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Abstract. Our goal in this paper is to present a generalization of the spectral zeta regularization for
general Feynman amplitudes on Riemannian manifolds. Our method uses complex powers of ellip-
tic operators but involves several complex parameters in the spirit of analytic renormalization by
Speer, to build mathematical foundations for the renormalization of perturbative interacting quan-
tum field theories. Our main result shows that spectrally regularized Feynman amplitudes admit
analytic continuation as meromorphic germs with linear poles in the sense of the works of Guo–
Paycha and the second author. We also give an explicit determination of the affine hyperplanes
supporting the poles. Our proof relies on suitable resolution of singularities of products of heat
kernels to make them smooth.

As an application of the analytic continuation result, we use a universal projection from mero-
morphic germs with linear poles on holomorphic germs to construct renormalization maps which
subtract singularities of Feynman amplitudes of Euclidean fields. Our renormalization maps are
shown to satisfy consistency conditions previously introduced in the work of Nikolov–Todorov–
Stora in the case of flat space-times.
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1. Introduction

Zeta regularization. LetM be a smooth, compact, connected manifold without boundary
and P be a symmetric, positive, elliptic pseudodifferential operator on M . Later on, we
will specialize to Schrödinger operators of the form P = −1g + V where −1g is a
Laplace operator and V is a smooth nonnegative potential. But the present discussion
applies to any symmetric, positive, elliptic pseudodifferential operator P . Such a P admits
a discrete spectral resolution [36, Lemma 1.6.3 p. 51], which means there is an increasing
sequence of eigenvalues

σ(P ) = {0 ≤ λ0 ≤ λ1 ≤ · · · ≤ λn→+∞}

and corresponding L2-basis of eigenfunctions (eλ)λ∈σ(P ) so that Peλ = λeλ. In his sem-
inal work [72], Seeley constructed the complex powers (P−s)s∈C of P as a holomorphic
family of continuous linear operators acting on suitable scales of Sobolev spaces on the
manifold M . In particular for Re(s) ≥ 0, P−s is bounded in L2(M). Now let us consider
the spectral zeta function ζP (s) which is defined as the trace TR(P−s) coinciding with
the series

ζP (s) = TR(P−s) =
∑

λ∈σ(P )\{0}

λ−s . (1)

By Weyl’s law on the growth of eigenvalues of P [36, Lemma 1.12.6 p. 113], the operator
P−s is trace class and the series ζP (s) =

∑
λ>0 λ

−s converges as a holomorphic func-
tion of s on the half-plane Re(s) > dim(M)/ deg(P ). Then Seeley showed that ζP (s)
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admits an analytic continuation on the complex plane as a meromorphic function [36,
Thm. 1.12.2 p. 108] with simple poles. In case P is a differential operator, ζP (s) is
holomorphic at s = 0. This result shows one of the first instances of the power of zeta
regularization, where we can regularize the divergent series

∑
λ∈σ(P ) 1 and obtain the

value ζP (0) of the spectral zeta function ζP at s = 0. More importantly, the residues of
ζP (s) at its poles can be expressed as multiples of integrals over M of local invariants
of the operator P [6, pp. 299–303] and are intimately related to the heat invariants of P
[36, Thm. 1.12.2 p. 108].

From zeta regularization to regularized traces. In the same spirit, zeta regularization
techniques were also used in global analysis to construct regularized traces for certain
algebras of pseudodifferential operators. The above result of Seeley on the analytic con-
tinuation of TR(P−s) has been generalized to canonical traces on pseudodifferential op-
erators by Kontsevich–Vishik [49], whose work was partly clarified by Lesch [53] and
used to study anomalies of regularized zeta determinants. Then general types of tracial
anomalies were discussed in [55, 18, 61], sometimes in relation to quantum field theory,
and finally a general notion of trace for holomorphic families of pseudodifferential oper-
ators appears in the work of Paycha–Scott [62]. An important object underlying all these
constructions is the notion of noncommutative residue for any pseudodifferential operator
A. This residue can be defined by zeta regularization using complex powers of elliptic op-
erators as follows. Choose any symmetric, positive, elliptic differential operator P . Then
the noncommutative residue of A is defined as the residue at s = 0 of the meromorphic
continuation of the trace TR(AP−s), and is given by a local formula in terms of the sym-
bol of A. In his seminal works, Wodzicki [78, 79] proved that up to some constant factor,
this residue is the unique trace on the algebra of pseudodifferential operators. It plays a
central role in global analysis and noncommutative geometry. We refer the reader to the
monographs [60, 71] for further details on these topics.

Zeta regularization for partition functions. Already in the simple case of spectral zeta
functions of the Laplace–Beltrami operator, these regularization methods turn out to be
extremely useful to study Euclidean quantum fields on Riemannian manifolds. In the
mathematical physics literature, zeta regularization was first applied to quantum field the-
ory on curved spaces by Hawking [43] to give a definition of the partition function of Eu-
clidean QFT. It can also be used to give a mathematical model of the Casimir effect [31].
For topological quantum field theories, following the seminal work of Ray–Singer [66] on
analytic torsion, it was soon realized by Schwarz [70] that one can define and calculate the
partition function of some abelian BF theories using zeta regularized determinants. For-
mally, for some flat bundle (E,∇) over a smooth compact manifold M of dimension d ,
his formula for the partition function of the BF theory reads∫

(A,B)∈�k(M,E)×�n−k−1(M,E)
exp

(
−

∫
M

B ∧ d∇A

)
=

d∏
k=0

det (1(k))(−1)kk/2

where d∇ is the twisted differential acting on �•(M,E) and the right hand side is the
Ray–Singer analytic torsion of the flat bundle (E,∇) → M , which is a topological in-
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variant [56, (10) p. 9]. Then Witten generalized the above work of Schwarz by showing
that the perturbative partition function of Chern–Simons theory involves the Ray–Singer
analytic torsion and also the eta invariant of Atiyah–Patodi–Singer. Since the formula
is quite complicated, we refer the reader to [56, (12) p. 9]. But the important point is
that the formula involves zeta regularized determinants. The main idea underlying the
above results is that partition functions are formally expressed as functional integrals on
some space of fields; these partition functions are then identified with regularized deter-
minants of elliptic operators. For instance, in the case of the Dirichlet action functional
S(ϕ) = 1

2

∫
M
ϕ(−1g)ϕ dv(x) where −1g is the Laplace–Beltrami operator and dv the

Riemannian volume, the partition function Z reads

Z =

∫
dϕ exp

(
−

1
2

∫
M

ϕ(−1g)ϕ dv

)
= det(−1g)−1/2

where det(−1g) may be defined as exp(−ζ ′(0)) where ζ is the regularized zeta function
of the elliptic operator −1g appearing in the definition of the partition function.

For applications in mathematical physics and in the present work, a particular role will
be played by complex powers of generalized Laplacians (more generally elliptic, positive,
self-adjoint operators of order 2) and their relation to the heat kernel asymptotics. These
methods based on the local asymptotic expansion of the heat kernel are crucial in the
local index theory [14] and are also used in [8, 4] to give a purely spectral definition of
the Einstein–Hilbert action functional following [47, 1, 48].

Another interesting physical property of zeta regularization is its natural covariance,
which is why it was used by Hawking in the first place. Indeed, for any diffeomorphism
8 : M → M , the spectrum σ(−18∗g) of −18∗g on (M,8∗g) coincides with the spec-
trum of −1g on (M, g) and σ(−1g) is thus an invariant of the Riemannian structure
(M, g).1 Therefore zeta regularization is a coordinate independent regularization scheme
which depends only on the spectral properties of the Laplacian, which in turn is entirely
specified by the Riemannian structure (M, g).

Renormalization in quantum field theory. The present paper is written for analysts and
does not require any background in physics or quantum field theory. We present our re-
sults in a purely mathematical form. However, we felt that for readers with some interest
in QFT, it would be preferable to present some physical motivations, and the uninter-
ested reader can skip the present paragraph. QFT is a general framework aimed at de-
scribing the fundamental forces and particles. In QFT, we are given some graphs called
Feynman graphs which pictorially represent complicated interaction processes between
various particles and we associate to every graphG some number cG, called the Feynman
amplitude, which is often given by some divergent integral when the graph G contains
loops. The issue is that the above zeta regularization methods can only be used to renor-
malize one-loop graphs as discussed in [17, 1.4 p. 10]. For interacting QFT’s, it is not
enough to regularize only the partition function and one-loop graphs, one must renormal-
ize amplitudes whose corresponding graphs contain an arbitrary number of loops. For

1 The space of Riemannian structures is the set of pairs (M, g) quotiented by isometries.
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instance in quantum electrodynamics (QED), which is the QFT describing the interac-
tion of light and matter, the computation of the probability amplitude of some scattering
process for two incoming and two outgoing electrons is represented by the following
Feynman diagram:

where the electrons are denoted by e−, positrons by e+ and photons by γ . The correspond-
ing Feynman amplitude is given by some product of electron propagators, represented by
the straight lines, and photon propagators represented by the wiggly lines. These propa-
gators are distributions on R4

× R4 valued in 4× 4 matrices.
For the sake of simplicity, we limit ourselves to scalar theories in the present paper.

In these theories, unlike in gauge theories, there is only one scalar valued propagator
which is denoted by G in what follows. The topology of the Feynman graphs that we
encounter is dictated by the interactions of the theory. For instance in the massless φ4

theory, the only Feynman graphs that we encounter have vertices of degree 4. Our goal is
to use spectral zeta regularization to renormalize multiple loop amplitudes for Euclidean
QFT on Riemannian manifolds with the aim to relate them to geometric invariants of
Riemannian manifolds, which is the subject of future work of the authors. Our starting
point is the work of Eugene Speer on analytic renormalization in QFT [73, 74, 75] who
found an alternative formulation of the usual BPHZ renormalization algorithm, based
on analytic regularization with several complex parameters. The analytic structure of the
regularized amplitude in these variables encodes a rich algebraic structure so that a renor-
malized amplitude may be defined by the application of a universal projector, independent
of the graph in question, to the regularized amplitude. Indeed, we will show that regular-
ized amplitudes are meromorphic germs with linear poles, and in Subsection 6.3, we
will describe a straightforward way of subtracting the divergent part of the regularized
amplitudes while keeping only the holomorphic part. Then renormalization will be refor-
mulated in Definition 6.10 as the evaluation at some poles of the holomorphic part of the
regularized amplitude. This projection is a useful substitute to the BPHZ algorithm and
the method pioneered by Connes–Kreimer based on Hopf algebras and Birkhoff factor-
izations. In our work, a common point with the BPHZ algorithm and Speer’s work is that
we rely on Hepp sectors and resolution of singularities arguments.

Let us show how the idea of analytic renormalization works in an example on flat
space. On Euclidean space R4, the Green function of the Laplace operator reads G(x, y)
= CQ−1(x−y) where C is some constant andQ is the quadratic formQ(v) =

∑4
i=1 v

2
i .

On configuration space (R4)6, the Feynman rules assign to the graph
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the amplitude

T (x1, x2, x3, x4)

=

∫
(y1,y2)∈(R4)2

G(x1, y1)G(x2, y1)G
2(y1, y2)G(y2, x3)G(y2, x4) d

4y1 d
4y2,

which is given by some formal product of Green functions. To get rid of the infrared
divergence due to the fact that we integrate over infinite volume (R4)2, one may either
introduce a sharp cut-off by replacing R4 by a finite box, or insert some smooth compactly
supported cut-off function g ∈ C∞c (R4) for each variable (yi)i∈{1,2} corresponding to the
internal vertices of the Feynman graph, as follows:

T (x1, x2, x3, x4)

=

∫
(R4)2

G(x1, y1)G(x2, y1)G
2(y1, y2)G(y2, x3)G(y2, x4)g(y1)g(y2) d

4y1 d
4y2.

In fact, it is natural to view the full amplitude G(x1, y1)G(x2, y1)G
2(y1, y2)G(y2, x3)

×G(y2, x4) as a distribution in D′((R4)6), so we may think that we insert some smooth
compactly supported cut-off function g(y1)g(y2) on (R4)2 so that T (x1, x2, x3, x4) is
well-defined as the push-forward of the product G(x1, y1)G(x2, y1)G

2(y1, y2)G(y2, x3)

×G(y2, x4)g(y1)g(y2) d
4y1 d

4y2 along the fibers of the projection (R4)6 → (R4)4.
In terms of the quadratic function Q, the above amplitude reads∫
(y1,y2)∈(R4)2

Q−1(x1, y1)Q
−1(x2, y1)Q

−1(y1, y2)Q
−1(y1, y2)

×Q−1(y2, x3)Q
−1(y2, x4)g(y1)g(y2) d

4y1 d
4y2.

Now for each Q−1 factor in the amplitude, we shall introduce a complex power s as
follows:

T (s) =
∫
(y1,y2)∈(R4)2

Q−s1(x1, y1)Q
−s2(x2, y1)Q

−s3(y1, y2)Q
−s4(y1, y2)

×Q−s5(y2, x3)Q
−s6(y2, x4)g(y1)g(y2) d

4y1 d
4y2

where the new amplitude depends on s = (s1, . . . , s6) ∈ C6. For Re(si)1≤i≤6 large
enough, one can easily see that the amplitude defining T is integrable. The main result of
Speer is that T (s) admits an analytic continuation in s ∈ C6 as a meromorphic function
with linear poles. Then he shows that T (s) decomposes as the sum of a singular part and
a holomorphic part at s = (1, . . . , 1) ∈ C6 and renormalization consists in subtracting
the singular part and evaluating at (1, . . . , 1) ∈ C6.
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The main goal of the present paper is to combine the methods from zeta regularization
with multiscale analysis of Feynman amplitudes, to present a generalization of analytic
renormalization to general Riemannian manifolds. Then we will show that the renor-
malization defined satisfies the consistency axioms of Nikolov–Todorov–Stora in [59]
inspired by the seminal works of Epstein–Glaser [30].

2. Main results

In the present section, we introduce the main objects of study and state the main results
of our work. We first define Feynman amplitudes, next we explain how to implement
zeta regularization with several complex parameters; then we state the first main analytic
continuation theorem and finally we give a simplified version of our second main theorem
concerning applications of the analytic continuation result to renormalization in QFT.

2.1. Feynman amplitudes

We work on a compact, connected Riemannian manifold (M, g) without boundary, the
Laplace–Beltrami operator is denoted by1g , and C∞

≥0(M) denotes the smooth, nonnega-
tive functions on M . For a potential V ∈ C∞

≥0(M), it is well-known that the Schrödinger
operator P = −1g + V is a second order, symmetric, positive, elliptic differential op-
erator which defines a unique unbounded, self-adjoint operator acting on L2(M) [76,
pp. 34–35]. We now generalize the Feynman rules to this case. That is, to every graph we
associate a formal product of Green kernels of the operator P . Since on a general mani-
fold, there is no Fourier transform, our Feynman rules are just the Riemannian versions
of the Euclidean Feynman rules in position space of [19, Definition 2.1] (see also [24]).

Definition 2.1 (Feynman rules). Let G(x, y) denote the Green kernel of the operator P .
Then for a graph G with the set of vertices V (G) and the set of edges E(G), if for any
edge e ∈ E(G), the vertices incident to e are i(e) and j (e) and G has no loops, then the
Feynman amplitude associated to G is defined as

tG =
∏

e∈E(G)

G(xi(e), xj (e)) (2)

as a C∞ function on MV (G)
\ {all diagonals}.

Remark 2.2. Since the Green kernel G is symmetric in its variables, tG is well-defined.
The graphs are not allowed to have self-loops since the Green function G is not well-
defined on the diagonal, hence cannot be evaluated at coinciding points. The above Feyn-
man rules correspond to a perturbative Euclidean QFT where the Lagrangian is already
Wick renormalized, which explains why self-loops (also called tadpoles in the physics
literature) are excluded. In the physics literature, the amplitude reads

tG =
1

|Aut(G)|

∏
e∈E(G)

G(xi(e), xj (e))
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where the combinatorial factor |Aut(G)| ∈ N counts the number of automorphisms of G.
We drop this combinatorial factor for simplicity since this does not affect our discussion.

2.2. Multiple spectral zeta regularization

The operator P−s is defined as a spectral function of the operator P in a very simple way
following [36, equation (1.12.13) p. 107]:

Definition 2.3 (Complex powers). For Re(s) ≥ 0, every u ∈ L2(M) can be decomposed
in the orthonormal basis (eλ)λ of L2(M) given by the eigenfunctions of P . Then

P−su =
∑

λ∈σ(P )\{0}

λ−s〈u, eλ〉eλ

where the sum on the right hand side converges absolutely inL2(M) since the eigenvalues
λi tend to +∞ as i →+∞, hence the sequence (λ−si )i remains bounded.

The Schwartz kernel of P−s is then by definition

Gs(x, y) =
∑

λ∈σ(P )\{0}

λ−seλ(x)eλ(y) (3)

where we abusively denote by Gs(x, y) an actual distribution Gs ∈ D′(M ×M) and the
series on the r.h.s. converges in D′(M×M). We will later see that Gs is actually a function
on M ×M for Re(s) > d/2 where d = dim(M). We shall generalize this regularization
to the case M = Rd with flat Euclidean metric g and P = −1g + m2, m ∈ R≥0. Our
definition of Gs in the flat case is similar to the compact case since we define Gs using
complex powers of the Laplace operator:

Definition 2.4 (Complex powers for flat space). If M = Rd , g is a constant quadratic
form and m ∈ R≥0 is a mass, then we set

Gs(x, y) =
1

(2π)d

∫
Rd

ei〈(x−y),ξ〉

(gµνξµξν +m2)s
ddξ

=
1
0(s)

∫
∞

0

1
(4πt)d/2

e−
〈x−y,x−y〉g

4t e−tm
2
t s−1 dt.

It is immediate from the above formulas that Gs is the Schwartz kernel of (−1g+m2)−s

and that when s = 1, we recover the Green function of the operator −1g +m2.

Definition 2.5 (Regularized Feynman rules). Under the above assumptions, we denote
by P−s the complex powers of P and by Gs(x, y) ∈ D′(M × M) the corresponding
Schwartz kernel. Then for a graph G with vertex set V (G) and edge set E(G), the regu-
larized Feynman amplitude reads

tG(s) =
∏

e∈E(G)

Gse (xi(e), xj (e)), (4)

which is in C∞(MV (G)
\ {all diagonals}), where s = (se)e∈E(G) ∈ CE(G).
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Remark 2.6. We will see later in Lemma 4.1 that Gs is actually in Ck(M × M) for
Re(s) large enough, hence the above Feynman rules also make sense for graphs G with
self-loops when Re(s) is large enough, which was not true for s = 1 since G would be a
distribution singular on the diagonal.

