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Abstract. We prove an abstract theorem giving a 〈t〉ε bound (for all ε > 0) on the growth of
the Sobolev norms in linear Schrödinger equations of the form iψ̇ = H0ψ + V (t)ψ as t → ∞.
The abstract theorem is applied to several cases, including the cases where (i) H0 is the Laplace
operator on a Zoll manifold and V (t) a pseudodifferential operator of order smaller than 2; (ii) H0
is the (resonant or nonresonant) harmonic oscillator in Rd and V (t) a pseudodifferential operator
of order smaller than that ofH0 depending in a quasiperiodic way on time. The proof is obtained by
first conjugating the system to some normal form in which the perturbation is a smoothing operator
and then applying the results of [MR17].

Keywords. Linear Schrödinger operators, time-dependent Hamiltonians, growth in time of Sobo-
lev norms

1. Introduction

In this paper we study growth of Sobolev norms for solutions of the abstract linear
Schrödinger equation

i∂tψ = H0ψ + V (t)ψ, (1.1)

in a scale of Hilbert spaces Hr ; here V (t) is a time-dependent operator and H0 a time
independent linear operator. We will prove some abstract results ensuring that for any
r ≥ 0 and any ε > 0, the Hr norm of the solution grows in time at most as 〈t〉ε as t →∞,
where 〈t〉 :=

√
1+ t2. The main novelty of our results is that they allow (1) weakening

the standard gap assumptions on the spectrum of H0, in particular dealing with some
cases where the gaps are dense in R, and (2) dealing with perturbations which are of any
order strictly smaller than that of H0 (see below for a precise definition).
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The main applications are to the cases where

(i) H0 is either the Laplace operator on a Zoll manifold (e.g. the sphere) or an anhar-
monic oscillator in R, while V is an operator depending arbitrarily on time and having
order strictly smaller than that of H0;

(ii) H0 is the (possibly nonresonant) multidimensional harmonic oscillator and V (t) is an
operator which depends on time in a quasiperiodic way and has order strictly smaller
than that of H0.

Further applications will be presented in the main body of the paper.
We emphasize in particular the results (ii) which, as far as we know, are the first

controlling growth of Sobolev norms in higher dimensional systems without any gap
condition.

The proof is based on a combination of the ideas of [Bam18, Bam17, BGMR18]
(which in turn are developments of the ideas of [BBM14], see also [PT01, IPT05]) and
the results of [MR17]; more precisely, for any positiveN , we construct a (finite) sequence
of unitary time-dependent transformations conjugatingH0+V (t) to a Hamiltonian of the
form

H0 + Z
(N)(t)+ V (N)(t), (1.2)

where [H0, Z
(N)
] = 0 and V (N) is a smoothing operator of order N , namely an operator

belonging to L(Hs,Hs+N ) for any s (bounded linear operators from Hs to Hs+N ). Then
we apply [MR17, Theorem 1.5] to (1.2) getting the 〈t〉ε bound on the growth of Sobolev
norms.

We think that a further point of interest is that the conjugation to a system of the form
(1.2) is here developed in an abstract context, and not in the framework of classes of
pseudodifferential operators adapted to the situation under study; this is the main reason
why we get an abstract theory directly applicable to many different contexts.

The main point is that we introduce an abstract graded algebra of operators whose
properties mimic the properties of pseudodifferential operators. The use of this framework
is made possible by the technique we develop to solve the homological equations met
in the construction of the conjugation of H to (1.2). Indeed, we recall that in previous
papers the smoothing theorem, namely the result conjugating the original system to (1.2),
was obtained by quantizing the procedure of classical normal form. Here instead, we
work directly at the quantum level, in particular solving at this level the two homological
equations that we find (see (3.17) and (3.24) below).

It is worth to add a few words on the way we solve the homological equations. When
dealing with systems related to the applications (i), we assume that H0 = f (K0) where
f is a superlinear function and K0 is an operator such that

spec(K0) ⊂ N+ λ, λ > 0. (1.3)

In this case we solve the homological equation essentially by averaging over the flow
e−itK0 of K0. In turn this is made possible by the use of a commutator expansion lemma
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proved in [DG97]. When dealing with the d-dimensional harmonic oscillators instead, we
take

H0 =

d∑
j=0

νjKj

with Kj commuting linear operators, each fulfilling the property (1.3) (think of Kj =
−∂2

xj
+ x2

j ) and νj > 0; then we consider operators of the form

eiτ ·K A e−iτ ·K

(where of course τ ·K := τ1K1 + · · · + τdKd ), remark that they are quasiperiodic in the
“angles” τ , and use a Fourier expansion in τ in order to solve the homological equation.

The study of growth of Sobolev norms and the related results on the nature of the spec-
trum of the Floquet operator has a long history: we recall the results of [How89, How92,
Joy94] showing that the Floquet spectrum of systems with growing gaps and bounded
perturbations is pure point, a result which implies boundedness of the expectation value
of the energy. The first 〈t〉ε estimate on the expectation value of the energy for a system
of the form (1.1) was obtained by Nenciu [Nen97] for the case of increasing gaps and
bounded perturbations (see also [BJ98, Joy96] for similar results), and by Duclos, Lev
and Št’ovı́ček [DLS08] in the case of shrinking gaps. In the case of increasing gaps, such
results were improved recently by two of us in [MR17] where we obtained the 〈t〉ε growth
of Sobolev norms also in the case of unbounded perturbations depending arbitrarily on
time, for example in the case where H0 = −∂

2
x + x

2k; the result of [MR17] allows one to
deal with perturbations growing at infinity as |x|m with m < k − 1. In the present paper
we get the result for any m < 2k. The result of [MR17] also applies to perturbations
of the free Schrödinger equation on Zoll manifolds with perturbations of order strictly
smaller than 1. Here we deal with perturbations of order strictly smaller than 2. A study
of perturbations of maximal order has been done independently by Montalto [Mon18]
who got control of the growth of Sobolev norms for the Schrödinger equation on T with
H = a(t, x)| − ∂xx |

M
+ V (t) with M > 1/2, a a smooth positive function and V a

pseudodifferential operator of order smaller than M .
Finally, we recall that in [MR17] logarithmic estimates for the growth of Sobolev

norms were also obtained in the case of perturbations depending analytically on time.
Here we do not attack the problem of getting logarithmic estimates, but we think that our
technique would also yield such estimates.

A remarkable further result was obtained by Bourgain [Bou99a, Bou99b] who ob-
tained a logarithmic bound on the growth of Sobolev norms for the Schrödinger equation
on Td (d = 1, 2) in the case of an analytic perturbation depending quasiperiodically on
time. That result is based on the use of a lemma on the clustering of resonant sites (in a
suitable space time lattice) which does not seem to extend to different geometries. The
result of Bourgain was extended by Wang [Wan08] to Schrödinger equations on T per-
turbed by a potential analytic in time (but otherwise depending arbitrarily on time) and
greatly simplified by Delort [Del10] who used it in an abstract framework which allows
dealing with the case of Td (any d ≥ 1) and also with the case of Zoll manifolds, obtain-
ing a 〈t〉ε growth bound (see also [FZ12] for analytic potentials on Td ). We also mention
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the reducibility result of [EK09] dealing with small quasiperiodic perturbations of the free
Schrödinger equation on Td ; for such a system, the authors prove that growth of Sobolev
norms cannot happen, provided the frequency of the quasiperiodic solution is chosen in
a nonresonant set. At present our method does not allow dealing with the Schrödinger
equation on Td for d ≥ 2.

Concerning harmonic oscillators in Rd with d > 1, a couple of reducibility results
are known, namely in [GP19] the authors study small bounded perturbations of the com-
pletely resonant harmonic oscillator, and in [BGMR18] we studied small polynomial per-
turbations of the resonant or nonresonant Harmonic oscillator.

