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Abstract. We analyze domino tilings of the two-periodic Aztec diamond by means of matrix val-
ued orthogonal polynomials that we obtain from a reformulation of the Aztec diamond as a non-
intersecting path model with periodic transition matrices. In a more general framework we express
the correlation kernel for the underlying determinantal point process as a double contour integral
that contains the reproducing kernel of matrix valued orthogonal polynomials. We use the Riemann–
Hilbert problem to simplify this formula for the case of the two-periodic Aztec diamond.

In the large size limit we recover the three phases of the model known as solid, liquid and gas.
We describe the fine asymptotics for the gas phase and at the cusp points of the liquid-gas boundary,
thereby complementing and extending results of Chhita and Johansson.

Keywords. Aztec diamond, random tilings, matrix valued orthogonal polynomials, Riemann–
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1. Introduction

We study domino tilings of the Aztec diamond with a two-periodic weighting. This model
falls into a class of models for which existing techniques for studying fine asymptotics
are not adequate and only recently first important progress has been made [9, 20]. We
introduce a new approach based on matrix valued orthogonal polynomials that allows us
to compute the determinantal correlations at finite size and their asymptotics as the size of
the diamond gets large in a rather orderly way. We strongly believe that this approach will
also prove to be a good starting point for other tiling models with a periodic weighting.

Random tilings of planar domains have been studied intensively in the past decade.
Such models exhibit a rich structure including a limit shape and fluctuations that are ex-
pected to fall in various important universality classes (see [8, 22, 23, 44, 46, 47, 48,
49] for general references on the topic and [18, 59, 60] for recent contributions). When
the correlation structure is determinantal, there is hope to understand the fine asymptotic
structure by studying the asymptotic behavior of the correlation kernel. An important
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source of examples of such models is the Schur process [57]. For these models the cor-
relation kernel can be explicitly computed in terms of a double integral representation,
opening up to the possibility of performing an asymptotic analysis by means of classical
steepest decent (or stationary phase) techniques.

Of course, the Schur process is rather special and many models of interest fall outside
this class. In particular this is true for random tilings or dimer models with doubly pe-
riodic weightings. Yet, these models have exciting new features and have therefore been
discussed in the physics and mathematics literature [9, 20, 21, 30, 49, 56]. An impor-
tant feature is the appearance of a so-called gas phase. For instance, in the two-periodic
weighting for domino tiling of the Aztec diamond, the diamond can be partitioned into
three regions: the solid, liquid and gas region [57] (as we will see in Figure 6 below).
The gas region has not been observed in models that are in the Schur class. The 2-point
correlations (for an associated particle process) in the gas region behave differently when
compared to the liquid regions. Indeed, the correlation kernel decays exponentially with
the distance d between the points, compared to ∼ 1/d in the liquid region. At the liquid-
solid boundary one expects the Airy process to appear, but the situation at the gas-liquid
boundary is far more complicated [9, 20].

To the best of our knowledge, the two-periodic Aztec diamond is the only model with
periodic weightings for which rigorous results on fine asymptotics exist [9, 20]. Inspired
by a formula for the Kasteleyn matrix found by Chhita and Young [21], Chhita and Jo-
hansson [20] found a way to compute the asymptotic behavior of the Kasteleyn matrix
as the size of the Aztec diamond goes to infinity. We will follow a different approach to
studying such models with periodic weightings.

As we will recall in Section 3, the Aztec diamond can be described by non-intersecting
paths (we refer to [46] and the references therein for more background on the rela-
tion between dimers, tilings, non-intersecting paths and all that). For a general class of
discrete non-intersecting paths with p-periodic transition matrices (which includes p-
periodic weightings for domino tilings of the Aztec diamond and p-periodic weightings
for lozenge tilings of the hexagon), we show in Section 4 how the correlation kernel can
be written as a double integral formula involving matrix valued polynomials that satisfy
a non-hermitian orthogonality.

We believe that this general setup has a high potential for a rigorous asymptotic analy-
sis. The key fact is that these matrix valued orthogonal polynomials can be characterized
in terms of the solution of a 2p × 2p matrix valued Riemann–Hilbert problem. With
the highly developed Riemann–Hilbert toolkit at hand, we may thus hope to compute the
asymptotic behavior of the polynomials, and more importantly the correlation kernel. The
formalism will be worked out in Section 4. It provides a new perspective even on the clas-
sical examples of uniform domino tilings of the Aztec diamond and lozenge tilings of a
hexagon.

The main focus of the paper is to show how the Riemann–Hilbert approach can be
exploited for an asymptotic analysis of the two-periodic Aztec diamond. Remarkably,
in this case the result of the Riemann–Hilbert analysis is a surprisingly simple double
integral formula for the correlation kernel. It is not an asymptotic result, but an exact
formula valid for fixed finite N . This representation also appears to be more elementary
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than the one given by Chhita and Johansson [20]. The Riemann–Hilbert analysis is given
in Section 5. We analyze the double integral formula for the kernel asymptotically using
classical steepest descent techniques in Section 6.

The model of the two-periodic Aztec diamond is explained and the main results are
summarized in the next section.

2. Statement of results

In this section we introduce the two-periodic Aztec diamond and state our main results.

2.1. Definition of the model

The Aztec diamond is a region on the square lattice with a sawtooth boundary that can be
covered by 2 × 1 and 1 × 2 rectangles, called dominos. The squares have a black/white
checkerboard coloring, and a possible tiling of the Aztec diamond of size 4 is shown in
Figure 1. There are four types of dominos, namely North, West, East, and South, that are
also shown in the figure. The Aztec diamond model was first introduced in [35].

In the two-periodic Aztec diamond we assign a weight to each domino in a tiling,
depending on its shape (horizontal or vertical) and its location in the Aztec diamond. We
assume the Aztec diamond is of even size.

To describe the two-periodic weighting we introduce a coordinate system where (0, 0)
is at the center of the Aztec diamond. The center of a horizontal domino has coordinates
(x, y + 1/2) with x, y ∈ Z. We then say that the horizontal domino is in column x. The
center of a vertical domino has coordinates (x + 1/2, y) with x, y ∈ Z, and we say that
the vertical domino is in row y. The row and column numbers run from−N+1 to N−1,
where 2N is the size of the Aztec diamond.

We fix two positive numbers a and b and define the weights as follows.

West

North

South

East

Fig. 1. Possible tiling of a 4× 4 Aztec diamond with four kinds of dominos.
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Definition 2.1. The weight of a domino D in a tiling T of the Aztec diamond is

w(D) =


a if D is a horizontal domino in an even column,
b if D is a horizontal domino in an odd column,
b if D is a vertical domino in an even row,
a if D is a vertical domino in an odd row.

(2.1)

The weight of the tiling T is
w(T ) =

∏
D∈T

w(D), (2.2)

and the probability for T is
P(T ) = w(T )/ZN , (2.3)

where ZN =
∑

T ′ w(T ′) (sum over all possible tilings T ′ of an Aztec diamond of size
2N ) is the partition function.

In the example from Figure 1 the weights are shown in Figure 2. The weight of the tiling
is w(T ) = a10b10.

The model is homogeneous in the sense that the probabilities (2.3) do not change if
we multiply a and b by a common factor. We may and do assume ab = 1. In what follows
it will be more convenient to work with

α = a2, β = b2 (2.4)

instead of a and b. We have αβ = 1, and without loss of generality we assume α ≥ 1. If
α = β = 1 then the model reduces to the uniform weighting on domino tilings, and so
the true interest is in the case α > 1, and this is what we assume from now on.

b b

a a a a

a a a a

b b

b b

a

a

b

b

b

b

Fig. 2. Two-periodic weights of dominos in a tiling of the Aztec diamond. The vertical dominos
in an even row and the horizontal dominos in an odd column have weight a. Other dominos have
weight b.
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2.2. Particle system and determinantal point process

By putting a particle in the black square of the West and South dominos, we obtain a
random particle system. In our running example the particle systems is shown in Figure 3.

Fig. 3. Particles in a domino tiling.

We rotate the picture clockwise through 45 degrees and we change the coordinate
system so that black squares are identified with the product set

BN = {0, . . . , 2N} × {0, . . . , 2N − 1}. (2.5)

Any possible tiling of the Aztec diamond gives rise to a subset X = X (T ) of BN con-
taining the squares that are occupied by a particle.

We use (m, n) ∈ BN to denote an element BN and we will refer to m as the level
in BN . Any X that comes from a tiling will have 2N−m particles at levelm for eachm =
0, 1, . . . , 2N . Therefore the cardinality is |X | = N(2N + 1). There are also interlacing
conditions that are satisfied when comparing the particles at level m with those at level
m+ 1.

The probability measure (2.3) on tilings gives rise to a probability measure on sub-
sets X , which turns out to be determinantal. This means that there exists a kernel

KN : BN × BN → R (2.6)

with the property that for any subset S ⊂ BN ,

P[S ⊂ X ] = det [KN (x, y)]x,y∈S .

This is a discrete determinantal point process [14].
We found an explicit double contour integral formula for the kernel KN . We take

(m, n), (m′, n′) ∈ BN , and instead of KN ((m, n), (m′, n′)) we write KN (m, n;m′, n′).
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We collect KN (m, n;m′, n′) with some of its neighbors in a 2× 2 matrix

KN (m, n;m′, n′) =
(

KN (m, n;m
′, n′) KN (m, n+ 1;m′, n′)

KN (m, n;m
′, n′ + 1) KN (m, n+ 1;m′, n′ + 1)

)
, (2.7)

and this matrix appears in our formula (2.8) below.

