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Abstract. For each prime p, let Ip ⊂ Z/pZ denote a collection of residue classes modulo p such
that the cardinalities |Ip| are bounded and about 1 on average. We show that for sufficiently large x,
the sifted set {n ∈ Z : n (mod p) 6∈ Ip for all p ≤ x} contains gaps of size at least x(log x)δ where
δ > 0 depends only on the density of primes for which Ip 6= ∅. This improves on the “trivial”
bound of � x. As a consequence, for any non-constant polynomial f : Z → Z with positive
leading coefficient, the set {n ≤ X : f (n) composite} contains an interval of consecutive integers
of length ≥ (logX)(log logX)δ for sufficiently large X, where δ > 0 depends only on the degree
of f .
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1. Introduction

It is well-known that the sieve of Eratosthenes sometimes removes unusually long strings
of consecutive integers, and this implies that the sequence of primes occasionally has
much longer gaps than the average spacing. It might be expected that similar methods
would show analogous results for other sets undergoing a sieve, such as sets defined by
polynomials. For example, we know that the number of n ≤ x with n2

+ 1 prime is
O(x/log x), so an immediate corollary is that there are intervals of length � log x be-
low x where n2

+1 is composite for each n in the interval. Can we do better? A simple av-
eraging argument is not useful, since the O(x/log x) bound for the count is conjecturally
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best possible. In addition, there unfortunately appear to be fundamental obstructions to
adapting the methods used to locate large gaps in the Eratosthenes sieve to this situation.

In this paper we introduce a new method which substantially improves upon the triv-
ial bound for these polynomial sets, and applies to more general sieving situations. We
consider the set of integers remaining after applying a “one-dimensional” sieve, and show
that this sieved set contains some unusually large gaps. To state our theorem precisely we
require the following definition. The symbol p always denotes a prime.

Definition 1 (Sieving system). A sieving system is a collection I of sets Ip ⊂ Z/pZ of
residue classes modulo p for each prime p. Moreover, we have the following definitions.

• (Non-degeneracy) We say that the sieving system is non-degenerate if |Ip| ≤ p − 1
for all p.
• (B-Boundedness) Given B > 0, we say that the sieving system is B-bounded if

|Ip| ≤ B for all primes p. (1.1)

• (One-dimensionality) We say that the sieving system is one-dimensional if we have
the weighted Mertens-type product estimate∏

p≤x

(
1−
|Ip|

p

)
∼

C1

log x
(x →∞), (1.2)

for some constant C1 > 0.
• (ρ-supportedness) Given ρ > 0, we say that the sieving system system is ρ-supported

if the density of primes with |Ip| ≥ 1 equals ρ, that is,

lim
x→∞

|{p ≤ x : |Ip| ≥ 1}|
x/log x

= ρ. (1.3)

Roughly speaking, a “sieving system” which is non-degenerate, B-bounded, 1-dimen-
sional and ρ-supported specifies certain residue classes for each prime p, such that there
is roughly one residue class per prime on average, and if we remove all integers in these
residue classes the resulting set is not too erratic.

Given such a sieving system I, our main object of study is the sifted set

Sx = Sx(I) := Z \
⋃
p≤x

Ip,

of integers which are not contained in any of the residue classes specified by the Ip for
p ≤ x. If |Ip| = p for some p ≤ x (the degenerate case), then clearly Sx is empty.
Otherwise, Sx is a P(x)-periodic set with density σ(x), where P(x) and σ(x) are defined
as

P(x) :=
∏
p≤x
Ip 6=∅

p, σ(x) :=
∏
p≤x

(
1−
|Ip|

p

)
.

We also note that Sx ⊇ Sy if x ≤ y. With this set-up we can now state our main theorem.
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Theorem 1 (Main theorem). Let I be a non-degenerate, B-bounded, one-dimensional,
ρ-supported sieving system with ρ > 0. Define

C(ρ) := sup
{
δ ∈ (0, 1/2) :

(4+ δ) · 102δ

log(1/(2δ))
< ρ

}
. (1.4)

The sifted set Sx contains a gap of length at least x(log x)C(ρ)−o(1), where the rate of
decay of the o(1) bound depends on I. Moreover, C(ρ) > e−1−4/ρ .

Remark 1. We note that since I is one-dimensional, we must have

ρ ≥ 1/B.

(So, for example, the positivity of ρ follows from the property that I is B-bounded.) The
value of C1 in (1.2), which has no importance for our arguments, depends on the behavior
of |Ip| for small p, and can have great variation.

Condition (1.3) is used primarily to construct large sets of primes with Ip 6= ∅ in very
short intervals—see (2.8) below. It is possible to weaken (1.3) further, e.g. so that (2.8)
holds for most scalesH instead of allH , but this would further complicate our argument.
All of the canonical examples satisfy (1.3).

There is a straightforward argument that shows that Sx must have gaps of length � x,
for x sufficiently large in terms of I—see Remark 5 below. Theorem 1 improves over this
bound by a positive power of log x, and it is the fact that we get a non-trivial result in
this level of generality which is the main point of the Theorem. It is likely that with more
effort one could improve the bounds on the constant C(ρ); our main interest is that this
is an explicit positive constant depending only on ρ. We now demonstrate applications of
the theorem via several examples.

Example 1 (Gaps between primes). The “Eratosthenes” sieving system is the system
with Ip = {0} for all p, and it is non-degenerate, 1-bounded, one-dimensional and 1-
supported. We have

{
√
X < p ≤ X : p prime} = S√

X
∩ (
√
X,X]. (1.5)

Since Sx ⊇ S√X if x ≤
√
X, any large gap in Sx implies a large gap in S√

X
. Since Sx is

P(x)-periodic, if it contains a large gap then it must contain one in the interval [X, 3X]
if P(x) ≤ X. Thus, choosing x ≈ logX maximal such that P(x) ≤ X, we see that
Theorem 1 implies that there is a prime gap in [X, 3X] of size

� (logX)(log logX)C(1)−o(1) � (logX)(log logX)1/128,

on numerically calculating that C(1) > 1/128 (the limit of our type of method appears
to be an exponent 1/e; see Remark 9 in Section 4). This is stronger than the trivial bound
of (1 + o(1)) logX, which is immediate from the Prime Number Theorem, but is worse
than the current best bounds for this problem. Indeed, the problem of finding large gaps
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between consecutive primes has a long history, and it is currently known that gaps of size

� logX
log logX log log log logX

log log logX
(1.6)

exist below X if X is large enough, a recent result of Ford, Green, Konyagin, Maynard,
and Tao [4]. The key interest is that Theorem 1 applies to much more general sieving situ-
ations, to which it appears difficult to adapt the previous techniques, and gives a different
method of proof to these previous results. We will discuss the reasons for this in detail
below.

Example 2 (Gaps between prime values of polynomials). Given a polynomial f :
Z→ Z of degree d ≥ 1, consider the system I with Ip = ∅ for p ≤ d and

Ip := {n ∈ Z/pZ : f (n) ≡ 0 (mod p)}

for p > d. The polynomial need not have integer coefficients, e.g. f (n) = (n7
−n+7)/7

satisfies the hypotheses of Theorem 1. By Pólya’s theorem [10], f is integer valued at
integers if and only if f has the form f (x) =

∑d
j=0 aj

(
x
j

)
with every aj ∈ Z. In particular,

d!f (y) ∈ Z[y] and thus the sieving system is well-defined.
By Lagrange’s theorem, |Ip| ≤ d < p for all p > d, and hence the system is non-

degenerate and d-bounded. For irreducible f , the one-dimensionality (1.2) with strong er-
ror term follows quickly from Landau’s Prime Ideal Theorem [9] (see also [3, pp. 35–36]),
while (1.3), the ρ-supportedness of the system with ρ ≥ 1/d , follows from the Cheb-
otarev Density Theorem [12] (see also [8]). As a variant of (1.5), we observe that

{n ∈ N : f (n) > x, f (n) prime} ⊂ Sx

for any x > 1. Now set x := 1
2 logX. By Theorem 1, the set Sx contains a gap of length

� (logX)(log logX)C(1/d)−o(1). The period of this set, P(x), is X1/2+o(1) by the Prime
Number Theorem. Thus, this set contains such a long gap inside the interval [X/2, X].
Assuming that f has a positive leading coefficient and that X is large, on the interval
[X/2, X] we have f (n) > x, and so f (n) is composite for every n ∈ [X/2, X] \ Sx . We
thus obtain the following.

Corollary 1. Let f : Z→ Z be a polynomial of degree d ≥ 1 with positive leading term.
Then for sufficiently large X, there is a string of consecutive natural numbers n ∈ [1, X]
of length ≥ (logX)(log logX)C(1/d)−o(1) for which f (n) is composite, where C(1/d) >
e−(4d+1) is the constant of Theorem 1.

Note that Corollary 1 includes the trivial “degenerate” cases, when either f is reducible,
or there is some prime p with |Ip| = p, since then essentially all values of f are compos-
ite.

When f is irreducible, has degree two or greater, and the sieving system correspond-
ing to f is non-degenerate, it is still an open conjecture (of Bunyakovsky [2]) that there
are infinitely many integers n for which f (n) is prime. Moreover it is believed (see the
conjecture of Bateman and Horn [1]) that the density of these prime values on [X/2, X]
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is �f 1/logX, and so the gaps of Corollary 1 would be unusually large compared to the
average gap of size �f logX. We do not address these conjectures at all in this paper. Of
course, in the unlikely event that Bunyakovsky’s conjecture was false and there were only
finitely many prime values of f , Corollary 1 would be much weaker than the truth.

Remark 2. Let G be the Galois group of f , realized canonically as a subgroup of the
symmetric group Sd . By the Chebotarev Density Theorem [12] (see also [8]), we may
take ρ equal to the proportion of elements of G with at least one fixed point, which lies
in [1/d, 1). We have ρ = 1/d for many polynomials, e.g. x2k

+ 1, but ρ is much larger
generically. It has been known since van der Waerden [13] that a random irreducible
polynomial of degree d will have Galois group Sd with high probability.1 In this case
ρ is the proportion of elements of Sd with a fixed point. This is the classical derangement
problem, and we have for such polynomials

ρ = ρd :=

d∑
k=1

(−1)k+1

k!
.