As far as we know, no results are known on growth of Sobolev norms for perturbations
of the harmonic oscillator

H0 := −1+

d∑
j=1

ν2
j x

2
j (1.4)

with nonresonant frequencies νj . This is due to the fact that the differences between two
of its eigenvalues {λa}a∈Nd ,

λa − λb = ν · (a − b),

are dense on the real axis and this prevents the use of any previous technique. As antici-
pated above, here we obtain 〈t〉ε growth for the case of a perturbation of order strictly
smaller than the order of the harmonic oscillator.

2. Main results

2.1. An abstract graded algebra

We start with a Hilbert space H and a reference operator K0, which we assume to be
self-adjoint and positive, namely such that

〈ψ,K0ψ〉 ≥ cK‖ψ‖
2, ∀ψ ∈ D(K

1/2
0 ), cK > 0,

and define as usual a scale of Hilbert spaces by Hr
= D(Kr

0) (the domain of the operator
Kr

0 ) if r ≥ 0, and Hr
= (H−r)′ (the dual space) if r < 0. Finally, we denote H−∞ =⋃

r∈RHr and H+∞ =
⋂
r∈RHr . We endow Hr with the natural norm ‖ψ‖r := ‖Kr

0ψ‖0,
where ‖ · ‖0 is the norm of H0

≡ H. Notice that for any m ∈ R, H+∞ is a dense linear
subspace of Hm (this is a consequence of the spectral decomposition of K0).

We now introduce a graded algebra A of operators which mimic some fundamen-
tal properties of various classes of pseudodifferential operators. For m ∈ R let Am be
a linear subspace of

⋂
s∈R L(Hs,Hs−m) and define A :=

⋃
m∈RAm. We notice that⋂

s∈R L(Hs,Hs−m) is a Fréchet space when equipped with the seminorms ‖A‖m,s :=
‖A‖L(Hs ,Hs−m).

One of our aims is to control the smoothing properties of the operators in the scale
{Hr
}r∈R. If A ∈ Am then A is more and more smoothing as m→ −∞ and the opposite

as m→+∞. We will say that A is of order m if A ∈ Am.
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Definition 2.1. We say that S ∈ L(H+∞,H−∞) is N -smoothing if for each κ ∈ R, it
can be extended to an operator in L(Hκ ,Hκ+N ). When this is true for every N ≥ 0, we
say that S is smoothing.

The first set of assumptions concerns the properties of Am:

Assumption I. (i) For eachm ∈ R,Km
0 ∈ Am; in particularK0 is an operator of order 1.

(ii) For each m ∈ R, Am is a Fréchet space for a family {℘mj }j≥1 of filtering seminorms
such that the embedding Am ↪→

⋂
s∈R L(Hs,Hs−m) is continuous. If m′ ≤ m then

Am′ ⊆ Am with a continuous embedding.
(iii) A is a graded algebra, i.e. for allm, n ∈ R, ifA ∈ Am and B ∈ An thenAB ∈ Am+n

and the map (A,B) 7→ AB is continuous from Am ×An into Am+n.
(iv) A is a graded Lie-algebra:1 ifA ∈ Am and B ∈ An then the commutator [A,B] is in

Am+n−1 and the map (A,B) 7→ [A,B] is continuous from Am ×An into Am+n−1.
(v) A is closed under perturbation by smoothing operators in the following sense: Let A

be a linear map: H+∞ → H−∞. If there exists m ∈ R such that for every N > 0
we have a decomposition A = A(N) + S(N), where A(N) ∈ Am and S(N) is N -
smoothing, then A ∈ Am.

(vi) If A ∈ Am then also the adjoint operator A∗ is in Am. The duality here is defined by
the scalar product 〈·, ·〉 of H = H0. The adjointA∗ is defined by 〈u,Av〉 = 〈A∗u, v〉
for u, v ∈ H∞ and extended by continuity.

It is well known that classes of pseudodifferential operators satisfy these properties pro-
vided one chooses for K0 a suitable operator of the right order (see e.g. [Hör85]).

In [Gui85] V. Guillemin has introduced abstract pseudodifferential algebras, called
generalized Weyl algebras. Guillemin [Gui85] needs different properties than ours, but
obviously there is an overlap with our presentation.

Remark 2.2. For all A ∈ Am and B ∈ An,

∀m, s ∃N : ‖A‖m,s ≤ C1 ℘
m
N (A), (2.1)

∀m, n, j ∃N : ℘m+nj (AB) ≤ C2 ℘
m
N (A)℘

n
N (B), (2.2)

∀m, n, j ∃N : ℘m+n−1
j ([A,B]) ≤ C3 ℘

m
N (A)℘

n
N (B), (2.3)

for some positive constants C1(s,m), C2(m, n, j), C3(m, n, j).

For � ⊂ Rd and F a Fréchet space, we will denote by Cmb (�,F) the space of Cm maps
f : � 3 x 7→ f (x) ∈ F such that for every seminorm ‖ · ‖j of F one has

sup
x∈�

‖∂αx f (x)‖j < +∞, ∀α ∈ Nd , |α| ≤ m. (2.4)

If (2.4) is true for all m, we write f ∈ C∞b (�,F).
The next property needed is the following Egorov property, also well known for

pseudodifferential operators.

1 This property will impose the choice of the seminorms {℘m
j
}j≥1. We will see in the examples

that the natural choice (‖ · ‖m,s)s≥0 has to be refined.
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Assumption II. For any A ∈ Am,

R 3 τ 7→ A(τ) := eiτK0A e−iτK0 ∈ C0
b(R,Am).

Remark 2.3. From Assumption II one sees that for any B ∈ An and ` ∈ N, ad`A(s)(B) ∈
C0
b(]−T , T [,An+(m−1)`) for all T > 0. Here adA(B) := i[A,B].

Observe that Assumption II is a quantum property for the time evolution of observables.
Practically it follows from the time evolution of classical observables (Hamilton equation)
if some classes of symbols are preserved under the classical flows. Indeed, one might
replace Assumption II by a weaker one (see Appendix B).

2.2. Perturbations of systems of order larger than 1

Now we state our spectral assumption on K0:

Assumption A. The spectrum of K0 is discrete and

spec(K0) ⊆ N+ λ (2.5)

for some λ > 0.

Our second spectral assumption is essentially that the unperturbed operator H0 is a func-
tion of K0. To state it precisely we need the following definition.

Definition 2.4. A function f ∈ C∞(R) will be said to be a classical symbol of order ρ
(at +∞) if there exist real numbers {cj }j≥0 such that c0 ≥ 0 and for all k,N ≥ 1, there
exists Ck,N such that∣∣∣∣ dkdxk (f (x)− ∑

0≤j≤N−1

cjx
ρ−j

)∣∣∣∣ ≤ Ck,N |xρ−N−k|, ∀x ≥ 1.

We will denote by Sρ the space of classical symbols of order ρ.
We shall say that f is an elliptic classical symbol of order ρ if moreover f is real and

c0 > 0. We shall then write f ∈ Sρ+.
We shall say that f is a classical symbol of order −∞ if f ∈ Sm for all m < 0. We

shall then write f ∈ S−∞.

Some standard properties of classical symbols are recalled in Appendix A. We assume
the following:

Assumption B. There exists an elliptic classical symbol f of order µ > 1 such that

H0 = f (K0). (2.6)

We will prove (see Lemma A.2) that (2.6) implies H0 ∈ Aµ, i.e. H0 is an operator of
order µ > 1.
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We come back to the Schrödinger equation defined by the time-dependent Hamilto-
nian H(t) := H0 + V (t) (see (1.1)). When the solution ψ(t) exists globally in time, we
define the Schrödinger propagator U(t, s), generated by (1.1), such that

ψ(t) = U(t, s)ψ, U(s, s) = 1. (2.7)

We are ready to state our main result on systems with increasing gaps:

Theorem 2.5. Assume that A is a graded algebra as defined in Section 2.1 and that
K0, H0 satisfy Assumptions A and B. Furthermore assume that the perturbation V (t)
with domain H∞ is symmetric for every t ∈ R and satisfies

V ∈ C∞b (R,Aρ) for some ρ < µ. (2.8)

Then H(t) = H0 + V (t) generates a propagator U(t, s) such that U(t, s) ∈ L(Hr) for
all r ∈ R. Moreover for any r > 0 and any ε > 0 there exists Cr,ε > 0 such that

‖U(t, s)ψ‖r ≤ Cr,ε 〈t − s〉ε ‖ψ‖r , ∀t, s ∈ R. (2.9)

This result extends a result by Nenciu [Nen97] for bounded perturbations (ρ = 0). Fur-
thermore in [MR17] two of us had already extended Nenciu’s result to unbounded per-
turbations with the constraint ρ < min(µ − 1, 1). The main point is that we add here a
stronger spectral assumption: essentially the spectrum ofH0 is f (N+λ) for some smooth
function f (see Assumptions A and B).