Theorem 2.2. Assume N is even and (m, n), (m′, n′) ∈ BN are such that m + n and
m′ + n′ are even. Then

KN (m, n;m′, n′) = −
χm>m′

2πi

∮
γ0,1

Am−m
′

(z)z(m
′
+n′)/2−(m+n)/2 dz

z

+
1

(2πi)2

∮
γ0,1

dz

z

∮
γ1

dw

z− w
AN−m

′

(w)F (w)A−N+m(z)

×
zN/2(z− 1)N

wN/2(w − 1)N
w(m

′
+n′)/2

z(m+n)/2
(2.8)

where

A(z) =
1

z− 1

(
2αz α(z+ 1)

βz(z+ 1) 2βz

)
, (2.9)

F(z) =
1
2
I2 +

1

2
√
z(z+ α2)(z+ β2)

(
(α − β)z α(z+ 1)
βz(z+ 1) −(α − β)z

)
, (2.10)

where I2 denotes the 2× 2 identity matrix and we use the principal branch of the square
root in (2.10). The notation χ in (2.8) denotes the indicator function, χm>m′ = 1 if
m > m′ and χm>m′ = 0 otherwise.

The contour γ0,1 in (2.8) is a simple closed contour going around 0 and 1 in the
positive direction. The contour γ1 is a simple closed contour in the right half-plane that
goes around 1 in the positive direction, and it lies in the interior of γ0,1 (see Figure 4).

−α2 −β2 0

γ1

1

γ0,1

Fig. 4. Contours γ0,1 and γ1 used in the definition of KN in (2.8) in Theorem 2.2.

Remark 2.3. The square root factor in (2.10) is defined and analytic for complex z out-
side (−∞,−α2

] ∪ [−β2, 0] with the branch that is positive for real z > 0. This is one
sheet of the Riemann surface R associated with the cubic equation

y2
= z(z+ α2)(z+ β2), (2.11)

which will play an important role in what follows. It is a two-sheeted surface consisting
of two sheets C \ ((−∞,−α2

] ∪ [−β2, 0]) glued together along the two cuts (−∞,−α2
]
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and [−β2, 0] in the usual crosswise manner. The surface has genus 1 unless α = β = 1
in which case the genus drops to 0.

The matrix valued function F(z) from (2.10) is considered on the first sheet. Its ana-
lytic continuation to the second sheet is given by I2 − F(z).

Remark 2.4. The eigenvalues of A(z) (see (2.9)), are equal to ρ1,2(z)
z−1 where

ρ1,2(z) = (α + β)z±
√
z(z+ α2)(z+ β2) (2.12)

are the eigenvalues of
( 2αz α(z+1)
βz(z+1) 2βz

)
. Thus (2.12) are the two branches of the meromor-

phic function ρ = (α + β)z + y on the Riemann surface R associated with (2.11), with
ρ1 on the first sheet and ρ2 on the second sheet.

The eigenvectors can also be considered on the Riemann surface. There is a matrix
E(z) whose columns are the eigenvectors such that

A(z) =
1

z− 1
E(z)

(
ρ1(z) 0

0 ρ2(z)

)
E−1(z). (2.13)

See (5.6) below for the precise formula for E(z). It turns out that (see (2.10) for the
definition of F(z))

F(z) = E(z)

(
1 0
0 0

)
E−1(z). (2.14)

Thus F(z) has eigenvalues 0 and 1, and F(z) commutes with A(z).
We will also work with

W(z) = A2(z)/z, (2.15)

which in view of (2.13) has eigenvalue decomposition

W(z) = E(z)3(z)E−1(z), 3(z) =

(
λ1(z) 0

0 λ2(z)

)
, (2.16)

with

λ1,2(z) =
ρ2

1,2(z)

z(z− 1)2
. (2.17)

These eigenvalues are the two branches of a meromorphic function λ on the Riemann
surface R, with λ1 defined on the first sheet and λ2 on the second sheet.

2.3. Matrix valued orthogonal polynomials

The starting point of our approach to Theorem 2.2 is the non-intersecting path refor-
mulation of the Aztec diamond and the Lindström–Gessel–Viennot lemma. This will be
developed in Section 3. The novel ingredient in the further analysis is the use of matrix
valued orthogonal polynomials (MVOP).

A matrix valued polynomial of degree k and size d is a function

P(z) = C0z
k
+ C1z

k−1
+ · · · + Ck

where C0, . . . , Ck are matrices of size d × d . Suppose w(z) is a d × d weight matrix on
a set 0 in the complex plane.
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Definition 2.5. Suppose PN is a matrix valued polynomial of degree N with an invert-
ible leading coefficient. Then PN is a matrix valued orthogonal polynomial with weight
matrix w on 0 if ∫

0

PN (z)w(z)Q
t (z) dz = 0d (2.18)

for all matrix polynomials Q of degree ≤ N − 1, where Qt denotes the matrix transpose.

The integral in (2.18) is to be taken entrywise, and 0d denotes the d × d zero matrix.
We note that the order of the factors in the integrand in (2.18) is important since we are
dealing with matrices.

For us the weight matrix will be 1
2πiW

N (z) on the closed contour γ1 around 1. Thus
d = 2, andWN denotes theN th power ofW , so that the weight matrix is varying withN .
Recall that W is defined in (2.15), and explicitly we have

W(z) =
1

(z− 1)2

(
(z+ 1)2 + 4α2z 2α(α + β)(z+ 1)

2β(α + β)z(z+ 1) (z+ 1)2 + 4β2z

)
. (2.19)

The existing literature on MVOP mostly deals with the case of orthogonality on an inter-
val of the real line, with a positive definite weight matrix w with all existing moments. In
such a case the MVOP exists for every degree n, and they can be normalized in such a
way that ∫

0

Pn(z)w(z)P
t
n(z) dz = Id , j = 0, 1, . . . , n− 1. (2.20)

However, it is interesting to note that MVOP first appeared in connection with predic-
tion theory where the orthogonality is on the unit circle (see [11] for a recent survey).
The interest in MVOP on the real line has been steadily growing since the early 1990s.
The analytic theory of MVOP on the real line is surveyed in [25], with [5] as one of the
pioneering works. MVOP satisfy recurrence relations [34] and special cases satisfy differ-
ential equations [33]. Interesting examples of MVOP come from matrix valued spherical
functions; see [40, 50] as well as many other papers.

We deviate from the usual set-up of MVOP in several ways:

• 0 is a closed contour in the complex plane,
• the weight matrix w(z) = 1

2πiW
N (z) is complex valued on 0 and varies with N ,

• the weight matrix is not symmetric or Hermitian (let alone positive definite), or have
any other property that would imply existence and uniqueness of the MVOP.

Since there is no complex conjugation in (2.18), we are thus dealing with non-Hermitian
matrix valued orthogonality with varying weights on a closed contour in the plane.

As already noted, existence and uniqueness of the MVOP are not guaranteed in this
general setting. However, for the weight 1

2πiW
N we can show that the monic MVOP up

to degrees N all exist and are unique. However, since the weight matrix is not symmetric,
we cannot normalize to obtain orthonormal MVOP as in (2.20). In our case the MVOP of
degrees > N do not exist.

In Section 4 we consider a situation that is more general than the two-periodic Aztec
diamond. It deals with a multi-level particle system that is determinantal, and transitions
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between the levels are periodic. See Assumptions 4.1 and 4.2 for the precise assumptions.
In this general setting we make a connection with matrix valued (bi)orthogonal polyno-
mials and our main result in Section 4 is Theorem 4.7 that expresses the correlation kernel
as a double contour integral containing a reproducing kernel for the matrix polynomials.

In the special situation of the two-periodic Aztec diamond the matrix KN with the
correlation kernels as in (2.8) is given by

−
χm>m′

2πi

∮
γ0,1

Am−m
′

(z)z(m
′
+n′)/2−(m+n)/2 dz

z

+
1

(2πi)2

∮
γ0,1

dz

z

∮
γ0,1

dw

z− w
A2N−m′(w)RN (w, z)A

m(z)
w(m

′
+n′)/2

z(m+n)/2wN
(2.21)

where RN (w, z) is the reproducing kernel associated with the matrix polynomials of de-
grees≤ N−1. That is, RN (w, z) is a bivariate matrix valued polynomial of degreeN−1
in both w and z such that

1
2πi

∮
γ1

RN (w, z)W
N (z)Qt (z) dz = Qt (w)

for every matrix valued polynomial Q of degree ≤ N − 1.
The MVOP of degree N is characterized by a Riemann–Hilbert problem, and the

reproducing kernel RN (w, z) can be expressed in terms of the solution of the Riemann–
Hilbert problem. This is known from work of Delvaux [29] and we recall it in Section
4.6. Then we perform an analysis of the Riemann–Hilbert problem, and quite remarkably
this produces the exact formula (2.8).

2.4. Classification of phases

The explicit formula (2.8) in Theorem 2.2 is suitable for asymptotic analysis as N →∞.
See Figure 5 for a sampling of a large two-periodic Aztec diamond. In this figure three
regions emerge where the tiling has different statistical behavior. We first describe how we
can distinguish these three phases (solid, liquid and gas) in the model. The classification
will depend on the location of saddle points for the double integral in (2.8).

