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Abstract We prove optimal regularity for solutions to porous media equations in Sobolev spaces,
based on velocity averaging techniques. In particular, the regularity obtained is consistent with the
optimal regularity in the linear limit.
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1. Introduction

We establish the optimal spatial regularity of solutions of the porous medium equation

du = A(ul™'u) on(0,T) xRY, (1.1

u(Q) =up on Rz,

withug € L'RY), T > 0,m > 1.

All known regularity estimates in terms of Holder or Sobolev spaces are restricted
to differentiability order less than one. The best known regularity estimate in Sobolev
spaces, obtained by Tadmor and Tao [33] and Ebmeyer [16], is that, if ug € (L'NL>) (ng),

then
2

e Lo, T Wi " Ry, (12)

loc

Since m%rl < 1, this estimate is inconsistent with the optimal order of differentiability in
the linear case of the heat equation (m = 1), whichis u € L0, T]; w2! (R;‘f)).

A scaling argument (cf. Appendix D below) shows that it may be possible to improve
the regularity to u € L™ ([0, T]; w2/ W’”(Rﬁf)), which is consistent with the linear case
m = 1. The Barenblatt solution shows that this regularity is optimal. This is the main

result of this paper.
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Theorem. Ler ug € (L' N LHE)(]Rﬁ) for some ¢ > 0. Then, for all p € [1,m) and
s <2/m,
u € LP([0, TT; WP (RY)). (1.3)

loc

Moreover, there is a constant C > 0 such that

2

1).
LinLite +D

u ipsr < C(|lu
lll Lpyisr = C(luoll

The precise statement is given in Theorem 3.4 below.
In addition, we treat more general classes of equations, in particular including
anisotropic porous media equations of the form

d
Q=Y Oy u™!+ St x) on(0,T) xR, (1.4)
j=1

with ug € Ll(Rg), S e L0, T] x Rz) and ™ := |u|™lu. Setting | < m := minm;,

_ . 1 =
m := max m; we will show that, for all s < 22 and p < ﬁ—m,
J m m—1 m+1

/ﬂfa,xn»¢00dvezf(m,TLwQ;%Rﬁn

where f(z,x,v) := ly<u@,x) — lv<o and ¢ is an arbitrary cut-off function (see Theo-
rem 2.7 below for details).
In a third main result, we consider the degenerate parabolic Anderson model

du = dexu™ +uS on(0,T) x I, (1.5)
u=20 on (0, T) x a1,
u(0) = ug € L"T(I),
on an open, bounded interval I € R, withm € (1, 2) and S being spatial white noise. The
additional difficulty in this case is the irregularity of the source S, since spatial white noise

is a distribution only. We again obtain regularity consistent with the optimal regularity in
the linear case (m = 1).

Theorem. Let ug € L"™TY(I). Then there exists a weak solution u to (1.5) satisfying, for

31
allpe[l,m)ands<§z,

ue LP(0,T]; WP(I)). (1.6)

loc

Moreover, there is a constant C > 0 such that

sp < m+1 T
lellpwsp, < Clluolylly + 1S5y +1)

for some T > 2 and n € (1/2, 1] small enough.

The precise statement is given in Corollary 4.4 below.
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The proof presented in this paper is based on Fourier analytic techniques and aver-
aging lemmata. The first step is to pass to a kinetic formulation of (1.1). Introducing the
kinetic function f (¢, x, v) := ly<u(,x) — lv<o leads to the kinetic form of (1.1),

a f =mlv" " Af + Bug (1.7)

for some non-negative measure g. Since this constitutes a linear equation in f, the regu-
larity of the velocity averages | f¢(v) dv for smooth cut-off functions ¢ can be analyzed
by means of suitable microlocal decompositions in Fourier space. Up to this point our
setup is in line with [33]. However, in the available literature, one of the drawbacks of an-
alyzing regularity by means of averaging techniques is that it was unknown how to make
use of the sign of the measure g. Indeed, these arguments were only able to use the fact
that the total variation norm of ¢ is finite (cf. e.g. [12, 13]). In contrast, in this work, we
make use of the additional fact that the entropy dissipation measure g has finite singular
moments, meaning that |v|~" ¢ has finite mass for all y € [0, 1). In this way we are able
to (indirectly) exploit the sign property of ¢ for the first time.

In addition, classical averaging techniques are restricted to working in L? spaces with
p € [1,2] (cf. [33, Averaging Lemma 2.1]), which leads to non-optimal integrability

exponents. Indeed, because of this in [33, (4.10)] only Wm%rl_’1 regularity for solutions
to (1.1) could be shown. In order to obtain the optimal integrability exponent p < m we
introduce a new concept of isotropic truncation properties for Fourier multipliers.

A further obstacle in classical averaging arguments is that they rely on a bootstrap
technique. However, even if u is smooth, the kinetic function f will only have up to
one spatial derivative. Therefore, the standard bootstrap argument is not suited to prove
regularity of a higher (than one) order. In the anisotropic case, this difficulty is avoided in
the current paper by directly exploiting the v-regularity of f. In the isotropic case these
issues are overcome by introducing the isotropic truncation property mentioned above. In
both cases this allows us to fully avoid bootstrapping arguments. In order to underline the
differences and improvements with regard to [33] we follow the notation and structure
of [33] as far as possible. While, as usual in the theory of averaging techniques, our proof
also relies on a microlocal decomposition in Fourier space, the order of decomposition
and real interpolation, the key Lemma A.3, the bootstrapping argument and the estimation
of the entropy dissipation measure proceed differently, as outlined above.

1.1. Short overview of the literature

The study of regularity of solutions to porous media equations has a long history and we
make no attempt to reproduce a complete account here. In the absence of external forces,
the continuity of weak solutions to the porous medium equation has been first shown in
general dimension by Caffarelli-Friedman [8]. This result has been subsequently gener-
alized to the case of forced porous media equations by Sacks [31, 32], based on argu-
ments developed by Cafarelli—-Evans [7]. Further generalizations to more general classes
of equations have been given by DiBenedetto [14] and Ziemer [36]. A detailed account
of these developments may be found in Vazquez [34]. Holder continuity of solutions to



428 Benjamin Gess

the porous medium equation without force was first obtained by Caffarelli-Friedman [9]
(see also [34, 35]), where it is shown that bounded solutions to porous media equations
are spatially «-Holder continuous with @ = 1/m € (0, 1). We note that in the linear limit
m |, 1 this does not recover the optimal Holder regularity of the linear case. A general-
ization to a more general class of degenerate PDEs has been obtained by DiBenedetto—
Friedman [15]. In the recent work [27], the assumptions on the forcing have been relaxed
and quantitative estimates are obtained. In particular, it is shown that the Holder exponent
« is uniformly bounded away from O for m | 1. In the nice recent works [5, 6] continu-
ity estimates for the porous medium equation and inhomogeneous generalizations thereof
with measure-valued forcing have been derived.

A particular feature of the porous medium equation (m > 1) is the effect of fi-
nite speed of propagation and thus the occurrence of open interfaces. The regularity of
the open interfaces has attracted a lot of attention in the literature: see e.g. Caffarelli—
Friedman [9], Caffarelli-Vazquez—Wolansky [10], Koch [25] and the references therein.

In non-forced porous media equations also higher order regularity estimates have been
obtained. In one spatial dimension Aronson—Vazquez [2] proved eventual C* regular-
ity of solutions. For recent progress in the general dimension case see Kienzler—Koch—
Viézquez [24].

In terms of fractional Sobolev regularity of solutions to porous media equations, less is
known. As mentioned above, Ebmeyer [16] and Tadmor—Tao [33] proved for non-forced
porous media equations that

ue L0, T]: WS, Vs <

loc

. 1.8
m+1 (1.8)
See also Appendix C for a slight improvement of these results. In the recent work [21],
Gianazza—Schwarzacher proved higher integrability for non-negative, local weak solu-
tions to forced porous media equations in terms of a bound on

(m+1)/2
e i omew
for all & > 0 small enough. In the case of non-forced porous media equations, Aronson—
Benilan type estimates can be used to derive further regularity properties. For example,
in [34, Theorem 8.7] it has been shown that Au™ € Llloc((O, 00): LY.

Extensions of [33] to stochastic parabolic-hyperbolic equations have been considered

in [19].

1.2. Structure of the paper

In Section 2 we will consider the case of anisotropic, parabolic-hyperbolic second order
PDEs. The proof of certain multiplier estimates will be postponed to Appendix A. In
Section 3 we then treat the isotropic case in more detail, in particular introducing the
concept of the isotropic truncation property for Fourier multipliers. We then deduce our
main regularity estimates for forced porous media equations. In Section 4 we treat the case
of the one-dimensional degenerate parabolic Anderson model. A slight improvement of
the results obtained by Ebmeyer [16] is presented in Appendix C.
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1.3. Notation

For p € [1, 00) we let L? be the usual Lebesgue space. The space of all locally finite
Radon measures is denoted M, and Mty is the subspace of all measures with finite
total variation. We let M+ C M be the set of all non-negative, locally finite Radon
measures, and M}rv = Mty N MT. When convenient, we will use the shorthand no-
tation L)lc = Ll(Rff) and Ltlyx = L'([0, T] x R;‘f). For p > 1 let p’ be its conjugate,
that is, 1/p + 1/p’ = 1. We further let H*? be the fractional Sobolev space defined
via the Fourier transform, that is, as in [23, Definition 6.2.2], and W*:? be the fractional
Sobolev—Slobodetskii spaces (cf. [1, Section 7.35]). For 1 < p < o0, s € (0, 00) \ Nand
fe WIECJ’I(R‘J) let® = s — |s] € (0, 1), define the (homogeneous) Slobodetskii semi-

norm by
|D® f(x) — DY f ()| lp
1y = sup </ / dx dy
WP =L rd Jrd |x _ y|9p+d

and set WP := ={fe Wlm 1(Rd Il f lyiys.r < 00}. For f € Llloc(Rd) the total variation
is given by

I £ gy —sup{f f@)divg(x)dx: ¢ € CLRERY), @ ooy < 1}

and we set BV := {f e L]OC(Rd) s I fllgy < oo}. We follow the notation of [22, 23]
and [3]: Let N*?(R?) be the Nikol’skii space (see [29]) and B;,’q the Besov space
(see [22]). We further let L/ BS , = L?([0, T]; B}, ,(R?)) denote the time-space non-
homogeneous Besov space as in [3, Definition 2.67]. We define the discrete increment
operator by Aé’u = u(x 4+ he) — u(x). For results and standard notations in interpolation
theory we refer to [4]. We let SdXd denote the space of symmetric, non-negative definite
matrices. For b = (b,',.,') [ o1 € SdXd
For a locally bounded function b : R — SdXd we let ,3, r be such that ﬂi”k(v) =0k (v).

