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Abstract. In this paper we prove a compactness and semicontinuity result in GSBD for sequences
with bounded Griffith energy. This generalises classical results in (G)SBV by Ambrosio [1, 2, 4]
and SBD by Bellettini–Coscia–Dal Maso [9]. As a result, the static problem in Francfort–Marigo’s
variational approach to crack growth [30] admits (weak) solutions.
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1. Introduction

The variational approach to fracture was introduced by Francfort and Marigo [30] in order
to build crack evolutions in brittle materials, following Griffith’s laws [36], without a
priori knowledge of the crack path (or surface in higher dimension). It relies on successive
minimisations of the Griffith energy:

(u,K) 7→

∫
�\K

Ce(u) : e(u) dx + γHn−1(K)

where � ⊂ Rn is a bounded open set, the reference configuration, u : � → Rn is
an (infinitesimal) displacement, e(u) its symmetrised gradient (the infinitesimal elastic
strain) and C the Cauchy stress tensor defining the Hooke law (in particular, Ca : a defines
a positive definite quadratic form of the n × n symmetric tensor a). The symmetrised
gradient e(u) is defined out of the crack set K , which is in the theory a compact (n−1)-
dimensional set and is penalised by its surface (multiplied by a coefficient γ called the
toughness).

The minimisation of the energy is under the constraint that K should contain a pre-
viously computed crack K0, and that u should satisfy a Dirichlet condition u = u0 on a
subset ∂D� \K of ∂�, where ∂D� is a regular part of the boundary and u0 a sufficiently
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regular displacement. Hence an important question in the theory is whether the problem

min
u=u0 on ∂D�\K
K0⊂Kcompact

∫
�\K

Ce(u) : e(u) dx + γHn−1(K) (1.1)

has a solution.
This problem however is not easy to analyse, since the energy controls very little of

the function u: for instance if K almost cuts out from ∂D� a connected component of �,
the function u may have any (arbitrarily large) value in this component at small cost.

From a technical point of view, one cannot take truncations or compositions with
bounded transformations to get an a priori L∞ bound for minimisers. In fact, the integra-
bility of e(u) is in general lost by e(ψ(u)), unless ψ(y) = y0 + λy for some y0 ∈ Rn,
λ ∈ R (see e.g. the introduction of [21]).

For this reason, most of the “sound” approaches to problem (1.1) consider additional
assumptions. In particular, a global L∞ bound on the displacements ensures one may
work in the class SBD of Special functions with Bounded Deformation [5], provided one
considers a weak formulation of the problem where K is replaced with the intrinsic jump
set Ju of u (which need not to be closed anymore): in this space minimising sequences are
shown to be compact [9], and the energy to be lower semicontinuous. Another possible
assumption is, in 2d, that the crack set K be connected [25, 12].

The natural space for studying (1.1) is not, in fact, SBD(�) (which assumes that the
symmetrised gradient of u is a measure and hence u is in Ln/(n−1)(�;Rn)) but the space
GSBD(�), introduced by Dal Maso in [21]. This space, defined by the slicing properties
of the functions, is designed so as to contain “all” displacements u for which the energy is
finite. Even if [21] proves compactness under very mild assumptions on the integrability
of displacements, no compactness result was available in GSBD for minimizing sequences
of (the weak formulation of) (1.1) until very recently.

The first existence result without further constraint has been proven indeed in [35],
in dimension two. It relies on a delicate construction showing a piecewise Korn inequal-
ity [33] (for approximate Korn and Korn–Poincaré inequalities see also e.g. [19, 13, 32],
for piecewise rigidity cf. [18]).

In this paper, we prove the following general compactness result for sequences
bounded in energy, in the space GSBD(�), in any dimension.

Theorem 1.1. Let φ : R+→ R+ be a non-decreasing function with

lim
t→+∞

φ(t)

t
= +∞, (1.2)

and let (uh)h be a sequence in GSBD(�) such that∫
�

φ(|e(uh)|) dx +Hn−1(Juh) < M (1.3)

for some constant M independent of h. Then there exists a subsequence, still denoted
by (uh)h, such that

A := {x ∈ � : |uh(x)| → +∞} (1.4)
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has finite perimeter, and u ∈ GSBD(�) with u = 0 on A for which

uh→ u Ln-a.e. in � \ A, (1.5a)

e(uh) ⇀ e(u) in L1(� \ A;Mn×n
sym ), (1.5b)

Hn−1(Ju ∪ ∂
∗A) ≤ lim inf

h→∞
Hn−1(Juh). (1.5c)

The proof of this theorem is in our opinion simpler than in [35], even if a fundamental tool
is a quite technical Korn–Poincaré inequality for functions with small jump set, proved
in [13] and employed also in [14, 15, 16]. We combine this inequality with arguments in
the spirit of Rellich’s type compactness theorems.

Theorem 1.1 gives the existence of minimisers for the Griffith energy with Dirich-
let boundary conditions in the weak formulation (see Theorem 4.1), which by results in
[20, 15] have the properties of strong solutions in the interior of �. In [17] we prove ex-
istence of solutions for the strong formulation (1.1) by extending the regularity theorems
in [20, 15] up to the boundary, when ∂D� is of class C1 and u0 is Lipschitz.

The major issue for establishing the compactness result of Theorem 1.1 comes from
the lack of control on both the displacement and its full gradient, as is natural in the study
of brittle fracture in small strain (linearised) elasticity [36].

A bound such as (1.3) for the full gradient in place of the symmetrised gradient is
available for brittle fractures models in finite strain elasticity or in small strain elasticity in
the simplified antiplane case (i.e. when the displacement u is vertical and depends only on
the horizontal components). In these cases, the energy is closely related to the Mumford–
Shah functional in image reconstruction [39] (which however includes a fidelity term,
artificial from a mechanical standpoint). In this context, the original strategy of passing
through a weak formulation in terms of u was first proposed by De Giorgi and realised
by Ambrosio [1, 2, 3, 4], for the existence of weak solutions, and De Giorgi, Carriero and
Leaci [27] (see also e.g. [11, 28]), for the regularity, giving the improvement to strong
solutions (an alternative approach, where the discontinuity set is the main variable, has
been successfully employed in [24, 38]).

