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Abstract. The polynomial version of the Birkhoff Conjecture on integrable billiards on complete
simply connected surfaces of constant curvature (plane, sphere, hyperbolic plane) was first stated,
studied and solved in a particular case by Sergei Bolotin in 1990–1992. Here we present a com-
plete solution of the polynomial version of the Birkhoff Conjecture. Namely, we show that every
polynomially integrable real bounded planar billiard with C2-smooth connected boundary is an el-
lipse. We extend this result to billiards with piecewise smooth and not necessarily convex boundary
on an arbitrary two-dimensional simply connected complete surface of constant curvature: plane,
sphere, Lobachevsky–Poincaré (hyperbolic) plane; each of them being modeled as a plane or a
(pseudo-) sphere in R3 equipped with an appropriate quadratic form. Namely, we show that a bil-
liard is polynomially integrable if and only if its boundary is a union of confocal conical arcs and
appropriate geodesic segments. We also present a complexification of these results. These are joint
results of Mikhail Bialy, Andrey Mironov and the author. The proof is split into two parts. The
first part is given in two papers by Bialy and Mironov (in Euclidean and non-Euclidean cases re-
spectively). Their geometric construction reduced the Polynomial Birkhoff Conjecture to a purely
algebro-geometric problem to show that an irreducible algebraic curve in CP2 with certain proper-
ties is a conic. They have shown that its singular and inflection points lie in the complex light conic
of the above-mentioned quadratic form. In the present paper we solve the above algebro-geometric
problem completely.

Keywords. Billiard, geodesic billiard flow, polynomial integral, algebraic Birkhoff conjecture, sur-
face of constant curvature, singularities of algebraic curves
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1. Introduction

1.1. Main results

The famous Birkhoff Conjecture deals with strictly convex bounded planar billiards with
smooth boundary. Recall that a caustic of a planar billiard � ⊂ R2 is a curve C such that
each tangent line to C reflects from the boundary of the billiard to a line tangent to C.
A billiard � is called Birkhoff caustic-integrable if a neighborhood of its boundary in �
is foliated by closed caustics, and the boundary ∂� is a leaf of this foliation. It is well-
known that each elliptic billiard is integrable [40, Section 4]. The Birkhoff Conjecture
states the converse: the only Birkhoff caustic-integrable convex bounded planar billiard
with smooth boundary is an ellipse.1

Let now 6 be a two-dimensional surface with a Riemannian metric, and � ⊂ 6 a
connected domain2 with piecewise smooth boundary. The billiard flow Bt acts on the
tangent bundle T6|� as follows. A point (Q, P ) ∈ T6|�, Q ∈ �, P ∈ TQ6, moves
along a trajectory of the geodesic flow of the surface 6 until Q hits the boundary ∂�.
When hitting the boundary, a point Q remains unchanged, and the velocity vector P is
reflected from the boundary to a vector P ∗ according to the usual reflection law: the
angle of incidence equals the angle of reflection; and |P | = |P ∗|. Afterwards the new

1 This conjecture, classically attributed to G. Birkhoff, was published in print only in the paper
[37] by H. Poritsky, who worked with Birkhoff as a post-doctoral fellow in the late 1920s.

2 Everywhere in the paper a billiard is a connected domain � ⊂ 6.
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point (Q, P ∗) again moves along a trajectory of the geodesic flow etc. The billiard flow
thus defined, which can be viewed as a geodesic flow with impacts on T6|�, has an
obvious first integral: the absolute value |P | of the velocity. A strictly convex billiard
� with smooth boundary is called integrable in the Liouville sense if its flow has an
additional first integral functionally independent with |P | on the intersection with T6|�
of a neighborhood of the unit tangent bundle to the boundary.

The notions of a caustic and of Birkhoff caustic-integrability extend to the case of a
strictly convex domain � on an arbitrary surface 6 equipped with a Riemannian metric,
with lines replaced by geodesics. Liouville integrability and Birkhoff caustic-integrability
are equivalent: it is a well-known folklore fact.

There is an analogue of the Birkhoff Conjecture for billiards on a simply connected
complete Riemannian surface of non-zero constant curvature, sphere or hyperbolic (Lo-
bachevsky–Poincaré) plane. This is also an open problem.

The particular case of the Birkhoff Conjecture, when the additional first integral is
supposed to be polynomial in the velocity components, motivates the next definition and
conjecture.

Definition 1.1. Let 6 be a two-dimensional surface with Riemannian metric, and let
� ⊂ 6 be a domain with piecewise smooth boundary. We say that the billiard in � is
polynomially integrable if its flow has a first integral on T6|� that is polynomial in the
velocity P and whose restriction to the hypersurface {|P | = 1} is non-constant.

Definition 1.2. Let 6 be as above, and let � ⊂ 6 be a domain with piecewise smooth
boundary. We say that � is analytically integrable if there exists a first integral analytic
in P on a neighborhood in T6|� of the zero section of the tangent bundle T6|� that is
not a function of just the modulus |P |. In addition, it is required that there exists an r > 0
such that the integral is defined for all (Q, P ) with Q ∈ � and |P | ≤ r and its Taylor
series in P converges uniformly in those (Q, P ).

Note that all the integrals in question, which are defined over an open domain �, should
be invariant under the geodesic flow in � and under the reflections from its boundary.

Remark 1.3. The following facts are well-known:

• Analytic integrability implies polynomial integrability, since each homogeneous part in
P of an analytic integral is a first integral itself [32, p. 107] (the converse is obvious).
• When 6 is a simply connected complete surface of constant curvature and the bound-

ary ∂� is smooth and connected, polynomial integrability is equivalent to the existence
of a polynomial integral as above in a neighborhood of the unit tangent bundle to ∂�
in T6|�, by S. V. Bolotin’s results [15, 16, 17]; see Theorem 1.22 below. In this case
each first integral that is just polynomial in P is globally analytic on T6; see [17, proof
of Proposition 2] and Theorem 1.22.

The Polynomial Birkhoff Conjecture states that if a convex planar billiard with smooth
boundary is polynomially integrable, then its boundary is a conic. The Polynomial
Birkhoff Conjecture together with its generalization to billiards with piecewise smooth
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(maybe non-convex) boundaries on simply connected complete surfaces of constant cur-
vature was first stated and studied by S. V. Bolotin [16, 17] and later studied by M. Bialy
and A. E. Mironov [10, 11, 12]. In the present paper we give a complete solution of the
Polynomial Birkhoff Conjecture in full generality (Theorems 1.6 and 1.21).

Remark 1.4. The Polynomial Birkhoff Conjecture and its generalization are impor-
tant and interesting in themselves, independently of a potential solution of the classical
Birkhoff Conjecture. They lie at the crossroads of different domains of mathematics, first
of all, dynamical systems, algebraic geometry and singularity theory. They are not implied
by the classical Birkhoff Conjecture. For the general case of piecewise smooth boundaries
this is obvious. Even in the case of a smooth convex boundary, where polynomiality is
a very strong restriction, the condition of just non-constance of a polynomial integral on
the unit velocity hypersurface is topologically weaker than the independence condition in
the Liouville integrability, which requires independence of the additional integral and the
energy on a whole neighborhood in TR2

|� of the unit tangent bundle to the boundary.

Without loss of generality we consider simply connected complete surfaces6 of constant
curvature 0 or ±1: one can make non-zero constant curvature equal to ±1 by multiplying
the metric by a constant factor; this changes neither geodesics nor polynomial integrabil-
ity. Thus,6 is either the Euclidean plane, or the unit sphere, or the Lobachevsky–Poincaré
hyperbolic plane. It is modeled as one of the following three surfaces in the space R3 with
coordinates x = (x1, x2, x3) equipped with the quadratic form

〈Ax, x〉, A ∈ {diag(1, 1, 0), diag(1, 1,±1)}, 〈x, x〉 = x2
1 + x

2
2 + x

2
3 .

• Euclidean plane: 6 = {x3 = 1}, A = diag(1, 1, 0).
• The unit sphere: 6 = {x2

1 + x
2
2 + x

2
3 = 1}, A = Id.

• The hyperbolic plane: 6 = {x2
1 + x

2
2 − x

2
3 = −1} ∩ {x3 > 0}, A = diag(1, 1,−1).

The metric of constant curvature on the surface 6 in question is induced by the
quadratic form 〈Ax, x〉. The geodesics on 6 are its intersections with two-dimensional
vector subspaces in R3. The conics on6 are its intersections with quadrics {〈Cx, x〉 = 0}
⊂ R3, where C is a real symmetric 3× 3-matrix.

Example 1.5. The billiard in a disk in R2
(x1,x2)

centered at 0 has first integral x1P2−P1x2
linear in P . The billiard in any conic in any of the above surfaces 6 has an integral
quadratic in P [17, Proposition 1].

Theorem 1.6. Suppose a billiard � in 6 with C2-smooth connected boundary is poly-
nomially integrable. Assume that the boundary of � is not contained in a geodesic. Then
∂� is a conic (or a connected component of a conic).

Corollary 1.7. Every bounded polynomially integrable planar billiard with C2-smooth
connected boundary is an ellipse.

Below we extend the above theorem to billiards with countably piecewise smooth bound-
aries:
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Definition 1.8. A domain � ⊂ 6 has countably piecewise (Cr -) smooth boundary if ∂�
consists of the following two parts:

• the regular part: an open and dense subset ∂�reg ⊂ ∂�, where each point X ∈ ∂�reg
has a neighborhood U = U(X) ⊂ 6 such that U ∩ ∂� is a (Cr -) smooth one-
dimensional submanifold in U ;
• the singular part: the closed subset ∂�sing = ∂� \ ∂�reg ⊂ ∂�.

Remark 1.9. In the above definition the regular part of the boundary is always a dense
and at most countable disjoint union of (C2-) smooth arcs (taken without endpoints). The
particular case of domains with piecewise smooth boundaries corresponds to the case
when the above union is finite, the arcs are smooth up to their endpoints and the singular
part of the boundary is a finite set (which consists of endpoints and may be empty). For
a general billiard with countably piecewise smooth boundary the billiard flow is well-
defined on a residual set for all time values. When the singular part of the boundary has
zero one-dimensional Hausdorff measure, the billiard flow is well-defined as a flow of
measurable transformations.

Remark 1.10. The notions of polynomially (analytically) integrable billiards obviously
extend to billiards with countably piecewise smooth boundaries, and these two notions
are equivalent, as in the piecewise smooth case.

Definition 1.11. A billiard in R2 with countably piecewise smooth boundary is called
countably confocal if the regular part of its boundary consists of arcs of confocal conics
and may be some straight-line segments such that

• at least one conical arc is present;
• when the common foci of the conics are distinct and finite (i.e., the conics are ellipses

and (or) hyperbolas), the ambient line of each straight-line segment of the boundary is
either the line through the foci, or the middle orthogonal line to the segment connecting
the foci (see Fig. 1(a));
• when the conics are concentric circles, the above ambient lines may be any lines

through their common center (see Fig. 1(b));
• when the conics are confocal parabolas, the ambient line of each straight-line segment

of the boundary is either the common axis of the parabolas, or the line through the
focus that is orthogonal to the axis (Fig. 1(c, d).

Let us extend the above definition to the non-Euclidean case. To do this, let us recall the
following definition.

Definition 1.12 ([46, p. 84]). Let 6 ⊂ R3 be one of the standard surfaces of constant
curvature defined by a quadratic form 〈Ax, x〉. Let B be a real symmetric 3 × 3-matrix
that is not proportional to A. In the Euclidean case, when A = diag(1, 1, 0), we require in
addition that the x3-axis does not lie in KerB. The pencil of confocal conics in 6 defined
by B consists of the conics

0λ = 6 ∩ {〈Bλx, x〉 = 0}, Bλ = (B − λA)
−1. (1.1)
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For those λ for which det(B − λA) = 0 and the kernel Kλ = Ker(B − λA) is one-
dimensional, we set 0λ to be the geodesic3

0λ = 6 ∩K
⊥
λ , (1.2)

provided that the intersection is non-empty. When dimKλ = 2, for every two-dimen-
sional vector subspace H ⊂ R3 orthogonal to Kλ the intersection 6 ∩ H will also be
denoted 0λ = 0λ(H).

Remark 1.13. In the setting of Definition 1.12 the confocal conic pencil is well-defined:
det(B − λA) 6≡ 0 as a function of λ. In the non-Euclidean cases this is obvious, since the
matrix A is non-degenerate. In the Euclidean case one has A = diag(1, 1, 0) and the x3-
axis does not lie in KerB, that is, some of the matrix elements B13, B23, B33 is non-zero.
One has

det(B − λA) = −λ3 det(A− λ−1B)

= λ2B33 + λ(B
2
13 + B

2
23 − B33(B11 + B22))+ detB 6≡ 0; (1.3)

in the above right-hand side the identical vanishing of the coefficients at λ2 and at λ
would imply that B33 = B13 = B23 = 0, which is forbidden by our assumptions. Hence,
det(B − λA) 6≡ 0. Conversely, if in the Euclidean case the x3-axis were contained in the
kernel of the matrix B, then obviously det(B − λA) ≡ 0, and the confocal pencil would
not be well-defined.

Remark 1.14. The matrix B is uniquely defined modulo the transformation B 7→ µB −

λA, µ 6= 0 (i.e., modulo RA and up to a constant factor) by the corresponding confocal
conic pencil. In the Euclidean case, when 6 = {x3 = 1}, A = (1, 1, 0), the above
notion of confocal conics coincides with the classical one. In the Euclidean case the kernel
Kλ is two-dimensional for some λ if and only if the confocal conics in question are
concentric circles; then the corresponding geodesics 0λ(H) are the lines through their
common center.

Definition 1.15. Consider a confocal conic pencil (1.1) defined by a matrix B. The cor-
responding admissible geodesics are the following:

(1) Each geodesic 0λ in (1.2) and (or) 0λ(H) (if any) is admissible.
(2) Consider the special case, when B = Aa ⊗ b + b ⊗ Aa (modulo RA, see Remark

1.14) where a, b ∈ R3
\ {0}, 〈a, b〉 = 0.

(2a) When 6 is non-Euclidean, those of the geodesics

{r ∈ 6 | 〈r, a〉 = 0}, {r ∈ 6 | 〈r, Ab〉 = 0} (1.4)

that are well-defined (i.e., non-empty) are also admissible.
(2b) When 6 = {x3 = 1} is Euclidean and b is not parallel to 6, only 0λ and the

first geodesic in (1.4) are admissible.

3 Everywhere below, unless otherwise specified, the orthogonal complement sign ⊥ and the vec-
tor product are understood with respect to the standard Euclidean scalar product on R3.
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Remark 1.16. Note that in (2) the subcase when 6 = {x3 = 1} and b is parallel to 6 is
impossible, since the x3-axis would then lie in the kernel KerB, which is forbidden by our
assumptions. This implies that in subcase (2b) the first geodesic in (1.4) is non-empty: the
vector a is not vertical, since its orthogonal b is not horizontal. In subcases (2a), (2b) the
corresponding admissible geodesics from (1.4) do not coincide with the geodesics 0λ or
0λ(H). Indeed, suppose the contrary, say, the first geodesic a⊥ ∩6 in (1.4) is non-empty
and coincides with some 0λ or 0λ(H). Then a ∈ Ker(B − λA), that is,

〈Aa, a〉b + 〈b, a〉Aa = 〈Aa, a〉b = λAa.

Thus, either 〈Aa, a〉 = 0 and λAa = 0, or the vector b, which is orthogonal to a, is pro-
portional toAa, thus 〈Aa, a〉 = 0 again. But then a⊥∩6 = ∅ [17, p. 122], a contradiction.
The case when the second geodesic in (1.4) coincides with 0λ is treated analogously. The
above non-coincidence statement can also be deduced from the next proposition.

Remark 1.17. In subcase (2a) set ã = Ab and b̃ = Aa. Then B = Aã⊗ b̃+ b̃⊗Aã, and
〈̃a, b̃〉 = 0, since A2

= Id. The geodesics in (1.4) are written in terms of the new vectors
ã and b̃ in the opposite order. Thus, each geodesic of type (1.4) can be represented by the
first equation in (1.4) for an appropriate presentation B = Aa ⊗ b + b ⊗ Aa.

Definition 1.18. A billiard� ⊂ 6 with a countably piecewise smooth boundary is count-
ably confocal if its boundary consists of arcs of confocal conics (at least one conical arc is
present) and maybe some segments of geodesics admissible with respect to the confocal
conic pencil given by the conical arcs in ∂� (see Definition 1.15).

Confocal billiards with piecewise smooth boundaries were introduced by S. V. Bolotin
[17], who proved their polynomial integrability with integrals of first, second or fourth
degree. See the following proposition, whose proof presented in loc. cit. remains valid in
the countably piecewise smooth case.

Proposition 1.19 ([17, Proposition 1 in Section 2 and Theorem in Section 4]). Each
countably confocal billiard is polynomially integrable: it has a non-trivial first integral
that is either linear, or quadratic, or a degree 4 polynomial in the velocity components that
is non-constant on the unit velocity hypersurface. If all the geodesic pieces of its boundary
lie in 0λ or 0λ(H), then the integral can be chosen of degree at most 2. The case of a
degree 4 integral that cannot be reduced to an integral of degree at most 2 is exactly the
case when the conics forming the billiard boundary are contained in a confocal pencil
of types (2a) or (2b) from Definition 1.15 and the billiard boundary contains at least
one segment of some of the admissible geodesics from (1.4) mentioned in (2a) and (2b)
respectively.

Example 1.20. For Euclidean billiards the two countable confocality notions given by
Definitions 1.11 and 1.18 are equivalent. A Euclidean billiard whose boundary contains
an arc of parabola and a segment of the line through the focus that is orthogonal to the
axis of the parabola, as in Fig. 1(d), is exactly a billiard of type (2b) (see the end of [17]);
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Fig. 1. Examples of confocal planar billiards; F1, F2, F are the foci; the conics in (c) and (d) are
parabolas. All of these billiards have quadratic integrals, except for the billiard in Fig. 1(d), which
has a degree 4 integral.

the above line is the first geodesic in (1.4). This example of a billiard having a degree 4
integral was first discovered in [38]. Analogous billiards on surfaces of non-zero constant
curvature were constructed in [2].

The main result of the paper is the following theorem.

Theorem 1.21.4 Suppose a billiard in 6 with countably piecewise C2-smooth boundary
is polynomially integrable (or equivalently analytically integrable, see Definition 1.2),
and suppose the regular part of its boundary contains at least one non-geodesic arc.
Then the billiard is countably confocal.

Theorem 1.21 is a joint result of M. Bialy, A. E. Mironov and the author. Its proof sketched
below consists of the following two parts:

• The papers [10, 11] of Bialy and Mironov, whose geometric construction reduced the
proof of Theorem 1.21 to a purely algebro-geometric problem that was partially inves-
tigated by them.
• The complete solution of the above-mentioned algebro-geometric problem obtained in

the present paper (Theorem 1.25).

1.2. Sketch of proof of Theorem 1.21 and plan of the paper

In what follows, a point r ∈ 6 will be identified with its radius-vector in R3.

