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Abstract. Fix a constant C > 1 and let d = d(n) satisfy d < In€ n for every large integer n.
Denote by A, the adjacency matrix of a uniform random directed d-regular graph on n vertices. We
show that if d — oo as n — o0, the empirical spectral distribution of the appropriately rescaled
matrix A, converges weakly in probability to the circular law. This result, together with an earlier
work of Cook, completely settles the problem of weak convergence of the empirical distribution in
a directed d-regular setting with the degree tending to infinity. As a crucial element of our proof,
we develop a technique of bounding intermediate singular values of A, based on studying random
normals to rowspaces and on constructing a product structure to deal with the lack of independence
between matrix entries.
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1. Introduction

Given an n x n random matrix B, its empirical spectral distribution (ESD) is the random
probability measure on C given by

1 n
1B = ;ZSA,-,

i=1

where (};);<, denote the eigenvalues of B (counting multiplicities). The study of the em-
pirical spectral distribution is one of the major research directions in the theory of random
matrices, with applications to other fields [29, 4, 6, 34, 14]. A fundamental fact in this
area is the universality phenomenon which asserts that under very general conditions the
empirical spectral distribution and some other characteristics of a random matrix asymp-
totically behave similarly to the empirical distribution (or corresponding characteristics)
of the Gaussian random matrix of an appropriate symmetry type. This phenomenon has
been confirmed for various models and in various senses (including limiting laws for the
ESD, local eigenvalue statistics, distribution of eigenvectors). We refer to monographs [4,
6, 34, 14] for a (partial) exposition of the results.

For non-Hermitian random matrices with i.i.d. entries, the limit of the empirical spec-
tral distribution is governed by the circular law. Compared to ESD’s of the Wigner and
sample covariance matrices, the study of the spectral distribution in the non-Hermitian
setting is complicated due to its instability under small perturbations of the matrix en-
tries and due to the fact that some of standard techniques, involving the moment method
and truncation of the matrix entries, fail in the non-Hermitian case (we refer to [6, Sec-
tion 11.1] for more information). As a specific example, while the bulk of the ESD of
Hermitian matrices is stable under small-rank perturbations due to interlacing properties,
the spectrum of random non-Hermitian matrices can be very sensitive even to a rank-one
perturbation (see [6, Example 11.1] or [10, Example 1.2]).

Denote by icirc the uniform probability measure on the unit disk of the complex plane,
that is,

dptcire = n_lllz\il dxdy.

Convergence of the appropriately rescaled empirical spectral distribution of the standard
Gaussian matrix with i.i.d. complex entries was derived in the first edition of [29, Chap-
ter 15], and, much later, a corresponding result in the more delicate real case was obtained
in [13]. Both results relied on the explicit formula for the joint distribution of eigenvalues,
which is available in the Gaussian setting [15]. The circular law for non-Gaussian matrices
with bounded densities of the entries was verified in [5] (following an earlier work [16],
see also [18]); the density condition was removed in [17, 32, 19, 37, 39], with [39] es-
tablishing the circular law for the i.i.d. model under weakest moment assumptions. The
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sparse i.i.d. model was considered in [37, 38, 19, 8] (see also [26] for a non-i.i.d. sparse
model). We refer to [10] for a detailed exposition and historical overview of the circular
law in the i.i.d. setting, and for further references. For a review of other recent develop-
ments, including the limiting laws for inhomogeneous matrices and the local circular law,
we refer to the introduction of [12].

In this paper, we are concerned with a sparse model of random matrices whose entries
are not independent. In what follows, for any positive integers d < n we denote by M, 4
the set of all n x n matrices whose entries take values in {0, 1} and the sum of elements in
each row and in each column is equal to d. In other words, M,, 4 is the set of adjacency
matrices of d-regular directed graphs on n vertices, where we allow loops but do not allow
multiple edges. We consider the random matrix A, uniformly distributed on M, 4. Ran-
dom directed d-regular graphs provide a basic model of a typical graph with predefined
in- and out-degree sequences and in this connection are of interest in network analysis. In
a more general setting, random (weighted) directed graphs are used to model connections
between neurons and the eigenvalue distribution of their adjacency matrices (the synaptic
matrices for neural networks) has been given considerable attention in the literature. We
refer to the introduction of [12] for a discussion of those works.

In the directed d-regular setting, it was conjectured (see [10, Section 7]) that for any
fixed3 <d <n — 3, ua, converges to the probability measure with density

1 d*d-1)
= (d? — |z]2)2 {lzl<v/d)

as n — oo. This measure is usually referred to as the oriented Kesten—-McKay distribu-
tion, a non-symmetric version of the classical Kesten—McKay law for the limiting ESD of
random undirected d-regular graphs [20, 28, 9]. Up to rescaling by ~/d, this measure tends
to the circular law as d — o0. Proving the above conjecture remains a major challenge
as of this writing.

In this paper we establish the circular law for sparse random directed d-regular graphs
for any d going to infinity with n. We prove the following theorem.

Theorem 1.1 (The circular law). Fix a constant C > 1 and for any n > 1 letd = d(n)
be a positive integer satisfying d < In€ n. Assume that d — oo as n — oo. Then the
sequence of empirical spectral distributions (jLg-1/24, )n, corresponding to the random
matrices A, uniformly distributed in My, 4, converges weakly in probability to the uni-
form distribution on the unit disk of the complex plane.

The circular law for d-regular digraphs in the range In° n < min(d, n — d) was verified
in earlier work [12] (see also [7]). Thus, our Theorem 1.1 closes the gap between the
known limiting distribution for denser d-regular digraphs and the conjectured oriented
Kesten—McKay limiting distribution for d-regular digraphs of constant degree. The proof
of Theorem 1.1 combines some known methods, used previously in works on the circular
law, with new crucial ingredients related to estimating the intermediate singular values of
the shifted adjacency matrix.
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The rest of the introduction is divided into two parts. In the first part, we recall known
techniques (such as Hermitization) and previously established facts about d-regular di-
graphs that will be needed for the proof. In the second part, we discuss limitations of
existing tools (see remarks after Proposition 1.5) and describe our approach to bounding
intermediate singular values of A, — zId.

As in [16, 5, 19, 39] dealing with the i.i.d. setting, a key element in the proof of the
circular law for d-regular digraphs is to transport the problem of the limiting ESD to
the singular values distribution, which is much easier to study. This method—called the
Hermitization technique—goes back to Girko [16] and exploits a close relation between
the log-potential functions of the spectral and singular values distributions. Following
Girko, this idea was used in various papers dealing with non-Hermitian random matrices,
in particular in [5, 19, 39]. The Hermitization technique is presented in the literature in
somewhat different forms; we follow the exposition in [10].

The singular values distribution of an n xn random matrix B is the random probability

measure on R given by
1 n
Vg = — E s, 5
n -
i=1

where (s;); < are the singular values of B. Everywhere in this paper, we use non-increas-
ing ordering for the singular values, that is, s; = s1(B) is the largest one and s,, = 5, (B)
is the smallest one.

The logarithmic potential U, : C — (—00, oo] of a probability measure  on C is
defined for every z € C by

U,z) = —/ In|z = Al du).
C

The logarithmic potential uniquely determines the underlying measure, that is, if U,
= U, Lebesgue almost everywhere then = ' (see, in particular, [10, Lemma 4.1]).
Given an n X n matrix B, it is easy to check that

1 00 1<
Upp(2) = = In|det(B — 21d)| = —fo In() dvp1a(t) =~ > In(si (B — z1d)).
i=I

Therefore, knowing vp_; 14 for almost all z € C, we can determine U, ,, hence p p itself.
This observation lies at the heart of the method. We state its formalized version.

Lemma 1.2 (Hermitization, see [10, Lemma 4.3]). For each n, let B,, be an n x n com-
plex random matrix. Assume that for Lebesgue almost all 7 € C,

(1) there exists a probability measure v, on Ry such that vp,_;14 tends weakly to v in
probability;

(i1) In(.) is uniformly integrable for vp, ;14 in probability, i.e. for every ¢ > 0 there exists
T =T(z,€&) < oo such that

supIP’{/ [In(s)| dvp,—z1a(s) > e} <e.
{lIn(s)|>T}

n
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Then pup, converges weakly in probability to the unique probability measure p on C
whose logarithmic potential is given by

U,(2) = —/ In(s) dv,(s). @))]
0

Thus in order to establish the circular law, it is enough to show the convergence of the
empirical singular values distribution and the uniform integrability of the logarithm. For
the first part, we will rely on a recent result of Cook [12], who uses the above strategy
in order to establish the circular law for the uniform model on M,, 4 for d > 1% 5. The
following is a version of [12, Proposition 7.2]. Note that its proof does not require that d
is at least polylogarithmic in n, just d — oo is enough (see Remark 5.2 below).

Proposition 1.3 (Weak convergence of singular values distributions, [12]). Assume that
d = d(n) = o(y/n) andd — o0 as n — o00. Denote B, = d=12A, — z1d. Then for
each z € C there exists a probability measure v, on R . such that vg, converges weakly
in probability to v, as n — 00. Moreover, the family {v;}.cc satisfies (1) with t = Ucirc.

