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Abstract. Let S be a Gorenstein local ring and suppose that M is a finitely generated Cohen–
Macaulay S-module of codimension c. Given a regular sequence f1, . . . , fc in the annihilator of
M we set R = S/(f1, . . . , fc) and construct layered S-free and R-free resolutions of M . The con-
struction inductively reduces the problem to the case of a Cohen–Macaulay module of codimension
c − 1 and leads to the inductive construction of a higher matrix factorization for M . In the case
where M is a sufficiently high R-syzygy of some module of finite projective dimension over S,
the layered resolutions are minimal and coincide with the resolutions defined from higher matrix
factorizations we described in [EP]. Our results provide a characterization of all MCM modules
over a complete intersection in terms of higher matrix factorizations.

Keywords. Free resolutions, complete intersections, CI operators, Eisenbud operators, maximal
Cohen–Macaulay modules

1. Introduction

Recall that if R is a local ring, then a finitely generated R-module N is called a maximal
Cohen–Macaulay module (abbreviated MCM) if depth(N) = dim(R).

Let S be a regular local ring and suppose that M is a finitely generated Cohen–
Macaulay S-module of codimension c. Given a regular sequence f1, . . . , fc in the an-
nihilator of M , so that M is a MCM S/(f1, . . . , fc)-module, we construct an S-free res-
olution

L↑S(M, f1, . . . , fc),

and an R := S/(f1, . . . , fc)-free resolution

L↓R(M, f1, . . . , fc)

of M . These resolutions are constructed through an induction on the codimension, and
each of them comes with a natural filtration by subcomplexes; we call them layered res-
olutions.
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The inductive construction of the resolutions follows a pattern often seen in results
about complete intersections in singularity theory and algebraic geometry. It allows us to
exploit the fact that we can choose the regular sequence to be in general position with re-
spect toM . In this way we achieve minimality for highR-syzygies, and we give necessary
and sufficient conditions for minimality in general.

We now explain the inductive constructions. For brevity, we will always abbreviate
the phrase “maximal Cohen–Macaulay” to “MCM”.

In the base case of the induction, c = 0, M is 0 and the layered resolutions are
trivial. For the inductive step we think of R as a quotient, R = R′/(fc), where R′ =
S/(f1, . . . , fc−1) and consider the MCM approximation

α : M ′ ⊕ B0 � M

of M as an R′-module, in the sense of Auslander–Buchweitz [AB]: here B0 is a free R′-
module, M ′ is an MCM R′-module without free summand and the kernel B1 of the sur-
jection α has finite projective dimension. In our case B1 is a free R′-module (Lemma 3.4)
and we write BS for the complex of free S-modules

BS : BS1 → BS0

obtained by lifting the map B1
b
−→ B0 back to S. See Section 3 for details.

Layered resolution over S (Section 4)

For the layered resolution of M over S we let K be the Koszul complex resolving R′ as
an S-module and let L′ = L↑S(M ′, f1, . . . , fc−1) be the layered resolution constructed

earlier in the induction. There is an induced map BS1
ψ
−→ L′0 which, in turn, induces a

map of complexes K⊗BS → L′ whose mapping cone we define to be the layered S-free
resolution of M with respect to f1, . . . , fc.

Layered resolution over R (Section 6)

One way to construct the layered resolution ofM over R, is to show (Section 9) that there
is a periodic exact sequence

· · · → R ⊗ B1 → R ⊗ (M ′ ⊕ B0)→ R ⊗ B1 → R ⊗ (M ′ ⊕ B0)→ M → 0;

this generalizes the periodic R-free resolution for a module over a hypersurface described
in [Ei1] (Corollary 9.2). In the case c = 1, the module M ′ is zero, and the layered resolu-
tion is this periodic complex.

As M ′ is an MCM module over R′, the complex R ⊗ L↓R′(M ′, f1, . . . , fc−1) is an
R-free resolution of R⊗M ′. The layered resolution ofM over R can be constructed from
the double complex obtained by replacing R ⊗ M ′ with R ⊗ L↓R′(M ′, f1, . . . , fc−1),
but it is simpler to do something a little different, explained in Section 6: Set T′ =
L↓R

′

(M ′, f1, . . . , fc−1), the layered resolution constructed earlier in the induction. The
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layered R-free resolution of M with respect to f1, . . . , fc is obtained from T′ by the
Shamash construction applied to the box complex

· · · → T ′2 T ′1 T ′0

⊕ ⊕

T′ :

B1 B0
b

R′⊗ψ

where b and ψ are the maps listed above.

Filtrations and layers

Each of the layered resolutions has a natural filtration, whose subquotients are the layers;
these will be described in Subsections 4.2 and 6.2. However the subcomplexes in the
filtration are easy to describe:

Let R(i) := S/(f1, . . . , fi), and let M(i) be the essential MCM approximation of M
over R(i) as defined in Section 3. The layered resolution L↑S(M, f1, . . . , fc) is filtered
by the sequence of subresolutions:

L↑S(M(1), f1) ⊂ L↑S(M(2), f1, f2) ⊂ · · · .

Similarly, the layered resolution L↓R(M, f1, . . . , fc) is filtered by the sequence of sub-
resolutions:

R ⊗ L↓R(1)(M(1), f1) ⊂ R ⊗ L↓R(2)(M(2), f1, f2) ⊂ · · · .

Minimality

Our criteria for the minimality of the layered resolutions is presented in Section 7. They
imply that, when the residue field of S is infinite, the layered resolutions can be taken
to be minimal for any sufficiently high R-syzygy of a given R-module N . The precise
statement is given in Section 8.

Higher matrix factorizations

It is well-known that when R is a complete intersection of codimension 1 in a regular
local ring, the MCM R-modules are described by matrix factorizations:

Theorem 1.1 ([Ei1], see also [EP, Theorem 2.1.1]). Let 0 6= f be a non-zerodivisor in
a regular local ring S. Set R = S/(f ). A finitely generated R-module N is MCM if and
only if it is a matrix factorization module, that is,N is the cokernel of a map d : U1 → U0
of finitely generated free modules such that there exists a homotopy for f1 on the complex

0→ U1
d
−→ U0.

This simply means that dh = f · IdU0 and hd = f · IdU1 .
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The matrix factorization is called minimal if both d and h have entries in the maximal
ideal of S. To include all MCM modules in the result, we must allow non-minimal matrix
factorizations (though only for modules with R/(f ) as a summand).

In [EP] we introduced higher matrix factorizations, and showed that any sufficiently
high syzygy module over a complete intersection is the module of a minimal higher matrix
factorization; note that high syzygy modules are MCM. Using the theory in Section 4, we
can extend this to arbitrary MCM modules and (not-necessarily minimal) higher matrix
factorizations: in Section 10 we prove Theorem 10.5 which is our extension of Theo-
rem 1.1.

