

Hence, using the explicit expressions (IV.11), (IV.14) and (IV.20) we find that VR and
VS are uniformly bounded in L>* + ¢ ~1/2L4/3 and we have

IVRI 200 5-172043(p2) + IV S 200 45 -12104/3(p2) < C”Vﬁ”LZ(DZ) + Cla”V“”iz

3/4 A= (DZ)
+ Cl, |a|f e dx? + U o2 |Vii|*e 2 dxz] + Cl, =22
D2 D2 A (D)

(D)

(IV.46)

Let ¢ be and U the unique solutions in W(;’Z(Dz) of the linear system

Ag = —Vii - VAR +div(ii - Vi — 2(a — @)ii - V1 D),
AW = Vii x VIR + Vii - VS + div(—ii x V3 + 2(a —@)(=VD +ii x V1 D)).
(Iv.47)
Using Lemma VIIL.1 and in particular (VIL.2), together with the fact that both Vv and
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(a — &)Vﬁ are in L2, we deduce using I, || — Ol poo(p2y < € that
”VW”LZVOO(DZ) + ||V\I’ ||L2,:>O(D2)

< e 2IVitll 22y + CePlo | Vel o o) + Ce o [al fD e dx?
2

3/4 A= (D?
+al/2/ 21+ Vifte x|+ clye' P22 P2
D? A5 (%)

Recall that for any harmonic function v,

1/2 3/4
[/ |v|2dx2] < C[/ [v]¥/3 dx2i|
D? D?

12
Recall also the Holder inequality in Lorentz spaces (see [20]):
VFeL* (D% I fllaspry < ClF 2.

Observe that the triangle inequality gives
Flizamcpry < anf (| fillascp2y + 1 2Nl 43¢ p2y)
I f 43 D2y pnt I fillza3p2) + L 21l 243 (p2)
< inf (Il fillganpey + 07 21 Al asp)
s Ml LoD
=C _inf (fillzeeor) + o2\ fall a2y = ClLf Nl 2o yo-172043(D2) -
J=J1TJ)2

Since § — ¢ and R — U are harmonic, we have, using the previous two inequalities,
”V(S - (p)”LZ,OO(D]Z/Z) + ”V(R - \Il)”LZ,OO(DIZ/Z)
< CIV(S = )lizanp2y + IV(R = W)l 432
< C||VS||L4/3(D2) + C||VR||L4/3(D2) + C”V(ﬂl|L2,00(D2) + C||V‘~IJ||L2,00(D2)
< C||VS||L2,oo+071/2L4/3(D2) + C||VR||L2,00+O-71/2L4/3(D2)
+ C”V@”LZ,OO(DZ) + C”V‘-IJ ”LZ’OQ(DZ)' (IV48)
Hence
||VS||L2,OO(D%/2) + ” VR ”LZ,OO(DIZ/Z)
= || V(S—(ﬂ) ||L2~°°(D12/2) + ” V(R—-W) ||L2v°°(D%/2) + ”V(p”LZ,oo(D%/z) +2||VIIJ ”LZ'DO(D%/Z)
< ClIIVS|l 2004612145302y TCINVRI L2004 o -1/2143p2) FCIIV @Il L2.00(p2)
+ CIVE | 200 p2)
< CII\Viill 22y +Clo | VetI7 5 o)
Ag(D3)

3/4
+ Cl, || / ez"dx2+|: / az[e2*+|vﬁ|4e—”]dx2} +cz<,A—. (IV.49)
p D2 3(2)
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Let ¢1 and U, be the unique solutions in WO1 ‘2(Df /2) of the linear system

Agi = —Vii - VIR +div(ii - Vi — 2(a — @)ii - V1 D),
AQ| = Vii x VIR + Vii - V1§ + div(—ii x Vi +2(a@ — @) (=VD +ii x VD).
(IV.50)
The Wente estimates, combined with (IV.41) and the pointwise bound |Vﬁ|2 <
CI2 |Vii|?, give
||V<P1||L2(D%/2) + ”V\I’IHLZ(D%/Z) = CHVﬁHLZ(D%/Z)[”VS”LZ,OO(Df/z) + |IVR||L2.00(D%/2)]
+ C”V?l”LZ(DZ)

Ag (D3
X |:/ [IVi)? + o2[e* + e~ 2| Vii[*1dx? + Cly || / M dx? & CIGM]
D D2 Ag(D)
+ Clollot = @ll oo p2) I Vil 72 - (IV.51)

Since S — ¢ and R— \_131 are harmonic we finally obtain

||VS||L2(D]2/4) + "VR||L2(DI2/4) =< ||VS||L2,OO(D|2/2) + ||VR||L2.OO(D]2/2)

+ 2||V(P1 ||L2(D12/2) + 2||V"Ill ”LZ(D%/Z)

< ClIViill 2(p2) + Clo [Vl o) + Clo @] / Py
D2

3/4 A= (D2)
+ c[/ o2[e** + |Vii[*e ] dx2] +Cl, =222 (IV52)
D2 Ag (%)
Combining (IV.52) and (IV.45) gives, by changing 1 into 1/2,
D = 2
19Sl22,) + VRN 202, < CIViill 202 + ClolIVall 2
— 2 2 2 49 2% 5.2 A&>(D%)
+ Cl, |a| etdx”+ Co [1+ H"e"dx” + Cl,——=. (IV.53)
D2 D2 Az (%)

Hence VS and VR are in L2(D12 /8) and under the assumptions of the lemma, using also

Lemma III.11, we see that ||VS||L2(D12/8) + ||VR||L2(D%/8) is bounded by a constant de-

pending only on C;. We rescale the domain in such a way that V.§ and VR are in L%(D?).

Step 3 (Uniform Morrey decrease of the Willmore energy). More precisely, we are going
to prove the existence of y > 0 independent of o and of the solution such that

sup rY / H*(1 4+ 0*(1 + H»))?e* dx? < C. (IV.54)
xoeDf/z,r<l/4 B2 (xp)
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Following Step 1 of the proof of the theorem the map U= (e‘xi, v, S, ﬁ) satisfies the
following system on B, (xp):

A ®) = hye "[VLS .- VO — VR x V1d — Vi x VP,
AD = V1Y - Vi,

AS = —Vii - VIR + div(ii - V3 — 2(« — @)ii - VD),

AR = Vii x VAR + Vii - V1S + div(—ii x Vi +2(a@ —@)(=VD + i x V1 D)),

(IV.55)

where 0 < hy :=2(1+202(1+ H?) — Iy (¢ —a@))~! < 1 and where we use the fact that
_ 2 _ _
Ot = —e 20T Y i a7 (e B)e Moy, @, (IV.56)
j=1

and

2 L L
vﬁ:zoe—m—”(zlz.az (€ *®)e*d,, @, 7i - 0> (e—%)e—kaxicb). (IV.57)

X1Xi X2Xi
i=1

Let w in W(} 2(B, (x0)) be a solution of
AW = V1Y - Vil (IV.58)
Using the Wente estimates we obtain

/ V| dx? < C||VY||izvoo(D2)/ |Vi|? dx?. (IV.59)
B (x0) By (x0)

Since ¥ — w is harmonic for any ¢ € (0, 1), the monotonicity formula for harmonic
functions gives

/ V@ — w)>dx? < z2/ V(@ — w)|*dx>. (IV.60)
By (x0) By (x0)
We deduce from (IV.40), (IV.59) and (IV.60) that
IVY[2, .
/ VB2 dx? < ﬂ/ VB2 dx? + Cofe — 220D Vi 2 dx2.
Bir(x0) By (x0) NG By (x0)
(IV.61)

Let T and Q in W(}’Z(B,, (x0)) solve

AT = —Vii - V2R + div(i - Vi — 2(a — @)ii - V1 D),
AQ = Vii x VIR 4 Vii - V1§ 4 div(—ii x Vi + 2(a —@)(=VD +ii x V1 D)).
(IV.62)

The Wente inequalities combined with classical elliptic estimates and the inequalities

/ |Vii* dx® + 13 & = @/} ) < & and \VD[? < CI2|Vii)?
D2
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give
/ [IVT|2+ |VO[*1dx? < Cy/e [IVS]2 + |VR|? + 82|Vii|*] dx?
By (x0) By (x0)
+ Cf V3| dx2, (IV.63)
Brr(XO)
where 5 5 5
82 L lcr”a - a”Loo(DZ) + ”VY”LZ,oo(D2)
NG )

Since S — T and R — Q are harmonic, the monotonicity formula gives
f V(S = TP +|V(R - O)°1dx’
B3, (x0)

< t2/ [IV(S = T)> + [V(R — 0)|*1dx2.  (IV.64)
By (x0)
Hence combining (IV.61), (IV.63) and (IV.64) we obtain
f [(VSP+ VR +|Vi|*dx? < r2/ [VSP + VR +|Vi|*] dx?
B, (x0) By (x0)

+Ce [IVS]2 + VR + 82|Vii|*1dx2.  (IV.65)
B, (xo)

We recall the structural equation (see [40])
Vii = Vi x i — 2HV ®. (IV.66)
Taking the divergence gives
Afi = V+i x Vii — 2div2 HV ®]. AV.67)

We introduce 5 to be the solution of

qu = VLi x Vi — 2div[2HV®] in B, (x0), (IV.68)
E=0 on 9B, (xp).

