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Abstract. This paper is dedicated to the construction of a pseudo-norm for which small shock
profiles of the barotropic Navier–Stokes equations have a contraction property. This contraction
property holds in the class of any large solutions to the barotropic Navier–Stokes equations. It
implies a stability condition which is independent of the strength of the viscosity. The proof is
based on the relative entropy method, and is related to the notion of a-contraction first introduced
by the authors in the hyperbolic case.
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1. Introduction

In this article, we consider the one-dimensional barotropic Navier–Stokes equations in
the Lagrangian coordinates: {

vt − ux = 0,
ut + p(v)x =

(
µ(v)
v
ux
)
x
,

(1.1)

where v denotes the specific volume, u is the fluid velocity, and p(v) is the pressure law.
We consider the case of a polytropic perfect gas where the pressure satisfies

p(v) = v−γ , γ > 1, (1.2)

with γ the adiabatic constant. The quantity µ(v) = bv−α is the viscosity coefficient.
Notice that if α > 0, then µ(v) degenerates near the vacuum, i.e., near v = +∞. Very
often, the viscosity coefficient is assumed to be constant, i.e., α = 0. However, in the
physical context the viscosity of a gas depends on the temperature (see Chapman and
Cowling [7]). In the barotropic case, the temperature depends directly on the density
(ρ = 1/v). The viscosity is expected to degenerate near the vacuum as a power of the
density, which is translated into µ(v) = bv−α in terms of v with α > 0. Global strong
solutions of the system (1.1) can be constructed for a large family of initial data without
vacuum. These solutions are also unique (see Constantin–Drivas–Nguyen–Pasqualotto
[10], Haspot [16] and [22, 32]). For simplification, we will restrict in this paper to the
case where α = γ .

The system (1.1) admits viscous shock waves connecting two end states (v−, u−) and
(v+, u+), provided the end states satisfy the Rankine–Hugoniot condition and the Lax
entropy condition (see Matsumura and Wang [31]):

∃σ :

{
−σ(v+ − v−)− (u+ − u−) = 0,
−σ(u+ − u−)+ p(v+)− p(v−) = 0,

and either v− > v+ and u− > u+, or v− < v+ and u− > u+.

(1.3)

In other words, for given constant states (v−, u−) and (v+, u+) satisfying (1.3), there
exists a viscous shock wave (ṽ, ũ)(x − σ t) that satisfies

−σ ṽ′ − ũ′ = 0,
−σ ũ′ + p(ṽ)′ =

(
µ(ṽ)
ṽ
ũ′
)′

limξ→±∞(ṽ, ũ)(ξ) = (v±, u±).

(1.4)

Here, if v− > v+, the solution of (1.4) is a 1-shock wave with velocity σ =

−

√
−
p(v+)−p(v−)
v+−v−

, whereas if v− < v+, it is a 2-shock wave with σ =
√
−
p(v+)−p(v−)
v+−v−

.
The stability of viscous shock waves for the compressible Navier–Stokes system is an

important issue from both the mathematical and physical viewpoints. In the case of con-
stant viscosity (α = 0), Matsumura–Nishihara [30] showed the time-asymptotic stability
for small initial perturbations with integral zero. Later on, the assumption on integral
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zero was removed by Mascia–Zumbrun [29] and Liu–Zeng [28]. We also refer to Barker–
Humpherys–Lafitte–Rudd–Zumbrun [3, 17] and the references therein for the spectral
stability of small perturbations of large shocks. For the system (1.1) with degenerate vis-
cosity (α > 0), Matsumura–Wang [31] showed the asymptotic stability for small initial
perturbations with integral zero under the assumption α ≥ 1

2 (γ − 1). This assumption
was recently removed by the second author and Yao [40].

To the best of our knowledge, up to now, there has been no result on stability, indepen-
dent of the size of the perturbation, for viscous shocks of the compressible Navier–Stokes
system.

The main contribution of this article is to show the existence of a contraction property
for viscous shocks, up to a shift, for any possibly large perturbations, in the case of the
Navier–Stokes system (1.1) with α = γ (see Theorem 1.1).

This result is a major step forward in the study of contractions of shock waves of
conservation laws based on the relative entropy. In the inviscid case, the L2 contrac-
tion of shocks was first obtained by Leger [26] for scalar conservation laws (see also
Adimurthi, Goshal, and Veerappa Gowda [1] for contraction in the Lp norm). In [33],
it was shown that this property is not true, for most systems, when considering ho-
mogeneous norms. However, it is true, at least for extremal shocks, if we consider an
adapted non-homogeneous pseudo-norm [27, 38]. This was theorized with the notion of
a-contraction in [20]. There, the case of intermediate shocks was also considered. This
situation is more delicate. The contraction works for some systems, like the Euler sys-
tem with energy [35, 34], and can fail for others [19]. In the viscous case, based on the
L2 norm a first result was obtained for viscous shocks in the case of the viscous Burgers
equation [21] (see also [18]). Our paper can be seen as a generalization of this result in the
system case. Of course, the system case is much more involved. Especially, since these
results are independent of the size of the perturbations, by rescaling the equation, they are
valid uniformly in the vanishing viscosity limit. Because of the negative result of [33] for
the Euler system, the result cannot be true for the Navier–Stokes equations when consid-
ering a homogeneous pseudo-norm. This difficulty is compounded with the degenerate
parabolic structure of Navier–Stokes, where the equation on v is purely hyperbolic.

We also mention recent results on extension of the theory to the multi-variable setting
for the scalar case [25], and the application of the method to the study of asymptotic limits
[2, 9, 24, 39].

From an analytical viewpoint, handling the contraction property of the viscous shocks
is rather different from the inviscid situation. The main difficulty is due to the balance
between the hyperbolic and parabolic terms.

1.1. Main result

We first introduce a relative functional E(·|·) defined as follows: for any functions v1, u1,

v2, u2,

E((v1, u1)|(v2, u2)) :=
1
2 (u1 + p(v1)x − u2 − p(v2)x)

2
+Q(v1|v2), (1.5)

where Q(v1|v2) := Q(v1)−Q(v2)−Q
′(v2)(v1 − v2) is a relative functional associated
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with the strictly convex functionQ(v) := v−γ+1/(γ − 1). The functional E is associated
to the BD entropy (see Bresch–Desjardins [4, 5, 6]). Since Q(v1|v2) is positive definite,
(1.5) is also positive definite, that is, for any functions (v1, u1) and (v2, u2) we have
E((v1, u1)|(v2, u2)) ≥ 0, and

E((v1, u1)|(v2, u2)) = 0 a.e. ⇐⇒ (v1, u1) = (v2, u2) a.e.

Our main result shows a contraction property measured by the relative functional (1.5).
The result is stated for the system (1.1) with viscosity µ(v) = γ v−γ , i.e., the exponent
α is identical to the adiabatic constant γ . A new approach developed in this paper can be
applied to the case of a more general viscosity (see [23]).

Theorem 1.1. Consider the system (1.1)–(1.2) with viscosity µ(v) = γ v−γ , γ > 1. For
a given constant state (v−, u−) ∈ R+ × R, there exist constants ε0, δ0 > 0 such that the
following is true.

For any ε < ε0, δ−1
0 ε < λ < δ0, and any (v+, u+) ∈ R+ × R satisfying (1.3)

with |p(v−) − p(v+)| = ε, there exists a smooth monotone function a : R → R+ with
limx→±∞ a(x) = 1 + a± for some constants a−, a+ with |a+ − a−| = λ such that the
following holds.

Let Ũ := (ṽ, ũ) be the viscous shock connecting (v−, u−) and (v+, u+) as a solution
of (1.4). For any solution U := (v, u) to (1.1) with initial data U0 := (v0, u0) satisfying∫
∞

−∞
E(U0|Ũ ) dx <∞, there exists a shift X ∈ W 1,1

loc (R
+) such that

d

dt

∫
∞

−∞

a(x)E(U(t, x +X(t))|Ũ (x)) dx ≤ 0, (1.6)

and

|Ẋ(t)| ≤
1
ε2 (1+ f (t)), t > 0, (1.7)

for some positive function f satisfying

‖f ‖L1(0,∞) ≤
2λ
δ0ε

∫
∞

−∞

E(U0|Ũ ) dx.

Remark 1.1. Theorem 1.1 provides a contraction property for viscous shocks with suit-
ably small amplitude parametrized by ε = |p(v−)−p(v+)|. This smallness together with
(1.3) implies |v− − v+| = O(ε) and |u− − u+| = O(ε). However, for such a fixed small
shock, the contraction holds for any weak solutions to (1.1), without any smallness condi-
tion imposed on U0. This is important for the study of the inviscid limit problem (ν → 0)
of {

vνt − u
ν
x = 0,

uνt + p(v
ν)x = ν

(
µ(vν )
vν

uνx
)
x
.

(1.8)

By rescaling the result of Theorem 1.1 as (t, x) → (t/ν, x/ν) we obtain the exact same
theorem for the system (1.8). Therefore we obtain a stability result on viscous shocks of
fixed strength which is independent of the strength of the viscosity ν (see [23]).
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Remark 1.2. The contraction property is non-homogeneous in x, as measured by the
function x 7→ a(x). This is consistent with the hyperbolic case (with ν = 0). In the
hyperbolic case, it was shown in [33] that a homogeneous contraction cannot hold for
the full Euler system. However, the contraction property is true if we consider a non-
homogeneous pseudo-distance [38] providing the so-called a-contraction [20]. Our main
result shows that the non-homogeneity of the pseudo-distance can be chosen of a similar
size to the strength of the shock (as measured by the quantity λ).

1.2. Transformation of the system (1.1)

We first introduce a new effective velocity h := u+p(v)x . The system (1.1) with µ(v) =
γ v−γ is then transformed into{

vt − hx = −(p(v))xx,

ht + p(v)x = 0.
(1.9)

Notice that the above system has a parabolic regularization on the specific volume, in
contrast to the regularization on the velocity for the original system (1.1). This is better
for our analysis, since the hyperbolic part of the system is linear in u (or h) but nonlinear
in v (via the pressure). This effective velocity was first introduced by Shelukhin [36] for
α = 0, and in the general case (in Eulerian coordinates) by Bresch–Desjardins [4, 5, 6]
and Haspot [14, 13, 16]. It was also used in [40].

As mentioned in Theorem 1.1, we consider shock waves with suitably small ampli-
tude ε. For that, let (ṽε, ũε)(x − σεt) denote a shock wave with |p(v−)− p(v+)| = ε as
a solution of (1.4) with µ(v) = γ v−γ . Set h̃ε := ũε + (p(ṽε))x . Then the shock wave
(ṽε, h̃ε)(x − σεt) satisfies

−σεṽ
′
ε − h̃

′
ε = −(p(ṽε))

′′,

−σεh̃
′
ε + p(ṽε)

′
= 0,

limξ→±∞(ṽε, h̃ε)(ξ) = (v±, u±).

(1.10)

For simplification of our analysis, we rewrite (1.9) into the following system, based
on the change of variable (t, x) 7→ (t, ξ = x − σεt):

vt − σεvξ − hξ = −(p(v))ξξ ,

ht − σεhξ + p(v)ξ = 0,
v|t=0 = v0, h|t=0 = u0.

(1.11)

Remark 1.3. In (1.11), the dissipation is in v and has the specific form (−p(v))ξξ , whose
structure is due to the fact that α = γ . This simplifies our analysis a lot, since we consider
the entropy Q(v) with Q′(v) = −p(v).
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Theorem 1.1 is a direct consequence of the following theorem on the contraction of shocks
for the system (1.9). To measure the contraction, we use the relative entropy associated to
the entropy of (1.9) as

η((v1, h1)|(v2, h2)) := |h1 − h2|
2/2+Q(v1|v2),

where

Q(v1|v2) := Q(v1)−Q(v2)−Q
′(v2)(v1 − v2) and Q(v) :=

v−γ+1

γ − 1
.

Theorem 1.2. For a given constant state (v−, u−) ∈ R+ × R, there exist constants
ε0, δ0 > 0 such that the following holds.

For any ε < ε0, δ−1
0 ε < λ < δ0, and any (v+, u+) ∈ R+ × R satisfying (1.3)

with |p(v−) − p(v+)| = ε, there exists a smooth monotone function a : R → R+ with
limx→±∞ a(x) = 1 + a± for some constants a−, a+ with |a− − a+| = λ such that the
following holds.

Let Ũε := (ṽε, h̃ε) be a viscous shock connecting (v−, u−) and (v+, u+) as a solu-
tion of (1.10). For any solution U := (v, h) to (1.11) with initial data U0 := (v0, u0)

satisfying
∫
∞

−∞
η(U0|Ũε) dx <∞, there exists a shift function X ∈ W 1,1

loc (R
+) such that

d

dt

∫
∞

−∞

a(ξ)η(U(t, ξ +X(t))|Ũε(ξ)) dξ ≤ 0, (1.12)

and

|Ẋ(t)| ≤
1
ε2 (1+ f (t)), t > 0, (1.13)

for some positive function f satisfying

‖f ‖L1(0,∞) ≤
2λ
δ0ε

∫
∞

−∞

η(U0|Ũε) dξ.

Notice that it is enough to prove Theorem 1.2 for 1-shocks. Indeed, the result for 2-shocks
is obtained by the change of variables x 7→ −x, u 7→ −u, σε 7→ −σε. Therefore, from
now on, we consider a 1-shock (ṽε, h̃ε), i.e., v− > v+, u− > u+, and

σε = −

√
−
p(v+)− p(v−)

v+ − v−
. (1.14)

Notations. Throughout the paper, C denotes a positive constant which may change from
line to line, but which stays independent of ε (the shock strength) and λ (the total variation
of the function a). The paper will consider two smallness conditions, one on ε, and the
other on ε/λ. In the argument, ε will be far smaller than ε/λ.

To avoid confusion, for any function F of x, we denote

F ′(v) =
d

dv
F(v), F (v)′ =

d

dx
F(v).
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1.3. Ideas of the proof

In all the computations, ε > 0 is the size of the fixed shock. We remind the reader that
the perturbation U0 − Ũε = (v0 − ṽε, h0 − h̃ε) can be unconditionally large. The non-
homogeneity of the semi-norm comes through the function a. This function is decreasing
in the case of a 1-shock, and increasing in the case of a 2-shock. The strength of this
non-homogeneity is measured by the number λ > 0, which is the difference between the
values of a at −∞ and +∞ (see (2.23)). Typically, λ is small, but it can be far greater
than ε. Actually, in the analysis, we will consider some smallness on both ε and ε/λ,
ε being much smaller than ε/λ. Note that the velocity of the shock σε has the same sign
as a′, so the quantity σεa′ is positive. The relative entropy computation (see Lemma 2.3)
gives

d

dt

∫
∞

−∞

a(ξ)η(U(t, ξ +X(t))|Ũε(ξ)) dξ

= Ẋ(t)Y (U(t, · +X(t)))+ B(U(t, · +X(t)))− G(U(t, · +X(t))).

The functional G(U) is nonnegative (good term) and can be split into three terms (see
(3.47)):

G(U) = G1(U)+ G2(U)+D(U),

where only G1(U) depends on h. The term D(U) corresponds to the diffusive term (which
depends on v only, thanks to the transformation of the system). We are able to write this
decomposition in such a way that the functional B(U) (bad terms) depends only on v.
This is the main reason why we can consider a degenerate diffusion (the viscosity in u
only is replaced by a diffusion in v only, after transformation of the system). The fact that
the hyperbolic flux in the Navier–Stokes equations is only linear in h plays a particular
role for this matter: the corresponding relative flux then vanishes.

Because of the relative entropy structure, the quantities G(U) and B(U) are quadratic
when the perturbation is small. However, we have no uniform control on the size
of U(t, ·), therefore we will also have to carefully estimate what happens for large values
of U(t, x).

The shift X(t) introduces the term Ẋ(t)Y (U). The key idea of the technique is to
take advantage of this term when Y (U(t, ·)) is not too small, by compensating all the
other terms via the choice of the velocity of the shift (see (3.2)). Specifically, we ensure
algebraically that the contraction holds as long as |Y (U(t))| ≥ ε2. The rest of the analysis
is to ensure that when |Y (U(t))| ≤ ε2, the contraction still holds.