Remark. Though the case when S is regular is our primary interest, the constructions
work more generally when S is a local Gorenstein ring; this is described in the rest of the
paper. In some of the results one can also do without the local hypothesis; we leave this
to the interested reader.

Notation 1.2. Throughout the paper we will use the following conventions. Let (W, ∂W )

and (Y, ∂Y ) be complexes. Our sign conventions are as follows: We write W[−a] for the
shifted complex with

W[−a]i =Wi+a

and differential (−1)a∂W , in particular the complex W[−1] has differential −∂W . The
complex W⊗ Y has differential

∂W⊗Yq =

∑
i+j=q

(
(−1)j∂Wi ⊗ Id+ Id⊗ ∂Yj

)
.

If ϕ :W[−1] → Y is a map of complexes, so that −ϕ∂W = ∂Yϕ, then the mapping cone
Cone(ϕ) is the complex Cone(ϕ) = Y⊕W with modules

Cone(ϕ)i = Yi ⊕Wi

and differential ( Yi Wi

Yi−1 ∂Yi ϕi−1

Wi−1 0 ∂Wi

)
.

As is well-known, a free resolution over a local ring is minimal if its differentials
become 0 on tensoring with the residue class field k. We extend this definition and say
that a map of (possibly non-free) modules is minimal if it becomes 0 on tensoring with k.

2. Review of MCM approximations

For the reader’s convenience we review the basic ideas of MCM approximations from
[AB] (see also [Di] and [EP, Section 7.3]). For simplicity, we deal only with finitely
generated modules over a local Gorenstein ring S.

Let P be an MCM S-module without free summands. For q ≥ 0, we denote by
SyzSq (P ) the q-th syzygy module of P over S. Note that P has a unique cosyzygy module
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SyzS
−1(P ), which is also MCM, defined as the dual of the first syzygy of the dual of P .

Since P is MCM over a local Gorenstein ring, the first syzygy module SyzS1 (P ) cannot
have free summands, as one sees by reducing to the 0-dimensional case, and it follows
from the description above that the cosyzygy module SyzS

−1(P ) cannot have free sum-
mands either. This can be applied repeatedly to obtain SyzS−q(P ) for any q ≥ 1: there
exists a unique MCM q-th cosyzygy module T := SyzS−q(P ) without free summands
such that P is isomorphic to SyzSq (T ) (see [EP, Lemma 7.1.3]).

The essential MCM approximation of a finitely generated S-module N is by def-
inition an MCM module AppS(N) without free summands together with a map φ :
AppS(N)→ N determined as follows: choose an integer q > depth S−depth N and set

AppS(N) := SyzS−q(SyzSq (N)),

considered together with a map φ : AppS(N)→ N induced by the comparison map of the
S-free resolutions of AppS(N) and N . By the uniqueness of cosyzygies, this is indepen-
dent of the choice of q. In particular, if N is an MCM module, we let φ : AppS(N)→ N

be the inclusion of the largest non-free summand of N . The following result is [EP, The-
orem 7.3.3 and Corollary 7.3.4]; we recall the proof for the reader’s convenience.

Theorem 2.1. Let S � R be a surjection of local Gorenstein rings, and suppose that R
has finite projective dimension as an S-module. Let N be a finitely generated R-module.

(1) For any i ≥ 0,

AppS(SyzRi (N)) = SyzSi (AppS(N)).

If N is an MCM module without free summands, then the statement is also true for
i < 0.

(2) If j > depth S − depth N , then

AppS(SyzRj (N)) = SyzSj (N).

(3) AppS(AppR(N)) = AppS(N).

Proof. (1) It suffices to do the cases of first syzygies and cosyzygies. Let

0→ N ′→ F → N → 0

be a short exact sequence, with F free as an R-module. It suffices to show that SyzSi (N
′)

= SyzSi+1(N) for some i.
We may obtain an S-free resolution of N as the mapping cone of the induced map

from the S-free resolution of N ′ to the S-free resolution of F ; if the projective dimension
of R as an S-module (and thus of F as an S-module) is u, it follows that SyzSu+1(N

′) =

SyzSu(N).
Parts (2) and (3) follow easily from (1). ut
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3. Codimension-one MCM approximations

The constructions of our layered resolutions use the codimension-one case of essential
MCM approximations which we describe in this section.

Assumptions 3.1. In the rest of the paper, we use the following notation. Let

S � R′ � R

be surjections of local Gorenstein rings and suppose that R = R′/(f ), with f a non-
zerodivisor in R′. We write k for the common residue field of R, R′ and S. We consider
a finitely generated MCM R-module M , and we may harmlessly assume that M has no
free summand as an R-module.

3.2. Codimension one MCM approximations

We may construct the MCM approximation of M as an R′-module in the following way.
Let M ′2 be the second syzygy of M as an R′-module, and let M ′ be the minimal second
cosyzygy of M ′2 as an R′-module, which is well-defined, up to isomorphism and has no
free summand because R′ is local and Gorenstein. In the notation of Figure 1, G is the
minimal R′-free resolution of M ′ and the module M ′2 is the common kernel of F ′1 → F ′0
and G1 → G0.

G : · · · → G2 G1 G0 M ′ 0

F ′1 F ′0 M 0

φ

Fig. 1. Construction of M ′ from a minimal resolution of M over R′.

The module M ′, together with the induced map φ : M ′ → M , is the essential MCM
approximation AppR′(M) of M over R′.

Let
ξ : B0 � Coker φ

be a surjection from a free R′-module of minimal rank to Coker φ, and let

γ : B0 → M

be a lift of this map, so that

α := (φ, γ ) : M ′ ⊕ B0 � M

is a surjection. The MCM approximation ofM overR′ is defined to be the moduleM ′⊕B0
or, more properly, the map α.

Let
β : B1 → M ′ ⊕ B0
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be the kernel of α. We write

ψ : B1 → M ′, b : B1 → B0

for the components of β. Thus we have the short exact sequence, which we call the MCM-
approximation sequence over R′,

0→ B1
β=
(
ψ
b

)
−−−−→ M ′ ⊕ B0

α=(φ,γ )
−−−−−→ M → 0. (3.3)

Lemma 3.4. B1 is a free R′-module.

Proof. By the diagram in Figure 1, TorR
′

i (M
′, k) = TorR

′

i (M, k) for i > 1, so the long
exact sequence in TorR

′

(−, k) obtained from (3.3) shows that TorR
′

i (B1, k) = 0 for i > 1
and it follows that B1 is an R′ module of finite projective dimension.

Since the depth of M is 1 less than the depth of the MCM R′-module M ′ ⊕ B0, the
short exact sequence (3.3) implies that B1 is an MCM R′-module. It follows from the
Auslander–Buchsbaum formula that B1 is free. ut

We will use the following proposition to derive minimality criteria for the layered resolu-
tions.