As a final remark, we note that Theorem 2.5 also gives a proof of the existence and
of some properties of the propagator U(t, s), which in the framework of Theorem 2.5 are
not obvious.

2.3. Applications (i)

Zoll manifolds. Recall that a Zoll manifold is a compact Riemannian manifold (M, g)
such that all the geodesic curves have the same period T := 2π . For example the d-
dimensional sphere Sd is a Zoll manifold. We denote by4g the positive Laplace–Beltrami
operator on M and by H r(M) = Dom (1 + 4g)r/2, r ≥ 0, the usual scale of Sobolev
spaces. Finally, we denote by Smcl (M) the space of classical real valued symbols of order
m ∈ R on the cotangent bundle T ∗(M) of M (see Hörmander [Hör85] for more details).

Definition 2.6. We write A ∈ Am if it is a pseudodifferential operator (in the sense of
Hörmander [Hör85]) with symbol of class Smcl (M).

In this case the operator K0 is a perturbation of order −1 of
√
4g (see Sect. 4.1), and the

norms ‖ψ‖r coincide with the standard Sobolev norms.

Corollary 2.7 (Zoll manifolds). Let V (t) be a symmetric pseudodifferential operator
of order ρ < 2 on M with symbol v ∈ C∞b (R, S

ρ
cl(M)). Then the propagator U(t, s)

generated by H(t) = 4g + V (t) exists and satisfies (2.9).
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Anharmonic oscillators on R. The second application concerns one-dimensional quan-
tum anharmonic oscillators

i∂tψ = Hk,lψ + V (t)ψ, x ∈ R, (2.10)

where Hk,l is the one-degree-of-freedom Hamiltonian

Hk,l := D
2l
x + ax

2k, k, l ∈ N, k + l ≥ 3, a > 0. (2.11)

HereDx := i−1∂x . It is well known thatHk,` is essentially self-adjoint inL2(R) [HR82b].

Define the Sobolev spaces Hr
:= Dom(H

k+l
2kl r

k,l ) for r ≥ 0. We now define suitable
operator classes for the perturbation. Denote

k0(x, ξ) := (1+ x2k
+ ξ2l)

k+l
2kl .

Definition 2.8. A function f will be called a symbol of order ρ ∈ R if f ∈ C∞(Rx×Rξ )
and for all α, β ∈ N, there exists Cα,β > 0 such that

|∂αx ∂
β
ξ f (x, ξ)| ≤ Cα,β k0(x, ξ)

ρ−
kβ+lα
k+l . (2.12)

We will then write f ∈ Sρan.

As usual, to a symbol f ∈ Sρan we associate the operator f (x,Dx) which is obtained by
standard Weyl quantization (see formula (4.2) below).

Definition 2.9. We write F ∈ Aρ if F is a pseudodifferential operator with symbol of
class Sρan, i.e., there exist f ∈ Sρan and S smoothing (in the sense of Definition 2.1) such
that F = f (x,Dx)+ S.

In this case the seminorms are defined by

℘
ρ
j (F ) :=

∑
|α|+|β|≤j

Cαβ ,

with Cαβ the smallest constant such that (2.12) holds. If a symbol f depends on addi-
tional parameters (e.g. it is time-dependent), we require that the constants Cα,β should be
uniform with respect to the parameters.

Remark 2.10. With this definition of symbols, one has x ∈ S
l
k+l
an , ξ ∈ S

k
k+l
an , x2k

+ ξ2l

∈ S
2kl
k+l
an , k0(x, ξ) ∈ S

1
an.

We get the following:

Corollary 2.11 (1-D anharmonic oscillators). Consider equation (2.10) with the as-
sumption (2.11). Assume also that V ∈ C∞b (R,Aρ) with ρ < 2kl

k+l
. Then the propagator

U(t, s) generated by H(t) = Hk,l + V (t) is well defined and satisfies (2.9).
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An example of an admissible perturbation is V (t, x, ξ) =
∑
lα+kβ<2kl aα,β(t)x

αξβ with

aα,β ∈ C
∞

b (R,R). In particular if we choose H0 = −
d2

dx2 + x
4, we can consider un-

bounded perturbations of the form x3g(t) and of course also xg(t) with g ∈ C∞b (R,R).

Remark 2.12. Our class of perturbations contains quite general pseudodifferential oper-
ators, but it is easy to see that multiplication operators (i.e. operators independent of ∂x)
must be polynomials in x with coefficients which are possibly time-dependent.

In the similar problem of reducibility more general classes of perturbations have been
treated in [Bam17]. We have not tried to push the result in that direction. This is probably
non-trivial in an abstract framework like the one we are using here.

Remark 2.13. We think that our method should also allow dealing with some perturba-
tions of the same order as the main term. For example one should be able to treat the
case where V is a quasihomogeneous polynomial of maximal order fulfilling some sign
condition (more or less as in [Bam18, Theorem 2.12]).

2.4. Perturbations of systems of order 1

In order to deal with perturbations of operators of order 1 we have to restrict to the case
where the dependence of the perturbation on time is quasiperiodic.

Let A :=
⋃
m∈RAm be a graded Lie algebra satisfying Assumption I with a reference

operator K0. Let K1, . . . , Kd be self-adjoint positive operators such that Kj ∈ A1 for
1 ≤ j ≤ d. Assume the following modified Assumption II:

Assumption II′. (i) [Kj ,K`] = 0 for any 0 ≤ j, ` ≤ d .
(ii) Denote K = (K1, . . . , Kd) and for τ ∈ Rd , τ · K :=

∑
1≤j≤d τjKj . Then for any

A ∈ Am, τ 7→ A(τ) := eiτ ·KA e−iτ ·K
∈ C∞b (R

d ,Am).

Remark 2.14. For any B∈An and any ` ∈ N, one has ad`A(s)(B)∈C
∞

b (R
d ,An+`(m−1)).

We also adapt our spectral conditions:

Assumption A′. K = (K1, . . . , Kd) has joint spectrum spec(K) contained in Nd+λ for
some λ ∈ Rd , λ ≥ 0.

Assumption B′. There exist {νj }dj=1, νj > 0, such that

H0 =
∑

1≤j≤d

νjKj , (2.13)

K0 = H0. (2.14)

To fix ideas one can think of the case of harmonic oscillators, in which Kj = −∂2
j + x

2
j ,

1 ≤ j ≤ d.

Remark 2.15. Since the operators Kj are positive, the norm ‖ · ‖r defined using the
operator K0 is equivalent to one defined using K ′0 :=

∑d
j=1Kj .
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We consider both the case where

ν := (ν1, . . . , νd)

is resonant and the case where it is nonresonant. To state the arithmetical assumptions
on ν, we first recall the following well known lemma whose scheme of proof will be
recalled in Appendix C.

Lemma 2.16. There exist d̃ ≤ d , a vector ν̃ ∈ Rd̃ with components independent over the
rationals, and vectors vj ∈ Zd , j = 1, . . . , d̃, such that

ν =

d̃∑
j=1

ν̃jvj . (2.15)

Remark 2.17. For example,

(i) if ν is nonresonant (that is, ν · k = 0 for k ∈ Zd implies k = 0), then ν̃ = ν and
vj = ej , the standard basis of Rd ;

(ii) if ν is completely resonant (that is, for each j one has νj = νkj with kj ∈ Z), then
d̃ = 1; e.g. if ν = (1, . . . , 1), then ν̃1 = 1, v1 = (1, . . . , 1).