In particular, ρd ≥ 1/2, ρd ≥ 5/8 for d ≥ 3 and limd→∞ ρd = 1 − 1/e. A calculation
reveals that

C(1/2) > 1/6001. (1.7)

Since C(ρ) is increasing with ρ, we thus have the following corollary.

Corollary 2. Let f : Z→ Z be a polynomial of degree d ≥ 2 with positive leading term,
irreducible over Q, and with full Galois group Sd . Then for all sufficiently large X, there
is a string of consecutive natural numbers n ∈ [1, X] of length ≥ logX(log logX)1/6001

for which f (n) is composite.

Example 3. A simple example to keep in mind is f (n) = n2
+ 1. In this case, I2 = {1},

Ip = ∅ is empty for p ≡ 3 (mod 4), and Ip = {ιp,−ιp} for p ≡ 1 (mod 4), where
ιp ∈ Z/pZ is one of the square roots of −1. Here one can use the Prime Number
Theorem in arithmetic progressions rather than the Prime Ideal Theorem to establish
one-dimensionality and the ρ-supportedness with ρ = 1/2. For this example (and for
any quadratic polynomial), Theorem 1 implies the existence of consecutive compos-
ite strings of length � (logX)(log logX)C(1/2)−o(1) � (logX)(log logX)1/6001 (using
(1.7) again). It is certain that further numerical improvements are possible.

Theorem 1 has another application, to a problem on the coprimality of consecutive values
of polynomials.

Corollary 3. Let f : Z→ Z be a non-constant polynomial. Then there exists an integer
Gf ≥ 2 such that for any integer k ≥ Gf there are infinitely many integers n ≥ 0 with the
property that none of the numbers f (n+ 1), . . . , f (n+ k) are coprime to all the others.

1 Specifically, fix the degree d and let the coefficients of f be chosen randomly and uniformly
from [−N,N] ∩ Z. Then, as N → ∞, the probability that f is irreducible and has Galois group
Sd tends to 1.
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For linear polynomials the result of the corollary is well-known, and not difficult to prove;
for quadratic and cubic polynomials in Z[x], the result was only proven recently by Sanna
and Szikszai [11]. The remaining cases of polynomials of degree four and higher appear
to be new.

Proof of Corollary 3. Let d = deg f . Then d!f (y) ∈ Z[y]. Let f0(y) ∈ Z[y] be a prim-
itive irreducible factor of d!f (y). If p > d is a prime and p | f0(m) for some integer m,
then p | f (m). So it will suffice to consider the case that f is irreducible and show in this
case that for all large k there are infinitely many n ≥ 0 such that for each i ∈ {1, . . . , k}
there is some j ∈ {1, . . . , k} with j 6= i and gcd(f (n + i), f (n + j)) divisible by some
prime > d.

Again, we consider the system I defined by Ip = ∅ for p ≤ d and for p > d we take

Ip := {n ∈ Z/pZ : f (n) ≡ 0 (mod p)}.

By Theorem 1, for all large numbers x the set Sx contains a gap of length ≥ k = b2xc.
Thus, there are infinitely many n such that each f (n + 1), . . . , f (n + k) has a prime
factor p with d < p ≤ x. For each i ∈ {1, . . . , k}, take a prime factor p of f (n+ i) with
d < p ≤ x. Since k = b2xc, p ≤ x and Ip 6= ∅, it must be that p divides at least two
terms of the sequence f (n+ 1), . . . , f (n+ k), thus proving the assertion. ut

Remark 3. Our proof of Corollary 3 above requires only a very weak version of The-
orem 1. It is not clear, however, that a trivial argument of the type presented below in
Remark 5 can yield a gap of size at least 2x when the degree of f is large.

Remark 4. The conclusion of Theorem 1 is equivalent to the existence, for any δ <
C(ρ), of some b ∈ Z/P (x)Z with

(Sx + b) ∩ [1, x(log x)δ] = ∅,

provided x is sufficiently large in terms of δ. Here Sx + b := {s + b : s ∈ Sx}.

Remark 5. The conclusion of Theorem 1 should be compared with the “trivial” bound:
there is a constant c′ > 0 such that for each sufficiently large x, there is some integer b
with

(Sx + b) ∩ [1, c′x] = ∅. (1.8)

We now sketch the proof of (1.8). Firstly, we see that we may assume that x is large. Then
by (1.2) it follows that there is some b modulo P(x/2) for which A := (Sx/2 + b) ∩[
1, ρx8C1

]
satisfies |A| ≤ ρx

4 log x . On the other hand, by (1.3) for any fixed ε > 0 we have

#{x/2 < q ≤ x : |Iq | ≥ 1} ≥
(
ρ

2
− ε

)
x

log x
(1.9)

for large x. Hence, we may perform a “clean-up stage” in which we pair up each element
a ∈ A with a unique prime q = qa ∈ (x/2, x] for which |Iq | ≥ 1. For each such pair a, qa
let va ∈ Iqa and suppose that b ≡ a−va (mod q). It follows that (Sx+b)∩

[
1, ρx8C1

]
= ∅,

proving (1.8).
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Remark 6. The hypothesis (1.1) is an important assumption in our treatment of certain
error terms; see Lemma 5.1 below. It is possible to relax this hypothesis with more so-
phisticated arguments, and several steps of the argument could be established with slightly
weaker assumptions.

The formula (1.2) say that |Ip| has average 1 in a weak sense, and is similar to the
usual condition defining a one-dimensional sieve (see e.g. [5, Sections 5.5, 6.7]). Most of
our arguments have counterparts if the one-dimensional hypothesis (1.2) is replaced by
another dimension, but in those cases the bounds we could obtain were inferior to what
could be obtained by the “trivial” argument; see for instance Remark 7 below.

1.1. Comparisons of methods

Recall from Example 1 that for the Eratosthenes sieving system Ip = {0}, previous meth-
ods were able to deduce stronger variants of Theorem 1. We now explain why these
methods appear difficult to adapt to more general sieving systems.

In the Eratosthenes sieving system it is clear that Sx avoids the interval [2, x], which
already gives the “trivial” lower bound j (P (x)) ≥ x − 2. All of the improvements to
this bound in previous literature (including those in [4]) rely on a variant of the following
observation: if x ≥ z ≥ 2, then the sifted set

Sz,x = N \
⋃

z<p≤x

Ip, (1.10)

when restricted to the interval [1, y)with y slightly larger than x, only consists of numbers
of the form a or ap, where p is a prime in (x, y], and a is z-smooth (or z-friable), which
means that no prime factor of a exceeds z. Moreover, z-smooth numbers are much rarer
than one would expect from naive sieving heuristics (if z is suitably small), but numbers
of the form ap must have a less than y/x, which is also a rare factorization (if y is only
slightly larger than x). Thus the number of elements of Sz,x in [1, y) is unusually small. It
is the fact that we can identify this interval containing unusually few integers after sieving
by the “medium-sized” primes which is the key ingredient allowing one to improve on
the trivial bound.

The most recent works on this problem then try to show as efficiently as possible that
one can choose b (a multiple of

∏
z<p≤x p) such that (b + S2x) ∩ [1, y) = ∅, and so we

can sieve out these few remaining elements of [1, y). This then implies the existence of
a large gap of size y in S2x . However, if we did not already know that there were few
elements in [1, y), then these methods would not produce a non-trivial bound.

Unfortunately, when considering the more general sieving systems of Definition 1 in
which the cardinalities |Ip| are allowed to vanish for many primes p, bounds for smooth
numbers cannot be used to show that Sz,x contains an interval with unusually few ele-
ments. Without this crucial step the existing methods only yield the trivial lower bound of
� x for the gap size. Moreover, for a general sieving system which is ρ-supported with
ρ < 1, we expect that no such reasonably long interval containing so few elements will
exist in Sz,x , meaning that this feature is genuinely unique to the Eratosthenes sieving
system.
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We overcome this obstacle by using a rather different method. Rather than attempting
to do unusually well with the medium-sized primes p < x/(log x)1/2, we instead will
make random choices, and only obtain results comparable to the trivial bound. We obtain
an improvement over the trivial bound by working harder with the larger primes p ∈
[x/(log x)1/2, x], showing that for each of these larger primes we can actually remove
more elements than one would typically expect by choosing the residue class carefully.
In order to make sure these choices do not interfere with each other too much, we make
the choices randomly in several stages, where the random choice is conditional on the
previous stages.

The basic idea is similar to how recent papers (e.g. [4]) have exploited the large primes
to sieve efficiently. In those papers one needed estimates of tuples of linear forms taking
many prime values frequently; here we just need to show the existence of suitable residue
classes containing unusually many unsieved integers. However, in the new set-up we re-
quire rather stronger quantitative bounds than are available for tuples of prime values—
our method would completely fail to improve over the trivial bound if we were not able
to obtain close-to-optimal quantitative results. This strategy is discussed in more detail in
the next section.

Remark 7. Unfortunately our methods only seem to give good results in the one-dimen-
sional case. Consider for instance the set {n ∈ P : n+ 2 ∈ P} of (the lower) twin primes.
This corresponds to a two-dimensional system in which Ip = {0 (mod p), 2 (mod p)}
for all primes p. The “trivial” bound coming from these methods would give a bound of
� logX log logX for the largest gap between lower twin primes up to X (or between the
largest such twin prime and X), and one could possibly hope to improve this bound by a
small power of log logX using a variant of the methods in this paper. However, a sieve
upper bound (e.g., [6, Cor. 2.4.1]) combined with the pigeonhole principle already gives
a bound of� log2X in this case.

1.2. Notation

From now on, we shall fix a non-degenerate, B-bounded, one-dimensional, ρ-supported
sieving system I.

We use X � Y , Y � X, or X = O(Y) to denote the estimate |X| ≤ CY for some
constant C > 0, and write X � Y for X � Y � X. Throughout the remainder of
the paper, all implied constants in O(·) and related order estimates may depend on I, in
particular on the constants B, ρ,C1. Moreover, implied constants will also be allowed
to depend on quantities δ,M,K , and ξ which we specify in the next section. We also
assume that the quantity x is sufficiently large in terms of all of these parameters.

The notation X = o(Y ) as x →∞ means limx→∞X/Y = 0 (holding other parame-
ters fixed).