4 Theorem 1.21 with a brief proof was announced in the author’s note [26].
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Theorem 1.22 (S. V. Bolotin, see [16], [17, p. 118; Proposition 2 and its proof on p. 119],
[33, Chapter 5, Section 3, Proposition 5]). For every polynomially integrable billiard
� ⊂ 6 with countably piecewise C2-smooth boundary, there is a polynomial integral
which is non-constant on the unit velocity hypersurface {|P | = 1} and is a homogeneous
polynomial 9(M) of even degree in the components of the moment vector

M = [r, P ] = (x2P3 − x3P2,−x1P3 + x3P1, x1P2 − x2P1),

r = (x1, x2, x3) ∈ 6, P = (P1, P2, P3) is the velocity vector. (1.5)

(This statement is local and holds for reflection from an arbitrary smooth curve in 6.)
Each C2-smooth arc of the boundary ∂� with non-zero geodesic curvature lies on an
algebraic curve.

Theorem 1.23 (see [17, Section 4]). Suppose a billiard on 6 with a countably piece-
wise C2-smooth boundary is polynomially integrable, and the boundary contains a non-
geodesic conical arc. Then the billiard is countably confocal.

Remark 1.24. S. V. Bolotin’s theorems implying Theorems 1.22 and 1.23 were stated
and proved in loc. cit. for piecewise smooth boundaries, but their proofs remain valid in
the countably piecewise smooth case. To make the paper self-contained and to extend the
main results to the complex domain, we give a proof of Theorem 1.23 in Subsection 2.2.
It follows the arguments from [17, Section 4], but here it is done in dual terms using the
results of Bialy and Mironov [10, 11].

The boundary ∂� is countably piecewise C2-smooth. Therefore, it contains an open and
dense subset contained in ∂�reg that is a disjoint union of geodesic segments and C2-
smooth arcs with non-zero geodesic curvature.

Let α ⊂ ∂� be a C2-smooth arc with non-zero geodesic curvature; its existence fol-
lows from the assumptions. By Bolotin’s Theorem 1.23, for the proof of Theorem 1.21 it
suffices to show that α contains a conical subarc. To do this, we use Bialy–Mironov’s con-
struction of the dual billiard and their results presented in Subsection 2.1. Let us describe
them briefly.

In what follows, π : R3
\ {0} → RP2 denotes the tautological projection. Its com-

plexification and restriction to 6 will also be denoted by π .
Recall that the standard Euclidean scalar product 〈x, x〉 on R3 defines the orthogonal

polarity: the correspondence sending each two-dimensional vector subspace in R3 to its
Euclidean-orthogonal one-dimensional subspace. This together with the projection π in-
duces a projective duality RP2∗

(x1:x2:x3)
→ RP2

(M1:M2:M3)
sending lines to points. Namely,

each projective line, which is the projection of a two-dimensional vector subspace H
(punctured at the origin), is dual to the point π(H⊥ \ {0}). (It is well-known that in the
affine chart (x1 : x2 : 1) the projective duality defined by the orthogonal polarity is the
composition of the polar duality with respect to the unit circle and the central symmetry
with respect to the origin.)

For simplicity, the curve dual to the projection π(α) ⊂ RP2 with respect to the above
projective duality will be denoted by α∗ and called the curve 6-dual to α. By definition,
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the dual curve α∗ is the family of points in RP2 that are dual to the projective tangent lines
to the curve π(α) ⊂ RP2. The curve α∗ is C1-smooth, since the curve π(α) is C2-smooth
and has no inflection points: the geodesic curvature of α is non-zero.

Bialy and Mironov proved the following results in [10, 11]:

• Let9(M) be the homogeneous first integral of even degree 2n from Bolotin’s Theorem
1.22. For every point B ∈ α∗ the restriction to the projective tangent line TBα∗ of the
rational function

G(M) =
9(M)

〈AM,M〉n
(1.6)

is invariant under a special projective involution TBα∗→ TBα
∗ fixing B, the so-called

angular symmetry centered at B. More precisely, invariance of G is equivalent to the
statement that for every r ∈ α the function 9(M) = 9([r, v]) of v ∈ Tr6 is invariant
under reflection of the vector v from the line Trα.
• Consider the so-called absolute, the complex conic

I = {〈AM,M〉 = 0} ⊂ CP2
(M1:M2:M3)

. (1.7)

The above angular symmetry coincides with the restriction to TBα∗ of the unique pro-
jective involution CP2

→ CP2 fixing B that fixes each line through B and permutes its
intersection points with the conic I, the so-called I-angular symmetry centered at B.
• Consider the complex projective Zariski closure of the curve α∗, which is an algebraic

curve, by Theorem 1.22. Each of its non-linear irreducible components, γ , generates a
rationally integrable I-angular billiard (see Definition 2.10): for every point B ∈ γ \ I
the restriction of a rational function G to the projective tangent line TBγ is invariant
under the I-angular symmetry centered at B; the function G is non-constant on CP2

and has poles in I.
• For every curve γ generating a rationally integrable I-angular billiard all its singular

and inflection points (if any) lie in I.
The main algebro-geometric result of the present paper, which implies the main results,
is the following theorem.

Theorem 1.25. Let I ⊂ CP2 be a conic (either regular, or a union of two distinct lines).
Every irreducible algebraic curve γ ⊂ CP2 different from a line and from I and generat-
ing a rationally integrable I-angular billiard is a conic.

For the proof of Theorem 1.25 we study local branches of the curve γ at points C ∈ γ ∩I,
the irreducible components of the germ (γ, C). Each local branch is holomorphically bi-
jectively parametrized in so-called adapted affine coordinates by a small complex param-
eter t as follows:

t 7→ (tq , ctp(1+ o(1))) for t → 0; q, p ∈ N, 1 ≤ q < p, c 6= 0.

In Section 4 we prove Theorem 4.1 giving a list of statements on p and q satisfied by local
branches of appropriate type (see Cases (1) and (2) below). In Section 5 we prove the
following general algebro-geometric theorem. It states that the Bialy–Mironov inclusions
Sing(γ ), Infl(γ ) ⊂ I and the statements of Theorem 4.1 on local branches together imply
that γ is a conic.
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Theorem 1.26. Let I ⊂ CP2 be a conic (either regular, or a union of two distinct lines).
Suppose γ ⊂ CP2 is an irreducible complex algebraic curve different from a line and
from I, with all of its singularities and inflection points (if any) lying in I. Assume that for
every C ∈ γ ∩ I the local branches b of γ at C satisfy the following statements:

Case (1): C is a regular point of the conic I. If b is tangent to I, then it is quadratic:
p = 2q. If b is transversal to I, then it is regular and quadratic: q = 1, p = 2.

Case (2): I is a union of two distinct lines intersecting at C. If b is transversal to both
lines, then b is subquadratic: p ≤ 2q.

Then γ is a conic.

The proof of Theorem 1.26, which will be given in Section 5, is based on the ideas and
arguments due to E. Shustin on plane curve invariants from the proof of its analogue for
the outer billiards case [27, Subsections 4.1, 4.2].

The most technical part of the paper is the proof of statement (ii-b) of Theorem 4.1,
which asserts that each local branch of the curve γ that is transversal to I and is based at a
regular point of the conic I is regular and quadratic. Its proof is based on a remarkable for-
mula of Bialy and Mironov for the Hessian of the function defining γ ([10, Theorem 6.1]
and [11, formulas (16) and (32)]). This formula is recalled as formula (3.4) below. We
use asymptotic formulas for both sides of the Bialy–Mironov formula along the transver-
sal local branches, which are stated and proved in Subsection 3.4. In their proofs we use
asymptotic formulas for the defining functions and their Hessians stated and proved in
Subsections 3.2 and 3.3 respectively.

In Section 6 we prove the main results: Theorems 1.25, 1.21 and 1.6, and the com-
plexification of Theorem 1.21 stated in the next subsection.

1.3. Complexification

Here we state a complexification of Theorem 1.21, which deals with the space C3
(x1,x2,x3)

equipped with a quadratic form 〈Ax, x〉, x = (x1, x2, x3), A ∈ {diag(1, 1, 0),
diag(1, 1,±1)}, and a complex surface 6 ⊂ C3.

• Euclidean case: 6 = {x3 = 1}, A = diag(1, 1, 0).
• Non-Euclidean case: 6 = 6± = {〈Ax, x〉 = ±1}, A = diag(1, 1,±1).

We equip the surface 6 in question with the complex bilinear quadratic form induced by
the form 〈Ax, x〉 on its tangent planes.

Note that the surfaces 6± are regular, connected and obtained from each other by the
transformation (x1, x2, x3) 7→ (ix1, ix2, x3), but this transformation changes the sign of
the quadratic form 〈Ax, x〉 on T6±.

Recall that a one-dimensional subspace 3 in a complex linear space equipped with a
C-bilinear scalar product is isotropic if each vector in 3 has zero scalar square. A holo-
morphic curve 3 in a complex manifold 6 equipped with a C-bilinear quadratic form
on T6 is isotropic if for every x ∈ 3 the tangent subspace Tx3 ⊂ Tx6 is isotropic.
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A complex geodesic is

• a non-isotropic line in 6 = C2 in the Euclidean case;
• the intersection of the surface 6 with a two-dimensional subspace in C3 that is not

tangent to the light cone Î = {〈Ax, x〉 = 0} in the non-Euclidean case.

The reason to leave out the planes tangent to Î is the following.

Proposition 1.27. Consider the non-Euclidean case:A = diag(1, 1,±1). For every two-
dimensional vector subspace H ⊂ C3 tangent to the light cone Î the intersection H ∩ 6
is a union of two parallel isotropic straight lines. Each isotropic holomorphic curve in 6
is a line contained in a two-dimensional vector subspace in C3 tangent to Î. For every
r ∈ 6 the one-dimensional isotropic vector subspaces in the plane Tr6 are exactly its
intersections with two-dimensional vector subspaces in C3 containing r and tangent to Î;
there are exactly two of them.

Proof. For every r ∈ 6 the quadratic form on Tr6 induced by 〈Ax, x〉 is non-degenerate,
since Tr6 is 〈Ax, x〉-orthogonal to the radius-vector of the point r and transversal to it:
〈Ar, r〉 = ±1 6= 0. For every two-dimensional subspace H tangent to Î the restriction of
the form 〈Ax, x〉 to H is non-zero and has a non-zero kernel K , the tangency line of the
plane H with Î. Hence, in appropriate affine coordinates (z1, z2) on H centered at 0 one
has 〈Ax, x〉|H = z2

1, K = {z1 = 0}, H ∩ 6 = {z2
1 = ±1}. Therefore, H ∩ 6 is a union

of two lines parallel to K , which are thus isotropic. The first statement of the proposition
is proved.

Let us now prove the third and the second statements. For every point r ∈ 6 the
tangent plane Tr6 equipped with the quadratic form induced by 〈Ax, x〉 contains two
distinct one-dimensional isotropic vector subspaces, by non-degeneracy. Each ot them is
the line of intersection of the plane Tr6 with a two-dimensional subspace H through r
that is tangent to Î. This follows from the first statement of the proposition and the fact
that there are two distinct two-dimensional subspaces through r that are tangent to Î. This
implies the third statement of the proposition. This also implies that each isotropic curve
in 6 is locally a phase curve of a (double-valued) holomorphic line field defined by the
above intersections. The only phase curves of that field are the isotropic lines in H ∩ 6,
H being tangent to Î, by the first statement of the proposition and the uniqueness theorem
in ordinary differential equations. This proves the proposition. ut

Definition 1.28. Consider the surface 6 in the non-Euclidean case. Let γ ⊂ 6 be a
complex geodesic. Let Gγ denote the stabilizer of the geodesic γ in the group of auto-
morphisms C3

→ C3 preserving the form 〈Ax, x〉. Its identity component, which will be
denoted by G0

γ , will be called the group of translations along the geodesic γ . A transla-
tion of the complex Euclidean plane along a complex line L is the translation by a vector
parallel to L.

Remark 1.29. In the above definition in the non-Euclidean case let H ⊂ C3 denote
the corresponding two-dimensional vector subspace; so γ = H ∩ 6. The geodesic γ
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is thus a regular conic in the plane H that is biholomorphically parametrized by C∗. Its
projective closure γ̂ in CP2

⊃ H intersects the infinity line CP2
\H in two distinct points.

The restrictions to γ of translations along the geodesic γ are exactly those conformal
automorphisms γ̂ → γ̂ that fix those intersection points. One has γ̂ ' C, γ ' C∗. This
leads to a natural isomorphism G0

γ ' C∗.

Definition 1.30. A complex billiard on 6 is a collection (finite or infinite, countable or
uncountable) of holomorphic curves 0t ⊂ 6 distinct from isotropic lines (see [25, Def-
inition 1.3] for finite collections in the Euclidean case). A complex billiard is said to be
polynomially integrable if there exists a function 8(r, P ) on T6 (called a polynomial
integral) that is polynomial in P ∈ Tr6 with the following properties:

• 8|{〈AP,P 〉=1} 6≡ const;
• the restriction of 8 to the tangent bundle of every complex geodesic is invariant under

translations along the geodesic;
• for every point r ∈ 0t such that the line Tr0t is non-isotropic for the quadratic form

on Tr6 induced by 〈Ax, x〉, the restriction 8|Tr6 is invariant under the symmetry with
respect to the complex line Tr0t (see [25, Definition 2.1]), the unique non-trivial C-
linear involution Tr6 → Tr6 that preserves the form 〈Ax, x〉 on Tr6 and fixes the
points of the line Tr0t .

Example 1.31. Consider a polynomially integrable billiard with countably piecewise
smooth boundary in a real surface of constant curvature. Then the smooth part of the
boundary is contained in a union of arcs of conics and segments of admissible geodesics
(Theorem 1.21). Their complexifications form a complex billiard having a polynomial
integral that is the complexification of the real polynomial integral of the real billiard; it
can be chosen of degree no greater than four (see Proposition 1.19).

Remark 1.32. The confocality notion from Definition 1.12 for real conics extends to the
case of complex conics in 6 without changes in both the non-Euclidean and Euclidean
cases with B being a complex symmetric matrix and λ ∈ C. In the Euclidean case this
complex confocality notion is equivalent to the one given in [25, Definition 2.24], which
follows from the definition and Remark 1.14.

Remark 1.33. A pencil of confocal conics given by a matrix B is well-defined if and
only if (1.3) holds: det(B − λA) 6≡ 0 as a function of λ. In the real case, (1.3) is equiv-
alent to the condition that the x3-axis is not contained in the kernel of the matrix B, i.e.,
(B13, B23, B33) 6= (0, 0, 0) (see Remark 1.13). In the complex case, (1.3) is equivalent to
the following stronger condition: for every choice of ± the equalities

B33 = 0, B23 = ±iB13, B2
13(B11 − B22 ± 2iB12) = 0

do not hold simultaneously.

Definition 1.34. A complex billiard 0t is said to be confocal if the set of its curves dif-
ferent from complex geodesics is non-empty, all of them are confocal complex conics,
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and the complex geodesics from the family 0t are admissible with respect to the corre-
sponding confocal conic pencil in the sense of Definition 1.15, where now everything is
complex: B, λ, a, b, etc.

Remark 1.35. A priori, some complex curves 0λ in (1.2), 0λ(H) and some subsets in
(1.4) may be isotropic lines; then they are not complex geodesics, and we do not call them
admissible. For example, in the non-Euclidean case let λ ∈ C be such that the kernel
Kλ = Ker(B − λA) is one-dimensional. The corresponding intersection 0λ = K⊥λ ∩ 6
is isotropic if and only if Kλ ⊂ Î. This follows from Proposition 1.27 and since the
Euclidean orthogonal K⊥λ is tangent to the light cone Î if and only if Kλ ⊂ Î (see the last
statement of Corollary 2.15).

Theorem 1.36. Every polynomially integrable complex billiard 0t on 6 containing at
least one non-geodesic curve is confocal and has an integral 8(r, P ) = 9(M) (where
M = [r, P ] is the complexified Euclidean vector product) that is a homogeneous polyno-
mial in M of degree at most 4. The integral can be chosen quadratic in M , except for the
cases (2a), (2b) in Definition 1.15, when 0t contains a corresponding admissible complex
geodesic of type (1.4); in those cases there is an integral of degree 4.

Theorem 1.36 will be proved in Subsection 6.4.

1.4. Historical remarks

Existence of caustics in any strictly convex planar billiard with sufficiently smooth bound-
ary was proved by V. F. Lazutkin [34]. Non-existence of caustics in higher-dimensional
billiards with boundaries different from quadrics was proved by M. Berger [6].

The Birkhoff Conjecture was studied by many mathematicians. In 1950 H. Poritsky
[37] proved it under the additional assumption that the billiard in each closed caustic
near the boundary has the same closed caustics as the initial billiard. Later in 1988 an-
other proof of the same result was obtained by E. Amiran [4]. Recall that the reflection
from the boundary of a convex planar billiard � acts on the space of oriented lines in-
tersecting �, and their space is called the phase cylinder: each line is reflected from the
boundary ∂� at its last point of intersection with ∂� (with respect to its orientation),
and its reflected image is directed inside the domain � at this point. In 1993 M. Bialy
[7] proved that if the phase cylinder of the billiard is foliated by non-contractible con-
tinuous closed curves which are invariant under the billiard map, then the boundary ∂�
is a circle. (Another proof of the same result was later obtained in [47].) In particular,
Bialy’s result implies the Birkhoff Conjecture under the assumption that the foliation by
caustics extends to the whole billiard domain punctured at one point; then the boundary
is a circle. In 2012 he proved a similar result for billiards on constant curvature surfaces
[8] and also for magnetic billiards [9]. In 1995 A. Delshams and R. Ramı́rez-Ros [19]
suggested an approach to proving splitting of separatrices for generic perturbations of an
ellipse. In 2013 D. V. Treschev [42] made a numerical experiment indicating that there
should exist analytic locally integrable billiards with the billiard reflection map having a
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two-periodic point where the germ of its second iterate is analytically conjugate to a disk
rotation. Recently Treschev studied the billiards from [42] in more detail in [43] and their
multi-dimensional versions in [44]. A similar effect for a ball rolling on a vertical cylin-
der under gravitation was discovered in [3]: the authors showed that the ratio between
its vertical and horizontal oscillation periods is a universal irrational constant, the num-
ber
√

7/2. Recently V. Kaloshin and A. Sorrentino [31] have proved a local version of the
Birkhoff Conjecture: an integrable deformation of an ellipse is an ellipse. (The case of el-
lipses with small eccentricities was treated in the previous paper by A. Avila, J. De Simoi
and V. Kaloshin [5].) A dynamical entropic version of the Birkhoff Conjecture was stated
and partially studied by J.-P. Marco [35].