Proposition 3.5. The map b is minimal. The map ψ is minimal if and only if the induced
map

k ⊗ φ : k ⊗M ′→ k ⊗M

is a monomorphism.

Proof. The short exact sequence (3.3) yields a right exact sequence

k ⊗ B1

(
k⊗ψ
k⊗b

)
−−−−→ k ⊗M ′ ⊕ k ⊗ B0

(k⊗φ, k⊗γ )
−−−−−−−→ k ⊗M → 0.

By construction, k⊗M is the direct sum of the image of k⊗ φ and k⊗ γ , and k⊗ γ is a
monomorphism. Thus the kernel of (k⊗φ, k⊗γ ) is contained in k⊗M ′, and k⊗b = 0.
It follows that k ⊗ ψ = 0 if and only if k ⊗ φ is a monomorphism. ut

4. The layered S-free resolution of M

We let M be a Cohen–Macaulay S-module of codimension c, and we suppose that
f1, . . . , fc is a regular sequence in the annihilator of M . We will now construct the lay-
ered S-free resolution L↑S(M, f1, . . . , fc) of M . For simplicity we work in the case
where M has finite projective dimension over S. See Remark 4.3 for the changes neces-
sary in the general case. We do this by an induction on c. Set R = S/(f1, . . . , fc). We
may harmlessly assume that M has no free summands as an R-module.

In the case c = 0 the module M is 0 since we have assumed that M is an MCM
R-module without free summands, and we take the resolution to be 0.
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For simplicity, let R′ = S/(f1, . . . , fc−1) and let f = fc. We now describe the
inductive step. Given an S-free resolution L′ of the essential MCM approximation M ′ of
M over R′, we construct an S-free resolution L↑S(L′, f ) of M . In the induction, we will
take L′ = L↑S(M ′, f1, . . . , fc−1) and

L↑S(M, f1, . . . , fc) = L↑S(L′, f ).

With notation as in Section 3, we use the MCM approximation sequence (3.3):

0→ B1
β=
(
ψ
b

)
−−−−→ M ′ ⊕ B0

α=(φ, γ )
−−−−−→ M → 0.

Denote by BS the 2-term complex

BS : BS1
bS

−→ BS0 ,

where BS1 and BS0 are free S-modules such that BS1 ⊗ R
′
= B1 and BS0 ⊗ R

′
= B0, and

bS is any lift to S of the map b : B1 → B0.
Let K be the Koszul complex resolving R′ over S. Let

ψS• : B
S
[−1] → L′

be the map of complexes whose component ψS0 : B
S
1 → L′0 is a lift of the map ψ :

B1 → M ′. Choose a map of complexes

9S : K⊗S BS[−1] → L′

extending the map ψS• : BS[−1] → L′. We define L↑S(L′, f ) to be the mapping cone
of 9.

Theorem 4.1. The complex L↑S(L′, f ) is an S-free resolution ofM . It is minimal if and
only if L′ is minimal and the induced map

φ ⊗ k : M ′ ⊗ k→ M ⊗ k

is a monomorphism.

Proof. Neither the homology nor the minimality of the mapping cone changes if we re-
place9S with a homotopic map of complexes, and any two liftings of ψS• are homotopic.

Minimality: Because M ′ is an R′-module there is a map µ : K⊗ L′ → L′ inducing
the multiplication map R′ ⊗M ′ → M ′. By the remark above, we may take 9S to be the
composition

K⊗ BS[−1]
1⊗ψS•
−−−→ K⊗ L′

µ
−→ K⊗ L′.

Since ψS• is 0 on BS0 , it follows that 9S is zero on K⊗ BS0 . The mapping cone of 9S

is minimal if and only if 1⊗ψS• is minimal. By Proposition 3.5, this is true if and only if
φ ⊗ k is a monomorphism.
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Exactness: Because9S vanishes on K⊗BS0 , the mapping cone M(9S) is isomorphic
to the mapping cone of the map of free resolutions,

ϒS =

(
Id⊗ bS

9S
∣∣
K⊗(BS1 [−1])

)
: K⊗ (BS1 [−1])→ (K⊗ (BS0 [−1]))⊕ L′,

which extends the maps bS : BS1 → BS0 and (9S)0 = ψS0 : B
S
1 → L′0. It follows from

the long exact sequence of the mapping cone that M(ϒS) is a minimal S-free resolution
of M . ut

4.2. Layers of the S-resolution

For i = 0, . . . , c, let R(i) = S/(f1, . . . , fi) and set

M(i) := AppR(i)(M).

By Theorem 2.1, for i > 0 we get

M(i − 1) = AppR(i−1)(M) = AppR(i−1)(M(i)).

It is clear from the construction that the layered resolution L↑S(M, f1, . . . , fc) is filtered
by the sequence of subresolutions

· · · ⊂ L↑S(M(i − 1), f1, . . . , fi−1) ⊂ L↑S(M(i), f1, . . . , fi) ⊂ · · · .

We define the i-th layer to be the quotient

L↑S(M(i), f1, . . . , fi)

L↑S(M(i − 1), f1, . . . , fi−1)
= K(f1, . . . , fi−1)⊗ BS(i),

where K(f1, . . . , fi−1) is the Koszul complex on f1, . . . , fi−1 and BS(i) is the S-free
complex lifting the 2-term complex

B(i) : B1(i)→ B0(i)

derived from the MCM approximation sequence for M(i) as an R(i − 1)-module,

0→ B1(i)→ M(i − 1)⊕ B0(i)→ M(i)→ 0.

Remark 4.3. When M does not have finite projective dimension over S the MCM ap-
proximation ofM over S is not free, and the inductive construction must start with a given
free resolution PS of the essential MCM approximation MS of M over S. In this case we
write L↑S(PS, f1, . . . , fc) for the layered resolution over S. By Theorem 2.1(3), the es-
sential MCM approximation of M ′ over S is the same as that of M . Given this, we may
simply replace L↑S(M, f1, . . . , fc) by L↑S(PS, f1, . . . , fc) and L↑S(M ′, f1, . . . , fc−1)

by L↑S(PS, f1, . . . , fc−1) in the proof above. Thus in the base case, c = 0, we take
L↑S(PS, f1, . . . , fc) to be PS itself.

Corollary 4.4. If the ring S is regular and the layered resolution L↑S(M, f1, . . . , fc) is
minimal, then the Betti numbers of M satisfy βSi (M) ≥

(
c
i

)
for all i ≥ 0.
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5. Review of CI operators and the Shamash construction

We will make use of the CI operators (≡ Complete Intersection operators) introduced in
[Ei1, Section 1] (see also [EP, Section 4.1]) and the Shamash construction [Sh] (see also
Construction 4.3.1 in [EP]). For the reader’s convenience we provide a summary.