The condition |Y (U(t))| ≤ ε2 ensures a smallness condition that we want to fully
exploit. This is where the non-homogeneity of the semi-norm is crucial. In the case where
the function a is constant, Y (U) is a linear functional in U . The smallness of Y (U) only
implies that a certain weighted mean value of U is almost null. However, when a is
decreasing, Y (U) becomes convex. The smallness Y (U(t)) ≤ ε2 implies, for this fixed
time t (see Lemma 3.2 with (2.25) and (2.1)),∫

R
εe−Cε|ξ |Q(v(t, ξ +X(t))|ṽε(ξ)) dξ ≤ C(ε/λ)

2. (1.15)
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This gives control in L2 for moderate values of v, and in L1 for large values of v, in the
layer region (|ξ −X(t)| . 1/ε).

The problem now looks, at first glance, as a typical problem of stability with a small-
ness condition. There are, however, two major difficulties: We have some smallness only
in v, for a very weak norm, and only localized in the layer region. More importantly, the
smallness is measured with respect to the smallness of the shock. This basically says that,
considering only the moderate values of v, the perturbation is no greater than ε/λ (which
is still very large with respect to the size ε of the shock). Actually, as we will see later,
it is not possible to consider only the linearized problem: Third order terms appear in
the expansion using the smallness condition (the energy method involving linearization
would only have a second order term in ε).

In the argument, for the values of t such that |Y (U(t))| ≤ ε2, we construct the shift
as a solution to the ODE Ẋ(t) = −Y (U(t, · + X(t)))/ε4. From this point on, we forget
that U = U(t, ξ) is a solution to (1.11) and X(t) is the shift. That is, we leave out X(t)
and the t-variable of U . Then we show that for any function U satisfying Y (U) ≤ ε2, we
have

−
1
ε4 Y

2(U)+ |B(U)| − G(U) ≤ 0. (1.16)

This is the main Proposition 3.1 (actually, the proposition is slightly stronger to ensure
control of the shift). This clearly implies the contraction. There are several steps to prove
this proposition.

Step 1: Using the smallness condition, we show that if the good diffusive term satisfies

D(U) ≥ ε2/λ,

then (1.16) holds true. Note that if the values of v were bounded from above and bounded
away from 0, we could control B(U) from (1.15), since both expressions would be
quadratic in v − ṽε. The main difficulty in this step is to obtain control where the
values of v are small. Indeed, for such small v, the worst term in B(U) behaves like
p(v)2 = 1/v2γ , whileQ(v|ṽε) behaves like 1/vγ−1. So we need a small portion of D(U)
to control the bad term (see (3.60) from Lemma 3.4). We can now restrict ourselves to the
case where both |Y (U)| ≤ ε2 and D(U) ≤ ε2/λ.

Step 2: To be able to perform an expansion in ε later, we want to show that it is enough
to consider only values of v such that v − ṽε is bounded (smaller than a δ small enough,
but not dependent on ε or on ε/λ). We need also use only the part Yg(v) of Y (U) which
contains only terms in v (and not in h). We do not have enough estimates on U to show
that U is uniformly bounded on R. But we can show that large values of |v − ṽε| (which
can occur only for large values of ξ ) do not change much the estimate (see Section 3.6).
This involves a careful study of the contribution of the tails (U(ξ) for |ξ | ≥ 1/ε). This
is the only part where G1 is used in order to control Yb(U) = Y (U) − Yg(v), the part
of Y (U) which depends also on h (see Lemma 3.4). More precisely, this step shows that
it is enough to prove that for any function v such that |v − ṽε| ≤ δ and |Yg(v)| ≤ ε2/λ,
we have

−
1
εδ
|Yg(v)|

2
+ (1+ δ)|B(v)| − (1− δ)G2(v)− (1− δ)D(v) ≤ 0.
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All the terms in this inequality depend on U only through v. Therefore, with a slight
abuse of notation, we will write these functions as functions of v. This corresponds to
Proposition 3.4. The δ terms are still needed because we lose a bit when truncating the
tails, to obtain (1.16). The terms depending on h are not present anymore. So it is now an
estimate on scalar functions v. The good term in Yg(v) involves a smaller power of 1/ε,
since we had to control the corresponding Yb(U) with the same power of 1/ε.

Step 3: To show Proposition 3.4, we now perform an expansion in ε uniformly in v (but
for a fixed δ). Note that the expansion has to be performed up to the third order. Indeed,
because of the function a, terms involving a or a′ do not have the same power in ε/λ.
Interestingly, the term G2(v) cancels exactly the term of order λ/ε of B(v). This step
shows that, thanks to some rescaling, it is enough to prove that for any W ∈ L2(0, 1),

−
1
δ

(∫ 1

0
W 2 dy + 2

∫ 1

0
W dy

)2

+ (1+ δ)
∫ 1

0
W 2 dy

+
2
3

∫ 1

0
W 3 dy + δ

∫ 1

0
|W |3 dy − (1− δ)

∫ 1

0
y(1− y)|∂yW |2 dy ≤ 0.

We need to show this for some δ > 0 possibly very small. So it looks very similar to a
nonlinear Poincaré inequality with constraint. The constraint (the term in 1/δ) came from
the term with Yg(v) through the asymptotic. This result on W is Proposition 3.3.

Step 4: To prove Proposition 3.3, we first reduce the problem to a minimization problem
for a polynomial of two variables with a constraint. For this we use two lemmas. Lemma
2.8 provides sharp L∞ control using the dissipation term. Lemma 2.9 is a well known
sharp Poincaré inequality that was already used in [21]. This reduces the problem to
minimization of a polynomial with variables

Z1 =

∫ 1

0
W(y) dy, Z2 =

(∫ 1

0
(W − Z1)

2 dy

)1/2

.

Because of the constraint, we can reduce the problem to minimization of a polynomial of
only one variable (see Lemma 2.7).

It is easier to present the proofs of the propositions and lemmas in reverse. Therefore
the rest of the paper is as follows. Section 2 is dedicated to the proofs of preliminaries. It
includes some useful estimates on small shock waves, the computation of the time deriva-
tive of the relative entropy, the construction of the function a, some global estimates on the
relative quantities (for small or large values of v), and the minimization problem for the
polynomial functional with one variable. Section 3 is dedicated to the proof of the main
theorem. First we give the construction of the shift, and state the main Proposition 3.1,
and then show how the proposition implies the theorem. To prove Proposition 3.1, we
first solve the minimization problem with two variables, then prove a nonlinear Poincaré
type inequality, and continue backward up to the general situation where we only have
the constraint on Y (U).
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The range of ε will be reduced from one lemma to the next, with the same notation
for the restriction ε0. The restriction on ε/λ is more subtle. To ensure that there is no loop
in the argument, we will carefully track the smallness needed of this quantity from one
lemma to the next. The smallness of ε/λ will be denoted with δ notations. The results in
the preliminaries will consider a generic smallness δ∗. They can be safely replaced by the
same constant δ∗ (taking the smallest of all). However, the constant δ3 will play a crucial
role to control the strength of the typical perturbations. Later on, constants will be build
that may blow up when δ3 is very small. It will be important to make sure that δ3 can be
fixed beforehand. The restrictions on ε/λ are less sensitive. Therefore we will just reduce
them from one lemma to the next keeping the generic notation δ0.

2. Preliminaries

2.1. Small shock waves

In this subsection, we present useful properties of the 1-shock waves (ṽε, h̃ε) with small
amplitude ε. In what follows, without loss of generality, we consider the 1-shock wave
(ṽε, h̃ε) satisfying ṽε(0) = (v− + v+)/2. Notice that the estimates in the following
lemma also hold for h̃ε since

h̃′ε =
p′(ṽε)

σε
ṽ′ε and C−1

≤
p′(ṽε)

σε
≤ C.

But since the estimates for ṽε below are enough for our analysis, we only give the esti-
mates for ṽε.

Lemma 2.1. Fix v− > 0 and u− ∈ R. Then there exist positive constants ε0, C,C1, C2
such that for any 0 < ε < ε0 the following is true. Let ṽε be the 1-shock wave with
amplitude |p(v−)− p(v+)| = ε and such that ṽε(0) = (v− + v+)/2. Then

−C−1ε2e−C1ε|ξ | ≤ ṽ′ε(ξ) ≤ −Cε
2e−C2ε|ξ |, ∀ξ ∈ R. (2.1)

Therefore, as a consequence,

inf
[−1/ε,1/ε]

|ṽ′ε| ≥ Cε
2. (2.2)

Proof. We multiply the first equation of (1.10) by σε and eliminate the dependence on h̃ε
using the second equation. After integration in ξ , we find

σε(p(ṽε))
′
= σ 2

ε (ṽε − v+)+ p(ṽε)− p(v+). (2.3)

Dividing by ṽε − v+ and using (1.14) we get

σε(p(ṽε))
′

ṽε − v+
= −

p(v−)− p(v+)

v− − v+
+
p(ṽε)− p(v+)

ṽε − v+
.
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Consider the smooth function ϕ : R+→ R defined by

ϕ(v) :=
p(v)− p(v+)

v − v+
.

Then the above equality can be written as

σε(p(ṽε))
′

ṽε − v+
= ϕ(ṽε)− ϕ(v−). (2.4)

To estimate the above r.h.s., we apply the Taylor theorem to the function ϕ about v−, so
that for any v ∈ R+ with |v−v−| < v−/2, there exists a constant C > 0 (depending only
on v−) such that

|ϕ(v)− ϕ(v−)− ϕ
′(v−)(v − v−)| ≤ C(v − v−)

2. (2.5)

It can be shown (see [31]) that

ṽ′ε < 0 and v+ < ṽε < v−. (2.6)

Therefore, for ε0 small enough,

0 ≤ v− − ṽε ≤ v− − v+ ≤ Cε < v−/2.

Using (2.5) with v = ṽε, we have

|ϕ(ṽε)− ϕ(v−)− ϕ
′(v−)(ṽε − v−)| ≤ Cε(v− − ṽε).

Moreover, since

ϕ′(v−) =
p′(v−)(v− − v+)− (p(v−)− p(v+))

(v− − v+)2
=
p′′(v∗)

2
for some v∗ ∈ (v+, v−),

we take ε0 small enough such that p′′(v−) ≥ ϕ′(v−) ≥ p′′(v−)/2 > 0. Thus, for ε0 small
enough, we have

2p′′(v−)(ṽε − v−) ≤ ϕ(ṽε)− ϕ(v−) ≤
p′′(v−)

8
(ṽε − v−).

Then it follows from (2.4) that

2p′′(v−)(ṽε − v−)(ṽε − v+) ≤ σε(p(ṽε))′ ≤
p′′(v−)

8
(ṽε − v−)(ṽε − v+).

Since

−
√
−p′(v−/2) ≤ σε ≤ −

√
−p′(v−) and p′(v−/2) ≤ p′(ṽε) ≤ p′(v−) < 0, (2.7)

the quantity σεp′(ṽε) is bounded from below and above uniformly in ε. Therefore

C−1(ṽε − v−)(ṽε − v+) ≤ ṽ
′
ε ≤ C(ṽε − v−)(ṽε − v+). (2.8)
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To prove the estimate (2.1), we first observe that ṽ′ε < 0 and ṽε(0) = (v− + v+)/2 imply

ξ ≤ 0 =⇒ v− − v+ ≥ ṽε(ξ)− v+ ≥ ṽε(0)− v+ =
v− − v+

2
,

ξ ≥ 0 =⇒ v− − v+ ≥ v− − ṽε(ξ) ≥ v− − ṽε(0) =
v− − v+

2
.

(2.9)

Then, using (2.8) and (2.9) with |v− − v+| ≤ Cε, we have

ξ ≤ 0 =⇒ −C−1ε(v− − ṽε) ≤ ṽ
′
ε ≤ −Cε(v− − ṽε),

ξ ≥ 0 =⇒ −C−1ε(ṽε − v+) ≤ ṽ
′
ε ≤ −Cε(ṽε − v+).

Thus,

ξ ≤ 0 =⇒ −C−1ε(v− − ṽε) ≥ (v− − ṽε)
′
≥ −Cε(v− − ṽε),

ξ ≥ 0 =⇒ −C−1ε(ṽε − v+) ≤ (ṽε − v+)
′
≤ −Cε(ṽε − v+).

These together with ṽε(0) = (v− + v+)/2 imply

ξ ≤ 0 =⇒ C−1εe−C2ε|ξ | ≤ v− − ṽε ≤ Cεe
−C1ε|ξ |,

ξ ≥ 0 =⇒ C−1εe−C2εξ ≤ ṽε − v+ ≤ Cεe
−C1εξ .

Finally, applying the above estimates together with |ṽε − v±| ≤ Cε to (2.8) gives (2.1).
Estimate (2.2) follows directly from the upper bound on ṽ′ε(ξ) in (2.1). ut

We finish this subsection with an estimate based on the inverse of the pressure function.

Lemma 2.2. For any r > 0, there exist ε0, C > 0 such that the following holds. For any
p−, p+, p > 0 such that p− ∈ (r, 2r), p+ − p− =: ε ∈ (0, ε0), p− ≤ p ≤ p+, and for
v, v−, v+ such that p(v) = p, p(v±) = p±, we have∣∣∣∣ v − v−p − p−

+
v − v+

p+ − p
+

1
2
p′′(v−)

p′(v−)2
(v− − v+)

∣∣∣∣ ≤ Cε2.

Proof. Consider the function v(p) = p−1/γ . Using the Taylor expansion at p−, we find
that there exists ε0 such that for any |p − p−| ≤ ε0 and |p − p+| ≤ ε0 we have∣∣∣∣v − v− − dvdp (p−)(p − p−)− 1

2
d2v

dp2 (p−)(p − p−)
2
∣∣∣∣ ≤ C|p − p−|3, (2.10)∣∣∣∣v − v+ − dvdp (p+)(p − p+)− 1

2
d2v

dp2 (p+)(p − p+)
2
∣∣∣∣ ≤ C|p − p+|3. (2.11)

Since
d2v

dp2 =
d

dp

(
1

p′(v)

)
= −

p′′(v)

p′(v)2
dv

dp
,
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we get∣∣∣∣12 p′′(v−)

p′(v−)2
(v− − v+)+

1
2
d2v

dp2 (p−)(p− − p+)

∣∣∣∣
≤

p′′(v−)

2p′(v−)2

∣∣∣∣v+ − v− − dvdp (p−)(p+ − p−)
∣∣∣∣ ≤ Cε2. (2.12)

Since∣∣∣∣12 d2v

dp2 (p+)(p − p+)−
1
2
d2v

dp2 (p−)(p − p−)+
1
2
d2v

dp2 (p−)(p+ − p−)

∣∣∣∣
=

1
2

∣∣∣∣(d2v

dp2 (p+)−
d2v

dp2 (p−)

)
(p − p+)

∣∣∣∣ ≤ Cε2, (2.13)

dividing (2.10) by p − p−, (2.11) by p+ − p, and adding both terms together with the
terms estimated in (2.12) and (2.13), we obtain∣∣∣∣ v − v−p − p−

+
v − v+

p+ − p
+

1
2
p′′(v−)

p′(v−)2
(v− − v+)

−

(
dv

dp
(p−)−

dv

dp
(p+)−

d2v

dp2 (p−)(p− − p+)

)∣∣∣∣ ≤ Cε2.

This gives the result, since the second line term is itself of order ε2. ut

2.2. Relative entropy method

Our analysis is based on the relative entropy. The method is purely nonlinear, and allows
handling rough and large perturbations. The relative entropy method was first introduced
by Dafermos [11] and Diperna [12] to prove the L2 stability and uniqueness of Lipschitz
solutions to the hyperbolic conservation laws endowed with a convex entropy.

To use the relative entropy method, we rewrite (1.11) as the following general system
of viscous conservation laws:

∂tU + ∂ξA(U) =

(
−∂ξξp(v)

0

)
, (2.14)

where

U :=

(
v

h

)
, A(U) :=

(
−σεv − h

−σεh+ p(v)

)
.

The system (2.14) has a convex entropy η(U) := h2/2 + Q(v), where Q(v) =
v−γ+1/(γ − 1), i.e., Q′(v) = −p(v). Using the derivative of the entropy

∇η(U) =

(
−p(v)

h

)
, (2.15)

the above system (2.14) can be rewritten as

∂tU + ∂ξA(U) = ∂ξ
(
M∂ξ∇η(U)

)
, (2.16)
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where M =
(1 0

0 0

)
, and (1.10) can be rewritten as

∂ξA(Ũε) = ∂ξ
(
M∂ξ∇η(Ũε)

)
. (2.17)

Consider the relative entropy function defined by

η(U |V ) = η(U)− η(V )−∇η(V ) · (U − V ),

and the relative flux defined by

A(U |V ) = A(U)− A(V )−∇A(V )(U − V ).