In fact, this proposition was stated in [12] for the centralized matrix

d
Xp=A,— -1
n

instead of A,, where 1 denotes the column vector with all components equal 1. However,
since these two matrices differ by a rank-one matrix, using the interlacing of their singular
values one can deduce that their empirical singular value distributions satisfy

sup [vg, ([0, al) — vg-12x, . 1a([0, aD)| < 1/n,

a>0
where B; is as in Proposition 1.3. This has also been used in [12, (7.6)]. Therefore the
two corresponding singular values distributions exhibit the same limiting behavior.

It is clear from the above discussion that the main obstacle to establishing Theorem 1.1
is in showing the uniform integrability of the logarithm. More precisely, one needs to
prove that for any ¢ € (0, 1) and any z € C there exists T = T (z, &) > 0 such that with
probability going to 1 as n — oo,

Y lnsi(B)| <en. 0]
it[lnsi (Bo)|=T
A simple computation involving the Hilbert—Schmidt norm of B, shows that the main
contributors to the above sum are small singular values, namely those smaller than e~ 7.
In [24], building upon ideas in [11] as well as on the authors’ works [23, 22], a poly-
nomial lower bound on the smallest singular value of B, was obtained.

Theorem 1.4 ([24]). There exists a universal constant C > 1 such that for all positive
integers d, n satisfying C < d < n/In* n and every z € C with |z| < d /6 one has

P{smin(4, —z1d) > n_6} >1-— d_1/4.
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The above came as an improvement (in the sparse regime) of an earlier estimate of
Cook [12], who derived his result under the additional assumption d > In€ 7 for a uni-
versal constant C. Theorem 1.4 implies that the contribution of o(n/Inn) least singular
values to the sum in (2) is negligible.

Together with the observation concerning largest singular values, this leaves the task
of estimating the sum ) [Ins; (B;)|, where

J:={i:i <n—o(/lnn)ands;(B;) < e Ty
Partially, the estimate comes from the following result of [12], obtained via comparison
with Bernoulli random matrices.

Proposition 1.5. There are absolute constants C > 1 > ¢ > 0 such that the following
holds. Let C < d < n be positive integers and z € C. Assume that d = d(n) = o(/n)
and d — oo as n — oo. Denote B, = d~V/?A,, — zId. Then for large enough n, with
probability at least 1 — exp(—n /2), for every k < n — Cnd~"/*3 one has

n—k
sk(B;) = ¢ .
n

This proposition is an immediate consequence of [12, Proposition 7.3] (see Section 5
below). In fact, [12, Proposition 7.3] was stated for d polylogarithmic in n. In Remark 5.2
below we indicate the changes to make in [12] in order to derive Proposition 1.5 without
this restriction on d (these changes are actually implicitly mentioned in [12]).

Proposition 1.5 can be viewed as a (weak local) form of the Marchenko—Pastur law
for the singular values distribution [27, 41]. When d is at least polylogarithmic in n (with
an appropriate power of the logarithm), the proposition is enough to cover the entire range
of singular values indexed by the set J and complete the proof. This is the approach taken
in [12]. However, when d is smaller than a power of In n, the above result leaves untreated
the range of smallish singular values s for n — Cnd='/*® <k <n —o(n/Inn).

The idea of the proof of [12, Proposition 7.3] is to compare the uniform directed d-
regular model with directed Erd6s—Rényi graph, that is, to replace the matrix A, by a
matrix B,, whose entries are i.i.d. Bernoulli random variables with the parameter d/n.
At this step one has to condition on the event that the Erd6s—Renyi graph is d-regular,
which is of very small probability, superexponential in n [30]. In this way satisfactory
estimates for the intermediate singular values of the shifted adjacency matrix A, — z1d
can be obtained only if very strong estimates are available in the Bernoulli setting, which
hold with probability at least 1 — exp(—w(n)), where w(n)/n — oo as n — oo. Cur-
rently, no estimates of this type are available in the very sparse regime, and it is not
clear whether such strong estimates can be obtained at all. This forces us to develop a
completely different approach to bound the singular values s; of A, — zId in the range
n—Cnd=¢ <k <n—o(n/lnn). We obtain the following bounds.

Theorem 1.6 (Intermediate singular values). There exists a universal constant C > 1
with the following property. Let d, n be integers satisfying C < d < In’®n and let z € C
be such that |z| < ~/d Ind. Then for all k satisfying

n—2nd3? <k <n-3n/n'*n
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one has

n O\ /144 n—k
]P’{An e Mpa: sk(Ap —z1d) > exp(—C( k> >} >1-C .
n—

In particular,

P{A, € Myq: si(A, —z1d) > exp(—=C d'/*®) forallk <n —2nd =3/} > 1 — 613%.
In the above, we restricted our analysis to d < In% 1 as it complements what is covered
by Proposition 1.5. Our approach can be extended to higher powers of Inn (even possi-
bly to any d < exp(+/Inn) as in [25]), but we prefer to prove the above statement as it
is sufficient for our purposes and improves the exposition. Equipped with Theorem 1.4,
Proposition 1.5, and Theorem 1.6, we have bounds on all singular values, which would
allow us to show the uniform integrability of the logarithm and thus to establish the cir-
cular law. We note that the idea of splitting the singular values into different regimes is
standard in this context (see [36, Chapter 2, Section 8] for more details) as one needs
different levels of precision depending on the magnitude of the singular values. In our
case, the sparsity adds a serious challenge and the comparison methods described above
are ineffective. Moreover, due to the lack of independence, standard approaches to es-
timating the singular values are not applicable in our setting. For example, one cannot
use Talagrand’s concentration inequality [36, Theorem 2.1.13] in this context the same
way as was previously done in the literature (see, in particular, [39]). The issues appear
when one tries to follow the standard scheme which reduces estimates for the singular
values to distance estimates for the matrix rows. Namely, the second moment identity
[36] or the restricted invertibility principle (see, for example, [31, Theorem 9]) relates the
intermediate singular values to quantities of the form

dist(R; (B;), span {R; (B;)}jer)

for I C [r]andi € [n]\ I, where R;(B;) denotes the i-th row of B,. When these rows are
independent, one can condition on a realization of E := span{R;(B;)};cs and then use
the randomness of the i-th row together with standard anti-concentration arguments to
get a lower bound for || Pr1 R; (B;)||2 = dist(R;(B;), E). On the other hand, the random-
ness of E is used to ensure that its normal vector is well spread for the anti-concentration
argument to work. In our setting, i.e., for random d-regular graphs, the lack of product
structure adds serious complications to the problem. Studying the distribution of a row
conditioned on the realization of other rows involves careful application of the expan-
sion properties of the underlying graph. In particular, such a direction was pursued by
the third and last named authors [40] to establish, for denser d-regular graphs, a large
deviation inequality for the inner product of a row with an arbitrary vector, conditioned
on a realization of a block of rows. At the same time, the technical approach of [40] is not
applicable here as we deal with very sparse random graphs and are interested in a small
ball inequality instead of large deviations.

The key idea behind the argument developed in this paper is to inject additional ran-
domness and create a sort of product structure, which would allow us to use the random-
ness of each of the (dependent) quantities involved. Similar ideas were used in asymptotic
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geometric analysis in the study of volume distribution in convex bodies [3, 33, 1, 2]. We
provide a rough illustration of this idea. Fix I C [n] and i € [n] \ I, and observe that

dist(R; (B;), E)* = [|PpLRi(B,) |5 = Eg [{PrLG, Ri(B)) I, 3)

where G is a standard Gaussian vector in C" and the expectation is taken with respect
to G. Now standard Gaussian concentration allows us to remove the expectation above
and to benefit from the randomness of G to study the quantity (Pr1 G, R;(B;)). The vec-
tor Pr1 G plays the role of a uniform random normal to E. In other words, instead of
working with a fixed vector normal to E, we choose a normal vector randomly according
to the Gaussian distribution on E-. As the key technical ingredient, we prove that the ran-
dom normal is typically unstructured, i.e., has many levels of coordinates. In this sense,
one of the most important inputs of this paper is a statement about the kernel of subma-
trices of A, — zId formed by removing a small proportion of rows (see Theorem 4.2).
Once equipped with this statement, we switch back to the randomness of R; (B;) in order
to establish an anti-concentration inequality. Note that this also requires additional efforts
as we deal with a sum of dependent random variables with non-trivial conditional distri-
butions (conditioned on a realization of E) as opposed to the standard estimates in the
independent case.

The structure of normal vectors to subspaces spanned by the rows of random d-regular
graphs was investigated by the authors in [25]. In particular, it was shown that if the
subspace E is of large dimension, then any vector normal to it either is very steep (has a
sudden drop at the beginning of the non-increasing rearrangement of absolute values of its
coordinates) or has moderate coordinate decay and is unstructured (i.e., has many levels
of coordinates). The latter property is essential for the anti-concentration argument to be
effective. However, in general, a normal vector can be not sufficiently unstructured for our
purposes. To improve this, we pass to a uniform random normal. Informally speaking, one
of the advantages of introducing the additional randomness is that the random Gaussian
vector picks the best normal vector and benefits from better structural properties. This
vague observation will become more rigorous and clear from the proof of Theorem 4.2
(see also remarks following that theorem). We expect that some elements of our proof can
be fruitful in the study of other matrix models with the lack of independence.