If S is a statement, we use 1S to denote its indicator, thus 1S = 1 when S is true and
1S = 0 when S is false.

We will rely on probabilistic methods in this paper. Boldface symbols such as n, S,
λ, etc. denote random variables (which may be real numbers, random sets, random func-
tions, etc.). Most of these random variables will be discrete (in fact they will only take on
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finitely many values), so that we may ignore any technical issues of measurability; how-
ever it will be convenient to use some continuous random variables in the appendix. We
use P(E) to denote the probability of a random eventE, and EX to denote the expectation
of the random (real-valued) variable X.

Unless specified, all sums are over the natural numbers. An exception is made for
sums over the variables p or q (as well as variants such as p1, p2, etc.), which will always
denote primes.

2. Outline

In this section we describe the high-level strategy of proof, and perform two initial reduc-
tions on the problem, ultimately leaving one with the task of proving Theorem 2 below.
Recall the definition (1.10) of the sifted set Sz,x and define related quantities

P(z, x) :=
∏

z<p≤x
|Ip |≥1

p, σ(z, x) :=
∏

z<p≤x

(
1−
|Ip|

p

)
.

Suppose x is large (think of x →∞), and define

y := dx(log x)δe, (2.1)

z :=
y log log x
(log x)1/2

, (2.2)

where δ ∈ (0, 1/2) satisfies δ < C(ρ). We recall from (1.4) that this is equivalent to

(4+ δ) · 102δ

log(1/(2δ))
< ρ, (2.3)

which is a condition that will arise naturally in the proof. Our goal is to show that
(Sx + b) ∩ [1, y] = ∅ for some b and to accomplish this with maximal δ such that
(2.3) holds. For a general ρ, it is easy to see that

C(ρ) > e−1−4/ρ (0 < ρ ≤ 1),

establishing the final claim in Theorem 1. Incidentally,C(ρ) = 1
2e
−(4+o(1))/ρ as ρ → 0+.

In the course of the proof, we will introduce three additional parameters: M is a fixed
number slightly larger than 4, ξ is a real number slightly large than 1, and K is a very
large integer; we will eventually take ξ → 1+ and K → ∞. We adopt the convention
that constants implied by O(·) and� bounds may depend on δ,M,K, ξ , in addition to
the parameters defining I, that is, ρ, B, C1. Dependence on any other parameter will be
stated explicitly.

We observe that a linear shift of any single set Ip (that is, replacing Ip by c + Ip for
some integer c) does not affect the structure of Sx . Thus, the same is true for linear shifts
(depending on p) for any finite set of primes p. In particular, we may shift the sets Ip
so that all non-empty sets Ip contain the zero element, without changing the structure
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of Sx . Therefore, we may assume without loss of generality that 0 ∈ Ip whenever Ip is
non-empty. By the Chinese Remainder Theorem, we may select b by choosing residue
classes for b modulo primes p ≤ x.

2.1. Basic strategy

For x large enough we have
1 ≤ z ≤ x/2 ≤ x ≤ y.

We will select the parameter b modulo the primes p ≤ x in three stages:

(1) (Uniform random stage) First, we choose b modulo P(z) uniformly at random;
equivalently, for each prime p ≤ z with |Ip| ≥ 1, we choose b mod p randomly
with uniform probability, independently for each p.

(2) (Greedy stage) Secondly, choose b modulo P(z, x/2) randomly, but dependent on
the choice of b modulo P(z). A bit more precisely, for each prime q ∈ (z, x/2] with
|Iq | ≥ 1, we will select b ≡ bq (mod q) so that {bq + kq : k ∈ Z} ∩ [1, y] knocks
out nearly as many elements of the random set (Sz+b)∩[1, y] as possible. Note that
we are focusing only on those residues sifted by the element 0 ∈ Iq , and ignoring all
other possible elements of Iq . This simplifies our analysis considerably, but has the
effect of making C(ρ) decay rapidly as ρ → 0.

(3) (Clean-up stage) Thirdly, we choose b modulo primes q ∈ (x/2, x] to ensure that
the remaining elements m ∈ (Sx/2 + b) ∩ [1, y] do not lie in (Sx + b) ∩ [1, y] by
matching a unique prime q = q(m) with |Iq | ≥ 1 to each element m and setting
b ≡ m (mod q). (Again we use the single element 0 ∈ Iq . Such a clean-up stage is
standard in this subject, for instance it was already used in the proof of (1.8).)

We then wish to show that there is a positive probability that the above random sieving
procedure has (Sx + b)∩ [1, y] = ∅, which then clearly implies that there is a choice of b
such that this is the case, giving Theorem 1. It is the second sieving stage above which is
the key new content of this paper.

Following the argument used to show (1.8), and using (1.9), we can successfully show
that there exists a b′ such that (Sx +b′)∩[1, y] = ∅ after Stage (3) provided that we have
suitably few elements after Stage (2). By (1.9) (a consequence of our hypothesis (1.3)), it
is sufficient to show that there is a b such that

|(Sx/2 + b) ∩ [1, y]| ≤
(
ρ

2
− ε

)
x

log x
. (2.4)

After Stage (1), from (1.2) we see that the expected size of |(Sz + b) ∩ [1, y]| is
∼ σ(z)y �

y
log z ∼

y
log x . A random, uniform choice of b modulo primes q ∈ (z, x/2]

would only reduce the residual set by a factor
∏
z<p≤x/2(1−|Ip|/p) ∼ 1 and would lead

to a version of Theorem 1 with a gap of size � x. Instead, we use a greedy algorithm
to select b ≡ bq (mod q). By (2.1) and (2.2), the set (bq mod q) ∩ [1, y] has size about
H := y/q, with (log x)δ � H � (log x)1/2/log log x. By considering the initial portion
(SHM+b) (for some fixedM > 1) of the sieving process, one can see (e.g. using the large
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sieve [5, Lemma 7.5 and Cor. 9.9] or Selberg’s sieve [7, Sec. 1.2]) that the intersection
(bq mod q) ∩ (SHM + b) ∩ [1, y] must be somewhat smaller, namely of size

� σ(H)H �
H

logH

by (1.2). We will show that there are choices for the residues bq so that no further size
reduction occurs when one sieves up to z instead of HM , namely that

(SHM + b) ∩ (bq mod q) ∩ [1, y] = (Sz + b) ∩ (bq mod q) ∩ [1, y]. (2.5)

Heuristically, each individual choice of bq is expected to obey (2.5) with probability
roughly

σ(HM , z)Hσ(H),

but with our choice of parameters and (1.2), this quantity is substantially larger than 1/q,
and so there should be many possibilities for bq for each q. By contrast, for most
choices of bq , the ratio of the left and right sides of (2.5) is about σ(HM , z) =∏
HM<p≤z(1− |Ip|/p) ∼

logHM

log z , which is very small.

Remark 8. A simple way to perform the greedy stage would be to choose the bq inde-
pendently from one another for each q, conditional only on the first stage. One would
then expect that we will achieve (2.4) if y = x(log log x)ρ−ε instead of (2.1). This
would give a non-trivial result which is weaker than Theorem 1. Indeed, imagine we
had instead defined z := x/J and y := Lx, where J and L lie in [100, (log x)1/3].
After Stage (1), we are left with a set R of approximately y/log x = Lx/log x inte-
gers. The goal is to choose b = bq for primes q ∈ (z, x/2] with non-empty Iq so that
b mod q knocks out ≈ (y/q)/(log(y/q)) elements of R. For this to be possible, we must
have σ(HM , z)Hσ(H) ≥ 1/q for all H ≤ y/z = JL, but this is true on account of
JL ≤ (log x)2/3. Assuming independence of all these steps (that is, for different q), the
residual set after the greedy sieving has size

. |R|
∏

x/J<q≤x/2
Iq 6=∅

(
1−

(y/q)/log(y/q)
|R|

)
≈

Lx

log x

∏
x/J<q≤x/2

Iq 6=∅

(
1−

log x
q log(y/q)

)
.

By the Prime Number Theorem and (1.3),

∑
x/J<q≤x/2

Iq 6=∅

log x
q log(y/q)

= ρ

∫ x/2

x/J

dt

t log(y/t)
+O(1) = ρ log

(
log JL
logL

)
+O(1),

and thus the residual set has size O
(L logL

log JL
x

log x

)
. Taking J = (log x)1/3 and L =

(log log x)ρ−ε, the residual set has size at most o(x/log x) ≤ (ρ/2− ε) x
log x , which gives

(2.4), and so we are done.
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2.2. The greedy stage: further details

To successfully show (2.4) with y as large as x(log x)δ , we use a hypergraph covering
lemma of Pippenger–Spencer type introduced in [4]. This allows us to select residues bq
such that the sets

(SHM + b) ∩ (bq mod q) ∩ [1, y]

are nearly disjoint.
It is convenient to separately consider the primes q ∈ (z, x/2] in finer-than-dyadic

blocks. Fix a real number ξ > 1 (which we will eventually take very close to 1) and let

H :=

{
H ∈ {1, ξ, ξ2, . . . } :

2y
x
≤ H ≤

y

ξz

}
(2.6)

be the set of relevant scales H ; we will consider those primes q in (y/(ξH), y/H ] sepa-
rately for each H ∈ H, noting that

⋃
H∈H

( y
ξH
,
y
H

]
, is a subinterval of (z, x/2]. By (2.2)

and (2.1) for H ∈ H we have

2(log x)δ ≤ H ≤
(log x)1/2

log log x
. (2.7)

For each h ∈ H, let QH be the set of primes q ∈ (y/(ξH), y/H ] with |Iq | ≥ 1. From
(1.3), we have

|QH | ∼ ρ(1− 1/ξ)
y

H log x
. (2.8)

Let
Q =

⋃
H∈H

QH .