Classical elliptic estimates combined with the first equation of (IV.55) and the fact that
Vi3 < & give
/ IVE|?dx? < C/ [IVS]?> + |[VR> + |VB|*]dx? + Ce/ \Vii|? dx?.
B (x0) By (x0)

By (x0)
- (IV.69)
Since 7 — £ is harmonic on B, (x), we have

/ V(i — &)|?dx® < t2/ V(@i — &)? dx2. (IV.70)
By (x0) B (x0)
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Hence

/ |Vi|?dx* < [t* + Ce] |Vii|? dx?
By (x0) By (x0)
+Cf (VS]> +|VR> + |V’ ] dx>.
By (x0)
Inserting (IV.65) in (IV.71) we finally obtain, taking o small enough that § < 1,

/ [VSP + [VR]? + V32 + 82| Vii ] dx?
B3, (x0)

< C[t* + C/5 + 8% [IVS]2 + |VR[? 4 |V3|? + 82|Vii|*] dx2.
B, (xo)

(IV.71)

(IV.72)

We fix + > 0 and ¢ > 0 independent of r, x9, 0 < op and the solution such that
C[t* + C\/¢] < 1/2. By a classical iteration argument we deduce the existence of y > 0

such that

sup r_V/ [IVS]2+ |VR]? + V3|2 + 62 V2(e *®) 2] dx?
x0eD} 5, r<1/16 B2 (x0)
5/2 VS + VR + [V + 62| Vi) do.

D1/4

Combining (IV.41), (IV.53) and (IV.73) we obtain in particular

. 1/2
sup V2 U [IVS]? +|VRI* + V3] dxz]
x0eD} 5. r<1/16 B} (xo)

< CIViill 2p2y + Clo Vel )

Ag (DY)
Az(D)

+ Cl, |a| / e dx® + CGZ/ [1+ HYe?* dx* + Cl,
D? D?
Combining (IV.74) and (IV.27) gives

sup r7 v / H2[1 + o%(1 + HH))? dx*1e** dx*?
xpeD} g, r<1/16 B2 (x0)

2 2
50/ |Vﬁ|2dx2+C[lg/ |Va|2dx2] + CI2 |a|2[/ ezﬂdxz}
D2 D2 D?

2 A"(D2) 2
+C 2/ 1+ H*le** d 2] +c1§[q’—} :
[0 D2[ le“* dx A5(%)

Iv.73)

(IV.74)

(IV.75)
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Step 4. Bootstraping (IV.75). Lemma VII.4 applied to (IV.67) implies that

sup r 7 / [Vi|? dx?
xOED%/16,r<1/32 Brz(x())

2 2
5c/ |Vﬁ|2dx2+C[la/ |Va|2dx2] +cz§|a|2[/ ez"dxz}
D? D? D?

2 49 20 5.2 2 2 Aé(Dz) ?
+C[U / [1+ H e dx i| +Cla[—:| . (IV.76)
D? Az (%)
The Liouville equation reads
—Aa =K + Ap = P K — e Ky, (IV.77)
Thus
/ |Aa|dx? < / \Vii|* dx? + 47212 e || Lo 2 (IV.78)
B2(xp) B2(xo)

Combining (IV.76), (IV.78) and Adams—Morrey embedding gives, for p < %:—J}:

[Va ||Lp(D%/32)

<Cp sup 17 / [Vii|* dx? + Clle* | .o 2y + [ Vell 22y
9Dy, 7<1/32 B} (x0)

(Iv.79)
This gives in particular

2/p 2
[/ [y |Val|?1P/? dx2j| < czg[ sup rY / |Vﬁ|2dx2j|
D} x0€D}) 14, r<1/32 B}(x0)

/32
+ Cly |12 . 2, + Cly IVa|>dx?>.  (IV.80)
L(D?) 2

Equation (IV.7) gives
AQH(1 420%(1 + H?)) = div(2ly f1(H)Vii +2¢ 1, Vd - VaVa
—Io[~2f5 (H) + e |Va|* — Kgae
+ KgpAg (D) VD — 20, (AL VEe)t).  (v.81)
This implies that V= eXZI:I(l +202(1 + H?)) satisfies an equation of the form
AV =div(l + J), (IV.82)

where . B . _
I :=2l,e" fL(H)Vii + 2y fo (H)V® + I, K gyae* "V ®.
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Thanks to (IV.75) we have on the one hand

2
sup r‘yf |I]dx? §C/ |Vﬁ|2dx2+C[lg/ |Va|2dx2]
B2(x0) D? D?

x0€D 3y r<1/4
Ag(D?)
Ag(X)

2 2
+ CL @™ || oo p2) + c[a2 / L+ H*1e? dxz] + czg[ } (IV.83)
D

where y and C are independent of the solution and of o but only depend on the con-
stant C; in the statement of the lemma.

On the other hand, using the fact that2 —y /(1 — y) > 2 and using (IV.80) we deduce
the existence of ¢ > 1 such that

A

R 1/q 2
| |4 dx2i| < czg[ sup rY / |V71|2dx2i|
e xg€D, g, r<1/32 B}(xo)

+C[lg||e2“||Loo(Dz)+IU|5|]||62“||L00(D2)+Clg/2 |Val>dx®.  (IV.84)
D

Using (IT1.67) and the classical Adams—Sobolev inequalities (see [40]) gives the existence
of p > 2 such that

20l H( + 20>+ H ) oy 0y = 1V I 0Dy 600

2 2
§C/ |Vﬁ|2dx2+C[lo/ |Voz|2dx2i| +C[02/ H4e”‘dx2i|
D? D? D?

A&)(Dz) i|2
Ag(X)

+ C[ltzr |E|2 + l?, ”€4M ||L°°(D2)]||64M ||LOC(D2) + C‘l(.zr [ (IVSS)

where we have used (II1.69), (I11.70) .

Bootstraping this information respectively in the three elliptic systems (IV.67), (IV.77)
and (IV.81) (which are now becoming subcritical for V € L” with p > 2) one obtains
(IV.5), (IV.6), and Lemma IV.1 is proved. ]

V. The Palais—Smale condition for frame energies

V.1. Sequential weak compactness of weak immersions in Ex, 2 with uniformly bounded
frame energies

In this section we work with the Lagrangian F° defined in the previous section but the
parameter o will be fixed all along the section. So, in order to simplify the presentation,
we will simply work with the following Lagrangian:

F(®) := / [H? + [0+ H>? +27! |da|52,5) + Kgye>*]] dvol,
)

— 271K, log(Area(®(X))), (V.1)
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where as before go is a constant Gauss curvature metric of volume 1 on X, and gz =
e go- The following lemma was proved in [35] when X is the torus. We extend it now to
general surfaces following the same ideas.

Lemma V.1. Let 3 be a closed surface and ®* be a sequence of weak immersions in
Ex 2 satisfying
lim sup F(®*) < 400. (V.2)
k—400
Then the conformal class of the associated sequence gé of constant scalar curvature met-

20k

rics of volume 1 such that ggi = e gg is precompact in the moduli space M(Z).

Moreover, there exists a sequence of diffeomorphisms W* of £ such that (W*)* gé con-
verges strongly in any C! topology to a limiting constant curvature metric h, ®* o Wk is
conformal on (X, (W)* g](j) and is sequentially weakly precompact in W>* and for any

weakly converging subsequence the limit 5 * is still a weak immersion in Ex, 2 and
log |d (D o \11")|(2\Uk)*gk — log |[dE® 2 weakly in W,"*. (V.3)
0
Proof. We work with an Aubin gauge in the case K,, > 0. Using Lemma III.12 for
K, < 0and Lemma IIL.11 for K, > 0, we have in all cases

lim sup / A+ Hékﬁ dvoly,, < +00. (V.4)
k—+oc0 JX
Hence using again (II1.76) for genus(X%) > 1 or Lemma IIL.11 for K, > 0 gives in all
cases
lim sup / |da® |2, dvol & < +oc. (V.5)
k—+o0 JX &0 0
Moreover since X is a closed surface, using the Willmore—Li—Yau universal lower bound
of the Willmore energy (see [40]) we also have

1672 < |:/;: ezak dV01g§i| |:/; H%k dVOIgi)k:|' (V.6)

Combining (V.4) and (V.6) we have proved in all cases
lim sup |log(Area(®* (%)))| < +o0. (V.7)

k— 00

These preliminary estimates having been established we now prove the precompactness
of the conformal class in the non-zero genus case. The case when X is a torus has already
been considered in [35]. So we can restrict to the case where genus(X) > 1. Assuming
the conformal class associated to gz« and hence g’(j would degenerate we have a rather
precise description of this degeneration (see [23]). It requires the formation of at least
a collar which is a subdomain of ¥ diffeomorphic to an annulus that we identify to a
cylinder of the form

2

C:= {(X1,xz); i

2
(pk<x2<l—k(n—<ﬂk),0§x1§27f}
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where the vertical lines x; = 0 and x; = 27 are identified, I¥ is the length of a closed
geodesic for the hyperbolic metric gé,

k=0,

and ¢¥ := arctan(sinh(/¥/2)). The closed geodesic of length I¥ is given by x; = 72/I* .
On this cylinder the hyperbolic metric g](j has the following explicit expression:

1k xy

I* 2
g = (—) [dx{ + dx3].
2 sm( o )

Denote in these coordinates

8k 1= el [dx% + dxzz] and Ef.‘ =M Dy, P,
The unit vector field EII‘ is tangent to a foliation by circles of the Pk -image in R3 of the
collar region We apply the Fenchel theorem to each of these circles. More precisely, for
eacht € (lk ok, lk Z(m — ¢~)) we have

dek
2 5/ —|dx;. (V.8)
(o=r)nC| 0x1

Integrating this inequality for x, between 217[ @* and 2” 2% (7 — ¢*) and using Cauchy—

Schwarz gives

1/2
(ZlLk)( -2 k)<T,/n—2¢k[/c|v2’;|2dx2] ) (V.9)