Similarly, for ¥ € C°(R,) we let ,31/’ be such that (ﬂ ) (V) = ¥ (v)o; k (v). We further
introduce the kinetic function

we set o = b'/? thatis, b; j = Zzzl O kOk, j-

x W, v) =1y — ly<o.

Analogously, for a function u : [0, T] x RY — R we set f(t x,v) = x(u(,x),v) =
ly<ut,x) — lv<o. We use the short-hand notation |§] ~ 2/ for the set {£ e R: 277! <
|€] <2/}, Foru € R we set ul™ := |u|™'u. Fora,b € R, = [0, 0o) we writea < b
if there exists a constant C > 0 such that a < Cb.

2. Anisotropic case
We consider equations of the form

orf(t,x,v) +a) - Vyf(t, x,v) —div(b(v)V, f(z, x, v))
=: L(0, Vx,v) f(t, x,v) = go(t, x,v) + dpg1(t, x,v), (2.1)
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wherea : R — R?and b : R — SiXd are C!. The operator £ is given by its symbol
Lz, i&,v) =it +iaw)- & — (&, b(v)§). (2.2)

In this section we will derive regularity estimates for the velocity average, for ¢ €
CIC;O(RU)7

f(t,x) :=/f(t,x,v)q§(v)dv.

These regularity properties are obtained by using a suitable microlocal decomposition
of f in Fourier space, which in turn relies on the so-called truncation property satisfied
by the multiplier £ (see Appendix A). In contrast to previous results, we will make use of
singular moments of g1, that is, for y € (0, 1),

L1(R, x RY x R,), l<g<2,

t,x, 0|V e
g1t % vl {MTV(R,ngva), g=1

An additional difficulty arises in the use of bootstrapping arguments. In the theory of av-
eraging lemmata, optimal regularity estimates are typically obtained by bootstrapping a
first non-optimal regularity estimate. This argument, however, can only be applied if the
aspired final order of regularity is less than 1. Therefore, we have to devise a proof which
avoids the use of a bootstrapping argument. This is achieved in Appendix A by improv-
ing a fundamental L? estimate on a class of Fourier multipliers by directly exploiting
regularity of f in the velocity direction.

2.1. Anisotropic averaging lemma

Lemma 2.1. Let f € Lt’fx(H,f’p)for 1 < p <2ando € (0,1) solve, in the sense of
distributions,

L@y, Ve v) f(t. x,v) = AV go(t, x, v) + 0,A1 g1 (1, x,v)  onR, xR xR, (2.3)
with g; being locally bounded measures satisfying

LI(R, x RY x R,), l<qg<2,

; 2.4)
MTV(Rt X RX X Rv)v q - 15

lgol(z, x, v) + |g11(t, x, V)|[v| 7V €

forsomey >0,n>0,1<gq < pand L9, Vy, v) as in (2.1) with symbol L(it, i&, v)
as in (2.2). Let I C R be a not necessarily finite interval, set

we(J;8) = sup 1Qc(T, 658, Qe(r,8:0) ={vel:|Lir,i§ v)| <6},
TeR, E€RY, [E|~J

and suppose that the following non-degeneracy condition holds: There exist o € (0, q")
and B > 0 such that
wr(J38) S G/IH, V8, T = 1. 2.5)
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Moreover, assume that there exist &. > 0 and n € [0, 1] such that, for all §, J > 1,

sup sup |3, L(3T, i€, v)||v]” < JHEH (2.6)
7,1~/ veQ(1,€;96)

and af/q’ < L + n. Then, for all s € [0,5%), p € [1,p*), ¢ € C;°(), T > 0 and
O cc RY, there is a C > 0 such that

<C(lgogllg, +1wI 7 g10] 0 +ls18'lse,

tx,v

H/ f(, x,v)p(v)dv

LP([0,T]; WS- (O))
+”f¢||Lrp,x(H3’p)+”f¢”qu,xL};+”f¢”Lf3L' )

with s* .= (1 — 0)aB/r +0(aB/q’ — A — n), where 0 = 0, and p* are given by

T a(l/r—1/g) + 1 p* P q l+op”
Proof. Let ¢, ¢1 be smooth functions with ¢g supported in By (0) and ¢; supported in
the annulus {€ € R? : 1/2 < |£| < 2} and

wE +Y e7E) =1, VEeR.

jeN

1 1-6 6 /
afr e, 1), —=-—_"247 re( P p’]m(l,oo).

By considering the decomposition f = fp + f1 with
for=F @ Ffl,  firi=)_ F lo1E/2)Fuf),
jeN

we may assume without loss of generality that f has Fourier transform supported on
B1(0)¢, since for all n € [1, 00),

1o

Partially inspired by [33, Averaging Lemma 2.3] we consider a microlocal decom-
position of f with regard to the degeneracy of the operator £(9;, Vy, v). Let ¥, ¥ be
smooth functions with vy supported in B1(0) and | supported in the annulus {§ € C :
1/2 < |&] <2} and

=Sl - 27
LW

Vo) +Y @) =1, VeeC.

keN
For 6 > 0 to be specified later we write

L(0;, Vy, L(0;, Vy,

f= w(%)f + Zm(%)f = O+ f
keN

where, for k € N U {0},

L0, Vi, v) _ L(3it,i&,v)
Vi (%T) =T, i <T>«Ft,x~
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Since f solves (2.3), we have

L(0;, Vi, v)
L@ Ve ) tx0) =3 v (}T;‘)mz”goo, x0) + AY3,g1(1, x,v))
keN
2.8)
and thus
1 7 ‘C(al" VX? v) 2
1 — n/
[ x,v)= kX: ﬁlﬂl <T)Ax go(t, x,v)
eN
1 = (L0, Vi, )\ 42
+}ZﬁW1<T Ay’ "0yg1(t, x, v)
eN
= f2(t, x,0) + £, x,0), (2.9)
where

V() =¥ ()/z

In conclusion, we have arrived at the decomposition
f::/f¢dv:/f0¢dv+/f2¢dv+/f3¢dv = O+ 2+ 7.

We aim to estimate the regularity of f°, £2, f3 in Besov spaces. Hence, we decompose
each f' into Littlewood—Paley pieces with respect to the x-variable. Let ¢o, @1 be as
above. We set, fori =0, 2, 3,

fli=Fp1€/2) Fof'1 forj eN.

Then, since f i has Fourier transform supported on B (0)¢,

=5

j=1
where f;i (t, &, v) is supported on frequencies |£] ~ 2/.

Step 1: 0
Fix j € N. Then by Lemma A.3, for every r € (%ﬂp,, p’] N (1, 00),

o

Hence, fO = [ fO¢dve L} B;‘fig’ (see [3, Definition 2.67]) with

e

Sl vy sup 192G & 8"
Ly, T, [§~2]

SUSBlLp gy 8/@HP.

SN F Bl Lo or-
7ppaB/r XA
Lt BP,OO
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Step 2: f?
Fix j € N. We set

1 __ .~ (L(it,i&, )
17 = pFoler€/2)in (Tf) 51" Frxgo(x. v)
15 (LT, i, v)
szk]: L <T§>I$I”fz,xgo,j(x,v)-
Hence,
~ (L3, Vs, )
/ fitodv= g WI(T)AZ/ZgO"’¢dU

and, by Lemma A.3 and since |£|7 acts as a constant multiplier of order (2/)" on g, s

o] <l 20 (B
L

2/\

q 52k

q
1,x Lt

X

SU, ¢ [Q(T, &, 820)|10"
7 J¢| ~ @) "Mgo.jdllLs

1 82k a/q .
< ﬁ(W) @)"lig0. 0l .

o

In conclusion, [ f2¢ dv € Z?Bgﬂoéq " with

[roal,

I
—1
oS8T godll e .
id ap/q’—n tx,v

A

Hence,

1 [ 82k T
< R AY .
P ( o7 ﬁ) @) llgo. bl ,

Li,  keN
< 59/4' =1 (zj)n—aﬂ/t/ ||g0,j¢”L§’X -

Step 3: f3
Fix j € N. We set

Llit. it
fj3k 52]‘]:;)‘([)1(&/2])1!/1(%)EWﬁ,xaug](hx,v)
1 L
82k W (%)@Wﬁ,xaugl,]‘(nx,v)

Hence,

1 ~ (L(3, Vg, V)
[ 54oav = sz [ (T2 a2 00,0 0
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‘We observe
L0y, Vi, v)
/f3 ‘odv= 52k 1(#%2/2&”@

1 ~ (L0, Vi, v ,
P wl (M)Azﬂgl’jd) dv

82k 52k

- _é 1<~/1<£(ii372ikg, v)> . E(larz AL ,¢)
B ﬁ 2 (W)Az/zgl,m’dv

= G | (‘“(%)M(m £ VN F o g, ,-¢)dv
- ﬁ &1<W>Az/zglm’dv.