For q ∈ Q, let Hq be the unique element of H such that

y

ξHq
< q ≤

y

Hq
. (2.9)

Now fix a real number M satisfying

4+ δ < M ≤ 5. (2.10)

With H fixed, we will examine separately the effect of the sieving by primes in [2, HM
]

and by the primes in (HM , z]. We denote by b a random residue class from Z/PZ, chosen
with uniform probability, where we adopt the abbreviations

P = P(z), σ = σ(z), S = Sz + b,

as well as the projections

P1 = P(H
M), σ1 = σ(H

M), b1 ≡ b (mod P1), S1 = SHM + b1, (2.11)

P2 = P(H
M , z), σ2 = σ(H

M , z), b2 ≡ b (mod P2), S2 = SHM ,z + b2, (2.12)

with the convention that b1 ∈ Z/P1Z and b2 ∈ Z/P2Z. Thus, b1 and b2 are each uni-
formly distributed, are independent of each other, and likewise S1 and S2 are independent.
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We also have the obvious relations

P = P1P2, σ = σ1σ2, S = S1 ∩ S2.

For prime q and n ∈ Z, define the random set

AP(J ; q, n) := {n+ qh : 1 ≤ h ≤ J } ∩ S1 (2.13)

that describes a portion of the progression n (mod q) that survives the sieving process up
to HM . Let K ≥ 2 be a fixed integer parameter, which we will eventually take to be very
large. Given S1, the probability that AP(KH ; q, n) ⊂ S2 is about σ |AP(KH ;q,n)|

2 , and if
this occurs then removing the residue class n mod q will remove an essentially maximal
number of elements. Central to our argument is the weight function

λ(H ; q, n) :=

{
1/σ |AP(KH ;q,n)|

2 if AP(KH ; q, n) ⊂ S2,

0 otherwise.
(2.14)

Informally, λ(H ; q, n) then isolates those n with the (somewhat unlikely) property that
the portion AP(KH ; q, n) of the arithmetic progression n mod q that survives the sieving
process up toHM in fact also survives the sieving process all the way up to z. The weight
nearly exactly counteracts the probability of this event, so that we anticipate λ(H ; q, n)

to be about 1 on average over n. In addition, λ(H ; q, n) is skewed to be large for those n
with AP(KH ; q, n) large. We will focus attention on those n satisfying

−Ky < n ≤ y,

for outside this interval, if q ∈ QH then AP(KH ; q, n) does not intersect the interval
[1, y] of primary interest.

Our aim is thus first select a random b ∈ Z/PZ, and show that with high proba-
bility the random sets S1 and S2 behave as we expect for all scales H ∈ H. This im-
plies that there is a good fixed choice b ∈ Z/PZ where the (now deterministic) function
λ(Hq; q, n) is suitably concentrated on residue classes n mod q which contain many el-
ements in S = Sz + b, for all q in a suitable subset Q′ ⊆ Q. In particular, this means
that if we then select a residue class nq mod q randomly with probability proportional to
λ(Hq; q, n), this residue class will typically contain many elements of S, for any q ∈ Q′.

This is now precisely the situation of our hypergraph covering lemma, which we can
then apply essentially as a black box. (The lemma is a minor variation of the one used
in [4] based on the “Rödl nibble” or “semi-random” method; the proof is given in the
appendix.) The conclusion from the lemma allows us to deduce that there is a choice of
residue classes nq mod q for q ∈ Q′ which cover almost all of S. If we then choose
b mod P(z, x/2) such that b = nq mod q for all q ∈ Q′ we then obtain (2.4), and hence
the result.

The paper is organized as follows. Theorem 1 has previously been reduced to that of
establishing (2.4). We will then reduce this task further to that of establishing Theorem 2
(second reduction) in the next section. In turn, Theorem 2 will be reduced to Theorem 3
(third reduction) in the following section. The final section is then dedicated to establish-
ing Theorem 3.
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3. Greedy sieving via hypergraph covering

In this section we use our hypergraph covering lemma (Lemma 3.1 below) to reduce the
proof of Theorem 1 to the claim that there is a good choice of b for the initial sieving,
which is given by Theorem 2 below.

Recall the definition (2.9) of Hq and that S is the set Sz + b depending on b.

Theorem 2 (Second reduction). Fix M satisfying (2.10), fix δ satisfying (2.3), and sup-
pose ε > 0 is fixed and sufficiently small. If x is large (with respect to M, ε) then there
exists an integer b and a set Q′ ⊂ Q such that

(i) one has
|S ∩ [1, y]| ≤ 2σy, (3.1)

(ii) for all q ∈ Q′, one has∑
−Ky<n≤y

λ(Hq; q, n) =

(
1+O

(
1

(log x)δ(1+ε)

))
(K + 1)y, (3.2)

(iii) for all but at most ρx
8 log x elements n of S ∩ [1, y], one has

∑
q∈Q′

∑
h≤KHq

λ(Hq; q, n− qh) =

(
C2 +O

(
1

(log x)δ(1+ε)

))
(K + 1)y (3.3)

for some quantity C2 independent of n with

102δ
≤ C2 ≤ 100. (3.4)

Theorem 2 is saying that there is a good choice of b ∈ Z/PZ such that we can then
perform the second sieving stage effectively. The conclusions are what we would expect
for “typical” b, so this merely sets the stage for the greedy sieve.

If we remove a residue class nq mod q where nq is chosen randomly proportional
to λ(Hq; q, ·), then together (3.2) and (3.3) say that the expected number of times n ∈
S ∩ [1, y] is removed is about C2 > 1 (apart from a small exceptional set of n). This
means that if we could realize these random variables so that the behavior was very close
to this expectation, we would sieve in a perfectly uniform manner and would successfully
remove almost all of S ∩ [1, y]. The fact that we can pass from the random variables to
such a uniform sieve is a consequence of the hypergraph covering lemma. It is vital that
C2 > 1, and the fact that we will ultimately succeed with C2 bounded (rather than of size
log log x) corresponds to us being able to take y as large as x(log x)δ .

The fact that we have good error terms in the asymptotics and the slightly stronger
lower bound C2 > 102δ is needed for our hypergraph covering lemma, but this is not a
limiting feature of our argument.

Another way to look at Theorem 2 is that equation (3.2) says that λ(Hq; q, n) is
about 1 on average. However, when n is drawn from the smaller set S ∩ [1, y] (which has
density ≈ σ in [1, y]), the quantity λ(Hq; q, n− qh) appearing in (3.3) is biased to be a
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bit larger (in our construction, it will eventually behave like log y
log(y/q) on the average over

q ∈ Q′), since n ∈ AP(KH ; q, n − hq) is already known to lie in S. It is this bias that
ultimately allows us to gain somewhat over the trivial bound of � x on the gap size in
Theorem 1.

To reduce Theorem 1 to Theorem 2, we will use the following hypergraph covering
lemma.

Lemma 3.1 (Hypergraph covering lemma). Suppose that 0 < δ ≤ 1/2, let y ≥ y0(δ)

with y0(δ) sufficiently large, and let V be a finite set with |V | ≤ y. Let 1 ≤ s ≤ y, and
suppose that e1, . . . , es are random subsets of V satisfying the following:

|ei | ≤
(log y)1/2

log log y
(1 ≤ i ≤ s), (3.5)

P(v ∈ ei) ≤ y−1/2−1/100 (v ∈ V, 1 ≤ i ≤ s), (3.6)
s∑
i=1

P(v, v′ ∈ ei) ≤ y−1/2 (v, v′ ∈ V, v 6= v′), (3.7)

∣∣∣ s∑
i=1

P(v ∈ ei)− C2

∣∣∣ ≤ η (v ∈ V ), (3.8)

where C2 and η satisfy

102δ
≤ C2 ≤ 100, η ≥

1
(log y)δ log log y

. (3.9)

Then there are subsets ei of V , 1 ≤ i ≤ s, with ei being in the support of ei for every i,
and such that ∣∣∣V \ s⋃

i=1

ei

∣∣∣ ≤ C3η|V |, (3.10)

where C3 is an absolute constant.

This lemma is proven using almost exactly the same argument used to prove [4, Corol-
lary 4] (after some minor changes of notation); we defer the proof to the appendix.

The conditions (3.5)–(3.7) should be thought of as conditions which ensure that the
randoms sets ei typically spread out and cover most vertices in V fairly evenly. The con-
dition (3.9) ensures that typically all vertices are covered slightly more than once in a uni-
form manner. Provided these conditions are fulfilled, the conclusion (3.10) is that there is
a non-zero probability that virtually all vertices are covered, and so there is a determin-
istic realization of the random variables which covers virtually all the vertices. The key
point is that C2 can be taken to be bounded, since this means that the covering sets ei
are close to disjoint, and this is what allows us to improve the situation of trying to sieve
independently for each q.

Reduction of Theorem 1 to Theorem 2. We are now in a position to deduce (2.4), and
hence Theorem 1, from Theorem 2. Let b and Q′ be the quantities whose existence is
asserted by Theorem 2, and so S = Sz + b.
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Property (iii) of Theorem 2 implies that there is a set V ⊆ S ∩ [1, y] , containing all
but at most ρx

8 log x elements of S ∩ [1, y], and such that (3.3) holds for all n ∈ V . For each
q ∈ Q′, we choose a random integer nq with probability density function

P(nq = n) =
λ(Hq; q, n)∑

−Ky<n′≤y λ(Hq; q, n
′)
. (3.11)

Note that by (3.2) the denominator is non-zero, so this is a well-defined probability dis-
tribution. We will not need to assume any independence hypotheses on the nq . For each
q ∈ Q′, we then define the random subset eq of V by the formula

eq := V ∩ {nq + hq : 1 ≤ h ≤ KHq}. (3.12)

Our goal is to show that there are choices nq of the random variable nq which occur with
positive probability such that the corresponding sets eq cover most of V . Specifically, we
wish to use Lemma 3.1 to show that∣∣∣V \ ⋃

q∈Q′
eq

∣∣∣ ≤ ρx

8 log x
. (3.13)

By construction, if (3.13) holds then for each q ∈ Q′ there is a number nq such that

eq ⊂ {n ∈ V : n ≡ nq (mod q)}.

Taking b ≡ nq (mod q) for all q ∈ Q′, we find that

|(Sx/2 + b) ∩ [1, y]| ≤ |S ∩ [1, y] \ V | +
∣∣∣V \ ⋃

q∈Q′
eq

∣∣∣ ≤ ρx

8 log x
+

ρx

8 log x
=

ρx

4 log x
,

as required for (2.4). The fractions 1/8 and 1/4 above are irrelevant to the determination
of the best exponent in Theorem 1, and were chosen for convenience.