In 1988 A. P. Veselov [45, Proposition 4] proved that every billiard bounded by con-
focal quadrics in any dimension has a complete system of first integrals in involution that
are quadratic in P . In 1990 he studied a billiard in a non-Euclidean ellipsoid: in the sphere
and in the Lobachevsky (i.e., hyperbolic) space of any dimension n. He proved its com-
plete integrability and provided an explicit complete list of first integrals [46, corollary
on p. 95]. In the same paper he proved that all the sides of a billiard trajectory are tan-
gent to the same n− 1 quadrics confocal to the boundary of the ellipsoid and the billiard
dynamics corresponds to a shift of the Jacobi variety corresponding to an appropriate
hyperelliptic curve [46, Theorems 3, 2 on p. 99]. The Polynomial Birkhoff Conjecture to-
gether with its generalization to surfaces of constant curvature was stated and studied by
S. V. Bolotin [16], who proved in 1990 that under the assumptions of the conjecture, the
billiard boundary lies on an algebraic curve. In the same paper and in [17, Section 4] he
proved the conjecture under the assumption that at least one irreducible component of the
corresponding complex projective planar algebraic curve is non-linear and non-singular
(in the non-Euclidean case it is also required that in addition, at least one intersection
point of that component with the absolute be transversal). In [17] Bolotin proved inte-
grability of countably confocal billiards with piecewise smooth boundaries with integrals
of degrees 2 or 4 and a similar statement in higher-dimensional spaces of constant cur-
vature. M. Bialy and A. E. Mironov proved the planar Polynomial Birkhoff Conjecture
in the case of integrals of degree 4 [12]. A version of the planar Polynomial Birkhoff
Conjecture for families of billiards sharing the same polynomial integral (with bound-
aries depending continuously on one parameter) was solved in [1]: in [1, bottom of p. 30]
it was shown that it is sufficient to require that the union of the boundaries does not lie
on an algebraic curve in R2. Dynamics in countably confocal billiards with piecewise
smooth boundaries in two and higher dimensions was studied in [20, 21, 22, 23, 24]. Dy-
namics in so-called pseudo-integrable billiards (more precisely, confocal billiards with
non-convex angles) was studied in [21, 22, 23, 24]. For further results on the Polyno-
mial Birkhoff Conjecture and its version for magnetic billiards see the above-mentioned
papers [10, 11, 12] by M. Bialy and A. E. Mironov, and also [13, 14] and references
therein.

The analogue of the Birkhoff Conjecture for outer billiards was stated by S. L. Tabach-
nikov [41] in 2008. Its polynomial version was stated by Tabachnikov and proved by him-
self under genericity assumptions in the same paper, and recently solved completely in
the joint work of the author of the present paper with E. I. Shustin [27].
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2. Preliminaries: from polynomially integrable to I-angular billiards

2.1. Reflection and I-angular symmetry

Here we present the results of M. Bialy and A. E. Mironov mentioned in Subsection 1.2
and give self-contained proofs of some of them.

Proposition 2.1 (S. V. Bolotin, see [17, formula (15), p. 23], [33, formula (3.12), p. 140]).
For every r ∈ 6 the linear operator Mr : Tr6 → Vr = r

⊥, v 7→ [r, v], is an isomor-
phism preserving the quadratic form 〈Ax, x〉. Here the orthogonal complement and the
vector product are taken with respect to the standard Euclidean scalar product (see foot-
note 3).

Definition 2.2. Let the space Rn be equipped with a quadratic form 〈Ax, x〉, A being
a symmetric n × n-matrix, and let ` ⊂ Rn be a one-dimensional vector subspace such
that ` 6⊂ {〈Ax, x〉 = 0}. The pseudo-symmetry of Rn with respect to ` is the linear
involution Rn → Rn preserving the quadratic form, fixing the points of ` and acting as
central symmetry in its orthogonal complement with respect to the form. The definition
of complex pseudo-symmetry of the space Cn equipped with a C-bilinear quadratic form
is analogous.

Corollary 2.3. For every r ∈ 6 and one-dimensional subspace ` ⊂ Tr6 the mapping
Mr : Tr6 → Vr , v 7→ M , conjugates the pseudo-symmetry Tr6 → Tr6 with respect
to ` and the pseudo-symmetry Vr → Vr with respect to the one-dimensional subspace
orthogonal to both r and `.

Definition 2.4. Let I ⊂ CP2 be a conic (either a smooth conic, or a union of two distinct
lines). Let B ∈ CP2

\ I. For every complex line L through B consider its complex pro-
jective involution fixing B and permuting its intersection points with I. (If L is tangent
to I, the involution in question is the unique non-trivial projective involution L → L

fixing B and the tangency point.) The transformation thus constructed for each L is a
projective involution CP2

→ CP2 fixing B, which will be called the I-angular symmetry
with center B. See Fig. 2 in the Euclidean case.

Proposition 2.5. Consider the space C3
(M1,M2,M3)

equipped with a quadratic form
〈AM,M〉, dim(KerA) ≤ 1. The absolute I = {〈AM,M〉 = 0} ⊂ CP2

(M1:M2:M3)
(see

(1.7)) is either a regular conic, or a union of two distinct lines. The projectivization of
the pseudo-symmetry C3

→ C3 with respect to a one-dimensional subspace ` is the
I-angular symmetry with center π(`).

The proposition follows from the definitions.

Theorem 2.6 (see [11, Theorem 1.3, p. 151] in the non-Euclidean case). Let� ⊂ 6 be a
polynomially integrable billiard with countably piecewise smooth boundary and a homo-
geneous polynomial integral9(M) of even degree. Let r be a point in a smooth arc in ∂�.
Set Vr = r⊥ ⊂ R3. Let L ⊂ Vr be the one-dimensional subspace Euclidean-orthogonal
to both r and the tangent line Tr∂�. The restriction 9|Vr is invariant under the pseudo-
symmetry of the plane Vr equipped with the form 〈Ax, x〉 with respect to the line L.
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σ(S)
L
σ(C)

γ
B

C
S

O

Fig. 2. The I-angular symmetry σ : CP2
→ CP2 with center B in the Euclidean case, when

I = {x2
1 + x

2
2 = 0}: the action in the affine chart C2

(x1,x2)
; O = (0, 0). The lines OC and Oσ(C)

are symmetric with respect to the line OB. The projective lines OS and Oσ(S) are isotropic for
the complex Euclidean metric dx2

1 + dx
2
2 on C2, that is, I = OS ∪Oσ(S).

Proof. The polynomial integral9([r, v]) is invariant under the action on v of the pseudo-
symmetry Tr6 → Tr6 with respect to the line ` = Tr∂� (invariance under reflection).
This together with Corollary 2.3 implies the statement of the theorem. ut

Convention 2.7. Recall that for every C2-smooth curve α ⊂ 6 with non-zero geodesic
curvature its 6-dual is the curve α∗ ⊂ RP2 orthogonal-polar-dual to the projection
π(α) ⊂ RP2 (see Subsection 1.2). For every r ∈ 6 each one-dimensional vector sub-
space ` ⊂ Tr6 is the intersection of the tangent plane Tr6 with a two-dimensional
subspace H ⊂ R3 containing r . The intersection ̂̀= H ∩6 is the geodesic tangent to `.
The point π(H⊥ \ {0}) ∈ RP2 will be called the point 6-dual to the subspace ` and to
the geodesic ̂̀. It will be denoted by ̂̀∗.
Theorem 2.8. Let � ⊂ 6 be a polynomially integrable billiard with countably piece-
wise C2-smooth boundary. Let 9(M) be its homogeneous polynomial integral of even
degree 2n. The function G = 9(M)/〈AM,M〉n from (1.6) treated as a rational function
on CP2

(M1:M2:M3)
satisfies the following statements.

(1) For every C2-smooth arc α ⊂ ∂� with non-zero geodesic curvature, let α∗ ⊂ RP2

be its 6-dual curve. For every point C ∈ α∗ the restriction of the function G to the
projective line TCα∗ is invariant under the I-angular symmetry with center C. One
has G|α∗ ≡ const.

(2) For every geodesic ̂̀⊂ 6 that contains a segment of the boundary ∂� the function
G is invariant under the I-angular symmetry of the whole projective plane CP2 with
center ̂̀∗, the point 6-dual to ̂̀.

Remark 2.9. A version of statement (1) of Theorem 2.8 in the Euclidean case was proved
in [10, Theorem 3] for convex domains with smooth boundary. But its proof remains valid
in the general Euclidean case.

Proof of Theorem 2.8. Each point C ∈ α∗ is dual to the projective line tangent to the
curve π(α) at some point π(r), r ∈ α, by definition. Consider the projective line TCα∗
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and set V = π−1(TCα
∗) ∪ {0} ⊂ R3. It is the two-dimensional subspace orthogonal

to the line Or , by definition. Set L = π−1(C) ∪ {0} ⊂ V ; it is the one-dimensional
subspace orthogonal to both lines Trα andOr , by definition. The restrictions to V of both
functions 9(M) and 〈AM,M〉 are invariant under the pseudo-symmetry of the plane V
with respect to the line L, by Theorem 2.6 and isometry. Hence, the restriction to V
of the ratio G(M) = 9(M)/〈AM,M〉n is also invariant. Therefore, the restriction to
π(V \ {0}) = TCα

∗ of G treated as a rational function on CP2 is invariant under the
projectivized pseudo-symmetry, which coincides with the I-angular symmetry centered
at C, by Proposition 2.5. The equality G|α∗ ≡ const holds since the derivative of G at C
along a vector tangent to TCα∗ vanishes. Indeed, the function G|TCα∗ , which is invariant
under a projective involution fixing C, has zero derivative at C, similarly to vanishing of
the derivative of an even function at 0. Statement (1) is proved.

The proof of (2) is analogous. In more detail, let3 ⊂ 6 be a geodesic whose segment
I ⊂ 3 is contained in ∂�. For every point Q ∈ I the projective line Q∗ dual to π(Q)
passes through the point 3∗ 6-dual to 3. The restriction G|Q∗ is invariant under the I-
angular symmetry with center 3∗, as in the above argument. Therefore, this holds for the
restriction ofG to every complex line through3∗, and hence on all of CP2, by uniqueness
of analytic extension. Statement (2) is proved. ut

Definition 2.10. Let I ⊂ CP2 be a conic (either a regular conic, or a pair of distinct
lines). Let γ ⊂ CP2 be an irreducible algebraic curve different from a line and from I.
We say that γ generates a rationally integrable I-angular billiard if there exists a non-
constant rational function G on CP2 with poles contained in I (called the integral of the
I-angular billiard) such that for every C ∈ γ \ I the restriction of G to the projective
tangent line TCγ is invariant under the I-angular symmetry with center C.

Corollary 2.11. Let I ⊂ CP2
(M1:M2:M3)

be the absolute (see (1.7)). Let � ⊂ 6 be a
polynomially integrable billiard with a non-trivial homogeneous integral 9(M) of even
degree 2n. Let α ⊂ ∂� be a C2-smooth arc with non-zero geodesic curvature, and let
α∗ ⊂ RP2

⊂ CP2 be its 6-dual curve. The complex projective Zariski closure of the
curve α∗ is an algebraic curve. Each of its non-linear irreducible components gener-
ates a rationally integrable I-angular billiard with integral G(M) = 9(M)/〈AM,M〉n

(see (1.6)).

Proof. The functionG is non-constant on CP2, since9|{〈AM,M〉=1} 6≡ const: this follows
from non-constancy of the function 9([r, v]) on the hypersurface {〈Av, v〉 = 1} (non-
triviality of the integral) and Proposition 2.1. The first statement of the corollary, which
follows from Bolotin’s Theorem 1.22, also follows from the constancy of G on α∗ (see
Theorem 2.8(1)).

The second statement follows from the invariance of G in Theorem 2.8(1) by a
straightforward analytic extension argument. ut

Proposition 2.12. Suppose an irreducible algebraic curve γ ⊂ CP2 generates a ratio-
nally integrable I-angular billiard with integral G. Then G|γ ≡ const.

The proof repeats literally the above proof of the analogous statement from Theo-
rem 2.8(1).
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2.2. Duality and I-angular billiards. Proof of Theorem 1.23

For the proof of Theorem 1.23 we use the well-known classical properties of orthogonal
polarity given by the following proposition and its corollary. We give the proof of the
proposition for completeness.

Proposition 2.13. Let B be a non-degenerate complex symmetric 3×3-matrix. Consider
the complex space C3 with coordinates x = (x1, x2, x3) equipped with the complex-
bilinear Euclidean quadratic form dx2

1 +dx
2
2 +dx

2
3 . The complex orthogonal-polar-dual

to the conic in CP2
(x1:x2:x3)

given by the equation 〈Bx, x〉 = 0 is the conic given by the
equation 〈B−1x, x〉 = 0.

Proof. Consider the cone K = {x ∈ C3
\ {0} | 〈Bx, x〉 = 0} and its tautological pro-

jection 0 = π(K) ⊂ CP2, which is the conic under consideration. Let x ∈ K . The
projective tangent line L = Tπ(x)0 is defined by the tangent plane TxK considered as a
vector subspace in C3. It follows from the definitions that TxK consists of those vectors v
for which 〈Bx, v〉 = 0. Thus, (TxK)⊥ = C(Bx), and the dual L∗ is π(Bx). There-
fore, the dual 0∗ is the projection π(B(K)), which is obviously defined by the equation
〈B(B−1y), B−1y〉 = 〈B−1y, y〉 = 0. This proves the proposition. ut

Definition 2.14 ([46, p. 84]). Let A,B be two real non-proportional symmetric 3 × 3-
matrices. They define a pseudo-Euclidean pencil of conics in RP2 by

{〈(B − λA)M,M〉 = 0} ⊂ RP2
(M1:M2:M3)

, λ ∈ R.

The same pencil of complex conics in CP2 depending on λ ∈ C will also be called
pseudo-Euclidean.

Corollary 2.15. The 6-duality transforms every confocal pencil of conics to the corre-
sponding pseudo-Euclidean pencil. Namely, for every real symmetric 3×3-matrixB satis-
fying the conditions of Definition 1.12 for any two conics in6 lying in the confocal pencil
(1.1) defined by B their 6-dual curves lie in conics belonging to the pseudo-Euclidean
pencil defined by the same matrix B. In the non-Euclidean case, when the absolute I is a
regular conic, I is self-dual with respect to complex orthogonal polarity.

The first statement of the corollary is obvious. The self-duality follows from Proposition
2.13 and involutiveness A2

= Id in the non-Euclidean case.

Proof of Theorem 1.23. Let � ⊂ 6 be a polynomially integrable billiard. Let
9(M1,M2,M3) be a non-trivial homogeneous polynomial integral of the billiard � of
even degree 2n. Consider the affine chart M3 6= 0 on CP2

(M1:M2:M3)
with coordinates

(x, y) where x = M1/M3, y = M2/M3. Set

Q(x, y) = 〈AM,M〉, where M = (x, y, 1);

Q(x, y) = x2
+ y2 in the Euclidean case; otherwise Q(x, y) = x2

+ y2
± 1.
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In this affine chart the function G on CP2 from (1.6) takes the form

G(x, y) = F(x, y)/(Q(x, y))n, F (x, y) = 9(x, y, 1), degF ≤ 2n.

In what follows, for every conic α ⊂ 6 the corresponding complex conic containing its
6-dual α∗ will be denoted by α̃∗.

Suppose the boundary ∂� contains an arc of a conic α. Let C be the confocal conic
pencil containing α, and let C∗ denote the corresponding (6-dual) pseudo-Euclidean pen-
cil of conics containing α̃∗:

κλ = {〈BλX,X〉 = 0} ⊂ R3
(X1,X2,X3)

, Bλ = (B − λA)
−1, Cλ = κλ ∩6,

κ∗λ = {〈(B − λA)M,M〉 = 0} ⊂ C3
(M1,M2,M3)

, C∗λ = π(κ
∗
λ \ {0}) ⊂ CP2,

κ∗∞ = Î = {〈AM,M〉 = 0} ⊂ C3, C∗∞ = π(κ∗∞ \ {0}) = I.

Claim 1. Each C2-smooth arc of the boundary ∂� with non-zero geodesic curvature lies
in a conic confocal to α.

Proof. The conic α̃∗ generates a rationally integrable I-angular billiard with integral G,
by Corollary 2.11. On the other hand, it is known that the billiard on a conic α admits a
non-trivial quadratic homogeneous first integral 8̃ = 8̃(M) (see [17, Proposition 1]). Set

F̃ (x, y) = 8̃(x, y, 1), G̃(x, y) = F̃ (x, y)/Q(x, y).

Claim 2. The level curves of the function G̃ are conics from the pencil C∗, and the func-
tion G is constant on each of them.

Proof. For every conic β confocal to α the quadratic integral 8̃ is also an integral for the
billiard on the conic β. This is well-known [17], and follows from the explicit formula
[17, formula (12)] for the quadratic integral. Therefore, both the complexified dual conics
α̃∗ and β̃∗ generate rationally integrable I-angular billiards with a common quadratic ra-
tional integral G̃ having a first order pole at I, by Corollary 2.11. Hence, G̃ is constant on
α̃∗ and β̃∗, by Proposition 2.12. Thus, the integral G̃ is constant on every conic from the
complex pseudo-Euclidean pencil C∗, since the above conics β̃∗ with β being confocal
to α form a real one-dimensional subfamily in C∗. Let us normalize the integral G̃ by an
additive constant (or equivalently, the integral 8̃ by addition of c〈AM,M〉, c = const)
so that G̃|̃α∗ ≡ 0. After this normalization one has F̃ |̃α∗ ≡ 0, that is, F̃ is the quadratic
polynomial defining the conic α̃∗. On the other hand, α̃∗ generates a rationally integrable
I-angular billiard with integralG (Corollary 2.11). Hence,G|̃α∗ ≡ c1 = const, by Propo-
sition 2.12. Therefore,

G(x, y) = c1 +G1(x, y)G̃(x, y),

G1(x, y) = f1(x, y)/(Q(x, y))n−1, deg f1 ≤ 2n− 2.

Hence, the fractionG1 is also a rational integral of the I-angular billiard generated by α̃∗,
as are G and G̃. Thus, G1 |̃α∗ ≡ c2 = const, by Proposition 2.12. Similarly we get

G1(x, y) = c2 +G2(x, y)G̃(x, y),

G2(x, y) = f2(x, y)/(Q(x, y))n−2, deg f2 ≤ 2n− 4,
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and G2 is an integral of the I-angular billiard generated by α̃∗, as are G1 and G̃. Contin-
uing this procedure we find that G is a polynomial in G̃. Hence, G ≡ const on the level
curves of the function G̃, that is, on the conics from the pencil C∗. Claim 2 is proved. ut

Let φ be a C2-smooth arc in ∂� with non-zero geodesic curvature, and let φ∗ ⊂ RP2
⊂

CP2 denote its 6-dual curve. The curve φ∗ lies on a level curve of the function G, by
Theorem 2.8(1). Hence, it lies in a finite union of conics from the pencil C∗, since each
level curve of G is a finite union of conics in C∗ (follows from Claim 2). Therefore, φ
lies in just one conic confocal to α, by smoothness, since any two intersecting confocal
conics are orthogonal. This proves Claim 1. ut

Now it remains to show that if ∂� contains geodesic segments, then their ambient
geodesics are admissible with respect to the pencil C (see Definition 1.15). As shown
below, this is a consequence of the following proposition.

Proposition 2.16. Let B be a real symmetric 3 × 3-matrix as in Definition 1.12. Let C
denote the corresponding pencil (1.1) of confocal conics in 6. The corresponding ad-
missible geodesics in 6 from Definition 1.15 are exactly those geodesics l̂ for which the
symmetry of the surface 6 with respect to l̂ leaves the pencil C invariant: the symmetry
permutes confocal conics. Or equivalently, the geodesics l̂ for which the I-angular sym-
metry with center l̂∗ 6-dual to l̂ leaves the 6-dual pseudo-Euclidean pencil C∗ invariant.

Remark 2.17. We will be using only the second statement of Proposition 2.16 char-
acterizing admissible geodesics l̂ in terms of I-angular symmetry with center l̂∗ of the
pencil C∗. Their characterization in terms of symmetry of the pencil C will be proved just
for completeness of presentation.