We fix coordinates −1 < ξ1 < 1 and −1 < ξ2 < 1 and choose m,m′ ≈ (1 + ξ1)N

and n, n′ ≈ (1 + ξ2)N . Then from the formula (2.8), we see that the z-integral of the
double contour integral is dominated as N →∞ by the expression

Aξ1N (z)zN/2(z− 1)Nz−(1+ξ1/2+ξ2/2)N = W ξ1N/2(z)(z− 1)Nz−(1+ξ2)N/2

where W is given by (2.15). In view of the eigenvalue decomposition (2.16) this is

E(z)

(
eN81(z)/2 0

0 eN82(z)/2

)
E(z)−1

with 8j (z) = 2 log(z − 1)− (1+ ξ2) log z + ξ1 log λj (z), j = 1, 2. Hence we are led to
consider

8(z) = 2 log(z− 1)− (1+ ξ2) log z+ ξ1 log λ(z) (2.22)
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Fig. 5. A sample of a two-periodic Aztec diamond of size 500. We colored the West and South
dominos blue. The East and North dominons are colored yellow. The gas phase is visible in the
middle. This figure is generated by a code that was kindly provided to us by Sunil Chhita.

as a function on the Riemann surface R, depending on parameters ξ1 and ξ2. It is multi-
valued, but its differential

8′(z)dz =

(
2

z− 1
−

1+ ξ2

z
+ ξ1

λ′(z)

λ(z)

)
dz (2.23)

is a single-valued meromorphic differential with simple poles at z = 1(1), z = 1(2), z = 0
and z = ∞; see also Section 6.2. (For j = 1, 2, we use 1(j) to denote the value 1 on
the j th sheet of the Riemann surface.) There are also four zeros, counting multiplicities,
since the genus is 1.

Definition 2.6. The saddle points are the zeros of 8′(z)dz.

The real part Rr of the Riemann surface consists of all real tuples (z, y) satisfying the
algebraic equation (2.11) together with the point at infinity. The real part is the union of
two cycles,

Rr = C1 ∪ C2, (2.24)

where C1 is the union of the intervals [−α2,−β2
] on the two sheets, and C2 is the union

of the two intervals [0,∞] on both sheets.
It turns out that there are always at least two distinct saddle points on the cycle C1 (see

Proposition 6.4 below). The location of the other two saddle points determines the phase.
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Definition 2.7. Let −1 < ξ1, ξ2 < 1.

(a) If two simple saddles are in C2, then (ξ1, ξ2) is in the solid phase, and we write
(ξ1, ξ2) ∈ S.

(b) If two saddles are outside the real part of the Riemann surface, then (ξ1, ξ2) is in the
liquid phase, and we write (ξ1, ξ2) ∈ L .

(c) If all four saddles are simple and belong to C1, then (ξ1, ξ2) is in the gas phase, and
we write (ξ1, ξ2) ∈ G.

Transitions between phases take place when two or more saddle points coalesce.

(d) If there is a double saddle point on C2, then (ξ1, ξ2) is on the solid-liquid transition.
(e) If there is a double or triple saddle point on C1, then (ξ1, ξ2) is on the liquid-gas

transition.

It is not possible to have a double saddle point outside the real part of the Riemann surface.
The condition for coalescing saddle points leads to an algebraic equation of degree 8

for ξ1, ξ2 and it precisely coincides with the equation listed in [20, appendix] (see also
(6.10) below).

The real section of the degree 8 algebraic equation has two components in case α > 1,
as shown in Figure 6. Both are contained in the square −1 ≤ ξ1, ξ2 ≤ 1. The outer
component is a smooth closed curve that touches the square at the points (±1, 0) and
(0,±1). It is the boundary between the solid and liquid phases.

Fig. 6. Real section of the degree 8 algebraic curve in the ξ1-ξ2 plane for the cases α = 2 (left)
and α = 3 (right). The outer component is the boundary between the solid and liquid phases and
the inner component is the boundary between the liquid and gas phases.

The inner component is the boundary between the liquid and gas phases. It is a closed
curve with four cusps at

(
±
α−β
α+β

, 0
)

and
(
0,±α−β

α+β

)
.
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2.5. Gas phase

Our next result gives the limit of KN in the gas phase. Recall that KN is defined by (2.7).

Theorem 2.8. Assume (ξ1, ξ2) ∈ G. Suppose m,m′, n, n′ are integers that vary with N
in such a way that

m = (1+ ξ1)N + o(N), n = (1+ ξ2)N + o(N) (2.25)

as N →∞, while

m′ −m = 1m, n′ − n = 1n (2.26)

are fixed. Also assume that m+ n and m′ + n′ are even. Then for N even,

lim
N→∞

KN (m, n;m′, n′) = Kgas(m, n;m
′, n′) (2.27)

with

Kgas(m, n;m
′, n′) =

1
2πi

∮
γ

(F (z)− χ1m<0I2)A
−1m(z)z(1m+1n)/2

dz

z
(2.28)

where γ is a closed contour in C \ ((−∞,−α2
] ∪ [−β2, 0]) going around the interval

[−β2, 0] (which we can also view as a closed loop on the first sheet of the Riemann
surface).

The limit (2.28) does not depend on ξ1 or ξ2 as long as these are in the gas region. The ker-
nel Kgas still depends on the parameters α and β and therefore the two-periodic structure
is still present in this limit.

The proof of Theorem 2.8 is in Section 6.5.

Remark 2.9. In (2.28) we can see the exponential decay of correlations that is charac-
teristic for the gas phase as follows. We combine the factor z(1m)/2 with A−1m(z), since
z(1m)/2A−1m(z) = W−(1m)/2(z) by (2.15). We find from this and (2.10) and (2.15) that

F(z)z(1m)/2A−1m(z) = F(z)λ
−(1m)/2
1 (z),

(F (z)− I2)z
(1m)/2A−1m(z) = (F (z)− I2)λ

−(1m)/2
2 (z)

= (F (z)− I2)λ
(1m)/2
1 (z)

since λ2 = λ
−1
1 (see Lemma 5.2(d) below). Thus (2.28) can be written as

Kgas(m, n;m
′, n′) =


1

2πi

∮
γ
F(z)λ

−(1m)/2
1 (z)z(1n)/2 dz

z
if 1m ≥ 0,

1
2πi

∮
γ
(F (z)− I2)λ

(1m)/2
1 (z)z(1n)/2 dz

z
if 1m < 0.

(2.29)

By analyticity and Cauchy’s theorem, we are free to deform the contour γ as long as it
goes around the interval [−β2, 0] and does not intersect (−∞,−α2

]. Since β < 1 < α

we can deform it to a circle centered at zero of radius < 1 or to a circle of radius > 1.
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If 1n ≥ 0 we deform to a circle |z| = r < 1 and if 1n < 0 we deform to a circle
|z| = r > 1. In both cases the factor z(1n)/2 is exponentially small as |1n| → ∞.

Since |λ1| > 1 on γ (as will follow from Lemma 5.2(d, f) below) the factor
λ
±(1m)/2
1 (z) is also exponentially small as |1m| → ∞. It follows that the gas kernel

(2.29) decays exponentially as |1m| + |1n| → ∞.

2.6. Cusp points

On the boundary between the gas phase and the liquid phase, the gas kernel (2.28) is
still the dominant contribution. This phenomenon was already observed by Chhita and
Johansson [20] and further investigated by Beffara, Chhita and Johansson [9], who looked
at the diagonal point ξ1 = ξ2 on the boundary and proved that after averaging there is
Airy-like behavior in the first subleading term.

We consider the cusp points, and show explicitly the appearance of Pearcey-like be-
havior in the subleading term of the kernel KN .

The four cusp points are located at (ξ1, ξ2) =
(
±
α−β
α+β

, 0
)

and (ξ1, ξ2) =
(
0,±α−β

α+β

)
in

the phase diagram. We focus on the top cusp point with coordinates (ξ∗1 , ξ
∗

2 ) =
(
0, α−β

α+β

)
.

At this cusp point the triple saddle is located at the branch point −α2.

Theorem 2.10. Suppose N , m + n and m′ + n′ are even. Write m = (1 + ξ1)N , n =
(1+ ξ2)N , m′ = (1+ ξ ′1)N , n′ = (1+ ξ ′2)N and assume

N3/4ξ1 → c1u, N1/2(ξ2 − ξ
∗

2 )→ c2v, ξ∗2 =
α − β

α + β
,

N3/4ξ ′1 → c1u
′, N1/2(ξ ′2 − ξ

∗

2 )→ c2v
′

(2.30)

as N →∞, with fixed u, u′, v, v′ and with constants

c1 =
21/4
√
α − β

, c2 =

√
2

α + β
. (2.31)

Then, in case m is even,

lim
N→∞

N1/4(−1)(1n−1m)/2α−1n
(
KN (m, n;m′, n′)−Kgas(m, n;m

′, n′)
)

=

√
α − β

21/4

(
1 1
−1 −1

)
1

(2πi)2

∫
6∪(−6)

∫
iR

e
1
4 s

4
+

1
2 vs

2
+us

e
1
4 t

4+ 1
2 v
′t2+u′t

ds dt

t − s
(2.32)

with contours 6 and −6 as shown in Figure 7.
In case m is odd,

lim
N→∞

N1/4(−1)(1n−1m)/2α−1n
(
KN (m, n;m′, n′)−Kgas(m, n;m

′, n′)
)

=

√
α − β

21/4

(
1 1
−1 −1

)
1

(2πi)2

∫
6∪(−6)−1

∫
iR

e
1
4 s

4
+

1
2 vs

2
+us

e
1
4 t

4+ 1
2 v
′t2+u′t

ds dt

t − s
(2.33)

where (−6)−1 indicates that the orientation on −6 is reversed.