Ambrosio’s results are obtained in the space GSBV [26], and have been extended
to GSBD by Dal Maso [21]. In both cases, control of the values is required to obtain
compactness, guaranteeing that the set A in Theorem 1.1 is empty. Without such control,
it is still relatively simple to obtain a GSBV version of Theorem 1.1. For instance, in
the scalar case one can consider as in [1] the sequences of truncated functions uNk :=
max{−N,min{uk, N}} for any integer N ≥ 1, which are compact in BV and converge up
to subsequences. Then, by a diagonal argument, and then letting N → +∞, one builds
a subsequence (ukh)h which converges a.e. to some u, except on a possible set A where
it goes to +∞ or −∞. The scalar version of (1.5b) is obtained exactly as in [1] (see
in particular [1, Prop. 4.4]), by considering perturbations w ∈ L1(�) with w = 0 a.e.
in A. One possible way to derive inequality (1.5c) is then by slicing arguments, similar to
(but simpler than) the arguments in Section 3 of the current paper. The extension to the
vectorial case is not difficult in GSBV .

This strategy however fails in our case since, as already mentioned, the space GSBD
is not stable by truncations. The way out to get compactness without any assumption on
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the displacements is to locally approximate GSBD functions with piecewise infinitesimal
rigid motions, by means of the Korn–Poincaré inequality of [13], and use the fact that such
motions belong to a finite-dimensional space. We then obtain compactness with respect to
convergence in Ln-measure, but still we cannot exclude the existence of a set A of points
where the limit is not in Rn. A slicing argument is then used to show that A has finite
perimeter, whose measure is controlled by (1.5c). (Existence for (1.1) is then deduced by
considering the limit of a minimising sequence and setting in A the limit function equal
to 0, or to any ground state of the elastic energy.)

A more general (and difficult) approach, for GSBVp, has been proposed by Friedrich
[34]: there, the set A is a priori removed by a careful modification at the level of the min-
imising sequence, with control of the energy. Friedrich and Solombrino [35] also prove
existence of quasistatic evolutions in dimension two, extending in that case the antiplane
result by Francfort and Larsen [29] (see [8] for the existence of strong quasistatic evo-
lutions in dimension two, and e.g. [22, 23] for quasistatic evolutions for brittle fractures
with finite strain elasticity).

2. Notation and preliminaries

For every x ∈ Rn and % > 0 let B%(x) be the open ball with centre x and radius %. For
x, y ∈ Rn, we write x · y for the scalar product and |x| for the norm. We denote by Ln
and Hk the n-dimensional Lebesgue measure and the k-dimensional Hausdorff measure.
For any locally compact subsetB of Rn, the space of bounded Rm-valued Radon measures
on B is denoted by Mb(B;Rm). Form = 1 we write Mb(B) for Mb(B;R) and M+

b (B)

for the subspace of positive measures of Mb(B). For every µ ∈ Mb(B;Rm), its total
variation is denoted by |µ|(B). We write χE for the indicator function of any E ⊂ Rn,
which is 1 on E and 0 elsewhere. An infinitesimal rigid motion is any affine function with
skew-symmetric gradient. Also set R̃ := R ∪ {−∞,+∞} and R∗ := R \ {0}.

Definition 2.1. Let E ⊂ Rn, v : E → Rm an Ln-measurable function, and x ∈ Rn such
that

lim sup
%→0+

Ln(E ∩ B%(x))
%n

> 0.

A vector a ∈ Rn is the approximate limit of v as y tends to x if for every ε > 0,

lim
%→0+

Ln(E ∩ B%(x) ∩ {|v − a| > ε})

%n
= 0,

and we then write
ap lim
y→x

v(y) = a. (2.1)

Remark 2.2. Let E, v, x, and a be as in Definition 2.1 and let ψ be a homeomorphism
between Rm and a bounded open subset of Rm. Then (2.1) holds if and only if

lim
%→0+

1
%n

∫
E∩B%(x)

|ψ(v(y))− ψ(a)| dy = 0.



Compactness and lower semicontinuity in GSBD 705

Definition 2.3. Let U ⊂ Rn open, and v : U → Rm be Ln-measurable. The approximate
jump set Jv is the set of points x ∈ U for which there exist a, b ∈ Rm, with a 6= b, and
ν ∈ Sn−1 such that

ap lim
(y−x)·ν>0, y→x

v(y) = a and ap lim
(y−x)·ν<0, y→x

v(y) = b.

The triplet (a, b, ν) is uniquely determined up to a permutation of (a, b) and a change of
sign of ν, and is denoted by (v+(x), v−(x), νv(x)). The jump of v is the function defined
by [v](x) := v+(x)− v−(x) for every x ∈ Jv . Moreover, we define

J 1
v := {x ∈ Jv : |[v](x)| ≥ 1}. (2.2)

Remark 2.4. By Remark 2.2, Jv and J 1
v are Borel sets and [v] is a Borel function. By

Lebesgue’s differentiation theorem, it follows that Ln(Jv) = 0.

BV and BD functions. If U ⊂ Rn is open, a function v ∈ L1(U) is of bounded variation
on U , and we write v ∈ BV(U), if Div ∈ Mb(U) for i = 1, . . . , n, where Dv =
(D1v, . . . ,Dnv) is its distributional gradient. A vector-valued function v : U → Rm is in
BV(U ;Rm) if vj ∈ BV(U) for every j = 1, . . . , m. The space BVloc(U) is the space of
v ∈ L1

loc(U) such that Div ∈Mb(U) for i = 1, . . . , n.
An Ln-measurable bounded set E ⊂ Rn is a set of finite perimeter if χE is a function

of bounded variation. The reduced boundary of E, denoted by ∂∗E, is the set of points
x ∈ supp |DχE | such that the limit νE(x) := lim%→0+

DχE(B%(x))
|DχE |(B%(x))

exists and satisfies

|νE(x)| = 1. The reduced boundary is countably Hn−1-rectifiable (in the sense of [6,
Definition 2.57], and the function νE is called the generalised inner normal to E.