Let us state our first main theorem:

Theorem 2.7. Let (M, g) be a smooth, compact, connected Riemannian manifold with-
out boundary of dimension d, dv(x) the Riemannian volume and P = −1g + V ,
V ∈ C∞

≥0(M) or M = Rd with a constant metric g and P = −1g +m2, m ∈ R≥0. Then
for every graph G, on the configuration space (MV (G), gV (G)) endowed with the product
metric gV (G) and product volume form dvMV (G) , for any test function ϕ ∈ C∞(MV (G)),

CE(G) 3 s 7→
∫
MV (G)

tG(s)ϕ dvMV (G) (5)

can be analytically continued near (se = 1)e∈E(G) as a meromorphic germ with possible
linear poles on the hyperplanes of equation

∑
e∈G′ se − |E(G

′)| = 0 where G′ is a
subgraph of G such that 2|E(G′)| − b1(G

′)d ≤ 0, |E(G′)| is the number of edges in G′

and b1(G
′) the first Betti number of G′.

To recover renormalized Feynman amplitudes, we follow the strategy of [25, 2.2]. We
cannot evaluate tG(s) at (se = 1)e∈E(G) since it might belong to the polar set of tG.
The notion of polar set is defined in reference [39]. However, applying the machinery
from [39] allows us to subtract the polar part of tG(s) at (se = 1)e∈E(G) while keeping
the holomorphic part. This is based on an extension of the framework of [39] to dis-
tributions valued in meromorphic germs with linear poles, constructed in §6.2. Then to
recover the renormalized Feynman amplitude, it suffices to evaluate the holomorphic part
at (se = 1)e∈E(G). Following Speer [74, Section 3], analytic renormalization will be re-
formulated in Definition 6.10 as the evaluation at some poles of the holomorphic part of
the regularized amplitude. This idea was recently abstracted in the works [20, 40] in a
purely algebraic way where the composition of a projection on the holomorphic part and
the evaluation at (se = 1)e∈E(G) is called an evaluator [40, 1.3 p. 6]. The renormaliza-
tion R(tG) of some amplitude tG is the composition of the operations summarized in the
following diagram:

tG
regularization
−−−−−−→ tG(s)

projection on holomorphic part
−−−−−−−−−−−−−→ π(tG(s))

evaluation at s=s0
−−−−−−−−→ ev|s0(π(tG(s))) = R(tG),

where s0 = (se = 1)e∈E(G).
In Section 6, we apply the above ideas to the renormalization of quantum field theories

on Riemannian manifolds and show the existence of a collection (RMI )I⊂N of renormal-
ization maps that roughly assign to each graphG a renormalized amplitude in D′(MV (G))

such that the renormalization maps satisfy the consistency axioms 6.2 which come from
the work of Nikolov–Todorov–Stora [59]. Let us state a simplified version of our second
main Theorem 6.11:
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Theorem 2.8. Let (M, g) be a smooth, compact, connected Riemannian manifold with-
out boundary of dimension d , dv(x) the Riemannian volume and P = −1g + V ,
V ∈ C∞

≥0(M) or M = Rd with a constant metric g and P = −1g + m2, m ∈ R≥0.
Then for every graph G, on the configuration space MV (G) endowed with the product
volume form dvMV (G) :

• there exist distributions π(tG(s)), (1 − π)(tG(s)) such that for any ϕ ∈ C∞(MV (G)),
we have a decomposition∫

MV (G)

tG(s)ϕ dvMV (G) =

∫
MV (G)

(1− π)(tG(s))ϕ dvMV (G)︸ ︷︷ ︸
meromorphic germ

+

∫
MV (G)

π(tG(s))ϕ dvMV (G)

where s 7→
∫
MV (G) π(tG(s))ϕ dvMV (G) is a holomorphic germ at s0 = (se = 1)e∈E(G)

∈ C|E(G)|.
• If ϕ ∈ C∞c (M

V (G)
\ {all diagonals}) then

lim
s→s0

∫
MV (G)

π(tG(s))ϕ dvMV (G) =

∫
MV (G)

tGϕ dvMV (G) (6)

which means lims→s0 π(tG(s)) is a distributional extension of tG ∈ C∞(MV (G)
\

{all diagonals}).

The reader is referred to Theorem 6.11 where we prove many important properties en-
joyed by the renormalized amplitudes lims→s0 π(tG(s)), the most important being a fac-
torization equation appearing in Definition 6.2 which translates in mathematical terms the
essential property of locality in Euclidean QFT.

Related works. In recent works of Hairer [42] and Pottel [64, 65], the authors give an-
alytic treatments of the BPHZ algorithm. As in the present paper, they also start from
Feynman amplitudes in position space but Hairer works on Rd with abstract kernels K
with specific singularity along diagonals, whereas we work on Riemannian manifolds but
we limit our discussion to Green kernels of Laplace type operators. He also uses Hepp
sectors to perform some kind of multiscale analysis to analyze the divergences of the
Feynman amplitudes. It would be interesting to compare the renormalization maps de-
fined in the present paper with the valuations in Hairer’s paper [42] and Definition 6.2
with the consistency axioms of [42].

Our treatment of renormalization bears a strong inspiration from the seminal work of
Epstein–Glaser [30] who were among the first to understand the central role of causality
(this is replaced in the current work by locality) in perturbative renormalization. Their
work was generalized by Brunetti–Fredenhagen [16] to curved space-times while the cru-
cial physical notions of covariance of the renormalization were addressed in the works
of Hollands–Wald [45, 46]. A recent investigation of the Epstein–Glaser renormalization



Renormalization of Feynman amplitudes on manifolds 513

using resolution of singularities can be found in the thesis of Berghoff [12, 13] clarifying
some previous attempts [11, 10]. Our results seem to be more general since we work in
the manifold case and we resolve singularities by hand instead of using compactifications
of configuration space of Fulton–McPherson and de Concini–Procesi.

There is a famous interpretation of BPHZ renormalization in terms of Hopf algebras
pioneered by Connes–Kreimer [21, 22, 23]. This approach using dimensional regulariza-
tion works essentially in momentum space and does not generalize in a straightforward
way to curved spaces. Motivated by problems from number theory, Marcolli–Ceyhan [19]
managed to reformulate the Hopf-algebraic approach on configuration space.

Other sources of inspiration for us are the recent works [29, 58], where renormal-
ization is discussed from the point of view of distributional extensions in position space
à la Epstein–Glaser, using also several complex parameters to perform some analytic con-
tinuation of the Feynman amplitude. In particular the paper [58] relates Epstein–Glaser
renormalization to the analytic renormalization by Speer.

Renormalization in the Riemannian setting was recently discussed in the book by
Costello [24], but it seems his proof of subtraction of counterterms contains some gaps
that were fixed by Albert who also extended Costello’s work to manifolds with bound-
ary [2, 3].

Perspectives. A natural extension of our results would be to prove an analytic contin-
uation result for Feynman amplitudes coming from Schwartz kernels of holomorphic
families of pseudodifferential operators in the sense of Paycha–Scott [62] generalizing
the Schwartz kernels of complex powers of Laplace operators. For the sake of simplicity,
we limited ourselves to complex powers of Laplace operators because of their explicit
relation to heat kernels and leave to another work the investigation of the more general
case. Another interesting situation is when the manifold M is noncompact with specific
asymptotic structure, as in scattering theory. Probably in this case, we would need to use
resolvents to define complex powers.

It would also be very interesting to test our proof in the Lorentz case with the Feyn-
man propagator instead of the Green function of the Laplacian. Then a natural question
would be: what is the substitute in the Lorentz case for complex powers of Laplace op-
erators? The first author defined complex regularization of Feynman propagators in a
previous work [25] on analytic Lorentzian space-times under some very restrictive as-
sumptions of geodesic convexity. This was based on the Hadamard parametrix for the
Feynman propagator. From our point of view, it would be preferable to define a com-
plex regularization scheme on smooth Lorentzian space-times which are not necessarily
geodesically convex. The scheme should be manifestly covariant since it is spectral regu-
larization on Riemannian manifolds. Probably, this could be based on the recent results of
[9, 33, 34, 32, 26, 27, 77] on the analytic structure of Feynman propagators. It is a rea-
sonable idea to replace the heat kernel asymptotic expansion by the Hadamard parametrix
for the Feynman propagator as in [7].

Another interesting direction is to investigate if it is possible to renormalize the am-
plitudes in Euclidean theory and then perform a geometric Wick rotation as in Gérard–
Wrochna [35] to build renormalized amplitudes of the corresponding Lorentzian QFT.
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3. Preliminaries

The goal of the present section is to introduce the language of meromorphic germs with
linear poles and give the main definitions, since meromorphic germs appear in the for-
mulation of Theorem 2.7. We also introduce their distributional counterpart which we
call meromorphic germs of distributions, which is the fundamental object needed for the
proof of Theorem 2.7. Meromorphic germs of distributions are essentially distributions
depending on some parameter s ∈ Cp, p ∈ N, which when paired with some test function
ϕ, give meromorphic germs in s.

3.1. Meromorphic functions with linear poles

In this paper, all meromorphic functions of several variables s = (s1, . . . , sp) ∈ Cp have
singularities along unions of affine hyperplanes. In fact, we will work with meromorphic
germs with linear poles in the terminology of [39]. We work in the space Rp, and with
the standard complex structure on Cp = Rp ⊗ C. Let (Rp)∗ be the dual space. In what
follows, holomorphic functions on a domain � ⊂ Cp and holomorphic germs at s0 ∈ Cp
are denoted by O(�) and Os0(Cp) respectively.

Definition 3.1 (Meromorphic germs). Let s0 ∈ Rp. Then f is a meromorphic germ with
(real) linear poles at s0 if there are vectors (Li)1≤i≤m in (Rp)∗ such that( m∏

i=1

Li(· − s0)
)
f ∈ Os0(C

p). (7)

The set of meromorphic germs with linear poles at s0 ∈ Cp is denoted by Ms0(Cp).

Geometrically such a meromorphic germ f is singular along some arrangement of affine
hyperplanes {s ∈ Cp : Li(s − s0) = 0}1≤i≤m, intersecting at the point s0.

3.2. Meromorphic germs of distributions

In this paper, we deal with families of distributions t (s) on a smooth second countable
manifoldX without boundary, depending meromorphically on the parameter s and whose
poles are linear. We will also call them distributions valued in meromorphic germs with
linear poles and will denote the space of such families by D′(X,M). We devote this
subsection to their proper definition. Our plan is to give the definition gradually, starting
from holomorphic objects. For a smooth manifold X with given smooth density dv, we
will use D′(X) to denote the space of distributions on X, defined in the present paper as
the topological dual of C∞c (X)⊗ dv, which is the space of smooth, compactly supported
densities. But in many situations where the density is explicitly given by a geometric
problem, we may equivalently think of the distributions as the dual of C∞c (X).

Holomorphic families of distributions. Before we discuss meromorphic germs of dis-
tributions, let us start smoothly by defining distributions depending holomorphically on
some extra parameter.
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Definition 3.2 (Holomorphic families). Let � ⊂ Cp be a complex domain, and X be
a smooth manifold. A holomorphic family of distributions on X parametrized by � is
a family (t (s))s∈� of distributions on X such that for every test function ϕ ∈ C∞c (X),
s 7→ 〈t (s), ϕ〉 is a holomorphic function on �. The set of such holomorphic families of
distributions will be denoted by D′(X,O(�)).

We next introduce a variant of the above definition involving distributions whose distri-
butional order is bounded by some integer m.

Definition 3.3 (Holomorphic families with bounded order). Let m be a nonnegative in-
teger and X a smooth manifold. Then a distribution t is of order bounded above by m on
X if t defines a continuous linear function on Cmc (X). For a complex domain �, a holo-
morphic family of distributions (t (s))s∈� of order bounded above by m on X is a family
(t (s))s∈� of distributions of order bounded above by m such that for every test function
ϕ ∈ Cmc (X), s 7→ 〈t (s), ϕ〉 is a holomorphic function on �. The set of such families is
denoted by D′,m(X,O(�)).

Once we have defined holomorphic families of distributions where the complex parameter
lives on some domain � containing some element s0, it is natural to give a definition
where we want to forget about � and localize around s0. We thus work at the level of
holomorphic germs near s0.

Definition 3.4 (Holomorphic germs). A holomorphic germ at a point s0 ∈ Cp of dis-
tributions on X is an equivalence class of holomorphic families of distributions on X
with respect to the natural equivalence relation (t (s))s∈�1 ∼ (u(s))s∈�2 if there exists
�3 ⊂ �1 ∩ �2 such that s0 ∈ �3 and t (s) = u(s) for all s ∈ �3. The set of such germs
is denoted by D′(X,Os0(Cp)).

Example 3.5. The family of distributions t (s) : C∞c (R) 3 ϕ 7→
∫
R e

sxϕ(x) dx defines a
holomorphic germ of distributions at s = 0 with real coefficients.

Meromorphic germs of distributions. Once we have a proper definition for holomorphic
families of distributions, we can give a very natural definition of meromorphic families
of distributions as follows:

Definition 3.6 (Meromorphic family of distributions with linear poles). For a complex
domain � ⊂ Cp, a meromorphic family of distributions on � is a holomorphic family
(t (s))s∈�\{s:L1=···=Lk(s)=0} of distributions, whereL1, . . . , Lk are linear functions on Cp,
such that

t (s) = (L1(s) . . . Lk(s))
−1h(s), ∀s ∈ � \ {s : L1 = · · · = Lk(s) = 0}, (8)

where (h(s))s∈� ∈ D′(X,O(�)).

Now we localize the above definition to germs at s0 ∈ Cp:
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Definition 3.7 (Meromorphic germs of distributions). A meromorphic germ of distribu-
tions at s0 with linear poles is an equivalence class of meromorphic families of distri-
butions on some neighborhood � of s0 with linear poles under the equivalence relation
t (s)s∈�1\Y1 ∼ t ′(s)s∈�2\Y2 , where Yi = {s : Li1(s) = · · · = Liki

(s) = 0}, i = 1, 2,
with linear functions Lij , j = 1, . . . , ki , i = 1, 2, if there exist a complex domain
�3 ⊂ �1 ∩ �2 and linear functions L3

1, . . . , L
3
k3

such that s0 ∈ �3, s0 ∈ Y1 ∩ Y2,
Y3 = {s : L

3
1(s) = · · · = L

3
k3
(s) = 0} ⊂ Y1, Y3 ⊂ Y2, and t (s)s∈�3\Y3 = t

′(s)s∈�3\Y3 .
The set of meromorphic germs of distributions with real coefficients will be denoted by
D′(X,Ms0(Cp)).
It is simple to show

Proposition 3.8. The set D′(X,Os0(Cp)) is a vector subspace of D′(X,Ms0(Cp)).

3.3. Power expansions of holomorphic germs

Let us state a convenient proposition about power series expansion of holomorphic fami-
lies of distributions whose proof is given in the appendix.

Proposition 3.9. Let X be a smooth manifold, � ⊂ Cp and (t (s))s∈� ∈ D′(X,O(�))
be a holomorphic family of distributions. Then near every s0 ∈ �, ts admits a power
series expansion

t (s) =
∑
α

(s − s0)
α

α!
tα

where α = (α1, . . . , αn) ∈ Nn and tα is a distribution in D′(X) such that for all test
functions ϕ,

∑
α
(s−s0)

α

α!
tα(ϕ) converges as a power series near s0.

This classical result is just a multivariable version of [37, Theorem 1] which is stated for
general locally convex spaces E; we include a proof in the appendix to make our text
self-contained.

3.4. From Green functions to the heat kernel

The fundamental tool we use to investigate the singularities of Feynman amplitudes is the
heat kernel. In this section, we recall its main properties and explain how one can express
regularized Green functions and Feynman amplitudes in terms of the heat kernel.

3.4.1. Heat kernels. The complex powers of P = −1g+V are related to the heat kernel
e−tP in the following way (see also [36, §1.12.14 p. 112]):

Proposition 3.10. Let (M, g) be a smooth compact, connected Riemannian manifold
without boundary and let P = −1g + V , V ∈ C∞

≥0(M) or M = Rd with constant
metric g and P = −1g + m2, m ∈ R≥0. Set 5 to be the spectral projector on ker(P ),
and s ∈ C with Re(s) > 0. Then

P−s =
1
0(s)

∫
∞

0
(e−tP −5)t s

dt

t
(9)
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is a bounded operator L2(M,C)→ L2(M,C) where 0 is the Euler Gamma function. In
the sense of Schwartz kernels,

Gs(x, y) =
1
0(s)

∫
∞

0
(Kt (x, y)−5(x, y))t

s dt

t

where Kt (x, y) ∈ C∞((0,∞)×M ×M) is the heat kernel.

Note that when 0 /∈ σ(P ) and M is compact or when M = Rd , we can set 5 = 0.

Proof. The proposition is clear when M = Rd , hence we just discuss the compact case.
As a consequence of the compactness ofM and the fact that P is an elliptic, positive, self-
adjoint operator, P has discrete spectrum denoted by σ(P ), the eigenfunctions (eλ)λ∈σ(P )
of P form an orthonormal basis of L2(M,C), so for any u ∈ L2(M,C), u =

∑
〈u, eλ〉eλ.

By definition, P−su =
∑
λ∈σ(P ), λ6=0 λ

−s
〈u, eλ〉eλ where the sum converges absolutely

in L2(M,C). And the spectral projector 5 on ker(P ) is simply 5(u) =
∑
λ=0〈u, eλ〉eλ.

The heat operator e−tP is a strongly continuous semigroup acting on L2(M,C). For
every u ∈ L2(M,C),

(e−tP −5)u =
∑

λ∈σ(P )\0

e−tλ〈u, eλ〉eλ

where the sum converges in L2(M,C).
Therefore for λ > 0, by a change of variable in the 0 function λ−s =

1
0(s)

∫
∞

0 e−tλt s dt
t

, it follows that the identity P−s = 1
0(s)

∫
∞

0 (e−tP − 5)t s dt
t

holds
true in the operator sense where the integral converges in operator norm. Hence the same
identity should hold true for the corresponding Schwartz kernels. ut

3.5. Local asymptotic expansions of heat kernels

We will use the following property of the heat kernel asymptotics [14, Thm. 2.30] (see
also [69, Thm. 7.15]):

Theorem 3.11 (Minakshisundaram–Pleijel). Let (M, g) be a compact Riemannian man-
ifold without boundary, ε the injectivity radius of M and P = −1g + V , V ∈ C∞

≥0(M).
Choose some cut-off function ψ : R+ → [0, 1] such that ψ(s) = 1 if s ≤ ε2/4 and
ψ(s) = 0 if s > 4ε2/9. Let Kt (x, y) ∈ C∞((0,∞) ×M ×M) denote the heat kernel.
Then there exist smooth real valued functions ak ∈ C∞(M × M), k = 0, 1, . . . , with
a0(x, y) = 1, such that for all (n, p) ∈ N2, and all differential operators Q(x,Dx) of
degree m, there exists a constant C > 0 such that for all t ∈ (0, 1],

sup
(x,y)∈M2

∣∣∣∣Q(x,Dx)∂pt (Kt (x, y)− n∑
k=0

ψ(d2(x, y))
e−

d2(x,y)
4t

(4πt)d/2
ak(x, y)t

k

)∣∣∣∣
≤ Ctn−d/2−m/2−p (10)

where d(·, ·) : M ×M → R≥0 is the Riemannian distance function.
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Note that our statement differs from the statement in [69] in that we use a cut-off function
ψ since outside some neighborhood of the diagonal 1 ⊂ M ×M , Kt vanishes to infinite
order in t when t → 0 (see [69, proof of Thm. 7.15 p. 102]). In case M = Rd with
constant metric g and P = −1g +m2, m ∈ R≥0, we have the well-known exact formula

Kt (x, y) =
1

(4πt)d/2
exp

(
−
|x − y|2g

4t
− tm2

)
=

exp
(
−
|x−y|2g

4t

)
(4πt)d/2

∞∑
k=0

(−1)ktkm2k

k!
,

which already appeared in Definition 2.4.