The proof of Theorem 2.10 is in Section 6.6.
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6

−6

iR

Fig. 7. The contours of integration for the Pearcey integrals in (2.32) and (2.33).

The double integral in (2.32),

1
(2πi)2

∫
6∪(−6)

∫
iR

e
1
4 s

4
+

1
2 vs

2
+us

e
1
4 t

4+ 1
2 v
′t2+u′t

ds dt

t − s
, (2.34)

is, up to a gaussian, known as the Pearcey kernel. It is one of the canonical kernels in
random matrix theory that arises typically as a scaling limit near a cusp point. It was
first described by Brézin and Hikami [17] in the context of random matrices with an
external source (see also [13]). The Pearcey process was defined in [58, 63]. More recent
contributions are for example [1, 10, 41]. Note that the actual Pearcey kernel includes a
gaussian in addition to the double integral in (2.34). Remarkably, this term is hidden in
the gas kernel and can be retrieved by a steepest descent analysis of that kernel.

Theorem 2.11. Under the same assumptions as in Theorem 2.10 we have

lim
N→∞

N1/4(−1)(1n−|1m|)/2α−1nKgas(m, n;m
′, n′)

=


√
α − β

21/4

(
1 1
−1 −1

)
1

√
2π(v − v′)

e
−
(u−u′)2

2(v−v′) if v > v′,

0
if v < v′ or
if v = v′ and u 6= u′,

(2.35)

as N →∞.

It is very curious that the double integral part of the Pearcey kernel appears in the scal-
ing limit at the cusp point, but only in the subleading term. A similar phenomenon was
already observed in [20] on the smooth parts of the liquid-gas boundary. The gas phase is
dominant with subleading Airy behavior. Also here the gaussian part of the Airy kernel
is hidden in the gas kernel [20, §3.2]. With some effort we can also find this from our
approach.

3. Non-intersecting paths

We discuss non-intersecting paths on the Aztec diamond. What follows in this section is
not new, and can be found in several places; see e.g. [43, 44, 45] and the recent works
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[7, 46]. Note, however, that we use a (random) double Aztec diamond to extend the paths
instead of a deterministic extension in [43, 44]. Since the discussion is rather standard,
we allow ourselves to be brief and refer to the arXiv version of the paper for more details.

3.1. Non-intersecting paths

The South, West and East dominos are marked by line segments as shown in Figure 8. The
North dominos have no marking. There are also particles on the West and South dominos,
but these will only play a role later on. We look at the line segment as part of paths that
go from left to right and go either up (in a West domino), down (in an East domino), or
horizontal (in a South domino). Each segment enters a domino in the black square, and
exits it from the white square within the domino.

By including the markings on the tiles we obtain non-intersecting paths, starting at
the lower left side of the Aztec diamond and ending at the lower right side. In the pictures
that follow we forget about the black/white shading of the dominos.

West

North

South

East

Fig. 8. Line segments and particles on the dominos, which lead to non-intersecting paths in a
domino tiling of the Aztec diamond.

Each path ends at the same height as where it started. Observe that the lengths of the
paths vary greatly. To obtain a more symmetric picture, which will be useful for what
follows, we attach to the right bottom side of the original Aztec diamond of size 2N
another one of size 2N − 1 as in Figure 9. It is not hard to see [32, Lemma 3.2] that any
domino tiling of the double Aztec diamond splits into a domino tiling of the original Aztec
diamond of size 2N and a domino tiling of the attached Aztec diamond of size 2N − 1.
In other words: there are no dominos that are partly in the original Aztec diamond and
partly in the newly attached Aztec diamond.

We thus cover the second Aztec diamond with dominos, independently from what
we did in the original Aztec diamond. We also put in the markings with line segments.
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Fig. 9. The double Aztec diamond (left) and a tiling of the double Aztec diamond with non-
intersecting paths and particles along the paths (right).

A possible tiling is shown in Figure 9 together with the corresponding non-intersecting
paths.

The double Aztec diamond with partial overlap is considered in [2, 3], where the
phenomenon of a tacnode is studied. For us, the two Aztec diamonds do not overlap and
there is no tacnode phenomenon.

3.2. Modified paths on a graph

We are going to modify the paths in a standard way. First of all, we perform a shear
transform (x, y) 7→ (x+y, y) so that the paths end at the same height as they started. We
also include some trivial steps so that each possible step up is preceded by a horizontal
step of half a unit. See Figure 10.

0 0.5 1 1.5 2 2.5 3 3.5 4

−2

−1

0

1

2

3

4

5

6

Fig. 10. Modified paths on a directed graph. Horizontal and diagonal edges are oriented to the right
and vertical edges are oriented downwards.
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We then put particles on the paths as follows. The particles are on the integer lattice
Z×Z. We take coordinates so that the initial vertices are at (0, j) for j = 0, . . . , 2N − 1
and the ending vertices are at (2N, j) for j = 0, . . . , 2N − 1. We then put particles at the
intersection points of the paths and the vertical lines as follows. If the path has no vertical
part, then it has a unique intersection point with the vertical line, and we put a particle
there. If there is a vertical part of the path at that level, then we put the particle at the
highest point (see Figure 10). Now there are 4N + 1 particles on each path.

The new paths have a two-step structure. Starting from an initial position, either we
move horizontally to the right half a unit and stay at the same height, or we go diagonally
up one unit in the vertical direction and horizontally half a unit. We call this a Bernoulli
step. In both cases we end at a particle on the line with horizontal coordinate 1/2. Then
we make a number of vertical down-steps followed by a horizontal step half a unit to the
right. The number of down-steps can be any non-negative integer, including zero. We call
this a geometric step. Then we repeat the pattern. We do a Bernoulli step, a geometric
step, a Bernoulli step, etc. The final step in each path is a geometric step, which should
take us to the same height as where the path started.

Another requirement is that the resulting paths are non-intersecting. Any such path
structure is in one-to-one correspondence with a unique domino tiling of the double Aztec
diamond. The paths lie on an infinite directed graph that is also shown in Figure 10. We
call it the Aztec diamond graph.

3.3. Weights

There is a one-to-one correspondence between tilings of the double Aztec diamond and
non-intersecting paths on the Aztec diamond graph with prescribed initial and ending
positions as described above.

In the two-periodic Aztec diamond we assign a weight (2.2) to a tiling with the cor-
responding probability (2.3). To be able to transfer this to the paths, we recall that in a
Bernoulli step a diagonal up-step corresponds to a West domino, and a horizontal step
corresponds to a South domino. The vertical steps in a geometric step correspond to East
dominos. The horizontal step that closes a geometric step was added artificially and does
not correspond to a domino.

We do not see the North dominos in the paths, and therefore we cannot transfer the
weights on the dominos to weights on path segments directly. It is possible to assign
weights to dominos in which North dominos have weight 1 and which is equivalent to
(2.1) as it leads to the same probabilities (2.3) on tilings. This was also done in [20], but
we present it in a different way here. A simple argument [32, Lemma 3.1] shows that each
column has the same number of North and South dominos, and these dominos all have
the same weight (2.1). We obtain the same weight (2.2) of a tiling if instead of assigning
the same weight a or b to all the horizontal dominos in a column, we assign a2 or b2 to
the South dominos and weight 1 to the North dominos in that column.

For symmetry reasons we apply the same operation to East and West dominos. Then
instead of (2.1) we assign the following weight to a domino D, where we recall that
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Fig. 11. Weights on the edges of the Aztec diamond graph corresponding to the weights (3.1) on
dominos. Horizontal edges and diagonal edges from level m ∈ Z to m+ 1/2 have weight α in even
numbered rows and weight β in odd numbered rows. The vertical edges and horizontal edges from
level m+ 1/2 to m+ 1 have weight 1 and these weights are not shown in the figure.

α = a2 and β = b2:

ŵ(D) =



α if D is a South domino in an even column,
β if D is a South domino in an odd column,
β if D is a West domino in an even row,
α if D is a West domino in an odd row,
1 if D is a North or East domino.

(3.1)

Since North dominos have weight 1, we can transfer the weights (3.1) on dominos to
weights on the edges of the Aztec diamond graph. The result is shown in Figure 11. The
weights alternate per row.

3.4. Transition matrices

We use the layered structure of the Aztec diamond graph to introduce transition matrices
between levels. Here a level is just the horizontal coordinate. There are integer levels m
and half-integer levels m+ 1/2 with m ∈ Z.

The transition from level m to m + 1/2 is a Bernoulli step. Because of the weights,
the transition matrix is, for x, y ∈ Z,

Tm,m+1/2(x, y) =


α if x is even and y ∈ {x, x + 1},
β if x is odd and y ∈ {x, x + 1},
0 otherwise.