A function v ∈ L1(U ;Rn) belongs to the space of functions of bounded deformation
if its distributional symmetric gradient Ev belongs to Mb(U ;Rn). It is well known (see
[5, 40]) that for v ∈ BD(U), Jv is countably Hn−1-rectifiable, and that

Ev = Eav + Ecv + Ejv, (2.3)

where Eav is absolutely continuous with respect to Ln, Ecv is singular with respect to Ln
and such that |Ecv|(B) = 0 if Hn−1(B) <∞, while Ejv is concentrated on Jv . The den-
sity of Eav with respect to Ln is denoted by e(v), and we find that (see [5, Theorem 4.3]
and recall (2.1)), for Ln-a.e. x ∈ U ,

ap lim
y→x

(v(y)− v(x)− e(v)(x)(y − x)) · (y − x)

|y − x|2
= 0. (2.4)

The space SBD(U) is the subspace of all functions v ∈ BD(U) such that Ecv = 0, while
for p ∈ (1,∞)

SBDp(U) := {v ∈ SBD(U) : e(v) ∈ Lp(�;Mn×n
sym ), Hn−1(Jv) <∞}.

Analogous properties hold for BV , like the countable rectifiability of the jump set and
the decomposition of Dv, and the spaces SBV(U ;Rm) and SBVp(U ;Rm) are defined
similarly, with ∇v, the density of Dav, in place of e(v). For a complete treatment of BV ,
SBV functions and BD, SBD functions, we refer to [6] and to [5, 9, 7, 40], respectively.
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GBD functions. We now recall the definition and the main properties of the space GBD
of generalised functions of bounded deformation, introduced in [21], referring to that
paper for a general treatment and more details. Since the definition of GBD is given
by slicing (in contrast to the definition of GBV , cf. [26, 2]), we introduce before some
notation.

For fixed ξ ∈ Sn−1
:= {ξ ∈ Rn : |ξ | = 1}, and for any y ∈ Rn and B ⊂ Rn, let

5ξ := {y ∈ Rn : y · ξ = 0}, Bξy := {t ∈ R : y + tξ ∈ B},

and for every function v : B → Rn and t ∈ Bξy let

vξy (t) := v(y + tξ ), v̂ξy (t) := v
ξ
y (t) · ξ.

Definition 2.5 ([21]). Let � ⊂ Rn be bounded and open, and v : � → Rn be Ln-
measurable. Then v ∈ GBD(�) if there exists λv ∈M+

b (�) such that one of the follow-
ing equivalent conditions holds true for every ξ ∈ Sn−1:

(a) for every τ ∈ C1(R) with −1/2 ≤ τ ≤ 1/2 and 0 ≤ τ ′ ≤ 1, the partial derivative
Dξ (τ (v · ξ)) = D(τ (v · ξ)) · ξ belongs to Mb(�), and for every Borel set B ⊂ �,

|Dξ (τ (v · ξ))|(B) ≤ λv(B);

(b) v̂ξy ∈ BVloc(�
ξ
y) for Hn−1-a.e. y ∈ 5ξ , and for every Borel set B ⊂ �,∫
5ξ

(
|Dv̂ξy |(B

ξ
y \ J

1
v̂
ξ
y

)+H0(Bξy ∩ J
1
v̂
ξ
y

)
)

dHn−1(y) ≤ λv(B), (2.5)

where J 1
û
ξ
y

:= {t ∈ J
û
ξ
y
: |[̂u

ξ
y]|(t) ≥ 1}.

The function v belongs to GSBD(�) if v ∈ GBD(�) and v̂ξy ∈ SBV loc(�
ξ
y) for every

ξ ∈ Sn−1 and for Hn−1-a.e. y ∈ 5ξ .

GBD(�) and GSBD(�) are vector spaces, as stated in [21, Remark 4.6], and one has the
inclusions BD(�) ⊂ GBD(�), SBD(�) ⊂ GSBD(�), which are in general strict (see
[21, Remark 4.5 and Example 12.3]). For every v ∈ GBD(�) the approximate jump set
Jv is still countably Hn−1-rectifiable [21, Theorem 6.2] and can be reconstructed from
the jump of the slices v̂ξy [21, Theorem 8.1]. Indeed, for every C1 manifold M ⊂ � with
unit normal ν, for Hn−1-a.e. x ∈ M there exist the traces v+M(x), v

−

M(x) ∈ Rn such that

ap lim
±(y−x)·ν(x)>0, y→x

v(y) = v±M(x) (2.6)

and they can be reconstructed from the traces of the one-dimensional slices (see [21,
Theorem 5.2]). Every v ∈ GBD(�) has an approximate symmetric gradient e(v) ∈
L1(�;Mn×n

sym ), characterised by (2.4) and such that for every ξ ∈ Sn−1 and Hn−1-a.e.
y ∈ 5ξ ,

e(v)ξyξ · ξ = ∇v̂
ξ
y L1-a.e. on �ξy . (2.7)
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By these properties of slices it follows that if v ∈ GSBD(�)with e(v)∈L1(�;Mn×n
sym )

and Hn−1(Jv) < +∞, then for every Borel set B ⊂ �,

Hn−1(Jv ∩ B) = (2ωn−1)
−1
∫
Sn−1

(∫
5ξ

H0(J
v
ξ
y
∩ Bξy ) dHn−1(y)

)
dHn−1(ξ) (2.8)

and the two conditions in the definition of GSBD for v hold for λv ∈M+

b (�) such that

λv(B) ≤

∫
B

|e(v)| dx +Hn−1(Jv ∩ B) (2.9)

for every Borel set B ⊂ � (cf. also [31, Theorem 1] and [37, Remark 2]).
We now recall the following result, proven in [13, Proposition 2]. Notice that the

proposition therein is stated in SBD, but the proof, which is based on the Fundamental
Theorem of Calculus along lines, still holds for GSBD, with small adaptations.