By the Marcinkiewicz Multiplier Theorem (see [22, Theorem 5.2.4]) and (2.6) we find
that 9,L(it,i&, v)|v|” acts as a constant multiplier on L9 of order 0 ((27)*(82F)M)
on g1, ;. Hence, using Lemma A.3 yields

[ 50

- 1
T (8202

q
Lix

/}_{xll% <M>(3vﬁ)(l’t, i€, V)| IE]"Fr x vV g1, ¢ dv

82k

7 [-"(8 ’ V)Cs U)

_ SUP ey 1R(T. 6, 82914
~ (828)2
N sup g~ 12(7, &, 828y 1/’
52k

q
Ly

1
t 5ok

q
Lt.x

@) E2 ol g1 b dv]

@) "lgr;# g,

1 s2k e
(—) @Y 1017 81,59 1o

~(82k)2\ (27)F
1 [ 82K\ ,
+ 3k <W> 2)"lg1, ;9 ||L;i’”

— (82k)—2+06/q,+ﬂ (2])77-5-)»—05/3/(]’ ” |v|_yg1’j¢ ” L;{X'U

+ (6257 @I g
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glld)HLq

Hence, for § > 1 and using u € [0, 1], ¢ < ¢/,
H\/f;’(ﬁdv < 2(82]() 2+a/q
L{;  keN
+ (@25 Il @Bl gy )l
ST e Ll [l TN Y e O R a FINT PP

ST @I ([T g1, o+ lg19 e, ).
In conclusion, [ f3¢ dv € LqBaﬁ/q 7 with

o

Step 4: Conclusion
: ap/q’'—n ap/q'—i—n
Since By oo ' <> Byioo , we have

e ST (o1 10 A 1819 s ).
t Pg,00

f=r+7
with f© € L} gﬂog» fl=r+fe I:?B;%q/_k_n and, for § > 1,
1Nz gy <8 NS BN qagry-

—1
17! g g S 0417 (g0 1.5

t,x,v

+ 107 g19] 0 +lgid g, )-
We aim to conclude by real interpolation. We set, for z > 0,
Ko ) i= 000 g oy + 27N gy + 70 € LYY,
f ELquutﬂ/q —A=n f:fo_i_f‘l}.
We first note the trivial estimate, since «8/q’ — 1 —n <0,
K ) <o gy sn < W Ngags < 0FGlg ap Vo> 0.

Hence, it is enough to consider z < 1 in the estimates below. By the above estimates we
deduce that, for § > 1,

K@ ) =6 lgosllye, + 1017 g100 0 +leid'lg, )+ 17Ny gy

1,x,v

We now equilibrate the first and the second term on the right hand side, that is, we set

’ [ S
8%/ =1 = 78%/7 which yields § =z «0/r—1/a)+ > 1,
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Hence, with
. 1 —a/q _ alr
Ca(l/r—1/g)+1 a(l/r —1/q")+1

we obtain, for |z| < 1,

K@ ) =2 (g0l + 1078160+ l1e1@'lg,, +19lp ugn))-

Note that € (0, 1) since @ < ¢’. Consequently, for t € (0, ) and i = lq;t + %,
Pt — -7
”f” ~qBa5/q —A—n Lszﬂo/Cr)r e ”Z K(Z f)”LI’r (0,00)

-7 -7

=127 K @ Plpe . 127 K@ DI e g o)

< 1" e .y (Ig0@l e+ 017781800+ 110 M, + 1S BlLp azn)”
+ ”Z_T“Lpr(] ||f¢||Lq L!

Slgoelys  + [l il +leig'lly
+ ||f¢>||Lp ey FIFRIG

Let
s<s*=0-0)(B/g —r—n)+0aB/r.

From [3, p. 98] we recall that, for ¢ > 0,

LI By 7" s LIBSF/T M7 o LIBEAATA e

and analogously for L? B3’/ /" Thus, using [4, Section 5.6 and Theorem 6.4.5] and choos-
ing ¢ > 0 small enough ylelds

—A— —A— —
(Lq aﬁ/q n Lp Otﬁ/r)r e > Lp,(Baﬁ/q n—e B;‘ﬁ/r S)r,pr
< L{"B,_, < L{TW;"".

Hence, choosing 7 € (0, 6) large enough and recalling (2.7), for all p < p* with pi =
% + % and all © c R4 compact, we have

1A rqo.rrvsron S Iodlle + |07 aig]e  + 11l
+||f¢||Ll’ (H"p +||f¢||L‘1 L1+||f¢||LPLI . o
Remark 2.2. In the above averaging lemma we do not require ¢ to have compact support,

nor [ to be a bounded interval. We note that if / and supp ¢ are unbounded, then the non-
degeneracy condition (2.5) entails a growth condition on L(it, i§, v).
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This becomes clear when looking at specific examples, such as porous media equa-
tions with non-linearity B(u), which in kinetic form corresponds to (2.1) with a = 0,
b(v) = B'(v) Id. In this case, |£(it, i€, v)| > |£]?b(v) and thus

wr(J;8) = sup [{vesuppe: |L(it, i, v)| <68}
T lE[~T

= s [{v € supp : [b(v)| < 8|&[*}| < |6~ (Bs;,-2(0)) N supp .

Hence, if supp ¢ = R condition (2.5) becomes, roughly speaking, |b~! (B, (0))| < r¥ for
allr > 0.

2.2. Anisotropic parabolic-hyperbolic equations
In this section we consider parabolic-hyperbolic equations of the type
oru + div A(u) = div(b(u)Vu) + S(t,x) on (0,T) x R;‘f, (2.10)
u(0) =ug onRY,
where
up € L'RY), SeL'(0,T1xRY, T >0,
a:=A € CR;R)NC'R\{0}; RY), (2.11)
b= (bjp)f ey € CR; ST N CH R\ (0); ST,
The corresponding kinetic form for

f, x,v) = xu, x),v) (2.12)
reads (see [11])
LB, Vi, v) f(t,x,v) =0 f +a() - Vi f —div(b(v)Vy f)
= 0yq + S, X)8ut,x)=v V), (2.13)
where g € M™ and L is identified with the symbol
L(t,i&,v) =it +a)- i — (bW)E,E). (2.14)

We will use the terms kinetic solution and entropy solution synonymously. From [11] we
recall the definition of entropy/kinetic solutions to (2.10).

Definition 2.3. We say that u € C([0, T]; L' (R%)) is an entropy solution to (2.10) if
f = x(u) satisfies:

(i) For any non-negative v € D(R) andk =1, ...,d,

d
> 8y Bl ) € L2([0, T] x RY).
i=1
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(ii) For any non-negative functions 1, Y2 € D(R)andk =1, ...,d,

d d
VU@ )Y 0Bl . x) = o, Bt x) ae.
i=1 i=1

(iii) There are non-negative measures m, n € M such that, in the sense of distributions,
0 f +a() - Vi f —div(b(®) Vs f) = du(m +1) +pmuryS on (0, T) x RY x R,
where n is defined by

d

d
/w(v)n(t, x,v)dv = Z(Z A Bl (ur, x)))z

k=1 i=1
for any ¥ € D(R) with ¢ > 0.
(iv) We have

/(m +n)dxdt < u(v) € Lg°(R),
where L{° is the space of L>°-functions vanishing for [v| — oo.

A sketch of the proof of well-posedness of entropy solutions is given in Appendix B. For
notational convenience we set ¢ = m +n in the following. We first establish the following
a priori bound .

Lemma 2.4. Let u be the unique entropy solution to (2.10) with ug € (L' N L2_V)(R§)
and S € (L' N L?>77)([0, T] x Rz) for some y € (—o00, 1). Then there is a constant
C =C(T,y) = 0 such that

T
2— _
sup Jlu@)|l 22/,, + (1 - )/)/ [ lv|"Ygdvdxdr
1€[0,T] Ly 0 JRi+!

2— 2—
< Clluol 52, + 1S 25 2.15)

Moreover, for n € C°(Ry) and t € [0, T] we have

t
fRd”(”(”)d”fo /R[Mn//(v)qdvdxdrS/Rdn(uo)dx+IIH/IILgoIISIIL}‘x~ (2.16)

Proof. By (B.4) below we have u € L°([0, T]; L>77 (R%)). Let n € CX(R,) with
n(0) = 0,7 € [0,T], and let " € C°((0, T) x Rﬁ) be a sequence of cut-off functions
satisfying ¢" = 1 on (1/n,t — 1/n) x B,(0). Testing (2.13) with ' (v)¢" (r, x) yields

t
—/ /n(u)argon dx dr
0

' d
:/(; /(n/(v)a(v)f.van i Z n/(v)bij(v)faxixj(pn> dvdx dr

i,j=1

t t
+/ /n’(u)w"dedr—/ /n”(v)gp”q dvdxdr.
0 0
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Taking the limit n — oo yields

t ¢
/n(u(t))dx:/n(uo)dx+/ /n/(u)dedr—/ /n”(v)qdvdxdr
0 0

and thus (2.16). Holder’s inequality implies

' ., '
/n(u(l))dfo/n(u@dx—i—f /In/(u)I% dxdr—}-/ /|S|27V dx dr
0 0
t
—/ /n”(v)qdvdxdr.
0

Using a standard cut-off argument we may choose = n° € C* with
") @) := (> + )72,

Then 7° is convex and (%)’ (v) < |v|'~7. Hence,

t t
/na(u(t))dx—l—/ /(n‘s)"(v)q dvdxdr 5fn3(uo)dx+/ /|u|2—V dxdr
0 0

t
+ / / ISI>7Y dx dr.
0
Letting § — 0 yields, by Fatou’s Lemma,

t t
f|u(t)|2_y dx+f0 /|v|—quvdxdr§/|uo|2—V dx+/0 /|u|2—V dx dr
t
+/ /|S|2—V dxdr.
0

Gronwall’s inequality concludes the proof. O

Lemma 2.5. Let u be the unique entropy solution to (2.10) and ¥ € C*(R) N Lip(R) be
a convex function with | (r)| < c|r| for some ¢ > 0. Then

/q(t, x, 0" () dvdxde < C(luglly + ISl ),

Jfor some constant C depending only on c and sup,, |¥'|(v).