(3.2)
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Then Tm,m+1/2 is two-periodic, Tm,m+1/2(x+2, y+2) = Tm,m+1/2(x, y) for all x, y ∈ Z.
As a matrix it is a block Laurent matrix (i.e., a block Toeplitz matrix that is infinite in both
directions) with 2 × 2 blocks. The diagonal block is

( α α
0 β
)
, the block on the first upper

diagonal is
( 0 0
β 0
)
, and all other diagonals are zero. The associated symbol [16] is

Am,m+1/2(z) =

(
α α

0 β

)
+

(
0 0
β 0

)
z =

(
α α

βz β

)
(3.3)

with z ∈ C.
To go from level m + 1/2 to level m + 1, we make a number of vertical down-steps

(possibly zero) and then a horizontal step. All weights are 1 and so the transition matrix
is

Tm+1/2,m+1(x, y) =

{
1 if y ≤ x,
0 if y > x.

(3.4)

This is a Laurent matrix, but we want to view it as a a block Laurent matrix with 2 × 2
blocks. The diagonal block is

(
1 0
1 1

)
, all blocks below the main diagonal are

(
1 1
1 1

)
and all

blocks above the main diagonal are zero. The symbol is

Am+1/2,m+1(z) =

(
1 0
1 1

)
+

−1∑
j=−∞

(
1 1
1 1

)
zj =

1
z− 1

(
z 1
z z

)
(3.5)

with |z| > 1.
Then (the product is matrix multiplication)

T = Tm,m+1/2Tm+1/2,m+1 (3.6)

is the transition matrix from level m to level m + 1, and T is two-periodic. The symbol
for T is easily seen to be the product of (3.3) and (3.5):

A(z) = Am,m+1/2(z)Am+1/2,m+1(z) =
1

z− 1

(
2αz α(z+ 1)

βz(z+ 1) 2βz

)
, (3.7)

which agrees with (2.9).
More generally, for any integers m < m′ we have a transition matrix T m

′
−m to go

from level m to level m′ with symbol Am
′
−m. In particular T 2N is the transition matrix

from level 0 to 2N with symbol A2N .
Now we want to invoke the Lindström–Gessel–Viennot lemma [38, 53] (see also [45,

Theorem 3.1] for a proof), which gives an expression for the weighted number of non-
intersecting paths on the graph with prescribed starting and ending positions. For us,
the starting positions are (0, j), j = 0, . . . , 2N − 1, and the ending positions (2N, j),
j = 0, . . . , 2N − 1. Since T 2N (j, k) is the sum of all weighted paths from (0, j) to
(2N, k), by the Lindström–Gessel–Viennot lemma the partition function is a determinant

ZN = det [T 2N (j, k)]2N−1
j,k=0 . (3.8)
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Because of the layered structure in the graph, we can also look at the positions of
the particles at intermediate levels m. We restrict to integer values m, but we could also
include the half-integer values.

Given an admissible 2N -tuple of non-intersecting paths, we then find a point set con-
figuration (xmj )

2N−1,2N−1
j=0,m=1 where xm0 < xm1 < · · · < xmN−1 are the vertical coordinates of

the particles at level m. The probability measure on admissible tuples of non-intersecting
paths yields a probability measure on particle configurations in {1, . . . , 2N − 1} × ZN .

Then another application of the Lindström–Gessel–Viennot lemma shows that the
joint probability for the particle configuration (xmj )

2N−1,2N−1
j=0,m=1 is

Prob((xmj )
2N−1,2N−1
j=0,m=1 ) =

1
ZN

N−1∏
m=0

det [T (xmj , x
m+1
k )]2N−1

j,k=0

with x0
j = x

2N
j = j for j = 0, . . . , 2N − 1. (3.9)

The point process (3.9) is determinantal. The correlation kernel is given by the Eynard–
Mehta theorem [36] (see also [14, 15]). In the next section we will show how the kernel
can be represented in terms of certain matrix valued orthogonal polynomials. In fact, the
connection with matrix valued polynomials will hold in greater generality.

4. Determinantal point processes and MVOP

4.1. The model

We analyze the following situation. We take an integer p ≥ 1, and we consider transition
matrices Tm : Z2

→ R form ∈ Z that are p-periodic. This means that Tm(x+p, y+p) =
Tm(x, y) for every m and x, y ∈ Z.

The model also depends on integers N,L ∈ N andM ∈ Z. There will be L+ 1 levels
numbered as 0, 1, . . . , L. At each level m there are pN particles at integer positions
denoted by xm0 < xm1 < · · · < xmpN−1. The initial and ending positions (at levels 0 and L)
are deterministic and are given by consecutive integers

x0
j = j, xLj = pM + j, j = 0, . . . , pN − 1. (4.1)

Our assumption for this section is the following.

Assumption 4.1. (xmj )
pN−1,L
j=0,m=0 is a multi-level particle system with joint probability

Prob((xmj )
pN−1,L
j=0,m=0) =

1
ZN

det [δj (x0
k )]

pN−1
j,k=0

·

(L−1∏
m=0

det [Tm(xmj , x
m+1
k )]

pN−1
j,k=0

)
· det [δpM+j (xLk )]

pN−1
j,k=0 , (4.2)

where the transition matrices Tm are p-periodic for every m. The constant ZN in (4.2) is
a normalizing constant and δj (x) = δj,x is the Kronecker delta.
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The determinantal factors with the delta-functions in (4.2) ensure the boundary condi-
tions (4.1).

Assumption 4.1 is satisfied for the two-periodic Aztec diamond by (3.9), provided we
take p = 2, L = 2N , M = 0 and Tm = T for each integer m, with T given by (3.6),
using (3.2), (3.4). There are three crucial assumptions contained in Assumption 4.1.

• The transition matrices are p-periodic. It means that the Tm are block Laurent matrices
with p × p blocks.
• The initial and ending positions of the particles are at consecutive integers. This as-

sumption allows us to make a connection with matrix valued polynomials. Note that
we allow for a shift pM in the positions at level L compared to the initial positions.
• The transition matrices are such that (4.2) is a probability. That is, (4.2) is always non-

negative and we can find a normalization constant ZN such that all probabilities (4.2)
add up to 1.

We have made two other assumptions, namely

• the number pN of particles at each level is a multiple of p, and
• the shift pM in the positions of the particles at the final level is also a multiple of p,

but these are less essential. They are made for convenience and ease of notation and could
be relaxed if needed.

For future analysis, we also assume

Assumption 4.2. The symbols for the block Laurent matrices Tm, m ∈ Z, are analytic in
a common annular domain R1 < |z| < R2 in the complex plane.

For m < m′ we use
Tm,m′ = Tm · Tm+1 · · · Tm′−1 (4.3)

for the transition matrix from levelm to levelm′. The matrix multiplication is well defined
because of Assumption 4.2. Every Tm,m′ is a block Laurent matrix with period p.

The Eynard–Mehta theorem [36] applies to (4.2). We present the Eynard–Mehta the-
orem as stated in [14]. We assume φj , ψj for j = 0, 1, . . . , N − 1 are given functions,
and for functions φ,ψ : Z→ R and T : Z× Z→ R we use

(φ ∗ T )(y) =
∑
x∈Z

φ(x)T (x, y), (T ∗ ψ)(x) =
∑
y∈Z

T (x, y)ψ(y),

φ ∗ ψ =
∑
x∈Z

φ(x)ψ(x).

Theorem 4.3 (Eynard–Mehta). A multi-level particle system of the form

Prob((xmj )
N−1,L
j=0,m=0) =

1
ZN

det [φj (x0
k )]

N−1
j,k=0

·

(L−1∏
m=0

det [Tm(xmj , x
m+1
k )]N−1

j,k=0

)
· det [ψj (xLk )]

N−1
j,k=0, (4.4)
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where φj , ψj for j = 0, 1, . . . , N−1 are arbitrary given functions, is determinantal with
correlation kernel

K(m, x;m′, y) = −χm>m′Tm′,m(y, x)

+

N−1∑
i,j=0

(φi ∗ T0,m)(x)[G−t ]i,j (Tm′,L ∗ ψj )(y) (4.5)

where the Gram matrix G is defined by

G = (Gi,j )N−1
i,j=0, Gi,j = φi ∗ T0,L ∗ ψj . (4.6)

We apply Theorem 4.3 to (4.2) and we find the following correlation kernel:

Corollary 4.4. The multi-level particle system (4.2) is determinantal with correlation
kernel

K(m, x;m′, y) = −χm>m′Tm′,m(y, x)

+

pN−1∑
i,j=0

T0,m(i, x)[G−t ]i,jTm′,L(y, pM + j) (4.7)

with
G = (Gi,j )

pN−1
i,j=0 , Gi,j = T0,L(i, pM + j). (4.8)

Proof. This follows from Theorem 4.3 since we have (δi ∗ T0,m)(x) = T0,m(i, x) and
(Tm′,L ∗ δpM+j )(y) = Tm′,L(y, pM + j). ut

The Gram matrix G in (4.6) is a finite section of the block Laurent matrix T0,L. It has size
pN×pN and we also view it as a block Toeplitz matrix of sizeN×N with blocks of size
p × p. It is part of the conclusion of the Eynard–Mehta Theorem 4.3 that G is invertible,
and so the invertibility is in particular a consequence of Assumptions 4.1 and 4.2.