The paper is organized as follows. In Section 2, we derive the circular law assuming
the estimates on the intermediate singular values. In Section 3, we introduce notations. In
Section 4, we prove the structural theorem (Theorem 4.2) for uniform random normals af-
ter providing estimates for order statistics of projection of Gaussian vectors. In Section 5,
we establish an anti-concentration estimate and combine it with the structural theorem in
order to prove Theorem 1.6.

2. Proof of Theorem 1.1

In this section we prove Theorem 1.1—the circular law for the limiting spectral distribu-
tion—assuming the results mentioned in the introduction. As discussed before, we only
need to verify uniform integrability of the logarithm, that is, item (ii) of Lemma 1.2.
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Fix z € C, ¢ > 0 and, given n and d satisfying the assumptions of the theorem, set
B, := d~'?A,, — z1d. We want to show that there exists T = T'(z, ) > 0 such that

P{ 3 |lnsi(BZ)|2£n]§8.

i|lns; (By)|>T

In the proof below, a sum over an empty set is always assumed to be 0.

For large singular numbers we will apply a deterministic bound which follows from d-
regularity, namely we will use || A, ”12{5 = nd, where || - ||gs denotes the Hilbert—Schmidt
norm. Choose a sufficiently large T = T'(z, ¢) > 0 to ensure that

€ 2

Inx < X
41+ 1z19)

whenever x > ¢. Then
&
Y ohmsB)s—— Y P(B) < ———— Bl
ir5i(By)=el 4(1 + |z ) si(BoyeT 4(1 + |z|%)

——(|d""%4, Id
< 2(1+| |2)(II s + 12 1d Ifg) =

Note that one could also use the spectral gap estimate for d-regular graphs (see [40]
and references therein), which implies that with large probability all singular values of
d~'2 A, except for s; are bounded above by a universal constant.

Thus it is enough to show a bound for small singular values, more precisely, it is
enough to show that

]P’{Z [Ins; (B;)| > 8n/2} <e, where I=1{i:si(B,)<e !}
iel
We split the set I into four parts:
L:=1N{i:i<n—Cnd /%), L:=UN{i:i<n-=2n/d**)\ 1,
=UN{i:i<n—n/I®n)\ 1UDL), L:=I1N{i:i>n—n/ln’n},

where C > 1 is the absolute constant from Proposition 1.5. Proposition 1.5 implies that
with probability at least 1 — exp(—n/2), foralli <n — Cd~'/*¥n we have

5i(Bz) =z c(n —i)/n

for an absolute constant ¢ € (0, 1). Note that if i € I then this inequality implies i >
n(l — 1/(ce’)). Thus I; # @ if and only if d'/*® > ce”, in which case n > ce”.
Denoting

={i:n(1=1/ceh)) <i<d—-Cd *¥n}

and assuming /1 # ) we obtain

n/(ce n/(ceT)
n n 2n(T + 1)
Ins; (B,)]| < In In— <2 In—dt < ——.
;;' si(B2)l = Z c(n 1; ck — /1 e~ cel
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For large enough T and for n > 21In(4/¢), this implies
IF’[Z lIns;(B,)| > en/s} <¢/4.
i€l
Further, by Theorem 1.6, for some universal constants C’, Cy, with probability at least
1 — C'd—3/? we have
D lnsi(Bo)| < || (C'd"*%) < Cod™"*°n < en/8
iely

provided that d > (8Co/¢)° and d In>d > |z|%.
Next, by Theorem 1.4 applied to the matrix A, — z+/d Id, with probability at least
1 —d~"* we have 5, (B;) > n=%/+/d and thus

SsiBl < Y lnsi(B)l < —5— [Ins,(Bo)| < en/8

. In®n
i€ly i>n—n/In%n

provided that d > 36|z|*> and 7/Inn < &/8.
It remains to estimate the sum over I3. Note that I3 # @ only if 2n/d>? > n/In* n.
Consider the sequence of indices ig, i1, .. . defined by

iy = |n—27"d™3?n|

for u > 0 and let uo be the smallest integer such thati,, > n —n /ln2 n. Then

u()—l Mo—l
Y lnsi(B)I< Y (up1—in)lnsi,, (B <4d>?n Yy 27 Diing;, (B (4)
ielz u=0 u=0

Assuming that d1n>d > |z|?> and applying Theorem 1.6 again we find that for every
O<u<uy—1,

C/

Pisi, .y (B2) = exp(=C'd!/2020 D) > 1 — —m,

where C’ > 0 is a universal constant. Taking the union bound we get, with probability at
least 1 — C'd=3/2,

lIns;, ., (By)| < C'a@"/%520D/14% forall 0 < u < ug — 1.
By (4) we obtain, with the same probability,

up—1

iely u=0

provided that d > 1/e. Combining the estimates for the sums over I, ..., I4 we obtain
the result provided that d > dy := max{36|z|%, C»/£%®} for a large universal constant
Cy > 0.

Finally, we would like to comment on a purely technical aspect: why we can assume
that d > dy. Given n > 1, let X,, C C be the set of all eigenvalues of all d-regular n x n
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matrices divided by Jd (taken for all d < In%® n). Since X := |J,, X, has zero Lebesgue
measure, it is enough to consider z ¢ X. Now given a sequence d(n) — 00,z € C\ X,
and ¢ > 0 choose ng = ng(z, &) so that d(n) > dy whenever n > ng. Set

p=p(z,8):= dist(z, U Xn).
n<ng
Then p > 0 and for every d-regular n x n matrix A, with n < ng the matrix B, is
invertible and the norm of its inverse can be estimated in terms of n, d, and p (e.g., via the
formula for the inverse matrix, its Hilbert—-Schmidt norm, and Hadamard’s inequality).
Since n < ng and s, (B;) = l/||BZ_1 I, we obtain a lower bound on s, (B;) in terms of ng
and p. Therefore, taking sufficiently large T = T (z, ¢), we find that for any n < ng the
set {i : |Ins;(B;)| = T} is empty.

3. Notation

Given positive integers k < ¢, we denote [k] = {1, ..., k}and [k, ¢] ={k, k+1,...,£}.
Given a sequence (x;)!_;, we denote by (x/)7_, the non-increasing rearrangement of
(Ixi[)i_,. The vectors of the canonical basis of C" are denoted by ey, ..., e,, and the
canonical Euclidean norm on C” is denoted by || - ||2. Given E C C", the orthogonal
projection on E is denoted by Pg. Given J C [n], we denote by P; the orthogonal
projection on the space spanned by e;, j € J. Given an n x n matrix A we denote its
rows by R;(A), i < n. A set (or a subset of a certain set) of cardinality k is called a k-set
(resp., k-subset). 1 denotes the column vector with all components 1.

As mentioned in the introduction, for every positive integer d < n, we denote
by M, 4 the set of all n x n matrices whose entries take values in {0, 1} and the sum
of elements of each row and of each column is equal to d. In other words, M,, 4 is the set
of adjacency matrices of directed d-regular graphs on n vertices. The random matrix uni-
formly distributed on M, 4 is denoted by A,,, and as before, we set B, := d 124,714,
where z € C and Id is the identity matrix. Below we often deal with a random subspace
of C" spanned by some rows of a random matrix. Given I C [n], we denote by E(A,, I)
(resp., E(B;, I)) the random subspace spanned by the rows of A, (resp., B;) indexed
by I.

A standard Gaussian variable in C is the variable g = & + i&, where & and &
are independent real Gaussians distributed according to A/(0, 1/2). A standard Gaussian
vector in C" is a vector G := (g, ..., gx), Where g;’s are independent standard complex
Gaussian variables. We always assume that G is independent of A,,. We use the fact that
the distribution of G, denoted below by y;,, is invariant under orthogonal transformations
and that for every orthogonal projection P of rank k < n the vector PG is distributed
as the standard Gaussian vector in PC" ~ CF. In particular, for every non-degenerate
subspace E of C" and every fixed x € C" \ {0} one has, for every ¢t > 0,

P{l(x, P£G)| < 1| Pgxl)) =n»{

<ﬂ, G>’ < z} =P{lg| <1} =1 — exp(—12).
1PExI]2
©)
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In the next section we deal with uniform random normals which we define in the
following way. Let E C C" be a linear subspace and E= its orthogonal complement. The
uniform random normal to E is a standard Gaussian vector in the orthogonal complement
of E. Note that the uniform random normal to E is distributed as Pr1 G, which will often
be denoted by Y.

4. Uniform random normals

The result of this section is based on the structural theorem proved in [25, Theorem 1.1].
We state a special case of this theorem, in which we fix several parameters and restrict
the range of d and of the index subset |/¢| according to our needs.

Theorem 4.1. Let d, n be sufficiently large integers satisfying d < In’®n and z € C
be such that |z| < v/dInd. Leta € (d~"/*,1) and y = 1/288. Fix a subset I C [n]
satisfying
n/In'" n < |I°] < njd>.