Thus it remains to construct eq satisfying (3.13), and this is accomplished by
Lemma 3.1. We wish to apply Lemma 3.1 with s = |Q′|, {e1, . . . , es} = {eq : q ∈ Q′},
C2 as given by Theorem 2, and

η =
ρ/20

C3(log x)δ
.

With this choice of parameters we see from (3.1), (1.2), and (2.1) that

C3η|V | ≤
ρ/10
(log x)δ

y

log z
∼ (ρ/10)

x

log x
.

Hence, (3.13) follows from (3.10) if x is large enough. Thus, it suffices to verify the
hypotheses (3.5)–(3.9) of the lemma, which we accomplish using the conclusions (3.2)
and (3.3) of Theorem 2.

Note that if q ∈ Q′, then from (3.12) and (2.6) we have

|eq | ≤ Hq ≤
y

z
=
(log x)1/2

log log x
≤
(log y)1/2

log log y
,
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which gives (3.5). Similarly, for n ∈ V and q ∈ Q′, from (3.12), (3.11), and (2.14) we
have

P(n ∈ eq) =
∑

1≤h≤KHq

P(nq = n− hq)�
1
y

∑
1≤h≤KHq

λ(Hq; q, n− hq)

�
1
y
Hqσ

−Hq
2 �

1
y9/10 ,

which gives (3.6) for y large enough.
Applying (3.12), (3.11), (3.2), and (3.3) successively yields∑
q∈Q′

P(v ∈ eq) =
∑
q∈Q′

∑
h≤KHq

P(nq = v − hq) =
∑
q∈Q′

∑
h≤KHq

λ(Hq; q, v − hq)∑
n λ(Hq; q, n)

= C2 +O((log x)−δ−ε),

and (3.8) follows. We now turn to (3.7). Observe from (3.12) that for distinct v, v′ ∈ V ,
one can only have v, v′ ∈ eq if q divides v − v′. Since |v − v′| ≤ 2y and q ≥ z >

√
2y,

there is at most one q for which this is the case, and (3.7) now follows from (3.6). This
concludes the derivation of (2.4) from Theorem 2. ut

To complete the proof of Theorem 1, we need to prove Theorem 2 and Lemma 3.1.
The proof of Theorem 2 depends on various first and second moment estimations of the
weights, which are given in the next two sections. The proof of Lemma 3.1 will occupy
the Appendix.

4. Concentration of λ(H ; q, n)

In this section, we deduce Theorem 2 from the following moment calculations.

Theorem 3 (Third reduction). Assume that M ≥ 2. Then

(i) One has

E|S ∩ [1, y]| = σy, (4.1)

E|S ∩ [1, y]|2 =
(

1+O
(

1
log y

))
(σy)2. (4.2)

(ii) For every H ∈ H and for j ∈ {0, 1, 2} we have

E
∑
q∈QH

( ∑
−Ky<n≤y

λ(H ; q, n)
)j
=

(
1+O

(
1

HM−2

))
((K + 1)y)j |QH |. (4.3)

(iii) For every H ∈ H and for j ∈ {0, 1, 2} we have

E
∑

n∈S∩[1,y]

( ∑
q∈QH

∑
h≤KH

λ(H ; q, n− qh)
)j

=

(
1+O

(
1

HM−2

))(
|QH |KH

σ2

)j
σy. (4.4)
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We remind the reader that in Theorem 3 the random variables S and λ are defined in
terms of the random variable b chosen uniformly in Z/PZ, not the random variables nq
we encountered in the previous section.

Note that for every n ∈ [1, y] and h ≤ KH we have n − qh ∈ [−Ky, y], so the
quantity in (4.4) is well-defined. As with the previous theorem, the quantity λ(H ; q, n)
behaves like 1 on the average when n is drawn from [−Ky, y] ∩ Z, but for n drawn from
S ∩ [1, y] (in particular, n ∈ S2), the quantity λ(H ; q, n − qh) is now biased to have an
average value of approximately σ−1

2 because n − qh + qh = n is automatically in S2;
recall the definition (2.14) of λ(H ; q, n− qh).

Deduction of Theorem 2 from Theorem 3. We draw b uniformly at random from Z/PZ. It
will suffice to generate a random set Q′ such that the random function λ defined in (2.14)
satisfies the conclusions of Theorem 2 (with b replaced by b) with positive probability—
in fact, we will show that they hold with probability 1+ o(1).

Assume that M satisfies (2.10). From Theorem 3(i) we have

E
∣∣|S ∩ [1, y]| − σy∣∣2 � (σy)2

log y
.

Hence by Chebyshev’s inequality, we see that

P(|S ∩ [1, y]| ≤ 2σy) = 1−O(1/log x), (4.5)

which gives (3.2) in Theorem 2. Let H ∈ H. From Theorem 3(ii) we have (recall that our
implied constants may depend on K)

E
∑
q∈QH

( ∑
−Ky<n≤y

λ(H ; q, n)− (K + 1)y
)2
�
y2
|QH |

HM−2 . (4.6)

Now let Q′H be the subset of q ∈ QH with the property that∣∣∣ ∑
−Ky<n≤y

λ(H ; q, n)− (K + 1)y
∣∣∣ ≤ y

H 1+ε . (4.7)

It follows from (4.6) and (4.7) that

E|QH \Q′H | �
|QH |

HM−4−2ε . (4.8)

By Markov’s inequality, it follows that with probability 1−O(H−ε),

|QH \Q′H | �
|QH |

HM−4−3ε . (4.9)

By (2.10), we have M > 4 + 3ε for small enough ε, that is, the exponent in the denom-
inator in (4.9) is positive. Since

∑
H∈HH

−ε
� (y/x)−ε � (log x)−δε, with probability

1−O((log x)−δε) the relation (4.9) holds for all H ∈ H simultaneously. We now set

Q′ :=
⋃
H∈H

Q′H .
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Then, on the probability 1− o(1) event that (4.9) holds for every H and that (4.5) holds,
items (i) (3.1) and (ii) (3.2) of Theorem 2 follow upon recalling (4.7) and the lower bound
H � (log x)δ .

We work on part (iii) of Theorem 2 using Theorem 3(iii) in a similar fashion to previ-
ous arguments. We have

E
∑

n∈S∩[1,y]

∣∣∣∣ ∑
q∈QH

∑
h≤KH

λ(H ; q, n− qh)−
|QH |KH

σ2

∣∣∣∣2 � 1
HM−2

(
|QH |KH

σ2

)2

σy.

If we let EH denote the set of n ∈ S ∩ [1, y] such that∣∣∣∣ ∑
q∈QH

∑
h≤KH

λ(H ; q, n− qh)−
|QH |KH

σ2

∣∣∣∣ ≥ |QH |KH

σ2H (M−2)/2−ε , (4.10)

then
E|EH | � σy/H ε.

By Markov’s inequality, we conclude that |EH | ≤ σy/H ε/2 with probability 1 −
O(H−ε/2).

We next estimate the contribution from “bad” primes q ∈ QH \Q′H . For any h ≤ H ,
by Cauchy–Schwarz we have

E
∑

n∈S∩[1,y]

∑
q∈QH \Q′H

λ(H ; q, n− hq)

≤ (E|QH \Q′H |)
1/2
(
E

∑
q∈QH \Q′H

∣∣∣ y∑
n=1

λ(H ; q, n− hq)

∣∣∣2)1/2

and by the triangle inequality, (4.6) and (4.8),

E
∑

q∈QH \Q′H

∣∣∣ y∑
n=1

λ(H ; q, n− hq)

∣∣∣2
≤ 2E

∑
q∈QH \Q′H

(∣∣∣ y∑
n=1

λ(H ; q, n− hq)− (K + 1)y
∣∣∣2 + (K + 1)2y2

)
�

y2
|QH |

HM−4−2ε .

Therefore, by (4.8) and summing over h ≤ KH ,

E
∑

n∈S∩[1,y]

∑
q∈QH \Q′H

∑
h≤KH

λ(H ; q, n− hq)�
y|QH |

HM−5−2ε .

Let E ′H denote the set of n ∈ S ∩ [1, y] such that∑
q∈QH \Q′H

∑
h≤KH

λ(H ; q, n− hq) ≥
|QH |KH

H (1+ε)δσ2
. (4.11)
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Then

E|E ′H | �
yH δ(1+ε)σ2

HM−4−2ε � σy
logH

HM−4−δ−3ε .

By Markov’s inequality, |E ′H | ≤ σy/H ε with probability 1 − O(1/HM−4−δ−5ε). By
(2.10) again, if ε is small enough then M − 4 − δ − 5ε > ε. Consider the event that
(4.5) holds, and that for every H , we have (4.9), |EH | ≤ σy/H ε/2 and |E ′H | ≤ σy/H

1+ε.
This simultaneous event happens with positive probability on account of

∑
H∈HH

−η
�

(log x)−δη for any η > 0. As mentioned before, items (i) and (ii) of Theorem 2 hold. Now
let

N = S ∩ [1, y] \
⋃
H∈H

(EH ∪ E ′H ).

The number of exceptional elements satisfies∣∣∣ ⋃
H∈H

(EH ∪ E ′H )
∣∣∣� σy

(log x)δ(1+ε)
,

which is smaller than ρx
8 log x for large x. It remains to verify (3.3) for n ∈ N . Since n 6∈ EH

and n 6∈ E ′H for every H , the inequalities opposite to those in (4.10) and (4.11) hold, and
for each H ∈ H we have the asymptotic∑

q∈Q′H

∑
h≤KH

λ(H ; q, n− qh) =

(
1+O

(
1

H (1+ε)δ

))
|QH |KH

σ2
.

Therefore,∑
q∈Q′

∑
h≤KHq

λ(Hq; q, n− qh) =
∑
H∈H

∑
q∈Q′H

∑
h≤KH

λ(H ; q, n− qh)

=

(
1+O

(
1

(log x)(1+ε)δ

))
C2 × (K + 1)y

where
C2 :=

K

(K + 1)y

∑
H∈H

|QH |H

σ2
.

This verifies (3.3). From (2.8), we see that C2 does not depend on n (C2 depends only
on x). Using (1.2) and (2.8),

C2 ∼
K

(K + 1)y
ρ(1− 1/ξ)

∑
H∈H

log z
log(HM)

yH

H log x
(x →∞).