4.2. Symbols and matrix biorthogonality

Associated with the block Laurent matrices Tm and Tm,m′ we have the symbolsAm(z) and
Am,m′(z). According to Assumption 4.2 all symbols are analytic in an annular domain
R1 < |z| < R2. We have the identity

Am,n(z) = Am(z)Am+1(z) · · ·Am′−1(z), m < m′, (4.9)

for R1 < |z| < R2. The series that define the symbol do not commute (in general) and
thus the order of the factors in the product is important.

We let γ be a circle of radius R ∈ (R1, R2) with counterclockwise orientation. By
Cauchy’s theorem, we can recover the Laurent matrix entries from the symbols, and we
have

[Tm,m′(px + i, py + j)]
p−1
i,j=0 =

1
2πi

∮
γ

Am,m′(z)z
x−y dz

z
. (4.10)
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In particular

[T0,L(px + i, pM + py + j)]
p−1
i,j=0 =

1
2πi

∮
γ

A0,L(z)z
x−y−M dz

z
, (4.11)

and if we restrict to 0 ≤ x, y ≤ N − 1 then the blocks (4.11) are the p × p blocks in the
Gram matrix G (see (4.8)).

We consider the matrix-valued weight

W0,L(z) =
A0,L(z)

zM+N
, z ∈ γ, (4.12)

on the contour γ . Clearly W0,L also depends on M and N but we do not include this in
the notation. It introduces a bilinear pairing between p × p matrix valued functions,

〈P,Q〉 =
1

2πi

∮
γ

P(z)W0,L(z)Q
t (z) dz (4.13)

where Qt denotes the matrix transpose (no complex conjugation). The integral is taken
entrywise, and so 〈P,Q〉 is again a p × p matrix.

A matrix valued function is a polynomial of degree ≤ d if all its entries are polyno-
mials of degree ≤ d .

For invertible matrices P and Q of size pN × pN we define
P0(z)

P1(z)
...

PN−1(z)

 = P


Ip
zIp
...

zN−1Ip

 ,


Q0(z)

Q1(z)
...

QN−1(z)

 = Q


zN−1Ip
...

zIp
Ip

 . (4.14)

Then Pj and Qj for j = 0, 1, . . . , N − 1 are matrix valued polynomials of degrees
≤ N − 1.

Proposition 4.5. Let P and Q be invertible pN×pN matrices, and let Pj ,Qj be the ma-
trix valued polynomials as in (4.14). Let G be the Gram matrix from (4.8). The following
are equivalent:

(a) G−1
= QtP.

(b) For each j, k = 0, 1, . . . , N − 1,

1
2πi

∮
γ

Pj (z)W0,L(z)Q
t
k(z) dz = δj,kIp (4.15)

where W0,L(z) = A0,L(z)/z
M+N as in (4.12).
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Proof. Consider

X =
1

2πi

∮
γ


P0(z)

P1(z)
...

PN−1(z)

W0,L(z)
(
Qt

0(z) Qt
1(z) · · · Qt

N−1(z)
)
dz.

Then, by (4.12) and the definition (4.14) of the matrix valued polynomials,

P−1X(Q−1)t =
1

2πi

∮
γ


Ip
zIp
...

zN−1Ip

 A0,L(z)

zM

(
Ip z−1Ip · · · z−N+1Ip

) dz
z
.

This is a block Toeplitz matrix with p × p blocks. For 0 ≤ x, y ≤ N − 1, the xyth block
is

1
2πi

∮
γ

A0,L(z)z
x−y−M dz

z
,

which by (4.8) and (4.11) is equal to the xyth block of G. Thus P−1X(Q−1)t = G,
which means that G−1

= QtP if and only if X = IpN . This proves the proposition, since
X = IpN is equivalent to the biorthogonality (4.15). ut

The property (4.15) is a matrix valued biorthogonality between the two sequences
(Pj )

N−1
j=0 and (Qj )

N−1
j=0 . The matrix valued biorthogonal polynomials are clearly not

unique but depend on the particular factorization of G−1.

4.3. Reproducing kernel

Let G−1
= QtP be any factorization of G−1 and let Pj , Qj be the matrix polynomials as

in (4.14). We consider

RN (w, z) =

N−1∑
j=0

Qt
j (w)Pj (z), (4.16)

which is a bivariate polynomial of degree ≤ N − 1 in both w and z.

Lemma 4.6.

(a) For every matrix valued polynomial P of degree ≤ N − 1 we have

1
2πi

∮
γ

P(w)W0,L(w)RN (w, z) dw = P(z). (4.17)

(b) For every matrix valued polynomial Q of degree ≤ N − 1 we have

1
2πi

∮
γ

RN (w, z)W0,L(z)Q
t (z) dz = Qt (w). (4.18)
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(c) Either of the properties (a) and (b) characterizes (4.16) in the sense that if a bivariate
polynomial R̂N (w, z) of degree ≤ N − 1 in both w and z satisfies either (a) or (b),
then R̂N (w, z) = RN (w, z) for every w, z ∈ C.

Proof. Parts (a) and (b) are immediate from the biorthogonality (4.15) and the
fact that any matrix valued polynomials P of degree ≤ N − 1 can be writ-
ten as P(z) =

∑N−1
k=0 AkPk(z) =

∑N−1
k=0 BkQk(z) for suitable constant matrices

A0, . . . , AN−1, B0, . . . , BN−1.
Let R̂N (w, z) be as in part (c), and suppose that

1
2πi

∮
γ

R̂N (w, z)W0,L(z)Q
t (z) dz = Qt (w) (4.19)

for every matrix valued polynomial Q of degree ≤ N − 1. For a fixed w we note that
z 7→ R̂N (w, z) is a matrix valued polynomial of degree ≤ N − 1 and it can be written
as a linear combination of P0, . . . , PN−1 with matrix coefficients. The matrix coefficients
depend on w, and we get for some Aj (w), j = 0, . . . , N − 1,

R̂N (w, z) =

N−1∑
j=0

Aj (w)Pj (z). (4.20)

Then taking (4.19) with Q = Qk , and using the biorthogonality (4.15), we get

Qt
k(w) =

N−1∑
j=0

Aj (w)
1

2πi

∮
γ

Pj (z)W0,L(z)Q
t
k(z) dz = Ak(w)

for every k = 0, . . . , N − 1. Thus R̂N (w, z) = RN (w, z) by (4.20) and (4.16). This
proves part (c) in case the reproducing property of (b) is satisfied. The other case follows
similarly. ut

Due to (4.17), (4.18), we call RN (w, z) the reproducing kernel for the pairing (4.13).
From Lemma 4.6(c) we find in particular that the sum in (4.16) does not depend on

the particular choice of factorization G−1
= QtP. It does depend on G, as can also be

seen from the expression obtained from (4.14) and (4.16),

RN (w, z) =
(
wN−1Ip · · · wIp Ip

)
G−1


Ip
zIp
...

zN−1Ip

 , (4.21)

which clearly only depends on G.

4.4. Main theorem

Now we are ready for the main theorem in this section.
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Theorem 4.7. Assume the transition matrices Tm are p-periodic and that the above As-
sumptions 4.1 and 4.2 are satisfied. Then the multi-level particle system (4.2) is determi-
nantal with correlation kernel K given by

[K(m,px + j ;m′, py + i)]
p−1
i,j=0 = −

χm>m′

2πi

∮
γ

Am′,m(z)z
y−x dz

z

+
1

(2πi)2

∮
γ

∮
γ

Am′,L(w)RN (w, z)A0,m(z)
wy

zx+1wM+N
dz dw,

x, y ∈ Z, 0 < m,m′ < L, (4.22)

where RN (w, z) is the reproducing kernel (4.16) built out of matrix valued biorthogonal
polynomials associated with the weight W0,L(z) = A0,L(z)/z

M+N on γ .

Proof. We know that the particle system is determinantal with kernel given by (4.7).
The first term in (4.7) gives rise to the first term on the right-hand side of (4.22) in

view of (4.10) (note that x and y are interchanged in Tm′,m(y, x) in (4.7)).
Let K0(m, x;m

′, y) be the second term on the right-hand side of (4.7). Instead of
the summation indices i and j in the double sum we use pν + k and pν′ + k′ with
0 ≤ ν, ν′ ≤ N − 1, 0 ≤ k, k′ ≤ p − 1. Then from (4.7),

K0(m, px + j ;m
′, py + i)

=

N−1∑
ν,ν′=0

p−1∑
k,k′=0

Tm′,L(py + i, pM + pν
′
+ k′)[G−1

]pν′+k′,pν+kT0,m(pν + k, px + j).