Proof of Proposition 2.16. Let us first prove that for every given geodesic l̂ ⊂ 6 the
two statements of the proposition are indeed equivalent. As shown below, this is a conse-
quence of the following proposition.

Proposition 2.18. Consider the action of the symmetry with respect to a given geodesic
l̂ ⊂ 6 on the space of all the geodesics in 6. The 6-duality conjugates this action to the
I-angular symmetry with center l̂∗.

Proof. It suffices to prove the above conjugacy on the space of those geodesics that in-
tersect l̂, by analyticity and since they form an open subset in the connected manifold of
geodesics. Each geodesic through a point r ∈ l̂ is uniquely determined by its tangent line,
a one-dimensional subspace3 ⊂ Tr6. Thus, it suffices to show that the 6-duality conju-
gates the symmetry action on the projectivized tangent plane P(Tr6) with the I-angular
symmetry centered at l̂∗. Indeed, the 6-duality sends each one-dimensional subspace
3 ⊂ Tr6 to the point 3̂∗ ∈ RP2 represented by the one-dimensional vector subspace
3r ⊂ R3 orthogonal to both r and 3 (see Convention 2.7). The linear isomorphism
Mr : Tr6 → Vr = r⊥, v 7→ [r, v], sends each subspace 3 to 3r and conjugates the
pseudo-symmetries with respect to the lines Tr l̂ ⊂ Tr6 and (Tr l̂)r ⊂ Vr , by definition
and Corollary 2.3. Therefore, its projectivization realizes the6-duality P(Tr6)→ P(Vr)
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and conjugates the action of the symmetry with respect to the line Tr l̂ on the source
with the projectivized pseudo-symmetry of the image, the I-angular symmetry with cen-
ter l̂∗ = π((Tr l̂)r) (Proposition 2.5). Proposition 2.18 is proved. ut

Note that for every curve γ ⊂ 6 the6-duality sends the family of geodesics tangent to γ
to the 6-dual curve γ ∗ (see Convention 2.7). This together with the above proposition
implies equivalence of the two statements of Proposition 2.16. Thus, it suffices to prove its
second statement: those geodesics l̂ for which the pseudo-Euclidean pencil C∗ is invariant
under the I-angular symmetry with center l̂∗ are exactly the admissible geodesics from
Definition 1.15.

Fix a geodesic l̂. Let H ⊂ R3 denote the two-dimensional vector subspace contain-
ing l̂. Fix a vector a ∈ H⊥ ⊂ R3, a 6= 0. It represents the6-dual l̂∗ = π(a). The vector a
lies in a unique cone κ∗λ with λ 6= ∞, since 〈Aa, a〉 6= 0: otherwise, if 〈Aa, a〉 = 0, then
the intersection l̂ = H ∩ 6 would be empty. Indeed, in the Euclidean case the equality
〈Aa, a〉 = 0 for a real vector a holds exactly when a lies on the x3-axis; thenH is parallel
to the plane 6, H ∩ 6 = ∅. In the non-Euclidean case the equality 〈Aa, a〉 = 0 implies
that A = diag(1, 1,−1) and the projective line a∗ = π(H \ {0}) is tangent to the real
absolute {〈Ax, x〉 = 0} ⊂ RP2

(x1:x2:x3)
, by self-duality (Corollary 2.15). Then H is tan-

gent to the cone {〈Ax, x〉 = 0} ⊂ R3, and hence it is disjoint from the inner component
containing 6 of the complement of that cone. Thus, H ∩6 = ∅, a contradiction.

Without loss of generality we will assume that a ∈ κ∗0 , after replacing B by B − λA
for appropriate λ, by the condition 〈Aa, a〉 6= 0. Let S : C3

→ C3 denote the pseudo-
symmetry with respect to the line Ca.

Claim 3. The pseudo-Euclidean pencil C∗ is invariant under the I-angular symmetry
with center l̂∗ if and only if S(κ∗0 ) = κ

∗

0 .

Proof. The above I-angular symmetry is the projectivization of the pseudo-symmetry S.
Therefore, invariance of the pencil C∗ under the I-angular symmetry is equivalent to the S-
invariance of the family of cones κ∗λ , that is, to the existence of an involution h : λ 7→ h(λ)

such that S(κ∗λ) = κ∗h(λ). In the latter case one has S(κ∗0 ) = κ∗0 , since S(a) = a for
a ∈ κ∗0 \ κ

∗
λ for every λ 6= 0. Conversely, let S(κ∗0 ) = κ

∗

0 . This means that the involution
S sends the quadratic form 〈Bx, x〉 to itself up to sign. Hence, S(κ∗λ) = κ

∗
±λ for every λ,

since S preserves the quadratic form 〈Ax, x〉. This together with the previous equivalence
statement proves the claim. ut

Claim 4. One has S(κ∗0 ) = κ
∗

0 if and only if κ∗0 is a union of a pair of 2-planes through
the origin in C3 that has one of the following types:

(α) both planes contain the line Ca (they may coincide);
(β) one plane in κ∗0 contains the line Ca, and the other coincides with the two-dimen-

sional subspaceHA ⊂ C3 that is orthogonal to the vector a with respect to the scalar
product 〈Ax, x〉.

Proof. Every hyperplaneW ⊂ C3 parallel to the planeHA is S-invariant, and S acts there
as the central symmetry with respect to the point CW of the intersectionW ∩(Ca). The S-
invariance of the cone κ∗0 is equivalent to the invariance of each intersection IW = W ∩κ∗0



On polynomially integrable Birkhoff billiards on surfaces of constant curvature 1017

under the latter symmetry for every W as above. The intersection IW is either all of W ,
or a line through CW , or a conic in W containing the center of its symmetry CW , since
Ca ⊂ κ∗0 . In the latter case IW is a union of two lines through CW , since a planar conic
central-symmetric with respect to some of its points C is a union of two lines through C
(the lines may coincide). Note that all the intersections IW with W 6= HA are naturally
isomorphic via homotheties centered at the origin, since κ∗0 is a cone. Therefore, the
following two cases are possible.
(α) IW is a union of two (maybe coinciding) lines through CW for every W ; then κ∗0 is a

union of two planes containing the line Ca.
(β) IW is a line for all W 6= HA, and IW = W for W = HA; then κ∗0 is the union of the

plane HA and another plane containing Ca.
This proves the claim. ut

Now let us return to the proof of Proposition 2.16. Suppose the pencil C∗ is invariant under
the I-angular symmetry centered at l̂∗; or equivalently, the cone κ∗0 = {〈Bx, x〉 = 0} is a
union of two planes, as in Claim 4.

Case (α): The above planes both contain a, thus a ∈ KerB; dim(KerB) = 1 if the
planes are distinct; dim(KerB) = 2 if they coincide. Hence, the hyperplaneH orthogonal
to a with respect to the standard Euclidean scalar product is orthogonal to KerB. There-
fore, the geodesic l̂ = H ∩ 6 is admissible of type (1) in Definition 1.15. Conversely,
each admissible geodesic of type (1) can be represented as above after replacing B by
B − λA.

Case (β): Then the cone κ∗0 is the union of the plane HA and a plane 5 containing
the line Ca. The plane 5 is the complexification of a real plane, which will be here also
denoted by5, since κ∗0 is defined by a quadratic equation over the real numbers andHA is
the complexification of a real plane. Let b ∈ R3

\{0} denote a vector Euclidean-orthogonal
to 5. Thus, 〈a, b〉 = 0. Note that the vector Aa is non-zero, since 〈Aa, a〉 6= 0, as was
shown above, and it is Euclidean-orthogonal toHA, by definition. Therefore, 〈BM,M〉 =
c〈Aa,M〉〈b,M〉, c ∈ R \ {0}. Let us normalize the vectors a and b by constant factors
so that c = 2. Then the quadratic form 〈BM,M〉 can be represented in the tensor form
as Aa ⊗ b + b ⊗ Aa. The plane H defining the geodesic l̂ is orthogonal to the vector a,
by definition. Hence, l̂ is an admissible geodesic of type (2) in Definition 1.15, the first
geodesic in (1.4). Conversely, each geodesic of type (2) can be represented as above (see
Remark 1.17). Proposition 2.16 is proved. ut

Let now l̂ ⊂ 6 be a geodesic some of whose segments is contained in the boundary
of the polynomially integrable billiard in question. The I-angular symmetry with center
l̂∗ leaves invariant the rational integral G, by Theorem 2.8. Hence, it permutes the level
curves of the quadratic rational function G̃, and the pencil C∗ is invariant, by Claim 2.
Thus, the geodesic l̂ is admissible, by Proposition 2.16. Theorem 1.23 is proved. ut

3. Bialy–Mironov Hessian formula and asymptotics of Hessians

The material of the present section will be used in Section 4 in the proof of Theorem
4.1(ii-b). It includes:
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• the Bialy–Mironov Hessian formula (3.4) recalled in Subsection 3.1;
• the asymptotics of its left- and right-hand sides along those local branches of the curve
γ that are transversal to I (Subsection 3.4).

In the proof of the above asymptotics we use general asymptotic formulas

• for the defining function of an irreducible germ a of analytic curve along another irre-
ducible germ b (Subsection 3.2);
• for the HessianH(f ) of a defining function of a given germ b along b (Subsection 3.3).

3.1. Bialy–Mironov formula

Let γ ⊂ CP2 be an irreducible algebraic curve generating a rationally integrable I-angular
billiard with integral G. The function G has poles contained in I and is constant on γ , by
Proposition 2.12. In what follows we normalize it so that G|γ ≡ 0, and set

0 = {G = 0} ⊃ γ.

Fix an affine chart C2
⊂ CP2 with coordinates (x, y) such that the infinity line is not

contained in I. In this chart the function G takes the form

G(x, y) = F1(x, y)/(Q(x, y))n, where
F1 is a polynomial of degree at most 2n,
Q is a fixed quadratic polynomial defining I: I = {Q = 0}.

Let f (x, y) be the polynomial defining the curve γ , which is irreducible, as is γ =
{f = 0}, the differential df being non-zero on a Zariski open subset in γ . Recall that the
polynomial F1 vanishes on γ . Therefore,

F1 = f
kg1, k ∈ N, g1 is a polynomial coprime to f. (3.1)

Set

g = g
1/k
1 , F = F

1/k
1 = fg, m = n/k. (3.2)

We consider the Hessian quadratic form of the function f (x, y) evaluated on an appro-
priately normalized tangent vector to γ = {f = 0} at a point (x, y), namely, the skew
gradient (fy,−fx) with respect to the standard complex symplectic form dx ∧ dy:

H(f ) = fxxf
2
y − 2fxyfxfy + fyyf 2

x . (3.3)

Theorem 3.1 (see [10, Theorem 6.1], [11, formulas (16) and (32)]). The following for-
mula holds for all (x, y) ∈ γ :

(g(x, y))3H(f )(x, y) = H(gf ) = c(Q(x, y))3m−3, c ≡ const 6= 0. (3.4)
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Remark 3.2. In 2008 S.Tabachnikov obtained a version of formula (3.4) with k = 1
and constant right-hand side for polynomially integrable outer billiards satisfying some
non-degeneracy assumptions [41, p. 102]. Theorem 6.1 in [10] deals with a polynomially
integrable planar billiard � ⊂ R2, a curve 01 ⊂ R2 that is polar-dual to a C2-smooth
arc in ∂� with non-zero geodesic curvature, and the absolute I = {x2

+ y2
= 0}. It

states that formula (3.4) holds along the curve 01. Then it holds automatically on ev-
ery irreducible component γ of its complex Zariski closure. Its proof given in [10] re-
mains valid for every irreducible algebraic curve γ generating a rationally integrable I-
angular billiard. The same remark concerns formulas (16) and (32) from [11], which deal
with the non-Euclidean case and the corresponding absolute I = {x2

+ y2
± 1 = 0}.

These results from [10, 11] together cover Theorem 3.1 in the general case, since every
conic different from a double line is projectively equivalent to some of the above abso-
lutes.

Without loss of generality we will assume that G is an irreducible fraction, that is, its
numerator F1(x, y) does not vanish identically on I when I is regular, and if I is a union
of two lines 31 and 32, one has F1 6≡ 0 on each 3j . In the former case we can do this
by irreducibility of the conic I: if F1 vanishes on I with a certain multiplicity s, then
we can divide both the numerator and denominator in G by (Q(x, y))s and achieve the
desired property. In the latter case we can do this because both lines31 and32 forming I
enter the divisor of the function G (the zero-pole divisor) with the same multiplicity.
Indeed, for every u ∈ γ \ I the tangent line Tuγ intersects both lines 31 and 32, and
their intersection points with the line Tuγ are permuted by its I-angular symmetry with
center u, by definition. Both intersection points enter the divisor of the function G|Tuγ
with the same multiplicity, by its invariance under the I-angular symmetry. This implies
the above statement on coincidence of multiplicities of the lines 31 and 32.

The above discussion implies that G has a pole along each irreducible component of
the conic I. Therefore, no component in I is contained in 0. We choose the above affine
chart C2

(x,y) so that the finite intersection 0 ∩ I lies in C2, in particular, G 6≡ 0 on the
infinity line, hence degF1 = 2n. Let1 denote the zero divisor of the functionG. Finally,
under our assumptions without loss of generality one has F1 6≡ 0 on every irreducible
component of the conic I,

0 = {F1 = 0}, degF1 = 2n,
1 is the zero divisor of the polynomial F1,

(3.5)

and the intersection 0 ∩ I, and hence γ ∩ I, lies in the affine chart C2
(x,y).

3.2. Asymptotics of the defining function

Definition 3.3. Let b be a non-linear irreducible germ of analytic curve at a point C
in CP2. An adapted system of coordinates to b is a system of affine coordinates (z, w)
centered at C such that the z-axis is tangent to b. In adapted coordinates the germ b can
be locally holomorphically and bijectively parametrized by a small complex parameter t :
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t 7→ (tq , ctp(1+ o(1))) as t → 0; q, p ∈ N, 1 ≤ q < p, c 6= 0, (3.6)
q = qb, p = pb, c = cb,

q = 1 if and only if b is a regular germ.

The projective Puiseux exponent [25, p. 250, Definition 2.9] of the germ b is the ratio

r = rb = pb/qb.

The germ b is called quadratic if rb = 2, and subquadratic if rb ≤ 2 [27, Definition 3.5].
When b is a germ of line, it is parametrized by t 7→ (t, 0); then we set qb = 1, pb = ∞,
and put the Puiseux exponent rb to be equal to infinity, as in loc. cit.

Proposition 3.4. Let a, b be irreducible germs of holomorphic curves at a point C ∈ C2,
and suppose b is non-linear. Let fa , fb be the irreducible germs of holomorphic functions
defining them: g = {fg = 0} for g = a, b. Set

ρa =

{
1 if a is transversal to b,
ra if a is tangent to b.

(3.7)

Let (z, w) be affine coordinates centered at C that are adapted to b. Then

fa(u) = O((z(u))
qa min{ρa ,rb}) as u ∈ b tends to C. (3.8)

The proof of Proposition 3.4 is based on the following property of Newton diagrams of
irreducible germs of analytic curves.

Proposition 3.5. Let b ⊂ CP2 be a non-linear irreducible germ of analytic curve at a
point C, and let (z, w) be local affine coordinates adapted to it. Let t 7→ (tq , ctp(1 +
o(1))) be its local parametrization with 1 ≤ q < p, c 6= 0 (see (3.6)). Let f be an
irreducible germ of analytic function at C defining b: b = {f = 0}. The Newton diagram
of the function f consists of one edge, the segment connecting the points (p, 0) and (0, q).
More precisely, the Taylor series of the function f (z,w) contains only monomials zαwβ

such that
qα + pβ ≥ qp. (3.9)

Proof. Without loss of generality we will assume that f is a Weierstrass polynomial,

f (z,w) = φz(w) = w
d
+ h1(z)w

d−1
+ · · · + hd(z), hj (0) = 0, (3.10)

since each germ of holomorphic function at 0 that vanishes at 0 and does not vanish iden-
tically on the w-axis is the product of a unique polynomial as above (called a Weierstrass
polynomial) and a non-zero holomorphic function, by the Weierstrass Preparation Theo-
rem [29, Chapter 0, Section 1]. For every z small enough the polynomial φz(w) = f (z,w)
has q roots ζl(z), l = 1, . . . , q: ζl(z) = ct

p
l (1 + o(1)), t

q
l = z, as z → 0; thus,

ζl(z) ' czp/q . This implies that the Weierstrass polynomial (3.10) is the product of q
factors w − ζl(z) with ζl(z) ' czp/q as z→ 0. Hence, in formula (3.10) one has d = q,

hq(z) = (−1)q
q∏
l=1

ζl(z) = (−1)q+p(q+1)cqzp(1+ o(1)).
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The last equality follows from
∏q

l=1 tl = (−1)q+1z: the product of the q-th roots of unity
equals (−1)q+1. One has

hs(z) = O(z
(p/q)s) for 1 ≤ s < q as z→ 0, (3.11)

since hs(z) = (−1)sσs , where σs is the s-th elementary symmetric polynomial in the
roots ζl(z) ' czp/q . Formula (3.11) implies that the Taylor series of the Weierstrass
polynomial (3.10) contains only the monomials wq , zp and those monomials zαwβ for
which β < q (set s = q − β) and α ≥ p

q
s =

p
q
(q − β), i.e., qα + pβ ≥ pq. ut

Proof of Proposition 3.4. Case 1: the curve a is transversal to b. Then ρa = 1 < r = rb =

pb/qb, and we have to show that fa|b = O(zqa ). To do this, let us take the coordinates
(za, wa) adapted to a so that the wa-axis coincides with the z-axis TCb, wa = z on TCb
and za = w; one can do this by transversality. One has

wa ' z, za = w ' cbz
r along the curve b. (3.12)

When the germ a is linear, one has qa = 1 and fa = O(wa) = O(z) = O(zqa ) on b.
Let now a be non-linear. Each Taylor monomial zαaw

β
a of the function fa has asymptotics

O(zαr+β) along the curve b, by (3.12). Now it suffices to show that αr + β ≥ qa . Recall
that αqa + βpa ≥ paqa , by (3.9). Dividing this inequality by pa yields ν = αr−1

a + β ≥

qa . Hence, αr + β ≥ ν ≥ qa , since ra, r > 1. This proves the proposition.
Case 2: the curve a is tangent to b, thus ρa = ra . Then the coordinates (z, w) are

adapted for both curves b and a. Each Taylor monomial zαwβ of the function fa(z, w) is
asymptotic to czν , ν = α + βr , c = const, along the curve b, since w ' cbzr . It suffices
to show that α+ βr ≥ s = qa min{ra, r}. When the germ a is linear, the last inequality is
obvious, since β ≥ 1 (fa = O(w)) and qa = 1. Let now a be non-linear.

Subcase 2a: ra ≤ r . Thus, s = qara = pa . One has α + βr ≥ α + βra ≥ pa = s, by
inequality (3.9) divided by q.