We have |VE’1‘|2 < |Viigu |2 4+ |VA¥|2, and moreover AF = ok + uF where

1k 1¥
uk = 2log| — ) — 2log| sin 2 .
2r 2

Thus
*x
Vb = (l) cos (2 )
™ sin?(h2)
T
Hence
lk 2 p2r(mr—ok) Ik d ) d
T Jamek Ik sz(12 ) 2kt (1K) x5

(V.10)
and since from (V.5) we have

lim sup |Vock|2dx2 = limsup/ |dock|§,g dvolg., < +00,
ok P
k—+o0 JC k—+o0 JC
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we deduce that
lim sup/ |Vék |2 dx? < +oo. (V.11)
C

k——+00

Combining (V.9) and (V.11) shows that / k is bounded from below by a positive number,
which contradicts the formation of a collar and the degeneracy of the conformal class
of [g’g]. Modulo composition with isometries, g’g strongly converges in every Banach

space C!(X). In order to simplify the presentation we assume that gé is fixed. We cover

the Riemannian surface (X, go) by finitely many conformal charts ¢; : D? on (D?)
k

for j € J such that & C |J; qu(Dfﬂ). Denote again by ¢7 g4« = e [dx? + dx3] the

expression of g in the chart ¢;. We have

limsup/ (|Vﬁ’&ko¢.|2 + |V)»§?|2) dx? < +oo. (V.12)
k—-+oo JD? !

k -
Fori = 1, 2 we denote Ej."l. = Oy (®F o ¢;) and the Liouville equation gives

k ~k . glzk 2
—AA; = (Ve; ;:V7e;,) inD”.
Inequality (V.12) implies

limsup/ |Vé} ;12 dx® < +o0. (V.13)
D? ’

k— 400

Combining (V.12) and (V.13) with the Wente estimates we obtain the existence of E eR
such that o
: k k

lim sup ||kj —Aj ||L°°(D§/4) < 400. (V.14)

k— 400

Due to the connectedness of ¥ we deduce that

sup lim sup ||A;‘ — )L;.‘HLOO(D%M) < 4o00. (V.15)
J#l k—+o00
Moreover
. ko
lim sup e dx® < +o0. (V.16)
k—+oo0 J D2
We have
2 2\ 2
47 <Z/2 H&)ko¢]e T dx
jeJ DI/2
1/2 1/2
k k
< (/ e dxz) (/ Hékod)_em-/ dx2) . V.17)
ier \IDi), DY) !
Since
k
lim sup/ Hg)k _62)“-/ dx? < 400, (V.18)
k—+00 D%/z o0
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we deduce from (V.15)—(V.17) that

max lim sup || XX [, o < 400. V.19
ey k%+o<£) I j ”L (D§/4) ( )

Using
- k
A(@ o ¢y) = e Hyy )

together with (V.18) we deduce that ok o ¢; is sequentially weakly precompact in
W2’4(D12 /2). Bootstrapping with (V.19) gives (V.3), and Lemma V.1 is proved. m]

V.2. The Finsler structure on the space of W>*-immersions

While aiming to apply Palais deformation theory we are going to equip €y, 2, the space of
W24-immersions, with a Finsler structure || - || & given in [44] for which the metric space
given by the Palais distance is complete.

V.3. The Palais—Smale condition

The aim of the present subsection is to establish the following lemma which was proved
for the exact Willmore functional in [6].

Lemma V.2. Let ¥ be a closed surface and ® be a sequence of weak immersions in
Ex 2 satisfying

lim sup F(®%) < +o0 (V.20)
k——+00
where F is given by (IV.1), and
lim  sup AF(®Y-w =0 (V.21)

k=400 1) 4 <1
where for any ® € Ex, » we denote
-4 85,714 = 4 4
||w||&) = /E[W ®dw|g&) + Idwlg&) + |w| ]dvolgi).

Then, modulo extraction of a subsequence, there exists a sequence of parametrizations Wk
such that ®* o W* strongly converges in W>* to a critical point of F in Ex 2.

Proof. We take an Aubin gauge for the §% case. We denote f (1) := 1> + (1 + 12)%. We
consider the charts ¢’/ given by the previous lemma and we omit the index j. We also
skip the index k unless absolutely necessary. In each of these charts, (V.21) says that
G = div[V(f'(H)ii) — 2f'(H)Vii — 2¢"*Vd - VaVa
F[-2f(H) + e 2 Val? — Kgae ™2 + Koy Ag(2) IV — 2¢7H([L V4]
— 0 strongly in W243(D2) = (Wt (DY)*.  (V.22)
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Let

- 1139 . , - oz

dr=—=—— — *[-2f (H)Vii —2¢ "V VaVa
2w r or

F[2f(H) + e P Val? — Kgae ™™ + Koy Az (£) 7V — 2¢7 (AL V) 1.

This convolution is justified by observing that }% € L>*®(R?) and the other term in the
convolution is uniformly bounded in L' (R?%). Hence

lim sup [|¢ 12,00 < +00.
k——+o00

Obviously

Gr = A(f'(Hp)iix + i) — 0 strongly in W=243(D?) = (W *(D?)*,
limsup || f"(Hi)rik + dill 1473 p2y < +00.

k— 400

Let /2 be a weak limit (of a subsequence) of f/(Hj)hy + q;k in L*3(D?). It is obviously
harmonic, and using Rellich—-Kondrashov we have

f/(H)fix +¢r — h strongly in L?O/S (D?).

Let My := f'(Hy)iix + éx — h. Then

ék = Aﬂk and Mk — 0 strongly in L4/3(D2). (V.23)

loc
Applying the Poincaré lemma we obtain the existence of L such that
VL := VI (f/(H)i) — 2f (H)V*i — 2 62Vd - VaVia
F[=2f(H) + e 2 |Va)? — Kgae 2 4 KAz ()1 IV
+2¢ 2L Via — VML (V.24)
Equation (II1.50) gives
VO .VEL — div[V - M]
=2¢"*2f(H) — H f'(H) + Kggae ™2 — Koy Az ()™ — M - AD.
Let Y be the solution of
AY =22 (2f(H) — Hf (H) + Kgyoe ™2 — Ko Az (2)™)) = M - A® in D?,
Y=0 on D2,
Observe that 2f (H) — H f'(H) = 2(1 — H*). So Y satisfies

—AY = 4¢P (1 — HY + 2K gyae™ — 2K A3 (2)" = M - AD  in D2,
Y=0 on dD?.
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Since A® is uniformly bounded in L*, we have M-AD -0 strongly in L'. Hence

limsup [[VYi|l f2.00(p2y < +00. (V.25)

k—+00

Using the Poincaré lemma we deduce the existence of a function S such that
VS=L-V®—-M-V+td +Viy. (V.26)

Equation (ITI.58) in conformal coordinates gives

VO x [VIL - VM] = -V+® . VF/(H) +2Va - VLD (V.27)
where
- 2 - 2 -
VD = (e*ZA 3 Loy @ e Ly, <I>>. (V.28)
i=1 i=1

Let W be the solution of

(V.29)

-

AW =M x A® in D?,
W=0 on 3D
Since A® is uniformly bounded in L*, we have Mx Ad — 0 strongly in L'. Hence

kl:r_{_loo ||VWk||L200(D2) =0. (V30)

Using again the Poincaré lemma on D? we obtain the existence of V such that
VV:i=LxV®—MxVLd+ f(H)VD —2(a — &) VD + VW, (V.31)
Using the explicit expression of vD given by (II1.59) we obtain
i (VV = VW) =i - (L x VO — M x V1)
L-Vid+M - Vd=VLs+ vy (V.32)

™~

We also have
ix (VV = VW) = —(L - )V + (i - M)V D
— fI(H)VE® — 2(a — @)ii x VD. (V.33)
Denoting by 77 (V+ V+ VW) the tangential projection of V- V 4+ VW, we have
ar(VEV + VW) = (L - 7)) VD — (i - M)V+D
+ f(H)VE® — 2(a —@)V*D. (V.34)
Hence

ix(VV—VIW) = —VIV-VW—2(a—a) (VI D+ixVD)—i#(VS—VLY). (V.35)
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Let v be the unique solution to

> _ gl =2
[y e,
Using one more time the Poincaré lemma we obtain the existence of # such that
vty = Vo + vii. (V.37)
Finally, let R := V — ii. We have
ixVV =ixVR+7ixVii=ixVR+i x V0. (V.38)

Hence (V.35) becomes
X (VR—ViW)+7ix Vo= VIR — VW + Vi
— VS —2( —a)(VED+i7i x VD),  (V.39)
which gives

AS = —Vii - VAR + div(ii - VZ — 2(a — @)ii - VD),
AR = Vii x V'R 4 Vii - V18 4 div(—ii x Vi 4 2(¢ —@)(=VD +ii x VD)),

where 7 := 3 — W. Let U := R + 2(a — @) D. With this notation the above becomes

AS = —Vii - VXU + div(i - VZ + 2ii - DV=+a),
AU = Vi x VXU + Vii - VS — div(ii x VZ —2VaD + i x DV-+ta).