Proof. We first note that multiplying (2.13) by a smooth approximation of sgn(v), inte-
grating and taking the limit yields, for all + > 0,

/|u([,x)|dx < / (0, x)| + ||S||L1([0,T]><]Rd)~

From (2.13) and a standard cut-off argument we further obtain
0r / V(u(t, x))dx = o / f(@, x, )¢ (v)dvdx

< —fl////(v)q(t,x,v)dvdx+/S(t,x)tﬂ'(u(t,x))dx.
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Hence,

T
/ /W(v)q(t,x,v)dvdxdt
0 . )
= _/W(”("xﬁdx‘o +/ /S(r,x)w’(u(r, x)) dx dr
0

C/ IM(O,X)Idx-i-C/ lu(T, )l dx + ClISly < Clluolly + 1SN .1 - o

We may now apply Lemma 2.1 to obtain

Corollary 2.6. Let ug € L'(R?), S € L'([0, T] x RY), a, b satisfy (2.11) and let u be
the entropy solution to (2.10). Further assume that the symbol L defined in (2.14) satisfies
(2.5) and (2.6) forall y € [0, 1) large enough. Then, for all

eOa(ﬂ » el20z+2
P  PE et )

allp € CX[Ry), y €0, 1) large enough and O CC R, there is a constant C > 0 such

that
s
2.17)

Proof. We will derive (2.17) at the level of the approximating equation (B.5). By con-
vergence of the approximating solutions #° and lower semicontinuity of the norm, this is
sufficient. For notational simplicity we suppress the ¢-dependency in the following, but
note that all estimates are uniform with respect to these parameters. As in [11, Section 7]
we get the bound (uniformly ing),foreachy € CPR,), k=1,...,d,

3

We hence estimate, for any ¢ € C2°(R, x Rd xRy) and ¥ € C°(R,) such that py = ¢,

| vrbwve <Z / Zax,foluv))(Zok,(v)ax, o)|
t,x,v t,x,v
=f [ (faum) vaxluolkw)w(v))(zak,w)ax, 0)|
k=1 /1.x,v

< C(lluoll 1 + o> 2 y TSI+ 1S 2y +1).
LP([0,T]; WP (O))

S ol + ISH +1.

Xi

= (iax,ﬁ <u>)(fak,»(u>(ax,w>(r,x,u(r,x»))
k=1 i=1 j=1

-3 Hf fok,(uxax,«p)(r,x,u(r,x» p
k=1 i=1 j=1 t,x

S lluollzr + ISizy, +1. (2.18)
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We next note that due to (2.12) we have 9, f(t, x,v) = 8y=0 — Su(s,x)=v and thus
fe L (BV ) C Lz . 1oc (BVy) with ||f||L;’3(BVU) < 2. Moreover, by (B.4),

£z, S luollzy + 1Sl (2.19)
and | f| < 1. Hence, f € th N L;X; , and, forall o € [0, 1/2),

”f” t,\ loc(Bg,oo(R”))
— I/ sup sup /'f“’x’”h)‘f“”"“)'z ol
L7, loc(Lz) 5>0 0<|h|<8 |h|% L,ZA e
|f(t7-x7 U+h) - f(t’-x’ U)l
SUflp (Ll) sup sup / % d
t.xiloc §>00<|h|<8 |] L2
2
< luollz1 + ”S”Lr],x + || I1f @ x, )y, “Ltz :
< lluoll 1 + ”S”L;l,x +1,
which implies, for all o € [0, 1/2),
||f||Lz GRS ST+ lluoll L1 + ||S||L1 . (2.20)

In order to apply Lemma 2.1 we have to localize f. Let ¢ € C°((0, T) x Rff x Ry), let
n® € C®(R) satisfy n°(v) € [0, 1] forall v € R, |(°)| < 1/8,

1 for |v] =,
n’ (v) = .21)
0 for|v] <4§/2,

and set ¢® = @n’. For simplicity we suppress the §-index in the following. Set f =gf €
Ltz’x(W{)”z) and g := ¢q. Then
o f = p(=a) - Vf +divb®)Vf) + 80g + SSui=0 (V) + forp
= —a(v) - Vf +div(b)V f) + 8.4 + ¢S8ua.x)=0 (V)
+a)- fVe =2V f -bw)Ve — fdiv(b(v)Ve) — (d@)g + forp. (2.22)

Since ¢ is compactly supported and g € M, we have § € MTv. Moreover, due to (2.18)
and S € Lll,x we have

80 = 9S8yt x)=v (V) +a() - fVe =2V f-b(v)Vy — fdiv(b(v)Ve)
— (0vp)q + forp € Mty

with
8ol atry < luollzy + ISI . + 10upqlintry + 1 f 00l - (223)
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Lets € [0, ;57(8 — ) and p € [1, %gﬁ) Choose y € [0 1) large enough and r > 1
a/r

small enough, such thats < (1 —0)aB/r — 16 and p < 0 where 0 = a1

assume g € L N LY 7 and S € L. n LY, 0therw1se there is nothing to show. By
Lemma 2.4 we have

We may

()]l zy +(1—7/)/ / ™ gdvdxdr < lluoll ZV +||S|IL

’c

We note that due to (2.21) and (2.11) we may assume a, b € C! without changing
(2.22). We now apply Lemma 2.1 withn =0, g1 =¢q, f = f,g=1,p=2,0 €
(0, 1/2) large enough, T > 0, O C RY compact to deduce that there is a constant C > 0
such that

e

Noting that

3 -y .98 8
_ S g0 My + 10177810 | gy + 1810 I A1y
LP([0,T]; WP (O))

1S Sler uzry + 17y A+ FRlppy -

1 @liren, S Mellprpy S lollzy,

by Lemma 2.4, (2.20), (2.19) and (2.23) we obtain

H/ [ dv

S ol IS+ 18pqliaee + I Foel
LP([0,T]; WP (O)) ' " o

2_
+lluoll 27, +1IS| / +1.

We next consider the limit § — 0. Since |°| < 1, the only non-trivial term appearing on
the right hand side is [|(3,7°)¢q | Ay - Let ¥° be such that (¥%)” = [3,7%| and |[¢°(r)| <
c|r|. Then ¥ satisfies the assumptions of Lemma 2.5 uniformly in 8, which yields the
required bound. Since ¢ is arbitrary, we conclude

o

Since ¢ is compactly supported, we have || [ f¢ dv]| L S 1, concluding the proof. O

S lluollzy + lluoll®; L2 +||S||L1 + 1Sl zyy + 1.
LP([0,T]; W52 (O))

Theorem 2.7. Let ug € L'(RY), S € L'([0,T]1 x RY), mj,n; > 1, j =1,...,d, and
let u be the entropy solution to

d d
QY B = Y02 W S0 on (0.T) xR 224)
2 2

u(0) =ug on RY,
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Setm =min({m; : j =1,...,d}), m =max({m; : j =1,...,d}) and analogously for

n, n. Then, for all
) 2mAn—1 cl1. 2m
el =———), —
s m m-—1 p 14+m

all € CFX[Ry), y €10, 1) large enough and O CC Rd, there is a constant C > 0 such
that

o

As a special case, formj =nj =m, j =1,...,d, we obtain (2.25) for all

2— 2—
= Cllluolly +lluoll 2%, +1Sly +ISIZT +D. 225)
LP([0,T]; WP (O)) ’ x v tx

s €[0,2/m), p¢e€ |:1 2ﬁ>

Proof. We have

d d
LT iEv)=it+iYy n" g =Y mj™ g
j=1 i=1

= ﬁhyp(ifa i&,v) + Epar(év v).

Let I C R be a bounded set. Then, for |§| ~ J,

Qr(t,&:8) ={vel:|L(rt,i§ v)| <8}

d
C &0 ={ver: > mm g <o

j=1
Clvel:|v™'J2<s8). (2.26)

Thus,
1
1Qc (T, £:8) < (8/TH)7T,
Le. (2.5) is satisfied with B = 2, @ = =L-. Moreover, due to (2.26), for [§| ~ J and
veQr(r, & 8)\ {0},

d d
0L G, i8, v)| o] = |i an(n,- = D2 = 3 mymy — D 2 o)
J j=1

5 |U|n 2+)/J+ |U|m 2+)/J2

n— 2+y 2()1 2+y) m—2+y 2(m—2+y)
< S m J +1 _|_8 m—1 J T m—1 +2'

Using §, J > 1 we get

mvn— 24y 2 2@/\3724»;/
J>

10, L(iT, i€, )] vy <8 m = (2.27)
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Le. (2.6) is satisfied with A = 2 — 25— 2+V, w=
lary 2.6 with y close to 1 implies that for all

21+V An application of Corol-

vn—
“m

all p < p* = 2’" ,all g € CX(R,), y € [0, 1) large enough, and © cC R there is a
constant C > O such that

/ Fédv
Lr([0,T];

Remark 2.8. In Theorem 2.7 only the regularizing effect of the parabolic part is used. It
may be that for n; < m; the hyperbolic regularizing effect would dominate. Since we are
mostly interested in the parabolic regularization, we do not consider this point here. For
related work on hyperbolic averaging we refer to [20].

< C(lluoll 1 +||M0|| L2 +||S||L1 +||S|| Y +1. o
wsr(0)) L

\

3. Isotropic case

In this section we consider parabolic-hyperbolic PDEs with isotropic parabolic part, that
is,
O f(t,x,v) +a)- - Vyf(t,x,v) —bW)A, f(t,x,0v)
=: L3, Va, 0) f (1, x,0) = go(t, x,v) + g1, x,v),  (3.1)
where a : R — R and b : R — R, U {0} are twice continuously differentiable. The
operator L is given by its symbol
L3, i€, v) = Lpyp(it, i&,v) + Lpar(§,v) =0T +ia(v) - § — b€,

which by Appendix A satisfies the truncation property uniformly in v € R.
In this isotropic case we may work with a more restrictive non-degeneracy condition,
which will allow us to improve the order of integrability obtained in Theorem 2.7.

Definition 3.1 (Isotropic truncation property).
(i) We say that a function m : Rg — Cis isotropic if m is radial, that is, it depends only

on [£[.

(i) Letm : Rg xR, — C be a Carathéodory function such that m (-, v) is isotropic for all
v € R. Then m is said to satisfy the isotropic truncation property if for every bump
function ¥ supported on a ball in C, every bump function ¢ supported in {§ € C :
1<l <4}andevery 1 < p < o0,

2
My jf(x,v) = f;1¢<ﬂ)w<m(€, v)>fxf(x)

J? 1)
is an Lf—multiplier forallve R, J =2/, jeNand, forallr > 1,
L S 1O,

1My, e

where
Qu(J,8) ={veR:|m(J,v)/| € supp ¢}
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Example 3.2. Consider £(&, v) = —|£|*b(v) with b : R — R, U {0} measurable. Then
L satisfies the isotropic truncation property.