Subcase 2b: ra > r . Thus, min{ρa, r} = r , s = qar ,

ra

r
(α + βr) = α

ra

r
+ βra ≥ α + βra ≥ pa = qara,

by (3.9). Multiplying the last inequality by r/ra yields α + βr ≥ qar = s. Proposition
3.4 is proved. ut

3.3. Asymptotics of the Hessian of a local defining function

Proposition 3.6. Let b ⊂ CP2 be a non-linear irreducible germ of analytic curve at a
point C. Let f be the irreducible germ of its defining function, b = {f = 0}, and let
H(f ) be its Hessian defined in (3.3) in some affine chart C2

(x,y) containing C. Let (z, w)

be an affine chart on CP2 centered at C that is adapted to b: the projective line TCb is
the z-axis. Then

H(f )(u) = O((z(u))3qbr−2(r+1)), r = rb, as u ∈ b tends to C. (3.13)
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Proof. Everywhere below we denote by ∇skewf =
( ∂f
∂w
,−

∂f
∂z

)
the skew gradient with

respect to the standard symplectic form dz ∧ dw in the coordinates (z, w). It is obtained
from the previous skew gradient taken with respect to the symplectic form dx ∧ dy by
multiplication by the ratio of the above symplectic forms, the Jacobian of the coordinate
change (z, w) 7→ (x, y). For every u ∈ b let Lu ⊂ C2 denote the affine line tangent to b
at u, and let v denote the extension of the vector ∇skewf (u) ∈ Tub = TuLu to a constant
vector field on Lu. It suffices to prove formula (3.13) with its left-hand side replaced
by the derivative d2f

dv2 (u): for u ∈ b the ratio of the absolute values of the last second
derivative and the expressionH(f )(u) equals the squared modulus of the above Jacobian,
which is a non-zero holomorphic function on a neighborhood of the base point C.

We evaluate the Hessian quadratic form of each Taylor monomial of the function f
on ∇skewf (u). We show that the expression thus obtained has asymptotics given by the
right-hand side in (3.13). This will prove the proposition.

Let zαwβ be the Taylor monomials of f . The skew gradient (∇skewf )|b is a linear
combination of the vector monomials

hα,β = h̃α,β
∂

∂w
, h̃α,β = z

α−1wβ ' czα+βr−1,

vα,β = ṽα,β
∂

∂z
, ṽα,β = z

αwβ−1
' c′zα+βr−r , c, c′ 6= 0;

both the above asymptotics are written along the curve b. The restrictions to the curve b
of the second derivatives of a monomial zαwβ are asymptotic to

∂2(zαwβ)

∂w2 = β(β − 1)zαwβ−2
= O(zα+βr−2r),

∂2(zαwβ)

∂z2 = α(α − 1)zα−2wβ = O(zα+βr−2),

∂2(zαwβ)

∂z∂w
= αβzα−1wβ−1

= O(zα+βr−r−1).

Therefore, applying the Hessian of each monomial zαwβ to a linear combination of the
vectors hα′,β ′ and vα′,β ′ yields a linear combination of expressions of the following three
types:

∂2(zαwβ)

∂w2 h̃α′,β ′ h̃α′′,β ′′ = O(z
ν), ν = (α′ + β ′r − 1)+ (α′′ + β ′′r − 1)

+ α + βr − 2r = (α′ + β ′r)+ (α′′ + β ′′r)+ (α + βr)− 2(r + 1); (3.14)

∂2(zαwβ)

∂z2 ṽα′,β ′ ṽα′′,β ′′ = O(z
ν2), ν2 = (α

′
+β ′r)+(α′′+β ′′r)−2r+α+βr−2 = ν;

∂2(zαwβ)

∂z∂w
h̃α′,β ′ ṽα′′,β ′′ = O(z

ν3), ν3 = (α
′
+β ′r)+(α′′+β ′′r)+α+βr−2r−2 = ν.

Let us now estimate ν from below. Recall that for every Taylor monomial zαwβ of the
function f one has
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α + βr =
1
qb
(αqb + βpb) ≥ pb = qbr

by (3.9), and hence the same inequality holds for (α′, β ′) and (α′′, β ′′). This together with
formula (3.14) for the number ν implies that ν ≥ 3qbr − 2(r + 1). This together with the
above discussion proves formula (3.13). ut

3.4. Asymptotics of the Bialy–Mironov formula

Everywhere below in this subsection, C ∈ γ ∩I is a regular point of the conic I, and b is a
local branch of the curve γ at C that is transversal to I; (z, w) are affine coordinates cen-
tered atC and adapted to b. Recall that1 is the zero divisor of the functionG, it coincides
with the zero divisor of the polynomial F1, and degF1 = deg(1) = 2n (see (3.5)).

Proposition 3.7. The right-hand side in (3.4) has the following asymptotics as u =
(x, y) ∈ b tends to C:

(Q(u))3m−3
' c(z(u))3m−3, c 6= 0, m =

n

k
=

1
2k

deg(1). (3.15)

Proof. The degree equality in (3.15) follows from the definitions. The restriction to TCb
of the differential dQ(C) does not vanish, since C is a regular point of the conic I =
{Q = 0} and b is transversal to I. Recall that the tangent line TCb is the z-axis. Therefore,
Q(u)|b ' cz(u), c 6= 0, as u→ C. This implies the asymptotic formula in (3.15). ut

Let
∑l
j=1 sjbj denote the germ at C of the divisor 1. Here sj ∈ N, and bj are distinct

irreducible germs of analytic curves in1 at C numbered so that b1 = b; thus, s1 = k. For
j = 1, . . . , l let fj denote the germ at C of a defining function of the curve bj . Set

kj =
sj

k
, g̃ =

l∏
j=2

f
kj
j ; k1 =

s1

k
= 1; kj = 1 whenever bj ⊂ γ,

by definition. Let F be as in (3.2).

Proposition 3.8. Set r = rb. As u ∈ b tends to C, one has

H(F)(u) ' c1g̃
3H(f1)(u) = O((z(u))

η), c1 6= 0,

η = η(b) = 3
l∑

j=1

kjqbj min{ρbj , r} − 2(r + 1). (3.16)

Here ρbj are as in (3.7); ρb1 = ρb = r .

Proof. We use [11, formula (17)] valid for any two functions f1 and β:

H(f1(x, y)β(x, y))|{f1=0} = (β(x, y))
3H(f1(x, y)). (3.17)

One has
F(x, y) = h(x, y)f1(x, y)g̃(x, y), (3.18)

where h is a germ of holomorphic function at C, h(C) 6= 0. Formula (3.18) follows from
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the definitions (3.2). This together with (3.17) implies that

H(F)(u) ' c1(g̃
3H(f1))(u) = c1

(
H(f1)

l∏
j=2

f
3kj
j

)
(u), c1 = (h(C))

3
6= 0.

Substituting formula (3.8) with a = bj and (3.13) to the above right-hand side leads to
(3.16), taking into account that k1 = 1 and ρb1 = ρb = r . ut

Corollary 3.9. For every local branch b as at the beginning of this subsection, the cor-
responding exponent η = η(b) satisfies the inequality

η = 3
l∑

j=1

kjqbj min{ρbj , r} − 2(r + 1) ≤ 3m− 3 = 3
deg(1)

2k
− 3. (3.19)

Proof. If the contrary inequality were true, then the left-hand side in (3.4) would be
asymptotically dominated by the right-hand side along the branch b; this follows from
formulas (3.15) and (3.16). This contradiction to (3.4) proves the corollary. ut

4. Local branches and relative I-angular symmetry

In this section we prove the following theorem.

Theorem 4.1. Let I ⊂ CP2 be a conic (either regular, or a pair of distinct lines). Let
γ ⊂ CP2 be an irreducible algebraic curve different from a line and from I that generates
a rationally integrable I-angular billiard. Then every intersection pointC ∈ γ ∩I satisfies
the following statements:
(i) If I is a union of two distinct lines through C, let b be a local branch of the curve γ

at C that is transversal to both lines forming I. Then b is quadratic.
(ii) If C is a regular point of I, then

(ii-a) each local branch of the curve γ at C that is tangent to I is quadratic;
(ii-b) each branch of γ at C that is transversal to I is regular and quadratic.

In our assumptions for every u ∈ γ the restriction to Tuγ of the rational function G
is invariant under the I-angular symmetry with center u, and γ ⊂ 0 = {G = 0}. This
implies that the following relative projective symmetry property holds: for every u ∈ γ the
intersection of the projective tangent line Tuγ with a bigger algebraic curve 0 ⊃ γ (or
a divisor) is invariant under a projective involution Tuγ → Tuγ fixing u, the I-angular
symmetry in our case.

In Subsection 4.4 we state and prove Theorem 4.17, which unifies and generalizes
statements (i) and (ii-a) of Theorem 4.1, and deduce those statements. Theorem 4.17 is
stated for a non-linear germ of analytic curve b at C ∈ CP2 (which need not be alge-
braic) that has the local relative projective symmetry property with respect to a bigger
finite collection 0 of irreducible germs of analytic curves at points in TCb (called a local
multigerm) and projective involutions Tub→ Tub fixing u with appropriate asymptotics
as u→ C. The formal definitions of a local multigerm and the local symmetry property
will be given in Subsections 4.1 and 4.3 respectively.

For the proof of Theorem 4.1 we first describe those points of intersection Tub ∩ 0
whose z-coordinates (resp. w-coordinates) in the chart (z, w) adapted to b have asymp-
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totics linear, sublinear and superlinear in z(u) (resp. w(u)) as u ∈ b tends to C. Their
description, which mostly follows from the results of [25, 27], is presented in Subsec-
tion 4.1. Then in Subsection 4.3 we show that for every local branch b as in Theorem 4.1
the I-angular symmetries of the tangent lines Tub written in appropriate affine coordinate
form families of degenerating conformal involutions of two possible asymptotic types A
or B. Those families of involutions are introduced in Subsection 4.2, where we prove gen-
eral Propositions 4.13 and 4.14 on their asymptotics. In Subsection 4.4 we show that the
collection (divisor) of asymptotic factors of points of the intersection Tub ∩ 0 with lin-
ear asymptotics in z(u) (or w(u)) is symmetric with respect to an appropriate conformal
involution C→ C, and then deduce Theorem 4.17.

The proof of statement (ii-b) takes the rest of the section, Subsections 4.5–4.8. First in
Subsection 4.5 we prove that the branch b in question is subquadratic. In Subsection 4.6
we prove that every local branch of the curve 0 that is tangent to b (if any) has Puiseux ex-
ponent no greater than rb. In Subsection 4.7 we deal with the zero divisor 1̃ = 1

k
1 of the

function F 1/k
1 , whose germ at C contains b with multiplicity 1. We prove that its local in-

tersection index with the tangent line to b at its base point C is no less than its half-degree
plus 1, and this inequality is strict unless the germ b is regular and quadratic. The above-
mentioned Puiseux exponent and intersection index inequalities will be proved in a gen-
eral situation, for a germ b having the local projective symmetry property, with the pro-
jective symmetries forming a family of involutions of type A in the adapted coordinate z.

In Subsection 4.8 we prove statement (ii-b). Namely, we show that the above-men-
tioned Puiseux exponent and intersection index inequalities together would bring a con-
tradiction to the upper bound (3.19) of the exponent η in the asymptotics of the Bialy–
Mironov formula, unless the germ b is regular and quadratic. This will finish the proof of
Theorem 4.1.

4.1. Local multigerms and asymptotics of intersections with a tangent line

Let a, b be irreducible germs of planar complex analytic curves at the origin in C2. Let
pg , qg , cg , g = a, b, be respectively the corresponding exponents and constants from
the parametrizations (3.6) in adapted coordinates. Let t be the corresponding local pa-
rameter of the germ b. We identify points of the curve b with the corresponding local
parameter values t . We use the following statements on the asymptotics of the points of
the intersection Ttb ∩ a.

Proposition 4.2 ([27, Proposition 3.8]). Let a, b be transversal irreducible germs of
holomorphic curves at the origin in C2, and suppose b is non-linear. Let (z, w) be affine
coordinates centered at 0 and adapted to b: the germ b is tangent to the z-axis. Then
for every t small enough the intersection Ttb ∩ a consists of qa points ξ1, . . . , ξqa whose
coordinates have the following asymptotics as t → 0:

z(ξj ) = O(t
pb ) = O(w(t)) = o(z(t)) = o(tqb ),

w(ξj ) = (1− rb)w(t)(1+ o(1)) = (1− rb)cbtpb (1+ o(1)). (4.1)

(Recall that qa = 1 if a is a germ of line.)
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Proposition 4.3 ([25, p. 268, Proposition 2.50], [27, Proposition 3.10]). Let a, b be irre-
ducible tangent germs of holomorphic curves at the originO in the plane C2, and let b be
non-linear. Consider their parametrizations (3.6) in common adapted coordinates (z, w).
Let ca and cb be the corresponding constants from (3.6). Then for every t small enough
the intersection Ttb ∩ a consists of pa points ξ1, . . . , ξpa (or just one point ξ1, if a is the
germ of the line TOb) whose coordinates have the following asymptotics as t → 0.

Case 1: ra > rb (including the case when a is linear, i.e., ra = ∞). Then there are
two types of intersection points ξj :

for j ≤ qa : z(ξj ) =
rb − 1
rb

z(t)(1+ o(1)) =
rb − 1
rb

tqb (1+ o(1)),

w(ξj ) = O(t
qbra ) = o(tpb ) = o(w(t));

(4.2)

for j > qa : z(t) = O((z(ξj ))
ra−1
rb−1 ) = o(z(ξj )),

w(t) = O(zrb (t)) = O((z(ξj ))
rb(ra−1)
rb−1 ) = o(zra (ξj )) = o(w(ξj )).

(4.3)

(Points satisfying (4.3) exist if and only if a is non-linear.)
Case 2: ra = rb = r . Then

z(ξj ) = ζ
qa
j z(t)(1+ o(1)) = ζ qaj tqb (1+ o(1)), (4.4)

w(ξj ) = caζ
pa
j tpb (1+ o(1)) = cζpaj w(t)(1+ o(1)),

where ζj are the roots of the polynomial

Rpa ,qa ,c(ζ ) = cζ
pa − rζ qa + r − 1; r = pa/qa, c = ca/cb. (4.5)

(When b = a, one has c = 1, and the above polynomial has double root 1 corresponding
to the tangency point t .)

Case 3: ra < rb. Then

z(ξj ) = O((z(t))
rb/ra ) = o(z(t)), (4.6)

w(ξj ) = (1− rb)w(t)(1+ o(1)) = (1− rb)cbtpb (1+ o(1)).

The formulas for w(ξj ) in (4.2)–(4.4), (4.6) are not contained in loc.cit. Those in (4.2)–
(4.4) follow immediately from the corresponding formulas for z(ξj ). The formula for
w(ξj ) in (4.6) follows from the formula for z(ξj ) and formula (4.1) applied to the curve a
being the w-axis.

Definition 4.4 ([27, Definition 3.3]). Let L ⊂ CP2 be a line, and let C ∈ L. An (L,C)-
local multigerm (resp. divisor) is a finite union (resp. a linear combination

∑
j kjbj with

kj ∈ R \ {0}) of distinct irreducible germs of analytic curves bj (called components) at
base points Cj ∈ L such that each germ at Cj 6= C is different from the line L. (A germ
at C can be arbitrary, in particular, it may coincide with the germ (L,C).) The (L,C)-
localization of an algebraic curve (resp. divisor) in CP2 is the corresponding (L,C)-local
multigerm (resp. divisor) formed by all its local branches of the above type.



On polynomially integrable Birkhoff billiards on surfaces of constant curvature 1027

Everywhere below in the present subsection, b is a non-linear irreducible germ of analytic
curve at a point C ∈ CP2, 0 is a (TCb, C)-local multigerm (or divisor), and (z, w) is a
local affine chart centered at C that is adapted to b: TCb is the z-axis. For every affine
coordinate h, which will be either z or w, we consider its restriction to the projective
lines Tub.

Definition 4.5. Let h be an affine coordinate on a neighborhood of the point C in CP2

centered at C: h(C) = 0. The points of 0 ∩ Tub with linear h-asymptotics are those
intersection points whose h-coordinates have asymptotics τjh(u)(1 + o(1)), τj 6= 0, as
u→ C; the corresponding constant factors τj are called the asymptotic h-factors. When 0
is a divisor, we take each factor τj with multiplicity which is the total multiplicity nj of all
the intersection points with the same asymptotic factor τj . The formal linear combination
Mh =

∑
j nj [τj ], which is a divisor in C∗, will be called the asymptotic h-divisor.

Definition 4.6. We say that a continuous family of pointsQ = Q(u) of Tub∩0 has sub-
linear (resp. superlinear) h-asymptotics if h(Q(u))=o(h(u)) (resp. h(u)=o(h(Q(u))))
as u→ C.

Remark 4.7. In general, the function h(Q(u)) can be multivalued. It can be always
written as a Puiseux series in z(u) (after multiplication by a power zs(u), s ∈ Q>0, if
h(Q(u))→ ∞ as u→ C). The above notions of family of points with sublinear, linear
and superlinear h-asymptotics and the asymptotic factors are well-defined in this general
case. For every given affine coordinate h on a neighborhood of the point C in CP2 with
h(C) = 0 each (multivalued) continuous family of intersection points Q(u) has one of
the above three types.

In what follows, for a multigerm (or divisor) 0 we will denote by 0(C) its part consisting
of the irreducible germs based at C. Recall that for every irreducible germ a in 0(C) we
define the number ρa by (3.7): ρa = 1 if a is transversal to b; ρa = ra if a is tangent to b.
Set

0ρ<rb = the collection (resp. divisor) of germs a in 0(C) with ρa < rb, (4.7)
0ρ>rb = the collection (resp. divisor) of germs a in 0(C) with ρa > rb, (4.8)
0ρ=rb = the collection (resp. divisor) of germs a in 0(C) with ρa = rb, (4.9)
0out = 0 \ 0(C), which consists of germs that are not based at C. (4.10)

Thus, 0ρ<rb consists of exactly those germs a in 0 that are based at C, and such that
either

• a is transversal to b, or
• a is tangent to b and ra < rb.

All the germs in 0ρ>rb and 0ρ=rb are tangent to b.
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Proposition 4.8. (1) The points of Tub ∩ 0 with sublinear z-asymptotics are exactly the
points of intersection of the line Tub with 0ρ<rb .

(2) If 0ρ>rb 6= ∅, then Tub ∩ 0ρ>rb is split into two parts,

Tub ∩ 0ρ>rb = L<u t L>u , L<u 6= ∅, (4.11)

where

• the points in L<u have linear z-asymptotics with z-factors equal to rb−1
rb

;
• L>u 6= ∅ if and only if 0ρ>rb contains a non-linear germ; the points in L>u have

superlinear z-asymptotics.
(3) The set of points in Tub ∩ 0 with superlinear z-asymptotics is L>u t (Tub ∩ 0out).
(4) The set of points of Tub ∩ 0 with linear z-asymptotics is (Tub ∩ 0ρ=rb ) t L

<
u .