From Lemma V.1 we know that V7 is weakly sequentially precompact in L*(D?). The
factor « satisfies the Liouville type equation

—21 _ 2
e Ao =e¢e Kga,_Kgo'

Since « is uniformly bounded in L, as also is i on D?, we deduce that A« is uniformly
bounded in L2, and hence Va is strongly precompact in Lﬁ)C(DZ) for any p < 400. We
know that VW converges to zero strongly in L2 and that V7 is strongly precompact in
L7(D?) for any ¢ < 4. Since also VD is weakly precompact in L* and since we have
chosen D to be of mean zero on D2, it is precompact in any L{;C(D2) for any p < +o00.
We can then apply Lemma VIIL.2 to deduce that V.S and VU are strongly precompact
. L4/3 D2
in L, -(D7). 3

Taking now the vectorial product between (V.31) and V& we obtain

(VV — VW) x V1o
=L -V - M -VI) VO —2f/(H)e*ii — 2(a —@)VD x V1D +2Me*
=ViS. VO+VY -V —2M VD) - VI —2f (H)ePii
— 2« —@)VD x VI + 2Me?. (V.40)
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We also have
VV x V1d = VR x V1d + Vi x V1d

—VRxV5I®+ V9o x V1D + VY- (i x VI D)
=VRxVid+Vix VP + VY. V. (V41)

Combining (V.40) and (V.41) gives

2 (H)eii = VS - VO — 2(@ —@)VD x VE® — VR x VEd — Vi x VP
+2Me* —2(M -V®) - VO + VW x V. (V.42)
This implies
2f/ (H)e? i = V1S . VO — VU x V+® — Vi x VO + 2D x V+d - Vo

+2Me* —2(M - V) -V + VW x V. (V.43)

From the results established above we see that f/(H) is strongly precompact in Lfo/f (D?).
Explicitly, f'(H) = 2H (3 + H?). Denote

loc

J®:= lim H*G+|HY? strongly in L\/?(D?). (V.44)
k—+00
Since VaF is strongly precompact in any Lf;c(Dz) for p < 400, this is also the case
for VA¥. Moreover A®F is uniformly bounded in L*, so for a subsequence we have
HY ~ g% =27 1o A weakly in L4(D§/4),
and ® is a conformal immersion of the disc Df 1 in& D22 Observe that
Y Y3+ |HY) —~ B> J® e L'(D},)  weakly in D'(D} ).

Hence the sequence of non-negative measures | H*|?(34|H¥|?) does not concentrate with
respect to the Lebesgue measure:

Ve >035 >0VE C D%/z measurable,

|E| <§ = limsup/ |H ) dx? <. (V.45)
E

k—+o00
From the strong convergence (V.44) we deduce
H* > I® ae.in D%

In view of the Egorov theorem, for any 8 > 0 there exists E5 C D? such that |Es| < 8
and
H* — I uniformly in D* \ Es.
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Hence for any test function ¢ € C(C)’O(Df /2) we have

lim sup / oH* dx? —/ eI® dx?| < ||¢llso limsup | |H¥|dx?.  (V.46)
k—0 D? D2\Ej k—+oo JEs
Combining (V.45) and (V.46) we deduce that
1° = H®, (VA7)

and, using (V.44), that H* converges strongly to H> in L*. Hence ®F is strongly precom-
pactin W2’4(D% »)- Inserting this information in (V.22) shows that the limiting immersion
satisfies the Euler—Lagrange equation of F, which concludes the proof of Lemma V.2.

O

V4. Minmax procedures for frame energies

Vi4.1. The free case. Let P(E) the space of subsets of the space £ of weak immer-
sions.

Definition V.3. A non-empty subset A of P(Ex 2) is called admissible if for any homeo-
morphism ¢ € Hom(&a ,) isotopic to the identity we have

VAe A ¢(A) e A

Moreover, there exists a topological space X such that for any A € A there exists 4 in
co(x, Ex 2) such that
A = d4(X). O

Let now A be admissible. Because of Willmore’s universal lower bounds of W on the
space of closed surfaces, we obviously have

B(0) := inf max W(CTD) >4 > 0. (V.48)
AeA pea

Since for any fixed ® the map o +— F "(CTD) is increasing, we can use a beautiful argu-
ment initially introduced by Michael Struwe [48] and follow word for word [32, proof of
Theorem 6.4] using the Palais—Smale property of F established in Lemma V.2 to deduce
the following lemma which was the main goal of the present subsection.

Lemma V.3. Let A be an admissible family. There exists a sequence o* — 0 and a
sequence of critical points P of F o* such that
- > 1
Bc") = F7 @) and 9, F° (@) =0 ——— ). (V.49)
ok log(ck)~!

so in particular
lim W (@) = B(0). O
k— 00
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Vi4.2. The area constrained case. We are now going to adapt the previous case to the
situation when we fix the area to be 1. More precisely, we define

s, = {cﬁ €€sa: / dvolg, = 1}.
P

It is not difficult to check that this defines a Finsler manifold structure based on the W2#
topology. The notion of admissible set is defined as above but with general homeomor-
phisms of 5 > replaced by homeomorphisms of &, ! »- The construction of the pseudo-

gradient restricted to 5 , applies and we can again follow [32, proof of Theorem 6.4]
word for word and use the Palais—Smale property of F? established in Lemma V.2 in or-

der to deduce the statement of Lemma V.3 under the area constraint Area(cb" ) =1.We
shall now establish the following lemma which is a consequence of the scaling invariance
of the Willmore energy in R".

Lemma V4. Let ®°° be a critical point of F°" under the constraint Area(&D"k) = 1and
satisfying
> 1
0, F7' (37") = 0(—) (V.50)

ok log(ok)~!

Then it satisfies the equation (for any choice of gauge oX in the case . = §%)

| g AUt 15 Vi) = 2ot f15 (Y, g
1k [ =2 fy (HY) + b 12 — Kok e ™ + K gy [A g (9)] gy dBF
— 2 (d D, dak) g g ot + 20T L Grg, a’ozk)] = CHd[xg, dO*] (V51
where

ck = 2(0%)? / (1 — [H " dvoly, + 1 / K gy dvolg, — i Kg,. (V.52)
) )]

Hence (for the choice of an Aubin gauge in the case © = S%) we have

lim |C*| = 0. (V.53)

k——+00

Remark V.1. Observe that a priori C¥ depends on the choice of the gauge o.

Proof of Lemma V.4. We omit the index k. The fact that equation (V.51) is satisfied
comes from (II1.46) and classical Lagrange multiplier theory, bearing in mind that the
first derivative of the fixed area constraint is proportional to d[* 24k d ok ] which cannot be
zero since obviously there is no compact minimal immersion in R (hence the constraint
is non-degenerate). We take the scalar product between (V.51) and ® and we integrate the
resulting 2-form over the closed surface X. This gives
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C=1, / [2fo (H) — Hf; (H)]dvolg, + Ky, | ae™>* dvoly,
z D)
+ 4ml, (genus(X) — 1). (V.54)

Since 2f, (H) — Hf.(H) = 2021;'(1 — H*), we obtain (V.52). For the choice of an
Aubin gauge we have due to (V.50), combined with Theorem II1.10 and (II1.69),

ol o s2) = o(1). (V.55)

This implies (V.53) for © = §%. For ¥ # S, Lemma III.12 combined with the assump-
tion (V.50) also implies
lolleel| oo sy = o(1), (V.56)

and Lemma V.4 is proved in any case. O

For the area constrained critical point we then have the following e-regularity lemma
whose proof follows step by step the proof of Lemma I'V.1 since (V.53) holds.

Lemma V.5 (Uniform e-regularity under area constraint). For any Co > 0, there ex-
ist €,00 > 0 such that for any o € (0, 09) and any critical point ® of F° under the
constraint Area(®) = 1 satisfying

&

Fo(®) < Cy and d,F°(®) < (V.57)

olog(o)~ 1’

ifwe assume moreover

/ [Vi|?dx? < e, (V.58)
D2

then for any j € N the estimates (IV.5) and (IV.6) hold for £ # S?, and for any Coulomb
gauge in case ¥ = §2. O

VI. The passage to the limit asoc — 0

We shall give two results regarding the passage to the limit in the equation. A subsection
will be devoted to each of the two results.

VI.1. The limiting immersions

We denote by M (5?) the non-compact Mébius group of positive conformal diffeomor-
phisms of the 2-sphere S2.

Lemma VL1. Let o — 0 and let &% € Eq be a sequence of weak immersions which

are critical points of F° under area constraint equal to 1 and such that

: ok 2k ok 2k 1
limsup F° (%) < +o0 and 0,F° (®")=o0 I (VL1)
k—+00 o log(a )~
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Then modulo translation there exists a subsequence, still denoted ®K, there exists a family
of bilipschitz homeomorphism V¥, there exists a finite family of sequences ( fik)fvz L of
elements in M7 (S?), there exists a finite family of integers (N,-)lN:1 and for each i €

{1, ..., N} there exist finitely many points osz, bi1,...,bin, such that
O o Wk s foo strongly in C°(S%, R™) (V1.2)
where foo e WLoo (82 R™), and moreover
o fF~EX  strongly in CL.(S*\{bi1, ..., bin,}) (VL3)

for any |l € N where é’;’o is a Willmore conformal possibly branched immersion of S*. In
addition

N
osh) =&Y, (VL4)
moreover =l N
A0 = /S Ldvolgy, — AGF™) =3 AGP) (VLS)
and finally
N
(F2)alS71 =Y (E)4[57] (VL6)

i=1
where for any Lipschitz mapping a from S into R™, (@)+[S?] denotes the current given

by the push-forward by @ of the current of integration over S*: for any smooth 2-form w
on R™,

(@[5, ) == / @ o. :
52

Remark VI.1. Lemma VI.1 “detects” the Willmore spheres “visible” at the limit but ig-
nores the possible “asymptotic Willmore spheres” which shrink and disappear in the limit.
The detection of these asymptotic Willmore spheres is the purpose of the next subsection.
Finally, the detection of the possible loss of energy in the so called “neck regions” and
the energy quantization effect is going to be investigated in Section VII.

Proof of Lemma VI.1. We work modulo extraction of subsequences. Consider the various
diffeomorphisms fl.k of §? given by [34, Theorem 1.2]. We choose the gauges given by
fik , that is, the pairs ( fl.k, a;‘) satisfying

20k
g&)kofikZE ’g52.