Proposition 2.6 ([13]). Let Qr = (−r, r)
n, v ∈ GSBD(Q), and p ∈ [1,∞). Then there

exist a Borel set ω ⊂ Qr and an affine function a : Rn→ Rn with e(a) = 0 such that

Ln(ω) ≤ crHn−1(Jv)

and ∫
Qr\ω

|v − a|p dx ≤ crp
∫
Qr

|e(v)|p dx. (2.10)

The constant c depends only on p and n.

We conclude the section with a technical lemma.

Lemma 2.7. Let E ⊂ Rn be Borel, vh : E → Rn for every h, and consider the n se-
quences (vh · ei)h, obtained by taking every component of vh with respect to the canon-
ical basis {e1, . . . , en} of Rn. Assume that every (vh · ei)h converges pointwise Ln-a.e.
to a vi : E → R̃, and that for Ln-a.e. x ∈ E there is i ∈ {1, . . . , n} for which vi(x) ∈
{−∞,+∞}. Then for Hn−1-a.e. ξ ∈ Sn−1,

|vh · ξ | → +∞ Ln-a.e. in E. (2.11)

Proof. On the sets

Ei := {|vh · ei | → +∞} ∩
⋂
j 6=i

{lim sup
h→∞

(|vh · ej |/|vh · ei |) < +∞},

(2.11) holds for every ξ in {ξ ∈ Sn−1
: ξi 6= 0}, which is of full Hn−1-measure in Sn−1.

Let us now consider the case when there are m components of vh, with 1 < m ≤ n,
that we may assume to be vh · e1, . . . , vh · em, such that vh·ei

vh·ej
→ ξi,j ∈ R∗ for 1 ≤ i <

j ≤ m and | vh·ei
vh·ej
| → +∞ for i ∈ {1, . . . , m} and j ∈ {m+ 1, . . . , n} (if m < n). In this

case (2.11) does not hold only on

Sn−1
∩ (1, ξ−1

1,2 , . . . , ξ
−1
1,m, 0 . . . , 0)⊥,
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which has dimension n−2. Notice now that for everym for whichm components go faster
to infinity than the others, there is an at most countable collection of (ξ1,2, . . . , ξ1,m) ∈

(R∗)m−1 for which vh·e1
vh·ej
→ ξ1,j for j ∈ {2, . . . , m} on a subset of E of positive Ln-

measure. Thus (2.11) holds for every ξ except for an at most countable union of Hn−1-
negligible sets of Sn−1. ut

3. The main compactness and lower semicontinuity result

In this section we prove Theorem 1.1, the main result of the paper.

Proof of Theorem 1.1. We divide the proof into three parts: compactness (with respect
to convergence in measure, by means of approximation through piecewise infinitesimal
rigid motions), lower semicontinuity, and closure (in GSBD).

Compactness. For every k ∈ N and z ∈ (2k−1)Zn we consider the cubes of centre z

qk,z := z+ (−k
−1, k−1)n.

Then �k := � \
⋃
qk,z 6⊂�

qk,z is essentially the union of the cubes which are contained
in �.

We apply Proposition 2.6 with p = 1 in any qk,z ⊂ �, so for r = k−1. Then there
exist sets ωhk,z ⊂ qk,z with

Ln(ωhk,z) ≤ ck
−1Hn−1(Juh ∩ qk,z) (3.1)

and affine functions ahk,z : R
n
→ Rn, with e(ahk,z) = 0, such that∫

qk,z\ω
h
k,z

|uh − a
h
k,z| dx ≤ ck

−1
∫
qk,z

|e(uh)| dx. (3.2)

The functions (ahk,z)h≥1 belong to the finite-dimensional space of affine functions.
Any sequence of the i-th components (ahk,z · ei)h, i = 1, . . . , n, has one of the following
properties:

• it is bounded, and then it converges uniformly (up to a subsequence) to an affine func-
tion;
• it is unbounded, and then either

– it converges globally, up to a subsequence, to +∞ or −∞, or
– there is a hyperplane {x · ν = t} (ν ∈ Rn, t ∈ R) and a subsequence such that
ahk,z(x) · ei →+∞ if x · ν > t and ahk,z(x) · ei →−∞ if x · ν < t .

(To see this, consider the bounded sequence
ahk,z·ei

‖ahk,z·ei‖
, for any norm ‖ · ‖ on the space of

affine functions, which has converging subsequences.)
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Let τ denote the function tanh (or any smooth, 1-Lipschitz increasing function from −1
to 1 with τ(0) = 0). Then, up to a subsequence, the function

ahk (x) :=
∑
qz,k⊂�

ahk,z(x)χqk,z(x)

is such that (τ (ahk · ei))h converges to some function in L1(�k), for any i = 1, . . . , n.
Indeed, we have

τ(ahk · ei)(x) =
∑
qz,k⊂�

τ(ahk,z · ei)(x) χqk,z(x),

and in any cube qk,z the sequence (τ (ahk,z · ei))h converges uniformly either to a function
valued in (−1, 1), if (ahk,z ·ei)h is bounded, or to a function with values−1 and 1, attained
where the limit of (ahk,z · ei)h is +∞ or −∞, respectively (notice that at this stage k is
fixed).

Clearly the subsequence could be extracted from a previous subsequence built at stage
k−1, hence by a diagonal argument, we may assume that for any k, (τ (ahk ·ei))h converges
for all i = 1, . . . , n in L1(�k).

For each i = 1, . . . , n, k ≥ 1, and l, m ≥ 1, we have∫
�

|τ(um · ei)− τ(ul · ei)| dx ≤ 2|� \�k| +
∫
�k

|τ(um · ei)− τ(a
m
k · ei)| dx

+

∫
�k

|τ(amk · ei)− τ(a
l
k · ei)| dx +

∫
�k

|τ(ul · ei)− τ(a
l
k · ei)| dx. (3.3)

By construction,

lim
l,m→+∞

∫
�k

|τ(amk · ei)− τ(a
l
k · ei)| dx = 0.