(5) Let
r = rb = p/q

be the irreducible fraction presentation of the Puiseux exponent rb. Let a1, . . . , aN
denote the germs forming 0ρ=rb ; they are tangent to b and rai = r . Let pai , qai , cai be
respectively the asymptotic exponents and coefficients in their parametrizations (3.6):

pai = sip, qai = siq, si ∈ N, si = gcd(pai , qai ), cai ∈ C∗. (4.12)

Let ζij (i = 1, . . . , N , j = 1, . . . , p) be the roots of the polynomials

Rp,q,c(i)(ζ ) = c(i)ζ
p
− rζ q + r − 1, c(i) = cai/cb ∈ C∗. (4.13)

The asymptotic z-factors of points of Tub ∩ 0ρ=rb are ζ qij .
(6) One has

ζ
q
ij 6=

r − 1
r

for all i and j. (4.14)

Addendum to Proposition 4.8. Under the assumptions of Proposition 4.8 in the case
when 0 is a divisor, let mi ∈ N denote the multiplicity of the germ ai in 0ρ=ρb . The
asymptotic z-divisor of 0 equals

Mz =

N∑
i=1

p∑
j=1

`i[ζ
q
ij ] + κz

[
r − 1
r

]
, `i = misi ∈ N, κz ∈ Z≥0, (4.15)

κz = |L<u | > 0 if and only if 0ρ>rb 6= ∅. (4.16)

Proof. All the statements of Proposition 4.8, except for (4.14), follow from Propositions
4.2 and 4.3 (see details below). The statement (4.14) is a consequence of the following
general proposition.

Proposition 4.9. For every p, q ∈ N with 1 ≤ q < p, c ∈ C∗, r = p/q, and every
root ζ of the polynomial Rp,q,c(z) = czp − rzq + r − 1 one has

ζ q 6=
r − 1
r

, cζp 6= 1− r. (4.17)
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Proof. The proof of the first relation repeats the proof of an equivalent statement from
[27, proof of Proposition 3.13]. Suppose the contrary: ζ q = r−1

r
for some root ζ . Then

Rp,q,c(ζ ) = cζ
p
− rζ q + r − 1 = cζp = c

(
r − 1
r

)r
6= 0,

a contradiction. To prove the second relation, suppose the contrary: cζp = 1− r for some
root ζ . Then

Rp,q,c(ζ ) = cζ
p
− rζ q + r − 1 = −rζ q 6= 0,

a contradiction again. ut

Set Wi = Rp,q,c(i) and W̃i = Rpai ,qai ,c(i)
. Proposition 4.8(5) follows from Proposition

4.3, Case 2, and the relation W̃i(h) = Wi(h
si ), which implies that to every root ζ of the

polynomial Wi correspond si roots ζ 1/si of the polynomial W̃i whose qai -th powers are
equal to ζ q . Statements (4.15) and (4.16) follow from Proposition 4.8(4, 5), the above
discussion and (4.14). ut

Recall that a1, . . . , aN denote the germs forming 0ρ=rb .

Proposition 4.10. (1) The set of points of Tub ∩ 0 with sublinear w-asymptotics is ex-
actly the set L<u from (4.11).

(2) The set of points of Tub ∩ 0 with superlinear w-asymptotics is L>u t (Tub ∩ 0out).
(3) The set of points of Tub∩0 with linear w-asymptotics is Tub∩ (0ρ<rb t0ρ=rb ). The

asymptotic w-factors of the points in Tub ∩ 0ρ<rb are all equal to 1− r , r = rb. The
asymptotic w-factors of the points in Tub ∩ ai are equal to c(i)ζpij , i = 1, . . . , N ,
j = 1, . . . , p, where ζij are the roots of the polynomials Rp,q,c(i) (see (4.13)). One
has

c(i)ζ
p
ij 6= 1− r for all i and j. (4.18)

(4) When 0 is a divisor, let mi , si be as in (4.15). The asymptotic w-divisor of the multi-
germ 0 equals

Mw =

N∑
i=1

p∑
j=1

`i[c(i)ζ
p
ij ] + κw[(1− r)], `i = misi ∈ N, κw ∈ Z≥0, (4.19)

κw = |Tub ∩ 0ρ<rb | > 0 if and only if 0ρ<rb 6= ∅. (4.20)

All the statements of Proposition 4.10 follow from Propositions 4.2 and 4.3, except for
(4.18) (which follows from (4.17)) and the part of (2) saying that the points in Tub ∩0out
have superlinear w-asymptotics which is given by the following proposition.

Proposition 4.11. For every irreducible germ a of analytic curve at any point B ∈ TCb,
B 6= C, the points of Tub ∩ a have superlinear w-asymptotics as u ∈ b tends to C.

Proof. For u ∈ b close enough to C, let Q1 = Q1(u) denote the point of intersection of
the line Tub with the z-axis. Fix an arbitrary family of points Q2(u) of Tub ∩ a. Their
limits Q1(C) = C and Q2(C) = B lie on the z-axis and are distinct, by assumption:
z(C) = 0 6= z(B). Let us show that w(u) = o(w(Q2(u))) as u→ C.
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Let T = T (u) and O = O(u) denote respectively the projections of the points u
and Q2 onto the z-axis: z(T ) = z(u), z(O) = z(Q2). Consider the triangles TQ1u and
OQ1Q2. They are similar in the following complex sense. Their edges T u and OQ2 lie
on complex lines parallel to thew-axis. Their edges TQ1,OQ1 lie on the complex z-axis.
Their edges uQ1 and Q2Q1 lie on the same complex line Q1Q2. The parallelness of the
complexified edges of the above triangles implies that

w(u)− w(T )

w(Q2)− w(O)
=
z(T )− z(Q1)

z(O)− z(Q1)
. (4.21)

Substituting the equalities and asymptotics w(T ) = w(O) = 0, z(Q1(u))→ 0, z(T ) =
z(u) → 0, and z(O(u)) − z(Q1(u)) → z(O(C)) = z(B) 6= 0 into (4.21) yields
w(u)/w(Q2)→ 0. This proves Propositions 4.11 and 4.10. ut

4.2. Families of degenerating conformal involutions

In Subsection 4.3 we will show that for every local branch b as in Theorem 4.1 the corre-
sponding family of I-angular symmetries Tub→ Tub with center u written in appropriate
coordinates becomes a degenerating family of conformal involutions C → C of one of
the following types.

Definition 4.12. Consider a family of non-trivial conformal involutions σu : C → C of
the Riemann sphere with coordinate z that are parametrized by a small complex parame-
ter u with a given family of fixed points ζ(u):

σu(ζ(u)) = ζ(u), ζ(u)→ 0 as u→ 0.

The family σu is said to be

• of type A if there exist families of points α(u), ω(u) ∈ C such that

σu(α(u)) = ω(u), α(u) = o(ζ(u)), ζ(u) = o(ω(u)) as u→ 0;

• of type B if there exist families of points α(u), ω(u) ∈ C such that

σu(α(u)) = ω(u), α(u), ω(u) = o(ζ(u)) as u→ 0.

Proposition 4.13. Each family of involutions σu : C → C of type A with given fixed
points ζ(u) satisfies the following statements:

(a) The involutions σu converge to the constant mapping C → 0 uniformly on compact
subsets of C \ {0}.

(b) Fix a c ∈ C∗ and a family of points zu ∈ C with asymptotics zu = cζ(u)(1 + o(1))
as u→ 0. Then

σu(zu) = c
−1ζ(u)(1+ o(1)) as u→ 0. (4.22)
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Proof. The scalings φu : z 7→ z̃ = z/ζ(u) conjugate the involutions σu to the conformal
involutions 6u = φu ◦ σu ◦ φ−1

u : C → C fixing 1 and permuting the points α(u)/ζ(u)
and ω(u)/ζ(u), satisfying α(u)/ζ(u) → 0 and ω(u)/ζ(u) → ∞ as u → 0. Hence,
6u(z) → 1/z in Aut(C), and thus uniformly on C. For every δ > 0 the mapping σu =
φ−1
u ◦ 6u ◦ φu converges to the constant mapping C→ 0 uniformly on C \Dδ . Indeed,
φu(z) = z/ζ(u)→∞ uniformly on C \Dδ , since ζ(u)→ 0. Hence fu = 6u ◦ φu → 0
and σu = φ−1

u ◦ fu = ζ(u)fu→ 0. This proves (a).
For zu = cζ(u)(1+ o(1)) with c 6= 0 one has

σu(zu) = ζ(u)6u((ζ(u))
−1zu) = ζ(u)6u(c + o(1)) = ζ(u)(c−1

+ o(1)).

This proves (b). ut

Proposition 4.14. Each family of involutions σu : C → C of type B with given fixed
points ζ(u) satisfies the following statements:

(a) The coordinate change z̃ = ζ(u)/z conjugates the involutions σu to conformal invo-
lutions 6u : C → C that converge in Aut(C) to the central symmetry with respect
to 1, z̃ 7→ 2− z̃.

(b) For every c ∈ C \ {0, 2} and every family of points zu = c−1ζ(u)(1+ o(1)) one has
σu(zu) = d

−1ζ(u)(1+ o(1)), where d = 2− c.

Proof. The above change of coordinate z 7→ z̃ sends the fixed point ζ(u) of the involution
σu to 1, and z̃(α(u)), z̃(ω(u)) → ∞ as u → 0, since α(u), ω(u) = o(ζ(u)). Therefore,
the involution σu written in the coordinate z̃ fixes 1 and permutes two points converging
to infinity. Its derivative at the fixed point 1 equals −1, since the involution is non-trivial.
Therefore, it converges to the unique non-trivial involution fixing 1 and ∞, the central
symmetry with respect to 1. This proves (a), which immediately implies (b). ut

4.3. Relative projective symmetry properties and their types

Definition 4.15. Let b be a non-linear irreducible germ of analytic curve at a point
C ∈ CP2. Let 1 =

∑l
j=1 kjbj be a (TCb, C)-local divisor containing b, say the b1 = b.

We say that the germ b has the relative projective symmetry property with respect to the
divisor 1 if for every u ∈ b \ {C} there exists a projective involution σu : Tub → Tub

with fixed point u such that 1 ∩ Tub treated as a divisor on Tub is σu-invariant. (We
identify a point u ∈ b with the corresponding value of the small complex parameter t of
the curve b, t (C) = 0; thus, t (u) → 0 as u → C.) For any given affine coordinate h
on a neighborhood of C in CP2 with h(C) = 0 we say that b has the relative projective
symmetry property of type A-h (resp. B-h) if the family of involutions σu written in the
coordinate h on the lines Tub is of type A (resp. B) in the sense of Definition 4.12, with
ζ(u) = h(u) (the specified fixed point family).

Proposition 4.16. Let I ⊂ CP2 be a conic (either a regular conic, or a pair of distinct
lines). Suppose an irreducible algebraic curve γ ⊂ CP2 generates a rationally integrable
I-angular billiard with integral G, and let C ∈ γ . Let 1 denote the zero divisor of the
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function G. Every local branch b of the curve γ at C has the relative projective sym-
metry property with respect to the (TCb, C)-localization (see Definition 4.4) of each of
the divisors 1 and 1 + I; the corresponding projective involution from Definition 4.15
is the I-angular symmetry centered at u. When C ∈ γ ∩ I, the following statements hold
in the cases listed below; here (z, w) is a system of affine coordinates centered at C and
adapted to b.

Case 1: C is a regular point of the conic I, and b is transversal to I. Then b has the
relative projective symmetry property of type A-z.

Case 2: I is a pair of lines through the point C that are both transversal to b. Then b
has the relative projective symmetry property of type B-z.

Case 3: C is a regular point of the conic I, and b is tangent to I.
Subcase 3a: I is a pair of lines. Then b has the relative projective symmetry property

of type A-w.
Subcase 3b: I is a regular conic and rb < 2. Then b has the relative projective sym-

metry property of type A-w.
Subcase 3c: I is a regular conic and rb > 2. Then b has the relative projective sym-

metry property of type B-z.

Proof. The first statement of the proposition follows immediately from the definitions.
Let us prove other statements case by case.

Case 1: Then the line TCb intersects I in two points: the point C and a point B 6= C.
Let IC and IB denote the germs of the conic I at C and B respectively. As u ∈ b tends
to C, the I-angular symmetry of the line Tub with center u permutes its points Cu, Bu of
intersection with IC and IB . The coordinate z(Bu) tends to a non-zero (may be infinite)
limit, and z(Cu) = o(z(u)) as u → C, by transversality of the germs IC and b and
Proposition 4.2. Therefore, the I-angular symmetries in question written in the coordinate
z form a family of conformal involutions of type A.

Case 2: As u→ b, the line Tub intersects I in two points permuted by the I-angular
symmetry. These intersection points tend to C, and their z-coordinates are o(z(u)), by
transversality, as in the above case. Hence, the I-angular symmetries of the lines Tub
written in the coordinate z form a family of involutions of type B.

Case 3:
Subcase 3a: Then the conic I consists of two distinct lines intersecting at some point

B 6= C: the line IC = TCb and a line IB . The (TCb, C)-localization of the conic I consists
of two germs: the germ of the line IC at C and the germ of the line IB at B. As u ∈ b
tends to C, the line Tub intersects IC and IB at points Cu and Bu respectively, which are
permuted by the I-angular symmetry with center u; Cu → C and Bu → B as u → C.
One has w(Cu) = 0, since IC = TCb is the z-axis, and w(u) = o(w(Bu)), by Proposition
4.11. Therefore, the I-angular symmetries of the lines Tub written in the coordinate w
form a family of involutions of type A.

Subcase 3b: Then the (TCb, C)-localization of the conic I consists of just one regular
germ at C, whose Puiseux exponent 2 is greater than rb. As u ∈ b tends to C, the line
Tub intersects I in two points Cu and Bu tending to C so that w(Cu) = o(w(u)) and
w(u) = o(w(Bu)), by Proposition 4.3, Case 1. The points Cu and Bu are permuted by the
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I-angular symmetry with center u. Therefore, the I-angular symmetries of the lines Tub
written in the coordinate w form a family of conformal involutions of type A.

Subcase 3c: Then rb > 2 = rI. As u ∈ b tends to C, both points of Tub ∩ I tend to C
so that their z-coordinates are o(z(u)), by Proposition 4.3, Case 3. The latter points are
permuted by the I-angular symmetry centered at u. Therefore, these I-angular symmetries
of the lines Tub written in the coordinate z form a family of conformal involutions of
type B. This proves Proposition 4.16. ut

4.4. Symmetry of asymptotic divisors. Proof of (i) and (ii-a)

Here we prove the following theorem generalizing statements (i) and (ii-a) of Theo-
rem 4.1.

Theorem 4.17. Let b be a non-linear irreducible germ of analytic curve in CP2 at a
point C, and let (z, w) be affine coordinates centered at C that are adapted to b. Suppose
b has the local relative projective symmetry property of type either A-w or B-z. Then b is
quadratic.

We will deduce Theorem 4.17 from invariance of asymptotic divisors under appropriate
conformal involutions:

Proposition 4.18. Suppose an irreducible germ b ⊂ CP2 of analytic curve at a point
C has the local relative projective symmetry property of type A-h for some affine coor-
dinate h with h(C) = 0. Then its asymptotic h-divisor is invariant under the involution
C→ C, z 7→ z−1.

Proposition 4.18 follows from Proposition 4.13(b).

Definition 4.19. For a divisor M =
∑
j kj [zj ] on C its inverse divisor is

M−1
=

∑
j

kj [z
−1
j ].

For every divisor M on C and every subset K ⊂ C we denote by M \ K the divisor ob-
tained fromM by deleting those points that lie inK (taken with their total multiplicities).

Proposition 4.20. Suppose an irreducible germ b ⊂ CP2 of analytic curve at a point C
has the local relative projective symmetry property of type B-h for some affine coordi-
nate h with h(C) = 0. Let M−1

h denote the inverse to its asymptotic h-divisor Mh. The
divisor M−1

h \ {2} is invariant under the central symmetry C→ C, z 7→ 2− z.

Proposition 4.20 follows from Proposition 4.14(b).

Proof of Theorem 4.17. Case 1 of symmetry property of type A-w: The asymptotic w-
divisor Mw being invariant under taking inverse (Proposition 4.18), the product of its
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points equals 1. On the other hand, that product equals the product of natural powers of
expressions

Ui =

p∏
j=1

(c(i)ζ
p
ij ) = (c(i))

p
( p∏
j=1

ζij

)p
(4.23)

and a non-negative integer power of the number 1 − r (see (4.19)). One has
∏p

j=1 ζij =

(c(i))−1(r−1) up to sign, by Vieta’s formula. Therefore, in (4.23) the number c(i) cancels
out and Ui = ±(1− r)p. Finally, the product of the points of the divisor Mw, which is 1,
equals a natural power of 1− r , up to sign. Hence, r = 2 and the germ b is quadratic.

Case 2 of symmetry property of type B-z: The divisor M−1
z \ {2} being invariant

under the symmetry with respect to 1 (Proposition 4.20), the sum of its points equals its
degree. Let us write this equation explicitly and deduce that r = rb = 2.

The divisor M−1
z has the form

M−1
z =

∑
i

`i

p∑
j=1

[θ
q
ij ] + κz

[
r

r − 1

]
, θij = ζ

−1
ij , κz ∈ Z≥0, `i ∈ N

(see (4.15)). The numbers θij are the roots of the polynomials

Hp,q,c(i)(θ) = θ
pRp,q,c(i)(θ

−1) = (r − 1)θp − rθp−q + c(i).

The points of the divisor M−1
z are distinct from zero. Those that are powers θqij are dif-

ferent from r
r−1 , by Proposition 4.9. A priori, M−1

z may contain some of the points 2
and r−2

r−1 = 2 − r
r−1 , which are symmetric to 0 and r

r−1 , respectively. Define M =
M−1
z \

{
2, r

r−1 ,
r−2
r−1

}
, so

M = the sum of those terms `i[θ
q
ij ] for which θqij 6= 2,

r − 2
r − 1

. (4.24)

The divisor M is symmetric with respect to 1, as is M−1
z \ {2}.

Lemma 4.21 ([27, Lemma 3.16]). Let r = p/q > 1, p, q ∈ N, (p, q) = 1. Consider a
finite collection of polynomialsHp,q,c(i)(θ), c(i) 6= 0, and numbers `i ∈ N, i = 1, . . . , N .
Let θij denote the roots of the polynomials Hp,q,c(i). Suppose the divisor M given by
(4.24) is invariant under the symmetry of the line C with respect to 1. Then r = 2.

Remark 4.22. In fact, Lemma 3.16 in [27] was stated in a slightly different but equivalent
form. It dealt with a collection of polynomials Hpi ,qi ,c(i), qi, pi ∈ N, pi/qi = r > 1,
c(i) 6= 0, and the divisor M of those qi-th powers of their roots that are distinct from the
numbers 2 and r−2

r−1 . Set si = gcd(pi, qi). Those qi-th powers of roots coincide with the
q-th powers of roots of the corresponding polynomials Hp,q,c(i), p = pi/si , q = qi/si ,
and the divisor M contains each of them si times. Hence, M is given by (4.24) with
`i = si , and this yields the equivalence of the above lemma to [27, Lemma 3.16].



On polynomially integrable Birkhoff billiards on surfaces of constant curvature 1035

Lemma 4.21 together with the symmetry of the divisor M given by (4.24) implies that
r = 2. Theorem 4.17 is proved. ut

Proof of statements (i) and (ii-a) of Theorem 4.1. Every branch b satisfying the condi-
tions of (i) has the local relative projective symmetry property of type B-z, by Proposition
4.16, Case 2. Hence, it is quadratic, by Theorem 4.17. Statement (i) is proved.

To prove (ii-a), let b be a branch satisfying the conditions of (ii-a). Then its base point
C is a regular point of the conic I, and b is tangent to I. We treat the following two cases
separately.

Case 1: I is a union of two lines. Then b has the local relative projective symmetry
property of type A-w, by Proposition 4.16, Subcase 3a. Hence, it is quadratic, by Theo-
rem 4.17.