Theorem 2.18. Assume that V (t) = W(ωt) with W ∈ C∞b (T
n,Aρ) a quasi-periodic

operator of order ρ < 1. Assume furthermore that (ν̃, ω) ∈ Rd̃+n is a Diophantine
vector, i.e., there exist γ > 0 and κ ∈ R such that

|ω · k + ν̃ · `| ≥
γ

(|`| + |k|)κ
, 0 6= (k, `) ∈ Zn+d̃ . (2.16)

Then the propagator U(t, s) generated byH(t) = ν ·K+W(ωt) exists and satisfies (2.9).

Remark 2.19. The vector ν̃ is defined up to linear combinations with integer coefficients;
clearly condition (2.16) does not depend on the choice of ν̃.

Remark 2.20. We recall that the Diophantine vectors form a subset of Rn+d̃ of full mea-
sure if κ > n+ d̃ − 1.

2.5. Applications (ii)

Relativistic Schrödinger equation on Zoll manifolds. We consider the reduced Dirac
equation on a Zoll manifold M with mass µ > 0,

i∂tψ =
√
4g + µψ + V (ωt, x,Dx)ψ, t ∈ R, x ∈ M.

As in the case of the Schrödinger equation on Zoll manifolds, Aρ is the class of pseudo-
differential operators with symbols in Sρcl(M) (see Definition 2.6).

In this case V is assumed to be quasiperiodic in time.
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Corollary 2.21 (Relativistic Schrödinger equation on Zoll manifolds). Assume thatV (t)
= W(ωt) withW ∈ C∞(Tn,Aρ) with ρ < 1. Assume furthermore that the nonresonance
condition

|ω · k +m| ≥
γ

1+ |k|κ
, ∀ 0 6= k ∈ Zn, ∀m ∈ Z, (2.17)

holds for some γ > 0 and κ . Then the propagator U(t, s) generated byH(t) =
√
4g + µ

+W(ωt) exists and satisfies (2.9).

Harmonic oscillator in Rd . Consider the quantum harmonic oscillator

i∂tψ = Hνψ + V (t)ψ, x ∈ Rd , (2.18)

Hν := −1+

d∑
j=1

ν2
j x

2
j , V (t) = W(ωt, x,Dx). (2.19)

Here W is the Weyl quantization of a symbol belonging to the following class:

Definition 2.22. A function f will be called a symbol of order ρ∈R if f ∈C∞(Rdx×Rdξ )
and for all α, β ∈ Nd , there exists Cα,β > 0 such that

|∂αx ∂
β
ξ f (x, ξ)| ≤ Cα,β (1+ |x|

2
+ |ξ |2)ρ−(|β|+|α|)/2. (2.20)

We will write f ∈ Sρho.

The class (2.20) is the extension to higher dimensions of the class used in anharmonic
oscillators (see Definition 2.8) and with k = l = 1.

Remark 2.23. With our numerology, the symbol of the harmonic oscillator is of order 1,
|ξ |2 +

∑
j ν

2
j x

2
j ∈ S

1
ho, and not of order 2 as typically in the literature.

The classes Am are defined as in Definition 2.9, with symbols in the class Smho.

Corollary 2.24. Assume that ν is such that ν̃ fulfills (2.16), and that W ∈ C∞(Tn,Aρ)

with ρ < 1. Then the propagator U(t, s) of H(t) = Hν +W(ωt) exists and fulfills (2.9).

Note that after a trivial rescaling of the spatial variables, Hν =
∑d
j=1 νj (−∂

2
j + x

2
j ), thus

the corollary is a trivial application of Theorem 2.18.

Remark 2.25. In the completely resonant case

H(1,...,1) = −1+ |x|
2,

one has ν̃ = 1 and the set of ω’s for which (2.16) is fulfilled has full measure provided
κ > n.

Remark 2.26. In the resonant case, examples of polynomial growth of Sobolev norms
have already been exhibited. In particular see [Del14] and [BGMR18] for periodic in time
perturbations; of course in such examples the frequency ω does not fulfill (2.16). Finally,
we also recall [BJLPN], where some random in time perturbations are considered.
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3. Proofs of the abstract theorems

3.1. Scheme of the proof

As explained in the introduction, the main step of the proof consists in proving a theorem
conjugating the original Hamiltonian to a Hamiltonian of the form (1.2); this will be done
in Theorem 3.8. Subsequently we will apply [MR17, Theorem 1.5], which essentially
states that if H(t) is such that for some N > −1,

[H(t),K0]K
N
0 ∈ C

0
b(R,L(H

r)), (3.1)

then there exists Cr,N > 0 such that

‖U(t, s) ψ‖r ≤ Cr,N 〈t − s〉
r

1+N ‖ψ‖r , ∀t, s ∈ R. (3.2)

We come to the algorithm of conjugation of the original Hamiltonian to (1.2). Before
discussing it, we need to know the way a Hamiltonian is changed by a time-dependent
unitary transformation. This is the content of the following lemma.

Lemma 3.1. Let H(t) be a time-dependent self-adjoint operator, and X(t) be a family
of self-adjoint operators. Assume that ψ(t) = e−iX(t)ϕ(t). Then

iψ̇ = H(t)ψ ⇐⇒ iϕ̇ = H̃ (t)ϕ (3.3)

where

H̃ (t) := eiX(t)H(t) e−iX(t)
−

∫ 1

0
eisX(t)Ẋ(t) e−isX(t) ds. (3.4)

This is seen by an explicit computation; for example see [Bam18, Lemma 3.2].
A further important property giving the expansion of an operator of the form

eiX(t)A e−iX(t) into operators of decreasing order is stated in the following lemma.

Lemma 3.2. Let X ∈ Aρ with ρ < 1 be a symmetric operator. Let A ∈ Am with m ∈ R.
Then X is self-adjoint and for any M ≥ 1 we have

eiτXA e−iτX
=

M∑
`=0

τ `

`!
ad`X(A)+ RM(τ,X,A), ∀τ ∈ R, (3.5)

where RM(τ,X,A) ∈ Am−(M+1)(1−ρ). In particular ad`X(A) ∈ Am−`(1−ρ) and
eiτXA e−iτX

∈ Am for all τ ∈ R.

The proof will be given in Sect. 3.2.
We now describe the algorithm which will lead to the smoothing Theorem 3.8; the

proof is slightly different according to the set of assumptions one chooses. We start by
discussing it under the assumptions of Theorem 2.5, namely Assumptions A and B. Sub-
sequently we will discuss the changes needed to deal with Theorem 2.18.
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We look for a change of variables of the form ϕ = eiX1(t)ψ where X1(t) ∈ Aρ−µ+1
is a self-adjoint operator which, due to the assumption ρ < µ, has order smaller than 1.
We will check that also Ẋ1(t) ∈ Aρ−µ+1. Then ϕ fulfills the Schrödinger equation iϕ̇ =
H+(t)ϕ with

H+(t) := eiX1(t)H(t) e−iX1(t) −

∫ 1

0
eisX1(t) Ẋ1(t) e−isX1(t) ds

= H0 + i[X1(t),H0] + V (t)+ i[X1(t), V (t)] −
1
2 [X1(t), [X1(t),H0]] + · · ·

−

∫ 1

0
eisX1(t) Ẋ1(t) e−isX1(t) ds.