(4.23)

Using (4.10) we can write this in block form

[K0(m, px + j ;m
′, py + i)]

p−1
i,j=0 =

(
1

2πi

∮
γ

Am′,L(w)w
y−M−ν′ dw

w

)
0≤ν′≤N−1

G−1

·

(
1

2πi

∮
γ

A0,m(z)z
ν−x dz

z

)t
0≤ν≤N−1

(4.24)

where the first factor on the right-hand side of (4.24) is a block row vector of length N
with p × p blocks, and the last factor is a similar block column vector. We combine the
integrals to obtain a double integral and then we use (4.21) to find the double integral in
(4.22). This completes the proof. ut

4.5. Matrix valued orthogonal polynomials

The goal of this subsection and the next is to express the reproducing kernel (4.16) (or
(4.21)) in terms of matrix valued orthogonal polynomials (MVOP) and use a Christoffel–
Darboux formula for the sum (4.16). Such a formula is known for MVOP in various
forms [4, 6, 25, 39]. We are however in a non-standard situation, with a non-Hermitian
orthogonality, and the MVOP need not exist for every degree. Fortunately, the degree N
MVOP will exist in the present situation, as we will explain in this subsection.
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If we can find a factorization G−1
= QtP leading to matrix valued polynomials (4.14)

with Pj (z) = Qj (z) and degPj = j for every j = 0, 1, . . . , N − 1, then we would have
a finite sequence of MVOP that are in fact orthonormal:

1
2πi

∮
γ

Pj (z)W0,L(z)P
t
k (z) dz = δj,kIp, j, k = 0, . . . , N − 1, (4.25)

and then

RN (w, z) =

N−1∑
j=0

P tj (w)Pj (z). (4.26)

From (4.26) it would follow that RN (z, w) = RtN (w, z) and this is an identity that is not
necessarily satisfied. Thus we cannot expect that the orthonormal MVOP exist. Instead
we focus on monic MVOP.

The orthogonality (4.25) is non-Hermitian orthogonality, and it is not associated with
a positive definite scalar product. Also existence and uniqueness of the monic MVOP
is not guaranteed in general. However, the MVOP of degree N does exist, and this is a
consequence of the fact that G is invertible.

Lemma 4.8. There is a unique monic matrix valued polynomial PN (z) = zN Ip + · · · of
degree N such that

1
2πi

∮
γ

PN (z)W0,L(z)z
k dz = 0p, k = 0, 1, . . . , N − 1. (4.27)

Proof. The conditions (4.27) give us p2N linear equations for the p2N unknown coeffi-
cients of a monic matrix valued polynomial of degree N . The linear system has matrix G,
provided we number the coefficients and the conditions appropriately, and since G is
invertible, the existence and uniqueness of PN follows.

More explicitly, write PN (z) = Ipz
N
+
∑N−1
j=0 Cjz

j with p × p matrices Cj to be
determined. The orthogonality conditions

1
2πi

∮
γ

PN (z)W0,L(z)z
N−1−k dz = 0, k = 0, 1, . . . , N − 1,

yield
N−1∑
j=0

Cj
1

2πi

∮
γ

W0,L(z)z
N+j−k dz

z
= −

1
2πi

∮
γ

W0,L(z)z
2N−k dz

z

for k = 0, 1, . . . , N − 1. Since W0,L(z) = A0,L(z)/z
M+N , the left-hand side is

N−1∑
j=0

Cj
1

2πi

∮
γ

A0,L(z)

zM
zj−k

dz

z
=

N−1∑
j=0

CjGj,k
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where Gj,k denotes the (j, k)th block of the block Toeplitz matrix G (see also (4.11)).
Varying k = 0, 1, . . . , N − 1, we see that(

C0 . . . CN−1
)

G = −
1

2πi

∮
γ

W0,L(z)z
2N (Ip z−1Ip · · · z−N+1Ip

) dz
z
.

The matrix G is invertible, and thus the matrix coefficients C0, . . . , CN−1 are uniquely
determined, and the monic MVOP of degree N exists uniquely. ut

4.6. Riemann–Hilbert problem and Christoffel–Darboux formula

The MVOP of degree N is characterized by a Riemann–Hilbert problem of size 2p× 2p.
The RH problem asks for a 2p × 2p matrix valued function Y : C \ γ → C2p×2p

satisfying

• Y is analytic,

• Y+ = Y−

(
Ip W0,L
0p Ip

)
on γ with counterclockwise orientation,

• Y (z) = (I2p +O(z
−1))

(
zN Ip 0p

0p z−N Ip

)
as z→∞.

In the scalar valued case, i.e. p = 1, the RH problem is due to Fokas, Its, and Kitaev [37].
The matrix valued extension can be found in [19, 29, 39]. It is similar to the RH problem
for multiple orthogonal polynomials [64].

The RH problem has a unique solution, since by Lemma 4.8 the monic MVOP of
degree PN exists and is unique. The solution is

Y (z) =

 PN (z)
1

2πi

∮
γ

PN (s)W0,L(s)
s−z

ds

QN−1(z)
1

2πi

∮
γ

QN−1(s)W0,L(s)
s−z

ds

 , z ∈ C \ γ, (4.28)

where QN−1 is a matrix valued polynomial of degree ≤ N − 1 such that

1
2πi

∮
γ

QN−1(z)W0,L(z)z
k dz =

{
0p, k = 0, 1, . . . , N − 2,
−Ip, k = N − 1.

(4.29)

One can show that QN−1 also uniquely exists, since the conditions (4.29) give a system
of p2N linear equations for the p2N coefficients of QN−1, and the matrix of this system
can be identified with G. Since G is invertible, there is a unique solution. If the leading
coefficient of QN−1 would be invertible (which is typically the case, but it is not guaran-
teed in general) then the monic MVOP PN−1 of degree N − 1 would exist as well and
QN−1 = −H

−1
N−1PN−1 for some invertible HN−1.

In the following result we express the reproducing kernel RN (w, z) in terms of the
solution of the RH problem. It can be viewed as a Christoffel–Darboux formula and in
this form it is due to Delvaux [29]. It is similar to the Christoffel–Darboux formulas for
multiple orthogonal polynomials [12, 24] which also use the RH problem.
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Proposition 4.9. We have

RN (w, z) =
1

z− w

(
0p Ip

)
Y−1(w)Y (z)

(
Ip
0p

)
. (4.30)

Proof. This is due to Delvaux [29, Proposition 1.10] (see also [39]). ut

We insert (4.30) into formula (4.22) and find a convenient formula for the correlation
kernel in terms of the solution of the RH problem. A possible asymptotic analysis of
the kernel would consist of two parts. First we do an analysis of the RH problem that
would give us the asymptotic behavior of the kernel (4.30). Then this is followed by an
asymptotic analysis of the double contour integral in (4.22) by means of classical methods
of steepest descent. We are able to do this for the two-periodic Aztec diamond.

4.7. Two-periodic Aztec diamond

We saw in Section 3 that the two-periodic Aztec diamond gives rise to the multi-level
particle system (3.9). This satisfies Assumption 4.1 if we take p = 2 and L = 2N and
M = 0. The transition matrices are independent of m (see (3.6)) and the matrix symbol
is given by (3.7). The weight matrix is W0,L(z) = A0,L(z)/z

M+N
= WN (z) with

W(z) =
A2(z)

z
=

1
z(z− 1)2

(
2αz α(z+ 1)

βz(z+ 1) 2βz

)2

=
1

(z− 1)2

(
(z+ 1)2 + 4α2z 2α(α + β)(z+ 1)

2β(α + β)z(z+ 1) (z+ 1)2 + 4β2z

)
(4.31)

as in (2.15) and (2.19). Observe that W has no pole at the origin.
Theorem 4.7 applies and it gives the form of the correlation kernel, in 2 × 2 matrix

form, that will be stated in (5.4) below. It is equivalent to the form already announced in
(2.21).

The correlation kernel contains the reproducing kernel RN (w, z) with respect to the
varying weight WN , and by Proposition 4.9 the latter kernel is expressed in terms of the
RH problem for the MVOP of degree N . By Lemma 4.8 we conclude that the degree N
monic MVOP with respect to the weight WN exists. While it does not matter for what
follows, one can show that the MVOP of lower degrees also exist [32, Lemma 4.10].

In the next section we continue with the analysis of the RH problem and we show that
the correlation kernel (2.21) can be rewritten as (2.8).

5. Analysis of the RH problem

We consider an Aztec diamond of size 2N with two-periodic weighting.

5.1. Correlation kernel

In the two-periodic Aztec diamond we find the matrix symbol

A(z) =
1

z− 1

(
2αz α(z+ 1)

βz(z+ 1) 2βz

)
, αβ = 1, (5.1)
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and the matrix valued weight is WN with W given by (4.31). Note that WN is a rational
function with a pole at z = 1 only.

The contour γ in the RH problem from Section 4.6 goes around 0 and lies in the
domain |z| > 1. By analyticity, since W only has a pole at z = 1, we are free to deform
the contour to a circle around 1. We use γ1 to denote the circle of radius r < 1 around 1.
We obtain the following RH problem for Y : C \ γ1 → C4×4:

• Y is analytic,
• Y has the jump

Y+(z) = Y−(z)

(
I2 WN (z)

02 I2

)
, z ∈ γ1, (5.2)

• Y has asymptotic behavior

Y (z) = (I4 +O(z
−1))

(
zN I2 02

02 z−N I2

)
as z→∞. (5.3)

Because of Theorem 4.7 and (4.30) we find the following correlation kernel for arbi-
trary integer levels m, m′ with 0 < m,m′ < 2N = L and M = 0:(

KN (m, 2x;m′, 2y) KN (m, 2x + 1;m′, 2y)
KN (m, 2x;m′, 2y + 1) KN (m, 2x + 1;m′, 2y + 1)

)
= −

χm>m′

2πi

∮
γ

Am−m
′

(z)zy−x−1 dz

+
1

(2πi)2

∮
γ0,1

∮
γ0,1

A2N−m′(w)
(
02 I2

)
Y−1(w)Y (z)

(
I2
02

)
Am(z)

wy

zxwN

dz dw

z(z− w)
.