Let E = E(By;, I) be the random subspace spanned by the rows of B indexed by 1. Then
with probability at least 1 — 1/n any non-zero vector x € E* satisfies one of the two
conditions:
. (Graéual with many levels) Foralli < a|I¢| one has x} < O.9(n/i)3x;|1f‘ and for all

r e

IC y/2
(i = n e by = A = exp(=2/1° D7) | < (' 4 '> .

o (Very steep) There exists i < all€| such that x}" > 0.9(n/i)3x;“uc|.

The idea, developed in this section, is that a normal vector picked uniformly at random
in EL has better structural properties (in fact, is more “unstructured”). At the intuitive
level, in the case of large codimensional £ C C”, the vector Py G should be typically
unstructured, i.e., should not have many coordinates of almost the same value. We will
make this notion precise by combining Theorem 4.1 with some probabilistic arguments.
The main result of this section is the following theorem.

Theorem 4.2. Let d, n be sufficiently large integers satisfying d < In°®n and let z € C
be such that |z| < v/dInd. Let y = 1/288 and fix a subset I C [n] satisfying

n/In"" n < |I°| < n/d>.
Let E = E(B;, I) be the random subspace spanned by the rows of B indexed by 1. Then
]P’{for every J C [n] with |J| < 2(11€|/n)?/?n there is . € C such that
[{j € nI\J: (Pg.G,ej) — Al <exp(=C(n/|I°D")}| > [I]} < [I€|/n,

where we take the product probability measure on M,, 4 x (C", y,), i.e. assume that G
and A, are independent, and C is a universal positive constant.



Circular law for sparse random regular digraphs 479

We would like to note that using a better version of the structural theorem, namely [25,
Theorem 4.1], one could prove a more general statement covering a wider range of d
and |/€|. Since the above statement is sufficient for our purposes, we prefer to avoid
additional technicalities.

Theorem 4.1 states that any normal vector to E which is not very steep (in the above
sense) necessarily has at least (n/|1¢])7/? levels of coordinates. Theorem 4.2 improves
this by asserting that the uniform normal has as many as n/|/¢| levels of coordinates.
Also, as noticed in (3), there is a straightforward connection between the distance from
a vector x to E and the inner product of x with Pr1 G. This connection together with
Theorem 4.2 and the anti-concentration machinery developed in Section 5 allows us to
get bounds on the intermediate singular values.

4.1. Order statistics of uniform random normals

Given E C C",letY = Y(E) = (Y1,...,Ys) = Pr1G. We also deal with linear
combinations of vectors distributed as Y. Given p > 1 and x € C?, denote

)4
Y(x)=Y(x,p) =) x¥P, (6)
j=1

where Y ), Jj < p, are independent copies of Y. In this subsection, we derive bounds on
the order statistics of Y and Y (x). We start with the following lemma.

Lemma 4.3 (Small ball probability for order statistics). There exist absolute positive
constants ¢ and C such that the following holds. Let E C C" be a fixed subspace of C"
withm := dim EL > C. Then

P{Y}, < cm/n} < exp(—cm).
Proof. Note that for every i < n we have
Y >min{||P;Y|2/s/n:J Cnl, |J¢| =i}
Therefore,

Py <t} < <n> max P{IP;Yl2 < t4/n}.
i) 1e=i

Denoting W = P; P, and applying a small ball probability estimate for Gaussian vec-
tors ([21, Proposition 2.6], see also Remark 4.6 below), we have

T /n >c’||W|%,s/|W||2
[Wllus

where cg, ¢’ € (0, 1) are universal constants. Note that | W| < 1 and

for T < col|W llus/~/n.

P{|P;Yl2 < t4/n} < <

W2g = Tr(Py Ppi) > m —i.
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Therefore for t < co||W|lus/+/n and i = ¢’m/4 we have

i c(m—i) c'm/4 c'm/2
l m —1 cm m
8Nt c'm/2
< .
(vdm>

The choice of T = \/?m/(Sen) and ¢ = min{\/g/(Se), ¢’ /4} completes the proof. O

As a consequence of Lemma 4.3, we obtain a bound for linear combinations.
Proposition 4.4 (Small ball for linear combinations). Let n be a large enough integer,

and E C C" be a fixed subspace of C" with m := dim E+ > n'/2. Given p < \/n/In’n
and x € CP, let Y (x) = Y (x, p) be defined as in (6). Then

P inf (Y)Y, < caam/n) < exp(—caam),

Vi
llxll2=1 caam

where c4.4 > 0 is a universal constant.

Proof. Let N be a ¢/(pn®)-net on the set of unit vectors in C? with cardinality || <
(3pn?/c)?P, where c is the constant from Lemma 4.3. Since for every unit vector x the
vector Y (x) has the same distribution as Y, Lemma 4.3 together with the union bound
implies

P[ inf (¥ ()%, < cm/n] < IV exp(—em) < exp(—cm + 2p In(3pn?/c)).

By the definition of A/, for any unit vector x € C? there is y = y(x) € A such that
Ix = yll2 < ¢/(pn®), hence

p P P
1Y) = Y0l = [ Yy =3y <3y =yl 1y
j=I j=1 j=1
¢ ®)
< 5 max [ Y.
n= j<p
This immediately implies that
C .
Y@ = Y0y — —5 max Y.
n- j<p
Thus, we obtain a deterministic relation

c .
inf  (Y(x)* > inf (Y(x))* — — max|[YY|s,.
||x|\2=1( (X)) em _xeN( (X)) em 2 hax l ll2
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This together with the rough bound P{max;<, |Y || > n} < ™" yields
cm ~
IP’{” lpf Y ))g < 2—} < IP{ inf (Y(x)*, < 2_ + - } +e "
= n

{ inf (Y(x))}, < cm/n} +e"
<exp(—cm +2p In(Bpn?/c)) +e .
Sincem > \/n > p In? n, this completes the proof. O
We now pass to upper bounds.

Lemma 4.5 (Large deviations of order statistics). Let E be as in Lemma 4.3. Then for
everyi <n/2and t > 0 one has

P{Y; > Cy/In(n/ i)} < (i/n),

where C > 0 is a universal constant.

Proof. Note that for a fixed i < n we have
Y <max{||P;Y|2/vi:J Clnl, || =i}
Thus,
P{YF >t} < (”) max P{|WGl2 = i},
l =i
where W = P; Pg.. Using E||WG||§ =Tr(W) < i, we get
P{IWGll> > tvi} < P{IWGI3 = E|WG|3 + (z? — Di}.

Applying the Hanson—Wright inequality (see for example [35, Theorem 1.1, Remark 3.3]
and Remark 4.6), we deduce that for any 7 > \/E

P{|WG|l> > tv/i} < exp(—ct?i)

for some absolute positive constant c¢. Taking T = C.+/In(n/i) for a sufficiently large
constant C completes the proof. O

Remark 4.6. The results of both [21] and [35] used in this section are formulated for real
matrices and real random vectors. However, this is easily overcome by noticing that with
any n x n complex matrix W and x € C", one may associate the 2n x 2n matrix

W:[Re(W) —Im(W)} and ;:[Re(x)j|

Im(W)  Re(W) Im(x)
where Re and Im denote the real and imaginary parts. Now notice that || Wx 2 = |Wx|l2
and thus ||W|| = ||W||. Moreover, one can check that ||W|HS = 2||W||HS Therefore, one

could apply the results of [21] and [35] to W and deduce the analogous results for the
complex case.
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As a consequence of Lemma 4.5 we obtain a bound for linear combinations.

Proposition 4.7. Let n be a large enough integer, and E a fixed subspace of C" with
m = dim E+ > n!/2. Given p < 2% and x € CP, let Y(x) = Y(x, p) be defined as
in (6). Then

IP’[ sup (Y (x))F > C47py/In(np/i) for some i < m/4} < 8//n,

llxl2=1
where Cy4.7 is a universal positive constant.

Proof. Fixi < n and a collection {zl, ..., zP} of n-dimensional vectors. Observe that for
every subset J C [n] of cardinality i, one has

p
in|(z' 4+ - +z”);| < min E szlipminmaxlzflzz pa.
jelJ jeJ =1 jeJ €<p

For any j € J there is £ = £(j) < p such that |zf| > a. Hence, by the pigeonhole

principle, there is £y < p such that |zf°| > qa for at least |J|/p = i/p indices from J.
Thus,

: Lo .. Pyl < by,
%I?KZ + -+ 2P, = pmax @)ifp1-

Note that the right hand side does not depend on the choice of J, therefore

1, ... P\* £y *
(z + +z )i Sprtpga;( (z )(,'/p]-

Returning to vectors YO, Y we get, for any unit complex vector x,

* ©)y* O *
Yx); < Prl}?;ﬁ(xﬁY )[,'/p] = Prznél;((Y )[i/p]-

Recall that m = dim E+. Applying Lemma 4.5, and using the fact that the function
f (@) = (¢/n)" is decreasing on (0, n/e), we obtain, for an appropriate absolute constant
C >0,

IP’[ sup (Y(x))F > Cpy/In(np/i) for some i < m/4]

llxl2=1

<P{(Y )}, 1 = Cy/In(np/i) for some i < m/4and £ < p}

mfh pe aNTiP] m@p) N 2

i 1 m 4 2 8

<p) ([QP]> <p ) <i—l> §p2<—+——>5—5—
i=1

o n  4p n?

provided that n is large enough. This completes the proof. O
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4.2. Strongly correlated indices

Let E be a fixed subspace of C" and let Y = Pr.1 G as before. Let o, 8 > 0 be parameters.
We say that a pair (i, j) of indices is («, B)-strongly correlated (with respect to E) if

P{lY; = Yj| = a} < B.