4. Reduction of regularized Feynman amplitudes

Recall that our aim was to prove analytic continuation of the regularized amplitude

tG =
∏

e∈E(G)

Gse (xi(e), xj (e))

in D′(MV (G),Ms0(CE(G))) where s0 = (se = 1)e∈E(G) and Gs is the Schwartz kernel
of the complex power P−s . The main goal of this section is to prove a technical The-
orem 4.10 which allows us to reduce our main Theorem 2.7 to the proof of an analytic
continuation theorem for simpler analytic objects. These are some kind of Feynman am-
plitudes introduced in Definition 4.8 corresponding to labelled Feynman graphs defined
in Definition 4.7 which are graphs whose edges are decorated by some integer. Intu-
itively, the amplitude of the labelled graph is obtained from the regularized amplitude
tG(s) where we replace the heat kernels appearing in the formula for the Green function
Gs = 1

0(s)

∫
∞

0 t s−1(e−tP − 5) dt by the heat kernel asymptotic expansion. The inte-
gers decorating the edges exactly correspond to the heat coefficients in the heat kernel
asymptotic expansion.

4.1. Holomorphicity of Green function

The next lemma discusses analytical properties of the regularized Green function of the
Schrödinger operator P which is elliptic since its leading part coincides with the Laplace
operator, it is therefore automatically self-adjoint by the symmetry assumption [76, p. 35].

Lemma 4.1. Let (M, g) be a smooth compact, connected Riemannian manifold without
boundary and let P = −1g + V , V ∈ C∞

≥0(M) or M = Rd with constant metric g and
P = −1g +m

2, m ∈ R≥0. Denote by Kt the corresponding heat kernel. Then

1. For all k ∈ N, if Re(s) > d/2+ k, then Gs is a Ck function on M ×M .
2. For all k ∈ N and any compact subset K ⊂ M × M \ Diagonal, the kernel Gs is

holomorphic in s and valued in Ck(K).
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3. If we write
Gs(x, y) = Gs≤(x, y)+Gs≥(x, y)

where

Gs≥(x, y) =
1
0(s)

∫ 1

0
(Kt −5)(x, y)t

s−1 dt,

Gs≤(x, y) =
1
0(s)

∫
∞

1
(Kt −5)(x, y)t

s−1 dt

then Gs≤(x, y) is holomorphic in s and valued in C∞(M ×M), which is denoted by
Gs≤ ∈ C

∞(M ×M,O(Cp)).

The proof of these classical properties, when M is compact, is recalled in the appendix.
For M = Rd , they follow from straightforward computations.

4.2. Reduction to local charts and localization near deepest diagonal

The purpose of the next two lemmas is to localize the proof of our main theorem about the
analytic continuation of the distribution tG(s) to neighborhoods of the deepest diagonals
in MV (G).

Lemma 4.2. Let X be a manifold without boundary, and s0 ∈ Cp. Then t (s) ∈

D′(X,Ms0(Cp)) iff for every x ∈ N , there exists a neighborhood Ux of x such that
t (s)|Ux ∈ D′(Ux,Ms0(Cp)).

If X is noncompact, we require that there are linear functions (Li)ki=1 corresponding
to a fixed polar set Y = {s : L1(s) = · · · = Lk(s) = 0} ⊂ Cp with s0 ∈ Y such that
t (s)|Ux ∈ D′(Ux,Ms0(Cp)) is singular along the polar set Y .

Proof. The direct implication is straightforward. Assume that for every x ∈ X, there
exists a neighborhood Ux of x such that t (s)|Ux ∈ D′(Ux,Ms0(Cp)). Then by lo-
cal compactness, there is a locally finite subcover (Ui)i of N such that t (s)|Ui ∈
D′(Ui,Ms0(Cp)). Let (χi)i be a partition of unity where each χi is supported in Ui .
Then for every test function ϕ ∈ C∞c (X), 〈t (s), ϕ〉 =

∑
i〈t (s), χiϕ〉 is a finite sum of

meromorphic germs with linear poles at s0. In the noncompact case, the polar set Y is
fixed. Therefore the sum is a meromorphic germ with linear poles at s0. This is a finite
sum, hence s 7→ 〈t (s), ϕ〉 is meromorphic with linear poles at s0. ut

The next lemma is inspired by the seminal work of Popineau and Stora [63] and it states
that it is enough to solve our analytic continuation problem for the distributions tG ∈
D′(MV (G)) near the deepest diagonals:

Lemma 4.3 (Popineau–Stora lemma). If for any graph G and any x ∈ M , there is
some neighborhood Ux of x such that tG|UV (G)x

∈ D′(UV (G)x ,Ms0(Cp)) where s0 =

(se = 1)e∈E(G), then tG ∈ D′(MV (G),Ms0(Cp)), s0 = (se = 1)e∈E(G), for every
graph G.
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Proof. We use induction on the number of vertices of G. For |V (G)| = 2, we have tG =∏E
e=1 G

se (x, y). For a point (x, y) ∈ M2
= MV (G), if x 6= y, consider neighborhoods

Vx of x in M and Vy of y in M such that Vx ∩ Vy = ∅. Then {Vx × Vy}(x,y)∈M2, x 6=y ∪

{Ux × Ux}x∈M form an open cover of M2; it has a locally finite subcover {Wi}i with
Wi = Vxi × Vyi or Uxi ×Uxi . Let {χi}i be a partition of unity subordinate to {Wi}i . Then
tG =

∑
i tGχi , where each tGχi is holomorphic at s0 if the support of χi does not intersect

the diagonal by Lemma 4.1 or has meromorphic continuation at s0 by assumption. Now
the claim follows from Lemma 4.2 applied to the manifold X = MV (G).

Now |V (G)| = n > 2 and assume the result holds for all graphs whose number of
vertices is strictly less than n. Denote dn = {x1 = · · · = xn} ⊂ M

n, the deepest diagonal
in the configuration space Mn. For (x1, . . . , xn) ∈ M

n
\ dn, let I = {i : xi = x1} and

I c = {1, . . . , n} \ I . Then I 6= ∅, I c 6= ∅, and for any j ∈ I c there are neighborhoods
Uj of x1 and Vj of xj such that Uj ∩ Vj = ∅. Let V = (

⋂
j∈I c Uj )

|I |
×
∏
j∈I c Vj . Then

V ⊂ Mn
\ dn, and xi 6= xj for (i, j) ∈ I × I c for all (x1, . . . , xn) ∈ V . Then we partition

the set of edges E(G) into three parts: E(G) = EI ∪ EI c ∪ EII c , where EI (resp. EI c )
is the set of edges of G whose incident vertices are in I (resp. I c), i.e. every edge e ∈ EI
(resp. e ∈ EI c ) is bounded by vertices in I (resp. I c). The remaining subset of edges
is denoted by EII c and is made up of all edges e ∈ E(G) which are neither in EI nor
in EI c . Thus each edge in EII c connects a vertex in I with a vertex of I c. So we write
(x1, . . . , xn) = (xi, xj )i∈I,j∈I c ∈ M

I
×MI c . Similarly the complex variables (se)e∈E(G)

attached to the edges of G will be divided into three groups corresponding to EI , EI c
and EII c . Then we decompose the amplitude tG as a product of three factors:

tG((se)e∈E(G); (xi, xj )i∈I,j∈I c ) = tI ((se)e∈EI ; (xi)i∈I )tI c (((se)e∈EIc ; (xj )j∈I c )

× tII c ((se)e∈EIIc ; (xi, xj )i∈I,j∈I c )

where tI =
∏
e∈EI

Gse , tI c =
∏
e∈EIc

Gse , tII c =
∏
e∈EIIc

Gse .
By the induction assumption, tI and tI c are distributions in D′(MI ,Ms0I (CEI )),

s0I = (se = 1)e∈EI , and D′(MI c ,Ms0Ic (C
EIc )), s0I c = (se = 1)e∈EIc , respectively.

Then by Lemma 7.1, the external product tI ((se)e∈EI ; (xi)i∈I )tI c (((se)e∈EIc ; (xj )j∈I c ) of
distributions depending on different variables is an element in D′(Mn,Ms0IIc (C

EI∪EIc )),
s0II c = (se = 1)e∈EI∪EIc . Now the factor tII c contains only products of propagators
Gse (xi, xj ) where xi 6= xj , so in the open subset V ⊂ Mn we have Gse (xi, xj ) ∈
C∞(M × M \ Diagonal,O(C)) in the variables (xi, xj ) by Lemma 4.1. Thus on V ,
tII c ∈ C

∞(V,O(CEIIc )), which means tII c is holomorphic in the parameter (se)e∈EIIc ∈
CEIIc . We conclude that near any element of Mn, there is some open neighborhood
U ⊂ Mn such that tG ∈ D′(U,Ms0(CE(G))), s0 = (se = 1)e∈E(G). Then by Lemma
4.2, tG ∈ D′(Mn,Ms0(CE(G))), s0 = (se = 1)e∈E(G). ut

4.3. Reductions to integrals on cubes

In the representation of the Green function as integral of the heat kernel over (0,∞), we
would like to get rid of the low energy part which is Gs≤ =

∫
∞

1 dt (Kt −5)t
s−1, which is

smooth and holomorphic in s so it does not contribute to the singularities of tG. We thus
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reduce the study of tG to the study of some function PG which contains only integrals
over cubes which are easier to handle and contain all the singularities of tG.

Definition 4.4. For a graph G, and E ⊂ E(G), the subgraph induced by E is the sub-
graph H of G such that E(H) = E and V (H) = {v ∈ V (G) : v is a vertex incident to
some e ∈ E}.

Proposition 4.5. If for every graph G, the product

PG(s) =
∏

e∈E(G)

1
0(se)

∫ 1

0
(K`e −5)(xi(e), xj (e))`

se−1
e d`e (11)

extends to an element of D′(MV (G),Ms0(CE(G))) at s0 = (se = 1)e∈E(G), then tG(s)
extends to an element of D′(MV (G),Ms0(CE(G))) at s0 = (se = 1)e∈E(G).

Proof. For Re(se) > d/2, since Gs,Gs≥,G
s
≤ all belong to C0(M ×M) by Lemma 4.1,

the following product makes sense:

tG(s) =
∏

e∈E(G)

(Gse≤ +Gse≥)

=

∏
e∈E(G)

Gse≥ +
∏

e∈E(G)

Gse≤ +
∑

E1∪E2=E(G)

(∏
e∈E1

Gse≥

)(∏
e∈E2

Gse≤

)
where the sum runs over all partitions E(G) = E1 ∪ E2 with E1, E2 6= ∅. Therefore

tG(s) = PG(s)+
∏

e∈E(G)

Gse≤︸ ︷︷ ︸+
∑

E1∪E2=E(G)

PG(E1)(s)
(∏
e∈E2

Gse≤

)
︸ ︷︷ ︸

where G(E1) is the subgraph of G induced by the subset E1. The terms underbraced
are C∞ functions depending holomorphically on the parameters s ∈ CE(G) near
(se = 1)e∈E(G) since each Gs≤ is inC∞(M×M,O(C)). By assumption, for every induced
subgraph G(E1) ⊂ G, PG(E1) extends to D′(MV (G(E1)),Ms0(CE1)), s0 = (se = 1)e∈E1 .
Therefore by Lemma 7.3, each product PG(E1)(s)(

∏
e∈E2

Gse≤) has analytic continuation
in D′(MV (G),Ms0(CE(G))), s0 = (se = 1)e∈E(G). ut

Therefore it is sufficient to study the product (11).

Lemma 4.6. Let G be a graph with E edges and

PG(s) =

( ∏
e∈E(G)

1
0(se)

)∫
[0,1]E(G)

∏
e∈E(G)

(K`e −5)(xi(e), xj (e))`
se−1
e d`e. (12)

If Re(se) > d/2 for all e, then the integral defining PG(s) converges absolutely in
[0, 1]E(G) uniformly in (x1, . . . , x|V (G)|) ∈ M

V (G).
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Proof. First ifM = Rd or ifM is compact and 0 /∈ ker(P ) then5 = 0. Otherwise, if 0 ∈
ker(P ), then the Schwartz kernel of 5 consists of constant functions (see Appendix 7.3).
Therefore, it is sufficient that Re(s) > 0 for the Riemann integral

∫ 1
0 5(x, y)`

s−1d` to be
convergent. Now by Theorem 3.11, there exists a constant C0 > 0 such that for ` ∈ (0, 1]
and all (x, y) ∈ M2,∣∣∣∣K`(x, y)− 1

(4π`)d/2
ψ(d2(x, y))e−

d2(x,y)
4`

∑
0≤k≤d/2+1

ak(x, y)`
k

∣∣∣∣≤ C0.

So by the triangular inequality and by positivity of the heat kernel, we have the bound

0 ≤ K`(x, y) ≤
1

(4π`)d/2
ψ(d2(x, y))e−

d2(x,y)
4`

∑
0≤k≤d/2+1

|ak(x, y)|`
k
+ C0,

from which we can bound the integral∫ 1

0
K`(x, y)|`

s−1
| d`

≤

∫ 1

0

(
1

(4π)d/2
ψ(d2(x, y))e−

d2(x,y)
4`

∑
0≤k≤d/2+1

|ak(x, y)`
k+s−d/2−1

| + C0|`
s−1
|

)
d`

≤

∫ 1

0

(
1

(4π)d/2
∑

0≤k≤d/2+1

|ak(x, y)`
k+s−d/2−1

| + C0|`
s−1
|

)
d`

since ψe−
d2
4` ≤ 1 and the right hand side is absolutely integrable when Re(s) > d/2.

Therefore∫
[0,1]E(G)

∏
e∈E(G)

(K`e −5)(xi(e), xj (e))`
se−1
e d`e

=

∏
e∈E(G)

∫ 1

0
(K`e −5)(xi(e), xj (e))`

se−1
e d`e

is a product of convergent Riemann integrals, the above integral inversions make sense
by Fubini, which yields the claim of the lemma. ut

Now we set

IG(s) =
∏

e∈E(G)

1
0(se)

∫ 1

0
K`e (xi(e), xj (e))`

se−1 d`e, (13)

which is well-defined as soon as Re(se) > d/2 for all e ∈ E(G) by the above arguments.
Then

PG(s) =
∑

E⊂E(G)

IG(E)(s)
∏

e∈E(G)\E

5(xi(e), xj (e))

se
(14)

where G(E) is the subgraph induced by the subset of edges E ⊂ E(G). By the fact that∫ 1
0 5`

s−1d` = 5/s ∈ C∞(M × M,O1(C)), which is holomorphic near s = 1, the
products of spectral projectors do not contribute to the poles. So we can further reduce
our study to the analytic continuation of IG(s).
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4.4. Distributional order

In this step, we introduce a further reduction by replacing eachK` in the integral formula
of IG(s) by its heat asymptotic expansion and try to control the remainders. We have

1
0(s)

∫ 1

0
K``

s−1d`

=
1
0(s)

∫ 1

0

(
e−

d2(x,y)
4`

(4π`)d/2

( p∑
k=0

ak(x, y)ψ(d2(x, y))`k
)
+ hp(`, x, y)`

s−1
)
d`

where hp(`, x, y) is the remainder in the heat asymptotics which satisfies the estimate
‖hp‖m ≤ C`p−d/2−m/2 by Theorem 3.11 and ψ is the cut-off function from Theorem
3.11.

We first introduce some refinement of Feynman graphs to keep track of the informa-
tion on the heat coefficients for every edge. These are basically Feynman graphs whose
edges are decorated by integers which correspond to heat coefficients.

Definition 4.7 (Labelled graph). For a set S, an S-labelled graph is a pair (G, Ek) where
Ek is a map E(G) → S. If S is N, we call it briefly a labelled graph, and for e ∈ E(G),
we use ke to denote the element Ek(e) ∈ N. If S = R>0, then the map E(G) → R>0,
called the length function, is denoted by ` and we call the pair (G, `) a metric graph. If `
is injective, then (G, `) is called a strict metric graph.

We next define Feynman amplitudes attached to labelled graphs.

Definition 4.8. For every labelled graph (G, Ek), we define the corresponding amplitude
I
G,Ek
(s) as follows:

I
G,Ek
(s) =

∏
e∈E(G)

1
0(se)

∫
[0,1]E

∏
e∈E(G)

(
e
−

d2
4`e

(4π)d/2
akeψ(d

2)

)
(xi(e), xj (e))`

ke−d/2+se−1
e d`e,

(15)

which is well-defined and holomorphic in (se)e∈E(G) ∈ CE(G) on the domain se >
d/2, e ∈ E(G), by exactly the same proof as in Lemma 4.6.

Proposition 4.9. If for every graph G, there is m ∈ N depending on G such that for all
labels Ek ∈ NE(G) and all x ∈ M , there is an open neighborhood Ux ⊂ M of x such
that I

G,Ek
(s) has analytic continuation to an element in D′,m(UV (G)x ,Ms0(CE(G))), s0 =

(se = 1)e∈E(G), then for all G, tG(s) extends to an element in D′(MV (G),Ms0(CE(G))),
s0 = (se = 1)e∈E(G).