From the analysis in [34] we have the existence of N; points of s2, bi1,...,bin,, such
that
. k k
limsup (llori Il e (s2\(py 1. oobion, b TNV L2 (52011, ) < F00- (VLD
k——+o00

Hence in particular

. k k _
m ol s 2o by p VI IV 2\ i) =0 (VIB)
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The assumptions (VI.1) imply moreover
(c%)? /S 1+ HZ,)? dvolgi = o(l,1). (VL9)
Again from the analysis in [34] we find that the density of energy
i ot |§&)kofik dvolygy i

remains uniformly absolutely continuous with respect to Lebesgue measure in
5%\ UjV; | Bs(b; ;). Hence all the assumptions which permit applying the uniform e-
regularity Lemma IV.1 are fulfilled and we deduce the strong convergence (V1.3) towards
a Willmore sphere that can be possibly branched at the b; ;.

‘We now claim that these Willmore spheres are true Willmore spheres in the sense that
the Willmore residues are zero:

i

f (8 Hzoe — 2Hzoo Dyiigoc — 2HZ, 3,E®)dl = 0.
dBs(b; ) ! ! i

Indeed, because of the strong convergence (in any C! norm) away from the b;,j we have,
forany § > 0,

/ (8 Hg — 2Hzy yiige — 2H, 3,EN) di
dBs(bi,j) ! ! ! i

N / (8 Hzoo — 2Hgoo dyiigee — 2HZ, 30,EX)dl = R
9Bs(bi, ;) ! ! ! i

where § lk = dko fl.k . Since § 7 is obviously Willmore, we see that R is independent of
8 < infj4 |b; j — b |. For any (i, j) we choose x; ; € CSO(O, 8;) such that 0 < §; <
inf#l |bl‘,j — bl‘,1| and '/.R+ X,-,j(s) ds = 1. Hence

R = /_;2 Xi,j(x —bi i) dlx — b j| A [*dﬁgfo — 2H§ioo*dﬁ§[oo — 2H§2i°°*d§ioo]'
Because of the strong C! convergence we have

. d - 2 _’k
R= lm_ ; Xi.j (1% = bi jl) dlx = bi j| A Lsd Hey — 2Hgoxdiige — 2HE <dEf )

Since we are on a sphere, and because of the Euler-Lagrange equation (IV.7), we have
the existence of Ly on By, (b;, ;) such that

dLk = *dﬁg_k — 2Hgexdiige — 2H§k*d§,?< + 40 %xd (Hgi (1 + ng_k))
- 8021@(1 + ngl_,{)*dﬁglg —202(1 + Hé_k)z*dEf — 21, (dd - dak)ggk *dok

+ lg[|dak|§§k — Kgooke ™" + Ky Agh (2)™"1#dEf + 25T L xdo*.
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Since clearly
/2 Xi,j(Ix — b i) dlx — b; jl ANdLF =0,
N
we have

R =
—402 lim [X,,(|x bi.j) dlx—b; j|Axd(H; k(1+H~k)) —2H k(1—|—H~k)*dn q

k— 00

4202 lim Xij (Ix—=bi i) dlx—b; ;A (1+HZ)?xdEF
> g

k—+o00 Jg
—2l, lim f X,-,j(|x—bi,,~|)d|x—b,-,j|A[<d&>.dak>g_k*dak—ﬁgkl_*da"]
k—+o0 J g2 & i

. 2ok _ e
+Il, lim Xi,j(|x—b,-,j|)[|da’<|§gk—Kgoake 2a +K gy Az () Ndlx—b; j|AxdEF.

k—+o0 J g2

Using the strong precompactness of é"l.k in any C! topology in the domain where
Xi,j(Ix — b; j1) # 0, we conclude that R = 0, and this finishes the proof of Lemma VI.1.
]

VI1.2. Bubble detection

Lemma VI.2 (Bubble detection lemma). Let X be a closed surface, let Co > 0 and let
S(Co) > 0 be given by Lemma V.5 . Let c* — 0 and Ok be a sequence of critical points

of F " under the constraint Area(®*) = 1 and satisfying

. . 1
FO'(@% < Cy and 8, F° (dF) = O(W) (VL10)
oklog(o

When ¥ 75 S% assume that the sequence of constant Gauss curvature metrics gg such that
83k = e g is precompact in any C'(X) topology. Let B k(pk) be a geodesic ball for
the metric g0 such that

/B o |dﬁ|§&)k dvoly,, <e. (VL11)
k(P

Compose Ok with a sequence of conformal chartsk (xll‘, xlz‘)from D? into (Bpk (xk), gé)
such that there exists [t;, € R satisfying g = 2 [dx1 + dx%] and p* — Tk is weakly
precompact for the (L*°)* topology. Let @* be the average of a* on Dl 12 Then

e T 1Bk (x) — K (0)]

strongly converges in D% 1 in any C! norm towards a Willmore disc. O
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Remark VL.2. We are mostly interested in the balls B ok ( pk) for which

limsup/ |dﬁ|2Q dvol,., >0 (VL.12)
k0 ey S

where there is indeed a non-flat Willmore bubble forming which swallows part of the
energy. The lemma however also applies when (VI.12) does not hold. O

Proof of Lemma VI.2. We keep denoting by ®F the _composition of ®F with the given
chart and we work on D2. Because of Lemma V.4, & satisfies the equation (where we
omit the subscript k)

¢t div[V Hy — 2Hg Viig — 2HIV ]
= div[—-2¢* 0> V[Hj (1 + H2)l+ 402" Hy (1 + H2)Viig]
+div[o?(1 + H2)?e"Vd + [, (I L Vi) + Vd - VaVa]]
— div[2 'y [e 2 [Val? — Kgyae ™ + Ky le* | +27'Ce™ Hy (VL13)
where A is the average of A on D% /20 equal to & + «. The uniform e-regularity under the

area constraint (Lemma V.5), combined with our assumption (VI.10) and Lemma V.4,
implies that the right hand side of (VI.13) converges to O in any C! norm. Denoting

E = e M (D(x) — D(0)) we have
- SV £ _ g
g—né p=e Hz and V& =¢"VO.

Hence
div[V Hzi — 2H Viige —2H; \VEK] >0 inC'(D}{,) VI €N,

and

limsup/2 |V7¢§k|2dx2 <400 and limsuplog|VEX)? < +oo.

k——+00 Dl/2 k——+00

Adapting the arguments in [41] (see also [43, Theorem 7.11]) to this perturbed case gives
the strong convergence of fk to a limiting Willmore immersion in C’ (D1 /2) foralll e N,
and Lemma V1.2 is proved. o

VI.3. Energy quantization

With Lemma VI.2 at hand, in order to prove our main result of Theorem I.1, following
the scheme of [8] it remains to establish the vanishing of the energy in the so called neck
region. We now restrict to the sphere case exclusively. More precisely, we are going to
prove the following lemma.
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Lemma VL1. Let X — 0 and let F € £ 2 be a sequence of weak immersions which
are critical points of F° under the area constraint and such that

. - 1
lim sup Fo (@) < +00 and BUF"k (@ = o<ﬁ). (VL1)
k—+o00 ok log(ak)~1
Then there exist finitely Willmore immersions 51 e én of §? minus finitely many points
such that
n
lim W@ =) WE)—4nN V1.2
for some N € N. O

Proof. We shall work with an Aubin gauge (W*, o*) satisfying
aropt =52 and Vi=1,2,3 f e dvolg =0
4 S2

where g2 and dvolg are respectively the standard metric and the standard associated
volume form on S2. In order to simplify the notation we omit W; which we assume to be
the identity. The assumption (VI.1) reads

1 k 2\22
O<W> =% /sz(l + Hg) e dvolg,
1 -1 k k 2
+ ok (log ok )2 |:/;2 27 |da" g, dvolg, + /52 a” dvoly , — 2m log Area(®y) |.

The non-negativity of both terms on the r.h.s. gives respectively

1
kN2 2 N2 2 _
(") /;2(1 +H5>k) e~k dVOIgS2 = 0(—10g(6k)_1)

and
1 —1y 7.k k 3
W[/ﬁ 27 da |gs2 dvolgs2 + /Szoz alvolgs2 — 27 log Area(®y) | = o(1).
We keep the notation [ x = 1 /log((6*)~1) from the previous sections. Using Lem-

mas III.10 and III.11, we get for this Aubin gauge
Li| |do*?_ dvol, , =o(1) and I_i|&*|l; e 2y = o(1).
o 2 852 852 o L>(8%)

Hence in order to apply the uniform e-regularity Lemma V.5 on any geodesic ball B, (xq)
for the S? metric, it suffices to assume that o is small enough and

|dii|% _ dvol, , < e.
/Br(xo) g2 e
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Then in particular
P (Hge (1420 (14 HE I (3, 5000y + 720 1€ Hage (1+ HED I (5,5 0000

2ivn. 112 =2 5 2
+r ||Vn<pk ||LOC(Br/2(X())) <C /l;z(x()) |V}’l| dx
. 2 2
+ C|:/ [lgkezo‘ + lak“ak”Loo(Sz)]dVOlg 2} + C|:/ (gk)2H4eZA dx2]
By (x0) s B2(x0)