Case 2: I is a regular conic. Suppose the contrary: r = rb 6= 2. We treat the following
two subcases separately.

Subcase 2a: r < 2. Then b has the local relative projective symmetry property of
type A-w, by Proposition 4.16, Subcase 3b. Hence, it is quadratic, by Theorem 4.17,
a contradiction.

Subcase 2b: r > 2. Then b has the local relative projective symmetry property of type
B-z, by Proposition 4.16, Subcase 3c. Hence, it is quadratic, by Theorem 4.17, a contra-
diction. Statements (i) and (ii-a) are proved. ut

4.5. Subquadraticity

Here we prove the following theorem implying that every local branch b satisfying the
conditions of statement (ii-b) of Theorem 4.1 is subquadratic. Recall that such a branch
has the local relative projective symmetry property of type A-z (Proposition 4.16, Case 1).

In what follows, b ⊂ CP2 is a non-linear irreducible germ of analytic curve at a
point C, and (z, w) are affine coordinates centered at C and adapted to b.

Theorem 4.23. Every germ b having the local relative projective symmetry property of
type A-z with respect to some (TCb, C)-local divisor 0 is subquadratic.

Proof. For a given divisor M on C, we denote by S(M) the sum of its points. The
asymptotic z-divisor Mz is invariant under taking inverse (Proposition 4.18). Therefore,
S(Mz) = S(M−1(z)). Let us write down this equality explicitly. Let a1, . . . , aN be the
germs in 0 that are tangent to b and have the same Puiseux exponent r = rb. Let ζij be
as in (4.15), and set θij = ζ−1

ij . One has

S(Mz) =
∑
ij

`iζ
q
ij + κz

r − 1
r
= S(M−1

z ) =
∑
ij

`iθ
q
ij + κz

r

r − 1
, (4.25)

by (4.15). Recall that for every fixed i the numbers θij are the roots of the polynomial
(r − 1)θp − rθp−q + c(i). Hence, the sum of their q-th powers equals p

r−1 , by [27,
(3.17)], and

S(M−1
z ) =

5

r − 1
+ κz

r

r − 1
, 5 = p

∑
i

`i . (4.26)
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Suppose the contrary: r > 2, i.e., p > 2q. Then
∑
j ζ

q
ij = 0 for every i = 1, . . . , N .

Indeed, the last sum can be expressed as a polynomial in the symmetric polynomials
in ζij of degrees 1, . . . , q. All of these symmetric polynomials vanish, as do the coeffi-
cients of the polynomial Rp,q,c(i)(ζ ) = c(i)ζp − rζ q + r − 1, at monomials of degrees
p − 1, . . . , p − q > q. Hence, S(Mz) = κz

r−1
r

. Substituting this equality and (4.26) to
(4.25) yields

S(Mz) = κz
r − 1
r
= S(M−1

z ) =
5

r − 1
+ κz

r

r − 1
> κz

r

r − 1
.

The last inequality is strict, since5 > 0: the collection of germs ai contains b, and hence
is non-empty. But the right-hand side is no less than the left-hand side, since r

r−1 > 1 >
r−1
r

. This contradiction proves that r ≤ 2. ut

Open problem. Is it true that every germ b having the local relative projective symmetry
property of type A-z is (a) quadratic, or (b) regular and quadratic?

4.6. Puiseux exponents

Here we prove the following theorem implying that for every local branch b of the curve γ
satisfying the conditions of statement (ii-b) one has 0ρ>rb = ∅, that is, b has the maximal
Puiseux exponent among all the local branches of the curve 0 that are tangent to b.

Theorem 4.24. Let b ⊂ CP2 be a non-linear irreducible germ of analytic curve at a
point C, and let (z, w) be affine coordinates centered at C and adapted to b. Suppose b
has the local relative projective symmetry property of type A-z with respect to a (TCb, C)-
local divisor1. Then each irreducible germ atC tangent to b in the divisor1 has Puiseux
exponent no greater than rb.

The existence of a germ a in1 tangent to bwith ra > r = rb is equivalent to the statement
that the asymptotic z-divisor Mz contains the point θ = r−1

r
. Recall that its other points

are the q-th powers of roots of a finite collection of polynomials Rp,q,c(i) (see Addendum
to Proposition 4.8).

We will deduce Theorem 4.24 from the following proposition.

Proposition 4.25. Let p, q ∈ N, 1 ≤ q < p, r = p/q, and

W(z) = Rp,q,c(z) = cz
p
− rzq + r − 1, φ =

(
r − 1
r

)1/q

.

The polynomial W(z) has a real root z > φ if and only if 0 < c ≤ 1. In this case it has a
pair of roots z0 = z0(c) and z1 = z1(c) in (φ,+∞) that are separated by 1 if 0 < c < 1,
and both equal to 1 if c = 1:

φ < z0(c) < 1 < z1(c) whenever 0 < c < 1. (4.27)

The functions z0(c) and z1(c) of c ∈ (0, 1) are strictly increasing (resp. decreasing)
homeomorphisms of (0, 1) onto (φ, 1) (resp. (1,+∞)).
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Proof. For c /∈ R+ one has W |{z>φ} 6= 0, since −rzq + r − 1 < 0 for every z > φ.
Therefore, we assume that c > 0. As W ′(z) = cpzp−1

− rqzq−1
= pzq−1(czp−q − 1),

c−1/(p−q) is the unique local extremum point of W on the positive semiaxis, and it is
obviously a local minimum point. For c = 1 one has W(1) = 0, and z = 1 is exactly
the minimum point. Therefore, as c increases, the graph of W becomes disjoint from
the positive coordinate semiaxis, and it has no positive root if c > 1. As c decreases
from 1 to 0, the graph intersects the coordinate axis on both sides of 1 at two points
z0(c) and z1(c) separated by the minimum point and by 1, φ < z0(c) < 1 < z1(c);
z0(c) moves to the left, and z1(c) moves to the right. This follows from Proposition 4.9
(which implies that z0(c) 6= φ, hence z0(c) remains greater than φ) and the inequality
W ′(z0(c)) < 0 < W ′(z1(c)) (which holds since z0(c) and z1(c) lie on different sides of
the minimum point). The root z1(c) cannot disappear to infinity before c reaches 0, since
W(z) → +∞ as z → +∞, for every fixed c > 0. The above discussion implies that
z0(c) and z1(c) are strictly increasing (resp. decreasing) continuous mappings from (0, 1)
to (φ, 1) and (1,+∞) respectively. These mappings are “onto” homeomorphisms, since
each x ∈ (φ,+∞) is a root of Rp,q,c with c = rxq−r+1

xp
> 0, and one has c ≤ 1, as

shown above. This implies the statements of Proposition 4.25. ut

Proof of Theorem 4.24. Suppose the contrary. Then the asymptotic z-divisorMz contains
the point θ = r−1

r
, as noted after Theorem 4.24. There exists a strictly decreasing hom-

eomorphism J : [1,+∞) → (θ, 1] such that J (zq1(c)) = z
q

0(c) for every c ∈ (0, 1], by
Proposition 4.25. Set

σ(z) := z−1, β := J ◦ σ.

Then β is a strictly increasing mapping [θ, 1] → (θ, 1], and β(θ) = J (θ−1) ∈ (θ, 1).
Hence, the iterates βn(θ) ∈ (θ, 1) form an infinite increasing sequence of points. All of
them lie inMz, by σ -symmetry of the divisorMz (Proposition 4.18), the inclusion θ ∈ Mz

and the fact that the points in Mz different from θ are exactly the q-th powers of the
roots of a finite collection of polynomialsWi = Rp,q,c(i) (Addendum to Proposition 4.8).
Indeed, if a point ζ ∈ [θ, 1) lies in Mz, then σ(ζ ) ∈ (1,+∞) ∩ Mz, by symmetry.
Hence, σ(ζ ) is a q-th power of a root of some polynomial Wi . But we already know
that (σ (ζ ))1/q > 1 is a root of a real polynomial W0 = Rp,q,c0 with 0 < c0 < 1
(Proposition 4.25). This implies that the ratio of c0 and c(i) is a p

q
-th power of a unity,

and the polynomials Wi and W0 have the same collection of q-th powers of roots. But
then β(ζ ) = J (σ (ζ )) ∈ (θ, 1) is a q-th power of root of the same polynomial W0, or
equivalently Wi , hence β(ζ ) ∈ Mz. Finally, the finite divisor Mz contains an infinite
sequence of points βn(θ). This contradiction proves Theorem 4.24. ut

4.7. Concentration of intersection index

Under the conditions of Theorem 4.1(ii-b) let 1 be the zero divisor of a rational integral
of the I-angular billiard generated by γ ; we normalize 1 by a positive rational factor so
that b is included in1 with multiplicity 1. Here we prove the following theorem implying
that more than half of the intersection index (1, TCb) is concentrated at the base point C.
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Theorem 4.26. Let b ⊂ CP2 be a non-linear irreducible germ of analytic curve at a
point C. Let (z, w) be affine coordinates centered at C and adapted to b. Suppose b has
the local relative projective symmetry property of type A-z with respect to an effective
(TCb, C)-local divisor 1 =

∑N
j=1 kjbj , i.e., kj > 0. Suppose 1 includes the germ b with

coefficient 1. Set D = deg(1): this is the intersection index (1, TCb). Then the local
intersection index of the projective tangent line TCb with 1 at C is no less than D/2+ 1.
Equality may take place only when b is quadratic and regular, and 1 contains no other
germs tangent to b at C with the same Puiseux exponent as b.

Proof. Everywhere below for any effective divisor D =
∑
j nj [τj ] on C, nj > 0, we

denote by |D| =
∑
j nj its degree. For every u ∈ b close to C let X = X (u) denote the

part of the divisor Tub ∩1 on Tub consisting of those its points that tend to C as u→ C.
Let 9(u) denote the remaining part of Tub ∩ 1, consisting of those points that do not
tend to C; they tend to other base points of the germs in 1. The local intersection index
(TCb,1)C at C equals the degree |X (u)| of the divisor X (u) whenever u is close enough
to C.

Let X1 = X1(u) and X0 = X0(u) denote the parts of X (u) formed respectively by
the points with and without the linear z-asymptotics.

Recall that the divisors Tub ∩ 1 are invariant under the projective involutions σu :
Tub→ Tub fixing u and forming a family of type A in the coordinate z.

Claim 1. The involution σu sends the points of the divisor 9(u) to some points in X0(u),
and |X0(u)| ≥ |9(u)|.

Proof. The involutions σu written in the coordinate z converge to the constant mapping
C → 0 uniformly on compact subsets of C \ {0} as u → C, by Proposition 4.13(a).
Therefore, the image of a point converging to a limit distinct from C as u → C is a
point converging to C. This implies that each point of 9(u) is sent to a point in X (u).
That image in X (u) cannot lie in X1(u), since the divisor X1(u) of points with linear
z-asymptotics is σu-invariant, by Proposition 4.13(b). Hence, σu sends 9(u) to a part of
X0(u). This proves the claim. ut

Thus,

1 ∩ Tub = X0(u)+ X1(u)+9(u), |X0(u)| ≥ |9(u)|,

|X0(u)| +
1
2
|X1(u)| ≥

|X0(u)| + |X1(u)| + |9(u)|

2
=

1
2
|1 ∩ Tub| =

D

2
.

This implies that

(TCb,1)C = |X (u)| = |X0(u)| + |X1(u)| ≥
D

2
+

1
2
|X1(u)|. (4.28)

One has |X1(u)| ≥ 2. Indeed, the divisor X1(u) of points with linear z-asymptotics in-
cludes b ∩ Tub (which has degree at least two) with coefficient 1 and the intersections
(with positive coefficients) of the line Tub with those germs in 1 that are tangent to b
and have the same Puiseux exponent r = rb. Equality may take place only if b is regular
and quadratic and there are no other such germs. This together with (4.28) implies that
(TCb,1)C ≥ D/2+ 1 and proves Theorem 4.26. ut
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4.8. Exponent in the asymptotics of the Bialy–Mironov formula. Proof of (ii-b)

Let b be a local branch of the curve γ at a point C ∈ γ ∩ I that is a regular point of the
conic I, and suppose b is transversal to I. Let

∑l
j=1 kjbj , b1 = b, k1 = 1, be the germ at

C of the divisor 1
k
1 (see (3.5)); here kj > 0 for all j . Let ρbj and η be the corresponding

constants from formulas (3.7) and (3.16) respectively. Let us show that the upper bound
(3.19) on η proved in Subsection 3.4 cannot hold unless b is regular and quadratic. Indeed,
let (z, w) be affine coordinates adapted to b. The branch b has the local relative projective
symmetry property of type A-z, by Proposition 4.16, Case 1. Therefore,

• r = rb ≤ 2, by Theorem 4.23;
• ρbj ≤ r for all j = 1, . . . , l, by Theorem 4.24.

Substituting these into formula (3.16), one gets

η = 3
l∑

j=1

kjqbj min{ρbj , r} − 2(r + 1) ≥ 3
l∑

j=1

kjqbj ρbj − 6. (4.29)

The sum on the right-hand side in (4.29) equals the local intersection index of the divisor
1
k
1 with TCb at the point C, by definition. The index is no less than deg(1)

2k + 1, by
Theorem 4.26. Therefore,

η ≥ 3
(

deg(1)
2k

+ 1
)
− 6 = 3

deg(1)
2k

− 3.

The inequality is strict unless the local branch b is regular and quadratic, as in Theorem
4.26. The strict inequality would obviously contradict inequality (3.19), and hence b is
regular and quadratic. Statement (ii-b) is proved. The proof of Theorem 4.1 is complete.

5. Generalized genus and Plücker formulas. Proof of Theorem 1.26

The proof of Theorem 1.26 is based on generalized Plücker and genus formulas for planar
algebraic curves and their corollaries (see, e.g., [27, Subsection 4.1]). It makes use of a
modified version of Eugenii Shustin’s arguments from [27, Subsection 4.2]. The main
observation is that the assumptions of Theorem 4.1 on the Puiseux exponents of local
branches of the curve and Plücker formulas imply that the singularity invariants of the
curve γ must have a relatively high lower bound. On the other hand, the contribution
of its potential singular and inflection points, which lie in the conic I, appears not to be
sufficient to fit that lower bound unless the curve is a conic.

5.1. Invariants of plane curve singularities

The material of the present subsection is contained in [27, Subsection 4.1]. It recalls
classical results on invariants of singularities presented in [18, Chapter III], [36, §10]; see
also a modern exposition in [28, Section I.3]. Let γ ⊂ CP2 be a non-linear irreducible
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algebraic curve.5 Let d denote its degree. The intersection index of the curve γ with its
Hessian Hγ equals 3d(d − 2), by the Bézout Theorem. On the other hand, it is equal to
the sum of the contributions h(γ, C), which are called the Hessians of the germs (γ, C),
over all the singular and inflection points C of the curve γ :

3d(d − 2) =
∑
C∈γ

h(γ, C). (5.1)

An explicit formula for the Hessians h(γ, C) was found in [39, (2) and Theorem 1]. To
recall it, let us introduce the following notations. For every local branch b of the curve γ
at C let s(b) denote its multiplicity, the intersection index with a generic line through C.
Let s∗(b) denote the analogous multiplicity of the dual germ. Note that

s(b) = q, s∗(b) = p − q,

where p and q are the exponents in the parametrization t 7→ (tq , cbt
p(1 + o(1))) of the

local branch b in adapted coordinates. Thus,

s(b) = s∗(b) if and only if b is quadratic, (5.2)
s(b) ≥ s∗(b) if and only if b is subquadratic. (5.3)

Let bC1, . . . , bCn(C) denote the local branches of the curve γ at C; here n(C) denotes
the number of the branches. The above-mentioned formula for h(γ, C) from [39] has the
form

h(γ, C) = 3κ(γ, C)+
n(C)∑
j=1

(s∗(bCj )− s(bCj )), (5.4)

where κ(γ, C) is the κ-invariant, the class of the singular point, defined as follows. Con-
sider the germ of function f defining the germ (γ, C), i.e. (γ, C) = {f = 0}. Fix a
line L through C that is transversal to all the local branches of γ at C. Fix a small ball
U = U(C) centered at C and consider a level curve γε = {f = ε} ∩U with small ε 6= 0,
which is non-singular. Then κ(C) = κ(γ, C) is the number of points of γε where the
tangent line is parallel to L. (One has κ(C) = 0 for C non-singular.) It is well-known that

κ(γ, C) = 2δ(γ, C)+
n(C)∑
j=1

(s(bCj )− 1) (5.5)

(see, for example, [28, Propositions I.3.35 and I.3.38]), where δ(γ, C) = δ(C) is the δ-
invariant, defined as follows. Consider the curve γε, which is a Riemann surface whose
boundary is a finite collection of closed curves; their number equals n(C). Let us take
the 2-sphere with n(C) deleted disks. Let us paste it to γε; this yields a compact surface.

5 Everything stated in the present subsection holds for every algebraic curve in CP2 with no
multiple components and no straight-line components [39, Theorem 1].
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By definition, δ(C) is its genus. One has δ(C) ≥ 0, and δ(C) = 0 whenever C is a
non-singular point. Hironaka’s genus formula [30] implies that∑

C∈Sing(γ )

δ(γ, C) ≤ (d − 1)(d − 2)/2. (5.6)

Formulas (5.1), (5.4) and (5.5) together imply that

3d(d − 2) = 6
∑
C

δ(γ, C)+ 3
∑
C

n(C)∑
j=1

(s(bCj )− 1)+
∑
C

n(C)∑
j=1

(s∗(bCj )− s(bCj )).

The first term on the right-hand side is no greater than 3(d − 1)(d − 2), by (5.6). This
implies that

3d(d − 2)− 3(d − 1)(d − 2) = 3(d − 2)

≤ 3
∑
C

n(C)∑
j=1

(s(bCj )− 1)+
∑
C

n(C)∑
j=1

(s∗(bCj )− s(bCj )). (5.7)

5.2. Proof of Theorem 1.26 for a union I of two lines

Let I be a union of two distinct lines 31 and 32 through the point O. We know that all
the singular and inflection points of the curve γ (if any) lie in I = 31 ∪32. Set

Btan = {the local branches of γ at points C ∈ I \ {O} tangent to I},
BO,tr = {the branches of γ at O transversal to both 31, 32},

BO,tan,j = {the branches of γ at O tangent to 3j },

BO,tan =
⊔
j=1,2

BO,tan,j , BO = BO,tr t BO,tan.

All the local branches b /∈ BO,tan of γ at points in γ ∩ I are subquadratic, by the
assumptions of Theorem 1.26. Therefore, their contributions s∗(b) − s(b) to the right-
hand side of (5.7), are non-positive, by (5.3). Every local branch b /∈ Btan∪BO is regular,
by assumption, hence its contribution s(b)− 1 to (5.7) vanishes. This together with (5.7)
implies that

d − 2 ≤
∑

b∈Btan∪BO,tr∪BO,tan

(s(b)− 1)+
1
3

∑
b∈BO,tan

(s∗(b)− s(b))

=

∑
b∈Btan∪BO,tr∪BO,tan

s(b)− |Btan| − |BO,tr| − |BO,tan| +
1
3

∑
b∈BO,tan

(s∗(b)− s(b)),

(5.8)

where |Bs |, s ∈ {tan, (O, tr), (O, tan)}, are the cardinalities of the sets Bs .
Let us estimate the right-hand side in (5.8) from above. To do this, we use the next

equality, which follows from the Bézout Theorem.
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For every j = 1, 2 we denote by Breg,j the collection of local branches of the curve γ
at points in3j \{O} that are transversal to3j . Recall that they are regular, by assumption.
Set

νj = |Breg,j |,

Btan,j = {b ∈ Btan | b is tangent to 3j }, Btan = Btan,1 t Btan,2.