Let G(·; ·) be the flux of the relative entropy defined by

G(U ;V ) = G(U)−G(V )−∇η(V )(A(U)− A(V )),

where G is the entropy flux of η, i.e., ∂iG(U) =
∑2
k=1 ∂kη(U)∂iAk(U), 1 ≤ i ≤ 2.

Then, for our system (2.14), we have

η(U |Ũε) = |h− h̃ε|
2/2+Q(v|ṽε),

A(U |Ũε) =

(
0

p(v|ṽε)

)
,

G(U ; Ũε) = (p(v)− p(ṽε))(h− h̃ε)− σεη(U |Ũε).

(2.18)

Note that the relative pressure is defined as

p(v|w) = p(v)− p(w)− p′(w)(v − w). (2.19)

We consider a weighted relative entropy between the solution U of (2.16) and the
viscous shock Ũε :=

(ṽε
h̃ε

)
in (1.10) up to a shift X(t):

a(ξ)η(U(t, ξ +X(t))|Ũε(ξ)),

where a is a smooth weight function. The following lemma provides a quadratic structure
on d

dt

∫
R a(ξ)η(U(t, ξ + X(t))|Ũε(ξ)) dξ . We introduce the following notation: for any

function f : R+ × R→ R and the shift X(t),

f±X(t, ξ) := f (t, ξ ±X(t)).

We also introduce the function space

H := {(v, h) ∈ L∞(R)× L∞(R) | 0 < v−1
∈ L∞(R), ∂ξ (p(v)− p(ṽε)) ∈ L2(R)},

on which the functionals Y,B,G in (2.21) below are well-defined.
In this paper we assume that the solution lies in C(0, T ;H) for any T > 0.

Remark 2.1. The recent result of Constantin–Drivas–Nguyen–Pasqualotto [10] provides
the global existence and uniqueness of smooth solutions to (1.1) for α ≥ 0 and γ ∈
[α, α + 1] with γ > 1, but under the periodic boundary condition. Recently, the present
authors [22] extended the result of [10, Theorem 1.6] to the case where smooth solutions
connect possibly two different limits at infinity on the whole space, which is contained in
the space H. Note that the system (1.1) is equivalent to the one in the Eulerian coordinates
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for smooth solutions. Thus, it follows from [22] that (1.1) admits a unique smooth solution
v, u such that for any T > 0, 0 < C(T )−1

≤ v ≤ C(T ), ∂xv ∈ L∞(R) and u − ũ ∈
C(0, T ;H k(R)) if γ = α > 1, as long as the initial datum satisfies v0 − ṽ, u0 − ũ ∈ H

k ,
C−1
≤ v0 ≤ C and ∂xu0 ≤ 1 for k ≥ 4. As a consequence, since h = u + p′(v)∂xv,

this result guarantees the existence of solutions v, h in C(0, T ;H). We also refer to the
previous result [15] of Haspot (see also [32]) for existence of solutions connecting two
different states on the whole space for α ≤ 1.

Lemma 2.3. Let a : R → R+ be a smooth bounded function such that a′, a′′ are inte-
grable. Let X be a differentiable function, and Ũε :=

(ṽε
h̃ε

)
be the viscous shock in (1.10).

For any solution U ∈ H to (2.16), we have
d

dt

∫
R
a(ξ)η(UX(t, ξ)|Ũε(ξ)) dξ = Ẋ(t)Y (U

X)+ B(UX)− G(UX), (2.20)

where

Y (U) := −

∫
R
a′η(U |Ũε) dξ +

∫
R
a
(
∂ξ∇η(Ũε)

)
· (U − Ũε) dξ,

B(U) :=
1

2σε

∫
R
a′|p(v)− p(ṽε)|

2 dξ + σε

∫
R
a∂ξ ṽεp(v|ṽε) dξ

+
1
2

∫
R
a′′|p(v)− p(ṽε)|

2 dξ,

G(U) :=
σε

2

∫
R
a′
(
h− h̃ε −

p(v)− p(ṽε)

σε

)2

dξ + σε

∫
R
a′Q(v|ṽε) dξ

+

∫
R
a|∂ξ (p(v)− p(ṽε))|

2 dξ.

(2.21)

Proof. To derive the desired structure, we use a change of variable ξ 7→ ξ −X(t) to get∫
R
a(ξ)η(UX(t, ξ)|Ũε(ξ)) dξ =

∫
R
a−X(ξ)η(U(t, ξ)|Ũ−Xε (ξ)) dξ. (2.22)

Then, by a straightforward computation together with [37, Lemma 4] and the identity
G(U ;V ) = G(U |V )−∇η(V )A(U |V ), we have

d

dt

∫
R
a−X(ξ)η(U(t, ξ)|Ũ−Xε (ξ)) dξ

= −Ẋ

∫
R
a′−Xη(U |Ũ−Xε ) dξ

+

∫
R
a−X

[(
∇η(U)−∇η(Ũ−Xε )

)(
−∂ξA(U)+ ∂ξ

(
M∂ξ∇η(U)

))
−∇

2η(Ũ−Xε )(U − Ũ−Xε )
(
−Ẋ∂ξ Ũ

−X
ε − ∂ξA(Ũ

−X
ε )+ ∂ξ

(
M∂ξ∇η(Ũ

−X
ε )

))]
dξ

= Ẋ

(
−

∫
R
a′−Xη(U |Ũ−Xε ) dξ +

∫
R
a−X

(
∂ξ∇η(Ũ

−X
ε )

)
· (U − Ũ−Xε )

)
+ I1 + I2 + I3 + I4,
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where

I1 := −

∫
R
a−X∂ξG(U ; Ũ

−X
ε ) dξ,

I2 := −

∫
R
a−X∂ξ∇η(Ũ

−X
ε )A(U |Ũ−Xε ) dξ,

I3 :=

∫
R
a−X

(
∇η(U)−∇η(Ũ−Xε )

)
∂ξ
(
M∂ξ (∇η(U)−∇η(Ũ

−X
ε ))

)
dξ

I4 :=

∫
R
a−X(∇η)(U |Ũ−Xε )∂ξ

(
M∂ξ∇η(Ũ

−X
ε )

)
dξ.

Using (2.18) and (2.15), we have

I1 =

∫
R
a′−XG(U ; Ũ−Xε ) dξ

=

∫
R
a′−X((p(v)− p(ṽ−Xε ))(h− h̃−Xε )− σεη(U |Ũ

−X
ε )) dξ,

I2 = −

∫
R
a−X∂ξ h̃

−X
ε p(v|ṽ−Xε ) dξ,

I3 =

∫
R
a−X(p(v)− p(ṽ−Xε ))∂ξξ (p(v)− p(ṽ

−X
ε )) dξ

= −

∫
R
a−X|∂ξ (p(v)− p(ṽ

−X
ε ))|2 dξ +

1
2

∫
R
a′′−X|p(v)− p(ṽ−Xε )|2 dξ.

Since it follows from (2.17) and (2.15) that

I4 =

∫
R
a−X(∇η)(U |Ũ−Xε )∂ξA(Ũ

−X
ε ) dξ =

∫
R
a−Xp(v|ṽ−Xε )(∂ξ h̃

−X
ε + σε∂ξ ṽ

−X
ε ) dξ,

we have some cancellation:

I2 + I4 = σε

∫
R
a−X∂ξ ṽ

−X
ε p(v|ṽ−Xε ) dξ.

Therefore,

d

dt

∫
R
a−Xη(U |Ũ−Xε ) dξ

= Ẋ

(
−

∫
R
a′−Xη(U |Ũ−Xε ) dξ +

∫
R
a−X∂ξ∇η(Ũ

−X
ε )(U − Ũ−Xε ) dξ

)
+

∫
R
a′−X

(
(p(v)− p(ṽ−Xε ))(h− h̃−Xε )− σεη(U |Ũ

−X
ε )

)
dξ

+ σε

∫
R
a−X∂ξ ṽ

−X
ε p(v|ṽ−Xε ) dξ +

1
2

∫
R
a′′−X|p(v)− p(ṽ−Xε )|2 dξ

−

∫
R
a−X|∂ξ (p(v)− p(ṽ

−X
ε ))|2 dξ.
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Again, we use a change of variable ξ 7→ ξ +X(t) to have

d

dt

∫
R
aη(UX|Ũε) dξ = Ẋ

(
−

∫
R
a′η(UX|Ũε) dξ +

∫
R
a∂ξ∇η(Ũε)(U

X
− Ũε) dξ

)
+

∫
R
a′
(
(p(vX)− p(ṽε))(h

X
− h̃ε)− σεη(U

X
|Ũε)︸ ︷︷ ︸

=:I

)
dξ

+ σε

∫
R
a∂ξ ṽεp(v

X
|ṽε) dξ +

1
2

∫
R
a′′|p(vX)− p(ṽε)|

2 dξ

−

∫
R
a|∂ξ (p(v

X)− p(ṽε))|
2 dξ.

To extract a quadratic term in p(vX) − p(ṽε) from the above hyperbolic part, we
rewrite I as

I = (p(vX)− p(ṽε))(h
X
− h̃ε)− σε

|hX − h̃ε|
2

2
− σεQ(v

X
|ṽε)

=
|p(vX)− p(ṽε)|

2

2σε
−
σε

2

(
hX − h̃ε −

p(vX)− p(ṽε)

σε

)2

− σεQ(v
X
|ṽε).

Hence we have the desired representation (2.20)–(2.21). ut

Remark 2.2. Notice that since σε, a′ < 0, the three terms in G are nonnegative. There-
fore, G consists of good terms, while B consists of bad terms.

2.3. Construction of the weight function

We define a weight function a by

a(ξ) = 1− λ
p(ṽε(ξ))− p(v−)

[p]
, (2.23)

where [p] := p(v+)− p(v−). We briefly present some useful properties of the weight a.
First of all, a is positive and decreasing, and satisfies 1 − λ ≤ a ≤ 1. Since [p] = ε,
p′(v−/2) ≤ p′(ṽε) ≤ p′(v−) and

a′ = −λ
∂ξp(ṽε)

[p]
, (2.24)

we have
|a′| ∼

λ

ε
|ṽ′ε|. (2.25)

For a′′ = −λ ∂ξξp(ṽε)
[p]

, we use the following relation from (1.10):

∂ξξp(ṽε) = σε∂ξ ṽε + ∂ξ h̃ε =

(
σ 2
ε

p′(ṽε)
+ 1

)
∂ξp(ṽε)

σε
. (2.26)

Notice that |v− − v+| = O(ε) and (1.14) together with the Taylor theorem imply

σε = −
√
−p′(v−)+O(ε). (2.27)
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Moreover, since p′(ṽε)−1
= p′(v−)

−1
+O(ε), we have

|∂ξξp(ṽε)| ≤ Cε|∂ξp(ṽε)|. (2.28)

Thus, |a′′| . λ|ṽ′ε|. which together with (2.25) implies

|a′′| . ε|a′|. (2.29)

Remark 2.3. The definition (2.23) can be more generally written as

a(ξ) = 1− λ

∫ ξ
−∞
|∂s∇η(Ũε(s))| ds∫

∞

−∞
|∂s∇η(Ũε(s))| ds

. (2.30)

Indeed, since it follows from (1.10) that p(ṽε)′ = σεh̃′ε, we find that

|∂ξ∇η(Ũε(ξ))| =

∣∣∣∣∂ξ(−p(ṽε(ξ))h̃ε(ξ)

)∣∣∣∣ = |∂ξp(ṽε(ξ))| |(−1, σ−1
ε )|.

Moreover, since ∂ξp(ṽε(ξ)) > 0,

|∂ξ∇η(Ũε(ξ))| = ∂ξp(ṽε(ξ))|(−1, σ−1
ε )|, (2.31)

which implies (2.23).

2.4. Global and local estimates on the relative quantities

We here present useful inequalities on Q and p that are crucial for the proof of Theo-
rem 1.2.

2.4.1. Global inequalities on Q and p. Lemma 2.4 below provides some global in-
equalities on the relative function Q(·|·) corresponding to the convex function Q(v) =
v−γ+1/(γ − 1), v > 0, γ > 1.

Lemma 2.4. For given constants γ > 1 and v− > 0, there exist constants c1, c2 > 0
such that the following inequalities hold.

(1) For any w ∈ (0, 2v−),

Q(v|w) ≥ c1|v − w|
2 for all 0 < v ≤ 3v−,

Q(v|w) ≥ c2|v − w| for all v ≥ 3v−.
(2.32)

(2) If 0 < w ≤ u ≤ v or 0 < v ≤ u ≤ w then

Q(v|w) ≥ Q(u|w), (2.33)

and for any δ∗ > 0 there exists a constant C > 0 such that if in addition |w − v−| ≤
δ∗/2 and |w − u| > δ∗, then

Q(v|w)−Q(u|w) ≥ C|u− v|. (2.34)
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Proof of (2.32). We denote v∗ = 3v−. First, for v ≥ v∗, we rewrite Q(v|w) as

Q(v|w) =

∫ 1

0

(
Q′(w + t (v − w))−Q′(w)

)
dt (v − w).

Since w < 2v− < v∗ ≤ v and Q′ is increasing, we have

Q′(w + t (v − w)) ≥ Q′(w + t (v∗ − 2v−)).

Thus,

Q(v|w) ≥

∫ 1

0

(
Q′(w + t (v∗ − 2v−))−Q′(w)

)
dt (v − w)

=

∫ 1

0

∫ 1

0
Q′′(w + st (v∗ − 2v−))t ds dt (v∗ − 2v−)(v − w).

Moreover, since Q′′ is decreasing, we have

Q(v|w) ≥

∫ 1

0

∫ 1

0
Q′′(v− + st (v

∗
− 2v−))t ds dt (v∗ − 2v−)(v − w),

which provides the second inequality in (2.32).
On the other hand, for v ≤ v∗, we use

Q(v|w) = (v − w)2
∫ 1

0

∫ 1

0
Q′′(w + st (v − w))t ds dt.

Observe that for all v ≤ v∗,

Q′′(w+st (v−w)) = γ (stv+(1−st)w)−γ−1
≥ γ (stv∗+(1−st)v∗)−γ−1

= γ

(
1
v∗

)γ+1

,

where we have used w < v∗. Therefore,

Q(v|w) ≥
γ

2

(
1
v∗

)γ+1

(v − w)2.

Proof of (2.33) and (2.34). Note that z 7→ Q(z|y) is convex so ∂zQ(z|y) is increasing
in z and zero at z = y. Therefore z 7→ Q(z|y) is increasing in |z− y|, which implies

Q(v|w) ≥ Q(u|w).

Moreover, if |w− v−| ≤ δ∗/2 and |w− u| > δ∗, using the facts that Q′ is increasing and

Q(v|w)−Q(u|w) = Q(v)−Q(u)−Q′(w)(v − u) =

∫ v

u

[Q′(y)−Q′(w)] dy,

we have the following: If w < u < v, then

Q(v|w)−Q(u|w) ≥ [Q′(v− + 3δ∗/4)−Q′(v− + δ∗/4)](v − u),
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while if v < u < w, then

Q(v|w)−Q(u|w) ≥ [Q′(v− − δ∗/4)−Q′(v− − 3δ∗/4)](u− v).

Hence we obtain (2.34). ut

The following lemma provides some global inequalities on the pressure p(v) = v−γ ,
v > 0, γ > 1, and on the associated relative function p(·|·).

Lemma 2.5. For given constants γ > 1 and v− > 0, there exist constants c3, C > 0
such that for any w > v−/2,

|p(v)− p(w)| ≤ c3|v − w|, ∀v ≥ v−/2, (2.35)

p(v|w) ≤ C|v − w|2, ∀v ≥ v−/2, (2.36)
p(v|w) ≤ C(|v − w| + |p(v)− p(w)|), ∀v > 0. (2.37)

Proof of (2.35). Since |p′| is decreasing, using the mean value theorem we find that for
all v,w ≥ v−/2,

|p(v)− p(w)| ≤ |p′(v−/2)| |v − w|.