Proof. Let n = |V (G)| and U = Ux . By Lemma 4.3 which allows us to localize our
analytic continuation proof near the deepest diagonal of Mn, we only need to prove that
tG(s) extends as a meromorphic germ of distributions at (se = 1)e∈E(G) on Un. For a test
function ϕ,
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〈IG(s), ϕ〉 =

∫
Un

( ∏
e∈E(G)

1
0(se)

∫ 1

0
K`e`

s−1
e d`e

)
ϕ dv(x1) . . . dv(xn)

=

∫
Un

∏
e∈E(G)

( p∑
ke=0

1
0(se)

∫ 1

0

e
−

d2
4`e

(4π)d/2
akeψ(d

2)`
ke+se−d/2−1
e d`e

+
1

0(se)

∫ 1

0
hp`

se−1
e d`e

)
ϕ dv(x1) . . . dv(xn)

=

∫
Un

( ∑
E1∪E2=E(G)

∏
e∈E1

( p∑
ke=0

1
0(se)

∫ 1

0

e
−

d2
4`e

(4π)d/2
akeψ(d

2)`
ke+se−d/2−1
e d`e

)

×

∏
e∈E2

(
1

0(se)

∫ 1

0
hp`

se−1
e d`e

))
ϕ dv(x1) . . . dv(xn)

where the sum runs over partitions E1 ∪ E2 = E(G). Therefore we obtain

〈IG(s), ϕ〉 =

∫
Un

∑
E1∪E2=E(G)

∑
Ek∈{0,...,p}E1

I
G(E1),Ek

(s)

×

∏
e∈E2

(
1

0(se)

∫ 1

0
hp(`e, xi(e), xj (e))`

se−1
e d`e

)
︸ ︷︷ ︸ϕ dv(x1) . . . dv(xn)

where the summation is over all Ek ∈ {0, 1, . . . , p}E(G). By Theorem 3.11, we have

|Dmx hp(`e, x, y)`
se−1
e | ≤ C`

p−d/2−m/2+se−1
e ,

|Dmx hp(`e, x, y)`
se−1
e log `e| ≤ C`

p−d/2−m/2+se−1+ε
e ,

for some ε > 0. So when p > (d +m)/2−1, for every e ∈ E2, there is a small neighbor-
hood of se = 1 such that the integral

∫ 1
0 hp(`e, xi(e), xj (e))`

se−1
e d`e is absolutely conver-

gent and depends holomorphically on se. Hence the term underbraced above belongs to
Cm(Un,Os0(CE2)), s0 = (se = 1)e∈E2 , where G(E2) is the graph induced by E2. Now
we conclude the proof by noticing that the product of I

G(E1),Ek
(s) ∈ D′,m(Un,Ms0(CE1)),

s0 = (se = 1)e∈E1 , and some element in Cm(Un,Os0(CE2)), s0 = (se = 1)e∈E2 , yields
an element of D′,m(Un,Ms0(CE1∪E2)), s0 = (se = 1)e∈E1∪E2 , by Lemma 7.3 proved in
the appendix. ut

The next theorem is the main result of the present section and summarizes all the reduction
steps performed above:

Theorem 4.10 (Reduction theorem). Assume that for every graph G, there is an inte-
ger m(G) such that for any x ∈ M , there is a chart Ux of M around x such that for
all Ek, I

G,Ek
(s)|Unx admits an analytic continuation in D′,m(G)(Unx ,Ms0(CE(G))), s0 =

(se = 1)e∈E(G). Then for a given graph G and m = supG′⊂Gm(G
′), for any p >

(d +m)/2− 1 we have a decomposition

tG(s) =
∑
G′⊂G

mG′(s)hG\G′(s) (16)
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where the sum runs over induced subgraphsG′ ofG, mG′(s) =
∑
Ek∈{0,...,p}E(G′) IG′,Ek(s) ∈

D′,m(MV (G′),Ms0(CE(G
′))) and hG\G′(s) ∈ Cm(MV (G\G′),Os0(CE(G)\E(G)

′

)). In par-
ticular, tG(s) extends to an element in D′(MV (G),Ms0(CE(G))), s0 = (se = 1)e∈E(G).

The above theorem allows us to reduce the proof of Theorem 2.7 to the analytic contin-
uation of the simpler objects I

G,Ek
(s) if we can control the distributional order of I

G,Ek
(s)

independently of the label Ek ∈ NE(G).

Proof of Theorem 4.10. We use the following decomposition formula which summarizes
the above three reduction steps, namely the reduction on cubes, the elimination of the
spectral projector and the extraction of labelled graphs:

tG(s)|Unx

=

∑
E1∪E2∪E3∪E4=E(G)

( ∑
Ek∈{0,...,p}E1

I
G(E1),Ek

(s)︸ ︷︷ ︸
) ∏
e∈E2

(
1

0(se)

∫ 1

0
hp(`e, x, y)`

se−1
e d`e

)
×

∏
e∈E3

5(xi(e), yj (e))

se

∏
e∈E4

Gse≤

where the sum runs over partitions E1 ∪ E2 ∪ E3 ∪ E4 = E(G). Then consider the
supremum m = supE1⊂E(G)

m(G(E1)) of the distributional orders m(G(E1)) for E1 ⊂

E(G); m is finite by assumption and bounds the distributional order of all the terms
I
G(E1),Ek

(s) underbraced. Moreover, we saw in the proof of Proposition 4.9 that if we
choose p > (d +m)/2− 1, then the product∏

e∈E2

(
1

0(se)

∫ 1

0
hp(`e, x, y)`

se−1
e d`e

) ∏
e∈E3

5(xi(e), yj (e))

se

∏
e∈E4

Gse≤

is in Cm(MV (G(E2∪E3∪E4)),Os0(CE2∪E3∪E4)), s0 = (se = 1)e∈E2∪E3∪E4 . Therefore the
whole product tG(s) is in D′(MV (G),Ms0(CE(G))), s0 = (se = 1)e∈E(G). The above
complicated formula can be written very concisely as

tG(s) =
∑
G′⊂G

mG′(s)hG\G′(s)

where the sum runs over induced subgraphs G′ of G, mG′(s) =
∑
Ek∈{0,...,p}E(G′) IG′,Ek(s)

and hG\G′ =
∏
e∈E2

( 1
0(se)

∫ 1
0 hp(`e, x, y)`

se−1
e d`e

)∏
e∈E3

5(xi(e),xj (e))

se

∏
e∈E4

Gse≤ where
E2 ∪ E3 ∪ E4 forms a partition of E(G) \ E(G′). ut

5. Desingularization of parameter space

Now that we have reduced the proof of Theorem 2.7 to the proof of Theorem 4.10, we
start by studying in local coordinates the amplitudes I

G,Ek
(s) ∈ D′(MV (G)) corresponding

to the labelled graphs (G, Ek).

Fixing charts. For any x ∈ M , take a coordinate chart U around x such that U ∼= Rd and
Ū ⊂ M is compact and d(y1, y2) < ε/2 for any y1, y2 ∈ U . Since the volume form dv



526 Nguyen Viet Dang, Bin Zhang

on a Riemannian manifold reads |det(g)|ddx in a local coordinate chart, we may absorb
the smooth function |det(g)| in the test function ϕ and forget about the determinant of
the metric. We number the vertices of G by {1, . . . , n}, and the edges by {1, . . . , E}. Let
i(e), j (e) be the vertices of the edge e. Then for a test function ϕ with supp(ϕ) ⊂ Un,

〈I
G,Ek
(s), ϕ〉 =

1
(4π)dE/2

E∏
e=1

1
0(se)

∫
[0,1]E

d`1 . . . d`E

(∫
Un

E∏
e=1

exp
(
−

d2

4`e

)
`
se+ke−d/2−1
e akeψ(d

2)ϕ̃ ddx1 . . . d
dxn

)
where ϕ̃ = |det(g)|ϕ. This formula is well-defined when Re(se) > d/2 for all e ∈
{1, . . . , E} since the integration on [0, 1]E is absolutely convergent, the integral on Un

converges absolutely by compactness of the support of ϕ, hence we can integrate by
the Fubini theorem. Furthermore, arguing as in the proof of Proposition 4.9 shows that
〈I
G,Ek
(s), ϕ〉 is holomorphic in s ∈ CE when Re(se) > d/2.

By our choice of U , d2 is smooth on U × U , so it is enough to prove that

1
(4π)dE/2

∫
[0,1]E

d`1 . . . d`E(∫
Rdn

E∏
e=1

exp
(
−

d2

4`e

)
`
se+ke−d/2−1
e akeψ(d

2)ϕ̃ ddx1 . . . d
dxn

)
extends to a meromorphic germ of distribution at (se = 1). Note that this argument also
applies to the case whereM = Rd with constant metric g and P = −1g+m2,m ∈ R≥0.

5.1. Smoothness problems and the need to resolve singularities

Assume we work on flat space Rd . Then to study the analytic continuation of I
G,Ek

, we
need to study integrals of the form∫

[0,1]E
d`1 . . . d`E(∫

Rdn

E∏
e=1

exp
(
−
|xi(e) − xj (e)|

2

4`e

)
`
se+ke−d/2−1
e akeψ(d

2)ϕ̃ ddx1 . . . d
dxn

)
.

The analytic continuation would come from integration by parts on the cube [0, 1]E

in the variables (`1, . . . , `E). However, we see immediately that e−|x−y|
2/(4`) is not a

smooth function of (`, x, y) ∈ [0, 1] × Rd × Rd . The problem occurs on the set X =
{` = 0, x − y = 0} ⊂ [0, 1] × Rd × Rd . A solution in global analysis is to consider the
following smooth map:

π : [0, 1] × (Rd)2 3 (t, x, h) 7→ (t, x, x +
√
t h) ∈ [0, 1] × (Rd)2.

Note that after pull-back by π , we find that e−|x−y|
2/(4`)

◦ π(x, t, h) = e−|h|
2/4, which

is now a smooth function near the preimage π−1(X) = {t = 0} in [0, 1] × (Rd)2. We
say that we have resolved the singularities of e−|x−y|

2/(4`). For a discussion of why one
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needs to use blow-ups to study heat kernels and applications to index theory, the reader

is referred to [54, p. 253]. Similarly, the product of exponentials
∏E
e=1 exp

(
−
|xi(e)−xj (e)|

2

4`e

)
appearing in Feynman amplitudes is not smooth on the whole domain of integration
(`1, . . . , `E, x1, . . . , xn) ∈ [0, 1]E × Rdn and integration by parts cannot be done. It fol-

lows that we must resolve the products
∏E
e=1 exp

(
−
|xi(e)−xj (e)|

2

4`e

)
to make them smooth,

which is discussed in §5.4. Such a resolution of singularities was studied by Speer on flat
space building on the work of Hepp. Also, when (M, g) is an analytic Riemannian mani-
fold or when M = Rd with constant Euclidean metric, one can use Hironaka’s resolution
of singularities as in [5] or Bernstein–Sato polynomials to regularize Feynman ampli-
tudes [25, 44]. However, on a Riemannian manifold (M, g), if for all m ∈ M , there is an
open subset U containing m and a local coordinate system (x1, . . . , xd) : M ⊃ U → Rd

such that for every (m1, m2) ∈ U2, d(m1, m2) =

√∑d
i=1(xi(m1)− xi(m2))2 then

(M, g) is flat. Otherwise for generic Riemannian manifolds (M, g), it is not possible
to find good coordinates to make the distance function locally quadratic because of cur-
vature. This makes our resolution of singularities more difficult to handle than the one
appearing in the work of Speer, and the fact that we work in the C∞ case and not in the
analytic or algebraic category prevents us from using directly Hironaka’s resolution of
singularities or Bernstein–Sato polynomials. Following the tradition in QFT [41, 68], our
strategy is essentially combinatorial and our blow-ups are encoded by spanning trees of
Feynman graphs whose definition is recalled in the next subsection.

5.2. Spanning trees of metric graphs

Let us first collect some definitions and classical results on graphs which are close to [50,
§2.1]. Recall that for all graphs we consider in the present paper, since we assume the
graph has no self-loop, every edge e is adjacent to two different vertices.

Definition 5.1. Let G be a graph.

• A path from a vertex u to w inG is a sequence (u = v1, e1, v2, . . . , vn, en, vn+1 = w),
where vi ∈ V (G), ej ∈ E(G) such that the vertices bounding ei are vi and vi+1; u is
the initial vertex of the path,w is its terminal vertex, and n is its length. A path is simple
if all the edges are distinct. If u = w, it is called a cycle.
• The set of subgraphs is ordered as follows: for two subgraphs G1,G2 of G we write
G1 ⊂ G2 if E(G1) ⊂ E(G2). A forest is a graph without any simple cycle and a tree
is a connected forest.
• A spanning forest T of G is a subgraph of G which is a forest and is maximal for

inclusion among subgraphs which are forests. If T is a tree, it is called a spanning
tree. For any graph G, we will often use the following equivalent characterization of
spanning forests, which is a classical result in graph theory [52, pp. 40–41]: A subgraph
T ⊂ G is a spanning forest if and only if T is a forest whose complement contains
b1(G) edges:

b1(G) = |E(G)| − |E(T )| (17)

where b1(G) is the first Betti number of G.
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• For a metric graph (G, `), a metric filtration of G is an increasing family of subgraphs
G1 ⊂ · · · ⊂ GE where Gi is induced by the i shortest edges where E = |E(G)| is the
number of edges in G. For a strict metric graph, the metric filtration is unique.
• For every forest T ⊂ G and every subgraph Gi of G, we define T |Gi as the subgraph

of Gi induced by the subset of edges E(T ) ∩ E(Gi) ⊂ E(Gi). We will call T |Gi the
trace of T in Gi .
• If T is a subgraph of G induced by E(T ), and e ∈ E(G) \E(T ), then we define T ∪ e

as the subgraph of G induced by E(T ) ∪ e. For every edge e ∈ E(G), the graph G \ e
is the subgraph induced by E(G) \ e.

Definition 5.2. For any permutation σ ∈ SE of {1, . . . , E}, the simplex

1σ = {`σ(1) < · · · < `σ(E)} (18)

is called a sector of [0, 1]E .

Before we proceed, let us remark that for a graph G, an element ` ∈ [0, 1]E(G), which
is a map ` : E(G) → [0, 1], naturally defines a metric graph (G, `). To a strict metric
graph G, the metric induces a natural strict ordering of edges by the length which defines
an element ` ∈ [0, 1]E(G) in a unique sector. The next theorem, due to Kruskal, aims to
show how from a strict connected metric graph (G, `), one can produce some algorithm
which extracts a unique spanning tree T in G.

Theorem 5.3 (Kruskal). For a connected strict metric graph (G, `), let G1 ⊂ · · · ⊂

GE = G be the unique metric filtration of G. Then there exists a unique spanning tree T
of G such that for all i ∈ {1, . . . , E}, its trace T |Gi is a spanning forest of Gi .

Proof. Let ` : E(G) → (0,∞) be the length function. We shall assume that the edges
E(G) are numbered as {e1, . . . , eE} in such a way that i < j ⇒ `(ei) < `(ej ). We
construct the tree by the Kruskal algorithm [51] as described in [41, p. 107]. Notice that
the requirement that T is a tree implies that T together with all traces T |Gi contain no
simple cycles. Denote by Ni the first Betti number b1(Gi). So T |Gi is a forest and its
complement in Gi contains at least Ni edges of Gi . Also notice that for any graph G and
every e ∈ E(G), we have the inequality 0 ≤ b1(G) − b1(G \ e) ≤ 1. This implies that
the sequence N1, N2, . . . is increasing.

Now we can construct the desired spanning tree T : start from G1 which has only
one edge {e1}, hence contains no simple cycle, N1 = 0. Let us denote by i1 the first
integer such that b1(Gi1) = 1, similarly define {i2, . . . , iNE } ⊂ {1, . . . , E} such that
b1(Gi2) = 2, . . . , b1(GiNE ) = NE = b1(G) and every ij is the smallest integer such that
b1(Gij ) = j for any j = 1, . . . , NE . Set i0 = 1. Then we have an increasing family of
subgraphsGi0 ⊂ Gi1 ⊂ · · · ⊂ GiNE ⊂ G. LetGi = Gi−1∪ei and set T = G\

⋃NE
j=1 eij .

We prove that the subgraph T constructed above has the property that its trace T |Gi on
every subgraph Gi is a spanning forest in Gi by induction for j = 1, . . . , E. First, for
j = 1, G1 contains just one edge, hence T |G1 = G1 is a spanning tree in G1. Assume
that T |Gk is a spanning forest in Gk . Then there are two cases:

Case 1: b1(Gk)= b1(Gk+1), i.e.Nk =Nk+1 so ek+1 ∈ T , and T |Gk+1 = T |Gk ∪ek+1,
and let us prove that T |Gk ∪ ek+1 is a spanning forest inGk+1. First T |Gk ∪ ek+1 contains
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no simple cycle. Indeed, if it contained a simple cycle γ , then ek+1 would belong to γ
and therefore T |Gk would be a spanning forest in Gk+1, so b1(Gk+1) = b1(Gk) + 1
by (17), which contradicts b1(Gk) = b1(Gk+1). Thus T |Gk ∪ ek+1 is a forest. Since T |Gk
is spanning in Gk it follows that T |Gk ∪ ek+1 meets all vertices of Gk+1 and is spanning
in Gk+1.

Case 2: b1(Gk) + 1 = b1(Gk+1) and by definition T |Gk+1 = T |Gk . Then T |Gk is
obviously a forest inGk+1, and its complement inGk+1 contains b1(Gk)+1 = b1(Gk+1)

edges by construction, which implies it is spanning by (17).
Now we use induction to prove the uniqueness of T , in fact, we prove T |Gk is unique

for any k. The base case is trivial, and in general there are two cases. Either b1(Gk) =

b1(Gk+1), and then T |Gk+1 = T |Gk ∪ ek+1, or b1(Gk) + 1 = b1(Gk+1), and then
T |Gk+1 = T |Gk , so our algorithm produces a unique spanning tree. ut

Corollary 5.4. Let (G, `) be a strict metric graph and T be the unique spanning forest
in T from Theorem 5.3. Then for every edge e ∈ E(G) \ E(T ), there is a unique simple
cycle γe in T ∪ e such that `(e) > `(e′) for any edge e′ ∈ γe \ {e}.
Proof. Since T is a spanning tree and e ∈ E(G)\E(T ), there is a unique simple cycle γe
in T ∪ e. By our construction, if e = eij , then T |Gij−1 = T |Gij

, and T |Gij−1 ∪ eij contains
only one simple cycle γe, so `(e) > `(e′) for any edge e′ ∈ γe, e′ 6= e. ut

5.3. Approximation of the Riemannian distance in normal coordinates

For a smooth Riemannian manifold (M, g), and any x ∈ M , g(x) is an inner product
in TxM which induces an isomorphism g(x) : TxM → T ∗xM and thus an inner product
g−1(x) on T ∗xM by g−1(x)(w1, w2) = g(x)(g−1(x)(w1), g

−1(x)(w2)). This defines a
smooth metric g−1 on T ∗M .

For every x ∈ M , we will use normal coordinates (U, φ, xµ) around x, and without
loss of generality U will be assumed to be geodesically convex. The use of normal co-
ordinates will be crucial since it allows us to approximate the squared distance d2(x, y)

by |x − y|2 in local coordinates in Lemma 5.6. In some other coordinate chart, this ap-
proximation might not be as good. On (U, φ, xµ), there are two metrics: the Riemannian
metric g and the Euclidean metric h:

h

(
∂

∂xµ
,
∂

∂xν

)
= hµν = δµν .