Proof. Let ¢, ¥ be as in the definition of the isotropic truncation property. In order to
prove that My ; is an L?-multiplier we will invoke the Hérmander—-Mikhlin Multiplier
Theorem [22, Theorem 5.2.7]. We note that

({452 <=
EAANE 5
()
61> 26  (LE v) €17\, (LE ) LE v) 2§
() e (552) o () (552) 552 5
[ ( )|s|2w<£<s v)) (E_) (c(s v)) (E,v)]ﬁ
J2 2 ) |%-|2
()26
e 5 )iEr
where @, v are bump functions with the same support properties as ¢, 1. Hence, induc-

tion yields 5 5
o« (18] L, v) 517N o (£, v)
(G (557 )= () (557

for all multi-indices o with |a| < [d/2] + 1, where where ¢%, /¢ are bump functions
with the same support properties as ¢, . The Hormander—Mikhlin Multiplier Theorem

thus implies that 2
1 L, v)
<7 )M
forall 1 < p < oo with

HE L&, v) €17 - (L, v)
(5 v (552)],, = o s 25 ) (752

where ¢, ¥ are bump functions as above. Hence,

2 L L
SEING o ERTRIC o
Mr J=|§|=2J

C()nsequentl y,
(:g_— 1 1/‘
L ]<‘ ‘<2] 8

() (552,

1r 1r
<(f s, tsmmanscams @) ([ ipirsms )
J<lgl<ay EVP@I/ESsuppY | 2b(v) /Sesupp

< (v e R:1TPb)/8 € supp i)' = 19,07, 8)7. O
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3.1. Averaging lemma

Working with the isotropic truncation property allows us to prove a statement similar to
Lemma 2.1, but without the restriction to p < 2. This leads to an improved estimate on
the integrability of the solution.

Lemma 3.3. Let f € Lg/(Lﬁx)for l < p <ooandr’' € (1,00] solve, in the sense of
distributions,

L@ Vi 0) f(t,x,0) = AV g0(t, x, 0)+0,87 2011, x, ) on R xRExR,  (32)
with g; being Radon measures satisfying

L1(R, x RY x R,), l<g<2,

‘ (3.3)
MTV(RI X RX X Rl})a q = 17

Igol(r, x,v) + 1g11(t, x, v)|[v| 7V € :

for somey > 0,n>0,1<qg < min(p,?2) and L(0;, Vy, v) as in (3.1) with symbol
L>3t,i&,v) = Lyyp(it,i&,v) + Lpar(§,v). Let I S R be a not necessarily bounded
interval, set

wr(J:8) = sup 1Qc(T, 58], Qe(r,§:0) ={vel:|Lir,i§ v)| <6},
TeR, £cRY, |E|~J

and suppose that the following non-degeneracy condition holds: There exist o, > 0
such that
wr(1;8) < ()75, V8, J > 1. (3.4

Moreover, assume that there exist A > 0 and v € [0, 1] such that, for all §, J > 1,

sup sup |, LG, i€, v)||v]” < JHSH (3.5)
51~ veQL (1,636

and af/q" < ) + n. Assume that Ly, satisfies the isotropic truncation property with
1, (O S B/TF), V8,7 > 1. (3.6)

Then, for all ¢ € CZO(I), s€[0,s%), pell,p*), T>0 0cCC RY, there is a constant
C > 0 such that

H/f(l‘, x, v)¢(v)dv i o < C(”g0¢||L?” + |||v|_ygl¢‘|Lq_
LP([0,TT;W*P(O)) o X

110 g, + 1 FSlrry + 17l 0 + 17l ) GD

with s* := (1 —0)aB/r +60(af/q' — A — 1), where 0 = 0y and p* are given by
1 1-6 6 1 1

= a/r E(O,l), —::—+—’ _+_=1
a(/r —1/g/) + 1 st Tt

An analogous estimate can be given for inhomogeneous Sobolev spaces.
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Proof. The proof proceeds analogously to the one of Lemma 2.1. The only change ap-
pears in the estimation of f 0. We may assume that v is of the form yo(ia + b) =
Tﬁé (a)wg (b) with v being locally supported bump functions. Hence,

I//()(E(i‘f, i&, v)) _ lp(%(ﬁhyp(i'(’;’ia v))w(%(ﬁparffv v))

)
s ‘C(itsiés U) ‘5 2 ‘Cpar(é»v)
(o)), 2o ) () L

The isotropic truncation property and (3.6) then imply

& L(it,i&, v)
lo() (=52,

<R, 27, )M < (8/27P)/r.

par

L
Hence,
£ ] b ) b
‘ / O dv =H / ;Qw(%)%(%)ﬁxf%dv
fo Llljx
< f HE,Q%(%)%(W)EJ% dv
y Lt’ix

L(it, &,
§/H]—',:}<pl(§ %( (lr;& v))]__t’x
£ ] 9 ] b
() |

L
S G/ O

The proof then proceeds as before, the only difference being that we do not have to restrict
to 1 < p < 2 and that we use the modified definition of r, r’. O

10l ,p dv
Mp "

<

3.2. Porous media equations

In this section we consider porous media equations with a source of the type

du = Aul™ 4+ 5(r,x) on (0, T) x RY, (3.8)
u(0) = uo,

where ug € L'(R?), S e L'([0, T] x RY), T > 0andm > 1.
As in [11], the kinetic form to (3.8) reads, with f = x (u(¢, x), v), g € M™,

O f =mlv|"VAf 4 8y + S(t, X)uy(v)  on (0, T) x RY x R, (3.9)

For the notion and well-posedness of entropy solutions to (3.8) see Appendix B. As be-
fore, let £L(3;, Vi, v) f = 8, f — m|v|™ ' Af with symbol

LT, &,0) = Lyp(iT) + Lpar(€, v) 1= it — m|v|/" " |&]%.
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Theorem 3.4. Let ug € (L' N L'**)RY) and S € (L' N L'*¥)([0, T x RY) for some
& > 0. Let u be the unique entropy solution to (3.8). Then, for all s € [0,2/m) and
p € [1,m), we have .

u e LP([0, TT; Wil (RY)).

loc

In addition, for all O CC R there is a constant C = C(m, p,s,e, T,O) such that
2 2
”u”LP(IO,T];WL!’(O)) = C(”MOHL_'YDL.{.“ + ”S”L}JﬁLtlja + D).

Proof. Lets € [0,2/m) and p € [1,m). We have f € L},x’v NLY
LY(LY,) forall p > 1 with

and thus f €

||f||i§(Lf;x) = “f”L%(Lrl.x)' (3.10)

This bound will replace the property f € Ltzy X;IOC(Hg@) used in the proof of Corol-
lary 2.6, which is possible due to Lemma 3.3. As a consequence, the localization of f
performed in Corollary 2.6 is not required here. In order to apply (3.3) we need to extend
(3.9) to all time ¢ € R, which can be done by multiplication by a smooth cut-off function

9 e CX00,T).Letn =0, = 1 B = 2 and choose y € [0, 1) large enough and

m—1°

r > 1 small enough such that . =2 — 2% = 2—;:] is such that
2/1 1-y
A =0)Ba/r =0+ =0B/r—1)=—|-——7] >,
m\r m —

where 0 = 1/m. Next, choose p large enough that p* = mm+~+ﬁ > p and note % +

0 = # We can choose p, r such that p = r’. Let go = Sy=ur.x)S + fOr9, g1 = ¢.
In order to treat the possible singularity of 9,,£ at v = 0 we proceed as in Corollary 2.6,
i.e. first cutting out the singularity, then controlling the respective error uniformly by
Lemma 2.5. Note that £ satisfies (3.4), (3.5) on R\ {0} for all y € [0, 1) and Lp,; satisfies
the isotropic truncation property with (3.6). With these choices, Lemma 3.3 with p = p,
g = 1 and ¢ = 1 yields
||“||Lp([0,7];w.v‘p((9)) < 18v=ue(t,x) Sl My + ||f0||L)1(L11) + ” |v|_VCI||MTV

1 g I oy 152 1y

SUSHLy, +lluollzy + [0 q |y + 1ALy g+ 1 prpy, + 1.

The fact that, for all n € [1, 00),

1 gr oy = Nullpn S oy + 1Sl

I lgper, = lullgzgs < luollpy + 1Sy
and Lemma 2.4 thus imply

. 2 2
Il Lo o, 73 W50 0)) S ||u0||L£ﬂL§_y + ”S”L}mLf}V 1

Since p* > p, choosing y € (0, 1) large enough so that 2 — y < 1 + ¢ yields the claim.
O
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Remark 3.5. We note that forug € L! or § € L,l’ . the kinetic measure g does not neces-
sarily have finite mass (see e.g. [28]). Therefore, in the literature the cut-off ¢ € C2°(R)
in (3.7) is required to be compactly supported, which makes it impossible to deduce reg-
ularity estimates for u itself, unless u is bounded. Our arguments allow avoiding this
restriction since we work with the singular moments |v|~" g only, which are shown to be

finite in Lemma 2.4 provided u € LY. Se Li;y.

Remark 3.6. As pointed out in the introduction, the results obtained in [16] are restricted
to fractional differentiability of order less than 1. This restriction is inherent to the method
used in [16]. More precisely, the estimates obtained in [16] are (informally) based on test-
ing (3.8) with fot Au™! dr integrating in space and time and using Hélder’s inequality,
which leads to the energy inequality (neglecting constants)

T 1
/ /(w[%l)zdx dr < fuz(O) dx. (3.11)
0

The regularity estimates are then deduced from (3.11) alone. In [16] these formal com-
putations are made rigorous, a careful treatment of boundary conditions is given and the

bound on fOT f(Vu[mTJrl])2 dx dr is used to prove (1.8). Since (3.11) only involves deriva-
tives of first order, it does not seem possible to deduce higher than first order differentia-
bility from this.

4. Degenerate parabolic Anderson model

We consider the degenerate parabolic Anderson model

u =0 u™ +uS on(0,T) x I, 4.1)
u®*=0 onadl,

with m € (1,2), I € R abounded, open interval and S being a distribution only. As for
the parabolic Anderson model (see [17, 18]), the particular example we have in mind is
S = & being spatial white noise. Accordingly, we assume that, locally on R,

Se B 2° foralle > 0. 4.2)

The choice of zero Dirichlet boundary data in (4.1) is for simplicity only and the argu-
ments of this section can easily be adapted to the Cauchy problem.