Proof of (2.36). Since p′′ is decreasing, we find that for all v,w ≥ v−/2,

p(v|w) = (v − w)2
∫ 1

0

∫ 1

0
p′′(stv + (1− st)w))t ds dt

≤ (v − w)2
∫ 1

0

∫ 1

0
p′′(v−/2)t ds dt =

p′′(v−/2)
2

(v − w)2.

Proof of (2.37). Using the proof of (2.35), we first have, for all v,w ≥ v−/2,

p(v|w) = p(v)− p(w)− p′(w)(v − w) ≤ |p(v)− p(w)| + |p′(w)| |v − w|

≤ 2|p′(v−/2)| |v − w|.

Since for all 0 < v ≤ v−/2 ≤ w,

|p(v)− p(w)| =

∫ w

v

|p′(y)| dy ≥ |p′(w)| |w − v|,

we have

p(v|w) ≤ |p(v)− p(w)| + |p′(w)| |v − w| ≤ 2|p(v)− p(w)|. ut

2.4.2. Local inequalities on Q and p. We now present some local estimates on p(v|w)
and Q(v|w) for |v − w| � 1, based on Taylor expansions. The specific coefficients of
the estimates will be crucially used in our local analysis on a suitably small truncation
|p(v)− p(ṽε)| � 1.
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Lemma 2.6. For given constants γ > 1 and v− > 0 there exist positive constants C
and δ∗ such that for any 0 < δ < δ∗, the following is true.

(1) For any (v,w) ∈ R2
+ satisfying |p(v)− p(w)| < δ and |p(w)− p(v−)| < δ,

p(v|w) ≤

(
γ + 1

2γ
1

p(w)
+ Cδ

)
|p(v)− p(w)|2, (2.38)

Q(v|w) ≥
p(w)−1/γ−1

2γ
|p(v)− p(w)|2 −

1+ γ
3γ 2 p(w)−1/γ−2(p(v)− p(w))3,

(2.39)

Q(v|w) ≤

(
p(w)−1/γ−1

2γ
+ Cδ

)
|p(v)− p(w)|2. (2.40)

(2) For any (v,w) ∈ R2
+ such that |p(w) − p(v−)| ≤ δ and either Q(v|w) < δ or

|p(v)− p(w)| < δ,
|p(v)− p(w)|2 ≤ CQ(v|w). (2.41)

Proof. We consider δ∗ ≤ p(v−)/4.

Proof of (2.38). From the hypothesis, we have both |p(v) − p(v−)| ≤ p(v−)/2 and
|p(w)− p(v−)| ≤ p(v−)/2. First, we rewrite p(v|w) in terms of p(v)− p(w) as

p(v|w) = p(v)− p(w)+ γw−γ−1(v − w)

= p(v)− p(w)+ γp(w)
γ+1
γ (p(v)−1/γ

− p(w)−1/γ ).

Setting F1(p) := p − p̃ + γ p̃
γ+1
γ (p−1/γ

− p̃−1/γ ) where p := p(v), p̃ := p(w), we
apply the Taylor theorem to F1 about p̃. Using

F ′1(p) = 1− p̃
γ+1
γ p
−
γ+1
γ , F ′′1 (p) =

γ + 1
γ

p̃
γ+1
γ p
−

2γ+1
γ ,

since F1(p̃) = 0, F ′1(p̃) = 0, and F ′′1 (p̃) =
γ+1
γ p̃

, we have

p(v|w) = F1(p) =
γ + 1
γ p̃

|p − p̃|2

2
+
F ′′′1 (p∗)

6
|p − p̃|3,

where p∗ lies between p and p̃. Therefore p(v−)/2 < p∗ < 2p(v−). Taking δ ≤ δ∗, we
have

p(v|w) ≤
γ + 1
γ p̃

|p − p̃|2

2
+ Cδ|p − p̃|2.

That is, we have (2.38).

Proof of (2.39) and (2.40). Likewise, since

Q(v|w) = Q(v)−Q(w)+ p(w)(v − w)

=
p(v)

γ−1
γ

γ − 1
−
p(w)

γ−1
γ

γ − 1
+ p(w)(p(v)−1/γ

− p(w)−1/γ ).
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setting

F2(p) :=
p
γ−1
γ

γ − 1
−
p̃
γ−1
γ

γ − 1
+ p̃(p−1/γ

− p̃−1/γ )

where p := p(v), p̃ := p(w), we apply the Taylor theorem to F2 about p̃: since using

F ′2(p) =
1
γ
p−1/γ (1− p̃p−1), F ′′2 (p) = −

1
γ 2p

−
1+γ
γ
(
1− (1+ γ )p̃p−1),

F ′′′2 (p) =
1+ γ
γ 3 p

−
1+2γ
γ
(
1− (1+ 2γ )p̃p−1),

F ′′′′2 (p) = −
(1+ γ )(1+ 2γ )

γ 4 p
−

1+3γ
γ
(
1− (1+ 3γ )p̃p−1),

and

F2(p̃) = 0, F ′2(p̃) = 0, F ′′2 (p̃) =
1
γ
p̃−1/γ−1,

F ′′′2 (p̃) = −
2(1+ γ )
γ 2 p̃−1/γ−2, F ′′′′2 (p̃) =

3(1+ γ )(1+ 2γ )
γ 3 p̃

−
1+3γ
γ ,

we have

Q(v|w) = F ′′2 (p̃)
(p − p̃)2

2
+F ′′′2 (p̃)

(p − p̃)3

6
+F ′′′′2 (p̃)

(p − p̃)4

24
+F

(5)
2 (p∗)

(p − p̃)5

5!
.

Since F ′′′′2 (p̃) ≥
3(1+γ )(1+2γ )

γ 3 [p(v−)/2]−
1+3γ
γ > 0, taking δ∗ smaller if needed, we find

that for every δ < δ∗,

Q(v|w) ≥ F ′′2 (p̃)
|p − p̃|2

2
+ F ′′′2 (p̃)

(p − p̃)3

6
,

which proves (2.39). The estimate (2.40) follows by considering the 2nd order Taylor
polynomial as done for (2.38).

Proof of (2.41). Since it follows from (2.32) that min {c1|v−w|
2, c2|v−w|} ≤ Q(v|w),

if Q(v|w) < δ < δ∗ � 1 then |v −w| � 1 and thus v−/2 < v < 2v− and c1|v −w|
2
≤

Q(v|w). Therefore,

|p(v)− p(w)|2 ≤ |p′(v−/2)|2|v − w|2 ≤ c−1
1 |p

′(v−/2)|2Q(v|w). (2.42)

If |p(v)− p(w)| < δ, then it follows from (2.40) that

Q(v|w) ≤ C|p(v)− p(w)|2 < δ,

which gives (2.42). ut
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2.5. Some functional inequalities

In this section we state some standard functional inequalities. Some of the proofs will be
postponed to the appendix. The first result is a simple inequality on a specific polynomial
functional.

Lemma 2.7. For all x ∈ [−2, 0),

2x − 2x2
−

4
3x

3
+

4
3θ(−x

2
− 2x)3/2 < 0,

where θ =
√

5− π2/3.

The proof of Lemma 2.7 is given in Appendix A.
The second result is a sharp pointwise estimate.

Lemma 2.8. Let f ∈ C1(0, 1). Then, for all x ∈ [0, 1),∣∣∣∣f (x)− ∫ 1

0
f (y) dy

∣∣∣∣ ≤ √L(x)+ L(1− x)
√∫ 1

0
y(1− y)|f ′|2 dy,

where L(x) := −x − ln(1− x). Moreover(∫ 1

0
(L(y)+ L(1− y))2 dy

)1/2

=

√
5− π2/3 = θ.

Proof. First, since

f (x)−

∫ 1

0
f (y) dy =

∫ 1

0

∫ x

y

f ′(z) dz dy =

∫ x

0

∫ x

y

f ′(z) dz dy+

∫ 1

x

∫ x

y

f ′(z) dz dy,

we have∣∣∣∣f (x)− ∫ 1

0
f (y) dy

∣∣∣∣ ≤ ∫ x

0

∫ x

y

|f ′(z)| dz dy +

∫ 1

x

∫ y

x

|f ′(z)| dz dy

≤

(∫ x

0

∫ x

y

1
1− z

dz dy

)1/2(∫ x

0

∫ x

y

(1− z)|f ′(z)|2 dz dy
)1/2

︸ ︷︷ ︸
=:I1

+

(∫ 1

x

∫ y

x

1
z
dz dy

)1/2(∫ 1

x

∫ y

x

z|f ′(z)|2 dz dy

)1/2

︸ ︷︷ ︸
=:I2

.

Using Fubini’s theorem, as
∫ x

0

∫ x
y
g dz dy =

∫ x
0

∫ z
0 g dy dz, we have

I1 =

(∫ x

0

z

1− z
dz

)1/2(∫ x

0
z(1− z)|f ′(z)|2 dz

)1/2

= (−x − ln(1− x))1/2
(∫ x

0
z(1− z)|f ′(z)|2 dz

)1/2

,
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and likewise,

I2 =

(∫ 1

x

1− z
z

dz

)1/2(∫ 1

x

z(1− z)|f ′(z)|2 dz
)1/2

= (−(1− x)− ln x)1/2
(∫ 1

x

z(1− z)|f ′(z)|2 dz
)1/2

.

Let L(x) := −x − ln(1− x) and

X :=

∫ x

0
z(1− z)|f ′(z)|2 dz, D :=

∫ 1

0
z(1− z)|f ′(z)|2 dz.

Then
I1 + I2 =

√
L(x)
√
X +

√
L(1− x)

√
D −X.

Set F(X) :=
√
L(x)
√
X+
√
L(1− x)

√
D −X forX ∈ [0,D]. Then F has a maximum

at X̄ := L(x)D
L(x)+L(1−x) . Thus,

I1 + I2 ≤ F(X̄) =
√
L(x)+ L(1− x)

√
D,

which yields the desired inequality. We now compute the value of θ . We have∫ 1

0
(L(x)+ L(1− x))2 dx =

∫ 1

0
(1+ ln(1− x)+ ln x)2 dx

= 1+
∫ 1

0
(ln(1− x))2 dx +

∫ 1

0
(ln x)2 dx + 2

∫ 1

0
ln(1− x) dx

+ 2
∫ 1

0
ln x dx + 2

∫ 1

0
ln(1− x) ln x dx.

Since
∫ 1

0 ln(1− x) dx =
∫ 1

0 ln x dx = −1, we have∫ 1

0
(ln(1−x))2 dx =

∫ 1

0
(ln x)2 dx =

[
x(ln x)2

]1
0−2

∫ 1

0
ln x dx = −2

∫ 1

0
ln x dx = 2.

Thus, ∫ 1

0
(L(x)+ L(1− x))2 dx = 1+ 2

∫ 1

0
ln(1− x) ln x dx.

To compute the last integral, we find∫ 1

0
ln(1− x) ln x dx =

[
(x ln(1− x)− x − ln(1− x)) ln x

]1
0

−

∫ 1

0

x ln(1− x)− x − ln(1− x)
x

dx

= −

∫ 1

0
ln(1− x)dx + 1+

∫ 1

0

ln(1− x)
x

dx = 2+
∫ 1

0

ln(1− x)
x

dx.
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Since ∫
ln(1− x)

x
dx = −

∞∑
n=1

xn

n2 , |x| ≤ 1,

we have ∫ 1

0

ln(1− x)
x

dx = −

∞∑
n=1

1
n2 = −

π2

6
.

This gives the result. ut

Lemma 2.9. For any f : [0, 1] → R satisfying
∫ 1

0 y(1− y)|f
′
|
2 dy <∞,∫ 1

0

∣∣∣∣f − ∫ 1

0
f dy

∣∣∣∣2 dy ≤ 1
2

∫ 1

0
y(1− y)|f ′|2 dy. (2.43)

The proof of this lemma is given in Appendix B.

3. Proof of Theorem 1.2

3.1. Construction of the shift X and the main proposition

For any fixed ε > 0, we consider a continuous function 8ε defined by

8ε(y) =


ε−2 if y ≤ −ε2,

−ε−4y if |y| ≤ ε2,

−ε−2 if y ≥ ε2.

(3.1)

We define a shift function X(t) as a solution of the nonlinear ODE{
Ẋ(t) = 8ε(Y (U

X))(2|B(UX)| + 1),
X(0) = 0,

(3.2)

where Y and B are as in (2.21). Therefore, for the solution U ∈ C(0, T ;H), the shift
X exists and is unique at least locally by the Cauchy–Lipschitz theorem. Indeed, since
ṽ′ε, h̃

′
ε, a
′, a′′ are bounded, smooth and integrable, using U ∈ C(0, T ;H) together with

the change of variables ξ 7→ ξ − X(t) as in (2.22), we find that the right-hand side of
the ODE (3.2) is uniformly Lipschitz continuous in X, and is continuous in t (see also [8,
Appendix A]).

Moreover, the global-in-time existence and uniqueness of the shift holds by the
a priori estimate (3.8).

The cornerstone of the proof of the theorem is the following.

Proposition 3.1. There exist ε0, δ0 > 0 such that for any ε < ε0 and δ−1
0 ε < λ < δ0

< 1/2, and any U ∈ H ∩ {U | |Y (U)| ≤ ε2
},

R(U) := −ε−4Y 2(U)+ (1+ δ0(ε/λ))|B(U)| − G(U) ≤ 0. (3.3)

Most of the rest of the paper will be dedicated to the proof of this result. We will first
show how this proposition implies Theorem 1.2.
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3.2. Proof of Theorem 1.2 from Proposition 3.1

Based on (2.20) and (3.2), to get the contraction estimate, it is enough to prove that for
almost every t > 0,

8ε(Y (U
X))(2|B(UX)| + 1)Y (UX)+ B(UX)− G(UX) ≤ 0. (3.4)

For every U ∈ H we define

F(U) := 8ε(Y (U))(2|B(U)| + 1)Y (U)+ |B(U)| − G(U). (3.5)

From (3.1), we have

8ε(Y )(2|B| + 1)Y ≤

{
−2|B| if |Y | ≥ ε2,

−ε−4Y 2 if |Y | ≤ ε2.
(3.6)

Hence, for all U ∈ H satisfying |Y (U)| ≥ ε2, we have

F(U) ≤ −|B(U)| − G(U) ≤ 0.

Using both (3.6) and Proposition 3.1, we find that for all U ∈ H satisfying |Y (U)| ≤ ε2,

F(U) ≤ −δ0(ε/λ)|B(U)| ≤ 0.

Since δ0 < 1/2, these two estimates show that for every U ∈ H,

F(U) ≤ −δ0(ε/λ)|B(U)|.

For every fixed t > 0, using this estimate with U = UX(t, ·) together with (2.20) and
(3.4) gives

d

dt

∫
R
aη(UX|Ũε) dξ ≤ F(UX) ≤ −δ0(ε/λ)|B(UX)|. (3.7)

Thus, d
dt

∫
R aη(U

X
|Ũε) dξ ≤ 0, which yields (1.12).

Moreover, since it follows from (3.7) that

δ0(ε/λ)

∫
∞

0
|B(UX)|dt ≤

∫
R
η(U0|Ũε) dξ <∞,

by the initial condition, using (3.2) and ‖8ε‖L∞(R) ≤ 1/ε2 by (3.1), we have

|Ẋ| ≤
1
ε2 +

2
ε2 |B|, ‖B‖L1(0,∞) ≤

1
δ0

λ

ε

∫
R
η(U0|Ũε) dξ. (3.8)

This provides the global-in-time estimate (1.13), thusX ∈ W 1,1
loc (R

+). This completes the
proof of Theorem 1.2.

The rest of the paper is dedicated to the proof of Proposition 3.1.
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3.3. An estimate on specific polynomials

Let θ :=
√

5− π2/3, and let δ > 0 be any constant. We consider the following polyno-
mial functionals:

E(Z1, Z2) := Z
2
1 + Z

2
2 + 2Z1,

Pδ(Z1, Z2) := (1+ δ)(Z2
1 + Z

2
2)+ 2Z1Z

2
2 +

2
3Z

3
1 + 6δ(|Z1|Z

2
2 + |Z1|

3)

− 2(1− δ − (2/3+ δ)θZ2)Z
2
2 .

This section is devoted to the proof of the following proposition.