In view of the properties of the graded algebra we have [X1, V ] ∈ A2ρ−µ, [X1, [X1, H0]]

∈ A2ρ−µ (Assumption I(iv)) and eisX1(t)Ẋ1(t) e−isX1(t) ∈ Aρ−µ+1 (Lemma 3.2), so

H+(t) = H0 + i[X1(t),H0] + V (t)+ V
+

1 (t) (3.6)

with V +1 (t) ∈ C
∞

b (R,Amin(ρ−µ+1,2ρ−µ)).
Now we look for X1(t) such that

i[H0, X1(t)] = V (t)− 〈V (t)〉, (3.7)

where 〈V (t)〉 is the average over τ of eiτK0V (t) e−iτK0 (see (3.18)), which in particular
commutes with K0. We will verify in Lemma 3.5 that there exists X1 such that

i[H0, X1(t)] − V (t)+ 〈V (t)〉 ∈ Aρ−1.

Using such an X1 to generate a unitary transformation, we get

H+(t) := H0 + 〈V (t)〉 + V
+(t), (3.8)

where V +(t) ∈ C∞b (R,Aρ−δ) with

δ := min(1, µ− 1, µ− ρ) > 0. (3.9)

Therefore V +(t) is a perturbation of order lower than that of V (t). Furthermore 〈V (t)〉
commutes with K0.

Iterating this procedure we will establish an “almost” reducibility result that will be
stated and proved in Subsect. 3.4.

Then, using [MR17, Theorem 1.5], we immediately get Theorem 2.5.
In the case where H0 ∈ A1 the procedure has to be slightly modified since in this

case X1 and therefore Ẋ1 has the same order as V and thus it cannot be considered as a
remainder when analyzing H+. In this case one rewrites

H+(t) = H0 + i[X1(t),H0] + V (t)

+ i[X1(t), V (t)] −
1
2 [X1(t), [X1(t),H0]] + · · ·

− Ẋ1 −

∫ 1

0
(i s [X1(t), Ẋ1(t)] + . . . .) ds,
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so that (3.6) is replaced by

H+(t) = H0 + i[X(t),H0] + V (t)− Ẋ1(t)+ V
+(t) (3.10)

with V + ∈ Aρ−δ∗ where
δ∗ := 1− ρ > 0, (3.11)

so again it is more regular than V (t). Thus one is led to consider the new homological
equation

i[H0, X1(t)] + Ẋ1(t) = V (t)− 〈V (t)〉, (3.12)

where 〈V (t)〉 has to commute with K0. In order to be able to solve such an equation we
restrict to the case of V (t) quasiperiodic in t and, as explained in the introduction, we
develop a procedure based on a suitable Fourier expansion to construct X1 and 〈V (t)〉.
The details are given in Lemma 3.7 which will ensure that such a homological equation
has a smooth solution and thus the procedure is well defined also in the case of order 1.

3.2. A couple of lemmas on flows

Lemma 3.3. (i) Let X ∈ A1 be symmetric with respect to the scalar product of H0.
Then X has a unique self-adjoint extension and e−iτX

∈ L(Hr) for all r ≥ 0 and
τ ∈ R. Furthermore e−iτX is an isometry in H0.

(ii) Assume that X(t) is a family of symmetric operators in A1 such that

sup
t∈R

℘1
j (X(t)) <∞, ∀j ≥ 1. (3.13)

Then there exist cr , Cr > 0 such that

cr‖ψ‖r ≤ ‖e−iτX(t)ψ‖r ≤ Cr‖ψ‖r , ∀t ∈ R, ∀τ ∈ [0, 1]. (3.14)

Proof. (i) From the properties of the algebra A we find that XK−1
0 and [X,K0]K

−1
0 are

of order 0. Thus by definition these operators belong to L(Hr) for all r ∈ R. Then the
result follows from [MR17, Theorem 1.2].

(ii) By item (i), for any t ∈ R and τ ∈ [0, 1] the operator e−iτX(t) is an isometry
in H0, therefore

‖e−iτX(t)ψ‖r = ‖eiτX(t)Kr
0 e−iτX(t)ψ‖0.

Then we have

eiτX(t)Kr
0 e−iτX(t)ψ = Kr

0ψ + i
∫ τ

0
eiτ1X(t)[X(t),Kr

0 ] e
−iτ1X(t)ψ dτ1

= Kr
0ψ + i

∫ τ

0
eiτ1X(t)[X(t),Kr

0 ]K
−r
0 Kr

0 e−iτ1X(t)ψ dτ1. (3.15)

By the properties of the algebra A and (3.13), using (2.1)–(2.3) one sees that

sup
t∈R
‖[X(t),Kr

0 ]K
−r
0 ‖L(H0) < Cr < +∞,
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therefore taking the norm ‖ · ‖0 of (3.15) yields

‖e−iτX(t)ψ‖r ≤ ‖ψ‖r +

∫ τ

0
Cr‖e−iτ1X(t)ψ‖r dτ1.

Then by Gronwall we conclude that

‖e−iτX(t)ψ‖r ≤ eCr‖ψ‖r , ∀t ∈ R, ∀τ ∈ [−1, 1].

This proves the majorization in (3.14). The minorization follows simply by the identity
ψ = eiτX(t) e−iτX(t)ψ and the majorization. ut

Proof of Lemma 3.2. Self-adjointness was proven in the previous lemma. Let us apply
to the l.h.s. of (3.5) the Taylor formula at τ = 0. Then we get, with UX(τ ) := e−iτX and
adX(A) := i[X,A],

UX(−τ)AUX(τ )

=

M∑
j=0

τ j

j !
adjX(A)+

τM+1

M!

∫ 1

0
(1− s)M+1UX(−sτ ) adM+1

X (A)UX(sτ ) ds. (3.16)

Using Assumption I(iv), we deduce that adjX(A) ∈ Am−j (1−ρ). We define the remain-
der RM(τ,X,A) to be the integral term in (3.16), which, also by Lemma 3.3, belongs
to L(Hs,Hs−m+(M+1)(1−ρ)) for all s ∈ R. Therefore RM(τ,X,A) is N -smoothing pro-
vided M + 1 ≥ N+m

1−ρ . As M can be taken arbitrarily large, eiτXA e−iτX fulfills Assump-
tion I(v), thus it belongs to Am. ut

3.3. Solution of the homological equations

The first homological equation. As we have seen in Section 3.1, to prove Theorem 2.5
we need to study a homological equation of the form

i[H0, X] = A− 〈A〉 , (3.17)

where A ∈ Am and 〈A〉 is the average of A along the periodic flow of K0:

〈A〉 :=
1

2π

∫ 2π

0
A(τ) dτ, A(τ) = eiτK0A e−iτK0 . (3.18)

Notice that the assumption on the spectrum of K0 (see Assumption A) entails that e2iπK0

= e2iπλ, thus for any A ∈ A one has e2iπK0A e−2iπK0 = A, so τ 7→ A(τ) is 2π -periodic.

Lemma 3.4. Let A ∈ Am for some m ∈ R. Then 〈A〉 ∈ Am and

[K0, 〈A〉] = 0. (3.19)

Proof. 〈A〉 ∈ Am is a consequence of Assumption II. Identity (3.19) follows by a direct
computation. ut
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Lemma 3.5. (i) Let A ∈ Am for some m ∈ R. Then

Y =
1

2π

∫ 2π

0
τ (A− 〈A〉)(τ ) dτ (3.20)

solves the homological equation

i[K0, Y ] = A− 〈A〉 . (3.21)

Further Y ∈ Am and if A is symmetric, so is Y .
(ii) Let A ∈ Am be symmetric. Choose R > 0 such that f ′(x) ≥ 1 if x ≥ R and

η ∈ C∞(R) such that η(x) = 1 if x ∈ [0, R] and η(x) = 0 if x ≥ R + 1. Define

X0 := (1− η(K0))(f
′(K0))

−1Y (3.22)

with Y as in (3.20). Then X0 ∈ Am−µ+1 and X := 1
2 (X0 + X

∗

0) ∈ Am−µ+1 is
symmetric and solves (3.17) modulo an error term in Am−1. More precisely,

i[H0, X] = A− 〈A〉 +Am−1. (3.23)

We note for later reference that if A ∈ Am then X ∈ Am−(µ−1), so we have a gain of
µ− 1 > 0 in the smoothing order.