Next, we construct inductively a sequence (Up)¢>1 = (Ug(e, B))¢>1 of (non-random) sets
satisfying | J,~, U¢ = [n], in the following way. At the first step, choose U as the largest
subset of [1] such that there is u; € U; such that (41, u) is (, B)-strongly correlated for
all u € U;. At the £-th step, we define

Uy CUp =[]\ (U1 U---UUp_)

as the largest subset of U, such that there is an index uy € Uy such that (ug, u) is (c, B)-
strongly correlated for all u € U, (if U, = ¢ then we set U, = @ as well). Further, it
will be convenient for us to assume that the sequence (Uy)¢>1 is uniquely defined. This
can be achieved, for example, by defining a total order respecting cardinality on the set
of all subsets of [n] and, at each step above, choosing the largest admissible set with
respect to that order. Observe that by the construction of U,’s, the sequence (|U¢|)¢>1 of
cardinalities is non-increasing, and for every £ and all i, j € Uy, the pair (i, j) is 2w, 28)-
strongly correlated. Note that together with (Up)¢>1 we have also constructed a sequence
(u¢)e>1 of indices, which can also be defined in a unique way.

Lemma 4.8. Assume that a pair (i, j) is not («, B)-strongly correlated for some o > 0
and B € (0, 1/2]. Then for every s > 0,

P{lY; - Y| < as/y/In(1/B)} < 5>.

Proof. Set & :=Y; — Y;. Observe that £ is a centered complex Gaussian variable and
denote its variance by o2. By the assumption of the lemma and by (5), we have

B <PlE > a} = ™7,
which implies that o > «/+/In(1/8). Since for every s > 0,
Pl <so}=1-¢" <2,

the desired result follows. O

The last lemma, combined with averaging arguments, implies the following lemma.

Lemma 4.9. Leta > 0and B € (0, 1/2], and let (U;)¢>1 be defined as above. Let k > 1
and b > 0 be such that \Uy| < b. Then for every s > 0,

P{ax eC: H; e Jue: 1y -2 gas/\/m}) sz} L G

2
=k 2b
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Proof. LetU = Jy; U and for every i € U set
Ki={jeU:(,}j)are («, B)-strongly correlated}.

By the construction of (Ug)¢>1, for every i € U we have |K;| < b. Applying Lemma 4.8
we obtain, forall s > Oand j € U \ K;,

P(IY; = Yj| < as/v/In(1/B)) < s°.

Fix now s > 0 and for every i € U define the event
& ={|{j €U : 1Y — Y| <as/y/In(1/B)}| = 2b}.
As |K;| < b, & is contained in the event {|{j € U\K; : |Y;—Y;| < as//In(I/B)}| > b}.
Hence, applying Markov’s inequality, we get
PE) <y X PUY — Y < as/VI(I/B) < s%n/b.

JEU\K;

Next, given A € C, denote
Ji=1{j €U :1Y; = A <as/y/4In(1/B)}.

By the triangle inequality, for every i, j € Jy we have |Y; — Y;| < as/+/In(1/8). There-
fore, using Markov’s inequality again, we observe

P(3r € C: || > 2b)
< IP{|{1‘ ceU:|{jeU:|Y;—Yj| <as/\/In(1/B)}| = 2b}| = 2b}

—IP’[ >2b} - 1 P(E) < n o s’n

=PI xe 2 2b) = 5 ) B < 575

ieU ieU

This completes the proof. O

We will use all properties of Gaussian vectors established previously to show that if the
number of strongly correlated pairs associated to E is large, then we can construct an
orthogonal vector to E satisfying none of the assumptions of Theorem 4.1, i.e., a normal
vector to E which is neither very steep nor gradual with many levels.

Lemma 4.10. There exist absolute positive constants C and ca.10 such that the following
holds. Let y > 0 and C, = 2 + max(C, 2/y). Let E be a fixed subspace of C" with
m = dim E+ > n3/4. Denote

. Cny __1m3 _2my/2
cmer(a () ) o=ali) - vm(G)

Let (Ug)¢>1 be defined as above and p < 2n/m. Suppose that |Uf:1 Uyl > V. Then
there exists a vector w € C" orthogonal to E such that

. . 3
Vi <cgiom:  wi <09(n/i) w;.mm
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and for some X € C,

v/2
[l = s g — 2] < exp(—201/m)" Y, )| > (%) .

In other words, there exists a vector z € E* which is neither very steep nor gradual with
many levels in the sense of Theorem 4.1.

Proof. Let as before YD Y be independent copies of the vector Y and let (ug)¢>1
be the sequence of indices which was defined together with (Uy),> at the beginning of
Subsection 4.2. For any realization of YO v et § eRandx = (x1,...,%p)
€ CP? be such that ||x|l, = 1 and

The vector x and & can be taken as follows: if the matrix M := (Ybff))l <t,k<p is of full
rank, then take x = y/||y|l» and & = 1/||y||2, where y = M ~'1, otherwise take any unit
vector in the kernel of M and set £ = 0. Denote Z := Y (x) = Z,’::l x Y ®_ Observe
that deterministically

Zuy = =Zu, =&

We then have

P
]P’{|Zj — Zy,,| = ap for at least half of indices j € U Ug}
(=1

P
Z P{|Z; — Z,,| > ap for at least half of indices j € Uy}
=1

p
ZIP’HY(k) Y(k)| > « for at least |Uy|/(2p) indices j € Uy}

—_

p

IA

- gmm

PN PUr® - v = o) <278,

IUzl =

~
I
N

k=1

where the first inequality follows by the union bound; the second one by a combination
of the triangle inequality, the fact that ||x||2 = 1, the pigeonhole principle, and the union
bound; the third one from Markov’s inequality; and the last one from the definition of
(o, B)-strongly correlated pairs. This together with the assumptions on p and 8 implies

P{3r € C:|Zj — A| < ap for more than V/2 indices j € [n]} > 1 — 2p3ﬂ >1/2.

On the other hand, applying Propositions 4.4 and 4.7 we find that with probability at least
1 —9/./n one has

Z;’;Am >c4am/n and Vi <m/4: ZI < Cs7py/In(np/i).



486 Alexander E. Litvak et al.

Intersecting the previous events we deduce that there exists a realization of Z (which will
give the required vector w) satisfying
m\ 7?2
>V/2=[— n
n

. ) ' oapn .
{l <n: |Zl - )\-l =< Caam Zc4_4m}

for some A € C and

Z*

. . 3
Vi<cm: Z; < caqm’

c4.4m

. 3
Cagn pyIn(np/i) . <09 <§)
1

cqqam

where ¢ > 0 is a small enough absolute constant and where we have used p < 2n/m. To
complete the proof, we choose c4.19 = min(c, c4.4) and note that

" < exp(—2(n/m)")

c4.4m

for an appropriate choice of the constant C (we may take C = —1Incy 4). O

4.3. Proof of Theorem 4.2

Letd,n,z,y,1, E,G, A, be as in the statement of Theorem 4.2, and Y as above. We
may assume without loss of generality that dim E = |/| a.s.; otherwise, we complement
E to form a subspace Eg of dimension |/|. In this case orthogonality to Ey will imply
orthogonality to E, therefore the proof below will not be affected. Let m = |I¢|. Denote

1/m\>? n\’ 1/ m\> m\""?
= —| — = — — = —| — V =2 —
s=3(5) w0 (R)) a=iE) . v=a()

where C, is the constant from Lemma 4.10. Let the sequence (U¢)¢>1 be constructed
as above. If |Uj| < m/2 set p = 0, otherwise let p be the largest integer such that
|Up| = m/2. Since (JU¢|)¢>1 is non-increasing, we have p < 2n/m. Notice that (U¢)¢>1
and p inherit randomness only from E. Let

P
J:Uwcm
=1

@if p = 0 then J = 0). Consider the event £ := {|J| > V} (depending only on E).
Lemma 4.10 implies that £ C £7, where &£; denotes the event appearing in Theorem 4.1.
Denoting by &, the event of Theorem 4.2 and applying Theorem 4.1, we get

P(&) < P(ENE) +PE) <P(E&NES) + 1/n.