Recalling the definitions (2.1) of y and (2.2) of z, together with the bounds (2.7) on H ,
we thus have as x →∞,

C2 ∼
Kρ(1− 1/ξ)
M(K + 1)

∑
H∈H

1
logH

=
Kρ(1− 1/ξ)
M(K + 1)

∑
2(log x)δ≤ξ j≤ξ−1(log x)1/2/log log x

1
j log ξ

.
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Summing on j we conclude that

C2 ∼
Kρ

M(K + 1)
1− 1/ξ

log ξ
log
(

1
2δ

)
.

Finally, recalling (2.3), we see that ifK is large enough, ξ is sufficiently close to 1 andM
sufficiently close to 4+ δ, then

C2 ≥ 102δ,

as required for (3.4). ut

Remark 9. The limit of our methods appears to be an exponent e−1/ρ
− o(1) in The-

orem 1. Such a bound assumes that we may succeed with the previous argument for
any choice of M > 1, any C2 > 1 and with z = y/(log x)1+o(1) in place of z =
y/(log x)1/2+o(1). Then the above calculation reveals that C2>1 provided ρ log(1/δ)>1.
Each of these conditions appears to be essential in the succeeding arguments in the next
sections.

It remains to establish Theorem 3. This is the objective of the next section.

5. Computing correlations

In this section, we verify the claims in Theorem 3. We will frequently need to compute
k-point correlations of the form

P(n1, . . . , nk ∈ S2)

for various integers n1, . . . , nk (not necessarily distinct). Heuristically, since S2 avoids
Ip residue classes modulo p for each p, we expect that the above probability is roughly
σ k2 for typical choices of n1, . . . , nk . Unfortunately, there is some fluctuation from this
prediction, most obviously when two or more of the n1, . . . , nk are equal, but also if
the reductions ni (mod p), nj (mod p) for some prime p ∈ (HM , z] have the same
difference as two elements of Ip. Fortunately we can control these fluctuations to be small
on average.

To formalize this statement we need some notation. Let DH ⊂ N denote the collection
of squarefree numbers d, all of whose prime factors lie in (HM , z]. This set includes 1,
but we will frequently remove 1 and work instead with DH \ {1}. For each d ∈ DH , let
Id ⊂ Z/dZ denote the collection of residue classes a mod d such that a mod p ∈ Ip for
all p | d . Recall the defnition of the difference set A−B := {a− b : a ∈ A, b ∈ B}. For
any integer m and any parameter A > 0, we define the error function

EA(m;H) :=
∑

d∈DH \{1}

Aω(d)

d
1m(mod d)∈Id−Id , (5.1)

where ω(d) is the number of prime factors of d. The quantity EA(m;H) looks compli-
cated, but in practice it will be quite small on average over m. We also observe that EA is
an even function: EA(−m;H) = EA(m;H).



688 Kevin Ford et al.

Before we start our proof of Theorem 3, we first need two preparatory lemmas. The
following lemmas hold for general H , not necessarily restricted to H ∈ H. Recall that
implied constants in O(·) may depend on B and M .

Lemma 5.1. Let 10 < H < z1/M , 1 ≤ ` ≤ 10KH , and suppose that U ⊂ V are finite
sets of integers with |V| = `. Then

P(U ⊂ S2) = σ
|U |
2

(
1+O

(
|U |2

HM

)
+O

(
1
`2

∑
v,v′∈V
v 6=v′

E2`2B(v − v
′
;H)

))
.

Remark 10. The numbers in V \ U are “dummy variables”, but it is often convenient to
include them. Typically, U will be an irregular subset, with unknown size, of a regular
set V , whose size is known. We often have better control of the error averaged over the
larger set.

Proof of Lemma 5.1. For each prime p ∈ (HM , z], let b2,p ∈ Z/pZ be the reduction of
b2 modulo p, thus each b2,p is uniformly distributed in Z/pZ and the b2,p are indepen-
dent in p. Let Np denote the set of residue classes U (mod p). By the Chinese Remainder
Theorem, we thus have

P(U ⊂ S2) =
∏

p∈(HM ,z]

P(Np ∩ (b2,p + Ip) = ∅) =
∏

p∈(HM ,z]

(1− P(b2,p ∈ Np − Ip))

=

∏
p∈(HM ,z]

(
1−
|Np − Ip|

p

)
.

Let k = |U |. We may crudely estimate the size of the difference set Np − Ip by

k|Ip| ≥ |Np − Ip| ≥ k|Ip| − |Ip|
∑

u,u′∈U , u6=u′
1u−u′ (modp)∈Ip−Ip .

Since |Ip| ≤ B and k ≤ 10H , we have k|Ip| < 10KBH < p/10 for x large enough in
terms of M . Thus,(

1−
|Np − Ip|

p

)
=

(
1−

k|Ip|

p

)(
1+

k|Ip| − |Np − Ip|

p − k|Ip|

)
=

(
1−

k|Ip|

p

)
1p,

where

1 ≤ 1p ≤ 1+
2B
p

∑
u,u′∈U ,u 6=u′

1u−u′ (modp)∈Ip−Ip

≤

∏
u,u′∈U , u6=u′

exp
{

2B
1u−u′ (modp)∈Ip−Ip

p

}

≤

∏
v,v′∈V, v 6=v′

exp
{

2B
1v−v′ (modp)∈Ip−Ip

p

}
.



Long gaps in sieved sets 689

Here we have enlarged the summation over pairs of numbers from V . We have

∏
HM<p≤z

(
1−

k|Ip|

p

)
= σ k2

(
1+O

(
k2

HM

))
.

By the arithmetic mean-geometric mean inequality, we have∏
p∈(HM ,z]

1p ≤
∏

v,v′∈V,v 6=v′

∏
p∈(HM ,z]

exp
{

2B
1v−v′ (modp)∈Ip−Ip

p

}

≤
2

`2 − `

∑
v,v′∈V,v 6=v′

∏
p∈(HM ,z]

exp
{

2B
(
`2
− `

2

) 1v−v′ (modp)∈Ip−Ip

p

}

≤
2

`2 − `

∑
v,v′∈V,v 6=v′

∏
p∈(HM ,z]

(
1+ 2B`2 1v−v′ (modp)∈Ip−Ip

p

)
.

Recalling the definition (5.1) of EA(n;H) we see that∏
p∈(HM ,z]

1p ≤
2

`2 − `

∑
v,v′∈V, v 6=v′

(1+ E2B`2(v − v
′
;H))

= 1+
2

`2 − `

∑
v,v′∈V, v 6=v′

E2B`2(v − v
′
;H). ut

To estimate the average contribution of the errors E2B`2(v − v′) appearing in the above
lemma, we will use the following estimate.

Lemma 5.2. Suppose that 10 < H < z1/M , and that (mt )t∈T is a sequence of integers
indexed by a finite set T , obeying the bounds∑

t∈T

1mt≡a (mod d) �
X

φ(d)
+ R (5.2)

for some X,R > 0 and all d ∈ DH \ {1} and a ∈ Z/dZ. Then, for any 0 < A satisfying
AB2
≤ HM and any integer j , one has∑

t∈T

EA(mt + j ;H)� X
A

HM
+ R exp(AB2 log log y).

In practice, R will be much smaller than X, and the first term on the right-hand side will
dominate.

Proof. From the Chinese Remainder Theorem and (1.1), we see that for any d ∈ DH , we
have

|Id | =
∏
p|d

|Ip| ≤ B
ω(d).
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In particular, the difference set Id − Id ⊂ Z/dZ obeys the bound

|Id − Id | ≤ B
2ω(d).

From (5.1), (5.2) we thus have∑
t∈T

EA(mt + j ;H) =
∑

d∈DH \{1}

Aω(d)

d

∑
a∈Id−Id

#{t ∈ T : mt + j ≡ a (mod d)}

�

∑
d∈DH \{1}

(AB2)ω(d)

d

(
X

φ(d)
+ R

)
.

From Euler products and Mertens’ theorem (for primes) we have∑
d∈DH

(AB2)ω(d)

d
=

∏
p∈(HM ,z]

(1+ AB2/p) ≤ exp{AB2 log log y}

and∑
d∈DH

(AB2)ω(d)

dφ(d)
=

∏
p∈(HM ,z]

(
1+

AB2

p2 − p

)
≤ exp{AB2/HM

} ≤ 1+O(A/HM). ut

Finally, we are now in a position to complete the proof of Theorem 3.

Proof of Theorem 3(i). By linearity of expectation, we have

E|S ∩ [1, y]| =
∑

1≤n≤y

P(n ∈ S).

Since the set S is periodic with period P and has density σ , the summands here are all
equal to σ , and (4.1) follows. Now we consider (4.2). Here we decompose S as S = S1∩S2
using (2.11) and (2.12) with

H = 1
4 (log y)1/M .

By the Prime Number Theorem,

P1 = exp{(1+ o(1))HM
} ≤ y1/4+o(1). (5.3)

By linearity of expectation,

E|S ∩ [1, y]|2 =
∑

n1,n2≤y

P(n1, n2 ∈ S) =
∑

n1,n2≤y

P(n1, n2 ∈ S1)P(n1, n2 ∈ S2).

Observe that the probability P(n1, n2 ∈ S1) depends only on the reductions `1 :≡ n1
(mod P1), `2 :≡ n2 (mod P1). Also, applying Lemma 5.1 (with U = V = {n1, n2}), we
have

P(n1, n2 ∈ S2) = (1+O(E8B(n1 − n2;H)))σ
2
2 .
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Therefore,

E|S ∩ [1, y]|2 =
∑

1≤`1,`2≤P1

P(`1, `2 ∈ S1)
∑

1≤n1,n2≤y
n1≡`1 (modP1)
n2≡`2 (modP1)

P(n1, n2 ∈ S2)

= σ 2
2

∑
1≤`1,`2≤P1

P(`1, `2 ∈ S1)

(
y

P1
+O(1)

)2

+O
(
σ 2

2

∑
1≤`1,`2≤P1

P(`1, `2 ∈ S1)
∑

1≤n1,n2≤y
n1≡`1 (modP1)
n2≡`2 (modP1)

E8B(n1 − n2;H)
)
. (5.4)

By the definition (2.11),∑
1≤`1,`2≤P1

P(`1, `2 ∈ S1) = E |S1 ∩ [1, P1]|
2
= (σ1P1)

2, (5.5)

since |S1 ∩ [1, P1]| = σ1P always. Next, fix `1, `2 ∈ Z/P1Z. Direct counting shows that
for any n1, natural number d ∈ DH+ and residue class a mod d, we have

#{n2 ≤ y : n2 ≡ `2 (mod P1), n1 − n2 ≡ a (mod d)} �
y

dP1
+ 1 ≤

y

φ(d)P1
+ 1.