On the other hand,∫
�k

|τ(um · ei)− τ(a
m
k · ei)| dx =

∑
qk,z⊂�

∫
qk,z

|τ(um · ei)− τ(a
m
k,z · ei)| dx

≤

∑
qk,z⊂�

(
2|ωmk,z| +

∫
qk,z\ω

m
k,z

|um − a
m
k,z| dx

)

≤
2c
k

(
Hn−1(Jum)+

∫
�k

|e(um)| dx
)
≤
C

k
.

Since |� \ �k| → 0 as k →∞, we deduce from (3.3) that (τ (uh · ei))h is a Cauchy se-
quence (for each i) and therefore converges in L1(�) to some limit which we denote τ̃i .
Up to a further subsequence, we may assume that the convergence occurs almost ev-
erywhere and, by (1.2) and (1.3), that (e(uh))h converges weakly in L1(�;Mn×n

sym ). This
determines the (sub)sequence (uh)h for which we are going to prove the result, fixed from
now on. First notice that the set A defined in (1.4) (corresponding to the subsequence) is
such that (uh)h converges pointwise Ln-a.e. in � \A to a function with finite values (that
is, in Rn).
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We define ū : �→ (R̃)n and u : �→ Rn such that

ū := (ũ1, . . . , ũn), where ũi = τ−1(τ̃i); u := ūχ�\A, (3.4)

with the convention that τ−1(±1) = ±∞.
The set A, which coincides with {x ∈ � : ũi(x) ∈ {−∞,+∞} for some i in

{1, . . . , n}}, is measurable, since ũi(x) ∈ R if and only if |τ(ũi)| < 1 and the func-
tions τ̃i : �→ [−1, 1] are measurable. Since (uh)h converges pointwise Ln-a.e. in � \A
to u, we find that for every ξ ∈ Sn−1,

uh · ξ → u · ξ Ln-a.e. in � \ A. (3.5)

Notice that we have not extracted further subsequences depending on ξ , and that the
limit function u (equal to ū since we are in � \ A) does not depend on ξ . Eventually, by
Lemma 2.7 we conclude that for Hn−1-a.e. ξ ∈ Sn−1,

|uh · ξ | → +∞ Ln-a.e. in A. (3.6)

Lower semicontinuity. Here we prove first (1.5c), which is specific to our approach due
to the description of A, and then (1.5b), which follows the lines of [9, Theorem 1.1].

As in [9, Theorem 1.1] (see also [21, Theorem 11.3]), we introduce

Iξy(uh) :=
∫
�
ξ
y

φ(|(u̇h)
ξ
y |) dt, (3.7)

where (u̇h)
ξ
y is the density of the absolutely continuous part of D(̂uh)

ξ
y , the distributional

derivative of (̂uh)
ξ
y ((̂uh)

ξ
y ∈ SBV loc(�

ξ
y) for every ξ ∈ Sn−1 and for Hn−1-a.e. y ∈ 5ξ ,

since uh ∈ GSBD(�)). Thus for any ξ ∈ Sn−1,∫
5ξ

Iξy(uh) dHn−1(y) =

∫
�

φ
(
|e(uh)(x)ξ · ξ |

)
≤

∫
�

φ(|e(uh)|) dx ≤ M, (3.8)

by Fubini–Tonelli’s theorem and (1.3), recalling that φ is non-decreasing. Moreover, since
uh ∈ GSBD(�), we have Dξ (τ (uh · ξ)) ∈M+

b (�) for every ξ ∈ Sn−1 and∫
5ξ
|D(τ (uh · ξ)ξy)|(�

ξ
y) dHn−1(y) = |Dξ (τ (uh · ξ))|(�) ≤ M, (3.9)

by (2.9) and (1.3). We denote

IIξy(uh) := |D(τ (uh · ξ)
ξ
y)|(�

ξ
y). (3.10)

Let (uk)k = (uhk )k be a subsequence of (uh)h such that

lim
k→∞

Hn−1(Juk ) = lim inf
h→∞

Hn−1(Juh) < +∞, (3.11)
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so that, by (2.8), (3.8), and Fatou’s lemma, for Hn−1-a.e. ξ ∈ Sn−1 we have

lim inf
k→∞

∫
5ξ

[
H0(J

(̂uk)
ξ
y
)+ ε

(
Iξy(uk)+ IIξy(uk)

)]
dHn−1(y) < +∞, (3.12)

for a fixed ε ∈ (0, 1). Fix ξ ∈ Sn−1 such that (3.6) and (3.12) hold. Then there is a
subsequence (um)m = (ukm)m of (uk)k , depending on ε and ξ , such that

lim
m→∞

∫
5ξ

[
H0(J

(̂um)
ξ
y

)
+ ε(Iξy(um)+ IIξy(um))

]
dHn−1(y)

= lim inf
k→∞

∫
5ξ

[
H0(J

(̂uk)
ξ
y

)
+ ε(Iξy(uk)+ IIξy(uk))

]
dHn−1(y). (3.13)

Therefore, by (3.13), (3.5), and (3.6), employing Fatou’s lemma, for Hn−1-a.e. y ∈ 5ξ

we have

lim inf
m→∞

[
H0(J

(̂um)
ξ
y

)
+ ε(Iξy(um)+ IIξy(um))

]
< +∞, (3.14)

(̂um)
ξ
y → ûξy L1-a.e. in (� \ A)ξy, |(̂um)

ξ
y | → ∞ L1-a.e. in Aξy, (3.15)

τ(um · ξ)
ξ
y → τ̃ ξy in L1(�ξy), (3.16)

for a suitable τ̃ ξy ∈ L1(�
ξ
y). Now we employ (3.5), (3.6), and (3.15), (3.16) to get{
τ̃
ξ
y = τ(u · ξ)

ξ
y L1-a.e. in (� \ A)ξy,

|τ̃
ξ
y | = 1 L1-a.e. in Aξy .