Now note that once in £¢, we have |J| < V. Therefore, since J¢ = UZ: Pt Uy,

PENE) <Pl eC:|{j € J : [¥j — Al < exp(—C(n/m)?)}| = m}.
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Since n/m > d> and d is large enough, there exists a sufficiently large absolute constant C
satisfying

exp(—C(n/m)¥) < as//4In(1/B).
Applying Lemma 4.9 with k = p 4+ 1 and b = m /2 (then Uy < b), we obtain

PENE) <P{AneC: |{j e J:|Y; — Al < as/y/4In(1/B)}| = m}

(sn)? m

< — = —,
= 2m/2)?  2n

Since 1/n < m/(2n), this completes the proof. O

5. Intermediate singular values

The goal of this section is to establish the bounds on the intermediate singular values
stated in the introduction (see Theorem 1.6). We first briefly show how to derive the
estimates on the singular values far from the lower edge of the spectrum. As mentioned
in the introduction, these follow from the work of Cook [12]. The majority of the section
is devoted to the complementary regime, that is, to bounding the singular values closer to
the edge.

5.1. Higher end of the spectrum

Following the comparison strategy described in the introduction, the following proposi-
tion was proved by Cook [12, Proposition 7.3].

Proposition 5.1 (Anti-concentration of the spectrum). Assume d = o(y/n) and d — oo
as n — 0o. Then with probability at least 1 — Cqexp(—n), for all n € (0, 1] one has

vp. ([0, 7]) < Co(n +d~"/*8),
where Cy is an absolute positive constant.

Based on this, it is easy to derive Proposition 1.5.

Proof of Proposition 1.5. Fork <n —2C'nd="* set gy := (n — k)/(2C'n) > d—1/48.
Proposition 5.1 applied with n = 5, implies that with probability 1 — exp(—n), for any
k < n —2Cond=*® the number of singular values smaller than 5y is less than 2Congn.
This yields that sx = sy—2cymn = Nk Setting C = 2C” and ¢ = 1/(2Cp) we complete the
proof. O

Remark 5.2. Proposition 5.1 is Proposition 7.3 from [12] stated there for d > In* n. Let
us indicate the changes needed to cover our range of interest, that is, d = o(y/n) and
d — oo as n — oo (without the restriction d > In* n).

The proof of Proposition 7.3 in [12] combines three lemmas: Lemmas 8.1, 8.2, and
8.4 there. Lemma 8.4 establishes bounds on the intermediate singular values for shifts of
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Gaussian matrices and does not demand d to be polylogarithmic in n. Lemma 8.2 com-
pares the expectation of the Stieltjes transforms of the Bernoulli model (with parameter
d/n) with its Gaussian counterpart. Here as well, no restriction on d is required and one
only needs that d — 0o as n — oo for the approximation to be effective.

The last piece of the procedure, Lemma 8.1, compares the uniform d-regular model
with the Bernoulli matrix. Its proof uses a general concentration inequality for linear
eigenvalue statistics of Hermitian random matrices [12, Lemma 9.1] and an estimate of
the probability that a Bernoulli matrix with parameter d/n is d-regular [12, Lemma 9.2].
The latter indeed requires d > In*n as stated, since it covers also large values of d.
Since in our regime we suppose that d = o(y/n), we could replace the estimate of
Lemma 9.2 by a bound proved by McKay and Wang [30], which is also mentioned in
[12, Remark 9.3]. This implies the validity of Lemma 8.1 for any d = o(y/n) with the
term exp(—O (d*3n1nn)) in the probability bound replaced with exp(—O (n Ind)). This
affects the proof of Proposition 7.3 in a trivial way, as one would change the choice of ¢
there to be (Ind/d)'/* and carry out the remaining part of the proof in exactly the same
way as before.

Note that the same change in Lemma 8.1 is sufficient to extend the proof of Proposi-
tion 7.2 in [12] to our range of d, which gives our Proposition 1.3.

5.2. Lower end of the spectrum. Proof of Theorem 1.6

We first relate the intermediate singular values to separation estimates between the rows
of the matrix. As an important technical ingredient, we use the so-called negative second
moment identity, which was employed earlier in papers on the circular law (see [39, 12]).
‘We note that one could also use the restricted invertibility principle instead (see [31]).

Lemma 5.3. Let B be an n x n complex random matrix with distribution invariant under
permutation of rows. Let m < n be positive integers and p, 5 > 0 be such that

P{dist(Ry (B), span {R;(B)}j=m-1) < p} < 8.

1
Then for every 1 < L < 35

P{sq—2L5m(B) = pvV L3} =1 —1/L.
Proof. For eachi < m, let y; be the characteristic function of the event
{dist(R: (B), span {R; (B)}jeim\(i}) < P}-

By the conditions of the lemma (including the permutation invariance), we have E x; < 8,
hence, by Markov’s inequality, the event

&= {ix,- > L8m}
i=1
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has probability at most 1/L. Conditioning on the complement £¢, we can find a set of
indices I C [m] of cardinality at least m — Lém such that for every i € I one has

dist(R; (B), span {R; (B)}je[m)\(i}) = -

Passing to the |/| x n submatrix B’ with rows R;(B), j € I, we obviously have, for
i <],
dist(R; (B"), span {R;(B")}j i) = p.

Applying the negative second moment identity (see, e.g., [39, Lemma A.4]), we obtain

11 ]

— . -2 —
> si(B)™r =) dist(Ri(B"), span {R;(B)}j=) < |I|p™>.
i=1 i=1
Therefore,
m—L&m |1]
Lémsparsm(BY 2 < Y 5i(B)P <Y 5(B) T <mp~?,
j=m—2L5m j=1

which implies
sm—ZLSm(B/) > pvV Lé.
Clearly, we deterministically have
Sm—2Lsm(B) > sm—ZLBm(B/)‘
Thus, s;,—21 sm(B) > p+/ L § everywhere on £¢, which yields the desired result. m]

We now provide bounds on the distances under consideration.

Lemma 5.4. Let d, n be large enough integers such that d < In® n, let z € C be such
that |z| < ~/dInd, and set y = 1/288. Let 0, denote the uniform random permutation
of [n] independent of A, and, as before, B, = d~'/*A,, — z1d. Then for every i satisfying

2n/1n1/7’ n<n—i<d?3n

one has

) n \V n—i
P{dlst(Rgn(i)(BZ), span{Ran(j)(Bz)}jf,-_l) < exp(—C(n — i) )} <C ,

where C is a positive universal constant.

Since the proof of Lemma 5.4 requires developing certain anti-concentration tools, we
postpone it and turn to the proof of Theorem 1.6.
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Proof of Theorem 1.6. Let i satisfy 2n/In'/Y n < n —i < d=3n and let 0, B., C be as
in Lemma 5.4. Denote ¢ = (n — i)/n. Then

P{dist(Rgn(i)(Bz), span{R(,n(j)(BZ)}jSi_l) < exp(—Cs_V)} < Ces.

Let B be the matrix obtained from B, by permuting its rows according to o,,. Then B has
the same singular values as B and the distribution of B is invariant under permutation of
rows. Therefore applying Lemma 5.3 with
1
p=p)=exp(—=Ce™?), §=686()=Ce and L=—ro
P 24/C8

(then (1 — 4/¢)i < (1 — 2L3)i), we obtain
P{s_yei(B) = (¢/9)!/* exp(—=Ce™7)} = 1 — 2C /.

Using (1 — /e)i > (1 —2./e)n and (¢/4)'/* > exp(¢~7) when d is large enough (recall
i > n —n/d?), we deduce that for an appropriate absolute constant C; > 0,

P{s(1_2 /5 (B) = exp(=C1e77)} = 1 = 2C/e.
Writing & = (1 — 24/¢)n (with a slight adjustment to make it an integer), so that & =

(n—k)?
@n? >

we clearly have

n—2d3n<k<n- 2«/5n/1n144n.

Using the facts that ,, is independent of A,,, that B and B, have the same singular values,
and that (s;); is increasing, we obtain the desired result. m]

5.3. Anti-concentration

To state the main result of the subsection, we need to define a special distribution on the
set of n-dimensional 0/1 vectors. For any matrix M € M, 4 and for any non-empty
subset K C [n] denote

My g :={M € Myq4:R(M)=R;(M)foralli ¢ K}.

Now, fix J C [n] of cardinality at least n/2. In this section, we denote by Z = Z(J)
a uniform random subset of J of cardinality [n'/#]. Next, fix an index u € [n]\ J and
a matrix M € M, 4 and define a random vector Xy, , via its conditional distribution
with respect to Z; namely, we postulate that, conditioned on a realization Iy of the set Z,
the vector Xy j , takes values in the set

Om,Ju:={Ru(M"): M' € Mp. 1,0(u)}
and
M’ e MM,]OU{M} t Ry (M') = x}|
IMips, 1yUtuy | ’

Vx € Omiu: PXmiu=x1T=1I}=
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Proposition 5.5. Let d, n be large enough positive integers such that d < n'/®. Let J
be a subset of [n] of cardinality at least n/2, u € [n] \ J, and let M be a fixed matrix
in My, q. Further, let §, p > 0, and let y be a fixed vector in C" such that for some subset
J C [n] we have

VieC: [{jemI\J: |y —xl<pl| <én
Then
VieC: Py Xysu) =M < p/4) < BIT|/m)" + 1448 407/,
To prove this proposition we need several lemmas.

Lemma 5.6. Let d, n be large enough positive integers such that d < n'/ and let M be
a fixed matrix in M, 4. Further, let J C [n] be a fixed subset of cardinality at least n/2,
u € [n]\ J and T = Z(J). Then with probability at least 1 — 2n~'/* the supports of the
rows Ri(M), i € T U {u}, are pairwise disjoint.