2
+ C|: / I« |Vozk|2dx2} + Clyi | e || Lo (B, (x0)) (VL3)
B2 (x0)

and

2
PP Vak 1o s, gy < Clok / Vo |? dx? + c[ / |vﬁék|2dx2}
B2 (x0) B?(x0)

4 2
+ c[/ (0")?Hj ™ dxz} + c[/ (VIx + Lxe™" ) dvol, 2}
B2(xp) By (x0) S
+ Clyi||e* || oo, (xg))- (V1.4)
Recall that being a critical point of F o is equivalent to the existence of Iji,k such that
VLgi =2V (Hgu (1 +207(1 + H2,))) — 4Hgi (1 + 202(1 + H2,))V-5ii g
— 22 L VOF VbV ok 420, e M Ty L Vo —2H +0(1+ H )M Vo
e [Vok P = Kgpae 2 4w Agi (81 IVEBE,
Since 2(c¥)2(1 + Hék)m&,q |Viigele* < |Viigil? + (a")4H§>k(1 + Hék)zez’“k, the pre-

vious estimates imply

1/2
|Vﬁq~>k|2dx2] + Cl / VoK |? dx?
B

2 (x0)

k -
”2”6)L VLék“Loo(Br/z(xo)) = C|:/
B

2 (x0)

+ / ("2 HE P dx? 1, f
B2 (x0) B

We now follow step by step the arguments from [8, Section VI] and check how each
estimate is slightly modified by the viscous terms. We consider a neck region that is an
annulus (for the S% metric) of the form B?zk [((ORY Brzk (0) where

dvolg, +1,k X o / dvolg,.  (VL5)

- (x0) B, (x0)

k
-
lim R*=0 and lim — =0,
k—+00 k—+oo Rk
and such that
lim  sup / |Viigel* dx?* = 0. (VL6)
k=400 1k s < Rk /4 J B3, (0)\B2(0)
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For s < R¥/4 denote

1/2
58K (s) = [/ |Vﬁ|2dx2] +C[1gk/ |Vak|2dx2}
B3, (0\B;,(0) B3, (0)\B}),(0)

1/2 1/2
+ [ / (@) (1 + H?)? e dx2:| + [l(,k / dvol%]
2 (O\B,(0) 2 (O\BZ,(0)

172
+ [lak el oo / dvolgsz:| : (VLT)
3, O\B2,(0)

1/2

‘We have
lim sup s8k(s) =0.

k—+00 se(rk,Rk)

We shall omit the superscript k unless it is necessary. From (VL.5), in the neck region we
have

IxPIVLI(x) < [x]8(x)e ™, (VL8)
and
R/4
lim sup / 82(s)s ds < +oo. (VL9)
k—+4o00 Jr

Following [8] we introduce

-

- 1
L, := Ldlyp,y and A(t) := ——— Adlyp, ).

ol
[0B:(0)] JaB, ) [0B:(0)] JaB,0)

Using (VL.5) we have

di, _ 1 ™ 3Z(r a0 = -2 [ 12020+ 12 7 g
_— = —, = —— o} - —
dt 2 7 Jo t 060

27[ 1 d« 2 . 9
- — / e VD - Voe— — d9 — / e, (ILVYa) - 5 do
0 r

1 d)
——/ (H2+62(1+H2)) 9% 49
1 27

190
+ - lole 2| Val* — Kgyae ™ + 4nA5>(S2)_1]; — db. (VL.10)

a0

Using again o2(14+ H*»? < 20*( + H»)?H? + 3(1 + H?), this gives

dL .
E)L(t) _[ (t) < CO'4”€)LH(1 + H2)"%°O(BB,(O)) + C”Vn”%m(agr(o))

+ Clo Va2 oo, 0y + Lo € + o [l co- (VL11)



Willmore minmax surfaces and the cost of the sphere eversion 407

Combining the previous inequality with (VI.3), (VI.4) and (VI.7) we finally obtain

e)\(t)

2—1; (t) < C8%(1). (VL12)

Following [8, proof of Lemma VI.1] we can choose a normalization in such a way that
HONLI(x) < Clx|™" on By \ Bar, (VL13)

where C is independent of k. We adopt the notations of the proof of Lemma IV.1. Let Y
satisfy

—AY =4e* 0% (1 — HY) + 2l, K gge® — 8ml,e* Ag(SH)™'  in Bg(0),
Y=0 on d Bg(0).
(VL14)
Inequality (IV.40) gives

IV Yl 2oy < C / o2l + B4l dx
Br(0)

A3(Br(0)

+ Cly |t oo / e dx* + Cl, =o(1). (VL15)

Bg(0) Az(5?%)

On By \ B> we have
IAY | Lo (By\B, ) < CE*(D). (VL16)

Hence using standard interpolation theory'# we deduce

2 2 2 2
CIVY 3 0n < CIVY lzoezeon CIAY 1850 + 19V 122 5 0

(VL.17)
Combining (VI.15)—(VI.17) gives
IVY [l ) < oM@ +17'T=o0()r . (VIL.18)
Using the Poincaré lemma we deduce the existence of a function S such that
VS=L-V®+ VY onBg(0). (VL.19)
Combining (VI.13) and (VI.18) gives
IVSliLe@B,©0) < ct=! fort e [2r, R/2). (VL.20)
Let v satisfy
AV =V1Y Vi in Bg(0), V121

v=0 on dBR(0).

14" See for instance [10, proof of Lemma A.1] with ||u|lcc replaced by ||Viu||2 o which has the
same scaling in dimension 2.
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Using the Wente estimates (see [40]) this gives

/ VD2 dx? < C||VY||§’OO/ |Vi|?dx? = o(1),
Br(0) Br(0)

and
t2||vﬁ“%°°(33t(0)) < C”V6||L2t2||A6”L°°(32t\3t/2) +/ |VB|2dx2.
By \By 2
Let
172
n(t) = tl[/ |v6|2dx2} =o()t ™.
By \Bi 2

We have

R
/ nH(orde = o(1).
-
Hence using (V1.23) we have

IVl Lo, 0y < 0(D)8() + 1 (1) = o)t~
Let now u be such that
iv1ty = vi + vt

Then

[ Viill L @B, 0y < o(1)r~ L.

Let

2 2
VD = (zge—ZA Y Lidy @ loe Y Dy &>).
i=l i=l

(V1.22)

(V1.23)

(V1.24)

(VIL.25)

(VI.26)

(V1.27)

(V1.28)

Using again the Poincaré lemma on B (0) we obtain the existence of V such that

VV =L x V®+2H( +25%(1 + H))V® — 2aVD.

(VL.29)

Using again 2|H| o2(1 + H?)) < 2y/H2e?*a*(1 + H?)? together with (V1.3) and using

also (VI.13) we obtain
||V‘7||L°°(3B,(0)) <Clt ' 48] <207,
We denote R := V — ii. Then (IV.22) implies
i x VR +17i x V10 = —VLR + Vi — iVS — 2a(VLD +7i x VD).
Combining (VI.27) and (VI.30) we have

VR L8, 0y < Ct™ .

(V1.30)

(V1.31)

(V1.32)
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Let E be the solution of

AE =2Va -V+D Br(0
I « on Br(0), (V1.33)

E=0 on 3 Bg(0).
Using the Wente estimates (see [40]) we have

||VE||L2(BR(0)) =< ||VE||L2-1(BR(0)) < Clcr||V05||L2(3R(0))||Vﬁ||L2(BR(o)) =o(1).

(V1.34)
Denote
. 1/2
mt) =1 U |VE|2dx2} =o(t~ .
By \By)2
From (VI1.34) we obtain
R/2
/ n3(Orde = o(1). (V1.35)
2r
Interpolation inequalities give again
2 2 7 20 A L 22 g2
PIVEN w50y < CIVE 28500 I AE L% (38,2 + C / IVE? dx
B \Bi 2
< Ct2o(Dlo Vel oo (Bay\Bo) | Vil Lo (Bo\Byj2) + 1705 ()
< Cr2[o(1)8%() + n3(1)] = o(1). (V1.36)
Hence we deduce
IVEll 8,0y < Clo()8(1) + na2(6)] = o(1)r ™" (VL37)
Let F be such that
20VitD =V1F + VE.
Observe that on the one hand
||VF||L2(3R(0)) = 210||a||oo||Vﬁ||L2(3R(o)) + ||VE||L2(3R(())) = o(1), (VL38)
and on the other hand, for ¢ € [4r, R/4],
IVFIllLo@B,0) < 2 llellooll Vil L2 @B, 0)) + IVE| LB, )
= Clo(1)8(t) 4+ n2(1)] = (1)t 1. (V1.39)
Let X := R + F. Using (VI.32) we have
IVXlL @50y < Ct (V1.40)

and X satisfies

ix VX +7ix Vo= —VLX + Vi —iiVS — VE + 1 x VLE. (VL41)
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Let w be the solution of

AW = Vi - Vi@ - E Bg(0),
Aw =Vn- V=@ —E) onBr(0) (V1.42)
w=0 on d BR(0).
Using the Wente estimates we obtain
”VJ)”LZ(BR(O)) = C”V(B - E)”LZ(BR(O)) ”Vﬁ”H(BR(O)) = o(1). (VL43)
Denote
1/2
() = t_1|:/ |V171|2dx2:| =o()t~ .
B2 \Bi 2
From (VI1.43) we obtain
R/2
/ n3(Hrde = o(1). (V1.44)
2r
Interpolation inequalities again give, using (VI.25)
IV® | Lo a8,00) < Clo(DS() + n3(t)] = o(1)t ™. (VL45)
Let Z be such that . .
nx VY@ —E)=V+Z+ V.
Clearly from the above we also have
IVZIl 1280y = (D),
- 3 ) (V1.46)
1V Zll s, 0n = Closm) + > m®)] =",
i=1
Let T := X + Z. We have
VT = -V + VXE +7ivEis +7i x VX, (VL47)
which implies in particular
VLS +7i-VHE —9) =i - VT. (VL48)
From (VI1.40) and (V1.46) we have
||Vf||Lw(aB,(0)) <cr!, so IIVi"IILz,oo(BR\Br) <C, (V1.49)

where the constant C is independent of k (as for all constants C above). Let B be the
solution of R
AB = Vii-V*Y(E —?) in Bg(0),

(VIL.50)
B=0 on d Bg(0).