Proposition 3.2. There exist δ0, δ1 > 0 such that for any 0 < δ < δ0, if (Z1, Z2) ∈ R2

satisfies |E(Z1, Z2)| ≤ δ1, then

Pδ(Z1, Z2)− |E(Z1, Z2)|
2
≤ 0. (3.9)

This proposition will be used when a smallness condition on the perturbation, due to the
shift, will be available. It should be noticed that the expansion leading to this polynomial
is not merely a linearization. We end up with a polynomial Pδ which is of order 3.

Proof of Proposition 3.2. We split the proof into three steps.

Step 1. For r > 0, we denote by Br(0) the open ball centered at the origin with radius r .
We show the following claim: There exist r, δ0 > 0 such that for any δ ≤ δ0,

Pδ(Z1, Z2)− |E(Z1, Z2)|
2
≤ 0 whenever (Z1, Z2) ∈ Br(0). (3.10)

To prove the claim, notice first that |Z1|, |Z2| ≤ r on Br(0). So we have

|2Z1|
2
= (E − (Z2

1 + Z
2
2))

2
≤ 2|E|2 + 2|Z2

1 + Z
2
2 |

2
≤ 2|E|2 + 2r2(Z2

1 + Z
2
2),

which implies
−|E|2 ≤ −2Z2

1 + r
2(Z2

1 + Z
2
2).

Thus, for any (Z1, Z2) ∈ Br(0),

Pδ−|E|
2
≤ −2Z2

1+(1+δ)
(
Z2

1+Z
2
2+

r2

1+δ
(Z2

1+Z
2
2)+

(2+6δ)r
1+δ

Z2
2+

(2/3+6δ)r
1+δ

Z2
1

)
−2
(
1−δ− 2

3 (1+δ)θr
)
Z2

2 .

Taking δ0 and r small enough, we can ensure that for any δ < δ0, Pδ−|E|2 ≤ 0 on Br(0),
which is (3.10).

Step 2. We prove the following claim: There exists δ0 > 0 (possibly smaller than in
Step 1) and δ1 > 0 such that for any 0 < δ ≤ δ0,

Pδ(Z1, Z2) < 0 whenever |E(Z1, Z2)| ≤ δ1 and (Z1, Z2) /∈ Br(0). (3.11)
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To see this, we first consider the limiting case: if δ = 0 and E(Z1, Z2) = 0, we have

P0(Z1, Z2) = 2Z1 − 2Z2
1 −

4
3Z

3
1 +

4
3θ(−Z

2
1 − 2Z1)

3/2, Z2
1 + Z

2
2 + 2Z1 = 0.

Since (Z1 + 1)2 +Z2
2 = 1 because E = 0, we have −2 ≤ Z1 ≤ 0. Then by the algebraic

inequality in Lemma 2.7, we have

P0(Z1, Z2) < 0, Z2
1 + Z

2
2 + 2Z1 = 0, Z1 6= 0.

Since P0 is continuous, it attains its maximum −c < 0 on the compact set
{E(Z1, Z2) = 0} \ Br(0). In addition, P0 is uniformly continuous on the compact set
{|E(Z1, Z2)| ≤ 1} \ Br(0), so there exists 0 < δ1 < 1 such that

P0(Z1, Z2) < −c/2 whenever |E(Z1, Z2)| ≤ δ1 and (Z1, Z2) /∈ Br(0).

Taking δ0 small enough we still have, for δ < δ0,

Pδ(Z1, Z2) < 0 whenever |E(Z1, Z2)| ≤ δ1 and (Z1, Z2) /∈ Br(0).

This is (3.11).

Step 3. Claims (3.10) and (3.11) together give Proposition 3.2. ut

3.4. A nonlinear Poincaré type inequality

For any δ > 0 and any function W ∈ L2(0, 1) such that
√
y(1− y) ∂yW ∈ L2(0, 1), we

define

Rδ(W) = −
1
δ

(∫ 1

0
W 2 dy + 2

∫ 1

0
W dy

)2

+ (1+ δ)
∫ 1

0
W 2 dy

+
2
3

∫ 1

0
W 3 dy + δ

∫ 1

0
|W |3 dy − (1− δ)

∫ 1

0
y(1− y)|∂yW |2 dy.

This section is dedicated to the proof of the following proposition.

Proposition 3.3. For a given C1 > 0, there exists δ2 > 0 such that for any δ < δ2 and
any W ∈ L2(0, 1) with

√
y(1− y)∂yW ∈ L2(0, 1), if

∫ 1
0 |W(y)|

2 dy ≤ C1, then

Rδ(W) ≤ 0. (3.12)

Note that the constant C1 may not be small. Therefore we cannot discard the cubic term
in Rδ(W).
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Proof of Proposition 3.3. Let W =
∫ 1

0 W dy. We first separate the first cubic term in Rδ

into three parts:∫ 1

0
W 3dy =

∫ 1

0
((W −W)+W)3 dy (3.13)

=

∫ 1

0
(W −W)3 dy + 3W

∫ 1

0
(W −W)2 dy +

∫ 1

0
W

3
dy

=

∫ 1

0
(W −W)3 dy + 2W

∫ 1

0
(W −W)2 dy +W

∫ 1

0
W 2 dy.

Thus, we have

Rδ(W) = −
1
δ

(∫ 1

0
W 2 dy + 2

∫ 1

0
W dy

)2

+ (1+ δ)
∫ 1

0
W 2 dy

+
4
3
W

∫ 1

0
(W −W)2 dy +

2
3
W

∫ 1

0
W 2 dy +

2
3

∫ 1

0
(W −W)3 dy

+ δ

∫ 1

0
|W |3 dy − (1− δ)

∫ 1

0
y(1− y)|∂yW |2 dy. (3.14)

Let

Z1 := W, Z2 :=

(∫ 1

0
(W −W)2 dy

)1/2

, E(Z1, Z2) = Z
2
1 + Z

2
2 + 2Z1.

In what follows, we rewrite Rδ in terms of the new variables Z1 and Z2. Since∫ 1

0
W 2 dy = Z2

1 + Z
2
2

and∫ 1

0
|W |3 dy ≤

∫ 1

0
(|W −W | + |W |)3 dy

≤

∫ 1

0
|W −W |3 dy + 3|W |

∫ 1

0
|W −W |2 dy + 3|W |2

∫ 1

0
|W −W | dy + |W |3

≤

∫ 1

0
|W −W |3 dy + 3|Z1|Z

2
2 + 3|Z1|

3/2
|Z1|

1/2Z2 + |Z1|
3

≤

∫ 1

0
|W −W |3 dy + 6|Z1|Z

2
2 + 4|Z1|

3,

we have

Rδ ≤ −
1
δ
|E(Z1, Z2)|

2
+ (1+ δ)(Z2

1 + Z
2
2)+ 2Z1Z

2
2 +

2
3Z

3
1

+ 6δ(|Z1|Z
2
2 + |Z1|

3)+ P, (3.15)
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where

P := (2/3+ δ)
∫ 1

0
|W −W |3 dy − (1− δ)

∫ 1

0
y(1− y)|∂yW |2 dy. (3.16)

For the cubic term in P , we use Lemma 2.8 to estimate∫ 1

0

∣∣∣∣W − ∫ 1

0
W

∣∣∣∣3 dy
≤

∫ 1

0
z(1− z)|∂zW |2dz

∫ 1

0
|L(y)+ L(1− y)|

∣∣∣∣W − ∫ 1

0
W

∣∣∣∣dy
≤

∫ 1

0
z(1− z)|∂zW |2dz

(∫ 1

0
(L(y)+ L(1− y))2dy

)1/2(∫ 1

0

∣∣∣∣W − ∫ 1

0
W

∣∣∣2 dy)1/2

= θZ2

∫ 1

0
y(1− y)|∂yW |2 dy. (3.17)

Thus,

P ≤ −(1− δ − (2/3+ δ)θZ2)

∫ 1

0
y(1− y)|∂yW |2 dy.

Since (Z1 + 1)2 + Z2
2 = 1+ E(Z1, Z2), we have

Z2 ≤
√

1+ |E(Z1, Z2)|.

Since 2
3θ =

2
3

√
5− π2/3 ≈ 0.88 < 1, there exists a positive constant δθ < 1 such that

2
3θ
√

1+ δθ < 1.

Then, we take δ2 < 1 such that for all δ < δ2,

1− δ − (2/3+ δ)θ
√

1+ δθ > 0.

We now consider two cases, depending on whether |E(Z1, Z2)| ≤ min {δθ , δ1} or
|E(Z1, Z2)| ≥ min {δθ , δ1}, where δ1 is the constant of Proposition 3.2.

Case 1. Assume that
|E(Z1, Z2)| ≤ min {δθ , δ1}. (3.18)

Then for all δ < δ2,

1− δ − (2/3+ δ)θZ2 ≥ 1− δ − (2/3+ δ)θ
√

1+min {δθ , δ1}

≥ 1− δ − (2/3+ δ)θ
√

1+ δθ > 0.

The weighted Poincaré inequality (2.43) yields

P ≤ −2(1− δ − (2/3+ δ)θZ2)Z
2
2 .
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Therefore,

Rδ ≤ −δ
−1
|E(Z1, Z2)|

2
+ (1+ δ)(Z2

1 + Z
2
2)+ 2Z1Z

2
2 +

2
3Z

3
1 + 6δ(|Z1|Z

2
2 + |Z1|

3)

− 2(1− δ − (2/3+ δ)θZ2)Z
2
2

= −δ−1
|E(Z1, Z2)|

2
+ Pδ(Z1, Z2).

Hence, taking δ2 such that δ2 < min {δ0, 1} where δ0 is the constant of Proposition 3.2,
and using Proposition 3.2 with (3.18), we have Rδ ≤ 0 for all δ < δ2 under the assump-
tion (3.18).

Case 2. Assume now that

|E(Z1, Z2)| ≥ min {δθ , δ1}.

We use the assumption ∫ 1

0
|W(y)|2 dy ≤ C1,

which implies that all bad terms except
∫ 1

0 |W −W |
3dy in (3.15) are bounded by some

constant C̃1 depending on C1. Therefore,

Rδ ≤ −δ
−1 min{δθ , δ1}

2
+ C̃1 +

2
3 (1+ δ)

∫ 1

0
|W −W |3 dy

− (1− δ)
∫ 1

0
y(1− y)|∂yW |2 dy.

For the remaining cubic term, we use Lemma 2.8 to deduce that∫ 1

0
|W −W |3 dy

≤

(∫ 1

0
y(1− y)|∂yW1|

2 dy

)3/4 ∫ 1

0
|L(y)+ L(1− y)|3/4

∣∣∣∣W1 −

∫ 1

0
W1

∣∣∣∣3/2 dy
≤

(∫ 1

0
y(1− y)|∂yW1|

2 dy

)3/4(∫ 1

0
|L(y)+ L(1− y)|3dy

)1/4

×

(∫ 1

0

∣∣∣∣W1 −

∫ 1

0
W1

∣∣∣∣2 dy)3/4

.

Then, using Young’s inequality, we have

2
3

∫ 1

0
|W −W |3 dy ≤

1
2

∫ 1

0
y(1− y)|∂yW1|

2 dy + C

(∫ 1

0

∣∣∣∣W1 −

∫ 1

0
W1

∣∣∣∣2 dy)3

≤
1
2

∫ 1

0
y(1− y)|∂yW1|

2 dy + C̃1,
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Therefore,
Rδ ≤ −δ

−1 min{δθ , δ1}
2
+ 3C̃1.

Hence, choosing δ2 < min {δ0, 1} small enough such that −δ−1
2 min{δθ , δ1}

2
+ 3C̃1 < 0,

we have Rδ < 0.
This completes the proof of Proposition 3.3. ut

3.5. Expansion in the size of the shock

We define the following functionals:

Yg(v) := −
1

2σ 2
ε

∫
R
a′|p(v)− p(ṽε)|

2 dξ −

∫
R
a′Q(v|ṽε) dξ −

∫
R
a∂ξp(ṽε)(v − ṽε) dξ

+
1
σε

∫
R
a∂ξ h̃ε(p(v)− p(ṽε)) dξ,

B1(v) := σε

∫
R
a∂ξ ṽεp(v|ṽε) dξ,

B2(v) :=
1

2σε

∫
R
a′|p(v)− p(ṽε)|

2 dξ +
1
2

∫
R
a′′|p(v)− p(ṽε)|

2 dξ,

G2(v) := σε

∫
R
a′Q(v|ṽε) dξ,

D(v) :=
∫
R
a|∂ξ (p(v)− p(ṽε))|

2 dξ.

Note that all these quantities depend only on v (not on h). This section is devoted to the
proof of the following proposition.

Proposition 3.4. For any C2 > 0, there exist ε0, δ3 > 0 such that for any ε ∈ (0, ε0), and
any λ, δ ∈ (0, δ3) such that ε ≤ λ, the following is true. For any function v : R → R+
such that D(v)+ G2(v) is finite, if

|Yg(v)| ≤ C2ε
2/λ, ‖p(v)− p(ṽε)‖L∞(R) ≤ δ3, (3.19)

then

Rε,δ(v) := −
1
εδ
|Yg(v)|

2
+ (1+ δ)|B1(v)|

+ (1+ δε/λ)|B2(v)| − (1− δε/λ)G2(v)− (1− δ)D(v) ≤ 0. (3.20)

This proposition shows that we can afford an error of order 1 in D(v) and B1(v) (up to δ),
but only of order ε/λ in G2(v) and B2(v).

Proof of Proposition 3.4. We first require that

δ3 ≤ min {δ∗, 1/2}, ε0 ≤ min {δ∗, p(v−)/2},

where δ∗ is defined by Lemma 2.6. That way, the function a is positive, the function p(ṽε)
is uniformly bounded, and we can apply the results of Lemma 2.6 to v and w = ṽε.
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To simplify the notations, we set σ =
√
−p′(v−) > 0. This is a fixed quantity which

does not depend on ε or λ. Note that from (2.27) we have

|σ + σε| ≤ Cε. (3.21)

But since |ṽε − v−| ≤ Cε and σ 2
= −p′(v−) = γp(v−)

1/γ+1, actually we have

sup
ξ∈R
|σ 2
+ p′(ṽε(ξ))| ≤ Cε, sup

ξ∈R

∣∣∣∣ 1
σ 2 −

p(ṽε(ξ))
−1/γ−1

γ

∣∣∣∣ ≤ Cε. (3.22)

We now rewrite the above functionals Yg,B,G2,D in terms of the variables

w := p(v)− p(ṽε), y :=
p(ṽε(ξ))− p(v−)

[p]
. (3.23)

Since p(ṽε(ξ)) is increasing in ξ , we use a change of variable R 3 ξ 7→ y ∈ [0, 1]. Then
it follows from (2.23) that a = 1− λy and

a′(ξ) = −λ
p(ṽε)

′

[p]
,

dy

dξ
=
p(ṽε)

′

[p]
, |a − 1| ≤ δ3. (3.24)

• Change of variable for Yg: We decompose the Yg term as follows:

Yg = −
1

2σ 2
ε

∫
R
a′|p(v)− p(ṽε)|

2 dξ︸ ︷︷ ︸
=:Y1

−

∫
R
a′Q(v|ṽε) dξ︸ ︷︷ ︸
=:Y2

−

∫
R
a∂ξp(ṽε)(v − ṽε) dξ︸ ︷︷ ︸

=:Y3

+
1
σε

∫
R
a∂ξ h̃ε(p(v)− p(ṽε)) dξ︸ ︷︷ ︸

=:Y4

.

Using (3.24), we have

Y1 =
λ

2σ 2
ε

∫ 1

0
w2 dy.

By (3.21), we get ∣∣∣∣Y1 −
λ

2σ 2

∫ 1

0
w2 dy

∣∣∣∣ ≤ Cε0λ

∫ 1

0
w2 dy. (3.25)

Using (2.40) and (2.39) from Lemma 2.6, and ‖p(v)− p(ṽε)‖L∞(R) ≤ δ3, we find∣∣∣∣Y2 −
λ

2γ

∫ 1

0
p(ṽε)

−1/γ−1w2 dy

∣∣∣∣ ≤ Cδ3λ

∫ 1

0
w2 dy.

Moreover, using (3.22), we find∣∣∣∣Y2 −
λ

2σ 2

∫ 1

0
w2 dy

∣∣∣∣ ≤ Cλ(ε0 + δ3)

∫ 1

0
w2 dy. (3.26)
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For Y3, we first write
v − ṽε = p(v)

−1/γ
− p(ṽε)

−1/γ .