We define weak solutions to (4.1) to be functions u € L2([0, T']; H(} (I)) such that
ul™ e L2([0, T; H(} (1)) and (4.1) is satisfied in the sense of distributions. We will
prove the following regularity estimate for a weak solution to (4.1).

Corollary 4.1. Letug € LMY, Then there exists a weak solution u to (4.1) satisfying,
forall p e [1,m),s€[0,3 1)

ue LP([0, TT; Wil (1)),
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with, for all T > 0 and O CC I,

1
lullLeqo.r:wsr 0y S ||M0||2",j+1(1) + ”S”;;or,]oo +1

for some t > 2 andn € (1/2, 1] small enough.

The above proposition is a consequence of uniform regularity estimates (see Theorem 4.5
below) for the approximating problem

9uf = 9 W™ + 4S5 (x) on(0,T) x I, 4.3)
u® =0 ondl,
where §° € C(R) with [[S°] -1« < IIS||,-12-¢ and §° — S locally in Bx.bo *
for all & > 0. These estimates will be derived from the kinetic formulation of (4.3).
Informally, with x¢ := x (u®) the kinetic form reads, in the sense of distributions,

BIXS = m|v|m_1axxX8 + 5145(t,x)=v1'¢£~snS + 811518
=m0 x® + x5S+ 0ug° — 0y (x°vS?) on(0,T)x I xR.  (4.4)
Definition 4.2. We say that u® € L'([0, T x I) is an entropy solution to (4.3) if
(i) for every « € (0, m] there is a constant K1 > 0 such that
mia
10x @ 20,7160y < K1 4.5)

(i) x® = x(u®) satisfies (4.4), in the sense of distributions on (0, 7) x I x R, for some
non-negative, finite measure g° such that,

qé‘ — mé‘ + n&‘
with m® being a non-negative measure and n° given by
m+1
n® = Symur (35 (uO)"F )2

and satisfying, for every o € (0, m] with K as in (i),
/ v 1g® dtdx dv < K. (4.6)
[0,T1xR4 xR

The well-posedness of entropy solutions to (4.3) follows along the lines of Theorem B.1
in Appendix B. It only remains to show that the constant K in (4.5) and (4.6) can be
chosen uniformly in €.

Lemmad3. Leta > 0, T = 5242 € (1,2 and ug € (L™ N L*+)(RY). Then, for

some constant C = C(a,m, T),

T
sup /|us(t)|“+ldx+/ /(ax(u*?)[%l)zdx dr < c/|u0|“+1dx+cn5||f e
te[0,T1/1 0o JI I W=

and

f gt drdxdv < C/ luo|* T dx + C||S||;‘;71J,. 4.7
[0,T]xIxR 1
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Proof. First, let ug € C(RY), let b € C*(R) be increasing with b°(u) > Su for all
u € R and b®(u) — ul™ locally uniformly, and let u*® be the classical solution to the
approximating equation

dutd = 8y, b® (™) + ufPS*(x)  on (0,T) x I.

For simplicity we drop the ¢ in the notation. Then, for € C?(R) convex and Lipschitz
continuous, we obtain

t
/ n@’ (1)) dx = / n(uo) dx + / / 1 ) (3, b’ @) + u’ S) dx dr
1 1 0 1

t t
< /r/(uo) dx —c/ /(axF’?(u‘S))zdx dr+/ fn/(ua)uanx dr
1 0o JI 0o JI

with F(u) = f(;‘ V1" (r)(B%Y (r) dr. Hence (for a non-relabeled subsequence) we have
3 F"(u®) — Z for some Z € L([0, T1; L>(R%)). Since u® — u in C([0, T1; L' (R%)),
we have Z = 9, F(u), which implies

t '
/n(u(t))dx < /n(uo)dx—c/ /(8XF"(M))2dxdr+/ fn/(u)udedr,
I I 0 JI 0 JI

where F(u) :==m [y /n"(r)|r|"="dr.

Using a suitable approximation of 7(u) = |u|**! this yields, for some ¢ = c(a, m),

t t
/|u(t)|°‘+l dx §/|u0|°‘+1 dx—c/ /(axu[%bzdx dr+/ /|u|°‘“5dxdr.
1 1 0 JI 0o JI

We further have, for T € [1, 2) to be chosen later,

/|u|“+‘de [y S N (4.8)
and, for every n > 0 and some C;, > 0,
e S /|3x|u|“+1|’dx = (¢ + 1)f/|u[“1axu|fdx
1 1
= (a+ 1)ff|u[“—”’+£"2]|u|”‘+3“2axu\’dx
4(a+l) /| am+2||8u zr |‘L’
T mta?
< c/(c 5 4 n)0u " ?) dx. 4.9)

Thus, since T < 2 and choosing 1 small enough,

t
/|u(t)|°‘+ldx 5/|u0|“+1dx—c/ /(axu[%l)zdxdr
1 1 0 1

! —mt2 20 .
+ T 2=rdxdr+|ISIT -
0 Wy ™
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Now we choose 7 such that £=2+= ’”+2 22T =a+1,ie sincem —2 < «,
200+ 2
_2a+3—m€(1’2]

In conclusion,

t
/|u(z)|°‘+‘ dx5/|uo|“+1 dx—c/ f(axu[”’?“l)zdxdr
1 1 0 1
t /
+[ /|u|°‘+l dxdr +|S|I” _, ..
0 JI Wy

Gronwall’s inequality implies

/|u (t)|“+1dx+f /(a WY dx dr </|uo|“+1dx+||sf||w Loe (4.10)

For general initial data ug € (L' N L‘”l)(Rd ) we choose a sequence of smooth ap-

prox1mat10ns uy € C°(RY) such that u} — ug in (L™ N L* 1) (RY). The respective

solutions u®? satisfy (4.10) and, due to (B.3), we may take the limit § — 0 to conclude.
In order to establish (4.7) we note that on the approximate level u®? the kinetic form

is satisfied with ¢*° = 8,5 (8, (&%) "3 )2 Thus,

n+o

/ PR |U|a—1qs,6 drdxdv = /(ax(us,a)[' .
[0,T]x1Ix
/'”O'aﬂdH ISeT

Passing to the limit § — 0 yields (4.7). O

h2drdx

w-— 1,7/

Corollary 4.4. Let ug € L™T(I). Then there is a unique entropy solution u® to (4.3),
and u® satisfies the conditions in Definition 4.2 with

1
K1 < lluol™EL + 118

Lm+1

B”+1

for some t > 2 and some n € (1/2, 1). In particular, the constants K| in Definition 4.2
can be chosen uniformly in ¢ and

117 < K.

L%([0,T]; H ) —
Proof. We apply Lemma 4.3 with @ € (0, m]. O

Theorem 4.5. Assume (4.2) and let u® be the entropy solution to (4.3). Then for all p €
[1,m)s € [0 ) we have
ut e LP([0, T]; WP (D))

loc

with, forall T > 0and O CC I,
lulLr 0. 71, wsr©)) < C(Iluoll'fﬂl an T IISIIZC;O»?Oo +1)

for some T > 2, C independent of ¢ > 0 and n € (1/2, 1) small enough.



Optimal regularity for the PME 453

Proof. Let p € [1,m) and s € [0, 3 1). For simplicity we drop the ¢ in the notation.
Rewriting (4.4) we obtain, for n € (1/2, 1),

81‘X = m|v|m_18xxx
+ AV AT S AT, AT PG — A9, AT xvS  on (0,T) x I x R.
—_—— —_—— A —
1=g0 =:g1 =82 4.11)

An elementary computation shows | x|| < ull Ll We next use embedding
t "Wx

Lwr!
results for Besov spaces [3, Proposition 2.78], estimates for the paraproduct of functions
and distributions [30, Section 4.4.3, Theorem 1] and Corollary 4.4 to obtain, for 6 > 0
small enough,

_ATN/2
lgollzy, , =A% Sl S ”XS”L,{UB;]" S ”X”L}'UB?TS”S”B;O'?OO

< < 2 2 2
S el a1 g S el ) + IS0 < Ki 411, o @12)
Moreover, using the same reasoning we obtain
-1 —1 A—n/2
T2 P [ S TR] PP
—n/2 2
= 1A 1xISly,, S K+ IS, .13)

We choose a cut-off function and localize (4.11) as in the proof of Corollary 2.6. Hence,
using (3.10), we may apply Lemma 3.3, with 7 sufficiently close to 1/2, o« = 1 B =2,

m—1°
A=2— 2% small enough by choosing y close to 1, r > 1 small enough, p = r/,
qg = 1,0 = 1/m, such that

A =0)Ba/r =0 +mn =0B/r—1—mn

LG G () o)

—n/2 —-n/2, —
leell o o.r1ws e 0 S WA xSty oy + 1A 0177 gl
— —n/2
101 A0S g, F I U, U g gy + L

This yields, for all O cC 1,

Hence, since
< — j—
W0y Sy, + 1 Wl = ey o 0oy = lullgp,

we have, using (4.12), (4.13),
2

lullzrqo.ry:wsr0) S Kt + 1S5+ lullpy A+ lullpy +1.

In fact, (4.11) is not exactly of the form (3.1), since g1, g» allow singular moments of dif-
ferent order, i.e. y € (0, 1) for g1, y = 1 for g». However, in the proof of Lemma 3.3, the
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terms involving g, only lead to terms better behaved than g; and thus may be absorbed.
We next note that by the arguments of Lemma 4.3,

lallzr S Nwolls + 08Iy + 1, llullp S Huoll e + ISH -1 +1
for some t > 2. Hence, by Corollary 4.4 we obtain
leell Lo o, 73 wsr 0y S ol oty + ISI o, T luollzy + lluoll st + ISHGy—1e +1
1
S luoll s + SIS, +1
00,00

Lm+1

for some 7 > 2. O

Proof of Corollary 4.1. By Lemma 4.3 we have
||M “Lz([o T + ”8 (ué‘) m ”LZ 0 T] LZ) = C

Hence also ||u®S¢|| |u® || 12||S8|| C. By (4.3) we obtain

W12N| W12—

||8tu ”LZ (0, T1;W~— 12) <C

The Aubin-Lions compactness lemma yields (for a subsequence)
u® — u in L%([0, T]; L*(1)).