Applying Lemma 5.2 to the inner sum over n2, we deduce that

∑
1≤n1,n2≤y

n1≡`1 (modP1)
n2≡`2 (modP1)

E8B(n1 − n2;H)�

(
y

P1

)2 1
HM
+
y

P1
exp(O(log log y))

�
y2

P 2
1H

M
�

y2

log y
(5.6)

using (5.3). Inserting the bounds (5.5) and (5.6) into (5.4) completes the proof of (4.2).
ut

Proof of Theorem 3(ii). Let H ∈ H. The case j = 0 is trivial, so we turn attention to the
j = 1 claim:

E
∑
q∈QH

∑
−Ky≤n≤y

λ(H ; q, n) =

(
1+O

(
1

HM−2

))
(K + 1)y|QH |. (5.7)

The left-hand side expands as

E
∑
q∈QH

∑
−Ky≤n≤y

1AP(KH ;q,n)⊂S2

σ
|AP(KH ;q,n)|
2

.



692 Kevin Ford et al.

Recalling the splitting (2.11) and (2.12), that b1 and b2 are independent, and conse-
quently that AP(KH ; q, n) and S2 are independent (since the sets AP(KH ; q, n) defined
in (2.13) are determined by S1), the above expression equals

∑
q∈QH

∑
−Ky≤n≤y

∑
b1

P(b1 = b1)

σ
|AP(KH ;q,n)|
2

P(AP(KH ; q, n) ⊂ S2).

Fix b1 and apply Lemma 5.1 with U = AP(KH ; q, n) and V = {n+qh : 1 ≤ h ≤ KH }.
We find that the left side of (5.7) equals

∑
q∈QH

∑
−Ky≤n≤y

(
1+O

(
1

HM−2

)
+O

(
1
H 2

∑
1≤h,h′≤KH

h6=h′

E2BK2H 2(qh− qh
′
;H)

))
.

Clearly it suffices to show that

∑
q∈QH

E2BK2H 2(qh− qh
′
;H)�

|QH |

HM−2

for any distinct h, h′ satisfying 1 ≤ h, h′ ≤ KH . For future reference we will show the
more general estimate

∑
q∈QH

E8BK2H 2(q`+ k;H)�
|QH |

HM−2 (5.8)

uniformly for any integer k and 0 < |`| ≤ KH . Note that EA(n;H) is increasing in A.
To prove (5.8), fix `, k. If d ∈ DH \ {1} and a mod d is a residue class, all the prime

divisors of d are larger thanHM > KH ≥ |`|; meanwhile, q is larger than z and is hence
coprime to d. Thus the relation q` ≡ a (mod d) only holds for q in at most one residue
class modulo d, and hence by the Brun–Titchmarsh inequality we have

#{q ∈ QH : q` ≡ a (mod d)} �
y/H

φ(d) log y

when (say) d ≤
√
y (recall that H ≤ (log y)1/2 by (2.7)). For d >

√
y, we discard the

requirement that q be prime, and obtain the crude bound

#{q ∈ QH : q` ≡ a (mod d)} �
y/H

d
+ 1 ≤

y/H
√
y
.

Thus for all d we have

#{q ∈ QH : q` ≡ a (mod d)} �
y

Hφ(d) log y
+

√
y

H
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and hence by Lemma 5.2,∑
q∈QH

E8BK2H 2(q`+ k;H)�
y

H log y
H 2

HM
+

√
y

H
exp(O(H 2 log log y))

� |QH |H
2−M
+

√
y

H
exp(O(H 2 log log y)).

We note that the O-bound in the exponential depends on B and K . The claim (5.8) now
follows from the upper bound in (2.7), namely thatH ≤ (log y)1/2(log log y)−1, together
with the bounds (2.8) on |QH |. Incidentally, this is the only part of the proof that requires
the full strength of the upper bound in (2.7), but it does however constrain the size of z.

Now we turn to the j = 2 case of Theorem 3(ii), which is

E
∑
q∈QH

( ∑
−Ky≤n≤y

λ(H ; q, n)
)2
=

(
1+O

(
1

HM−2

))
(K + 1)2y2

|QH |.

The left-hand side may be expanded as

E
∑
q∈QH

∑
−Ky≤n1,n2≤y

1AP(KH ;q,n1)∪AP(KH ;q,n2)⊂S2

σ
|AP(KH ;q,n1)|+|AP(KH ;q,n2)|
2

.

Apply Lemma 5.1 with

U = AP(KH ; q, n1) ∪ AP(KH ; q, n2),

V = {n1 + qh : 1 ≤ h ≤ KH } ∪ {n2 + qh : 1 ≤ H ≤ KH },

so that |V| = ` ≥ KH . Noting that S2 is independent of both AP(KH ; q, n1) and
AP(KH ; q, n2), we may write the previous expression as

∑
q∈QH

∑
−Ky≤n1,n2≤y

(
1+O

(
1

HM−2

)
+O

(
1
H 2

∑
h,h′≤KH

(
1h 6=h′E8BK2H 2(qh− qh

′
;H)

+ 1n1 6=n2E8BK2H 2(n1 + qh− n2 − qh
′
;H)

)))
.

Using (5.8), we obtain an acceptable main term and error terms for everything except for
the summands with h = h′. For any fixed n2, any d ≥ 1 and a mod d ,

#{−Ky ≤ n1 ≤ y : n1 − n2 ≡ a (mod d)} � y/d + 1,

so by Lemma 5.2, we have∑
−Ky≤n1,n2≤y

E8BK2H 2(n1 − n2;H)� y2 H
2

HM
+ y exp(O(H 2 log log y))�

y2

HM−2 ,

again using (2.7). This completes the proof of the j = 2 case, and so we have established
(4.3). ut
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Proof of Theorem 3(iii). The j = 0 case follows from the j = 1 case of part (i) (that is,
(4.2)), so we turn to the j = 1 case, which is

E
∑

n∈S∩[1,y]

∑
q∈QH

∑
h≤KH

λ(H ; q, n− qh) =

(
1+O

(
1

HM−2

))
|QH |KHσ1y.

It suffices to show that for each h ≤ KH , one has

E
∑

n∈S∩[1,y]

∑
q∈QH

λ(H ; q, n− qh) =

(
1+O

(
1

HM−2

))
|QH |σ1y. (5.9)

The left-hand side can be expanded as

E
∑

n∈S∩[1,y]

∑
q∈QH

1AP(KH ;q,n−qh)⊂S2

σ
|AP(KH ;q,n−qh)|
2

.

By (2.11), the constraint n ∈ S ∩ [1, y] implies that n ∈ S1 ∩ [1, y]. Conversely, if
n ∈ S1 ∩ [1, y], then n ∈ AP(H ; q, n − qh), and the condition n ∈ S is subsumed
in the condition that AP(KH ; q, n − qh) ⊂ S2. Thus we may replace the constraint
n ∈ S ∩ [1, y] here with n ∈ S1 ∩ [1, y] and rewrite the above expression as

E
∑

n∈S1∩[1,y]

∑
q∈QH

1AP(KH ;q,n−qh)⊂S2

σ
|AP(KH ;q,n−qh)|
2

.

Recall that S2 is independent of S1 and of AP(KH ; q, n− qh). Applying Lemma 5.1 as
before, we may write the left side of (5.9) as

E
∑

n∈S1∩[1,y]

∑
q∈QH

(
1+O

(
1

HM−2

)
+O

(
1
H 2

∑
h′,h′′≤KH
h′ 6=h′′

E8BK2H 2(qh
′
− qh′′)

))
.

Trivially we have

E|S1 ∩ [1, y]| =
y∑
n=1

P(n ∈ S1) = σ1y, (5.10)

and the claim (5.9) now follows from (5.8).
Finally, we establish the j = 2 case of Theorem 3(iii), which expands as∑
h1,h2≤KH

E
∑

n∈S∩[1,y]

∑
q1,q2∈QH

λ(H ; q1, n− q1h1)λ(H ; q2, n− q2h2)

=

(
1+O

(
1

HM−2

))
|QH |

2K2H 2 σ1

σ2
y.

With h1, h2 fixed, we can use (2.14) to expand the sum over n, q1, q2 as

E
∑

n∈S∩[1,y]

∑
q1,q2∈QH

1AP(KH ;q1,n−q1h1)∪AP(KH ;q2,n−q2h2)⊂S2

σ
|AP(KH ;q1,n−q1h1)|+|AP(KH ;q2,n−q2h2)|
2

(5.11)
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As in the j = 1 case, we may replace the constraint n ∈ S∩[1, y] here with n ∈ S1∩[1, y].
Next, we observe that the set

AP(KH ; q1, n− q1h1) ∪ AP(KH ; q2, n− q2h2)

contains at most |AP(KH ; q1, n−q1h1)|+|AP(KH ; q2, n−q2h2)|−1 distinct elements,
as n is common to both of the sets AP(KH ; q1, n− q1h1),AP(KH ; q2, n− q2h2). Thus
if we apply Lemma 5.1 (noting that S2 is independent of S1,AP(KH ; q1, n− q1h1) and
AP(KH ; q2, n − q2h2)) after eliminating the duplicate constraint, we may write (5.11)
as

σ−1
2 E

∑
n∈S1∩[1,y]

∑
q1,q2∈QH

(
1+O

(
1

HM−2 +
E′(q1)+ E

′(q2)+ E
′′(q1, q2)

H 2

))
where

E′(q) :=
∑

h,h′≤KH
h 6=h′

E8BK2H 2(qh− qh
′
;H),

E′′(q1, q2) :=
∑

h′1,h
′

2≤KH

h1 6=h
′

1, h2 6=h
′

2

E8BK2H 2(q1h
′

1 − q1h1 − q2h
′

2 + q2h2;H).