(3.17)

For fixed y ∈ 5ξ satisfying (3.14) and (3.15), and such that (̂um)
ξ
y ∈ SBV loc(�

ξ
y) for

every m, we extract a subsequence (uj )j = (umj )j from (um)m, depending also on y, for
which

lim
j→∞

[
H0(J

(̂uj )
ξ
y

)
+ ε(Iξy(uj )+ IIξy(uj ))

]
= lim inf

m→∞

[
H0(J

(̂um)
ξ
y

)
+ ε(Iξy(um)+ IIξy(um))

]
.

(3.18)
Then by (3.16) we have

τ(uj · ξ)
ξ
y

∗

⇀ τ̃ ξy in SBV(�ξy). (3.19)

In order to describe the set A, we consider its slices Aξy and prove that for Hn−1-a.e.
y ∈ 5ξ ,

Aξy is a finite union of intervals where τ̃ ξy has the value either 1 or −1, (3.20)

and
∂Aξy ⊂ Jτ̃ ξy

. (3.21)

Recalling that |τ̃ ξy | < 1 in (� \ A)ξy , by (3.17), the property above states that there is a
jump each time one passes from values of τ̃ ξy with absolute value less than 1 to Aξy , that
is, the set where |τ̃ ξy | = 1. In terms of the slices of u, one passes from finite to infinite
values.
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Let us show the claimed properties. Up to considering a subsequence of (̂uj )
ξ
y , we

may assume that for every j ,

H0(J
(̂uj )

ξ
y
) = Ny ∈ N,

namely there is a fixed number Ny of jump points. These points tend to My ≤ Ny points

t1, . . . , tMy .

Then (recall that IIξy(uj ) is equibounded in j by (3.18)) for every l = 1, . . . ,My − 1,

τ(uj · ξ)
ξ
y ⇀ τ̃ ξy in W 1,1

loc (tl, tl+1),

and the convergence is locally uniform (for the precise representatives). Moreover, since
Iξy(uj ) is equibounded again by (3.18), it follows that x 7→ (̂uj )

ξ
y(x)− (̂uj )

ξ
y(x) is locally

uniformly bounded in (tl, tl+1), for any choice of x ∈ (tl, tl+1) (by the Fundamental
Theorem of Calculus). Hence for any l, either
• there is x ∈ (tl, tl+1) such that

lim
j→∞

(̂uj )
ξ
y(x) = û

ξ
y(x) ∈ R

(that is, x /∈ Aξy), and then (̂uj )
ξ
y converges locally uniformly in (tl, tl+1) to ûξy ; or

• for L1-a.e. x ∈ (tl, tl+1),
lim
j→∞
|(̂uj )

ξ
y(x)| = ∞,

that is, (tl, tl+1) ⊂ A
ξ
y .

Therefore any (tl, tl+1) is contained either in (� \ A)ξy or in Aξy . Moreover, in the first
case we have ûξy ∈ W 1,1(tl, tl+1) ⊂ L∞(tl, tl+1); in particular, there is η ∈ (0, 1) such
that

τ̃ ξy (tl, tl+1) ⊂ [−1+ η, 1− η]. (3.22)
This implies (3.20) and (3.21).

By (3.18), (3.19), (3.21), and since the jump sets of τ(uj · ξ)
ξ
y and (̂uj )

ξ
y coincide, we

deduce, by lower semicontinuity of SBV functions defined in one-dimensional domains
(see [1, Proposition 4.2]), that

H0(J
û
ξ
y
∩ (� \ A)ξy)+H0(∂Aξy) ≤ H0(J

τ̃
ξ
y
)

≤ lim inf
m→∞

[
H0(J

(̂um)
ξ
y

)
+ ε(Iξy(um)+ IIξy(um))

]
. (3.23)

We now integrate over y ∈ 5ξ and use Fatou’s lemma with (3.13) to get∫
5ξ

[
H0(J

û
ξ
y
∩ (� \ A)ξy

)
+H0(∂Aξy)

]
dHn−1(y)

≤ lim inf
k→∞

∫
5ξ

[
H0(J

(̂uk)
ξ
y

)
+ ε(Iξy(uk)+ IIξy(uk))

]
dHn−1(y) (3.24)

for Hn−1-a.e. ξ ∈ Sn−1. In particular we deduce that A has finite perimeter (cf. [6, Re-
mark 3.104]).
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We integrate (3.24) over ξ ∈ Sn−1; by (2.8), (3.8), (3.9), and (3.11) we get

Hn−1(Ju ∩ (� \ A))+Hn−1(∂∗A) ≤ CMε + lim inf
h→∞

Hn−1(Juh), (3.25)

for a universal constant C. By the arbitrariness of ε and the definition of u we obtain
(1.5c).

The property (1.5b) follows by an adaptation of the arguments in [9, Theorem 1.1] as
in [21, Theorem 11.3] (which employ Ambrosio–Dal Maso’s [1, Prop. 4.4]). We report
the proof for the reader’s convenience.

Fatou’s lemma and (2.8) imply that for Hn−1-a.e. ξ ∈ Sn−1,

lim inf
h→∞

∫
5ξ

H0(J
(̂uh)

ξ
y
∩�ξy) dHn−1(y) < +∞. (3.26)

In particular there is a basis {ξ1, . . . , ξn} of Rn such that this holds for every ξ of the
form ξ = ξi + ξj , i, j = 1, . . . , n. We fix a ξ of this type, and we find a subsequence
(uk)k = (uhk )k of (uh)h, depending on ξ , such that

lim
k→∞

∫
5ξ

H0(J
(̂uk)

ξ
y
∩�ξy) dHn−1(y) = lim inf

h→∞

∫
5ξ

H0(J
(̂uh)

ξ
y
∩�ξy) dHn−1(y). (3.27)

For a given w ∈ L1(�) let (recall (3.7) for the definition of (u̇k)
ξ
y)

IIIξy(uk, w) :=
∫
(�\A)

ξ
y

|(u̇k)
ξ
y − w

ξ
y | dt.