Proof of Lemma 3.5. Assertion (i) is proved by integration by parts using the fact that
A(τ) is 2π -periodic.

To prove (ii), first remark that by Assumption B and Lemma A.1, f ′ ∈ Sµ−1
+ , thus it is

different from zero provided x ≥ R is large enough. It follows that x 7→ 1−η(x)
f ′(x)

∈ S−µ+1.
Therefore, by Lemma A.2, (1 − η(K0))(f

′(K0))
−1
∈ A−µ+1. Finally, since Y ∈ Am, it

follows that X0, X ∈ Am−µ+1.
We show now that X0 solves (3.23). This is a consequence of the commutator expan-

sion lemma. Indeed, fix N ≥ 2. Then by Lemma A.3,

[H0, X0] = [f (K0), X0] = f
′(K0)[K0, X0]

+

∑
2≤j≤N

1
j !
f (j)(K0) adjK0

(X0)+ RN+1(f,X0)

with RN+1(f,X0) ∈ Am−µ+1+[µ]−N ⊂ Am−1. By Lemma A.1 and Assumption I, for
any integer j ≥ 2 one has f (j)(K0) adjK0

(X) ∈ Am−µ+1+µ−j ⊂ Am−1. Then we get

i[H0, X0] = if ′(K0)[K0, X0] + Am−1
(3.22)
= (1− η(K0))i[K0, Y ] + Am−1

(3.21)
= (1− η(K0))(A− 〈A〉)+ Am−1,

with Am−1 ∈ Am−1. Now put R := −η(K0)(A − 〈A〉). Since x 7→ η(x) ∈ S−∞, R is
a smoothing operator and thus Am−1 + R ∈ Am−1. Now since X = X0 + Am−µ by
construction, we easily see that X satisfies (3.23). ut
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The second homological equation. We want to solve equation (3.12). Using the quasiperi-
odicity assumption V (t) = W(ωt), we look for a quasiperiodic solution X1(t) = X(ωt)

of the equation

ω · ∂θX(ωt)+ i[H0, X(ωt)] = W(ωt)− 〈W 〉. (3.24)

In order to define 〈W 〉 precisely, consider again the vectors vj and the frequencies ν̃j of

Lemma 2.16. First note that since ν =
∑d̃
j=1 ν̃jvj , one has ν · K =

∑d̃
j=1(K · vj )ν̃j , so

that defining
K̃j := K · vj , K̃ := (K̃1, . . . , K̃d̃), (3.25)

one has
H0 ≡ ν ·K = ν̃ · K̃,

and furthermore, since vj has integer entries, the joint spectrum of K̃ ≡ (K̃1, . . . , K̃d̃)

is contained in Zd̃ + λ̃, therefore for each operator B the map Rd̃ 3 τ 7→ B](τ ) :=

eiτ ·K̃B e−iτ ·K̃ is periodic in each τj . For A ∈ C∞(Tn,Am), denote A](θ, τ ) :=

eiτ ·K̃A(θ) e−iτ ·K̃ . By Assumption II′, A] ∈ C∞(Tn+d̃ ,Am). Define now

〈A〉 :=
1

(2π)n+d̃

∫
Tn+d̃

A](θ, τ ) dτ dθ. (3.26)

Remark 3.6. Let A ∈ C∞(Tn,Am), m ∈ R. Then by Assumption II′, 〈A〉 ∈ Am is
independent of the angles and

[K̃j , 〈A〉] = 0, 1 ≤ j ≤ d̃, [K0, 〈A〉] = 0. (3.27)

Lemma 3.7. Let A ∈ C∞b (T
n,Am) for some m ∈ R. Provided (2.16) holds, the homo-

logical equation (3.24) has a solution X ∈ C∞(Tn,Am). Furthermore, if A is symmetric
then X is symmetric as well.

Proof. Since A] is defined on Tn+d̃ , we can expand it in a Fourier series:

A](θ, τ ) =
∑

(k,`)∈Zn+d̃
Â
]
k,` ei(k·θ+`·τ),

where
Â
]
k,` :=

1

(2π)n+d̃

∫
Tn+d̃

A](θ, τ ) e−i(k·θ+`·τ) dθ dτ.

Notice that

A(θ) ≡ A](θ, 0) =
∑

(k,`)∈Zn+d̃
Â
]
k,` eik·θ , (3.28)

〈A〉 = Â
]
0,0. (3.29)

Then, instead of solving directly the homological equation (3.24), we solve

ω · ∂θX
](θ, τ )+ i[H0, X

](θ, τ )] = (W − 〈W 〉)](θ, τ ), ∀θ ∈ Tn, ∀τ ∈ Td̃ . (3.30)
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Clearly if we find a smooth solution X](θ, τ ) of this equation, then X(θ) := X](θ, 0)
solves the original homological equation (3.24). Now we remark that using

X](θ, τ + τ ′) = eiτ K̃X](θ, τ ′) e−iτ K̃

we have

i[H0, X
](θ, τ )] =

d̃∑
j=1

ν̃j i[K̃j , X](θ, τ )] =
d̃∑
j=1

ν̃j
d
dε

∣∣∣∣
ε=0

eiεK̃j X](θ, τ ) e−iεK̃j

=

d̃∑
j=1

ν̃j
d
dε

∣∣∣∣
ε=0
X](θ, τ + εej )

=

∑
(k,`)∈Zn+d̃

X̂
]
k,`

d
dε

∣∣∣∣
ε=0

d̃∑
j=1

ν̃j ei(k·θ+`·(τ+εej ))

=

∑
(k,`)∈Zn+d̃

iν̃ · `X̂]k,` ei(k·θ+`·τ).

Therefore, expanding in a Fourier series, equation (3.30) is equivalent to

i(ω · k + ν̃ · `)X̂]k,` = Ŵ
]
k,`, (k, `) 6= 0.

Hence we define

X̂
]
k,` = −i

Ŵ
]
k,`

ω · k + ν̃ · `
if (k, `) 6= 0. (3.31)

Since W ] is in C∞(Tn+d̃ ,Am) we find that for any j,N ≥ 1 there exists CN,j such that

℘mj (Ŵ
]
k,`) ≤ CN,j (|k| + |`|)

−N .

So we see easily that if X is defined by X(θ) = X](θ, 0) and X] has Fourier coefficients
(3.31) with X]0,0 = 0, then X ∈ C∞b (T

n,Am). ut

3.4. The iterative lemma

We state and prove the iterative lemma which is the main step for the proof of our main
results.

Theorem 3.8. Assume that the assumptions of Theorem 2.5 or of Theorem 2.18 are sat-
isfied. There exist δ > 0 and a sequence {Xj (t)}j≥1 of self-adjoint (time-dependent)
operators in H with Xj ∈ C∞b (R,Aρ−(µ−1)−(j−1)δ) such that for all j , the inequalities
(3.14) are satisfied; for any N ≥ 1 the change of variables

ψ = e−iX1(t) . . . e−iXN (t)ϕ (3.32)
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transforms H0 + V (t) into the Hamiltonian

H (N)(t) := H0 + Z
(N)(t)+ V (N)(t) (3.33)

where Z(N) ∈ C∞b (R,Aρ) commutes with K0, i.e. [Z(N),K0] = 0, while V (N) ∈
C∞b (R,Aρ−Nδ). Furthermore, under the assumptions of Theorem 2.18, Z(N) is inde-
pendent of the angles and

[Z(N), K̃j ] = 0, ∀j = 1, . . . , d̃. (3.34)

Proof. This is proved by recurrence. Consider first the assumptions of Theorem 2.5. Us-
ing Lemmas 3.1, 3.2, 3.3, 3.5, one gets the conclusion forN = 1 withZ(1)(t) := 〈V (t)〉 ∈
C∞b (R,Aρ). By Lemma 3.4, [Z(1)(t),K0] = 0. In this case δ can be taken as in (3.9).