This allows us to pass to the limit in the weak form of (4.3). Hence, Theorem 4.5 finishes
the proof. O

Appendix A. Truncation property and basic estimates

From [33, Definition 2.1] we recall the following definition.

Definition A.1. Let m be a complex-valued Fourier multiplier. We say that m has the
truncation property if, for any locally supported bump function ¢ on C and any 1 <
p < oo, the multiplier with symbol v (m(£)/8) is an LP-multiplier as well as an Mry-
multiplier uniformly in § > O, that is, its L”-multiplier norm (M y-multiplier norm
resp.) depends only on the support and C! size of ¥ (for some large / that may depend
on m) but otherwise is independent of §.

We slightly deviate from the definition of the truncation property given in [33, Defini-
tion 2.1] since we require it to hold also for p = 1 and on My. In [33, Section 2.4] it
was shown that multipliers corresponding to parabolic-hyperbolic PDEs satisfy the trun-
cation property for p > 1. We extend this property under our definition in the following
example.

Example A.2. Let
m(t,§,v) =it +ia(v)-§ —(§,b(v)§)

for some measurable ¢ : R — R and b : R — SiXd. Then m satisfies the truncation
property uniformly in v.
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Proof. Following [33, Section 2.4] it remains to consider the cases p = 1 and Mry.
Arguing as in [33, Section 2.4] we can consider the cases m(7,§,v) = it + ia(v) - &
and m(7,&,v) = —(&, b(v)§) separately. By invariance under linear transformations,
arguing again as in [33, Section 2.4] it is enough to consider ¥ (i&1), ¥ (|€ 12). Due to [22,
Theorem 2.5.8] in order to prove that these are L'-multipliers, we need to show that their
inverse Fourier transforms have finite L!-norm, which is true since Y is a bump function.
Again by [22, Theorem 2.5.8] an operator is an L'-multiplier if and only if it is given by
convolution with a finite Borel measure. As such, it can be extended to a multiplier on
My with the same norm. O

We next provide a basic L”-estimate for symbols satisfying the truncation property uni-
formly. The following estimate is an extension of [33, Lemma 2.2] by making use of
regularity in the v-component of f. As pointed out in the introduction, this allows one to
avoid bootstrapping arguments in applications, which is crucial, since such arguments do
not allow one to deduce regularity of order more than 1.

Lemma A.3. Assume that m(&, v) satisfies the truncation property uniformly in v. Let
@, ¢ be bounded, smooth functions, \r be a smooth cut-off function and My, be the Fourier
multiplier with symbol ¢ (&)Y (m(&,v)/8). Then, forall 1 < p < 2,0 > Qandr €

(1. P']N (1, 00),

SNfSlruery sup 1Qm(E O,
Ly §esupp g

s

where 2, (€, 8) = {v € supp ¢ : [m(&, v)| < 8}. Moreover,

S Sl My, -

MTV;x

‘/M«/ffqbdv

Proof. We first consider the case p = 2. Then

H/waqﬁdv < H/f;%o(é)ﬂm(s, v)/8) fp dv
L2

L3

_ H / o)V (m(E, v)/5) fb dv

S le@®my & v/l ol fol e 12
L

3

S sup ||¢(m(§,v)/5)||H—a.2||f¢||Lz(Ho.2).
gesupp g ! s

Note that

10175 o2, =/||f¢>||§,g,2ds =/|(1+Av)”/2f¢|2dvds

LE(H;

- / Fo(l 4+ A2 f g di dv = / (L4 A P dx dv

= [ 101 s dx = so1:

2
L2H]
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By Sobolev embeddings (see e.g. [3, Theorem 1.66]) we have H 2 s Lf)/ for all 7 in
[2 2 ] N R. Hence, for r € [H—%’Z] N (1, 00) we have L) — HU_"’Z. Fix r in

> 120

[ 2] N (1, c0). Then

H/Mx/fffﬁdv S osup Ym0 /Ol f ol o2

L2 §esuppy
< sup [Qu(E SIVISBI 2 o2
§esupp *

This finishes the proof for p = 2.
Due to the truncation property (on L' and Mry) uniform in v, we have, forall n > 1,

S IfAl My -
Mty

SIfol ., ”/waqbdv
Ll '

X

o

We now conclude by interpolation: From the above we see that M¢ f = f My fodv
is a bounded linear operator in L(L)%(H;”z); L)ZC) N L(Lz,v; L). By complex interpola-
tion, for 6 € (0, 1), My is in L([L2(HZ*?), L} ,1p; [L2, L11p). Interpolation of Banach-
space-valued L”-spaces yields

2
[LI(H?), LT Jo = Ly "D (LHS?, LT]p).
Next we note that, for n > 1,
62 11 (1-0)0, 5371
[Hy) 5 LU]O == Hv .
Hence,
2 2 oD , o, 1-0)% e 2 2
[Ly(HY), LY JJo 2 Ly "7 (Hy ), Ly, L1y = L™emD,

2- .
Letnow p € (1,2).Letn > 1be such thatd = Tpﬁ e (0, 1),ie. p= #/ﬂ_l).

Then, in conclusion, forallo > O and all » € [ 2 2] N (1, 00),

1420
H/waqbdv =H/M¢f¢>dv
Lp L 1+62/n—1)
< N, -0 a7 e
~ ”M'ﬁ ”L(L)ZC(H'S;,Z);L)ZC) ”Mlﬂ ”L(Lz_v;Lz) ||f¢||LW (H(170)0,#/”71))
2
Ssup Q@ D7 I fOl 5 o, -
§ LE(H, "
Now given ¢ > 0 we apply the above with o replaced by ¢’ := 5((2:n>0 > 0 and

n > 1 small enough. Again choosing n > 1 small enough, this yields the claim for all
re(%{fp/,p/]ﬂ(l,oo). ]
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Appendix B. Entropy solutions for parabolic-hyperbolic PDEs with a source

In this section we present a sketch of the proof of well-posedness of entropy/kinetic solu-
tions for PDEs of the type

oru +div A(u) = div(b(u)Vu) + S(t,x) on (0,T) x R? (B.1)
with
up € L'(RY), S e LY([0,T] x RY),
a=AeLXR;RY, (B.2)

d
bij() =Y ooy (-),  oix € Lin(R: RY).

Theorem B.1. Ler ug € L'(RY) and S € L]([O, T1 x RY). Then there is a unique

entropy solution u to (B.1) satisfying u € C([0, T]; LY RYY)). For two entropy solutions

ul, u? with initial conditions u(l), u% and forcing Sl, S2 we have

sup Nu' (1) — (Ol 1 ey < luy — udllpigey + 18" = SN qo.ryxrey- (B3
t€[0,T]

Moreover, ifug € LP(RY) and S € L? ([0, T] x R?) for some p € [1, 00), then

sup flu@ll p = ClluollLz +ISllzr ) (B.4)
t€[0,T]

for some constant C = C(T, p).

Proof. Uniqueness: We present a sketch of the proof. The argument is a combination
of [11, 20] and is rigorously justified by the convolution error estimates from [11, 20].
Owing to [20, proof of Theorem 11] we note that g(#, x, v) = 1,,(,x) satisfies the same
kinetic equation as f. We further note that, informally, due to Definition 2.3(ii),(iii),

n(t, x,v) = Sy=u, x)Z(Z O; Bik (u(r, X))>

=1 i=l1

We next note that
3t/ g1 —-ghHdv= /(Btgl(l —gH —g'9gHdv
R R
= /R[(—a(v) Veg' +div(b(v)Veg!) + dug! + 8,1 8" (1 — g%
—gl(—a) - V,g* + div(b(v)Vg?) + 8ug” + 8,_,2 SZ)] dv
= _diVX/ av)g'(l —gz)dv+2/ Vig' b(v)Vig®dv

/(q dpg* +dvg'q?) dv +/[(8v:ulsl)(1 - —g' (6,2 5H1dv.
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Concerning the forcing, as in [20], we observe that
/R[(avzulsl)(l — g = g' (82 SH]dv = 1,12 (8" = §7).

Next, asin [11],

/R(qlaug2 +dg'qP)dv=— /R(qlrsv:uz +8y_1g?) dv

d d ) d d )
<- f (D2 (X0 @) BB + Byt D (D0 e Brc®)) ) v
R %=1 i=I k=1 "i=1
d d d
<-2 / Byt Symi? Z(Z O, Bir ") Y By ﬁjk(uz)) dv
i =1 "i=1 =1
d
:_2/R(sv:ulsvzuz > i)y u' o () o u dv
ij.k=1

d
- —2/ Sy 18y Y, bij ()3 u' . u” dv.
R ij=1

Note that, informally (justified as in [11] based on the chain-rule Definition 2.3(ii)),
d
2/ Vg b(v)Veg?dv =2 Z f bij (V)81 B, u' 8,20, u” dv.

‘We thus obtain
aff g'(1—g*dvdx < / 12,2 (SY = §%) dx.
R’H'l Rd -

Since [ g'(1 — g?)dvdx = [(u' — u?); dx, this implies

t
[Rd(ul(t) — ()4 dx < Ad(u(l) —ud) 4 dx +f0 /Rd L2 (S' = 8P dx dr,

which by reversing the roles of u! and u? implies (B.3).

Existence: Step 1: Assume that ug € C° (Rf) and S € C°((0, T) x Rf).