By (2.7), (1.3) (the sequence (uh)h has been fixed before (3.4)), and Fubini–Tonelli’s
theorem there is a subsequence (ul)l = (ukl )l of (uk)k such that

lim
l→∞

∫
5ξ

IIIξy(ul, w) dHn−1(y) = lim inf
k→∞

∫
�\A

|e(uk)ξ · ξ − w| dx < +∞. (3.28)

Let us also fix ε ∈ (0, 1). Again by Fubini–Tonelli’s theorem, there is a subsequence
(um)m = (ulm)m of (ul)l , depending on ξ , w, ε, such that (3.15) holds for Hn−1-a.e.
y ∈ 5ξ and

lim
m→∞

∫
5ξ

IIIξy(um, w)+ ε[H0(J
(̂um)

ξ
y
)+ Iξy(um)+ IIξy(um)] dHn−1(y)

= lim inf
l→∞

∫
5ξ

IIIξy(ul, w)+ ε[H0(J
(̂ul)

ξ
y
)+ Iξy(ul)+ IIξy(ul)] dHn−1(y). (3.29)

By (3.8), (3.11), (3.27), (3.28), and Fatou’s lemma, for Hn−1-a.e. y ∈ 5ξ ,

lim inf
m→∞

[
IIIξy(um, w)+ ε[H0(J

(̂um)
ξ
y
)+ Iξy(um)+ IIξy(um)]

]
< +∞. (3.30)
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Let y ∈ 5ξ be such that (3.15) and (3.30) hold, and (̂um)
ξ
y ∈ SBV loc(�

ξ
y) for every m.

We find a subsequence (uj )j = (umj )j of (um)m, depending also on y, for which

lim
j→∞

[
IIIξy(uj , w)+ ε[H0(J

(̂uj )
ξ
y
)+ Iξy(uj )+ IIξy(uj )]

]
= lim inf

m→∞

[
IIIξy(um, w)+ ε[H0(J

(̂um)
ξ
y
)+ Iξy(um)+ IIξy(um)]

]
. (3.31)

Recalling the form of Aξy (and (3.22)) we deduce that (̂uj )
ξ
y converges to ûξy weakly∗ in

BV(I ) for any I compactly contained in (� \ A)ξy , and then (u̇j )
ξ
y ⇀ u̇

ξ
y in L1((� \ A)

ξ
y),

by (1.2). Together with (3.31) this gives

IIIξy(u,w) ≤ lim inf
j→∞

IIIξy(uj , w)

≤ lim inf
m→∞

[
IIIξy(um, w)+ ε[H0(J

(̂um)
ξ
y
)+ Iξy(um)+ IIξy(um)]

]
.

Integrating with respect to y ∈ 5ξ , by Fatou’s lemma and (3.28), (3.29) plus the bounds
(3.8), (3.9), (3.12), we get∫
�\A

|e(u)ξ · ξ − w|

≤ lim inf
k→∞

∫
�\A

|e(uk)ξ · ξ −w| dx + ε
(
CM + lim inf

h→∞

∫
5ξ

H0(J
(̂uh)

ξ
y
∩�ξy) dHn−1(y)

)
.

By (3.26) and the arbitrariness of ε, we deduce that for all w ∈ L1(�),∫
�\A

|e(u)ξ · ξ − w| ≤ lim inf
k→∞

∫
�\A

|e(uk)ξ · ξ − w| dx.

Since the sequence (e(uh))h weakly converges in L1(� \ A;Mn×n
sym ), [1, Proposition 4.4]

gives
e(uh)ξ · ξ ⇀ e(u)ξ · ξ in L1(� \ A),

and by the arbitrariness of ξ = ξi + ξj we deduce (1.5b).

Closure. We now show that the limit function u, defined in (3.4), is in GSBD(�).
Employing (2.9) and recalling (1.3), we find that there exist λuh ∈M+

b (�) such that

λuh(�) ≤ M,

and for every ξ ∈ Sn−1 and every Borel set B ⊂ �,

|Dξ (τ (uh · ξ))|(B) ≤ λuh(B).

Let λ̃ ∈M+

b (�) be the weak∗ limit of a subsequence of (λuh)h, so that λ̃(�) ≤ M .
Notice that

Dξ τ(u · ξ) ∈Mb(�) for every ξ ∈ Sn−1 (3.32)
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and
|Dξ τ(ũ · ξ)|(B) ≤ λ̃(B) =: λu(B) (3.33)

for every Borel set B ⊂ �, where λ̃ has been defined above. This follows by a slicing pro-
cedure and the use of Fatou’s lemma for every ξ , to reconstruct at the end |Dξ (τ (u·ξ))|(�)
from IIξy(u) := |D(τ (u · ξ)

ξ
y)|(�

ξ
y) (see (3.10)), as in (3.9). The important point here is to

get the semicontinuity

IIξy(u) ≤ lim inf
j→∞

IIξy(uj ) = lim inf
j→∞

|D(τ (uj · ξ)ξy)|(�
ξ
y)

for the slices, which follows from (3.19). Indeed, IIξy(u) ≤ |D(τ̃
ξ
y ))|(�

ξ
y) because τ(u·ξ)ξy

= τ̃
ξ
y in (� \ A)ξy by (3.17) and τ(u · ξ) = 0 in Aξy , so we employ (3.21). Moreover, it is

immediate that ûξy ∈ SBV loc(�
ξ
y). Therefore u ∈ GSBD(�). ut

4. Existence for minimisers of the Griffith energy

Employing Theorem 1.1, we deduce in this section the existence of weak solutions to the
minimisation problem of the Griffith energy with Dirichlet boundary conditions.

Existence of weak solutions

Assume � ⊂ Rn is an open, bounded domain for which

∂� = ∂D� ∪ ∂N� ∪N,

with ∂D� and ∂N� relatively open, ∂D� ∩ ∂N� = ∅, Hn−1(N) = 0, ∂D� 6= ∅, and
∂(∂D�) = ∂(∂N�). Let u0 ∈ W

1,p(Rn;Rn) and W : Mn×n
sym → [0,∞) be convex, with

W(0) = 0 and
W(ξ) ≥ φ(|ξ |) for ξ ∈Mn×n

sym , (4.1)
where φ satisfies (1.2).