For this Euclidean metric, we will use |x − y| to denote the induced distance. We recall
that at the origin, we have the identity gµν(0) = hµν = δµν . The following lemma which
dates back to Hadamard can be found in [28, Lemma 8.3 p. 90], [57, (A.3) p. 31], [67,
(38) p. 171]:

Lemma 5.5 (Hadamard). Denote by d : M × M → R the Riemannian distance and
φ = d2. Then there exists a neighborhood U of the diagonal in M ×M such that φ ∈
C∞(U) and φ is symmetric, that is, φ(x, y) = φ(y, x), φ vanishes along the diagonal to
order 2 and φ satisfies the Hamilton–Jacobi equation

g−1(dxφ(x, y), dxφ(x, y)) = 4φ(x, y). (19)



530 Nguyen Viet Dang, Bin Zhang

Next we state an important lemma which gives information on the jets of the function
φ = d2 along the diagonal in M ×M .

Lemma 5.6. For x0 ∈ M , if (U, φ) is a normal coordinate system around x0 such that
φ(x0) = 0 and the square of the Riemannian distance φ is smooth on U × U , then on
U × U ,

φ(x, y)− gµν(x)(x
µ
− yµ)(xν − yν) (20)

vanishes along the diagonal to order 3.

The proof can be found in Appendix 7.5.

5.4. Resolving singularities using spanning trees

Let (G, `) be a connected strict metric graph with edge set E(G) identified with the set
of integers {1, . . . , E} such that 0 ≤ `1 < · · · < `E ≤ 1. This means that the metric
graph (G, `) lies in a fixed sector 1 = {0 < `1 < · · · < `E < 1} ⊂ [0, 1]E ; let 1 denote
its closure {0 ≤ `1 ≤ · · · ≤ `E ≤ 1}. It is associated with a unique spanning tree T by
Theorem 5.3 and the vertices of both graphs G and T are numbered by {1, . . . , n}. For
any (i, j) ∈ {1, . . . , n}2, we denote by

−→
ij the unique simple path in T from i to j .

The product
∏
e∈E(G) e

−
d2(xi(e),xj (e))

4`e ψ(d2(xi(e), xj (e))), whereψ is the cut-off function
from Theorem 3.11, is not smooth near the algebraic set X=

⋃
e∈E(G){`e(xi(e)− xj (e))=

0} ⊂ Rdn×1. Next we give a recipe to resolve the singularities of such products by some
explicit map π which is defined as follows:

Definition 5.7. In the above notation, define

π : (x, (he)e∈E(T ), (tk)
E
k=1)︸ ︷︷ ︸

∈Rd×(Rd )E(T )×[0,1]E

7→

((
x +

∑
e∈
−→
1i

(∏
j≥e

tj

)
he

)n
i=1
,
(∏
k≥e

t2k

)E
e=1

)
︸ ︷︷ ︸

∈Rdn×1

(21)

where the sum runs over all edges e in the path
−→
1i . The map π depends on the spanning

tree T , hence on the strict ordering of E(G) induced by the metric `.

We shall denote elements of the target space Rdn ×1 by (xi, `e)1≤i≤n,1≤e≤E . We check
that the map π : Rd × (Rd)E(T )×[0, 1]E → Rdn×1 is a diffeomorphism outside some
subset of measure zero.

Proposition 5.8. The map π is a smooth diffeomorphism from Rd × Rd(n−1)
× (0, 1)E

to Rdn ×1.

Proof. It is one-to-one since we can explicitly invert π as tE = `
1/2
E , te = (`e+1/`e)

1/2

for e ≤ E − 1 and the linear map

Rd × Rd(n−1)
3 (x, (he)e∈E(T )) 7→

(
xi = x +

∑
e∈
−→
1i

(∏
j≥e

tj

)
he

)n
i=1
∈ Rdn
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is invertible when (tj )j ∈ (0, 1)E . Then the diffeomorphism property follows from an
explicit calculation of the differential of π whose determinant does not vanish when
t ∈ (0, 1)E . ut

Finally, we may state the main theorem of this section:

Theorem 5.9 (Resolution of singularities). Let g be a Riemannian metric on Rd and
d : Rd × Rd → R≥0 be the Riemannian distance whose injectivity radius is ε. Let π
be the map defined by (21). For any ψ ∈ C∞c (R) such that ψ(t) = 1 when t ≤ ε2/4
and ψ(t) = 0 when t > 4ε2/9, for every edge e ∈ E(G) with vertices (i(e), j (e)), the
pull-back

π∗
(
ψ(d2(xi(e), xj (e)))

d2(xi(e), xj (e))

`e

)
(22)

defines a smooth function in Rd × Rd(n−1)
× [0, 1]E .

Proof. For e ∈ E(T ), set xj (e) − xi(e) = ±he. Recall that he has in fact d components
(h
µ
e )
d
µ=1. Then by Lemma 5.6

π∗
(

d2(xi(e), xj (e))

`e

)
=
gµν(xi(e))h

µ
e h

ν
e (
∏
i≥e ti)

2
+ R(π∗xi(e), π

∗xi(e) ± (
∏
i≥e ti)he)

(
∏
i≥e ti)

2

= gµν(xi(e))h
µ
e h

ν
e + re(t, x, h)

where

re(t, x, h) =
R(π∗xi(e), π

∗xi(e) + (
∏
i≥e ti)he)

(
∏
i≥e ti)

2 =
O((

∏
i≥e ti)

3
‖he‖

3)

(
∏
i≥e ti)

2

= O
((∏

i≥e

ti

)
‖he‖

3
)

vanishes to order 3 in (he)e∈T and to order 1 in (te)Ee=1 by Lemma 5.6 and re is smooth.
If e /∈ E(T ), then

π∗
(

d2(xi(e), xj (e))

`e

)
= π∗

(
gµν(xi(e))(x

µ

i(e) − x
µ

j(e))(x
ν
i(e) − x

ν
j (e))

`e

)
+ π∗

(
R(xi(e), xj (e))

`e

)
where

π∗
(
gµν(xi(e))(x

µ

i(e) − x
µ

j(e))(x
ν
i(e) − x

ν
j (e))

`e

)
=
gµν(xi(e))(

∑
e′∈γe\e

ε(e′)(
∏
j≥e′ tj )h

µ

e′
)(
∑
e′∈γe\e

ε(e′)(
∏
j≥e′ tj )h

ν
e′
)

(
∏
i≥e ti)

2

where ε(e′) = ±1 and γe is the unique simple cycle in T ∪ e in Corollary 5.4. The
important fact is that for every edge e′ in the path γe \ {e}, we have e′ < e. It follows that
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π∗
(
gµν(xi(e))(x

µ

i(e) − x
µ

j(e))(x
ν
i(e) − x

ν
j (e))

`e

)
= gµν(xi(e))

( ∑
e′∈γe\e

ε(e′)
( ∏
e′≤j<e

tj

)
h
µ

e′

)( ∑
e′∈γe\e

ε(e′)
( ∏
e′≤j<e

tj

)
hνe′

)
,

which is smooth since the products (
∏
i≥e ti)

2 in the denominator cancel out with the
same powers appearing in the numerator. The same argument applies to the remainder
term π∗(R(xi(e), xj (e))/`e). ut

5.5. Change of variables

For a test function ϕ supported in Rdn, since the map π is a smooth diffeomorphism from
Rd×Rd(n−1)

×(0, 1)E to Rdn×1, we can take it as a change of variables for integration:

〈I
G,Ek
(s), ϕ〉

=
1

(4π)dE/2

( E∏
e=1

1
0(se)

)∫
[0,1]E

d`1 . . . d`E

∫
Rdn

E∏
e=1

exp
(
−

d2(xi(e), xj (e))

4`e

)
× ψ(d2(xi(e), xj (e)))`

se+ke−d/2−1
e ake (xi(e), xj (e))ϕ̃ d

dx1 . . . d
dxn

=
1

(4π)dE/2

( E∏
e=1

1
0(se)

) ∑
σ∈SE

∫
1σ

d`1 . . . d`E

∫
Rdn

E∏
e=1

exp
(
−

d2(xi(e), xj (e))

4`e

)
× ψ(d2(xi(e), xj (e)))`

se+ke−d/2−1
e ake (xi(e), xj (e))ϕ̃ d

dx1 . . . d
dxn

where σ runs over the group SE of permutations of {1, . . . , E}. The open
simplices 1σ do not cover [0, 1]E , but the complement of

⋃
σ 1σ in [0, 1]E

has zero Lebesgue measure. Since for Re(se)Ee=1 large enough, the integral∫
[0,1]E

∏
e∈E(G)

e
−

d2
4`e

(4π)d/2 akeψ(d
2)`

ke−d/2+se−1
e d`e is absolutely convergent and depends

holomorphically on s ∈ CE , we have the equality of integrals

∫
[0,1]E

∏
e∈E(G)

e
−

d2
4`e

(4π)d/2
akeψ(d

2)`
ke−d/2+se−1
e d`e

=

∑
σ∈S(E)

∫
1σ

∏
e∈E(G)

e
−

d2
4`e

(4π)d/2
akeψ(d

2)`
ke−d/2+se−1
e d`e,

where both sides depend holomorphically on (se)e for Re(se)Ee=1 large enough.
Now we can carry out the change of variables in a fixed sector 1 = {0 < `1 < · · ·

< `E < 1} (the other terms will be obtained by permutation), which yields an expression
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of the form∫
1

E∏
e=1

d`e

`e

(∫
(Rd )n

E∏
e=1

exp
(
−

d2(xi(e), xj (e))

4`e

)
ψ(d2(xi(e), xj (e)))`

se+ke−d/2
e

× ake (xi(e), xj (e))ϕ̃ d
dx1 . . . d

dxn

)
= 2E

∫
[0,1]E

E∏
e=1

dte

te

∫
(Rd )n

π∗
( E∏
e=1

exp
(
−

d2(xi(e), xj (e))

4`e

)
ψ(d2(xi(e), xj (e)))

)
× π∗

(
ϕ̃

∏
e∈E(G)

ake

)( ∏
e∈E(G)

`
(se+ke)−d/2
e

)( ∏
e∈E(T )

`
d/2
e

)
ddx

∏
e∈E(T )

ddhe.

We can further simplify the product
∏
e∈E(G) `e(t)

(se+ke)−d/2
∏
e∈E(T ) `e(t)

d/2 as

∏
e∈E(G)

(∏
i≥e

ti

)2(se+ke)−d ∏
e∈E(T )

(∏
i≥e

ti

)d
=

∏
e∈E(T )

(∏
i≥e

ti

)2se+2ke ∏
e/∈E(T )

(∏
i≥e

ti

)2se−d+2ke

=

∏
e∈E(G)

(∏
i≥e

ti

)2se+2ke ∏
e/∈E(T )

(∏
i≥e

ti

)−d
= t

2sE+2kE
E (tE tE−1)

2sE−1+2kE−1 . . . (tE . . . t1)
2s1+2k1(tE . . . tik )

−d . . . (tE . . . ti1)
−d

where (i1 < · · · < ik) ⊂ {1, . . . , E} are the numbers decorating the edges in the comple-
ment of E(T ) and k = b1(G), hence∏

e∈E(T )

`e(t)
2se+2ke

∏
e/∈E(T )

`e(t)
2se−d+2ke =

E∏
e=1

t

∑
i≤e 2si+2ki−db1(Ge)

e (23)

where Ge denotes the graph induced by the first e edges {1, . . . , e}. This in turns implies
that we obtain the simplified form∫
1

E∏
e=1

d`e

`e

(∫
(Rd )n

E∏
e=1

exp
(
−

d2(xi(e), xj (e))

4`e

)
ψ(d2(xi(e), xj (e)))`

se+ke−d/2
e

× ake (xi(e), xj (e))ϕ̃ d
dx1 . . . d

dxn

)
=

∫
[0,1]E

E∏
e=1

dte

te
t
(
∑
i≤e 2si+2ki )−db1(Ge)

e

∫
(Rd )n

A(te, x, he) d
dx

∏
e∈E(T )

ddhe (24)

where

A((te)
E
e=1, x, (he)e∈E(T )) = 2Eπ∗

(( E∏
e=1

exp
(
−

d2(xi(e), xj (e))

4`e

)
ψ(d2(xi(e), xj (e)))ake

)
ϕ̃

)
.

The coordinates ((te)Ee=1, x, (he)e∈E(T )) on [0, 1]E × Rd × (Rd)E(T ) will be briefly
denoted by (t, x, h) for simplicity. We now prove the smoothness in t ∈ [0, 1]E of the
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partial integral
∫
(Rd )n A(t, x, h) d

dx
∏
e∈E(T ) d

dhe, which is needed to ensure analytic
continuation.
Lemma 5.10. The map t 7→

∫
(Rd )n A(t, x, h) d

dx
∏
e∈E(T ) d

dhe belongs to C∞([0, 1]E).
Proof. The smoothness of A is a direct consequence of Theorem 5.9. We start from the
definition of A:

A(t, x, h) = 2Eπ∗
( ∏
e∈E(T )

exp
(
−

d2(xi(e), xj (e))

4`e

)
ψ(d2(xi(e), xj (e)))ake

)

× π∗
( ∏
e/∈E(T )

exp
(
−

d2(xi(e), xj (e))

4`e

)
ψ(d2(xi(e), xj (e)))ake

)
× ϕ̃

(
x +

∑
e∈
−→
11

(∏
j≥e

tj

)
he, . . . , x +

∑
e∈
−→
1n

(∏
j≥e

tj

)
he

)
.

Then we use the key fact that since the open neighborhood (∼= Rd ) is chosen small enough
and has compact closure, there exists a fixed constant δ > 0 such that for all x, y ∈ Rd ,
we have the following bound on the Riemannian distance:

δ|x − y| ≤ d(x, y) = |x − y| + o(|x − y|) ≤ δ−1
|x − y|,

which follows from Lemma 5.6 since d2(x, y)−
∑
gµν(x)(x

µ
− yµ)(xν − yν) vanishes

along the diagonal to order 3, and locally
∑
gµν(x)(x

µ
− yµ)(xν − yν) is bounded by

some multiple of |x − y| by compactness of the neighborhood. It follows that

δ2
|x − y|2

4`e
≤

d2(x, y)

4`e
≤
δ−2
|x − y|2

4`e
,

which implies that for all edges e ∈ E(T ), we have the bound

π∗ exp
(
−

d2(xi(e), xj (e))

4`e

)
≤ π∗ exp

(
−
δ2
|x − y|2

4`e

)
= exp

(
−
δ2
|he|

2

4

)
.

This allows us to use the product π∗
(∏

e∈E(T ) exp
(
−

d2(xi(e),xj (e))

4`e

))
to control the expo-

nential decay of A:

π∗
( ∏
e∈E(T )

exp
(
−

d2(xi(e), xj (e))

4`e

))
≤

∏
e∈E(T )

exp
(
−
δ2
|he|

2

4

)
.

By smoothness of the heat coefficients ak , by compactness of the support of ϕ ∈ C∞c (U
n)

and thus of ϕ̃, and by the definition of π , for every multi-index α, there exists some
constant Cα > 0 such that∣∣∣∣∂αt π∗(ϕ̃ ∏

e/∈E(T )

exp
(
−

d2(xi(e), xj (e))

4`e

) E∏
e=1

akeψ(d
2(xi(e), xj (e)))

)∣∣∣∣
≤ Cα

(
1+

∑
e∈E(T )

|he|
)|α|

,

where the partial derivatives in t contribute the powers of h.
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Therefore, since A is compactly supported in x, for all (t, x, h) we have the bound

|∂αt A(te, x, he)| ≤ Cα
∏

e∈E(T )

exp
(
−
δ2
|he|

2

4

)(
1+

∑
e∈E(T )

|he|
)|α|

.

Then smoothness of t 7→
∫
(Rd )n A(t, x, h) d

dx
∏
e∈E(T ) d

dhe follows from smoothness
of the integrand which is the function A ∈ C∞([0, 1]E × (Rd)n), and any derivative ∂αt A
has fast decrease in h when |h| → +∞ and compact support in x ∈ Rd . Therefore all
derivatives in ∂αt A are integrable, uniformly in t ∈ [0, 1]E , and the conclusion follows
from classical results on integrals depending smoothly on parameters. ut

Lemma 5.11 (Jet lemma). Fix the sector 1 corresponding to the system of inequalities
{0 ≤ `1 ≤ · · · ≤ `E}. Let

A((te)
E
e=1, x, (he)e∈T ) = π

∗

( E∏
e=1

(
exp

(
−

d2(xi(e), xj (e))

4`e

)
ψ(d2(xi(e), xj (e)))ake

)
ϕ̃

)
.

Then the k-jet of

χ(t1, . . . , tE) =

∫
(Rd )n

A((te)
E
e=1, x, (he)e∈E(T )) d

dx
∏

e∈E(T )

ddhe

depends continuously on the k-jet of (aki , i = 1, . . . , E, ϕ,d2, g).

Proof. This follows from the formulas defining A and the change of variables π and
repeated application of the chain rule to the π∗(. . .) term. ut

Recall that by Theorem 4.10, the main Theorem 2.7 reduces to an analytic continuation
result for the amplitudes I

G,Ek
(s) corresponding to the labelled Feynman graphs (G, Ek).

The problem was that the integral formula for I
G,Ek
(s) involved some product of heat

kernels which required blow-ups performed in sectors. The following proposition shows
how the integral expression I

G,Ek
(s) simplifies after blow-up:

Proposition 5.12. Let I
G,Ek
(s) be as in (15), and for any e ∈ {1, . . . , E} ' E(G) and

any permutation σ ∈ SE , let Gσ(e) be the subgraph of G induced by the collection of
edges {σ(1), . . . , σ (e)} ⊂ E(G). Then for every ϕ ∈ C∞c (U

n), there exists a family
χσ ∈ C

∞([0, 1]E) indexed by σ ∈ SE such that∫
Rdn

I
G,Ek
(s)ϕ dndx

=

E∏
e=1

1
0(se)

∑
σ∈SE

∫
[0,1]E

E∏
e=1

dte

te
t

∑
i≤e(2sσ(i)+2kσ(i))−db1(Gσ(e))

e χσ (t) (25)

for Re(se), e ∈ {1, . . . , E}, large enough, and both sides are holomorphic in s ∈ CE .

In the next subsection, we proceed to the meromorphic continuation of the r.h.s. of (25) as
a meromorphic function with linear poles in s and we also bound the distributional order
of I

G,Ek
(s) independently of the label Ek.
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5.6. Integration by parts, bounding orders and pole decomposition

Now the proof of Theorem 2.7 on the analytic continuation of tG(s) is reduced to the
meromorphic continuation in s ∈ CE of the right hand side of (25). The meromorphic
continuation comes from integration by parts, as shown in the next lemma and its corol-
lary.