5.1. CI operators

Suppose that f1, . . . , fc ∈ S is a regular sequence and (V, ∂) is a complex of free modules
over R = S/(f1, . . . , fc). Suppose that Ṽ is a lifting of V to S, that is, a sequence of free
modules Ṽi and maps ∂̃i+1 : Ṽi+1 → Ṽi such that ∂ = R ⊗ ∂̃ . Since ∂2

= 0 we can
choose maps t̃j : Ṽi+1 → Ṽi−1, where 1 ≤ j ≤ c, such that ∂̃2

=
∑c
j=1 fj t̃j . We set

tj := R ⊗ t̃j .

By [Ei1], the tj are maps of complexes V[−2] → V that are functorial (and thus in
particular commutative) up to homotopy.

If (V, ∂) is the minimal free resolution of a finitely generated R-module N then, writ-
ing k for the residue field of S, the CI operators tj induce well-defined, commutative
maps χj on ExtR(N, k), and thus make ExtR(N, k) into a module over the polynomial
ring k[χ1, . . . , χc], where the variables χj have degree 2. The χj are also called CI oper-
ators.

For a short proof of the following result, Theorem 5.2, see [EP, Theorem 4.2.3]. A ver-
sion of it was first proved by Gulliksen [Gu], who used a different construction of opera-
tors on Ext. The relations between the CI operators and various constructions of operators
on Ext were explained by Avramov and Sun.

Theorem 5.2. Let f1, . . . , fc be a regular sequence in a local ring S with residue field k,
and set R = S/(f1, . . . , fc). If N is a finitely generated R-module with finite projective
dimension over S, then the action of the CI operators makes ExtR(N, k) into a finitely
generated k[χ1, . . . , χc]-module.

5.3. Higher homotopies and the Shamash construction

We need only the version for a single element, due to Shamash [Sh]; the more general
case of a collection of elements is treated by Eisenbud [Ei1].

Definition 5.4. Let G be a complex of finitely generated free R′-modules. A system of
higher homotopies σ for f ∈ R′ on G is a collection of maps

σj : G→ G[−2j + 1]

for j = 0, 1, . . . of the underlying modules such that

• σ0 is the differential on G,
• the map σ0σ1 + σ1σ0 is multiplication by f on G,
• for every j ≥ 2 we have

∑j

q=0, σqσj−q = 0.

Proposition 5.5 ([Ei2, Sh]). If G is a free resolution of an R′-module annihilated by
elements f , then there exists a system of higher homotopies on G for f .
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Construction 5.6 ([Ei1, Sh]). Suppose that (G, ∂) is a free complex over R′ with a sys-
tem σ = {σj } of higher homotopies for f ∈ R′. We will define a new complex over
R := R′/(f ). We write R{y} for the divided power algebra over R on one variable y;
that is,

R{y} ∼= Homgraded R-modules(R[t], R) =
⊕
i

Ry(i)

where the y(i) form the dual basis to the basis t i of the polynomial ring R[t]. The graded
module R{y}⊗G, where y has degree 2, becomes a free complex over R when equipped
with the differentials

δ :=
∑

tj ⊗ σj ⊗ R.

This complex is called the Shamash complex of (G, σ ) and denoted Sh(G, σ ) or simply
Sh(G).

We now record the properties of the Shamash construction that we will use. The minimal-
ity was first proven by Avramov–Gasharov–Peeva [AGP, Proposition 6.2]. See also [EP,
Corollary 4.3.5], where a different proof is given.

Proposition 5.7. Let G be an R′-free resolution of a finitely generated module N annihi-
lated by a non-zerodivisor f . The Shamash complex Sh(G) is a free resolution of N over
R = R′/(f ), and is minimal if and only if the CI-operator χ corresponding to f acts as
a monomorphism on ExtR(N, k). This happens if and only if

ExtR′(N, k) ∼=
ExtR(N, k)
χ ExtR(N, k)

.

6. The layered R-free resolution of M

We let M be a Cohen–Macaulay S-module of codimension c, and we suppose that
f1, . . . , fc is a regular sequence in the annihilator ofM . We do this by induction on c. We
will now construct the layered R-free resolution L↓R(M, f1, . . . , fc) of M . For simplic-
ity we work in the case where M has finite projective dimension over S. See Remark 6.3
for the changes necessary in the general case.

In the case c = 0 the module M is 0 since we have assumed that M is an MCM
R-module without free summands, and we take the resolution to be 0.

For simplicity, let R′ = R/(f1, . . . , fc−1) and let f = fc. We now describe the
inductive step. Given an R′-free resolution L′ of the essential MCM approximationM ′ of
M over R′, we construct an R-free resolution L↓R(L′, f ) ofM . In the induction, we will
take L′ = L↓R′(M ′, f1, . . . , fc−1).

With notation as in Section 3, we use the MCM approximation sequence (3.3):

0→ B1
β=
(
ψ
b

)
−−−−→ M ′ ⊕ B0

α=(φ, γ )
−−−−−→ M → 0.

We write
B : B1 → B0
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for the R′-free 2-term complex with differential b. The map ψ : B1 → M ′ lifts to a map
ψ0 : B1 → L′0, which in turn defines a map of complexes

ψ• : B[−1] → L′.

Let C(ψ0, b) be the mapping cone of ψ•, as shown in Figure 2.

· · · → L′2

C(ψ0, b) :

L′1 L′0

⊕ ⊕

B1 B0

∂2 ∂1

b

ψ0

Fig. 2. The box complex.

We call C(ψ0, b) the box complex. We define L↓R(L′, f ) to be the Shamash complex
Sh(C(ψ0, b)) defined in Construction 5.6.

Theorem 6.1. With notation as above, the box complex C(ψ0, b) is an R′-free resolution
of M . Thus the complex L↓R(L′, f ) is an R-free resolution of M .

Further C(ψ0, b) is minimal if and only if L′ is minimal and the induced map

k ⊗ φ : k ⊗M ′→ k ⊗M

is a monomorphism. Thus L↓R(L′, f ) is minimal if, in addition, the CI operator induced
by the expression R = R′/(fc) is a monomorphism on ExtR(M, k).

Proof. Using the notation in Figure 2,

δ :=

(
∂1 ψ0
0 b

)
is the first differential of C(ψ0, b). We have

Coker δ = Coker
(
ψ

b

)
= M.

Also, for i ≥ 2 we haveHi(C(ψ0, b)) = Hi(L′) = 0, so it is enough to show that C(ψ0, b)

is exact at L′1 ⊕ B1.
Suppose that (x, y) ∈ Ker δ. It follows that by = 0 and ψ0y ∈ ∂1(L

′

1). Composing δ
with the surjection L′0⊕B0 → M ′⊕B0 we see that the image z of y in M ′⊕B0 is zero.
Since z =

(
ψ
b

)
y and the map (

ψ

b

)
: B1 → M ′ ⊕ B0

is a monomorphism by (3.3), it follows that y = 0. Hence ∂1x = 0. Since L′ is acyclic,
x ∈ Im ∂2. Thus C(ψ0, b) is exact at L′1 ⊕ B1.