The iterative step N → N + 1 is proved following the same lines, just adding the
remark that eiXN+1Z(N) e−iXN+1 − Z(N) ∈ Aρ−(µ−1)−Nδ+ρ−1 ⊂ Aρ−(N+1)δ .

Under the assumptions of Theorem 2.18, the result is proved along the same lines,
with δ as in (3.11). The property (3.34) follows by Remark 3.6. ut

3.5. Proof of Theorem 2.5

By Theorem 3.8, the operator H(t) is conjugated to H (N)(t). So we apply [MR17, The-
orem 1.5] to the Schrödinger equation for H (N)(t). More precisely, we have

[H (N)(t),K0] = [V
(N)(t),K0] ∈ C

0
b(R,Aρ−Nδ),

and thus, by choosingN large enough, (3.2) ensures the result for the propagator UN (t, s)
of H (N)(t).

Now since H(t) is conjugated to H (N)(t), H(t) generates a propagator U(t, s) in the
Hilbert space scale Hr unitarily equivalent to the propagator UN (t, s). Therefore, using
also (3.14), we conclude that U(t, s) fulfills (2.9), thus yielding the result. ut

4. Applications

In this section we prove Corollaries 2.7, 2.11 and 2.21.

4.1. Zoll manifolds

To begin, we show how to put ourselves in the abstract setup. So first we define the opera-
tor K0. This will be achieved by exploiting the spectral properties of the operator 4g . By
Theorem 1 of Colin de Verdière [CdV79], there exists a pseudodifferential operator Q of
order −1, commuting with 4g , such that spec(

√
4g +Q) ⊆ N+ λ with some λ ≥ 0. We

can assume λ > 0. If not, denoting by 5− the projector on the nonpositive eigenvalues,
we replace Q by Q + C5− with C > 0 large enough; we remark that 5− commutes
with 4g and is a smoothing operator. So we define

K0 :=
√
4g +Q, H0 := K

2
0 . (4.1)
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Now since H0 = 4g + 2Q
√
4g +Q

2, we have

H0 = 4g +Q0

where Q0 is a pseudodifferential operator of order 0 and therefore

H(t) = 4g + V (t) ≡ H0 + Ṽ (t), Ṽ (t) := V (t)−Q0.

and we are in the setup of the abstract Schrödinger equation (1.1) with the new perturba-
tion Ṽ (t).

Note that Hr
:= Dom((K0)

r), r ≥ 0, coincides with the classical Sobolev space
H r(M) and one has the equivalence of norms

cr‖ψ‖H r (M) ≤ ‖ψ‖r ≤ Cr‖ψ‖H r (M), ∀r ∈ R.

We define Am to be the class of pseudodifferential operators whose (real valued) symbols
belong to Smcl (M). ClearlyK0 ∈ A1 (recall that5− is a smoothing operator). It is classical
that Assumptions I and II are fulfilled (see e.g. [Hör85] and Appendix B).

Remark 4.1. We have implicitly used here the fact that on a compact manifold any
smoothing operator has a symbol in the class S−∞cl (M). This is true because on a com-
pact manifold any operator is properly supported [Hör85]. In particular Assumption I(v)
is satisfied for Am = Op(Smcl (M)). Let us remark that this property fails for classical
pseudodifferential operators on M = Rd . Hence the topology on Am is the topology
defined on Smcl (M).

Moreover the uniform boundedness in Assumption II is checked using the periodicity
of the classical flow.

Proof of Corollary 2.7. Assumption A holds true by construction of K0; Assumption B
holds with f (x) = x2 and therefore µ := 2. Since V (t) is a pseudodifferential opera-
tor of order ρ < 2 whose symbol belongs to C∞b (R, S

ρ
cl(M)), one verifies easily, using

pseudodifferential calculus (in particular estimates (2.1)–(2.3)), that Ṽ (t) = V (t)−Q0 ∈

C∞b (R,Aρ). Hence the corollary follows from Theorem 2.5. ut

4.2. Anharmonic oscillators

We recall that for a symbol a (in the sense of Definition 2.8) we denote by a(x,Dx) its
Weyl quantization

(a(x,Dx)ψ)(x) :=
1

2π

∫∫
y,ξ∈R

ei(x−y)ξ a

(
x + y

2
, ξ

)
ψ(y) dy dξ. (4.2)

We endow S
ρ
an (defined in Definition 2.8) with the family of seminorms

℘
ρ
j (a) :=

∑
|α|+|β|≤j

sup
(x,ξ)∈R2

|∂αx ∂
β
ξ a(x, ξ)|

[k0(x, ξ)]
ρ−

kβ+lα
k+l

, j ∈ N. (4.3)
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Remark 4.2. As we have seen, on a compact manifold (see Remark 4.1) we can use
seminorms on symbols in Sman on the corresponding operator classes which are defined
modulo smoothing operators. The reason here is that smoothing operators A are in
L(S ′(R),S(R)), where S ′(R) is the Schwartz space of tempered distributions on R. It is
well known that equivalently the Schwartz kernelKA ofA is in S(R×R) so its Weyl sym-
bol σwA is also in S(R×R). These facts result from two formulas: KA(x, y) = 〈Aδy, δx〉
and

σwA (x, ξ) =

∫
R

e−iuξKA(x + u/2, x − u/2) du.

Then we can easily check that Assumption I(v) is satisfied for Am = Opw(Sman).

The operatorK0 is defined using the spectral properties of the HamiltonianHk,l defined in
(2.11) that were studied in detail in [HR82b]; in that paper an accurate Bohr–Sommerfeld
rule for the the eigenvalues ofHk,l was obtained and the existence of a pseudodifferential

operator Q of order −1 such that spec(H
k+l
2kl
k,l + Q) ⊆ N + λ (λ ≥ 0) was proved.2

Therefore we define

K0 := H
k+l
2kl
k,l +Q, H0 := K

2kl
k+l

0 .

We define Am to be the class of pseudodifferential operators with symbols in Sman. Notice
that by construction Am ⊂ L(Hs,Hs−m) for all s ∈ R. It is classical that A fulfills
Assumptions I and II (see [HR82b, HR82a]).

On the other hand, Assumptions A and B are fulfilled with µ := 2kl
k+l

> 1 (as k + l
≥ 3). Furthermore,

Hk,` = (K0 −Q)
2kl
k+l = K

2kl
k+l

0 +Q0

where Q0 is a pseudodifferential operator of order 2kl
k+l
− 2. Therefore

H(t) = Hk,l + V (t) ≡ H0 + Ṽ (t), Ṽ (t) := V (t)+Q0,

and once again we are in the setup of the abstract Schrödinger equation (1.1) with the new
perturbation Ṽ (t).

Proof of Corollary 2.11. Since V (t) is a pseudodifferential operator of order ρ < 2kl
k+l

whose symbol and its time-derivatives have uniformly (in time) bounded seminorms, one
verifies that Ṽ (t) = V (t) +Q0 ∈ C

∞

b (R,Aρ). Hence the corollary follows from Theo-
rem 2.5. ut

2 Actually [HR82b] proves that Q has a symbol which is quasi-homogeneous of degree −k − l.
Here a symbol f (x, ξ) is quasi-homogeneous of degree m if

f (λlx, λkξ) = λmf (x, ξ), ∀λ > 0, ∀(x, ξ) ∈ R2
\ {0}.

It is classical [HR82b, HR82a] that if f is quasi-homogeneous of degree m, then it is a symbol in

the class Sm/(k+l)an . Note that for our numerology H
k+l
2kl
k,l

is of order 1 by definition.
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4.3. Relativistic Schrödinger equation on Zoll manifolds

The proof of Corollary 2.21 is along the lines of Subsection 4.1. Let us remark that the
operator

√
4g + µ−

√
4g is of order −1. Hence, defining K0 as in (4.1), one has again√

4g + µ = K0 +Q0 with Q0 of order −1. Therefore

H(t) =
√
4g + µ+ V (ωt, x,Dx) = K0 + Ṽ (ωt)

with the new perturbation Ṽ (ωt) ∈ C∞(Tn,Aρ).
This time we verify Assumptions II′, A′ and B′ with d = 1 andK1 = K0 = H0. Con-

cerning the nonresonance condition, just note that in this case ν has only one component
given by 1.