The construction of solutions relies on a smooth, non-degenerate approximation
of A, b. Let A : R — RY and b* : R — Six‘i be smooth, Lipschitz continuous,
satisfying b*(u) > eld forallu € R, ¢ > 0 and A®, b°* — A, b locally uniformly. Then
by [26] there is a classical solution to

du® + div A® (u®) = div(h® (u®)Vu®) + S(t,x) on (0, T) x RY. (B.5)



Optimal regularity for the PME 459

For € C2(R,) convex we have

0; / nwé(t))dx = / 0 (W () (—div A% (u®) + div(b® (u®)Vu®) + S(t, x)) dx
RY RY
B /ﬂ;d[—ﬂ/(us(l))(As)/(Ms)'Vug—ﬂ//(ue(l))(vus'bs(us)vus)‘i‘U/(us(t))s(f,X)]dx

< / ' W (1))S(z, x) dx. (B.6)
Ry
Hence, by a standard approximation argument, for all p € [1, 00),
1
—a,/ Jut (017 dx < / ut OPUS@ Xy dx S f (u* @O +18(1, 2)|7) dx
P Jre Rd Rd

and thus

sup [lu (@)l ¢ < Cllluoll .z + ISIp ). (B.7)
te[0,T] i ’

By the L!-contraction (B.3) we further have, uniformly in ¢ > 0,
sup [ullgy, < luollgy, + sup ISlgy.
1€[0,T] Y te[0,T]
19ru® (. )1 < N9u (Ol L1 + Ha’S”LJ,X
< [ldiv A(uo) + div(b(u0)Vuo) + SO, )1 + 119, Sl 1 -

Since u® is a classical solution, it is easy to verify that #® is an entropy solution fol-
lowing the lines of [11, Section 7]. The above estimates imply the convergence (of a
non-relabeled subsequence) u® — u in C([0, T]; L' (Rd)). The verification that u is an
entropy solution again follows from the same arguments as [11, Section 7]. The L?-bound
(B.4) follows from (B.7).

Step 2: Let now ug € L'(R%) and S € L'((0, T) x RY).

We choose uf, € C°(R?) and ¢ € C°((0, T) x R?)) such that u§ — ug in L' (RY)
and §¢ — Sin L'((0, T) x R%)). By the L'-contraction (B.3) this implies that u® — u
in C([0, T]; L! (Rd)). The verification that u is an entropy solution again follows along
the lines of [11, Section 7, Step 2]. O

Appendix C. The case m > 2

In this section we present an improvement of the results obtained in [16]. We consider
du +div A(u) = Aul™ + §(z,x) on (0, T) x RY, (C.1)

where
up € L'RY), §SeL'([0,T] xRY),

a=A"eLZ(R;RY, (C.2)
W™ =y withm > 2.

By [11] and Appendix B there is a unique entropy solution to (C.1).
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Lemma C.1. Lety > 0, up € (L' N L7")RY) and S € (L' N L'*7)([0, T] x RY).
Then there are ¢y 1, C,, > 0 such that

T
1 ydm 1 1
sup Ilu(t)llliZ +cy,mf f Vul T H2dx < ¢, Quoll 1L, +1IS1177).
1€[0,T] 0 Jrd Ly Lix
Proof. First let ug € C°(RY) and S € C((0, T) x R?), and let A® be smooth and
Lipschitz continuous with A® — A locally uniformly. Then, for & > 0, there is a unique
classical solution to

du + div A* ) = eAu® + AW 4+ S(t,x) on (0,T) x RY.

From (B) we have, for n € C2(R) convex, Lipschitz continuous,

9 /Rd n(* (1) dx < /Rd(—r)"(ug(t))IVlf(t)Izllf(t)lm_1 + '@ ())S(t, x)) dx

— X & 2 y 1, € ]J; 1 1+
< /Rd< |V E" (u®(1))] +_1+y|”(” ()] +—1—|—y|S(t’x)| V)dx,

=

X

where F"(u) := m [y \/n"(r)|r|"=1dr. By integrating in time and choosing a suitable
approximation of 7 this inequality may be applied to 7(u) = |u|'*7, which yields

4 1 ! m
luf (1)1 dx < luo| 'Y dx — M (V(us)[%])Q dx
RZ RY (v +m? Jo Jre

+ [ s ) dx.
R{
Gronwall’s inequality yields

T
1+ yim 1+ 1+
sup [uf @)l 17, +cy‘mf / (V@) H2dxds < C, (luoll 77, + 1SI077).
1€[0,7] Lx 0o Jre Ly Lix

(C.3)

From the construction of entropy solutions (Theorem B.1) we see that u® — u in
y+m

c(o, T; L' (]Rf)). Moreover, by (C.3) for a non-relabeled subsequence VuHl=1lsz
in L2([0, T] x RY). Since u® — u a.e., we have Z = V(u)[#
to the limit in (C.3).

For general ug € (L' N L'*7)(R9) and S € (L' N L'*7)([0, T] x RY) we choose

I+y I+y
L}](ﬂ/ = ”uOHLi.er

], which allows us to pass

smooth, compactly supported approximations ug, S¢ with [ug|| and

1 1 . .
||SE||LTIV < ||S||LTIV and ug — ug, $° — Sin L'. The corresponding entropy solu-
t,x t,x

tion u® then satisfies (C.3). Due to Theorem B.1 we have u® — u in C([0, T]; L'(RY)),
which allows us to pass to the limit in (C.3) as above. O
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For p € [1,00) and s € (0, 1) we recall

I £1%, , :==sup sup /
NPT 520 0<lef<s JRE

IF IR = IAUE e + 11,

Theorem C.2. Lety > 0,m >2,ug € (L'NLTY)RY), S e (L'NL*Y)([0, T1xRY).
Then

|f(x+2) = f@IF

L dx,

m+y 1+y 1+y
flac| ST < Cym(luoll 1y, + ISl 11,)-
Lty ([0, TN 757 "7 (Rdy) Lx Lix

If, in addition, ug € L™ (R%) and S € L™ ([0, T] x RY) then

we L0, TI N7 " (Re))

mry I+y 14y m+y m+y
el - < Cymluoll 1L, + IS 7L, + luol iy + IS0
Lty (0, TEN 57 " (Rd)) Lx Lix Ly L
(C.4)

Proof. We again restrict ourselves to an informal derivation; the rigorous justification is
standard by considering a vanishing viscosity approximation first, and then using lower
semicontinuity. From [16, Lemma 4.1] we recall the elementary inequality, for m > 2,

r —s|™ < c|r[m/2] - s[’"/2]|2, Vr,s € R,
for some ¢ > 0. Hence,

|APu()™ = Ju(x 4 he) — u (@)™ < clu(x + he)™? — u(x)m/22
= c|Amu™2 (x)?

m+y

dx dt

and thus, by Lemma C.1,
Afju(t, X)
—

T
/ sup  sup /
0 h>0ccRY, je|=1 /RY hmty

T
=/ sup  sup fh—2|AQu(z,x)|m+dedt
0 h>0ccRe, je|]=1 J/RY

T

m+

gcf sup  sup fh_2|AZu[Ty](t,x)|2dxdt
0 h>0eeRd,Je|=1 /R

T
m+y 2 I+y I+y
=c IVul "1, )P dx dit < Cy u(lluoll 17, + IS TE)
d Ly L,
0 R X t,x

This implies

r +
m+y
/ ez, N7 5
0

1+y 1+y
dt <C ug +||IS .
ety ntr gy &1 = Crm ol 12y 181, 15,)
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Using Lemma C.1 with y replaced by m — 1 + y yields

+ + +
el o, 7 e gy < Gy ol ISy
This implies that
+ + +
] < Cyluoll 7, + 18] 1+y>+cmy(||uo||’"mfy+||5||’"mfy>

2
Ly ([0, TEN 57 " (Rd))
O

Appendix D. Optimality and scaling

In this section we present scaling arguments that indicate the optimal regularity of solu-
tions of porous media equations. We then show that these estimates are indeed sharp since
they are attained by the Barenblatt solution. Consider

du = A(u|"'u) on(0,T) xR, (D.1)
u(Q) =ug on R;‘f,
with ug € LI(R;’),m > 1.

Lemma D.1. Assume that for some s > 0, p > 1, and C > 0 we have

”u”LP([O Tl: Wr p(Rd)) —= C”“O”Ll(Rd) (D2)
for all solutions u to (D.1). Then necessarily p < m and s < ijl % < %
1
Proof. Given a solution u to (D.1), for every n > 0, also u(t,x) = u(nt, x)nm-1
— P
is a solution to (D. 1) Since ||u||Lp(0 TEWsPRE) = npm-T ||u|| . and

LP([0,nT]; WP (RY))
||u(0)||L1(Rd) = nm = ||M0||L1(Rd), from (D.2) we obtain

bt
o oy < €17 Il ey

This leads to a contradiction (letting 1 00), unless

p=m. (D.3)
Similarly, we may rescale in space: Given a solution u to (D.1), for every
2
n > 0, also u(t,x) := u(t,nx)n =1 is a solution to (D.1). Note ||L~£(0)||L1(R¥) =
2
“m=1 _ s ptps—d p
ol gy and 117, 0 reney = 17T o i e -

Hence, by (D.2),

1
lJu ”il’ [0,T]; WP (RY)) — < Cpm—T STp=b-ps ||u0||L1(Rd),
which leads to a contradiction unless s < p=1 L . Maximizing the right hand side under

(D.3) yields p = m and s < 2/m. ren 0
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Example D.2. Consider the Barenblatt solution

1
u(t,x) =17%(C — klxt P )5,

wherem > 1,0 = d(m_d])+2, k= “gfn_dl) .8 =% and C > 0 s a free constant. Then

u € L™([0, T, W™ (R?) = s <2/m.

Proof. With F(x) = (C — k|x|2)m ' we have u(r, x) = t—*F(xt—?). We next observe
that, for s € (0, 1),

|M(t,x) _u(ts )’)|m
fluz, )”qu(Rd) -/]Rd /IJW |x — y|sm+d dx dy

— 70(”’! ,B(Am+d)+2dﬂ”F”

WY m (Rd)
Hence,

||M|| _ ”tfamfﬂ(xm+d)+2dﬂ”L]

m
Lm([0,T]; W*: m(Rd)) ([0,T1) ”F"W””(R‘f)’

which is finite if and only if
—am — B(sm+d)+2df > —1 and F e W™ (R).

Hence, necessarily

1 1 dim—1)+2
—-m—-—=(m+d)+2>——=— dm-D+2 ,
d o d

which is equivalent to 2 > ms. In the case s € (1,2) we observe that d,,u(t, x) =
t~@+h) Fy, (xt~P), so that analogous arguments may be applied. O
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