Lemma 5.13. Let E be a positive integer. Then for any smooth function ψ on [0, 1],

Is(ψ) =

∫
[0,1]E

t
s1
1 . . . t

sE
E ψ(t1, . . . , tE) d

E t

can be analytically extended to a meromorphic germ at (se = pe)Ee=1 ∈ ZE; more pre-
cisely, if I = {i : pi < 0} then (∏

i∈I

(si − pi)
)
Is(ψ) (26)

extends to a holomorphic germ at (se = pe)e and Is ∈ D′,m([0, 1]E,Ms0(CE)), s0 =
(p1, . . . , pE), m =

∑
i∈I |pi |.

The proof of this lemma, given in the appendix, follows from integration by parts. One
consequence of this lemma is

Corollary 5.14. Denote by 1[0,1]E the indicator function of the unit cube [0, 1]E ⊂ RE .
Let (L1, . . . , LE) be linear functions of s ∈ CE with coefficients Li ∈ (RE)∗, 1 ≤ i ≤ E,
and let (a1, . . . , aE) ∈ ZE . Set I = {i : ai < 0}. Then(∏

i∈I

Li(s)
) ∫
[0,1]E

t
L1(s)+a1
1 . . . t

LE(s)+aE
E ψ(t1, . . . , tE) d

E t

is a holomorphic germ at s = 0 ∈ CE , and

1[0,1]E t
L1(s)+a1
1 . . . t

LE(s)+aE
E

extends to an element in D′,m(RE,M0(CE)) where m =
∑
i∈I |ai | and the polar set is

contained in {
∏
i∈I Li = 0}.

Applying Corollary 5.14 to the r.h.s. of (25) shows

Lemma 5.15. Let Sσ be the set of all subgraphs H ∈ {Gσ(1) ⊂ · · · ⊂ Gσ(E) = G} such
that b1(H) ≥ 1. Then

∏
H∈Sσ

( ∑
e∈E(H)

se − |E(H)|
)(∫

[0,1]E

E∏
e=1

dte

te
t

∑
i≤e(2sσ(i)+2kσ(i))−db1(Gσ(e))

e χσ (t)

)
is a holomorphic germ at (se = 1)e.



Renormalization of Feynman amplitudes on manifolds 537

Proof. By Corollary 5.14 and a change of variables s′e = se− 1, e ∈ {1, . . . , E}, we need
to consider the following set of indices:

I =

{
e : e +

∑
i≤e

kσ(i) −
d

2
b1(Gσ(e)) ≤ 0

}
⊂ {1, . . . , E}.

It is contained in {e : b1(Gσ(e)) ≥ 1}, which yields the conclusion. ut

Let us comment on the above bound on the location of the pole. First the bound seems
suboptimal since the set of indices I = {e : e +

∑
i≤e kσ(i) −

d
2b1(Gσ(e)) ≤ 0} ⊂

{1, . . . , E} is only a subset of {e : b1(Gσ(e)) ≥ 1} ⊂ {1, . . . , E}. However, it is important
for us that we can give a bound on the location of the poles which does not depend on the
multi-index Ek since poles from the original Feynman amplitude tG(s) do not depend on Ek.
The formula of Theorem 4.10 expresses tG as a sum of I

G,Ek
for some Ek. Hence the poles

of tG(s) come from contributions from the poles of I
G,Ek

. Therefore it is convenient to
have a Ek-independent bound for poles of I

G,Ek
. Finally, we bound the distributional order

of I
G,Ek

and also give a precise location of the affine planes supporting the poles of I
G,Ek

:

Proposition 5.16 (Poles of I
G,Ek

and distributional order). Let G be a graph whose set
of edges is in bijection with {1, . . . , E}. For any e ∈ {1, . . . , E} ' E(G) and any per-
mutation σ ∈ SE , let Gσ(e) be the subgraph of G induced by {σ(1), . . . , σ (e)} ⊂ E(G).
To every permutation σ ∈ SE , we associate the filtration {Gσ(1) ⊂ · · · ⊂ Gσ(E) = G},
and consider the set Sσ of all subgraphs H ∈ {Gσ(1) ⊂ · · · ⊂ Gσ(E) = G} such that
b1(H) ≥ 1. For every Ek ∈ NE(G), the distribution I

G,Ek
(s) defined in (15) can be analyti-

cally continued to D′,m(Un,Ms0(CE)), s0 = (se = 1)Ee=1, where

m =
∑

H⊂G, 2|E(H)|−db1(H)−1<0

(
db1(H)− 2|E(H)| + 1

)
. (27)

For every test function ϕ,∫
Rdn

I
G,Ek
(s)ϕ dndx =

∑
σ∈SE

∏
H∈Sσ

1∑
i∈H si − E(H)

fσ (s)

where fσ is a holomorphic germ at (se = 1)e.

Remark 5.17. The bound on the distributional order depends only on the topology of the
graph G and the dimension d and not on Ek ∈ NE . The bound on the distributional order
is not sharp since we should only sum over subgraphsG′ ∈ {Gσ(1), . . . ,Gσ(E)} such that
2|E(G′)| − db1(G

′)− 1 < 0 then take the supremum over all permutations σ .

Proof of Proposition 5.16. We proved in Proposition 5.12 that for every labelled graph
(G, Ek), and every test function ϕ ∈ C∞c (U

n), n = |V (G)|, there exists a family χσ (t) of
smooth functions on the cube [0, 1]E indexed by permutations σ ∈ SE such that∫

Rdn
I
G,Ek
(s)ϕdndx =

E∏
e=1

1
0(se)

∑
σ∈SE

∫
[0,1]E

E∏
e=1

dte

te
t

∑
i≤e(2sσ(i)+2kσ(i))−db1(Gσ(e))

e χσ (t).
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By applying Lemma 5.15 to

∑
σ∈SE

∫
[0,1]E

E∏
e=1

dte

te
t

∑
i≤e(2sσ(i)+2kσ(i))−db1(Gσ(e))

e χσ (t),

we obtain the meromorphic continuation of s 7→
∫
Rdn IG,Ek(s)ϕ d

ndx with a bound on the
location of poles. To show that I

G,Ek
(s) is actually an element of D′,m(Un,Ms0(CE)),

s0 = (se = 1)Ee=1, we need to show that

C∞c (U
n) 3 ϕ 7→

∫
Rdn

I
G,Ek
(·)ϕ dndx ∈Ms0(C

E)

depends linearly on the m-jet of ϕ for some m. By Corollary 5.14, the integral∫
[0,1]E

E∏
e=1

dte

te
t

∑
i≤e(2sσ(i)+2kσ(i))−db1(Gσ(e))

e χσ (t)

depends linearly on the m-jet of χσ for

m =
∑

G′⊂G, 2|E(G′)|−db1(G′)−1<0

(
db1(G

′)− 2|E(G′)| + 1
)
.

Then by Lemma 5.11, the m-jet of χσ depends continuously on the m-jet of ϕ, which
yields the result. ut

Now let us restate our first main theorem and conclude its proof:

Theorem 5.18. Let (M, g) be a smooth, compact, connected Riemannian manifold with-
out boundary of dimension d, dv(x) the Riemannian volume and P = −1g + V , V ∈
C∞
≥0(M), or M = Rd with a constant metric g and P = −1g + λ2, λ ∈ R≥0. Then for

every graph G,
tG(s) =

∏
e∈E(G)

Gse (xi(e), xj (e)) (28)

can be analytically continued to an element of D′(MV (G),Ms0(CE(G))) where s0 =
(se = 1)e∈E(G), with linear poles supported on the union of affine hyperplanes⋃

G′

{∑
e∈G′

se − |E(G
′)| = 0

}
where the union runs over subgraphs G′ of G such that 2|E(G′)| − b1(G

′)d ≤ 0.

Proof. From Theorem 4.10, one has a decomposition

tG(s)|Unx =
∑
G′⊂G

( ∑
Ek∈{0,...,p}E1

I
G′,Ek

(s)︸ ︷︷ ︸
)
× hG\G′(s)
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where G′ are subgraphs and hG\G′(s) ∈ Cm(MV (G),Os0(CE(G)\E(G
′))), s0 =

(se = 1)e∈E(G)\E(G′) if p>(d +m)/2−1 form =
∑
G′⊂G, 2|E(G′)|−db1(G′)−1<0(db1(G

′)

−2|E(G′)|+1). Therefore, the analytic continuation of tG(s) should follow from the an-
alytic continuation of I

G′,Ek
for all subgraphs G′ of G and the fact that the distributional

order of I
G′,Ek

is bounded from above by some integer m(G′) independent of Ek ∈ NE(G′).
But Proposition 5.16 states precisely that the distributional order of I

G′,Ek
is bounded from

above by some integer which depends only on the topology of G′. Now following the
notation from Proposition 5.16, for every subgraph G′ ⊂ G, we denote by SE(G′) the
permutations of the edges E(G′) = {1, . . . , E′}. To every σ ∈ SE(G′) corresponds a
canonical filtration {G′σ(1) ⊂ · · · ⊂ G

′

σ(E′)
} of G′ and Sσ denotes the set of all subgraphs

H ∈ {G′σ(1) ⊂ · · · ⊂ G
′

σ(E′)
} such that b1(H) ≥ 1. Finally doing all the bookkeeping,

we find that

tG(s) =
∑
G′⊂G

∑
σ∈SE(G′)

( ∏
H∈Sσ

1∑
i∈H si − E(H)

)
hσ (s)

where hσ (s) ∈ D′(MV (G),Os0(CE(G))), s0 = (se = 1)e∈E(G). ut

6. Renormalization of Feynman amplitudes

In this second part of the paper, we shall apply the analytic continuation results derived
to the renormalization of Feynman amplitudes on Riemannian manifolds.

6.1. Renormalization maps

For a smooth manifold (M, g) and every finite I ⊂ N, we denote byMI the configuration
space of points labelled by I . For J ⊂ I with |J | ≥ 2,DJ is the subset {(xi)i∈I : xj = xk
for j, k ∈ J } of MI , called the J -diagonal. Let 1I =

⋃
J⊂I, |J |≥2DJ be the maximal

diagonal.

Definition 6.1 (Labelling vertices). Let I ⊂ N be finite. A graph with vertices labelled
by I is a pair (G, ι), where G is a graph and ι is an injective map from V (G) to I .

For a graph with vertices labelled by I , (G, ι), define

tG =
∏

e∈E(G)

G(xi(e), xj (e)),

where (i(e), j (e)) ∈ I 2 and tG is a smooth function onMI
\1I . For a finite subset I of N,

let F(MI ) be the linear span of tG of all (G, ι) with ι(V (G)) ⊂ I as smooth functions
on MI

\1I .
For a linear map R : E → D′(M) where E is a vector space and M is a smooth

manifold, and any open subset U ⊂ M , let iU : U ↪→ M denote the inclusion map.
Then R|U = i∗UR : E → D′(U) is the pull-back of R by iU . Following recent work by
Nikolov–Stora–Todorov [59], we can give a definition of renormalization as follows:
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Definition 6.2. A renormalization is a sequence of (not necessarily continuous) linear
maps RI : F(MI ) → D′(MI ) indexed by finite subsets I of N, which satisfies the
following system of functional equations

• For I ⊂ J and t ∈ F(MI ),
RJ (t) = RI (t). (29)

This is the compatibility condition for the family of linear maps.
• For all t ∈ F(MI ) and ϕ ∈ C∞c (M

I
\1I ),

〈RI (t), ϕ〉 = 〈t, ϕ〉. (30)

This means that RI (t) is a distributional extension of t ∈ C∞(MI
\1I ).

• For a graph (G, ι) with vertices labelled by J ⊂ N, and I ⊂ J = ι(V (G)), set
I c = J \I , letEI = {e ∈ E(G) : i(e), j (e) ∈ I }, EI c = {e ∈ E(G) : i(e), j (e) ∈ I c},
EII c = E(G) \ (EI ∪ EI c ), and denote by GI ,GI c ,GII c the corresponding induced
subgraphs ofG. For open subsets U,V ofM with dist(U, V ) > 0, denote by U I ×V I

c

the subset {(xj )j∈J ∈ MJ
: xi ∈ U,∀i ∈ I, xi ∈ V , ∀i ∈ I c} ⊂ MJ . Then

RJ |U I×V I
c (tG) = (RJ |U I (tGI ) � RJ |V I

c (tGIc ))tGIIc

as distributions in D′(U I × V I c ). This means that renormalization must preserve
locality.
• Let 8 : M → M be an orientation preserving diffeomorphism and denote by 8I :
MI
→ MI the induced diffeomorphism on the configuration space MI . Assume

that the renormalization maps depend on the Riemannian metric g and write R[g] =
(R[g]I )I to stress this dependence. Then the covariance equation for renormalization
maps reads, for all graphs (G, ι) with vertices labelled by I ,

R[8∗g]I (8∗I tG) = 8
∗

I (R[g]I (tG)). (31)

This axiom of functorial nature ensures that the renormalization is covariant.

The following property follows from the locality condition: for a graph (G, ι) with ver-
tices labelled by I , if G is the disjoint union of G1 and G2, ι(V (G1)) ⊂ I1, ι(V (G2)) ⊂

I2, I1 ∩ I2 = ∅, then

RI1∪I2(tG) = RI1(tG1) � RI2(tG2)

as distributions in D′(MI1∪I2).

6.2. Decompositions of meromorphic germs of distributions

Our goal in this subsection is to extend the decomposition of [39] (see also [15, Ap-
pendix]) of the space Ms0 of meromorphic germs with linear poles at s0 ∈ Rp ⊂ Cp to
their distributional counterpart D′(·,Ms0) defined in §3.2. This decomposition plays an
essential role in our definition of renormalization maps by projections. Recall we denote
by Os0 the space of holomorphic germs at s0.
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Let us fix a nondegenerate bilinear form

Q(·, ·) : Rp × Rp → R,

which induces a nondegenerate bilinear form

Q∗(·, ·) : (Rp)∗ × (Rp)∗→ R.

We can now define the concept of polar germ [39, Definition 2.3]. A polar germ at s0 is
a meromorphic germ of the form 1

L
n1
1 (s−s0)...L

nk
k (s−s0)

h(`(s − s0)), where L1, . . . , Lk are

linearly independent linear functions in (Rp)∗, (n1, . . . , nk) ∈ Nk>0, ` = (`1, . . . , `n) :

Rp → Rn defined by linear functions `1, . . . , `n, and h is a holomorphic germ at 0 ∈ Cn,
such that Q∗(Li, j̀ ) = 0, 1 ≤ i ≤ k, 1 ≤ j ≤ n. Let Ps0 be the linear span of polar
germs at s0 in Ms0 .

Notice that the polar set is defined by real linear functions. By similar proof to [39]
using geometry of cones, we have the following:

Proposition 6.3. There is a decomposition

Ms0 = Os0 ⊕ Ps0 .

Proof. We may assume that s0 = 0. Our setting is slightly more general than that in [39]
since we are dealing with complex coefficients whereas [39] deals with real coefficients.
However, the proofs can be readily adapted in a straightforward way as we shall indicate
below. Just as in [39, Lemma 2.9 and Thm. 2.10], we have M0 = O0 + P0, where the
proof is the same for all coefficients since it relies on the decomposition of the meromor-
phic germ 1

L
n1
1 ...L

nk
k

as a sum of polar germs and Taylor expansion of the numerator.

To prove that the sum is direct, we need to show O0 ∩ P0 = {0}, where we use two
properties:

First, a projectively properly positioned family of simplicial real fractions is linearly
independent over C. This is an analog of [39, Proposition 3.5], following from it by taking
real and imaginary parts.

A projectively properly positioned family of polar germs at zero in our sense is non-
holomorphic. As in [39, Thm. 3.6], we can show that if a linear combination of projec-
tively properly positioned family of polar germs is holomorphic then it is zero.

We may conclude as in [39, Thm. 4.15]. Take any decomposition of f ∈ P0 ∩O0 as
f =

∑
gi where (gi)i is a finite set of polar germs. By [39, Lemmas 4.10 and 4.11] there

is a family of supporting cones of the polar germs such that the union of the cones does not
contain any nonzero linear subspace and this family of supporting cones has a properly
positioned subdivision. Then we transform the finite sum of polar germs

∑
hi into a sum∑

h̃j of projectively properly positioned polar germs (h̃j )j using the subdivision operator
from [39, p. 18]. Finally, we get

∑
h̃j = f ∈ O0 where the r.h.s. is holomorphic, hence∑

h̃j = 0 by nonholomorphicity [39, Thm. 3.6]. Finally, this yields O0 ∩ P0 = {0}. ut

Now we extend the concept of polar germs to distributions valued in polar germs.
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Definition 6.4. Let M be a smooth manifold and p ∈ N. A polar germ of distributions
at s0 ∈ Rp ⊂ Cp is an element of D′(M,Ms0(Cp)) of the form 1

L
n1
1 (s−s0)...L

nk
k (s−s0)

× h(`(s − s0)), where L1, . . . , Lk are linearly independent linear functions in (Rp)∗,
(n1, . . . nk) ∈ Nk>0, ` = (`1, . . . , `n) : Rp → Rn defined by linear functions `1, . . . , `n,
and h ∈ D′(M,O0(Cp)) such that Q∗(Li, j̀ ) = 0, 1 ≤ i ≤ k, 1 ≤ j ≤ n. We denote by
D′(M,Ps0(Cp)) the linear span of polar germs of distributions at s0 in D′(M,Ms0(Cp)).

Lemma 6.5. If 1
L
n1
1 (s−s0)...L

nk
k (s−s0)

h(`(s − s0)) and 1
M
m1
1 (s−s0)...M

mp
p (s−s0)

g(`′(s − s0))

represent the same nonzero meromorphic germ of distributions, then k = p, and
M1, . . . ,Mm, L1, . . . , Lk can be rearranged in such a way that Li is a multiple of Mi

and ni = mi for 1 ≤ i ≤ k.

Proof. Since this meromorphic germ is not zero, we can take a test function ϕ such
that h(`(s − s0))(ϕ) is not identically zero. Then 1

L
n1
1 (s−s0)...L

nk
k (s−s0)

h(`(s − s0))(ϕ) and
1

M
m1
1 (s−s0)...M

mp
p (s−s0)

g(`′(s − s0))(ϕ) represent the same polar germ, and by the same

proof as in [39, Lemma 2.8], we have the conclusion. ut

We now prove the promised decomposition theorem for D′(M,Ms0) which generalizes
the result in [39].

Theorem 6.6. Let M be a smooth manifold and s0 ∈ Rp ⊂ Cp. We have the direct sum
decomposition

D′(M,Ms0(C
p)) = D′(M,Os0(C

p))⊕D′(M,Ps0(C
p)).