From the Taylor expansion, we find that uniformly in ξ and ε,∣∣∣∣(v − ṽε)+ p(ṽε)−1/γ−1

γ
(p(v)− p(ṽε))

∣∣∣∣ ≤ C|p(v)− p(ṽε)|2 ≤ Cδ3|p(v)− p(ṽε)|.

Using (3.22), we get∣∣∣∣(v − ṽε)+ 1
σ 2 (p(v)− p(ṽε))

∣∣∣∣ ≤ C(ε0 + δ3)|p(v)− p(ṽε)|.

Then, in view of ∂ξp(ṽε) = ε
dy
dξ

(since [p] = ε) and |a − 1| ≤ δ3, we have

∣∣∣∣Y3 −
ε

σ 2

∫ 1

0
w dy

∣∣∣∣ ≤ Cε(ε0 + δ3)

∫ 1

0
|w| dy. (3.27)

Using ∂ξ h̃ε =
∂ξp(ṽε)

σε
, we have

Y4 =
ε

σ 2
ε

∫ 1

0
(1− λy)w dy,

and so ∣∣∣∣Y4 −
ε

σ 2

∫ 1

0
w dy

∣∣∣∣ ≤ Cε(δ3 + ε0)

∫ 1

0
|w| dy. (3.28)

We combine all the terms of Yg , and write the result for the renormalized quantity

W :=
λ

ε
w. (3.29)

From (3.25)–(3.28), we obtain∣∣∣∣σ 2 λ

ε2 Yg−

∫ 1

0
W 2 dy−2

∫ 1

0
W dy

∣∣∣∣ ≤ C(ε0+δ3)

(∫ 1

0
W 2 dy+

∫ 1

0
|W | dy

)
. (3.30)

• Change of variable for B1 and B2: We decompose the B2 term as follows:

B2 =
1

2σε

∫
R
a′|p(v)− p(ṽε)|

2 dξ︸ ︷︷ ︸
=:B21

+
1
2

∫
R
a′′|p(v)− p(ṽε)|

2 dξ︸ ︷︷ ︸
=:B22

.

We first have

B21 = −
λ

2σε

∫ 1

0
w2 dy =

λ

2|σε|

∫ 1

0
w2 dy,

so ∣∣∣∣B21 −
λ

2σ

∫ 1

0
w2 dy

∣∣∣∣ ≤ λε ∫ 1

0
w2 dy ≤ εδ3

∫ 1

0
w2 dy.

Using (2.28), we get

|B22| ≤ Cελ

∫ 1

0
w2 dy ≤ Cεδ3

∫ 1

0
w2 dy.
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So, finally ∣∣∣∣B2 −
λ

2σ

∫ 1

0
w2 dy

∣∣∣∣ ≤ Cεδ3

∫ 1

0
w2 dy. (3.31)

For B1, using ∂ξ ṽε =
∂ξp(ṽε)

p′(ṽε)
, we first have

B1 = σε[p]

∫ 1

0
(1− λy)

1
p′(ṽε)

p(v|ṽε) dy.

Then, applying [p] = ε, (2.38), λ ≤ δ3, and (3.22), we have

|B1| ≤ ε|σε|

∫ 1

0

(
γ + 1

2γ
|p′(ṽε)|

−1p(ṽε)
−1
+ Cδ3

)
(1− λy)w2 dy

≤ ε|σε|

∫ 1

0

(
γ + 1

2γ
|p′(ṽε)|

−1p(ṽε)
−1
+ Cδ3

)
w2 dy

≤ ε|σε|

(
γ + 1

2γ
|p′(v−)|

−1p(v−)
−1
+ C(ε0 + δ3)

)∫ 1

0
w2 dy.

Therefore

|B1| ≤ ε
γ + 1

2γ σp(v−)
(1+ C(ε0 + δ3))

∫ 1

0
w2 dy. (3.32)

Note that the right-hand side of (3.31) is small compared to B1. But the main part of B2
is large compared to B1. It will be compensated by the first order term in G2. We denote

αγ =
γ σp(v−)

γ + 1
.

This number depends only on v− and γ , but not on ε or λ. We gather all the terms of B1
and B2, and write the result for the renormalized quantity (3.29). Thanks to (3.31) and
(3.32) we find

2αγ
λ2

ε3 |B2| ≤

(
αγ

σ

λ

ε
+ C(ε0 + δ3)

)∫ 1

0
W 2 dy, (3.33)

2αγ
λ2

ε3 |B1| ≤ (1+ C(ε0 + δ3))

∫ 1

0
W 2 dy. (3.34)

• Change of variable for G2: We use (3.24), (2.39), (3.21) and (3.22) to get

G2 = −σελ

∫ 1

0
Q(v|ṽε) dy

≥ −
σελ

2γ

∫ 1

0
p(ṽε)

−1/γ−1w2 dy + σελ
1+ γ
3γ 2

∫ 1

0
p(ṽε)

−1/γ−2w3 dy

≥

(
λ

2σ
− Cεδ3

)∫ 1

0
w2 dy −

λ

3αγ

∫ 1

0
w3 dy − C

ελ

αγ

∫ 1

0
|w|3 dy.
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When renormalizing with (3.29), we obtain

−2αγ
λ2

ε3 G2 ≤

(
−
αγ

σ

λ

ε
+Cδ3

)∫ 1

0
W 2 dy+

2
3

∫ 1

0
W 3 dy+Cε

∫ 1

0
|W |3 dy. (3.35)

Note that the very first term in (3.35) will exactly cancel the divergent term of B2. That is
why an expansion to order 3 is needed.

• Change of variable on D: To deal with the diffusion term D, we first need a uniform
(in y) estimate on dy

dξ
. This is provided by the following lemma.

Lemma 3.1. There exists a constant C > 0 such that for any ε ≤ ε0 and any y ∈ [0, 1],∣∣∣∣ dy/ dξy(1− y)
−

ε

2αγ

∣∣∣∣ ≤ Cε2.

Proof. From (1.10) we have

p(ṽε)
′
= σε(ṽε − v−)+

p(ṽε)− p(v−)

σε
,

therefore

ε
dy

dξ
= p(ṽε)

′
=

1
σε

(
σ 2
ε (ṽε − v−)+ p(ṽε)− p(v−)

)
,

with

σ 2
ε =

p(v+)− p(v−)

v− − v+
.

Plugging the expression of σ 2
ε into the one of ε dy

dξ
and writing the result in terms of

differences of values of functions at ṽε and at the end points v±, we find

ε
dy

dξ
=

1
σε(v− − v+)

(
(p(v+)− p(v−))(ṽε − v−)+ (p(ṽε)− p(v−))(v− − v+)

)
=

1
σε(v− − v+)

(
(p(v+)− p(ṽε))(ṽε − v−)+ (p(ṽε)− p(v−))(ṽε − v−)

+ (p(ṽε)− p(v−))(v− − ṽε)+ (p(ṽε)− p(v−))(ṽε − v+)
)

=
1

σε(v− − v+)

(
(p(v+)− p(ṽε))(ṽε − v−)+ (p(ṽε)− p(v−))(ṽε − v+)

)
.

Hence

ε
dy

dξ
=
(p(v+)− p(ṽε))(p(ṽε)− p(v−))

σε(v− − v+)

(
ṽε − v−

p(ṽε)− p(v−)
+

ṽε − v+

p(v+)− p(ṽε)

)
.

Then, using

y =
p(ṽε)− p(v−)

ε
, 1− y =

p(v+)− p(ṽε)

ε
,
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we have

dy/ dξ

y(1− y)
=

ε

σε(v− − v+)

(
ṽε − v−

p(ṽε)− p(v−)
+

ṽε − v+

p(v+)− p(ṽε)

)
.

Consequently,∣∣∣∣ dy/ dξy(1− y)
− ε

p′′(v−)

2p′(v−)2σ

∣∣∣∣ ≤ ∣∣∣∣ dy/ dξy(1− y)
+ ε

p′′(v−)

2p′(v−)2σε

∣∣∣∣︸ ︷︷ ︸
=:I1

+ ε
p′′(v−)

2p′(v−)2

∣∣∣∣ 1
σε
+

1
σ

∣∣∣∣︸ ︷︷ ︸
=:I2

.

We use Lemma 2.2 to obtain

I1 =
ε

|σε|(v− − v+)

∣∣∣∣ ṽε − v−

p(ṽε)− p(v−)
+

ṽε − v+

p(v+)− p(ṽε)
+

p′′(v−)

2p′(v−)2
(v− − v+)

∣∣∣∣ ≤ Cε2.

Since it follows from (3.21) that I2 ≤ Cε
2, we get∣∣∣∣ dy/ dξy(1− y)

− ε
p′′(v−)

2p′(v−)2σ

∣∣∣∣ ≤ Cε2.

Since p(v) = v−γ , we have

p′′(v−)

p′(v−)2σ
=

γ + 1
γ σp(v−)

=
1
αγ
.

This ends the proof of the lemma. ut

The diffusion term D is as follows:

D =
∫ 1

0
(1− λy)|∂yw|2

(
dy

dξ

)
dy. (3.36)

Thanks to the last lemma, we have

D ≥ (1− λ)
∫ 1

0
|∂yw|

2
(
dy

dξ

)
dy ≥ (1− λ)(ε/(2αγ )− Cε2)

∫ 1

0
y(1− y)|∂yw|2 dy

≥
ε

2αγ
(1− C(δ3 + ε0))

∫ 1

0
y(1− y)|∂yw|2 dy.

After normalization, we obtain

−2αγ
λ2

ε3 D ≤ −(1− C(ε0 + δ3))

∫ 1

0
y(1− y)|∂yW |2 dy. (3.37)

• Control on W : Using (3.19) and (3.30), we find that∫ 1

0
W 2 dy − 2

∣∣∣∣∫ 1

0
W dy

∣∣∣∣ ≤ C2σ
2
+ C(ε0 + δ3)

(∫ 1

0
W 2 dy +

∫ 1

0
|W | dy

)
.
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Moreover, since ∣∣∣∣∫ 1

0
W dy

∣∣∣∣ ≤ ∫ 1

0
|W | dy ≤

1
8

∫ 1

0
W 2 dy + 8,

we have∫ 1

0
W 2 dy ≤ 2

∣∣∣∣∫ 1

0
W dy

∣∣∣∣+ C + C(ε0 + δ3)

(∫ 1

0
W 2 dy +

∫ 1

0
|W | dy

)
≤ C + 24+

1
2

∫ 1

0
W 2 dy

if ε0 and δ3 are chosen small enough. Hence there exists a constant C1 > 0 depending
on C2, but not on ε or ε/λ, such that∫ 1

0
W 2 dy ≤ C1. (3.38)

Note that we cannot expect any smallness of this constant.

• Control on the |Yg|2 term: We have

−2αγ

(
λ2

ε3

)
|Yg|

2

εδ3
= −

2αγ
δ3σ 4

∣∣∣∣σ 2λ

ε2 Yg

∣∣∣∣2.
For any a, b ∈ R, we have

b2
− a2

= −(b − a)2 + 2b(b − a) = −(b − a)2 + 2
b
√

2

√
2(b − a) ≤ (b − a)2 +

b2

2
.

So
−a2
≤ −b2/2+ |b − a|2.

Applying this inequality with

a =
σ 2λ

ε2 Yg, b =

∫ 1

0
W 2 dy + 2

∫ 1

0
W dy,

and using (3.30), we find

−2αγ
λ2

ε3
|Yg|

2

εδ3
≤ −

αγ

δ3σ 4

∣∣∣∣∫ 1

0
W 2 dy + 2

∫ 1

0
W dy

∣∣∣∣2
+
C

δ3
(ε0 + δ3)

2
(∫ 1

0
W 2 dy +

∫ 1

0
|W | dy

)2

.

Using (3.38), we have(∫ 1

0
W 2 dy +

∫ 1

0
|W | dy

)2

≤

(∫ 1

0
W 2 dy +

√∫ 1

0
|W |2 dy

)2

≤ C

∫ 1

0
W 2 dy.

So, restricting ε0 to ε0 ≤ δ3, we have

−2αγ
λ2

ε3
|Yg|

2

εδ3
≤ −

αγ

δ3σ 4

∣∣∣∣∫ 1

0
W 2 dy + 2

∫ 1

0
W dy

∣∣∣∣2 + Cδ3

∫ 1

0
W 2 dy. (3.39)
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• Conclusion: For any δ < δ3, we have

Rε,δ(v) ≤ −
1
εδ3
|Yg(v)|

2
+ (1+ δ3)|B1(v)|

+ (1+ δ3ε/λ)|B2(v)| − (1− δ3ε/λ)G2(v)− (1− δ3)D(v).

Multiplying (3.37) by 1− δ3, (3.35) by 1− δ3ε/λ, (3.34) by 1+ δ3, (3.33) by 1+ δ3ε/λ,
and summing all these terms together with (3.39), we find (remember that ε0 ≤ δ3 and
ε/λ ≤ 1)

2αγ
λ2

ε3 Rε,δ(v) ≤ −
1

Cγ δ3

(∫ 1

0
W 2 dy + 2

∫ 1

0
W dy

)2

+ (1+ Cδ3)

∫ 1

0
W 2 dy

+
2
3

∫ 1

0
W 3 dy + Cδ3

∫ 1

0
|W |3 dy − (1− Cδ3)

∫ 1

0
y(1− y)|∂yW |2 dy.

Let us fix the value of the δ2 of Proposition 3.3 corresponding to the constant C1 of (3.38).
Then we modify δ3 to be small enough such that max(Cγ , C)δ3 ≤ δ2. Thus we have

2αγ

(
λ2

ε3

)
Rε,δ(v) ≤ −

1
δ2

(∫ 1

0
W 2 dy + 2

∫ 1

0
W dy

)2

+ (1+ δ2)

∫ 1

0
W 2 dy

+
2
3

∫ 1

0
W 3 dy + δ2

∫ 1

0
|W |3 dy − (1− δ2)

∫ 1

0
y(1− y)|∂yW |2 dy = Rδ2(W).

Then from Proposition 3.3, we have Rδ2(W) ≤ 0. Hence Rε,δ(v) ≤ 0 for any λ, δ ≤ δ3,
ε ≤ ε0 with ε ≤ λ, and any v such that D(v)+ G2(v) is finite, and satisfying (3.19). ut

3.6. Truncation of large values of |p(v)− p(ṽε)|

In order to use Proposition 3.4 for the proof of Proposition 3.1, we need to show that the
values for p(v) such that |p(v) − p(ṽε)| ≥ δ3 have a small effect. However, the value
of δ3 itself depends on the constant C2 in the proposition. Therefore, we need first to find
a uniform bound on Yg which is not yet conditioned on the level of truncation k.

We consider a truncation of |p(v) − p(ṽε)| with a constant k > 0. Later we will
consider the case k = δ3 as in Proposition 3.4. But for now, we consider the general k to
estimate the constant C2. For that, let ψk be a continuous function defined by

ψk(y) = inf(k, sup(−k, y)). (3.40)

We then define the function v̄k uniquely (since the function p is one-to-one) as

p(v̄k)− p(ṽε) = ψk(p(v)− p(ṽε)).

We have the following lemma.



624 Moon-Jin Kang, Alexis F. Vasseur

Lemma 3.2. For fixed v− > 0 and u− ∈ R, there exist C2, C, k0, ε0, δ0 > 0 such that
for any ε ≤ ε0, ε/λ ≤ δ0 with λ < 1/2, the following is true whenever |Y (U)| ≤ ε2:∫

R
|a′| |h− h̃ε|

2 dξ +

∫
R
|a′|Q(v|ṽε) dξ ≤ C

ε2

λ
, (3.41)

|Yg(v̄k)| ≤ C2ε
2/λ for every k ≤ k0. (3.42)

Proof of (3.41). We first use (2.32) to estimate∫
R
|a′|η(U |Ũε) dξ ≥

∫
R
|a′|
|h− h̃ε|

2

2
dξ

+ c1

∫
v≤3v−

|a′| |v − ṽε|
2
+ c2

∫
v>3v−

|a′| |v − ṽε|. (3.43)

On the other hand, using
∫
R a
′η(U |Ũε) dξ = −Y +

∫
R a∂ξ∇η(Ũε)(U − Ũε) dξ in (2.21),

and |Y | ≤ ε2, we have∫
R
|a′|η(U |Ũε) dξ ≤ ε

2
+

∫
R
|∂ξ∇η(Ũε)| |U − Ũε| dξ.