The box complex C(ψ0, b) is minimal if and only if L′ is minimal and the maps ψ0
and b are minimal. By Proposition 3.5, ψ0 and b are minimal if and only if k ⊗ φ is a
monomorphism.
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Since C(ψ0, b) is an R′-free resolution of M the complex Sh(C(ψ0, b)) is an R-free
resolution ofM . By [AGP, Proposition 6.2] (see [EP, Corollary 4.3.5] for a second proof),
the minimal R-free resolution of M is obtained by applying the Shamash construction to
the minimal R′-free resolution of M if and only if the CI operator χ : ExtR(M, k) →
ExtR(M, k)[2] is injective. ut

6.2. Layers of the R-resolution

We use the same notation as in Subsection 4.2. It is clear from the construction that the
layered resolution L↓R(M, f1, . . . , fc) is filtered by the sequence of subcomplexes

· · · ⊂ R ⊗ L↓R(i−1)(M(i − 1), f1, . . . , fi−1) ⊂ R ⊗ L↓R(i)(M(i), f1, . . . , fi) ⊂ · · · ,

which are themselves resolutions because fi+1, . . . , fc is a regular sequence on M(i) for
each i.

We define the i-th layer to be the quotient

R ⊗ L↓R(i)(M(i), f1, . . . , fi)

R ⊗ L↓R(i−1)(M(i − 1), f1, . . . , fi−1)
.

To describe this quotient we begin with the complexes

L′ := L↓R(i−1)(M(i − 1), f1, . . . , fi−1),

and
B(i) : B1(i)→ B0(i),

corresponding to the essential MCM approximation M(i − 1) of M over R(i − 1). With
notation as in Figure 2, the homotopy for fi on the box complex C(ψ0, b) induces a map
h from L′0 to B1, and from this we get the complex

L′′ : · · · → R ⊗ L′1 → R ⊗ L′0
h
−→ R ⊗ B1(i)

b
−→ R ⊗ B0(i).

From the inductive construction we see that the i-th layer of L↓R(M, f1, . . . , fc) is

R{y} ⊗R L′′.

Remark 6.3. The situation is an analogue to that in Remark 4.3. When M does not have
finite projective dimension over S the essential MCM approximation ofM over S is not 0,
and the inductive construction must start with a given free resolution PS of the essen-
tial MCM approximation MS of M over S. In this case we write L↓R(PS, f1, . . . , fc)

for the layered resolution over R. We note that the essential MCM approximation of
M ′ over S is the same as that of M by Theorem 2.1(3). Given this, we may simply
replace L↓R(M, f1, . . . , fc) by L↓R(PS, f1, . . . , fc) and L↓R′(M ′, f1, . . . , fc−1) by
L↓R′(PS, f1, . . . , fc−1) in the proof above. Thus in the base case, c = 0, we take the
layered resolution to be PS itself.
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7. When is k ⊗ φ a monomorphism?

Theorem 7.1. Let P be an MCM R-module, and let M = SyzR2 (P ). Let χ be the CI
operator on ExtR(P, k) derived from the expression R = R′/(f ). If the CI operator

χ : ExtjR(P, k)→ Extj+2
R (P, k)

is injective for j = 0, 1, then the essential MCM approximation φ : M ′ → M of M over
R′ induces a monomorphism

k ⊗ φ : k ⊗M ′ ↪→ k ⊗M.

Proof. Figure 3 exhibits the modules and maps that will be used. Let F be a minimal R-
free resolution of P , so thatM is the image of ∂2 : F2 → F1. Let F′ be a lifting of F to R′,
and let t : F→ F[−2] denote the CI operator derived from the expression R = R′/(f ).

We may define maps t ′ : F ′j+2 → F ′j for j ≤ 1 by the formula ∂ ′2 = f t ′. From

the assumption that χ : ExtjR(P, k) → Extj+2
R (P, k) is a monomorphism, we see using

Nakayama’s Lemma that the maps t : Fj+2 → Fj and t ′ : F ′j+2 → F ′j are surjections for
j ≤ 1.

0PF0F1

M

F2F3

0PG0 = F
′
0G1 = F

′
1

F ′2F ′3

G2

M ′

∂ ∂ ∂

t
t

t ′ t ′

∂ ′
∂ ′

∂ ′

δ φ

Fig. 3

For j = 0, 1 we set Gj = F ′j , and we define

G2 = Ker(F ′2
t ′

−→ F ′0)

which is free because t ′ is surjective. Let δ : G2 → G1 be the map induced by ∂ ′ :
F ′2 → F ′1. It follows at once that

G : G2
δ
−→ G1

∂ ′

−→ G0

is a minimal R′-free complex. Let M ′ be the image of δ : G2 → G1, and write φ :
M ′→ M for the induced map. We will show thatM ′ is the essential MCM approximation
of M over R′.
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First we prove that G is the beginning of an R′-free resolution of P . Since ∂ ′2 = f t ′ :
F ′2 → F ′0, we see that the cokernel of ∂ ′ : F ′1 → F ′0 is annihilated by f . After tensoring
with R, the cokernel is P . Thus the cokernel of ∂ ′ : F ′1 → F ′0 itself is P .

Next we prove the exactness of G atG1. Suppose `1 ∈ G1 = F
′

1 goes to 0 inG0 = F
′

0.
It follows from the exactness of F at F1 that there is an element `2 ∈ F ′2 such that
`1− ∂

′`2 = fm
′

1 for some m′1 ∈ F
′

1. The surjectivity of t ′ : F ′3 → F ′1 shows that we may
write fm′1 = ∂

′2m′3 for somem′3 ∈ F
′

3. Thus `1 = ∂
′(`2+∂

′m′3). Since ∂ ′2(`2+∂
′m′3) =

∂ ′`1 = 0 by hypothesis, we see that `2 + ∂
′m′3 ∈ G2, proving the exactness at G1. This

shows that G2 → G1 → G0 is the beginning of the minimal R′-free resolution of P .
It follows that M ′ = SyzR

′

2 P . Because depthR′ P = depth R′ − 1 and M = SyzR2 P ,
it follows from the construction in Subsection 3.2 and Theorem 2.1(3) that φ : M ′ → M

is the essential MCM approximation of M over R′. Since G2 is a direct summand of F ′2,
we see that the induced map k ⊗ φ : k ⊗M ′→ k ⊗M is injective. ut

8. High syzygies and the criterion for minimality

Throughout this section, N denotes a finitely generated Cohen–Macaulay S-module of
codimension c that has finite projective dimension as an S-module. We suppose that f =
f1, . . . , fc is a regular sequence in the annihilator of N and write R = S/(f1, . . . , fc) as
usual. For i = 0, . . . , c we set

R(i) := S/(f1, . . . , fi);

in particular, R = R(c). Let R(i) = k[χ1, . . . , χi] be the ring of CI operators corre-
sponding to f1, . . . , fi .