Thus Theorem 2.18 immediately yields Corollary 2.21.

Appendix A. Technical lemmas on classical symbols

We begin with the following lemma whose proof is completely standard (and we skip it).

Lemma A.1. (i) If f ∈ Sa and g ∈ Sb, then fg ∈ Sa+b.
(ii) If f ∈ Sa , then f (j) ∈ Sa−j .

(iii) If x 7→ η(x) is a smooth cut-off function on R, then η ∈ S−∞.
(iv) The function f (x) = xa , a > 0, is a classical elliptic symbol in Sa+.

Lemma A.2. If g ∈ Sµ for some µ ∈ R, then g(K0) ∈ Aµ.

Proof. By definition g(x) =
∑

0≤j≤N−1 cjx
µ−j
+ R(x) with |R(x)| ≤ CN |xµ−N | for

|x| ≥ 1. Then g(K0) =
∑

0≤j≤N−1 cjK
µ−j

0 + R(K0), where R(K0) is defined by func-
tional calculus as R(K0) :=

∫
∞

0 R(λ) dEK0(λ), dEK0(λ) being the spectral resolution
of K0. By Assumption I,

∑
0≤j≤N−1 cjK

µ−j

0 ∈ Aµ while the operator R(K0) is N -
smoothing (in the sense of Definition 2.1). Since N can be taken arbitrarily large, g(K0)

fulfills Assumption I(v), therefore it belongs to Aµ. The other properties are easily veri-
fied using such decomposition. ut

Finally, we recall a commutator expansion lemma following from [DG97, Lemma C.3.1]:

Lemma A.3. Let f ∈ Sρ+ and W ∈ Am. Then for all N ≥ [ρ] we have

[f (K0),W ] =
∑

1≤j≤N

1
j !
f (j)(K0) adjK0

W + RN+1(f,K0,W),

where RN+1(f,K0,W) ∈ A[ρ]+m−N . Moreover if W depends on time t with uniform
estimates in Am then it is also true for RN+1(f,K0,W).

Proof. Apply [DG97, Lemma C.3.1] to the bounded operator B = K−m0 W . ut
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Appendix B. An abstract proof of the Egorov theorem

In order to check Assumption II, we introduce the following weaker condition.

Assumption II-CL. For every m ∈ R and every A ∈ Am there exist 8(t)(A) ∈
C1(Rt ,Am) and R(A, t) ∈ C0(Rt ,Am−1) such that 8(0)(A) = A and

d
dt
8(t)(A) = i−1

[8(t)(A),K0] + R(A, t). (B.1)

In applications in a pseudodifferential operator setting, we have A = Op(a), a is the
symbol of A and one can choose 8(t)(A) = Op(a ◦ φt ) where φt is the classical flow of
the symbol of K0. Then one has to verify that a ◦ φt belongs to the same symbol class
as a using the periodicity of φt (see for example [Tay91]).

Theorem B.1 (Abstract Egorov theorem). If Assumptions I and II-CL are satisfied then
for any A ∈ Am,

τ 7→ A(τ) := eiτK0 A e−iτK0 ∈ C0(R,Am).

In particular, if τ 7→ A(τ) is periodic on R then A(·) ∈ C0
b(R,Am) and Assumption II

holds true.

Remark B.2. Notice that if the spectrum ofK0 is discrete with eigenvalues {λj }j≥0 such
that λj − λk ∈ Z for all j, k ∈ N then τ 7→ A(τ) is periodic on R.

Proof of Theorem B.1. We follow [Rob87, pp. 202–207]. Let U(t) = e−itK0 . We com-
pute

d
dτ
(U(τ − t)8(τ )(A)U(t − τ))

= U(τ − t)

(
i[8(τ )(A),K0] +

d
dτ
8(τ )(A)

)
︸ ︷︷ ︸

R(A,τ)

U(t − τ).

So using (B.1) and integrating in τ between 0 and t we get

U(−t)AU(t) = 8(t)(A)−

∫ t

0
U(τ − t)R(A, τ)U(t − τ) dτ. (B.2)

Now we iterate this formula. In the following step we apply the formula for every
τ to Anew = R(A, τ). In particular, Assumption II-CL implies that d

dt8
(t)(Anew) =

i−1
[8(t)(Anew),K0] + R(Anew, t), so we get

U(−t)AU(t) = A0(t)+ A1(t)

+

∫ t

0

∫ t−τ

0
U(τ − τ1 − t)R(R(A, τ), τ1)U(t − τ − τ1) dτ dτ1.



580 Dario Bambusi et al.

whereA0(t) = 8
(t)(A),A1(t) =

∫ t
0 8

(t−τ)(R(A, τ)) dτ ∈ Am−1 andR(R(A, τ), τ−τ1)

∈ Am−2. At step N we easily get by induction

U(−t)AU(t) = A0(t)+ A1(t)+ · · · + AN (t)

+

∫ t

0

∫ t−τ0

0
· · ·

∫ t−τ0−···−τN

0
dτ0 dτ1 · · · dτN

U(τ0 + τ1 + · · · + τN − t)R
(N)(A, τ0, τ1, . . . , τN )U(t − τ0 − τ1 − · · · − τN ),

where Aj ∈ C0(R,Am−j ) and R(N)(A, τ1, . . . , τN ) ∈ C
0(RN+1,Am−N−1). Now we

remark that the remainder term is as smoothing as we want by taking N large enough, so
the algebra being stable by smoothing perturbations we get A(·) ∈ C0

b(R,Am). ut

Appendix C. Proof of Lemma 2.16

We reproduce here the proof given in the lecture notes by Giorgilli [Gio] (in particular the
technical results are contained in Appendix A). A general presentation containing also
the results that we use here can be found in [Sie89].

We start by stating a simple lemma without proof.

Lemma C.1. Let e1, . . . , ed and e′1, . . . , e′d be two bases of Zd . Then the matrix M =
(Mij ) such that e′i =

∑
j Mij ej is unimodular with integer entries.

Then one has the following corollary.

Corollary C.2. A collection of vectors ej ∈ Zd , j = 1, . . . , d , is a basis of Zd if and
only if the determinant of the matrix having ej as rows is 1.

The corollary immediately follows from Lemma C.1 and the remark that such a property
holds for the canonical basis of Zd .

Define now the resonance modulus Mν of ν by

Mν := {k ∈ Zd : ν · k = 0}.

This is a discrete subgroup of Rd which satisfies

span(Mν) ∩ Zd =Mν . (C.1)

Let 0 ≤ r ≤ d−1 be the dimension of Mν . It is well known that any discrete subgroup of
Rd admits a basis. Let e1, . . . , er , be a basis of Mν ; note that the vectors ej have integer
components. Then the following result holds.3

Lemma C.3. There exist d̃ := d − r vectors u1, . . . ,u
d̃

with integer entries such that
e1, . . . , er ,u1, . . . ,u

d̃
form a basis of Zd .

3 This can be found in [Sie89, Theorem 31], or in [Gio, Lemma A.6].



Growth of Sobolev norms 581

Then one immediately obtains the following

Corollary C.4. LetM be the matrix with rows given by the vectors ej and the vectors uj ,
and define ν̌ := Mν. Then ν̌i = 0 for all i = 1, . . . , r , while ν̃i := ν̌r+i , i = 1, . . . , d̃ ,
are independent over the rationals.

Proof of Lemma 2.16. Consider the matrix M−1; since M is unimodular with integer
entries, the same is true for M−1, and one has ν = M−1ν̌; however, since the first r
components of ν̌ vanish, such an expression reduces to a linear combination of vectors
with integer entries, the coefficients of the combination being ν̃1, . . . , ν̃d̃ . ut
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