Proof. We can assume that s0 = 0. For t ∈ D′(M,M0(Cp)), by definition, there
exist L1, . . . , Lk ∈ (Rp)∗ such that L1 . . . Lkt ∈ D′(M,O0(Cp)). By partial frac-
tions decompositions as in the proof of [39, Lemma 2.9(a)], we may assume there is
(n1, . . . , nk) ∈ Nk>0 such that Ln1

1 . . . L
nk
k t ∈ D′(M,O0(Cp)) with L1, . . . , Lk linearly

independent and (n1, . . . , nk) ∈ Nk>0.
Now let us extend L1, . . . , Lk to a basis (e1, . . . , ep) of (Rp)∗ with ei = Li , 1 ≤

i ≤ k, and Q(ei, ej ) = 0 for 1 ≤ i ≤ k, k + 1 ≤ j ≤ p. Then by Proposition 3.9, we
have the power series expansion

z
n1
1 . . . z

nk
k t =

∑
α∈Np

zα

α!
tα,

where z =
∑
zie
∗

i ∈ (C
p)∗. So when we apply zn1

1 . . . z
nk
k t to the test function ϕ, we ob-

tain zn1
1 . . . z

nk
k t (ϕ) =

∑
α∈Np

zα

α!
tα(ϕ), which is absolutely convergent in a small neigh-

borhood of 0 ∈ Cp.
Let S = {d = (d1, . . . , dp) ∈ Np : d 6= (0, . . . , 0), 0 ≤ di ≤ ni}. For d ∈ S, let

I (d) = {i : di 6= 0} ⊂ {1, . . . , p}, and set

Nd =
{
α ∈ Np : αi = ni − di if i ∈ I (d), αi ≥ ni if i ∈ {1, . . . , k} \ I (d),

αi ∈ N if i ∈ {k + 1, . . . , p}
}
.
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Then Nd ∩ Ne = ∅ if d 6= e ∈ S, and most importantly, we have the partition Np =⋃
d∈S Nd .

Now for zi 6= 0, 1 ≤ i ≤ k,

t (ϕ) =
∑
α∈Np

zα−α0

α!
tα(ϕ) =

∑
d∈S

∑
α∈Nd

zα−α0

α!
tα(ϕ),

where α0 = (n1, . . . , nk, 0, . . . , 0). And we have

∑
α∈Nd

zα−α0

α!
tα(ϕ) =

1
zdI (d)

∑
α∈Nd

z
α−α0
[p]\I (d)

α!
tα(ϕ),

where zdI (d) =
∏
i∈I (d) z

di
i , zα−α0
[p]\I (d) =

∏
i∈{1,...,k}\I (d) z

αi−si
i

∏
i∈{k+1,...,p} z

αi
i .

Let

hd =
∑
α∈Nd

z
α−α0
[p]\I

α!
tα.

By Proposition 3.9, for every compact K ⊂ U there exists C > 0 and some continuous
seminorm P for the Fréchet topology ofC∞K (U) such that for each ϕ ∈ C∞K (U), |tα(ϕ)| ≤
α!
r |α|
CP(ϕ) for all α ∈ Np. This implies that for every 0 < R < r and all |z| < R,∣∣∣∣∑
α∈Np

zα

α!
tα(ϕ)

∣∣∣∣ ≤ ∑
α∈Np

∣∣∣∣zαα! tα(ϕ)
∣∣∣∣ ≤ ∑

α∈Np

R|α|

α!

α!

r |α|
CP(ϕ) =

(
1−

R

r

)−p
CP(ϕ).

Therefore, |(
∏
i∈[k]\I (d) z

si
i )hd(ϕ)| ≤

∑
α∈Np

∣∣ zα
α!
tα(ϕ)

∣∣ ≤ (1 − R/r)−pCP(ϕ), hence
(
∏
i∈[k]\I (d) z

si
i )hd ∈ D′(M,O0(Cp)), so hd ∈ D′(M,O0(Cp)).

Now by definition, 1
zd
I (d)

hd is a polar germ of distributions if d 6= (0, . . . , 0), h(0,...,0) ∈
D′(M,O0(Cp)), and

t =
∑
d∈S

1
zdI (d)

hd ∈ D′(M,P0(Cp))+D′(M,O0(Cp)) (32)

where the singular part is a finite sum of polar germs, as a corollary of the above argument.
So we have D′(M,Ms0(Cp)) = D′(M,Os0(Cp)) + D′(M,Ps0(Cp)). To show it is a
direct sum, if t ∈ D′(M,Os0(Cp))∩D′(M,Ps0(Cp)), then for any test function φ, t (φ) ∈
Ps0 ∩Os0 , so t (φ) = 0 by Proposition 6.3, which implies t = 0. ut

A consequence of the decomposition theorem is

Proposition 6.7. Let M be a smooth manifold, p ∈ N and s0 ∈ Rp ⊂ Cp. There exists a
projection

πp : D′(M,Ms0(C
p))→ D′(M,Os0(C

p))

which sends a distribution valued in meromorphic germs at s0 to a distribution valued in
holomorphic germs at s0 such that ker(πp) = D′(M,Ps0(Cp)).
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Remark 6.8. Note that πp is uniquely determined by the vector subspace of polar germs,
which are in turn uniquely determined by the choice of the canonical quadratic form
Q : Rp × Rp → R that we fixed at the beginning of the present section.

In Appendix 7.2, we show some useful lemmas on the functorial properties of the projec-
tion πp for p ∈ N. As a consequence of [39], we have a similar projection, still denoted a
bit abusively by πp, at the germ level: πp :Ms0 → Os0 . It follows that the two projectors
are related by the following equation:

Corollary 6.9. Let X be a smooth manifold and s0 ∈ Rp ⊂ Cp. For all t (s) ∈
D′(X,Ms0(Cp)) and all ϕ ∈ C∞c (X),

(πpt (s))(ϕ) = πp(t (s)(ϕ)).

6.3. A renormalization map by projections

From now on, for any integer p, we fix the canonical quadratic form Q on Rp, Q(x) =∑p

i=1 |xi |
2, and we study germs at s0 = (1, . . . , 1) ∈ Rp. We denote by ev|s0 evaluation

of holomorphic germs at s0. The properties of the family of projections (πp)p∈N allow us
to give a definition of renormalization maps:

Definition 6.10 (Renormalization maps by projections). For I ⊂ N, we define the renor-
malization map RI as follows: for a graph (G, ι) with vertices labelled by I ,

RI (tG) = ev|s0(π|E(G)|(tG(s)))

where Gs is the Schwartz kernel of (−1)−s .

Theorem 6.11 (Renormalization theorem). Let (M, g) be a smooth, compact, connected
Riemannian manifold without boundary of dimension d , dv(x) the Riemannian volume
and P = −1g + V , V ∈ C∞

≥0(M) or M = Rd with a constant metric g and P =
−1g + m

2, m ∈ R≥0. For every finite I ⊂ N and every graph (G, ι) with vertices
labelled by I , define RI (tG) ∈ D′(MI ) as in Definition 6.10 and extend it by linearity
to the vector space F(MI ). Then the collection (RI )I⊂N, |I |<∞ of renormalization maps
satisfies the functional equations of Definition 6.2.

Proof. The compatibility condition is encoded in the family of projections. For simplicity
of notation, we drop the index s0 from the space of germs so we write M,O instead of
Ms0 ,Os0 and it will always be understood from the context that we consider holomorphic
and meromorphic germs localized at s0 = (1, . . . , 1) ∈ Cp for some p ∈ N. Furthermore,
we also write π instead of π|E(G)| where it will be understood that for every graph G,
π(tG(s)) means π|E(G)|(tG(s)).

We now prove that RI (tG) is a distributional extension of tG. By Lemma 4.1, on
MI
\ 1I , for every e ∈ E(G), every Green function Gse ∈ C∞(MI

\ 1I ,O) is in fact
smooth and depends holomorphically on se. We also have the convergence Gse → G in
C∞(M2

\ 12) when se → 1. Therefore, for any ϕ ∈ C∞c (M
I
\ 1I ), by Corollary 6.9,
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we have π(tG(s))(ϕ) = π(tG(s)(ϕ)) = tG(s)(ϕ) since tG(s)(ϕ) is holomorphic at s0 =
(se = 1)e∈E(G) ∈ CE(G), and

RI (tG)(ϕ) = ev|s0π(tG(s))(ϕ) = ev|s0 tG(s)(ϕ) = tG(ϕ).

Now let us prove the locality. For a graph (G, ι) with vertices labelled by J ⊂ N, and
I ⊂ J = ι(V (G)), set I c = J \ I , let EI = {e ∈ E(G) : i(e), j (e) ∈ I }, EI c = {e ∈
E(G) : i(e), j (e) ∈ I c}, EII c = E(G) \ (EI ∪ EI c ), and denote by (GI ,GI c ,GII c ) the
corresponding induced subgraphs of G. Start from tG(s) = tGI (sI )tGIc (sI c )tGIIc (sII c )

where s = (se)e∈E(G), sI = (se)e∈EI , sI c = (se)e∈EIc , sII c = (se)e∈EIIc . For a pair
(U, V ) of disjoint open subsets such that dist(U, V ) > 0, consider the open subset
{(xj )j∈J ∈ M

J
: xi ∈ U,∀i ∈ I, xi ∈ V,∀i ∈ I

c
} of the configuration space MJ .

Then tGIIc (sII c ) =
∏
e∈EIIc

Gse (xi(e), xj (e)) ∈ C
∞(U I × V I

c
,O(CEIIc )). It follows by

Lemma 7.3 in the Appendix that

π(tG(s)) = π(tGI (sI )tGIc (sI c )tGIIc (sII c )) = π(tGI (sI )tGIc (sI c ))tGIIc (sII c ).

Now the distributions tGI (sI ) ∈ D′(U I ,M(CEI )) and tGIc (sI c ) ∈ D′(V I c ,M(CEIc ))
depend on different variables, therefore by Lemma 7.2,

π(tGI (sI ) � tGIc (sI c )) = π(tGI (sI )) � π(tGIc (sI c )).

Then as distributions on U I × V I
c
,

RJ (tG) = ev|(se=1)e∈E(G)(π(tGI (sI )) � π(tGIc (sI c ))× tGIIc (sII c ))

= ev|(se=1)e∈EI π(tGI (sI ))ev|(se=1)e∈EIc
π(tGIc (sI c ))ev|(se=1)e∈EIIc

tGIIc (sII c )

= RI (tGI )RI c (tGIc )tGIIc |U I×V Ic

where tGIIc is smooth on U I × V I
c
, which yields the desired equation. ut

7. Appendix: technical details

7.1. Proof of Proposition 3.9

Proof. We can assume that z = 0. By definition and the multidimensional Cauchy for-
mula [38, p. 3], for any polydiscD1×· · ·×Dp around z = 0, any ϕ ∈ C∞c (M) and any λ
in the polydisc,

t (λ)(ϕ) =
1

(2πi)p

∫
∂D1

· · ·

∫
∂Dp

t (z)(ϕ)dz1 . . . dzp

(z1 − λ1) . . . (zp − λp)

=
1

(2πi)p

∫
∂D1

· · ·

∫
∂Dp

∑
α

λα
t (z)(ϕ)dz1 . . . dzp

z
α1+1
1 . . . z

αp+1
p

.

For any multi-index α and any test function ϕ, we define the functional tα by

tα(ϕ) =
α!

(2πi)p

∫
∂D1

· · ·

∫
∂Dp

t (z)(ϕ) dz1 . . . dzp

z
α1+1
1 . . . z

αp+1
p

.

Then the series
∑
|α|≥0

sα

α!
tα(ϕ) converges absolutely to t (s)(ϕ).
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First note that the functional tα is linear; it remains to prove that it is continuous. For
that, it suffices to show that for every compactK ⊂ M , the restriction of tα to the Fréchet
space C∞K (M) of test functions supported in K is continuous. For fixed s, t (s) is linear
continuous on C∞K (M), so there exists a constant C(s) and a continuous seminorm P of
C∞K (M) such that |t (s)(ϕ)| ≤ C(s)P (ϕ) for all ϕ ∈ C∞K (M). Conversely, for fixed ϕ,
D1 × · · · × Dp 3 s 7→ t (s)(ϕ) is bounded by holomorphicity. By an application of the
uniform boundedness principle since C∞K (M) is Fréchet, for every compactK ⊂ M there
exists C > 0 and a continuous seminorm P for the Fréchet topology of C∞K (M) such that

∀ϕ ∈ C∞K (M), sup
s∈∂D1×···×∂Dp

|t (s)(ϕ)| ≤ CP(ϕ).

Assuming that all discs Di have radius r , it immediately follows that tα satisfies a
distributional version of Cauchy’s bound:

∀ϕ ∈ C∞K (M), |tα(ϕ)| ≤
α!

r |α|
CP(ϕ). (33)

This also implies that for all ϕ ∈ C∞K (M), the power series
∑
α
sα

α!
tα(ϕ) converges for

|λ| < r , i.e. the convergence radius equals r . ut

7.2. Products of meromorphic germs of distributions in different variables

In this subsection, we prove some useful lemmas on products of meromorphic germs of
distributions in different variables.

Lemma 7.1. Let (X1, X2) be smooth manifolds, µ1 ∈ Rp1 ⊂ Cp1 and µ2 ∈ Rp2 ⊂ Cp2 .
If t1(s1) ∈ D′(X1,Mµ1(Cp1)) and t (s2) ∈ D′(X2,Mµ2(Cp2)) then the external tensor
product t1(s1) � t2(s2) is a well-defined element in D′(X1 ×X2,M(µ1,µ2)(Cp1+p2)).

Proof. Denote by dv1, dv2 some smooth densities on X1, X2 respectively. Since ev-
ery compact subset K ⊂ X1 × X2 can be covered by a finite number of products of
compacts of the form K1 × K2, by Lemma 4.2 it suffices to show that for all com-
pacts K1 ⊂ X1,K2 ⊂ X2, the element t (s1; x)t (s2; y)|K1×K2 is a well-defined mero-
morphic family of distributions in D′(K1 × K2) at (µ1, µ2) ∈ Cp1 × Cp2 with linear
poles. Hence we can assume that we work over some product K1 × K2 ⊂ X1 × X2 of
compact subsets and that we work around (µ1, µ2) = (0, 0). There exist mononomi-
als P(s1) = L1(s1) . . . Lk(s1) and Q(s2) = M1(s2) . . .Ml(s2), where (Li)ki=1, (Mi)

l
i=1

are linear functions, such that P(s1)t1(s1) and Q(s2)t2(s2) are holomorphic germs of
distributions at s1 = µ1 and s2 = µ2 respectively. Therefore by Proposition 3.9,
P(s1)t1(s1) and Q(s2)t2(s2) admit Laurent series expansions P(s1)t1(s1) =

∑
α1
s
α1
1 uα1

and Q(s2)t2(s2) =
∑
α2
s
α2
2 vα2 where there exist integers (m1, m2) corresponding to the

distributional orders of (t1|K1 , t2|K2) and positive real numbers r1, r2 such that for all
(α1, α2) ∈ Np1+p2 ,

‖uα1‖(C
m1 )′ ≤ C1r

|α1|
1 , ‖vα2‖(C

m2 )′ ≤ C2r
|α2|
2 . (34)
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We define the series P(s1)t1(s1) � Q(s2)t2(s2) =
∑
α1,α2

s
α1
1 s

α2
2 uα1 � vα2 ; we shall

prove that it converges for |s1|+ |s2| small enough in the sense that for every test function
ϕ(x1, x2) supported in K1 ×K2, the series∑
α1,α2

s
α1
1 s

α2
2 uα1 � vα2(ϕ) =

∑
α1,α2

s
α1
1 s

α2
2

∫
X1×X2

uα1(x1)vα2(x2)ϕ(x1, x2) dv1(x1) dv2(x2)

converges absolutely. We first prove it for ϕ = ϕ1 � ϕ2 ∈ C∞K1
(X1) � C∞K2

(X2) ⊂

C∞K1×K2
(X1 × X2). For s ∈ Cp, we shall use the notation ‖s‖ = supj∈{1,...,p} |sj | and

for α ∈ Np, we set |α| =
∑p

j=1 αj . Then the series converges thanks to the bound

∣∣∣∣∑
α1,α2

s
α1
1 s

α2
2

∫
X1×X2

uα1(x1)vα2(x2)ϕ(x1, x2) dv1(x1) dv2(x2)

∣∣∣∣
≤

∑
α1,α2

‖s
α1
1 s

α2
2 ‖

∣∣∣∣∫
X1

uα1(x1)ϕ1(x1) dv1(x1)

∫
X2

vα2(x2)ϕ2(x2) dv2(x2)

∣∣∣∣
≤

∑
α1,α2

‖s1‖
|α1|C1r

|α|
1 ‖ϕ1‖Cm1 (X1)‖s2‖

|α2|C2r
|α|
2 ‖ϕ2‖Cm2 (X2)

≤

∑
α1,α2

C1(‖s1‖r1)
|α1|C2(‖s2‖r2)

|α2|‖ϕ‖Cm(X1×X2)

for anym ≥ sup(m1, m2)where the r.h.s. is absolutely convergent for s1, s2 small enough.
Then we conclude by using the fact that the completed tensor productC∞K1

(X1)�̂C
∞

K2
(X2)

coincides with C∞K1×K2
(X1 × X2) where the topology for which we do the completion

does not matter since the C∞Ki (Xi) are Fréchet nuclear spaces. Therefore the algebraic
tensor product C∞K1

(X1) � C
∞

K2
(X2) is dense in C∞K1×K2

(X1 ×X2) and

∣∣∣∣∑
α1,α2

s
α1
1 s

α2
2

∫
X1×X2

uα1(x1)vα2(x2)ϕ(x1, x2) dv1(x1) dv2(x2)

∣∣∣∣
≤

∑
α1,α2

C1(‖s1‖r1)
|α1|C2(‖s2‖r2)

|α2|‖ϕ‖Cm(X1×X2)

for all ϕ ∈ C∞K1×K2
(X1 ×X2). ut

For every p ∈ Cp, s0 ∈ Rp ⊂ Cp, let πp : D′(M,Ms0(Cp))→ D′(M,Os0(Cp)) be the
projection from Proposition 6.7.