Similarly to the above we obtain

IVBI 21,0y = 0(1) and  [[VBl1=@5,0) < o(Dr (VL51)
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Denote
172
na(t) =17 [/ |VB|2dx2] =o(1)t™!
By \By )2
From (VI.51) we obtain
R/2
/ it di = o(1). (VL52)
2r
Interpolation inequalities again give
IVB|l LB, 0y < Clo(1)8(t) + na()] < o(1)t ™" (VL53)
Let D be such that .
i-VYHE —-7)=VB+V'D. (VL54)

Similarly to the above we obtain

VDI L2(8g 0y = 0D,

. (VL55)
IVDlle@B, ) < Clo(1) 8(1) + ni () + n2(t) + na(0)] = o(1)t .
Denoting U := S + D we have, from (V1.20) and (VI.55),
IVUllL~@s,0p) < Ct™' so VUl 20opg8,) < C- (VL56)
The pair (U, i") satisfies the following system
VU =V+C —ii - VT,
- o (VL57)
VI =—-V- v+ VE+nV-S4+nxV-X.
Let Uy := [3B;|™" [, U and T; := |3 B;| ™! [,, T.The system (VL57) implies
du, 1 (¥ _ 18T
d—’=—2— i — i)~ o,
! ™ Jo ! B} (VI.58)
ar, 1 2”[ ]1 asd 0+ /2” | 19X "
_—= — - — — [n—1n] x — —
dr 2« ! SEARFY)
where 71, := |0 B;|”! /BB, 7. We have
7 — gl Lo,y < Ct8(t).
Hence using the estimates above we obtain
dU; dT,
— — | < Cé(t VIL.59
o T (), ( )
which implies
R 2 712
dU; dT;
— —| Jtdt <C, VI.60
,/r ( dt dt ) - ( )
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where C is again independent of k. The system (VI.57) implies

AU = —Vii - V1T,
{ " (VL61)

AT = Vi - VIS + Vi x V1X.

We can then make use of [28, Lemma 10] to deduce that VU and VT are uniformly
bounded in L2,

/ (VU2 + |VT|® dx? < C, (VL62)
Br\ B
which in turn implies, using (V1.55) and (V1.46),

/B . (VS]>+|VXP)dx® < C, (VL63)
R r

where C is independent of k. We bootstrap this information in (V1.58) as follows:
dr,

/R du; N
” dt dt
R 1/2F R . . 2 q12
5[/ 82(t)tdt] [/ z‘[ (|VT|+|VX|+|VS|)dl] dti|
r r dB;

R 1/2 . . 1/2
< U 82(t)tdt] [/ (VS|> +|VT|> + |VX|2)dx2} <C. (VL64)
r BR\Br

R
)dtff 8(t)dt (VT |+ |VX|+ VS dl
r dB;

We can choose S and R (which were fixed modulo addition of an arbitrary constant) in
such a way that

0=U, = |aBr|*1/

Udl and Ozf}:|8B,|’1/ Tdl. (VL65)
9B,

3B,

Combining this choice with (V1.64) we obtain
\Uslooqqr vy + 1T 2 r)) < C. (V1.66)
‘We can then make use of [28, Lemma 8] to deduce
VU208, + IVTl 20 815, < C- (VL67)
From (IV.27) we have
2(1 42021 + H?) — l,a)e?* H = VLS . VO — VR x V1 — Vi x VO
=VU . V& - VT x VI - Vi x V& — VD . Vd 4 V(F + Z) x V.
Hence (VI.67) implies

Ihy'e* H+[Vi+VE(F+Z)x VOe ™+ VD -V@e ™ | 215,15y < C.  (VLEB)
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where h;l :=2(1 +20%(1 + H?) — Iya). For any ¢ > 0 we choose ¥ and R¥ such that
185 ()| oo rEY < &
which implies in particular using (VI.3) that
1 k=
I(hEy=1e HY | L2580\ ) < Ce. (VL.69)
Using (VI.22), (V1.38), (VI.46) and (VL.55), for k large enough we have
N =g fd - 1k = 1k
I[VK + VE(FF 4+ ZM] x Voke™ + viDK. voke™ 2,08, < & (VLT0)
Combining (V1.69) and (VI.70) we obtain in particular
108) 1M HE 4 [VF 4+ VEFE + Z9] x V&R ™ 4+ DV e ™| 1)
<Ces. (VLT7D
Combining (VI.68) and (VI.71) we obtain
1)1 M 4 [V 4 VEFE + Z9] x VBFe ™ 4 VEDE VB e g g
<C+s. (VL72)
Combining (V1.70) and (VI.72) we then get
1Ak
Ihg) ™ ™ HE 25 y\5,) < CIVE + €], (VL73)

which implies that the Willmore energy is as small as we want in any neck region for k
large enough. We deduce Lemma VI.1 from this fact and the final arguments of [8].

VII. Appendix

Lemma VIL.1. There exists C > 0 such that for any o € (0, 1) and any Va € L*(D?%
and Vb € L*3(D?), denoting by ¢ the W' solution to the equation

—A@ = dy,adx,b — dx,ady, b in D?,

o0 om0 D2 (VIL1)
the following inequalities hold:
Vel 200 < ClIVall 2oone1204p2) I VDI L2004 5172143 D2y s (VIL2)
(D%) (D)
||V¢)||Lz4c>o+(,—|/2L4/3(D2) < C||Val| ;2. ||Vb||L2,oo+a—l/2L4/3(D2), (VIL3)
where
1 200m0 12802y = If 20002y + 021 Fll 3 (p2).

1Nl 2o pom120453 (02 = Inf (| fill o2y + 0~ 2N ol paispry s £ = fi + o)
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Proof. Let X1 and X» be such that

Vb=X1+Xa, X122 + 0 2IXal 4502y < 20Vbll 200 4o-120453(2)-
(VIL4)
Let ¢; fori = 1, 2 satisfy

—Ac; =div(XiH) in D2,2 (VILS)
¢ =0 on dD~.
There exists a constant C independent of o such that
IVerllpzoop2y = CliXillg200p2y  and  [[Veallpanp2y < CllXallLa3p2y-
Applying the Poincaré lemma we obtain the existence of b; such that | p2bi =0and
X+ + Ve = Vi < X' = Vb + V¢, (VIL6)
and we have
IVbillp200p2y = (C+ DIIX1ll200(p2y  and  [[Vb2llpa3p2y = (C + DIIX2llp43p2)-
Observe that
Vb = Vbi + Vby + V¥ei + Ve,  Aler +¢2) =0. (VIL7)

Since ¢] + ¢ = 0 on 8 D2, we have ¢; 4+ ¢3 = 0 on D? and

Vb = Vb + Vb;. (VILY)
Let
—A@; = 0y,a Ox,b; — dx,a 3y b; in Dz,z (VIL9)
i =0 on dD?.
Using the Wente estimates (see for instance [40]) we obtain respectively
IV@ill200p2) = ClIValp2.00p2y IVOL I 2,00 p2y, (VIL10)
”V§02”L2(D2) < C”Vd ||L4(D2) ”Vbz ||L4/3(D2). (VII] 1)
Combining (VII.10) and (VII.11) we obtain (VII.2). We now write
—Agy = div(h,V1ta) in D?,
¢2 = div(h2V7a) in , (VIL12)
o =0 on dD~.
The Sobolev-Lorentz embedding theorem gives, since f D2 by =0,
b2l La4r3(p2y < CIVD2ll a3 (p2)- (VIIL.13)

Using fundamental properties of Lorentz spaces (see [20]) we have

||b2VJ‘a ||L4/3(D2) < C||Va||L2,00(D2) ||b2||L4.4/3(D2) =< C”VCZHLZ,OO(DZ) ||Vb2||L4/3(D2).
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Hence using the classical elliptic estimates we get
||V(P2||L4/3(DZ) C||Va||L2w(D2)||Vb2||L4/%(DZ) (VIL.14)
Combining (VII.10) and (VII.14) we obtain, using (VIL.4),
1Y@l 200 p2) + 021V a3 2

< ClIVal p2oe ([ VD1 [l 20 p2y + 0~ 21 Vb2l 143 p2)]

< ClIVall ooz 1 X1l 20002) + 07212l 1413 p2)]

< ClIVal 200 (p2y VDl 200451121413 (D2)-
This implies (VII.3), and Lemma VII.1 is proved. O
Lemma VIL2. Letm € N* and 1 < p < +o00. There exists e(m, p) > 0 such that for

any sequence of maps Ay, € W22 (D?, M, (R)) satisfying

/2 IV AP dx? < e(m, p) (VIL15)
D

and weakly converging to Ao in WP, for any sequence of maps @y weakly converg-
ing in Wl’%(Dz, R™) and any sequence of maps Fk strongly converging to I?oo in
L% (D?, R? @ R™) and satisfying

—AGr = VA - VG +divF,  inD(D?), (VIL16)

@r strongly converges in Wl 2” "(D%, R™M).15 O
Proof. We consider the case p = 1, which is the most delicate. We first prove, assuming
Fy — Foo in W12(D2, R2® R™), that there exists!® ¢ > 1 such that for any Q@ cC D2,

k— 00
This implies, using Rellich—Kondrashov, that ¢3k — ¢Too strongly in wh 2(Dz).

loc

Proof of (VIL.17). Let p < 1. We prove that there exists ¥ > 0 such that

limsup sup sup r ¥ / Vi) dx?. (VIL18)
k—+00 x0€B,(0) r<l—p B (x0)

Letxp € By,(0) andr < 1 — p. On B,(0) we decompose Ok = 1/7k + U where

— AP = VA - Vg + div Fe  in By (xo),
Vi =0 on 3B, (xo).