Let K0 ⊂ � ∪ ∂D� be countably Hn−1-rectifiable with Hn−1(K0) < +∞, and
consider the minimisation problem

min
v∈GSBD(�)

{∫
�

W(e(v)) dx +Hn−1(Jv ∪ (∂D� ∩ {tr� v 6= tr� u0}) \K0
)}
. (4.2)

Notice that, defining �̃ := �∪U , where U is an open bounded set with U ∩ ∂� = ∂D�,
we can recast the problem as

min
v∈GSBD(�̃)

{∫
�̃

W(e(v)) dx +Hn−1(Jv \K0) : v = u0 in �̃ \ (� ∪ ∂D�)
}
. (4.3)

Then we have the following existence result.

Theorem 4.1. Problem (4.3) admits solutions.

Proof. Let uh ∈ GSBD(�̃) with uh = u0 in �̃ \ (� ∪ ∂D�) be the elements of a min-
imising sequence for (4.3). Observe that the infimum of problem (4.3) is finite, since the
functional is non-negative and u0 is an admissible competitor.
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Assume for the moment that K0 is compact. By (4.1) the functions uh satisfy the
hypotheses of Theorem 1.1 with � = �̃ \K0, so that there exist A ⊂ �̃ \K0 with finite
perimeter and a measurable function u : �̃ \K0 → Rn with u = 0 in A such that (up to a
subsequence)

A = {x ∈ �̃ \K0 : |uh(x)| → ∞}, uh→ u Ln-a.e. in � \ (K0 ∪ A) (4.4)

(since Ln(K0) = 0 we could consider just �̃ above, but we keep �̃ \ K0 to indicate the
set where we apply Theorem 1.1) and∫

�̃

W(e(u)) dx +Hn−1(Ju \K0) ≤ lim inf
h→∞

∫
�̃

W(e(uh)) dx +Hn−1(Juh \K0),

Moreover, by (4.4) and the admissibility condition for uh it follows that u = u0 in
�̃ \ (� ∪ ∂D�), and in particular A does not intersect �̃ \ (� ∪ ∂D�). Since W is con-
vex, we have lower semicontinuity for the bulk term, and u solves (4.3). This proves the
theorem if K0 is compact. Notice that this holds for any other function v which coincides
with u in � \ A and is set equal to any fixed infinitesimal rigid motion in A, since the
energy of v in A is null, and then by (1.5) the Griffith energy of v is less than the lim inf
of the energies of uh.

If K0 is not compact, for any ε > 0 consider K̂0 ⊂ K0, compact, such that
Hn−1(K0 \ K̂0) < ε. Then, arguing as above for the open set �̃ \ K̂0 ⊃ �̃ \ K0, we
still get ∫

�̃

W(e(u)) dx ≤ lim inf
h→∞

∫
�̃

W(e(uh)) dx,

and

Hn−1(Ju \K0) ≤ Hn−1(Ju \ K̂0) ≤ lim inf
h→∞

Hn−1(Juh \ K̂0)

≤ lim inf
h→∞

Hn−1(Juh \K0)+Hn−1(K0 \ K̂0) < lim inf
h→∞

Hn−1(Juh \K0)+ ε,

since Ju\K0 ⊂ Ju\K̂0 and Juh \K̂0 ⊂ (Juh \K0)∪(K0\K̂0) (cf. also [35, Theorem 2.5]).
We conclude the proof since ε > 0 is arbitrary. ut

Remark 4.2. Since, as observed in the proof, a family of minimisers is obtained by
adding any fixed infinitesimal rigid motion in A to a given minimiser, we conclude that

Hn−1(∂∗A ∩ {tr u = a}) = 0

for every infinitesimal rigid motion a (a(x) = a · x + b, a + aT = 0), where tr denotes
the trace of u on ∂∗A (which is countably Hn−1-rectifiable) from � \ A.

Existence of strong solutions

In recent works [20, 15], Chambolle, Conti, Focardi, and Iurlano have shown more regu-
larity for the possible minimisers of (4.3) (or (4.2)) if W(ξ) = Ce(ξ) : e(ξ) (in [15]), or
n = 2 and

W(ξ) = fµ(ξ) :=
1
p
((Cξ : ξ + µ)p/2 − µp/2) (4.5)
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(in [20]), requiring that C : Mn×n
sym →Mn×n

sym is a symmetric linear map with

C(ξ − ξT ) = 0 and Cξ · ξ ≥ c0|ξ + ξ
T
|
2 for all ξ ∈Mn×n

sym .

More precisely, the essential closedness of the jump set is established:

Theorem 4.3. Let K0 ⊂ � ∪ ∂D� be closed with Hn−1(K0) < +∞, and let u ∈
GSBD2(� \K0) (or u ∈ GSBDp(� \K0) in dimension 2) be a minimiser of∫

�

Ce(v) : e(v) dx +Hn−1(Jv ∪ (∂D� ∩ {tr� v 6= tr� u0}) \K0
)

(4.6)

(or, in dimension 2, a minimiser of (4.3) with (4.5)). Then

Hn−1((� \K0) ∩ (J u \ Ju)
)
= 0, u ∈ C1(� \ (K0 ∪ J u)).

In [17], this is extended to � ∪ ∂D�, yielding the following result (see [8] for the SBV
case):

Theorem 4.4. Let ∂D� be of class C1, u0 ∈ W
1,∞(Rn;Rn), and u ∈ GSBD2(� \ K0)

be a minimiser of (4.6). Then, letting J := Ju ∪ (∂D� ∩ {tr� u 6= tr� u0},1

Hn−1(((� ∪ ∂D�) \K0) ∩ (J \ J )
)
= 0

and
u ∈ C1(� \ (K0 ∪ J )

)
∩ C

(
(� ∪ ∂D�) \ (K0 ∪ J )

)
.

Another consequence of Theorem 1.1 is a compactness result for phase-field approxima-
tions of (1.1), which are used for the numerical simulations of evolutions in brittle fracture
(such as in [10]); see [16] for details.
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