To prove the minimality of the layered resolutions, we will need the χi to form a
quasi-regular sequence on ExtR(N, k). This can always be achieved when k is infinite.
We review the relevant ideas: A sequence of elements hc, . . . , h1 in a ring T is said to
be quasi-regular on a T -module E if, for each i, the annihilator of hi in the module
E/(hc, . . . , hi+1)E has finite length. The case of interest for us is that of the finitely
generated graded module ExtR(N, k) over the polynomial ring R(c). In addition to the
hypotheses of Section 3, we now suppose that S contains an infinite field k. Then, any suf-
ficiently general choice of the variables χi forms a quasi-regular sequence on ExtR(N, k).
More precisely, for g ∈ GLc(k), let

fg := (f1, . . . , fc)g

be the sequence of k-linear combinations of the fi corresponding to g. Since the χi form
a dual basis to the fi , there is an open subset U ⊂ GLc(k) such that for g ∈ U the
sequence of CI operators (χc)g, . . . , (χ1)g corresponding to fg is a quasi-regular sequence
on ExtR(N, k); see for example [EP, Lemma 6.1.9].

For the minimality criteria we will make use of the Castelnuovo–Mumford regularity
of ExtR(N, k) as an R-module, defined in the usual way in terms of the top degrees of
non-vanishing components of the local cohomology with respect to (χ1, . . . , χc) ⊂ R.
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As R-modules we have

ExtR(N, k) = Exteven
R (N, k)⊕ Extodd

R (N, k),

so the regularity is the maximum of the regularities of these two submodules (where
Extodd

R (N, k) inherits its grading from ExtR(N, k)). In particular, if N is not R-free then
reg ExtR(N, k) ≥ 1 since ExtR(N, k) is not generated in degree 0.

For example, if c = 0 then R = S and R = k. In this case,

regR ExtS(N, k) = regk ExtS(N, k) = max{i | ExtiS(N, k) 6= 0} = c,

since we have assumed that N is Cohen–Macaulay of codimension c. In general, the
invariant we will use is

r(f, N) := max
2≤i≤c

regR(i) ExtR(i)(AppR(i)(N), k).

Theorem 8.1. Let N be a finitely generated Cohen–Macaulay S-module of codimen-
sion c that has finite projective dimension as an S-module, and let f = f1, . . . , fc be
a regular sequence in the annihilator of N . Suppose that the sequence of CI operators
χc, χc−1, . . . , χ1 on ExtR(N, k) corresponding to f is quasi-regular. If

n ≥ 3+max{c − 2, r(f, N)},

andM is the n-th syzygy of N over R, then the layered resolutions ofM with respect to f,
both over S and over R, are minimal.

Proof. First, by a descending induction on i we will prove that χi, . . . , χ1 is a quasi-
regular sequence on ExtR(i)(N, k). For i = c this is part of our hypothesis. We may
assume, by induction, that χi+1, . . . , χ1 is a quasi-regular sequence on ExtR(i+1)(N, k).
Choose a q such that χi+1 is a non-zerodivisor on Ext≥qR(i+1)(N, k). Let U be the q-th
syzygy of N over R(i + 1). By Proposition 5.7, we get

ExtR(i)(U, k) ∼= ExtR(i+1)(U, k)/χi+1ExtR(i+1)(U, k).

By Theorem 2.1, Ext≥mR(i)(U, k)[−q] = Ext≥mR(i)(N, k) for m� 0. Thus the R(i)-modules
ExtR(i)(N, k) and ExtR(i+1)(N, k)/χi+1ExtR(i+1)(N, k) become isomorphic after a suf-
ficiently high truncation, completing the induction.

As the modules N and AppR(i)(N) have a common syzygy over R(i), we see
that the modules ExtR(i)(N, k) and ExtR(i)(AppR(i)(N), k) become isomorphic after
a sufficiently high truncation. Therefore, χi, . . . , χ1 is a quasi-regular sequence on
ExtR(i)(AppR(i)(N), k) as well.

Since n > 1, the module M is an MCM module over R with no free summands. As
in 4.2, for i = 0, . . . , c we set

M(i) = AppR(i)(M).

For i > 0 we have M(i − 1) = AppR(i−1)(M(i)) by Theorem 2.1, and we write

φi : AppR(i−1)(M(i))→ M(i)

for the essential MCM approximation map. We will show that k⊗φi is a monomorphism.
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Suppose i = 1. Since bothN and R have finite projective dimension over S, it follows
that M has finite projective dimension as well. Therefore, M(0) = 0, so φ1 = 0.

Next, for i ≥ 2, we will show that the inequality

n ≥ 3+max{c − 2, regR(i) ExtR(i)(AppR(i)(N), k)}

implies that k ⊗ φi is a monomorphism.
Let P be the minimal (n− 2)-th syzygy of N over R(i). Since n− 2 ≥ 1+ c− i, the

module P is an MCM module over R(i) without free summands. Note that SyzR(i)2 (P ) =

SyzR(i)n (N). By Theorem 2.1(2) this is the module M(i).
We have shown, above, that the element χi is quasi-regular on the module

ExtR(i)(AppR(i)(N), k). Since

n− 2 ≥ 1+ regR(i) ExtR(i)(AppR(i)(N), k),

the largest submodule of ExtR(i)(AppR(i)(N), k) of finite length does not meet

Ext≥n−2
R(i) (AppR(i)(N), k) = ExtR(i)(P, k)[−n+ 2],

and thus χi is a non-zerodivisor on ExtR(i)(P, k). From Theorem 7.1 we conclude that
the map

k ⊗ φi : k ⊗M(i − 1)→ k ⊗M(i)

is a monomorphism.
We now prove the minimality of the layered resolutions ofM(i) over S and over R(i)

by induction on i. The case i = 0 is obvious. By Theorems 4.1 and 6.1, the minimality
for M(i) follows from the fact that k ⊗ φi is a monomorphism and the minimality of the
layered resolutions of M(i − 1). ut

Remark 8.2. There is a version of Theorem 8.1 that does not depend on information
about the approximations AppR(i)(N) at the expense of a slight weakening of the bound,
by using

r ′(f, N) = max
2≤i≤c

regR(i) ExtR(i)(N, k).

Proposition 8.3. We use the notation in 3.1. Let M be a finitely generated MCM R-
module of codimension c that has finite projective dimension over S. Let f = f1, . . . , fc
be a regular sequence in the annihilator ofM , and R′ = S/(f1, . . . , fc−1), R = R′/(fc).
Denote by R′ = k[χ1, . . . , χc−1] the ring of CI operators corresponding to f1, . . . , fc−1.
We have

regR′ ExtR′(AppR′(M), k) ≤ regR′ ExtR′(M, k).