Lemma 7.2. Under the assumptions of the previous lemma,

πp1+p2(t1 � t2) = πp1(t1) � πp2(t2). (35)

Proof. We decompose t1 and t2 as t1 = πp1(t1) + (1 − π1)(t1) and t2 = πp2(t2) +

(1 − π2)(t2) where (πp1(t1), πp2(t2)) ∈ D′(X1,Oµ1(Cp1)) × D′(X2,Oµ2(Cp2)) and
((1− π1)(t1), (1− π2)(t2)) ∈ D′(X1,Pµ1(Cp1))×D′(X2,Pµ2(Cp2)). Then
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t1 � t2 = πp1(t1) � πp2(t2)︸ ︷︷ ︸
∈D′(X1×X2,O(µ1,µ2)(C

p1+p2 ))

+ (1− π1)(t1) � π2(t2)+ π1(t1) � (1− π2)(t2)+ (1− π1)(t1) � (1− π2)(t2)︸ ︷︷ ︸
∈D′(X1×X2,P(µ1,µ2)(C

p1+p2 ))

where the last underbraced term is a finite sum of polar germs by (32). It follows that
πp1+p2(t1�t2) = πp1(t1)�πp2(t2) by the uniqueness of the decomposition which follows
from Theorem 6.6. ut

By a similar proof, we also have

Lemma 7.3. Let X be a smooth manifold, U ⊂ X an open subset and m ∈ N. Let
(p1, p2) ∈ N2 and (µ1, µ2) ∈ Rp1 × Rp2 ⊂ Cp1+p2 . Let t (s1) ∈ D′,m(U,Mµ1(Cp1))

and h(s2) ∈ Cm(U,Oµ2(Cp2)). Then the product t (s1)h(s2) is an element of
D′,m(U,M(µ1,µ2)(Cp1+p2)) which satisfies the equation

πp1+p2(t (s1)h(s2)) = πp1(t (s1))h(s2). (36)

Proof. We can work locally since all local results can be glued together by a parti-
tion of unity thanks to Lemma 4.2. For every ϕ ∈ C∞c (U), we have 〈t (s1)h(s2), ϕ〉 =
〈t (s1), h(s2)ϕ︸ ︷︷ ︸

∈Cmc (U)

〉, hence the product t (s1)h(s2) is well defined in D′,m(U) as soon as both

t (s1), h(s2) exist. We now explain the meromorphicity of (s1, s2) 7→ 〈t (s1)h(s2), ϕ〉

at (µ1, µ2) ∈ Cp1+p2 . Since t (s) ∈ D′,m(U,Mµ1(Cp1)), there exists u(s) ∈

D′,m(U,Oµ1(Cp1)) and linear functions (L1, . . . , Lk) such that (L1(s) . . . Lk(s))t (s) =

u(s). Therefore the product t (s1)h(s2) also reads 1
L1(s1)...Lk(s1)

u(s1)h(s2). Then using
power expansions in s1 − µ1 for u(s1) as in Theorem 3.9 and expanding h(s2) in pow-
ers of s2 − µ2 where the coefficients are in Cm(U), we easily show that u(s1)h(s2) ∈
D′,m(U,O(µ1,µ2)(Cp1+p2)) for (s1, s2) ∈ Cp1+p2 close enough to (µ1, µ2) ∈ Cp1+p2 ,
which proves t (s1)h(s2) ∈ D′,m(U,M(µ1,µ2)(Cp1+p2)).

The equality πp1+p2(th) = hπp1(t) follows immediately from the fact that
πp2(h(s2)) = h(s2) since h is holomorphic and h(s2)(1 − πp1)(t (s1)) is valued in po-
lar germs. ut

7.3. Proof of Lemma 4.1

Since our Riemannian manifold (M, g) is connected, ker(P ) contains only constant func-
tions. Indeed, Pu = 0 implies that u ∈ C∞ by elliptic regularity and 0 = 〈u,−1gu〉 +
〈u, V u〉 ⇒ 〈∇u,∇u〉 = 0⇒ ∇u = 0, thus u is constant on connected components. Let
us determine the spectral projector 5 explicitly: it should satisfy, for all u,

0 = 〈1, u−5(u)〉 =
∫
M

(u−5(u)) =

∫
M

u dx−5(u)Vol(M), so 5(u) =

∫
M
u dx

Vol(M)
.

The Schwartz kernel of the spectral projector 5 is therefore the constant function
5(x, y) = Vol(M)−1.
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The first two claims about the Schwartz kernel Gs(x, y) follow from [72, Theorem 4
p. 302] in the celebrated work of Seeley, by applying his theorem to A = P −5, which
is a well-defined elliptic pseudodifferential operator of order 2.

For the third claim, we start from the formula Gs =
∫
∞

0 (e−tP −5)(x, y)t s−1dt and
our proof follows the proof of [8, Proposition 1] in which we replace the heat semigroup
et1g by the semigroup e−tP −5 whose Schwartz kernel is Kt −5 and is denoted by pt .
Start from pt (x, y) = 〈δx, (e

−tP
−5)δy〉L2(M) = 〈(e

−
t
2P −5)δx, (e

−
t
2P −5)δy〉L2(M).

For any integers (k, l,m), |∂mt P
k
x P

l
ypt (x, y)| = |P

k+m
x P lypt (x, y)| since ∂mt (e

−tP
−5) =

Pm(e−tP −5). Hence,

|∂mt P
k
x P

l
ypt (x, y)|

≤ ‖e−(t−ε)P −5‖B(L2(M))‖P
k+m
x (e−

ε
2P −5)δx‖L2(M)‖P

l
y(e
−
ε
2P −5)δy‖L2(M).

Therefore taking the supremum over (x, y) ∈ M ×M yields

‖∂mt P
k
x P

l
ypt‖C0(M×M)

≤ ‖(e−(t−ε)P −5)‖B(L2(M))‖P
k+m
x (e−

ε
2P −5)δx‖L2(M)‖P

l
y(e
−
ε
2P −5)δy‖L2(M)

where both the norms ‖P k+mx (e−
ε
2P − 5)δx‖L2(M) and ‖P ly(e

−
ε
2P − 5)δy‖L2(M) are

finite since both (e−
ε
2P − 5)δx and (e−

ε
2P − 5)δy are smooth functions because the

semigroup (etP −5)t∈R≥0 is smoothing. Furthermore, the term ‖e−(t−ε)P −5‖B(L2(M))

has exponential decay as t →+∞ since e−(t−ε)P −5 is a smoothing operator which has
a gap in the spectrum; indeed, by spectral theory e−tPu =

∑
λ∈σ(P ) e

−tλ5λ(u) where
5λ is the spectral projector on the eigenspace of eigenvalue λ and the r.h.s. converges
absolutely in all Sobolev spaces H s(M), s ≥ 0, when t > 0. More generally, we obtain
decay estimates of the form

‖∂mt pt‖Ck(M×M) ≤
∑

l1,l2≤k/2+1

‖∂mt P
k1
x P

k2
y pt‖C0(M×M)

≤ Ck,m‖(e
−(t−ε)P

−5)‖B(L2(M)) ≤ Ck,me
−(t−ε)λ1

where λ1 > 0 is the smallest nonzero eigenvalue of P which exists since σ(P ) is a
discrete subset of [0,∞). It follows that the integral

∫
∞

1 t s−1pt dt converges absolutely
for all s ∈ C and is valued in all Banach spaces Ck(M ×M), k ∈ N, since∥∥∥∥∫ ∞

1
t s−1pt dt

∥∥∥∥
Ck(M×M)

≤

∫
∞

1
tRe(s)−1

‖pt‖Ck(M×M)dt ≤ Ck

∫
∞

1
tRe(s)−1e−(t−ε)λ1 dt.

The integral
∫
∞

1 t s−1pt dt depends holomorphically on s since∥∥∥∥∫ ∞
1

(
d

ds

)l
t s−1pt dt

∥∥∥∥
Ck(M×M)

≤ Ck

∫
∞

1
tRe(s)−1 log(t)le−(t−ε)λ1 dt (37)

where the r.h.s. is absolutely convergent and we can conclude by dominated convergence
arguments. ut
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7.4. Proof of Lemma 5.13

First notice that when Re(si) > −1, i = 1, . . . , E, the integral is absolutely convergent
and holomorphic in s.

Now if E = 1, then by integration by parts, for Re(s) > −1,∫
[0,1]

t sψ(t) dt =

k−1∑
i=0

(−1)i
1
li(s)

ψ (i)(1)+ (−1)k
1

lk−1(s)

∫
[0,1]

t s+kψ (k)(t) dt,

where li(s) = (s + 1) . . . (s + i + 1), and the l.h.s. is a meromorphic function when
Re(s) > −k − 1 with possible poles at s = −1, . . . ,−k, so it extends to a meromorphic
function on Re(s) > −k − 1.

In general, for Re(si) > −1, i = 1, . . . , E, and k1, . . . , kE ∈ Z>0,

Is(ψ) =

∫
[0,1]E

t
s1
1 . . . t

sE
E ψ(t1, . . . , tE) d

E t

=

∑
{j1,...,jm}⊂{1,...,E}

∑
j 6=j1,...,jm
ij=0,...,kj−1

(−1)ij

lij (sj )

m∏ (−1)kji

lkji−1(sji )

×

∫
[0,1]m

∏
j=j1,...,jm

t sj+kj
( ∏
j 6=j1,...jm

∂
ij
tj

)
∂
kj1
tj1
. . . ∂

kjm
tjm
ψ |tj=1, j 6=j1,...jm dtj1 . . . dtjs (38)

the r.h.s. is a meromorphic function when Re(si) > −ki − 1. So Is(ψ) extends to a
meromorphic germ at any point in ZE .

Now at a given point (pe)e ∈ ZE , 1
se−ae

is holomorphic except at ae = pe, therefore(∏
i∈I

(si − pi)
)
Is(ψ)

is a holomorphic germ at (pe)e. The distribution order of Is(ψ) at (pe) can be read off
from (38) easily. ut

7.5. Proof of Lemma 5.6

In the chart (U×U, (xµ, yν)), let us consider the Taylor expansion of φ(x, y), φ(x, y) =∑
k≥0 φ[k](x, y), where φ[k](x, y) =

∑
|α|+|β|=k

xαyβ

α!β!
∂αx ∂

β
y φ(0, 0). Obviously φ[0](x, y)

= 0. By symmetry and φ(x, x) = 0, we know that

φ[1](x, y) = 0.

By symmetry and φ(x, x) ≡ 0, we know that φ[2](x, y) =
∑
µ aµ(x

µ
− yµ)2. Now since

φ(0, y) = ‖y‖2, we find that

φ[2](x, y) =
∑

(xµ − yµ)2. (39)
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In fact, let us take x = y in (19),

g−1(x)

(
∂φ

∂xµ
(x, x)dxµ,

∂φ

∂xν
(x, x)dxν

)
= 0,

which means
∂φ

∂xµ
(x, x)dxµ ≡ 0, so

∂φ

∂xµ
(x, x) ≡ 0.

By symmetry,
∂φ

∂yµ
(x, x) ≡ 0. (40)

Now let us make a change of variables V ×W → U × U given by

(v, h) 7→ (v, v + h);

we can take V,W so small that V×W is a coordinate chart around (x0, x0). Let φ̃(v, h) =
φ(v, v + h). Take a partial Taylor expansion in h for φ̃,

φ̃(v, h) = φ̃(v, 0)+
∂φ̃

∂hµ
(v, 0)hµ +

1
2

∂2φ̃

∂hµ∂hν
(v, 0)hµhν + ε3

where ε3 vanishes to order 3 in h. We know

φ̃(v, 0) = φ(v, v) = 0,

by (40), and
∂φ̃

∂hµ
(v, 0) =

∂φ

∂yµ
(v, v) = 0.

By the chain rule,
∂2φ̃

∂hµ∂hν
(v, 0) =

∂2φ

∂yµ∂yν
(v, v).

Equation (19) shows
∂φ

∂xµ
(x, y)gµν(x)

∂φ

∂xν
(x, y) = 4φ(x, y).

Taking ∂2

∂xµ1∂xν1 on both sides and letting x = y = v, we get

∂2φ

∂xµ∂xµ1
(v, v)gµν(v)

∂2φ

∂xν∂xν1
(v, v)+

∂2φ

∂xµ∂xν1
(v, v)gµν(v)

∂2φ

∂xν∂xµ1
(v, v)

= 4
∂2φ

∂xµ1∂xν1
(v, v),

that is,
∂2φ

∂xµ∂xµ1
(v, v)gµν(v)

∂2φ

∂xν∂xν1
(v, v) = 2

∂2φ

∂xµ1∂xν1
(v, v).

Notice that ∂2φ
∂xµ∂xν

(v, v) is invertible since ∂2φ
∂xµ∂xν

(0, 0) = δµν by (39) if U is chosen
small enough. Then we get

∂2φ

∂xµ∂xν
(v, v) = 2gµν(v).



552 Nguyen Viet Dang, Bin Zhang

Since φ is symmetric, we know

∂2φ

∂yµ∂yν
(v, v) =

∂2φ

∂xµ∂xν
(v, v) = 2gµν(v).

So
φ̃(v, h) = gµν(v)h

µhν + ε3,

which concludes the proof. ut
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E. Herscovich for many interesting comments they made to one of us (NVD) when we first pre-
sented this work in Grenoble. Also great thanks to C. Guillarmou and S. Paycha for answering
many of our questions on regularization using pseudodifferential powers. The first author wants to
thank Dang Nguyen Bac for many discussions related to blow-ups and algebraic geometry. Finally,
NVD acknowledges the ANR-16-CE40-0012-01 grant for financial support.

References

[1] Ackermann, T.: A note on the Wodzicki residue. J. Geom. Phys. 20, 404–406 (1996)
Zbl 0864.58057 MR 1419429

[2] Albert, B. I.: Heat kernel renormalization on manifolds with boundary. arXiv:1609.02220
(2016)

[3] Albert, B. I.: Effective field theory on manifolds with boundary. Ph.D. thesis, Univ. of Penn-
sylvania (2017) MR 3731923

[4] Ammann, B., Bär, C.: The Einstein–Hilbert action as a spectral action. In: Noncommutative
Geometry and the Standard Model of Elementary Particle Physics, Springer, 75–108 (2002)
Zbl 1255.81218 MR 1998531

[5] Atiyah, M. F.: Resolution of singularities and division of distributions. Comm. Pure Appl.
Math. 23, 145–150 (1970) Zbl 0188.19405 MR 0256156

[6] Atiyah, M. F., Bott, R., Patodi, V. K.: On the heat equation and the index theorem. Invent.
Math. 19, 279–330 (1973) Zbl 0257.58008 MR 0650828
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[50] Krajewski, T., Rivasseau, V., Tanasă, A., Wang, Z.: Topological graph polynomials and
quantum field theory. Part I: Heat kernel theories. J. Noncommut. Geom. 4, 29–82 (2010)
Zbl 1186.81095 MR 2575389

[51] Kruskal, J. B.: On the shortest spanning subtree of a graph and the traveling salesman problem.
Proc. Amer. Math. Soc. 7, 48–50 (1956) Zbl 0070.18404 MR 0078686

[52] Lefschetz, S.: Applications of Algebraic Topology. Springer (1975) Zbl 0328.55001
MR 0494126

[53] Lesch, M.: On the noncommutative residue for pseudodifferential operators with log-
polyhomogeneous symbols. Ann. Global Anal. Geom. 17, 151–187 (1999) Zbl 0920.58047
MR 1675408

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1414.58002&format=complete
http://www.ams.org/mathscinet-getitem?mr=3919442
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0856.58001&format=complete
http://www.ams.org/mathscinet-getitem?mr=1396308
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0051.08704&format=complete
http://www.ams.org/mathscinet-getitem?mr=0058865
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0141.08601&format=complete
http://www.ams.org/mathscinet-getitem?mr=0180696
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:07229725&format=complete
http://www.ams.org/mathscinet-getitem?mr=4131805
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1369.81072&format=complete
http://www.ams.org/mathscinet-getitem?mr=3617360
http://arxiv.org/abs/1401.5003
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1408.60049&format=complete
http://www.ams.org/mathscinet-getitem?mr=3967393
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0407.58024&format=complete
http://www.ams.org/mathscinet-getitem?mr=0524257
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1425.81005&format=complete
http://www.ams.org/mathscinet-getitem?mr=3978423
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0989.81081&format=complete
http://www.ams.org/mathscinet-getitem?mr=1864435
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1015.81043&format=complete
http://www.ams.org/mathscinet-getitem?mr=1946335
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0826.58008&format=complete
http://www.ams.org/mathscinet-getitem?mr=1336738
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0823.58046&format=complete
http://www.ams.org/mathscinet-getitem?mr=1312438
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0920.58061&format=complete
http://www.ams.org/mathscinet-getitem?mr=1373003
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1186.81095&format=complete
http://www.ams.org/mathscinet-getitem?mr=2575389
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0070.18404&format=complete
http://www.ams.org/mathscinet-getitem?mr=0078686
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0328.55001&format=complete
http://www.ams.org/mathscinet-getitem?mr=0494126
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0920.58047&format=complete
http://www.ams.org/mathscinet-getitem?mr=1675408


Renormalization of Feynman amplitudes on manifolds 555

[54] Melrose, R. B.: The Atiyah–Patodi–Singer Index Theorem. A K Peters, Wellesley, MA (1993)
Zbl 0796.58050 MR 1348401

[55] Melrose, R. B., Nistor, V.: Homology of pseudodifferential operators I. Manifolds with bound-
ary. arXiv:funct-an/9606005 (1996)

[56] Mnev, P.: Lecture notes on torsions. arXiv:1406.3705 (2014)
[57] Nicolaescu, L. I.: Random Morse functions and spectral geometry. arXiv:1209.0639 (2012)
[58] Nikolov, N., Nedanovski, D.: Analytic renormalization and residues of Feynman diagrams,

C. R. Acad. Bulgare Sci. 70, 1219–1226 (2017)
[59] Nikolov, N. M., Stora, R., Todorov, I.: Renormalization of massless Feynman amplitudes in

configuration space. Rev. Math. Phys. 26, no. 4, art. 1430002, 65 pp. (2014) Zbl 1303.81126
MR 3208883

[60] Paycha, S.: Regularised Integrals, Sums and Traces: An Analytic Point of View. Univ. Lecture
Ser. 59, Amer. Math. Soc. (2012) Zbl 1272.11103 MR 2987296

[61] Paycha, S., Scott, S.: Chern–Weil forms associated with superconnections. In: Analysis, Ge-
ometry and Topology of Elliptic Operators, World Sci., 79–104 (2006) Zbl 1272.11103
MR 2246766

[62] Paycha, S., Scott, S.: A Laurent expansion for regularized integrals of holomorphic symbols.
Geom. Funct. Anal. 17, 491–536 (2007) Zbl 1125.58009 MR 2322493

[63] Popineau, G., Stora, R.: A pedagogical remark on the main theorem of perturbative renormal-
ization theory. Nuclear Phys. B 912, 70–78 (2016) Zbl 1349.81142 MR 3567574

[64] Pottel, S.: A BPHZ theorem in configuration space. arXiv:1706.06762 (2017)
[65] Pottel, S.: Configuration space BPHZ renormalization on analytic spacetimes. Nuclear Phys.

B 927, 274–293 (2018) Zbl 1380.81195 MR 3763330
[66] Ray, D. B., Singer, I. M.: R-torsion and the Laplacian on Riemannian manifolds. Adv. Math.

7, 145–210 (1971) Zbl 0239.58014 MR 0295381
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