Then, since |∂ξ∇η(Ũε)| ≤ C|∂ξp(ṽε)| = C(ε/λ)|a′| by (2.31), we have∫
R
|a′|η(U |Ũε) dξ ≤ ε

2
+ C

ε

λ

∫
R
|a′| |U − Ũε| dξ

≤ ε2
+ C

ε

λ

∫
v>3v−

|a′| |v − ṽε| dξ

+ C
ε

λ

(∫
v≤3v−

|a′| |v − ṽε|
2 dξ +

∫
R
|a′| |h− h̃ε|

2 dξ

)1/2(∫
R
|a′| dξ

)1/2

.

Since it follows from (2.1) that∫
R
|a′| dξ =

λ

ε

∫
R
|∂ξp(ṽε)| dξ ≤

λ

ε
|p′(v+)|

∫
R
|ṽ′ε| dξ ≤ Cλ,

using Young’s inequality we get∫
R
|a′|η(U |Ũε) dξ ≤ ε

2
+ C

ε

λ

∫
v>3v−

|a′| |v − ṽε| dξ +
c1

2

∫
v≤3v−

|a′| |v − ṽε|
2 dξ

+
1
4

∫
R
|a′| |h− h̃ε|

2 dξ + C
ε2

λ
. (3.44)

Now, taking δ0 ≤ 1/2 such that ε/λ < δ0 ≤ 1/2, and then combining the two estimates
(3.43) and (3.44) together with ε2 < Cε2/λ, we have∫

R
|a′|
|h− h̃ε|

2

2
dξ +

∫
v≤3v−

|a′| |v − ṽε|
2
+

∫
v>3v−

|a′| |v − ṽε| ≤ C
ε2

λ
. (3.45)

Applying the above estimate to (3.44), we deduce (3.41).
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Proof of (3.42). First of all, we have

|Yg(v̄k)| =

∣∣∣∣− 1
2σ 2
ε

∫
R
a′|p(v̄k)− p(ṽε)|

2 dξ −

∫
R
a′Q(v̄k|ṽε) dξ

−

∫
R
a∂ξp(ṽε)(v̄k − ṽε) dξ +

1
σε

∫
R
a∂ξ h̃ε(p(v̄k)− p(ṽε)) dξ

∣∣∣∣
≤ C

∫
R
|a′| |p(v̄k)− p(ṽε)|

2 dξ︸ ︷︷ ︸
=:I1

+

∫
R
|a′|Q(v̄k|ṽε) dξ

+ C

∫
R

ε

λ
|a′|
(
|v̄k − ṽε| + |p(v̄k)− p(ṽε)|

)
dξ︸ ︷︷ ︸

=:I2

.

Let us fix k0 = δ∗/2 of Lemma 2.6. Then, for any k ≤ k0, we have |p(v̄k) − p(ṽε)| ≤
k ≤ δ∗/2. Thus using (2.41) with ε0 � 1, we have

I1 ≤ C

∫
R
|a′|Q(v̄k|ṽε) dξ.

From (2.32) and (2.41), we have

I2 ≤

√∫
R
(ε/λ)2|a′| dξ

√∫
R
|a′|
(
|v̄k − ṽε|2 + |p(v̄k)− p(ṽε)|2

)
dξ

≤ C
√
ε2/λ

√∫
R
|a′|Q(v̄k|ṽε) dξ .

Notice that since the definition of v̄k implies either ṽε ≤ v̄k ≤ v or v ≤ v̄k ≤ ṽε, it
follows from (2.33) that

Q(v|ṽε) ≥ Q(v̄k|ṽε).

Therefore, using (3.41), there exists a constant C2 > 0 such that

|Yg(v̄k)| ≤ C

∫
R
|a′|Q(v|ṽε) dξ + C

√
ε2/λ

√∫
R
|a′|Q(v|ṽε) dξ ≤ C2ε

2/λ. ut

We now fix the constant δ3 of Proposition 3.4 associated to the constant C2 of Lemma 3.2.
Without loss of generality, we can assume that δ3 < k0 (since Proposition 3.4 is valid for
any smaller δ3). From now on, we set

v̄ := v̄δ3 , Ū := (v̄, h).

Note that from Lemma 3.2, we have

|Yg(v̄)| ≤ C2ε
2/λ. (3.46)
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We will use G1,G2,D to denote three good terms of G, that is, G = G1 + G2 +D where

G1(U) :=
σε

2

∫
R
a′
(
h− h̃ε −

p(v)− p(ṽε)

σε

)2

dξ,

G2(U) := σε

∫
R
a′Q(v|ṽε) dξ,

D(U) :=
∫
R
a|∂ξ (p(v)− p(ṽε))|

2 dξ. (3.47)

We first notice that since p(v̄)− p(ṽε) is constant for v satisfying either p(v)− p(ṽε) <
−δ3 or p(v)− p(ṽε) > δ3, we have

D(Ū) =
∫
R
a|∂ξ (p(v)− p(ṽε))|

21{|p(v)−p(ṽε)|≤δ3} dξ.

We also note that

|p(v)− p(v̄)| = |(p(v)− p(ṽε))+ (p(ṽε)− p(v̄))|

= |(ψδ3 − I )(p(v)− p(ṽε))| = (|p(v)− p(ṽε)| − δ3)+. (3.48)

Therefore,

D(U) =
∫
R
a|∂ξ (p(v)− p(ṽε))|

2 dξ

=

∫
R
a|∂ξ (p(v)− p(ṽε))|

2(1{|p(v)−p(ṽε)|≤δ3} + 1{|p(v)−p(ṽε)|>δ3}) dξ

= D(Ū)+
∫
R
a|∂ξ (p(v)− p(v̄))|

2 dξ

≥

∫
R
a|∂ξ (p(v)− p(v̄))|

2 dξ, (3.49)

which also yields

D(U)−D(Ū) =
∫
R
a|∂ξ (p(v)− p(v̄))|

2 dξ ≥ 0. (3.50)

On the other hand, since Q(v|ṽε) ≥ Q(v̄|ṽε), we have

|σε|

∫
R
|a′|Q(v|ṽε) dξ ≥ G2(U)− G2(Ū)

= |σε|

∫
R
|a′|(Q(v|ṽε)−Q(v̄|ṽε)) dξ ≥ 0. (3.51)

We will first show the following lemma.
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Lemma 3.3. There exist C, ε0, δ0 > 0 such that for any ε < ε0, ε/λ < δ0, and λ < 1/2,
the following is true whenever |Y (U)| ≤ ε2:

0 ≤ G2(U)− G2(Ū) ≤ G2(U) ≤ Cε
2/λ, (3.52)∫

R
|a′| |p(v)− p(v̄)|2 dξ +

∫
R
|a′| |p(v)− p(v̄)| dξ ≤ C

√
ε/λD(U), (3.53)∫

R
|a′|

∣∣|p(v)− p(ṽε)|2 − |p(v̄)− p(ṽε)|2∣∣ dξ ≤ C√ε/λD(U), (3.54)∫
R
|a′| |p(v|ṽε)− p(v̄|ṽε)| dξ +

∫
R
|a′| |Q(v|ṽε)−Q(v̄|ṽε)| dξ +

∫
R
|a′| |v − v̄| dξ

≤ C
√
ε/λD(U)+ C(G2(U)− G2(Ū)). (3.55)

Proof. We split the proof into several steps.

Step 1. The estimate (3.41) with (3.51) gives (3.52).

Step 2. Note first that since (y − δ3/2)+ ≥ δ3/2 whenever (y − δ3)+ > 0, we have

(y − δ3)+ ≤ (y − δ3/2)+1{y−δ3>0} ≤ (y − δ3/2)+

(
(y − δ3/2)+

δ3/2

)
≤

2
δ3
(y − δ3/2)2+. (3.56)

Hence, to show (3.53), it is enough to show it only for the quadratic part, with v̄ defined
with δ3/2 instead of δ3. We will keep the notation v̄ for this case below.

Step 3. Since |a′| = (λ/ε)|ṽ′ε|, thanks to (2.2) and (3.41), we get

2ε
∫ 1/ε

−1/ε
Q(v|ṽε) dξ ≤

2ε
inf[−1/ε,1/ε] |a′|

∫
R
|a′|Q(v|ṽε) dξ ≤ C

ε

λε

ε2

λ
= C

(
ε

λ

)2

.

Hence, there exists ξ0 ∈ [−1/ε, 1/ε] such thatQ(v(ξ0), ṽε(ξ0)) ≤ C(ε/λ)
2. For δ0 small

enough, and using (2.41), we have

|(p(v)− p(ṽε))(ξ0)| ≤ Cε/λ.

Thus, if δ0 is small enough such that Cε/λ ≤ δ3/2, then from (3.48) we have

(p(v)− p(v̄))(ξ0) = 0.

Therefore using (3.49), we find that for any ξ ∈ R,

|(p(v)− p(v̄))(ξ)| =

∣∣∣∣∫ ξ

ξ0

∂ζ (p(v)− p(v̄)) dζ

∣∣∣∣
≤
√
|ξ | + |ξ0|

√∫
R
|∂ζ (p(v)− p(v̄))|2 dζ

≤ C
√
|ξ | + 1/ε

√
D(U). (3.57)
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For any ξ such that |(p(v)− p(v̄))(ξ)| > 0, we see from (3.48) that |(p(v)− p(ṽε))(ξ)|
> δ3. Thus using (2.35) and (2.32), we haveQ(v(ξ)|ṽε(ξ)) ≥ α for some constant α > 0
depending only on δ3. Hence

1{|p(v)−p(v̄)|>0} ≤ Q(v|ṽε)/α. (3.58)

In the next computation, we split the integral into two parts, and use (3.57)–(3.58):∫
R
|a′| |p(v)− p(v̄)|2 dξ ≤

∫ ε−1√λ/ε

−ε−1√λ/ε
|a′| |p(v)− p(v̄)|2 dξ

+

∫
|ξ |≥ε−1√λ/ε

|a′||p(v)− p(v̄)|2 dξ

≤

(
sup

[−

√
λ/ε3,
√
λ/ε3]

|p(v)− p(v̄)|2
) ∫ ε−1√λ/ε

−ε−1√λ/ε
|a′|1{|p(v)−p(v̄)|>0} dξ

+ CD(U)
∫
|ξ |≥ε−1√λ/ε

|a′|(|ξ | + 1/ε) dξ

≤ CD(U)
(√

λ

ε3

∫
R
|a′|

Q(v|ṽε)

α
dξ + 2

∫
|ξ |≥ε−1√λ/ε

|a′| |ξ | dξ

)
.

Therefore, ∫
R
|a′| |p(v)− p(v̄)|2 dξ ≤ C

√
ε/λD(U).

Indeed, using (3.41) and (2.1) (recalling |a′| = (λ/ε)|ṽ′ε|), we have∫
R
|a′| |p(v)− p(v̄)|2 dξ ≤ CD(U)

(√
ε/λ+ λε

∫
|ξ |≥ε−1√λ/ε

e−cε|ξ ||ξ | dξ

)
,

and for the last term, we take δ0 small enough such that for any ε/λ ≤ δ0,

λε

∫
|ξ |≥ε−1√λ/ε

e−cε|ξ ||ξ | dξ =
λ

ε

∫
|ξ |≥
√
λ/ε

e−c|ξ ||ξ | dξ ≤
λ

ε

∫
|ξ |≥
√
λ/ε

e−
c
2 |ξ | dξ

=
2λ
cε
e−

c
2
√
λ/ε
≤

√
ε

λ
.

As mentioned in Step 2, recall that v̄ = v̄δ3/2 in the above estimate. Then using (3.48),
we have∫

R
|a′| |p(v)− p(v̄δ3)|

2 dξ =

∫
R
|a′|(|p(v)− p(ṽε)| − δ3)

2
+ dξ

≤

∫
R
|a′|(|p(v)− p(ṽε)| − δ3/2)2+ dξ

=

∫
R
|a′| |p(v)− p(v̄δ3/2)|

2 dξ ≤ CD(U)
√
ε/λ.
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Likewise, using (3.48) and (3.56) with y := |p(v)− p(ṽε)|, we have∫
R
|a′| |p(v)− p(v̄δ3)| dξ ≤

2
δ3

∫
R
|a′| |p(v)− p(v̄δ3/2)|

2 dξ ≤ CD(U)
√
ε/λ.

Hence, we obtain (3.53).

Step 4. We use |p(v̄)− p(ṽε)| ≤ δ3 and (3.53) to show∫
R
|a′|

∣∣|p(v)− p(ṽε)|2 − |p(v̄)− p(ṽε)|2∣∣ dξ
≤

∫
R
|a′| |p(v)− p(v̄)| |p(v)+ p(v̄)− 2p(ṽε)| dξ

≤

∫
R
|a′| |p(v)− p(v̄)|

(
|p(v)− p(v̄)| + 2|p(v̄)− p(ṽε)|

)
dξ

≤

∫
R
|a′|
(
|p(v)− p(v̄)|2 + 2δ3|p(v)− p(v̄)|

)
dξ ≤ CD(U)

√
ε/λ,

which gives (3.54).

Step 5. First, since ṽε ∈ [v−/2, v−] for ε0 small enough, it follows from the definition of
the relative pressure (2.19) that

|p(v|ṽε)− p(v̄|ṽε)| = |(p(v)− p(v̄))− p
′(ṽε)(v − v̄)| ≤ |p(v)− p(v̄)| + C|v − v̄|.

Thus,∫
R
|a′| |p(v|ṽε)− p(v̄|ṽε)| dξ +

∫
R
|a′| |v − v̄| dξ

≤ C

∫
R
|a′| |p(v)− p(v̄)| dξ + C

∫
R
|a′| |v − v̄| dξ.

To control the last term above, we use (2.34) as follows: If |v − v̄| > 0, we see from the
definition of v̄ that |p(v̄)− p(ṽε)| = δ3. Then using (2.35), we find

|v̄ − ṽε| ≥ min {c−1
3 δ3, v−/2− ε0}.

Taking δ∗ in (2) of Lemma 2.4 such that ε0 ≤ δ∗/2 and min {c−1
3 δ3, v−/2− ε0} ≥ δ∗, we

use (2.34) with w = ṽε, u = v̄ and v = v to find that there is a constant C > 0 such that

C|v − v̄| ≤ Q(v|ṽε)−Q(v̄|ṽε).

Therefore, using (3.53) and (3.51), we find∫
R
|a′| |p(v|ṽε)− p(v̄|ṽε)| dξ +

∫
R
|a′| |v − v̄| dξ

≤ C

∫
R
|a′| |p(v)− p(v̄)| dξ + C

∫
R
|a′|(Q(v|ṽε)−Q(v̄|ṽε)) dξ

≤ CD(U)
√
ε/λ+ C[G2(U)− G2(Ū)].

This together with (3.51) completes the proof of (3.55). ut
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We first rewrite Y in (2.21) as

Y = −

∫
R
a′
|h− h̃ε|

2

2
dξ −

∫
R
a′Q(v|ṽε) dξ

+

∫
R
a
(
−∂ξp(ṽε)(v − ṽε)+ ∂ξ h̃ε(h− h̃ε)

)
dξ.

We will split Y into three parts Yg , Yb and Yl , where Yg will consist of terms related to
v− ṽε, while Yb and Yl will consist of terms related to h− h̃ε. While Yb is quadratic in U ,
the term Yl is linear in h− h̃ε. More precisely, Y can be decomposed as

Y = Yg + Yb + Yl,

where

Yg := −
1

2σ 2
ε

∫
R
a′|p(v)− p(ṽε)|

2 dξ −

∫
R
a′Q(v|ṽε) dξ −

∫
R
a∂ξp(ṽε)(v − ṽε) dξ

+
1
σε

∫
R
a∂ξ h̃ε(p(v)− p(ṽε)) dξ,

Yb := −
1
2

∫
R
a′
(
h− h̃ε −

p(v)− p(ṽε)

σε

)2

dξ

−
1
σε

∫
R
a′(p(v)− p(ṽε))

(
h− h̃ε −

p(v)− p(ṽε)

σε

)
dξ.

Yl :=

∫
R
a∂ξ h̃ε

(
h− h̃ε −

p(v)− p(ṽε)

σε

)
dξ.