Proof. Denote by Q C (J U {u}) x (J U {u}) the subset of all pairs (i, j) such that
supp R; (M) N supp R; (M) # 0.

By d-regularity we observe that for any i € J U {u} there are less than d? indices j with
(i, j) € Q. Thus, |Q| < d2(|J| + 1). On the other hand, an easy computation shows that
for any (i1, i) € Q with i1 # i, the probability that both i; and i belong to Z is

<|J| +1 —2) <|J| + 1>‘1 A4 -1

(!4 =2 )\ [n'/4] 1(JT+ 1)
Hence,
IP{Z contains a disjoint pair in Q} < |Q|~/n/(|J|(|J] + 1)) < dzﬁ/|J|.
The assumptions on |J| and d imply the result. O

Lemma 5.7. Let d < n be large enough positive integers and M be a fixed matrix
in My, _q. Further, let J C [n] be a subset of cardinality at least n/2, and let T = Z(J).
Then for every subset L C [n] with probability at least 1 — 1/n* we have

)(U supp Ri(M)> N L‘ < 14dInn + 4dn—>/*|L].
iel

Proof. Without loss of generality we assume that |[L| > d 2 Fix a partition (Lk)gil of L
such that for every k < d? and for every i # j € L there is no row of M such that
i, j are simultaneously contained in its support. Such a partition can be constructed as
follows: take a graph I" on L without loops such that i # j € L are connected by an
edge whenever there is a row of M whose support contains both i and j. The d-regularity
immediately implies that the maximum vertex degree of this graph is strictly less than d?



492 Alexander E. Litvak et al.

(in fact, not greater than d(d — 1)). Therefore, by Brook’s theorem, the chromatic number
of I' does not exceed d?, which justifies the number of sets in the required partition of L.

Further, let Z be a random subset of J such that each index i € J is included into 7
with probability |n'/#]/|J| independently of the others. Fix k < d* for a moment. For
any i € Ly, let nl’.‘ be the indicator function of the event that

i€ U supp R;(M).
jeT

Note that by our construction (nf.‘),-E 1, are jointly independent, and for all i € Ly,
Eni =E@)” =Py = 1) <dn'/*/|J| :=56.

Applying Bernstein’s inequality with = §|L| 4+ 14 Inn, we obtain

]P’{‘Lk N UsuppRj(M)‘ > 268|Lg| + 14lnn} < P{Z(nf‘ —Enf-‘) > t}
T ieLy

jeT
312 3t s
<expl ——————— | <exp|l—— ) =n"".
2(r + 38| Lg)) 8

Then the union bound implies that with probability at least 1 — d>n > one has

2dn'/*|Ly|
1]

2dn'/*|L|

d2
‘LﬁUsuppRj(M)‘ §Z(l4lnn+ 7

) = 14d%*Inn +
jeZ k=1

Finally, note that the cardinality of 7 equals exactly m := [n'/*] with probability

m [J|—=m [J1
<|J|) (ﬂ) <1 - ﬂ) > <1 - ﬂ) > exp(—2m) > n~ /4.
m )\ |J| 11 1]

Therefore
IP’HL N U supp R;(M)| < 14d*Inn + % ' 17| = Ln1/4j}
JjeT
zl—d%‘“zl—%,
n
which implies the desired result, since |J| > n/2. ]

Lemma 5.8. Letd < n be positive integers. Let M be a fixed matrix in M,, 4, J C [n] be
a subset of cardinality at least n/2, and T = Z(J). Letu € [n]\ J and let Iy C J of size
|n'/4| be such that the supports of the rows R;(M), i € Io U {u}, are pairwise disjoint.
Then, conditioned on T = Iy, the support of the random vector Xy, is a uniformly
distributed d-subset of

S = U supp R; (M).

ielgU{u}
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Proof. We first show that for any two 0/1 vectors x, y satisfying
suppx,suppy C S,  |suppx| = [suppy| =d, and [suppx \suppy|=1,
the sets
={M' € Mpy, 1yufu) : Ru(M') =x} and S, :={M" € My, juu} : Ru(M") =y}

have the same cardinality. Without loss of generality, assume that x; = y, = 1 and
x2 = y1 = 0. Then {1, 2} C S. For every matrix M’ € S, we construct a matrix M” € S,
as follows. Since {1, 2} C S and the rows indexed by Ip U {u} are pairwise disjoint, there
exists a unique index i = i(M’) € Iy U {u} such that Mi/,l = 0and Mi/,z =1.Let M”
be obtained by performing the simple switching operation on M’ which interchanges the
entries M/, 1 and M, o with M; y and M ’2 respectively. Clearly, M” € Sy, and it is not
difficult to see that the constructed mapping is injective. Therefore, |Sy| < |Sy|. Reversing
the argument, we find that | S, | = |S)|. Since for every 0/1 vector z satisfying supp z C §

and |supp z| = d one can construct a sequence of vectors xo = x, X[, ..., Xxy = z With
suppx; C S, |suppx;| = d, and such that two vectors x;_1, x; differ in exactly two
coordinates for every 1 < i < k, we obtain |Sy| = [S;|. Thus

PiXymgu=x|1T=1I}=PXpju=2I1T=1}

which means that, conditioned on Z = Io, the support of the random vector X j, is
uniformly distributed on the set of d-subsets of S. O

Lemma 5.9 (Coupling). Let d, n be large enough positive integers such that d < n'/3
and let M be a fixed matrix in M, 4. Let J C [n] be a subset of cardinality at least n/2
and T = Z(J). Assume that u € [n]\ J and let Iy C J be of size |n'/*| and such that
the supports of rows R;(M), i € Iy U {u}, are pairwise disjoint. Let &1, ..., &y be i.i.d.
random variables uniformly distributed on

d
S = U supp R; (M), andset Ye := Zegi.
ielgU{u} i=1

Then there is a coupling (X, Y¢), with X distributed as X v j 4, such that
PX=VY: | Z=1o}>1—n""8
Proof. Note that, conditioned on the event
& :={& # & foralli # j},

the random set X := {&1, ..., &;} is a uniformly distributed d-subset of S. Therefore, by
Lemma 5.8, the distribution of X, s, conditioned on I = [y agrees with the distribu-
tion of Y; conditioned on £. Since R; (M), i € Iy U {u}, are pairwise disjoint, we have
|S| > dn!/* hence

P{& = & forsome i # j} < d’Plgr = &) < d?/|S| < n”'/%,

This implies the desired result. O
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Lemma 5.10. Let§, p > 0, Jc [n], and y be a fixed vector in C" such that
VieC: |(jelm\J:ly—rl<pl <sn

Then there exists a partition (U;j)i<9, j<n of [n]\ J such that |Uij| < én foralli <9,
Jj <n,and

Vi <9Vj#j en]Vs eUy;Vs' €Uy |ys— vyl = p.
Proof. We identify C with R?. Consider the following nine points:

ar=0,0), a=(1,0, a=(20, a=(01, a5=(0,2),
a= (1,1, a7=@2,1), ag=(,2), a9=(2,2).

Fori <9, set
Vi := p(a; + 3Z x 37Z).

Note that any two points in V; are at distance at least 3p from each other and the union of
the V;’s is C. We first construct a partition (V;); <9 jez2 of the complex plane as follows.
First, set V1 ; to be the Euclidean balls of radius p centered at p(a; + 3j) € V;. Observe
that the balls are necessarily pairwise disjoint. Further, assuming that Vy;, £ < i, j € 72,
are constructed (for some 1 < i < 9), define V;; as the set difference of the Euclidean
ball of radius p centered at p(a; + 3j) € V; and the union of Vy;/, £ < i, Jj € Z?. Then
(Vij)i<o, jez? 1s a partition and moreover, for any i < 9 and any j # j' € 77, one has
|x — x| = p forany x € V;;, x" € V;j. Indeed, this follows by an application of the
triangle inequality together with the fact that the centers of these two balls are at distance
at least 3p. Therefore, one can partition the coordinates of y by intersecting the above
partition of C with {y;};<,. This naturally defines a partition of [n] \ J by setting the sets
of the partition to be the indices of the corresponding coordinates of y. The assumption
on y implies that each set in the partition contains at most én elements. O

Proof of Proposition 5.5. Fix A € C. Then

P{(y. Xprsu) =M < p/4 < D PUY. Xmsu) =2 < p/4 | T = 10} PZ = ).
IycJ
ol=1n"/*)

Let (U;})i<9, j<n be the partition of [n]\ fgiven by Lemma 5.10, in particular |U;;| < én
for all i, j. Let T be the collection of all subsets Iy of J of cardinality [n'/*] satisfying
the following three conditions:

the rows R; (M) fori € Ip U {u} are pairwise disjoint; @)

‘70 |J supp R,-(M)‘ < 14d%Inn + 4dn=*|J; )
iely

‘Uij N supp Ri(M)‘ < 14d*Inn + 48dn'/*. )

iely
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By Lemmas 5.6 and 5.7 and the union bound, the event {Z € T} has probability at least
1 — 3n~1/4. Thus, we have

P p 3
Py, Xprgu) = < =8 < Y P Xpgw) =M <5 | T =10 PIZ = Io}+—.
4 loeT 4 nl/t

Further, fix any Io in 7. Let S, &1, ..., &4, and Y¢ be defined in Lemma 5.9. Note that
by (7), |S| = dn'/*. Lemma 5.9 implies

P{(y, Xp,su) — 2 < p/4 1 T = Io} < P{(y, Ys) — Al < p/4} +n"1/8
Denote

So == U supp R; (M) \ .7 S = <J~ﬂ U suppR,(M)) U supp R, (M),

iely iely

and & = {£1, ..., &4}. Note that by properties (7) and (8) and assuming that |f| <n/8
(otherwise the bound for the probability in Proposition 5.5 is trivial), one has

Sol _ | _ISil _

IS;]  15dInn 4|7
- < <

3 1
IS| = nl/4 Tt Sy S| S| = 4

S| > dn'/%, (10)

Consider the events

S ={ENSo=0={&CS} and & :={ENSy#7).