Proof. From the exact sequence (3.3) we get the exact sequence

HomR′(B1, k)→ ExtR′(M, k)→ ExtR′(AppR′(M), k)→ 0.

By [Ei1], it follows that it is an exact sequence of R′-modules. Thus the 0-th local co-
homology of ExtR′(AppR′(M), k) as an R′-module is a homomorphic image of the 0-th
local cohomology of ExtR′(M, k) as an R′-module, and the higher local cohomology
modules coincide, proving the desired regularity inequality. ut
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In order to make use of the sharper estimate involving the r(f, N) and thus depending
on regR(i) ExtR(i)(AppR(i)(N), k), we would like to understand the relationship between
regR(i) ExtR(i)(AppR(i)(N), k) and regR(j) ExtR(j)(AppR(j)(N), k). In the examples we
have tried using the Macaulay 2 package “MCMApproximations”, the following question
has a positive answer:

Question 8.4. With hypotheses as in Theorem 8.1, is it true that

· · · ≤ regR(i−1) ExtR(i−1)(AppR(i−1)(N), k) ≤ regR(i) ExtR(i)(AppR(i)(N), k) ≤ · · ·

so that the maximum is attained by regR(c) ExtR(c)(N, k)?

Since AppR(0)(N) = 0 and AppR(1)(N) is by definition an MCM R(1)-module with-
out free summands, we have at least

0 = regR(0) ExtR(0)(AppR(0)(N), k) ≤ regR(1) ExtR(1)(AppR(1)(N), k) ≤ 1,

where the latter inequality follows from [EP, Theorem 2.1.1].
The answer to Question 8.4 is also positive for high syzygies:

Corollary 8.5. As in 4.2 and the proof of Theorem 8.1, for i = 0, . . . , c we set M(i) =
AppR(i)(M). With hypotheses as in Theorem 8.1, if M(i) 6= 0 then

regR(i) ExtR(i)(M(i), k) = 1

for every i ≥ 1.
Proof. We will prove the corollary by a descending induction on i. First, we discuss the
base of the induction i = c. By assumption, M(c) = M is the n-th syzygy of an MCM-
module N over R(c) = R and

n ≥ 3+ regR(c) ExtR(c)(AppR(c)(N), k).

It follows that
ExtR(c)(M(c), k) = Ext≥nR(c)(AppR(c)(N), k)[n]

has the desired regularity, since if M(c) 6= 0 then ExtR(c)(M(c), k) is generated in de-
grees 0 and 1.

Now, fix an i < c. Suppose M(i) 6= 0. The proof of Theorem 8.1 shows that χi is
regular on ExtR(i)(M(i), k) sinceM(i) = SyzR(i)2 (P ) (where P is the module introduced
in the proof of Theorem 8.1). By Proposition 5.7 it follows that

ExtR(i−1)(M(i), k) ∼=
ExtR(i)(M(i), k)
χiExtR(i)(M(i), k)

.

Therefore,

regR(i−1) ExtR(i−1)(M(i), k) = regR(i) ExtR(i)(M(i), k) = 1

by induction hypothesis. By Proposition 8.3 we have

regR(i−1) ExtR(i−1)(M(i − 1), k) ≤ regR(i−1) ExtR(i−1)(M(i), k) = 1.

The regularity on the left-hand side vanishes if and only if M(i − 1) = 0. ut

In general, we can establish a weaker inequality than the one in Question 8.4:
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Proposition 8.6. With hypotheses as in Theorem 8.1,

regR(i−1) ExtR(i−1)(AppR(i−1)(N), k) ≤ 2+ regR(i) ExtR(i)(AppR(i)(N), k).

Proof. We may assume i = c, which simplifies the notation: we write R′ for R(i − 1)
and N ′ for N(i − 1). Set r = regR ExtR(N, k), and let T be the (r + 1)-st R-syzygy
of N . The operator χc is a non-zerodivisor on ExtR(T , k) so, by Proposition 5.7,

ExtR′(T , k) ∼=
ExtR(T , k)
χcExtR(T , k)

.

The module
ExtR(T , k) = Ext≥r+1

R (N, k)[r + 1]
has regularity 1 over R, hence regR′ ExtR′(T , k) = 1.

Since T is an MCM module over R, we may apply Proposition 8.3 to get

regR′ ExtR′(AppR′(T ), k) ≤ regR′ ExtR′(T , k) = 1.

By Theorem 2.1, AppR′(T ) ∼= SyzR
′

r+1(N
′) and so

ExtR′(AppR′(T ), k)[−r − 1] = Ext≥r+1
R′

(N ′, k).

We conclude reg Ext≥r+1
R′

(N ′, k) ≤ r + 2. From the exact sequence

0→ Ext≥r+1
R′

(N ′, k)→ ExtR′(N ′, k)→ Ext≤r
R′
(N ′, k)→ 0

we see that ExtR′(N ′, k) has regularity at most r + 2, as required. ut

9. Generalized matrix factorization of an element

As explained in the introduction, an alternative presentation of the layered resolution
over R could be deduced from the following generalization of a result on periodic resolu-
tions over hypersurfaces in [Ei1].

Theorem 9.1. Let f ∈ A be an element of a commutative ring, and let

0→ N1
d
−→ N0

ζ
−→ P → 0

be a short exact sequence of A-modules. If f is a non-zerodivisor on N0 and on N1 but
fP = 0, then there is a unique map h : N0 → N1 such that dh = f ∗ Id. The map h is
a monomorphism and satisfies hd = f ∗ Id. Further, if we write − for A/(f )⊗−, then
the complex

· · · → N1
d
−→ N0

h
−→ N1

d
−→ N0

ζ
−→ P → 0

is exact.

Proof. From the left exactness of the functor Hom we see that

0→ Hom(N0, N1)→ Hom(N0, N0)→ Hom(N0, P )

is exact. Since f ∗ Id ∈ Hom(N0, N0) goes to 0 in Hom(N0, P ), it comes from a unique
map h ∈ Hom(N0, N1) with the property that dh = f ∗ Id.
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We claim that hd = f ∗ Id as well. Since f is a non-zerodivisor on N1 it suffices
to prove this after inverting f . However, if f is a unit then the equation dh = f ∗ Id
shows that d is surjective. Since d is a monomorphism, it follows that d , and therefore
also h, become isomorphisms on inverting f , so h can be cancelled on the right from the
expression

hdh = h(f ∗ Id) = (f ∗ Id)h,
yielding hd = f ∗ Id as required.