The average over E′(q1)+E
′(q2) is acceptably small by the j = 1 analysis. Thus (using

(5.10)) it suffices to show that∑
q1,q2∈QH

E8BK2H 2(q1h
′

1 − q1h1 − q2h
′

2 + q2h2;H)�
1

HM−2 |QH |
2

for each h′1, h
′

2 ≤ KH with h′1 6= h1, h′2 6= h2. But this follows from (5.8) (applied
with q replaced by q1 and k replaced by −q2h

′

2+ q2h2, and then summing over q2). This
completes the proof of the j = 2 case, and so establishes (4.4). ut

We have now verified all the the claims (4.1)–(4.4), and so have completed the proof of
Theorem 3.

Appendix. Proof of the covering lemma

In this appendix we prove Lemma 3.1. Our main tool will be the following general hy-
pergraph covering lemma from [4, Theorem 3]:

Theorem A (Probabilistic covering). There exists an absolute constantC4 ≥ 1 such that
the following holds. LetD, r,A ≥ 1, 0 < κ ≤ 1/2, and letm ≥ 0 be an integer. Let τ > 0
satisfy

τ ≤

(
κA

C4 exp(AD)

)10m+2

. (A.1)

Let I1, . . . , Im be disjoint finite non-empty sets, and let V be a finite set. For each 1 ≤
j ≤ m and i ∈ Ij , let ei be a random subset of V . Assume the following:
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• (Edges not too large) Almost surely for all j = 1, . . . , m and i ∈ Ij , we have

#ei ≤ r. (A.2)

• (Each sieve step is sparse) For all j = 1, . . . , m, i ∈ Ij and v ∈ V ,

P(v ∈ ei) ≤
τ

|Ij |1/2
. (A.3)

• (Very small codegrees) For every j = 1, . . . , m, and distinct v1, v2 ∈ V ,∑
i∈Ij

P(v1, v2 ∈ ei) ≤ τ. (A.4)

• (Degree bound) If for every v ∈ V and j = 1, . . . , m we introduce the normalized
degrees

dIj (v) :=
∑
i∈Ij

P(v ∈ ei) (A.5)

and then recursively define the quantities Pj (v) for j = 0, . . . , m and v ∈ V by setting

P0(v) := 1, (A.6)
Pj+1(v) := Pj (v) exp(−dIj+1(v)/Pj (v)) for j = 0, . . . , m− 1 (A.7)

and v ∈ V , then

dIj (v) ≤ DPj−1(v) (1 ≤ j ≤ m, v ∈ V ),

Pj (v) ≥ κ (0 ≤ j ≤ m, v ∈ V ).

Then there are random variables e′i for each i ∈
⋃m
j=1 Ij with the following properties:

(a) For each i ∈
⋃m
j=1 Ij , the support of e′i is contained in the support of ei union the

empty set singleton {∅}. In other words, almost surely e′i is either empty, or is a set that
ei also attains with positive probability.

(b) For any 0 ≤ J ≤ m and any finite subset e of V with #e ≤ A− 2rJ , one has

P
(
e ⊂ V \

J⋃
j=1

⋃
i∈Ij

e′i
)
= (1+O(τ 1/10J+1

))PJ (e) where Pj (e) :=
∏
v∈e

Pj (v).

Proof. See [4, Theorem 3]. ut

To derive Lemma 3.1 from Theorem 5, we repeat the proof of [4, Corollary 4] with a
different choice of parameters. Let the notation and hypotheses be as in Lemma 3.1.
Firstly, we may assume that η ≤ 1/1000, for the conclusion is trivial otherwise.

Let β = β(δ) be a parameter satisfying

β > 102δ >
β logβ
β − 1

. (A.8)
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This is possible as logβ < β − 1 for all β > 1. Let

m =

⌈
log(1/η)

logβ

⌉
, (A.9)

so that, by (3.9),

1 ≤ m ≤
δ log log y + log log log y

logβ
+ 1,

1
η
≤ βm ≤

β

η
. (A.10)

By (3.9) and (A.8), C2 >
β logβ
β−1 and thus we may find disjoint intervals I1, . . . ,Im in

[0, 1] with length

|Ij | =
β1−j logβ

C2
(1 ≤ j ≤ m). (A.11)

Let Et = (t1, . . . , ts), where ti is a uniform random real number in [0, 1] for each i, and
such that t1, . . . , ts are independent. Define the random sets

Ij = Ij (Et ) := {1 ≤ i ≤ s : ti ∈ Ij }

for j = 1, . . . , m. These sets are clearly disjoint.
We will verify (for a suitable choice of Et ) the hypotheses of Theorem 5 with the indi-

cated sets Ij and random variables ei , and with suitable choices of parametersD, r,A ≥ 1
and 0 < κ ≤ 1/2.

Let v ∈ V , 1 ≤ j ≤ m and consider the independent random variables
(X(v,j)i (Et ))1≤i≤s , where

X(v,j)i (Et ) =

{
P(v ∈ ei) if i ∈ Ij (Et ),
0 otherwise.

By (3.8), (A.11), and (A.10), for every 1 ≤ j ≤ m and v ∈ V we have

s∑
i=1

EX(v,j)i (Et ) =
s∑
i=1

P(v ∈ ei)P(i ∈ Ij (Et )) = |Ij |
s∑
i=1

P(v ∈ ei)

= β1−j logβ +O(ηβ−j logβ) = β1−j logβ +O(β−m−j logβ).

In the last equality we have used C2 ≥ 1.
By (3.6), we have |X(v,j)i (Et )| ≤ y−1/2−1/100 for all i, and hence by Hoeffding’s in-

equality,

P
(∣∣∣ s∑

i=1

(X(v,j)i (Et )− EX(v,j)i (Et ))
∣∣∣ ≥ 1

y1/200

)
≤ 2 exp

{
−2

y−1/100

y−1−1/50s

}
= 2 exp{−2y1/100

}.
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Here we used the hypothesis s ≤ y. By a union bound, the bound |V | ≤ y and (A.9),
there is a deterministic choice Et of Et (and hence I1, . . . , Im) such that for every v ∈ V and
every j = 1, . . . , m, we have∣∣∣ s∑

i=1

(X(v,j)i (Et )− EX(v,j)i (Et ))
∣∣∣ < 1

y1/200 .

Note that this is vastly smaller than β−m � (log y)−δ . We fix this choice Et (so that the Ij
are now deterministic), and we conclude that for y sufficiently large (in terms of δ)

∑
i∈Ij

P(v ∈ ei) =
s∑
i=1

X(v,j)i (Et ) = β1−j logβ +O
(
β−j−m logβ +

1
y1/200

)
= β1−j logβ +O(β−j−m logβ) (A.12)

uniformly for all j = 1, . . . , m, and all v ∈ V . In particular, all sets Ij are non-empty.
Set

τ := y−1/100 (A.13)

and observe from (3.6) and the bound |Ij | ≤ s ≤ y that the sparsity condition (A.3) holds.
Also, the small codegree condition (3.7) implies the small codegree condition (A.4).

From (A.5), (A.12) and (A.10), we now have

dIj (v) = (1+O(β
−m))β−j+1 logβ

for all v ∈ V , 1 ≤ j ≤ m. Let λ satisfy 1 + logβ < λ < β. A routine induction using
(A.6), (A.7) then shows (for y sufficiently large) that

Pj (v) = (1+O(λjβ−m))β−j (0 ≤ j ≤ m). (A.14)

In particular we have
dIj (v) ≤ DPj−1(v) (1 ≤ j ≤ m)

for some absolute constant D, and

Pj (v) ≥ κ (0 ≤ j ≤ m), where κ � β−m ≥ η/β � η.

We now set

r =
(log y)1/2

log log y
, A := 2rm+ 1.

By (A.10) and (3.5), one has
A� (log y)1/2

and so (A.2) holds and also

κA

C4 exp(AD)
� exp

(
−O((log y)1/2(log log y))

)
. (A.15)
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By (A.9) and (A.8),

10m � (1/η)
log 10
logβ � (log y)

δ log 10
logβ (log log y)

log 10
logβ < (log y)1/2−ε1

for some ε1 = ε1(δ) > 0. Hence by (A.13), we see that

τ 1/10m+2
≤ exp{−K(log y)1/2+ε1} (A.16)

for some absolute constant K > 0. Combining (A.15) and (A.16), we see that (A.1) is
satisfied if y is large enough. Thus all the hypotheses of Theorem 5 have been verified
for this choice of parameters. Applying Theorem 5 and using (A.14), one thus obtains
random variables e′i for i ∈

⋃m
j=1 Ij whose range is contained in the range of ei together

with ∅, such that

P
(
n 6∈

m⋃
j=1

⋃
i∈Ij

e′i
)
� β−m � η

for all n ∈ V . For 1 ≤ i ≤ s, i 6∈
⋃m
j=1 Ij , set e′i = ∅ with probability 1. By linearity of

expectation this gives

E
∣∣∣V \ s⋃

i=1

e′i
∣∣∣� η|V |.

Hence, for some absolute constant C3 > 0, we have∣∣∣V \ s⋃
i=1

e′i
∣∣∣ ≤ C3η|V |

with probability ≥ 1/2. Therefore, there is some vector (e1, . . . , es) of subsets of V ,
where, for every i, ei is in the support of ei or is the empty set, for which (3.10) holds.
Finally, for the i such that ei is the empty set, replace ei with an arbitrary element in the
support of ei ; clearly (3.10) still holds.
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[10] Pólya, G.: Über ganzwertige ganze Funktionen. Rend. Circ. Mat. Palermo 40, 1–16 (1915)
JFM 45.0655.02

[11] Sanna, C., Szikszai, M.: A coprimality condition on consecutive values of polynomials. Bull.
London Math. Soc. 49, 908–915 (2017) Zbl 1437.11043 MR 3742457

[12] Tschebotareff, N.: Die Bestimmung der Dichtigkeit einer Menge von Primzahlen,
welche zu einer gegebenen Substitutionsklasse gehören. Math. Ann. 95, 191–228 (1926)
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