Using property (10) and independence of &;’s, we clearly have

d ~d
re=asnsn’ = () + (%)
n

n

To estimate the remaining probability we split & into the disjoint union of the events
Ew:=1{& € Soforalli € Wand§; ¢ Sy foralli ¢ W},
where W runs over all non-empty subsets of [d]. Then

P{l(y, Ye) = Al = p/4 | E2} < S%pﬂ”{I(yf Ye) =Ml = p/4 | Ew).

Fix a non-empty W C [d] and m € W. Since &;’s are i.i.d., we observe that

P{|(y. Ye) — Al < p/4 | Ew} < supP{|(y. eg,) — &l < p/4 | &m € So}
reC

= sup P{|(y. ez,) — x| < p/4 | & € So).
reC

This implies

po :==P{& and [(y, Ye) — Al < p/4} < supP{(y, eg,) — X < p/4| & € So).
reC
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Fix » € C. By Lemma 5.10 for every i < 9 there exists at most one j (i) < n such that

9
g1 € Spand |(y, e5) — Al < p/4 implies & € Son | JUijq).-
i=1

Using this, (9) and (10), we observe

9
N Z [So N Ujjail - 540d1Inn 11448,

9
D PlEr € SoNUijy) < — 5] =

<
PO =pie e so) 1ol

i=1 i=1

Since P{|(y, Ys) — A| < p/4} < P(&) + po, d < n'/3, and n is large enough, this
completes the proof. O

5.4. Distance estimates. Proof of Lemma 5.4

The goal of this subsection is to prove Lemma 5.4.

Fix z € C,y = 1/288, and i € [n] satisfying n/In'/Y n < n —i < d—3n. Recall
that o, denotes the uniform random permutation of [n#] independent of A,, and B, =
d_l/zAn — zId. Denote E; := E(B;,o([i — 1]), i.e., the random subspace spanned by
the rows Ry, (j)(B), j <i —1.

We now define a random triple (A,, A}, 0,,) in the following way (the choice of nota-
tion will be justified after the construction). For each matrix M € M,, 4 and a permutation
o €I, let

Mpyo i={M' € Myq: Ry(jy(M') = Ry(jy(M) forall j & [i — [n'/*], i]}.

Define
U= U U (M, M',0): M € My}
oell, MeM,, 4

Further, define a probability measure n on U by

1 1

V(M, M, U: M, M' 0)}) = '
( o) € n{( o)} n!l Mgl Mol

We postulate that the triple (A,, A}, 0,,) takes values in U and is distributed accord-
ing to the measure 7. It is not difficult to see that (individual) marginal distributions of
A, and A}, are uniform on M, 4, and that o, is uniformly distributed on IT,. Moreover,
A, and o, are independent, as also are A/, and o,. This justifies our choice of notation
for A,, and o, (which otherwise would come into conflict with our “old” notions of A,
and 0,). As usual, below we assume that G is independent of the triple (A,, A}, 0,,) and
that all random variables are defined on the same probability space.

Fix a matrix M € M, 4, asubset J C [n] of cardinality i — 1 and anindex u € [n]\ J.
Define the event

EMm.gu = {An =M, {o,(r):r <i—1}=J, 0,(i) = u}.
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Observe that, conditioned on £y, 7 4, the set
We={on(j):j=i—1n'"*l...i-1)
is a uniform random [n'/4|-subset of J. Let Wy C J be any realization of W and set
Em,guwy = Em,au N{W = Wo}.

Conditioned on Eux, 7,4, > A!, takes values in the set of matrices My, wou(u} defined as in
Section 5.3, and the u-th row of A; has conditional distribution defined by

H{M' € My wyupu) © Ru(M') = x}|
P(R,(AL) =x | Em 1wy} = o) - P :
Mz, woUtuy |

In other words, conditioned on £y, 7, the u-th row of A, is distributed exactly as the
random vector Xy, 7., defined in Section 5.3. Now, let &, M. C Em, 7. be the event that
the uniform random normal PEJ_ G satisfies the following condition:

n—i\’"?
aj c [n], |J| < 2< ) n, such that
n

~ Y
VXE(C:Hje[n]\J:|(PE_LG,ej)—)L|§eXp(—C0< " ) )}

n—i

Sn_ia

where Cy is the constant from Theorem 4.2. Note that conditioned on the event Ep_ s 4,
the subspace E; is completely determined by M and J, in particular it is fixed within
the event £y, 7 ,. Therefore, by the independence of G from the triple (A,, A}, 0,), we
see that PEJ_G and the u-th row of A are independent conditioned on £y, ;. Then,

condmomng on the event £}, .., and denoting
— g-172
B :=d '?A) —z1d,

we apply Proposition 5.5 with y = PEiLG and A = d'/?(y, R,(z1d)) to get

4
P{HPE,.LG, Ru(B))| = (16d)~'/? exp(—CO(n - l.) ) ‘ 634,1,u}

n—i n—i\""? d ~1/10 n—i
+ (16 +n < 145 (11)
n n n

provided that d is large enough. For convenience, we denote g := i — |n'/*]. Define
another (the last) auxiliary event

< 144

Evt. s = Ent.u N I/ (0 = )| Py Ru(BL) 12 = |(Ru(BL), PpiG)l).
Using the deterministic relation

1P Ru(B) 2 < | Pps Ru(B)) 2,
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the independence of R, (A),) and P G conditioned on &y 4, and (5) applied with ¢ =
In(n/(n —i)), we obtain

~ n—i
IP>(5M,J,u | EM,J,M) >1- n

and thus
P(glcng’u N gM,J,u) - n—i IF)((‘:M,]’M)
P(gllw,l,u) B n P(gl/ll,./,u).

P(gg/l,l,u | g//VlJ,u) =
Together with (11) and using
n \7
4v/d In(n/(n —i)) < exp<< ) )
n—i

for sufficiently large d, we get, for an appropriate choice of the constant c ,

~ n 4
P{||PE(ILRUn(i)(B£)”2 = exp<_c<n — l) ) ‘ gl/ll,./,u}

%
< IP{|<PE;G, Ry(B)| <cd™'/? exp(—co(i.) ) ‘ Ey ,u}
i n—i o
+PEy g | E1,.0)
n—i IP’(S]/V[”]’M)> < 1461’1 —1 P(g]/M’J’M)I
P(SM,],M) n P(gM,],u)

Using the independence of G and (A,, A),, 0,) and applying Theorem 4.2 with I = E;,
which is fixed within the event £y, 5 ,, we observe

B(U ) = 1- 2

M,J,u

< <145 +

Note also that the events £y, , are pairwise disjoint, so that ) ,, ; , P(Ep 74) < L.
Therefore, using &), ; , C Eu, 7.4 We obtain

~ n v
P{ I1PgL Ro, i) (B2 < eXP(—C<n — i) )}

~ n 4
<> P{HPE#RJH@(B;)IIz = exp<—C<n - l.) )

M,J,u

EI/VI,J,M} IP)(g]/l/[,J,l,t)

—i

4 n—i n—i n
]P([ &l ] ) < 146 P(E <147
+ Mgu M., Ju = Z ( M,J,u) + " =

n M,J,u n

Note that for any realization (M, M’, o) of (A, A},, 0,) we have Ry (j)(M') = Ry (j)(M)
for all j < g, therefore

Eq = span{Ro,(j)(B;)}j<q = span{Ro,(j)(B))}j<q-
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Thus

) ~( n \’ n—i
}P’{dlst(R,,n(,')(Bé), span {Ro, (j(B))}j<q) < exp(—C(n — i> >} <147 —

In view of the independence of o, and A},, we can replace the row Ry, (;)(B.) in the above
formula with Ry, (4)(B.) with no change to the probability estimates. Since A, and A,
are equidistributed, we can also replace Ry, (4)(B.) and R, (;)(B]) with R, 4)(B;) and
R, (j)(B7). Finally, note that in our range of i, ”n;‘ is equivalent to % up to a constant 2

and thatn —n/d> < g <n —n/In"/Y n — n'/*. This completes the proof of Lemma 5.4.
O
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