15 If one assumes further p > 1, the smallness condition (VII.15) is not needed for the same result
to hold.

16 1n fact, under the assumptions this is true for any g < 2.
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Using the Wente estimate we obtain
/B - IVyrl® dx® < Cv/e(2,m) / - V@[> dx? + Cr2l Fill 1o oy (VIL19)
r r (X0
Since vy is harmonic, the monotonicity formula gives, for any ¢ < 1,
/ IV |? dx? < t2/ V> dx? < z2/ IV@r|? dx?, (VIL.20)
By (x0) By (x0) By (x0)

where we have used the fact that the harmonic extension minimizes the Dirichlet energy.
Combining (VII.19) and (VIL.20) then gives

f V@l dx® < [2Cy/e@m) +27] / VG2 dx® + Cr el 0,
Bzflr(xo) By (x0)

By choosing 2C+/¢(2, m) < 1/4 we obtain
B, 3 B .
/ IV@il*dx® < 3 / IV@I> dx® + Cr2 I Fillfy 2 poy- (VIL21)
B,_1,(xo) B (x0)

Iteration of (VIL.21) gives (VIL.18). Inserting (VII.18) in the right hand side of (VIL.16)
gives

limsup sup  sup r_)’/Z/ |AGx| dx?
k—+00 x0eB,(0) r<l—p B, (xg)

where we have used ||div ﬁk 1B, (xo)) = r||}7“k llw1.2(p2y- Using the Adams estimates we
deduce the existence of s > 2 such that

lim sup ||§Zk||W1-S(Blfzp(0) < too.
k—+4o00

Inserting this bound in the right hand side of (VIL.16) gives (VIL.17).

We now consider the general case: Fy — Fuo strongly in L*(D?). The weak con-
vergence in w2 of ¢k 10 Pso and of Ay towards A, implies that the limits, due to the
jacobian structure of the r.h.s., satisfy the equation

—APoo = VAgo - Vigoo +div Fsy  in D' (D).
Let 13;0 = 17“OO * x5 where x*(x) := 572 x(x/s). Let @5, be the unique solution of
{—Aago = VA - VG, +div ES,  in D2,
Poo = Poo on dD2.
We claim that g5 strongly converges to @oo in W12(D?). Indeed,

— A — Poo) = Voo - V@ — Boo) + diV(FS, — Fao)  in D2,
@oo — P00 =0 on dD?.
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Multiplying by ¢, — ¢ and integrating by parts gives
[ V@il = [ @ =) VA V@ ) 0
- /Dz[ﬁgo — Foo - V(B — Boo)] dx>. (VIL.22)
Recall the Wente inequality

Va,b € W(D?) Ve € Wy (D?) < ClIVal2lIVbl2 Vel

f cVa-Vth
D2

Applying it to the first term on the r.h.s. of (VIL.22) gives
185 = oollwi2(p2) < Cem. 165 = Goollwrapz) + 1 Fl = Feclla-
Choosing ¢(m, 1) so small that Ce(m, 1) < 1/2 we obtain
182 — Goollwr2p2) < 20F% — Fuslla, (VIL23)

which implies
@S, — $oo  strongly in W2(D?).

Let ¢; be the unique solution of
{—A(Z,i = VA - VG + div(Fy x x*) in D2,

Op = Gk on dD2.

For any fixed s > 0 and any Q CC D?, using the first part of the proof we have the
existence of ¢ > 1 such that

lim sup (|G} [l 2.0 ) < +00.
k——+00

Hence
lim ||¢,i — @’gonwl,z =0. (VIL.24)
k—+o00

Similarly to the proof of (VII.23) we have, for ¢(m, 1) chosen as above,
165 — Gelwrapey < 201F — Fill2p2)- (VIL25)
Using the triangle inequality and Young inequality we have

1F = Fill 2(p2)y < 1 (Fxk—Foo)x x* 1 2(p2) + 1 Foo — Fooll L2(p2) + 11 Fk — Feo ll 12 p2)
< 2| Fx = Fooll p2(p2) + 11 Fog — Fooll L2(p2)- (VIL.26)
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From the triangle inequality, for any s > 0 and 2 CC D?, combining (VIL.23), (VIL.25)
and (VIL.26) we have

IV(@x— @)l 12() = IV (Gk =Gl 1202y T IV (GE =G 12() + IV (B0 =03 I 12(02)
= 2||F15_Fk||L2(1)2)+||V((z/i_ago)||L2(Q)+2||Fgo_Foo”LZ(DZ)
54I|Fk—Foolle(Dz>+IIV(¢2—¢20)IIL2(Q)+4IIFSO— oo||L2(D2)-

Let § > 0. There exists s > 0 such that ||1'7"<§O - qoolle(Dz) < &/8. Once s is fixed, by
(VIIL.24), there exists ks such that

Vk > ks [|Fk — Fooll2p2) < 8/16 and  [[V(@} — @2)ll 2y < 6/16.
Hence |V (gr — (ZOO)”LZ(Q) < § for k > ks. This implies the lemma for p = 1. m]

Lemma VIL3. For any Co > O there exists ¢ > 0 such that for any conformal weak
immersion in Eg,z(Dz) satisfying

VAl 2.00(p2) < Co  and / |Vi|?dx? < e,
D2
we have

_ 2
o2 / \Vi|*e 2 dx?> < Co? | H*e* dx®> + Co?e [ / |V71|2dx2] (VIL27)
D}/ D? D?

where e* = |3y, ®| = |9y, ®| and A = |Df/2|—1 fD|2/2 A(x) dx?. O
Proof. Arguing as at the beginning of the proof of Lemma IV.1 we get
loo — &||LOO(D§/6) <C. (VIL.28)

‘We also have . . B _
AD =2 H =2¢2**MH  in D (VIL29)

This gives V2® € L*(D3,,) and hence Vii € L*(D} ). Let @ satisfy

{ Ad = div(ii x Vi) in D2, (VIL30)

a=0 on 3 D2,
and let b be such that i x Vi = Va + V-b. Using classical elliptic estimates we have
/ (Va2 + |Vb|}) dx? < cf |Vi|? dx* < Ce. (VIL31)
D? D2
Let p € [1/2, 3/4] be such that

/ (IVal? + Vb dl < 4/ |Vi|? dx? < 4e. (VIL32)
aD?2 D?
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Observe that Wl'z(aDg) SN W1_1/4*4(3D/2)). Hence
. 172
1l wi-124a03) + 1Bllwi-144p32) < C[ / i |Vﬁ|2dx2] : (VIL33)
D
Recall now from [40] the general formula
i x Vit = 2HVL® + vii. (VIL34)
Hence in particular on D2,
AG = 2div(HV D). (VIL35)
Classical elliptic estimates then give, using (VIL.33),
_ 1/4 1/2
IVall 4 (p2y < Ce*[ H* dx2i| + C[/ |Vﬁ|2dx2:| ) (VIL36)
’ D2 D?
P
‘We also have, on D%,
Ab = V1i x Vi. (VIL37)

Classical elliptic estimates imply (using H'/2(D3) < L*(D3))

Hence using (VII.32) and (VII.37) we obtain

. 3/4 1/2
VDIl 4p2y < c[/ |Vi|*3 | vn|*? dx2:| + C[/ |V71|2dx2] )
P D2 D?

Hence
. 1/2
VoL p2) < C[ / i |Vﬁ|2dx2] IViill o2y + ClIVill L2 p2)-
D5
Combining (VII.36) and (VII) with ||Vl7l||L2(D2) < ¢ gives

= X
||V”||L4(D/2)) <Ce |: .
P
Hence for ¢ small enough we finally obtain

o’ |Vi|*e™?* dx? < Co?
D2 D2

1/4
H4dx21| +C8||Vﬁ||L4(D%) +C”Vﬁ”L2(D2)

~ 2
H*e™ dx? + 6% |:/ |Vﬁ|2dx2:| . O
D2
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Lemma VIL4. For any y € (0, 1) there exists ¢ > 0 such that for any qi; in W-2(D?)
satisfying

Ad = V1ii x Vé + div F (VIL38)
where
/ |Vi2dx® <e and sup r—V/ |F|?dx? < 400, (VIL39)
D? B, (x)CD2 B (x)
we have
sup r—Vf V|2 dx? < Cy[ sup r—V/ |F|? dx? +f |Vq§|2dx2]
B, (x)CD}, B (x) B, (x)CD? B (x) D?
(VIL40)
where C,, depends only on y € (0, 1). O

Proof. For any xg € D%/z andr < 1/4 we decomposeJ) = 1/7 + v in B, (xp) where 1/7 is
the solution of

-

AY = V+i x Vg +divE  in B, (xo),
Y =0 on 0B, (xp).

Using the Wente inequality we have

/ VY2 dx? < Cs/ |V¢3|2dx2+c/ |F|? dx2.
By (x0) By (x0) By (x0)

Since v is harmonic we have, for any ¢ € (0, 1),

/ |V3|? dx? §t2/ |V5|? dx? §t2f [Vo|? dx?.
By (xp) B (x0) B (x0)

Hence in particular for t = 1/2,

|V¢3|2dx2+C/ |F|2dx2. (VIL41)

By (x0)

/ IVo|2dx? < 27! + Ce)
Bz_lr(xo) By (x0)

We choose ¢ such that 271 4+ Ce = 277, and (VIL40) is obtained by iterating (VIL.41).
m}
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