The right exactness of A/(f )⊗− shows that

N1
d
−→ N0

ζ
−→ P → 0

is exact.
To show that the infinite sequence is exact at N1, suppose that da = 0 for some

a ∈ N1. Then da = f e for some e ∈ N0, and so da = f e = dhe, which implies a = he.
A similar argument proves exactness at N0. ut

Theorem 9.1 applies to the setting of MCM approximations, and yields:

Corollary 9.2. Suppose that R′ is a Gorenstein ring, f ∈ R′ a non-zerodivisor, and M
an MCM module over R := R′/(f ). Let (3.3) be the corresponding MCM-approximation
sequence over R′. There is a unique map

h : M ′ ⊕ B0 → B1

such that βh = f ∗ Id. The map h is a monomorphism and satisfies hβ = f ∗ Id. Further,
the complex

→ B1 ⊗ R
β⊗R
−−−→ (M ⊕ B0)⊗ R

h⊗R
−−→ B1 ⊗ R

β⊗R
−−−→ (M ′ ⊕ B0)⊗ R

φ
−→ M → 0

of R-modules is exact.

10. Maximal Cohen–Macaulay modules from matrix factorization

In this section we provide a description of all MCM modules over a complete intersection.
In keeping with the inductive nature of layered resolutions, we give an inductive definition
of a CI matrix factorization essentially equivalent to the corresponding definitions in [EP];
see Remark 10.4.

We write K(c − 1) for the Koszul complex K(f1, . . . , fc−1) over S on f1, . . . , fc−1.
Let ∂ be its differential, and let {ei} be a basis of K(c − 1)1 such that ∂(ei) = fi ∈

K(c − 1)0 = S.

Definition 10.1. By an initial homotopy h for f ∈ S on a 3-term complex

U2
d
−→ U1

d
−→ U0

we mean a map of degree 1 with components h : Ui → Ui+1 such that

dh : U0 → U0, dh+ hd : U1 → U1

are both multiplication by f .
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Definition 10.2. Let S be a local ring. A CI matrix factorization complex with initial
homotopies with respect to a regular sequence f1, . . . , fc in S is defined as a 3-term
complex of free finitely generated S-modules

U(c) : U2
d
−→ U1

d
−→ U0

with initial homotopies hi for fi on U(c), such that:
If c = 1 then U(1) has the form

U(1) : 0→ B1(1)
b1
−→ B0(1)

with a homotopy h1 for multiplication by f1. (This structure is the same as that of a matrix
factorization introduced in [Ei1].)

If c > 1 then
(1) U(c) has a subcomplex

U(c − 1) : U ′2 → U ′1 → U ′0

with initial homotopies h′1, . . . , h
′

c−1 that is a CI matrix factorization complex with
respect to f1, . . . , fc−1. Furthermore, U(c) has a quotient complex U(c)/U(c− 1) of
the form

KB :
(
K(f1, . . . , fc−1)⊗S

(
0→ B1(c)

bc
−→ B0(c)

))
≤2

for some complex of finitely generated free S-modules

0→ B1(c)
bc
−→ B0(c).

(2) With this decomposition, U(c) is isomorphic to the mapping cone of a map of com-
plexes

9c : KB[−1] → U(c − 1)
that vanishes on K(c− 1)⊗B0(c), while 9c restricted to the summand ei ⊗B1(c) is
equal to −h′iψc, where ψc is the component of 9c from B1(c) to U ′0 =

⊕c−1
i=1 B0(c)

(see the diagram below).
(3) For p < c, the initial homotopy hp is equal to h′p when restricted to U(c − 1) and is

equal to (−1)s+1ep ⊗ Id when restricted to K(c − 1)⊗ Bs(c).
(4) There exists an initial homotopy hc for fc on U(c).
We define the CI matrix factorization module M of U(c) to be

M = Coker(U1
d
−→ U0).

The resulting CI matrix factorization with respect to f1, . . . , fc is the pair (d, h), where
d is the component of the differential in U(c) mapping

c⊕
p=1

B1(p)→ U0 =

c⊕
p=1

B0(p)

(thus, d is the collection of maps bi and ψi), and h is the collection of the components of
the initial homotopies hi mapping

⊕i
p=1 B0(p)→

⊕i
p=1 B1(p).
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The following diagram may help to visualize the definition. We denote by ∂ the differen-
tial in the Koszul complex, and Ur(c) is the direct sum of the modules in the r-th column:

U ′0 =
⊕c−1
p=1 B0(p)

⊕

U ′1U ′2

⊕

B1(c) B0(c)

⊕c−1
i=1ei ⊗ B0(c)

⊕c−1
i=1ei ⊗ B1(c)

⊕

⊕
1≤i<j≤c−1 ei ∧ ej ⊗ B0(c)

⊕

⊕

bc

ψc

Id⊗bc

ei⊗b 7→−h
′
iψc(b)

∂⊗Id
−∂⊗Id

−∂⊗Id

Remark 10.3. The construction above is consistent with the construction preceding
Theorem 4.1. The complex U(c) is the beginning of the layered resolution described
in Theorem 4.1.

Remark 10.4. Our concepts of matrix factorizations here and in [EP] are equivalent in
the sense that the following three properties are equivalent:

(1) M is the module of a CI matrix factorization.
(2) M is the module of a higher matrix factorization (introduced in [EP, Definition 1.2.2]).
(3) M is the module of a strong matrix factorization (introduced in [EP, Definition 1.2.3]).

It is immediate that (1) implies (2), and that (3) implies (2). By [EP, Theorem 5.3.1],
(2) implies (3). Furthermore, (2) implies that M is a MCM R-module by [EP, Corol-
lary 3.11], and then Theorem 4.1 implies (1).

We can now state a complete analogue of Theorem 1.1:

Theorem 10.5. Let f1, . . . , fc be a regular sequence in a regular local ring S. Set R =
S/(f1, . . . , fc). A finitely generated R-module N is MCM if and only if it is a CI matrix
factorization module for the sequence f1, . . . , fc.

Proof. Suppose that N is a CI matrix factorization module. Then it is a higher matrix
factorization module in the sense of [EP, Definition 1.2]. By [EP, Corollary 3.11], it
follows that N is a MCM R-module.

Suppose that N is MCM. The free resolution in Theorem 4.1 implies that N is a CI
matrix factorization module. ut

As far as minimality goes, we have
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Theorem 10.6 ([EP, Theorem 1.4]). Let S be a regular local ring with infinite residue
field, and let I ⊂ S be an ideal generated by a regular sequence of length c. Set R = S/I ,
and suppose that W is a finitely generated R-module. Let f1, . . . , fc be a generic choice
of elements minimally generating I . If M is a sufficiently high syzygy of W over R, then
M is the module of a minimal CI matrix factorization (d, h) with respect to f1, . . . , fc.
Moreover d ⊗R and h⊗R are the first two differentials in the minimal free resolution of
M over R.
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