Claim 1. For every j = 1, 2 one has∑
b∈Btan,j

s(b)+
1
2

∑
b∈BO,tan,3−j

s(b)+
1
2

∑
b∈BO,tr

s(b)

+
νj

2
+

1
2

∑
b∈BO,tan,j

(s∗(b)+ s(b)) =
d

2
. (5.9)

Proof. The intersection index of the curve γ with each line 3j equals d (Bézout Theo-
rem). It is the sum of the intersection indices of the line 3j with the branches from the
collections Btan,j , BO,tr, BO,tan, Breg,j . Let us calculate those indices. The contribution of
each branch from Breg,j equals 1, by regularity and transversality. The intersection index
of each branch b ∈ BO,tr with 3j equals s(b). The intersection index with 3j of each
branch b ∈ Btan,j equals pb = 2s(b), by quadraticity (assumption of Theorem 1.26). The
intersection index with 3j of each branch b ∈ BO,tan,j equals pb = s(b) + s∗(b). The
remaining branches b ∈ BO,tan,3−j are transversal to 3j , and their intersection indices
with3j are equal to s(b). Summing the above intersection indices, writing that their sum
should be equal to d and dividing the equality thus obtained by 2 yields (5.9). ut

Summing equalities (5.9) for j = 1, 2 yields∑
b∈Btan∪BO,tr∪BO,tan

s(b) = d −
1
2

∑
b∈BO,tan

s∗(b)−
ν1 + ν2

2
. (5.10)

Substituting (5.10) into (5.8) together with elementary inequalities yields

d − 2 ≤ d −
1
2

∑
b∈BO,tan

s∗(b)−
ν1 + ν2

2
− |Btan| − |BO,tr| − |BO,tan|

+
1
3

∑
b∈BO,tan

(s∗(b)− s(b)) = d − |Btan| − |BO,tr| − |BO,tan|

−
ν1 + ν2

2
−

∑
b∈BO,tan

(
1
6
s∗(b)+

1
3
s(b)

)
,

and so

|Btan| + |BO,tr| + |BO,tan| +
ν1 + ν2

2
+

∑
b∈BO,tan

(
1
6
s∗(b)+

1
3
s(b)

)
≤ 2. (5.11)

Claim 2. The cardinality of the set of singular and inflection points of the curve γ is at
most 2. Two cases are possible: either
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• there are no inflection points, and each local branch of γ at every singular point is
subquadratic; or
• there is just one special point (singular or inflection point), and γ has one local branch

at it.

Proof. Let 8 denote the collection of all local branches of γ at points in I. Recall that
I contains all the singular and inflection points of γ .

Case 1: BO,tan = ∅. Then all local branches in 8 are subquadratic, and there are no
inflection points; |Btan| + |BO,tr| ≤ 2, by (5.11).

Subcase 1.1: Btan = BO,tr = ∅. Then all branches in8 are regular and quadratic, and
there are at most four of them: ν1 + ν2 ≤ 4, by (5.11). Thus, the only possible candidates
to be singular points of γ are intersections of branches. Since the total number of branches
is at most 4, the number of singular points is at most 2.

Subcase 1.2: |Btan|+|BO,tr| = 1. The branches from8\(Btan∪BO,tr) are transversal
to the lines 3j , quadratic and regular, and there are at most two of them: ν1 + ν2 ≤ 2, by
(5.11). Thus, 8 consists of at most three branches, and at most one of them is singular.
Thus, the only possible candidates to be singular points of γ are the base point of the
unique branch from Btan ∪ BO,tr and a point of intersection of quadratic regular branches
(if it is different from that base point). Finally, we have at most two singular points.

Subcase 1.3: |Btan| + |BO,tr| = 2. Then 8 = Btan ∪ BO,tr, by (5.11), the number
of base points of the branches from the collection 8 is at most 2, and they are the only
potential singular points.

Case 2: |BO,tan| ≥ 1. Then |BO,tan| = 1, and 8 = BO,tan. This follows from (5.11)
and positivity of the sum over b ∈ BO,tan in its left-hand side. Thus, the set 8 consists
of just one branch, and we have at most one singular (or inflection) point. The claim is
proved. ut

Theorem 5.1 ([27, Theorem 1.6]). Let γ ⊂ CP2 be an irreducible algebraic curve such
that there exists a projective line L satisfying the following statements:

• all the singular and inflection points of γ (if any) lie in L;
• each local branch of γ at every point of γ ∩L that is transversal to L is subquadratic.

Then γ is a conic.

There exists a line L satisfying the conditions of Theorem 5.1 for the curve γ under
consideration. Namely, in the first case of Claim 2 the line L is the line passing through
(at most two) singular points of γ . In the second case we choose L to be the tangent line
to the unique local branch at the unique special point. This together with Theorem 5.1
implies that γ is a conic. Theorem 1.26 is proved.

5.3. Proof of Theorem 1.26: case when I is a regular conic

Let I ⊂ CP2 be a regular conic, and let γ ⊂ CP2 be an irreducible algebraic curve,
γ 6= I, d = deg γ . Let Btr, Btan denote respectively the set of those local branches of γ at
base points in γ ∩ I that are transversal (respectively, tangent) to I. Let |Btr|, |Btan| denote
their cardinalities.
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The proof of Theorem 1.26 in the case under consideration is based on the following
inequality.

Proposition 5.2. Let I, γ , d be as above. Suppose each local branch in Btan is quadratic,
and each branch in Btr is regular. Then

1
2
|Btr| +

∑
b∈Btan

s(b) ≤ d. (5.12)

Proof. The intersection index of γ and I equals 2d (Bézout Theorem). On the other hand,
it equals the sum of the intersection indices of I with the local branches from Btr and Btan.
Each branch in Btr has intersection index 1 with I, since it is regular and transversal to I,
by the assumptions. Each branch b ∈ Btan has intersection index at least 2s(b) with I.
Indeed, b is quadratic, as is the branch of the conic I at the same base point. Therefore,
applying coordinate change rectifying the germ of the conic I transforms b to a branch b̃
with the same local degree s(̃b) = s(b) and Puiseux exponent r ≥ 2. The intersection
index of b and I equals the intersection index of b̃ with its tangent line at the base point,
that is, rs(̃b) = rs(b) ≥ 2s(b). Finally, 2d ≥ |Btr| + 2

∑
b∈Btan

s(b). This proves (5.12).
ut

Now let us prove Theorem 1.26. Let γ be a curve as in Theorem 1.26. Recall that all the
singular and inflection points of γ (if any) lie in the conic I, and its local branches in Btan
(resp. Btr) are quadratic (resp. quadratic and regular). Let us calculate their contributions
to the right-hand side of inequality (5.7) and substitute inequality (5.12). The second sum
on the right-hand side in (5.7) vanishes, by quadraticity. The contribution of each b ∈ Btr
to the first sum also vanishes, since s(b) = 1. The total contribution of the branches
from Btan to the first sum equals

∑
b∈Btan

s(b) − |Btan|. This together with (5.7) implies
that

d − 2 ≤
∑
b∈Btan

s(b)− |Btan|.

The right-hand side is no greater than d − 1
2 |Btr| − |Btan|, by (5.12). Therefore,

1
2 |Btr| + |Btan| ≤ 2. (5.13)

Let us show that this together with Theorem 5.1 implies that γ is a conic.
Inequality (5.13) implies that the following three cases are possible.
Case 1: |Btr| ≤ 4, Btan = ∅. Thus, all the local branches of γ at its intersection points

with I lie in Btr, and hence they are quadratic and regular. A point of γ ∩ I can be singular
only when it is a point of intersection of some two of (at most four) branches in Btr.
Hence, γ has at most two singular points (thus, all of them lie on a line), and all the local
branches of γ at those points are quadratic. This together with Theorem 5.1 implies that
γ is a conic.

Case 2: |Btan| = 1, |Btr| ≤ 2. Let C denote the base point of the unique branch in
Btan. Each point of γ ∩ I distinct from C lies in the union of (at most two) branches in Btr.
It is singular if and only if it is the intersection point of two such branches. Thus, γ has at
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most two singular points, the local branches at these points are quadratic, and hence γ is
a conic, by Theorem 5.1, as in the above case.

Case 3: |Btan| = 2, Btr = ∅. Then γ has at most two singular points, and all the
branches at those points, which lie in Btan, are quadratic. Hence, γ is a conic, as in Case 1.
Theorem 1.26 is proved.

6. Proof of the main theorems

6.1. Rationally integrable I-angular billiards. Proof of Theorem 1.25

Let I ⊂ CP2 be a conic (regular or a pair of distinct lines), and let γ ⊂ CP2 be an
irreducible algebraic curve different from a line and from I and generating a rationally
integrable I-angular billiard.

Theorem 6.1 ([10, Theorem 1], [11, Theorem 1.2]). All the singular and inflection
points (if any) of the curve γ lie in I.

Remark 6.2. The above-cited theorems from [10, 11] are stated for a polynomially in-
tegrable billiard �: namely, for every C2-smooth arc α ⊂ ∂� with non-zero geodesic
curvature the statement of Theorem 6.1 is proved there for each non-linear irreducible
component γ of the Zariski closure of the 6-dual curve α∗. But the proofs given in
[10, 11] remain valid in the general context of Theorem 6.1.

Each local branch of the curve γ at a base point in γ ∩ I that satisfies the conditions of
some of the statements (i), (ii-a), or (ii-b) of Theorem 4.1 also satisfies the corresponding
statement, by Theorem 4.1. Therefore, γ satisfies the conditions of Theorem 1.26, by
Theorem 6.1. Hence, it is a conic, by Theorem 1.26. This proves Theorem 1.25.

6.2. Confocal billiards. Proof of Theorem 1.21

Let � ⊂ 6 be a polynomially integrable billiard with countably piecewise C2-smooth
boundary that contains a C2-smooth arc α with non-zero geodesic curvature. Let 9(M)
be a non-trivial homogeneous polynomial integral of � of even degree 2n: M = [r, v],
and 9([r, v]) is not a function of the squared norm ‖v‖2 = 〈Av, v〉 in the metric of the
surface6. One has9(M) 6≡ c〈AM,M〉n, since 〈AM,M〉 = 〈Av, v〉, by Proposition 2.1.
LetG be the corresponding rational function (1.6). ThenG 6≡ const. The complex Zariski
closure of the 6-dual curve α∗ is an algebraic curve that contains at least one non-linear
irreducible component. Each such component generates a rationally integrable I-angular
billiard with integral G, by Corollary 2.11. Hence, it is a conic, by Theorem 1.25. There-
fore, α contains a non-geodesic conical arc. This together with Theorem 1.23 implies that
the billiard � is countably confocal and proves Theorem 1.21.
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6.3. Case of smooth connected boundary. Proof of Theorem 1.6

Let � ⊂ 6 be a polynomially integrable billiard, and suppose that ∂� is C2-smooth,
connected and does not lie on a geodesic. Then the billiard � is countably confocal, by
Theorem 1.21. This means that ∂� contains an open dense subset R that is a disjoint
union of open arcs of confocal conics and geodesic segments, including at least one non-
geodesic conical arc. Let us fix such an arc and denote it by c, and let C ⊃ c denote
the ambient conic. Let us show that ∂� coincides either with the whole conic C, or with
its connected component. We assume that c is a maximal arc of C that is contained in
the C2-smooth one-dimensional submanifold ∂� ⊂ 6. Suppose the contrary: c has an
endpoint Q. The point Q cannot be an accumulation point of the union of the geodesic
segments in ∂�, by C2-smoothness and since ∂� has non-zero geodesic curvature at Q,
as does C: it has quadratic tangency at Q to the geodesic tangent to TQ∂�. Therefore, Q
has a neighborhood U in 6 such that IU = ∂� ∩ U and cU = C ∩ U are connected,
∂U is transversal to ∂�, and R ∩ U ⊂ IU consists of arcs of conics confocal to C.
The ambient conics intersect U in leaves of an analytic foliation having cU as a leaf,
since each confocal conic pencil is locally given by a pair of orthogonal foliations and
all the conics in question are C1-close to C. Thus, the C2-smooth connected submanifold
IU ⊂ U contains an open and dense subset R ∩ U where it is tangent to the above
foliation. Therefore, IU is a leaf of this foliation. The leaves IU = ∂� ∩ U and cU
coincide, since both contain an arc adjacent to Q of the conic C, by construction. Finally,
a neighborhood IU of Q in ∂� is contained in C. This contradicts the maximality of the
conical arc c ⊂ ∂� and proves Theorem 1.6.

6.4. Proof of complexification: Theorem 1.36

The fact that each polynomially integrable complex billiard admits a homogeneous poly-
nomial integral of the form 9(M) is proved by a straightforward complexification of
Bolotin’s proof of the same statement in the real case [16, 17]. This implies that the curves
0t are algebraic, as in loc. cit., and the curves 6-dual to the non-geodesic curves 0t gen-
erate rationally integrable I-angular billiards with a common rational integral, as in the
proofs of [10, Theorem 3], [11, Theorem 1.3] and Theorem 2.8. Next, confocality of the
billiard is deduced from Theorem 1.25 in the same way as in Subsection 6.2, by a straight-
forward complexification of Theorem 1.23 and its proof. When the billiard contains no
admissible complex geodesic of type (1.4), it has a non-trivial integral of degree 2 in P ,
as in [17, Proposition 1]. Otherwise, if it contains a complex geodesic of type (1.4), it has
a non-trivial integral of degree 4 and no non-trivial integral of lower degree; the proof
of this statement given in [17, p. 123] in the real case remains valid in the complex case
without changes.
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Vladimir Dragović, Étienne Ghys, Jean-Pierre Marco, Sergei Tabachnikov, Dmitry Treschev and
Alexander Veselov for helpful discussions. Last but not least, the referee’s hard work of going
through the proofs and their helpful remarks are much appreciated.

This research was supported in part by RFBR grants 13-01-00969-a, 16-01-00748, 16-01-
00766 and ANR grant ANR-13-JS01-0010.

References

[1] Abdrakhmanov, A. M.: Integrable billiards. Moscow Univ. Math. Bull. 45, no. 6, 13–17 (1990)
Zbl 0850.70144 MR 1095993

[2] Abdrakhmanov, A. M.: On integrable systems with elastic reflections. Moscow Univ. Math.
Bull. 45, no. 5, 14–16 (1990) Zbl 0850.70143 MR 1085235

[3] Advis-Gaete, L., Carry, B., Gualtieri, M., Guthmann, C., Reffet, E., Tokieda, T.: Golfer’s
dilemma. Amer. J. Phys. 74, 497–501 (2006)

[4] Amiran, E.: Caustics and evolutes for convex planar domains. J. Differential Geometry 28,
345–357 (1988) Zbl 0636.58033 MR 0961519

[5] Avila, A., De Simoi, J., Kaloshin, V.: An integrable deformation of an ellipse of small eccen-
tricity is an ellipse. Ann. of Math. (2) 184, 527–558 (2016) Zbl 1379.37104 MR 3548532

[6] Berger, M.: Seules les quadriques admettent des caustiques. Bull. Soc. Math. France 123,
107–116 (1995) Zbl 0830.51009 MR 1330789

[7] Bialy, M.: Convex billiards and a theorem by E. Hopf. Math. Z. 214, 147–154 (1993)
Zbl 0790.58023 MR 1234604

[8] Bialy, M.: Hopf rigidity for convex billiards on the hemisphere and hyperbolic plane. Discrete
Contin. Dynam. Systems 33, 3903–3913 (2013) Zbl 1306.37059 MR 3038045

[9] Bialy, M.: On totally integrable magnetic billiards on constant curvature surface. Electron.
Res. Announc. Math. Sci. 19, 112–119 (2012) Zbl 1257.37027 MR 2999056

[10] Bialy, M., Mironov, A. E.: Angular billiard and algebraic Birkhoff conjecture. Adv. Math.
313, 102–126 (2017) Zbl 1364.37124 MR 3649222

[11] Bialy, M., Mironov, A. E.: Algebraic Birkhoff conjecture for billiards on sphere and hyper-
bolic plane. J. Geom. Phys. 115, 150–156 (2017) Zbl 1375.37113 MR 3623621

[12] Bialy, M., Mironov, A. E.: On fourth-degree polynomial integrals of the Birkhoff billiard.
Proc. Steklov Inst. Math. 295, 27–32 (2016) Zbl 1371.37067 MR 3628512

[13] Bialy, M., Mironov, A. E.: Algebraic non-integrability of magnetic billiards. J. Phys. A 49,
no. 45, art. 455101, 18 pp. (2016) Zbl 1353.37075 MR 3568603

[14] Bialy, M., Mironov, A. E.: A survey on polynomial in momenta integrals for billiard problems.
Philos. Trans. Roy Soc. A. 376, no. 2131, art. 20170418, 19 pp. (2018) Zbl 1407.37057
MR 3868418

[15] Bolotin, S. V.: First integrals of systems with gyroscopic forces. Vestnik Moskov. Univ. Ser. I
Mat. Mekh. 1984, no. 6, 75–82, 113 (in Russian) Zbl 0597.70019 MR 0775310

[16] Bolotin, S. V.: Integrable Birkhoff billiards. Moscow. Univ. Math. Mech. Bull. 45, no. 2, 10–
13 (1990) Zbl 0727.58025 MR 1064916

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0850.70144&format=complete
http://www.ams.org/mathscinet-getitem?mr=1095993
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0850.70143&format=complete
http://www.ams.org/mathscinet-getitem?mr=1085235
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0636.58033&format=complete
http://www.ams.org/mathscinet-getitem?mr=0961519
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1379.37104&format=complete
http://www.ams.org/mathscinet-getitem?mr=3548532
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0830.51009&format=complete
http://www.ams.org/mathscinet-getitem?mr=1330789
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0790.58023&format=complete
http://www.ams.org/mathscinet-getitem?mr=1234604
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1306.37059&format=complete
http://www.ams.org/mathscinet-getitem?mr=3038045
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1257.37027&format=complete
http://www.ams.org/mathscinet-getitem?mr=2999056
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1364.37124&format=complete
http://www.ams.org/mathscinet-getitem?mr=3649222
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1375.37113&format=complete
http://www.ams.org/mathscinet-getitem?mr=3623621
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1371.37067&format=complete
http://www.ams.org/mathscinet-getitem?mr=3628512
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1353.37075&format=complete
http://www.ams.org/mathscinet-getitem?mr=3568603
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1407.37057&format=complete
http://www.ams.org/mathscinet-getitem?mr=3868418
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0597.70019&format=complete
http://www.ams.org/mathscinet-getitem?mr=0775310
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0727.58025&format=complete
http://www.ams.org/mathscinet-getitem?mr=1064916


1048 Alexey Glutsyuk

[17] Bolotin, S. V.: Integrable billiards on surfaces of constant curvature. Math. Notes 51, 117–123
(1992) Zbl 0795.58028 MR 1165461

[18] Brieskorn, E., Knörrer, H.: Plane Algebraic Curves. Birkhäuser, Basel (1986)
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