Notice that the first part Yg is independent of h, and Yg(Ū) was used to absorb the bad
term B in Proposition 3.4, while Yb and Yl are useless because B does not depend on
h− h̃ε. Therefore we need to show that Yg(U)− Yg(Ū), Yb(U) and Yl(U) are negligible
by other terms. We now prove the following lemma.

Lemma 3.4. There exist constants δ0, ε0, C,C
∗ > 0 such that for any ε < ε0, and any

λ < 1/2 with ε/λ < δ0, the following statements hold true.

(1) For any U such that |Y (U)| ≤ ε2,

|B(U)− B(Ū)| ≤ C
√
ε/λD(U)+ C(ε/λ)[G2(U)− G2(Ū)], (3.59)

|B(U)| ≤ C∗
ε2

λ
+ C

√
ε/λD(U). (3.60)

(2) For any U such that |Y (U)| ≤ ε2 and D(U) ≤ 4C∗ε2/λ,

|Yg(U)− Yg(Ū)| + |Yb(U)| ≤ Cε
2/λ, (3.61)

|Yg(U)− Yg(Ū)| + |Yb(U)| ≤ C
√
ε/λD(U)+ C[G2(U)− G2(Ū)]

+ (λ/ε)1/4G1(U)+ C(ε/λ)
1/4G2(Ū), (3.62)

|Yl(U)|
2
≤ (ε2/λ)G1(U). (3.63)
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Proof. We split the proof into several steps.

Step 1. Recall the bad term B in (2.21). Using (2.38), (2.41) and |ṽ′ε| + |a
′′
| ≤ C|a′|, and

then (3.41), we have

|B(Ū)| ≤ C
∫
R
|a′|Q(v̄|ṽε) dξ ≤ C

∫
R
|a′|Q(v|ṽε) dξ ≤ C

∗ε2/λ. (3.64)

Moreover, using (3.54) and (3.55) together with |ṽ′ε| ≤ C(ε/λ)|a
′
|, we have

|B(U)− B(Ū)| ≤ CD(U)
√
ε/λ+ C(ε/λ)[G2(U)− G2(Ū)].

Combining the above two estimates with (3.52), we obtain (3.60).

Step 2. We show (3.61) as follows: Using (3.53)–(3.55), we have

|Yg(U)− Yg(Ū)| ≤ C

∫
R
|a′|
(∣∣|p(v)− p(ṽε)|2 − |p(v̄)− p(ṽε)|2∣∣

+ |Q(v|ṽε)−Q(v̄|ṽε)| + |v − v̄| + |p(v)− p(v̄)|
)
dξ

≤ C
√
ε/λD(U)+ C(G2(U)− G2(Ū)). (3.65)

Then using (3.52) and D(U) − D(Ū) ≤ D(U) ≤ Cε2/λ, we have |Yg(U) − Yg(Ū)| ≤
Cε2/λ.

Next, recalling G1 in (3.47), we have

|Yb(U)| ≤ CG1(U)+ C

∫
R
|a′| |p(v)− p(ṽε)|

2 dξ ≤ C(G1(U)+ |B(U)|).

Since

G1(U) ≤

∫
R
|a′|
(
|h− h̃ε|

2
+ |p(v)− p(ṽε)|

2) dξ,
using (3.41) and (3.60) we obtain |Yb(U)| ≤ Cε2/λ.

Step 3. We first estimate the term
∫
a′(p(v)−p(ṽε))(h− h̃ε + (p(v)−p(ṽε))/σ ) dξ in

Yb using Young’s inequality with ε/λ as follows:∣∣∣∣∫ a′(p(v)− p(ṽε))
(
h− h̃ε + (p(v)− p(ṽε))/σ

)
dξ

∣∣∣∣
≤ (λ/ε)1/4G1(U)+ C(ε/λ)

1/4
∫
R
|a′| |p(v)− p(ṽε)|

2 dξ.

Since (3.59) and the first inequality in (3.64) yield∫
R
|a′| |p(v)− p(ṽε)|

2 dξ ≤ |B(U)− B(Ū)| + |B(Ū)|

≤ C
√
ε/λD(U)+ C(ε/λ)[G2(U)− G2(Ū)] + CG2(Ū),
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we have∣∣∣∣∫ a′(p(v)− p(ṽε))
(
h− h̃ε + (p(v)− p(ṽε))/σ

)
dξ

∣∣∣∣
≤ (λ/ε)1/4G1(U)+ C

√
ε/λD(U)+ C(ε/λ)[G2(U)− G2(Ū)] + C(ε/λ)

1/4G2(Ū).

Therefore, this estimate together with λ/ε > δ−1
0 � 1 and (3.65) implies

|Yg(U)− Yg(Ū)| + |Yb(U)|

≤ C
√
ε/λD(U)+ C[G2(U)− G2(Ū)] + (λ/ε)

1/4G1(U)+ C(ε/λ)
1/4G2(Ū),

which proves (3.62).

Step 4. Using the Cauchy–Schwarz inequality together with |h̃′ε| ≤ C(ε/λ)|a
′
|, we find

|Yl(U)|
2
≤

(
ε

λ

)2[∫
R
|a′| dξ

] ∫
R
|a′| |h−h̃ε+(p(v)−p(ṽε))/σ |

2 dξ ≤ C(ε2/λ)G1(U),

which gives (3.63). ut

3.7. Proof of Proposition 3.1

We now prove the main proposition of the paper. We split the proof into two steps, de-
pending on the strength of the dissipation term D(U).

Step 1. We first consider the case where D(U) ≥ 4C∗ε2/λ, where the constant C∗ is
defined as in Lemma 3.4. Then using (3.60), we find that for δ0 small enough,

R(U) := −|Y (U)|2/ε4
+ (1+ δ0ε/λ)|B(U)| − G(U) ≤ 2|B(U)| −D(U)

≤ 2C∗ε2/λ+ (2C
√
ε/λ− 1)D(U) ≤ 2C∗ε2/λ− 1

2D(U) ≤ 0,

which gives the desired result.

Step 2. We now assume the other alternative, i.e., D(U) ≤ 4C∗ε2/λ.We will use Propo-
sition 3.4 to get the desired result. First of all, we have (3.46), and for the small constant
δ3 of Proposition 3.4 associated to the constant C2 of (3.46), we have |p(v̄)−p(ṽε)| ≤ δ3.

Let us take δ0 small enough such that δ0 ≤ δ
8
3 . Using

Yg(Ū) = Y (U)− (Yg(U)− Yg(Ū))− Yb(U)− Yl(U),

we have

|Yg(Ū)|
2
≤ 4|Y (U)|2 + 4|Yg(U)− Yg(Ū)|2 + 4|Yb(U)|2 + 4|Yl(U)|2,

which can be written as

−4|Y (U)|2 ≤ −|Yg(Ū)|2 + 4|Yg(U)− Yg(Ū)|2 + 4|Yb(U)|2 + 4|Yl(U)|2.
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Thus we find that for any ε < ε0 (≤ δ3) and ε/λ < δ0,

R(U) ≤ −
4|Y (U)|2

εδ3
+

(
1+ δ0

ε

λ

)
|B(U)| − G(U)

≤ −
|Yg(Ū)|

2

εδ3
+

(
1+ δ0

ε

λ

)
|B(Ū)| − G2(Ū)− (1− δ3)D(U)

+
4
εδ3
|Yg(U)− Yg(Ū)|

2
+

4
εδ3
|Yb(U)|

2
+

4
εδ3
|Yl(U)|

2

+

(
1+ δ0

ε

λ

)
|B(U)− B(Ū)| − (G2(U)− G2(Ū))− G1(U)− δ3D(U).

To control the square of |Yg(U)−Yg(Ū)|+ |Yb(U)|, we multiply the bound of (3.61) and
the bound of (3.62) to find

1
εδ3
|Yg(U)− Yg(Ū)|

2
+

1
εδ3
|Yb(U))|

2

≤
C

δ3

[(
ε

λ

)3/2

D(U)+
ε

λ
(G2(U)− G2(Ū))+

(
ε

λ

)3/4

G1(U)+

(
ε

λ

)1/4
ε

λ
G2(Ū)

]
≤ Cδ

1/8
0

[
D(U)+ (G2(U)− G2(Ū))+ G1(U)+

ε

λ
G2(Ū)

]
.

Using also (3.63) and (3.59) with (3.50), we find that for δ0 small enough with δ0 ≤ δ
8
3 ,

R(U) ≤ −
|Yg(Ū)|

2

εδ3
+

(
1+δ3

ε

λ

)
|B(Ū)|−

(
1−δ3

ε

λ

)
G2(Ū)−(1−δ3)D(Ū). (3.66)

Since the above quantities Yg(Ū), B(Ū) = B1(Ū) + B2(Ū), G2(Ū) and D(Ū) depend
only on v̄ through Ū , it follows from Proposition 3.4 that R(U) ≤ 0. This completes the
proof of Proposition 3.1.

Appendix A. Proof of Lemma 2.7

We show the following lemma which contains Lemma 2.7.

Lemma A.1. Let

g(x) := 2x − 2x2
−

4
3x

3
+

4
3θ(−x

2
− 2x)3/2,

where θ =
√

5− π2/3 ≈ 1.308. The following statements are true.

(1) For any x ∈ [−2,−(1+
√

3)/2], g′′(x) > 0.
(2) For any x ∈ (−(1+

√
3)/2,−1], g′(x) > 0.

(3) The function g′ has exactly two roots x1 and x2 on [−1, 0]. The smaller one x1 belongs
to (−1+

√
2/2,−1+

√
3/2), and is the only local maximum of g on (−1, 0).

(4) The function g is negative on (−2, 0).

Point (4) is the result of Lemma 2.7.
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Proof. Step 1. Note that
−x2
− 2x = 1− (1+ x)2.

This function is increasing on (−2,−1). So, for −2 ≤ x ≤ −(1+
√

3)/2 we have

1− (1+ x)2 ≤ 1− 1
4 (1−

√
3)2 = 1− 1

4 (1+ 3− 2
√

3) =
√

3/2. (A.1)

We have

g′(x)/2 = 1− 2x − 2x2
− 2θ(1+ x)

√
1− (1+ x)2,

g′′(x)/2 = −2− 4x − 4θ
√

1− (x + 1)2 +
2θ√

1− (x + 1)2
.

So, thanks to (A.1), if −2 ≤ x ≤ −(1+
√

3)/2 then

g′′(x)/2 ≥ −2− 4x − 4θ
√
√

3/2+ 2θ
√

2/
√

3.

But

−4θ
√
√

3/2+ 2θ
√

2/
√

3 ≈ −2.06 > −2.1 and −(1+
√

3)/2 < −
4.1
4
.

Therefore

g′′(x)/2 > −4.1− 4x > 0 whenever −2 ≤ x ≤ −(1+
√

3)/2.

This proves point (1) of the lemma.

Step 2. We have

g′(x) = 2− 4x − 4x2︸ ︷︷ ︸
=:h1(x)

− 4θ(x + 1)
√

1− (1+ x)2︸ ︷︷ ︸
=:h2(x)

. (A.2)

Note that −(1+
√

3)/2 and −(1−
√

3)/2 (> −1) are the two roots of h1. Therefore
h1 > 0 on (−(1+

√
3)/2,−1]. The function x+ 1 is nonpositive on this interval, so also

h2 ≤ 0 on that interval. Hence g′ > 0 there. This proves point (2).

Step 3. For any root x of g′,

P(x) := (h1(x))
2
− (h2(x))

2
= 0.

Note that P is a polynomial of order 4, so it has at most four roots. Using special roots of
h1 and h2, we find that

P(−2) = (h1(−2))2 > 0, P

(
−

1+
√

3
2

)
= −

(
h2

(
−

1+
√

3
2

))2

< 0,

P (−1) = (h1(−1))2 > 0.
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Hence P has at least two roots on (−2,−1). Therefore P (and g′) cannot have more than
two roots on [−1, 0]. However,

g′(−1+
√

2/2) = 2(
√

2−θ) > 0, g′(−1+
√

3/2) = (2−3θ)
√

3−1 < 0, g′(0) = 2 > 0.

So g′ has exactly two roots in [−1, 0]. One root x1 is in (−1+
√

2/2,−1+
√

3/2) and the
other root x2 is in (−1+

√
3/2, 0). Moreover, g is increasing on (−1, x1) and on (x2, 0),

and decreasing on (x1, x2). Hence, g has a local maximum at x1 and a local minimum
at x2.
Step 4. The function g is continuous on [−2, 0], so it attains its maximum on this in-
terval. Assume that this maximum is reached at x∗ ∈ (−2, 0). Then g′(x∗) = 0 and
g′′(x∗) ≤ 0. From Steps 1 and 2, we have x∗ ∈ (−1, 0). But from Step 3, we have
x∗ = x1 ∈ (−1+

√
2/2,−1+

√
3/2).

Let us consider

h′1(x) = 4− 8(1+ x),
√

1− (1+ x)2 h′2(x) = 4θ(1− 2(1+ x)2).

Since

for x ∈ (−1+
√

2/2,−1+
√

3/2), h′i(x) ≤ 0 and h′′i (x) ≤ 0, for i = 1, 2,

we see that h1 and h2 are decreasing on (−1+
√

2/2,−1+
√

3/2). Since g(0) = 0, and
g(x1) is supposed to be a global maximum, we have g(x1) ≥ 0 and

I =

∫ x1

−1+
√

2/2
g′(y) dy = g(x1)− g(−1+

√
2/2) ≥ −g(−1+

√
2/2) > 0.107.

But using the monotonicity of h1 and h2, and h(x1) = h2(x1) (since g′(x1) = 0), we have

I =

∫ x1

−1+
√

2/2
(h1(y)− h2(y)) dy ≤

(
x1 − (−1+

√
2/2)

)(
h1(−1+

√
2/2)− h2(x1)

)
=
(
x1 − (−1+

√
2/2)

)(
h1(−1+

√
2/2)− h1(x1)

)
≤

√
3−
√

2
2

(
h1(−1+

√
2/2)− h1(−1+

√
3/2)

)
.

Since
√

3−
√

2
2

< 0.2, h1(−1+
√

2/2)− h1(−2+ 2
√

3/2) = 2
√

2− 2(
√

3− 1/2) < 0.4,

we have I ≤ 0.08, which contradicts I > 0.107. Hence g reaches its maximum only at 0
or −2. Since g(−2) = −4/3 and g(0) = 0, we have

g(x) < 0 for every x ∈ [−2, 0). ut

Appendix B. Proof of Lemma 2.9

Let {Pn : [−1, 1] → R}n≥0 be an orthonormal basis of the Legendre polynomials, which
are solutions to Legendre’s differential equations

d

dx

(
(1− x2)

d

dx
Pn(x)

)
= −n(n+ 1)Pn(x), (B.3)
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and are orthonormal in L2
[−1, 1], i.e.,

∫ 1
−1 PiPj = δij and

∫ 1
−1 P

2
i = 1. Then, for any

w ∈ L2
[−1, 1], we have w =

∑
∞

i=0 ciPi , ci =
∫ 1
−1w(x)Pi(x) dx. In particular, we see

that P0(x) =
1
√

2
, thus c0P0 =

1
2

∫ 1
−1w dx =: w̄, which is an average of w over [−1, 1].

Then, since w − w̄ =
∑
∞

i=1 ciPi , using (B.3), we have∫ 1

−1
(1− x2)|w′|2 dx = −

∫ 1

−1
((1− x2)w′)′w dx = −

∫ 1

−1
((1− x2)w′)′(w − w̄) dx

= −

∑
i≥1

∑
j≥1

∫ 1

−1
ci((1− x2)P ′i )

′cjPj dx =
∑
i≥1

∑
j≥1

∫ 1

−1
cicj i(i + 1)PiPj dx

=

∑
i≥1

∫ 1

−1
i(i + 1)c2

i P
2
i dx ≥ 2

∑
i≥1

∫ 1

−1
c2
i P

2
i dx = 2

∫ 1

−1
(w − w̄)2 dx.

Therefore, ∫ 1

−1
(w − w̄)2 dx ≤

1
2

∫ 1

−1
(1− x2)|w′|2 dx.

By a change of variable W(x) := w(2x − 1), we have∫ 1

0
(W − W̄ )2 dx ≤

1
2

∫ 1

0
x(1− x)|W ′|2 dx,

where W̄ =
∫ 1

0 W dx.
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