(5.4)

The contour γ0,1 in (5.4) is a circle of radius > 1 + r around the origin, as before. The
radius is large enough for γ1 to lie inside γ0,1.

The analysis of the correlation kernel (5.4) consists of two parts. First we apply a RH
analysis to the RH problem for Y and then we use this for an asymptotic analysis of the
double integral. The RH analysis is remarkably simple. It is not an asymptotic analysis,
since the outcome is an exact new formula for the correlation kernel.

Theorem 5.1. Assume 2y ≥ m′ and N is even. Then the correlation kernel (5.4) is equal
to

−
χm>m′

2πi

∮
γ0,1

Am−m
′

(z)zy−x
dz

z

+
1

(2πi)2

∮
z∈γ0,1

∮
w∈γ1

AN−m
′

(w)F (w)A−N+m(z)
zN/2

wN/2
(z− 1)N

(w − 1)N
wy

zx

dz dw

z(z− w)

(5.5)

where F is given by (2.10).
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Passing from the non-intersecting path model back to the domino tilings of the Aztec
diamond, we should make the change of variables m 7→ m, 2x 7→ m+ n, m′ 7→ m′ and
2y 7→ m′ + n′. Inserting these values in (5.5) we obtain the correlation kernel (2.8) and
so Theorem 2.2 follows immediately from Theorem 5.1.

The rest of Section 5 is devoted to the proof of Theorem 5.1. We follow the general
scheme of the analysis of RH problems, known as the Deift–Zhou steepest descent anal-
ysis [28], which was first applied to orthogonal polynomials in [26, 27]. Extensions to
larger size RH problems are for example in [13, 31]; see also the survey [51] and the
references therein. However, the RH analysis in this section is not an asymptotic analysis,
as it produces the exact formula (5.5).

5.2. Eigenvalues and eigenvectors on the Riemann surface

We use the eigenvalues ρ1,2 of
( 2αz α(z+1)
βz(z+1) 2βz

)
and the eigenvalues λ1,2 of W as already

introduced in (2.12) and (2.17). The corresponding eigenvectors are in the columns of the
matrix

E(z) =

(
α(z+ 1) α(z+ 1)

ρ1(z)− 2αz ρ2(z)− 2αz

)
, (5.6)

and we have the decompositions (2.13), (2.14) and (2.16).
The eigenvalues and eigenvectors are defined and analytic in the complex plane cut

along the two intervals (−∞,−α2
] and [−β2, 0] where we have λ1,± = λ2,∓, ρ1,± =

ρ2,∓, and
E+ = E−σ1 on (−∞,−α2

] ∪ [−β2, 0] (5.7)

with σ1 =
(

0 1
1 0

)
.

As already mentioned in Remark 2.3, we use the two-sheeted Riemann surface R
associated with the equation (2.11). The Riemann surface has genus 1, unless α = β = 1,
in which case the genus is zero.

We use z for a generic coordinate on R, and if we want to emphasize that z is on the
j th sheet, we write z(j) for j = 1, 2. We write λ for the function on R given by

λ(z) = λj (z) if z = z(j) is on the j th sheet (5.8)

(see (2.17)), and similarly for ρ. These are meromorphic on R, namely ρ = (α+β)z+y
and λ = ρ2

z(z−1)2 (see (2.11), (2.12) and (2.17)).

Lemma 5.2. (a) ρ has a simple zero at z = 0, a double zero at z = 1(2) (the point z = 1
on the second sheet), a triple pole at z = ∞, and no other zeros or poles.

(b) λ has a double zero at z = 1(2), a double pole at z = 1(1), and no other zeros or
poles.

(c) The function
ρ(z)− 2αz = (β − α)z+ y (5.9)

has a zero at z = 0, and a double zero at z = −1(1) (if α > β).
(d) λ1(z)λ2(z) = 1 for every z and λ(∞) = 1.
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(e) For real x we have

|λ1,±(x)| = |λ2,±(x)| = 1, x ∈ (−∞,−α2
] ∪ [−β2, 0], (5.10)

λ1(x) > 1 > λ2(x) > 0, x ∈ (0,∞), (5.11)

λ1(x) < −1 < λ2(x) < 0, x ∈ (−α2,−β2). (5.12)

(f) |λ1(z)| > |λ2(z)| for every z ∈ C \ ((−∞,−α2
] ∪ [−β2, 0]).

Proof. Parts (a), (b), and (c) are easy to verify from the definitions. We note that part (d)
comes from the fact that

detW(z) = 1 (5.13)

for every z, which follows from (4.31) by a direct calculation, and therefore λ1(z)λ2(z) =

detW(z) = 1 for every z. Also from (4.31),

lim
z→∞

W(z) =

(
1 0

2α(α + β) 1

)
=: W∞ as z→∞ (5.14)

and so for its eigenvalues we have λ1,2(z)→ 1 as z→∞.
For x ∈ (−∞,−α2

]∪[−β2, 0]we have λ1,±(x) = λ2,∓(x) and λ1,±(x) = 1/λ2,±(x)

because of part (d). Then the identity λ1,+(x)λ1,−(x) = λ2,+(x)λ2,−(x) = 1 follows,
which gives (5.10).

The functions log |λ1| and log |λ2| are harmonic on C\((−∞,−α2
]∪[−β2, 0]∪{1}),

they are both zero on (−∞,−α2
] ∪ [−β2, 0], have the value 1 at infinity, while

limz→1 log |λ1(z)| = +∞, limz→1 log |λ2(z)| = −∞ because of part (b). Then by
the minimum principle for harmonic functions, log |λ1(z)| > log |λ2(z)| for every
z ∈ C \ ((−∞,−α2

] ∪ [−β2, 0]). This establishes part (f), and also the inequalities
(5.11) and (5.12) of part (e) since λ1(x) and λ2(x) are real and positive for x ∈ (0,∞)
and real and negative for x ∈ (−α2,−β2) (see (2.17)). ut

5.3. First transformation Y 7→ X of the RH problem

We use the matrix of eigenvalues (5.6) in the first transformation of the RH problem. We
define

X = Y

(
E 0
0 E

)
, (5.15)

which satisfies the following RH problem.

• X is analytic on C \ (γ1 ∪ (−∞,−α
2
] ∪ [−β2, 0]),

• X has the jumps

X+ =


X−

(
I2 3N

02 I2

)
on γ1,

X−

(
σ1 02
02 σ1

)
on (−∞,−α2

] ∪ [−β2, 0],
(5.16)
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• X has asymptotic behavior

X(z) = (I4 +O(1/z))
(
zNE(z) 02

02 z−NE(z)

)
as z→∞. (5.17)

This is easy to verify from the RH problem for Y , the definition (5.15), and the properties
(2.16) and (5.7).

Since detY (z) = 1 and

detE(z) = −2α(z+ 1)
√
z(z+ α2)(z+ β2), (5.18)

which is easy to check from (5.6), we have by (5.15)

detX = (detE)2 = 4α2z(z+ 1)2(z+ α2)(z+ β2). (5.19)

5.4. Second transformation X 7→ U

Remarkably, we do not need equilibrium measures or g-functions for the next transfor-
mation.

From Lemma 5.2(b) we know that both z 7→ (z− 1)2λ1(z) and z 7→ (z− 1)−2λ2(z)

have a removable singularity at z = 1, and hence they are analytic in C \ ((−∞,−α2
] ∪

[−β2, 0]) without any zeros. We recall that N is even and we put

U = LX

×


diag

(
λ
N/2
1

(z− 1)N
,

λ
N/2
2

(z− 1)N
,
(z− 1)N

λ
N/2
1

,
(z−1)N

λ
N/2
2

)
for |z− 1| > r,

diag
(
(z− 1)NλN/21 ,

λ
N/2
2

(z− 1)N
,

1

(z− 1)NλN/21

,
(z− 1)N

λ
N/2
2

)
for |z− 1| < r,

(5.20)

where L is the constant matrix

L =

(
W
−N/2
∞ 02

02 W
N/2
∞

)
(5.21)

with W∞ as in (5.14). Then U is defined on C \ (γ1 ∪ (−∞,−α
2
] ∪ [−β2, 0]), and from

the definition (5.20) and the RH problem for X we obtain

• U is analytic,
• U has the jumps

U+ =


U−


(z− 1)2N 0 1 0

0 1 0 (z− 1)2N

0 0 (z− 1)−2N 0
0 0 0 1

 on γ1,

U−

(
σ1 02
02 σ1

)
on (−∞,−α2

] ∪ [−β2, 0],

(5.22)
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• U has asymptotic behavior

U(z) = L(I4 +O(1/z))
(
E(z)3N/2(z) 02

02 E(z)3−N/2(z)

)
= (I4 +O(1/z))

(
E(z) 02

02 E(z)

)
as z→∞. (5.23)

To obtain the jump (5.22) on (−∞,−α2
] ∪ [−β2, 0] we also have to use the fact that

λ1,± = λ2,∓ on these cuts.
The asymptotic condition (5.23) requires some explanation. The first equality in (5.23)

is clear from the definition (5.20) of U for |z−1| > r , and the asymptotic behavior (5.16)
of X. By (2.16) we have E(z)3±N/2(z) = W±N/2(z)E(z), so that by (4.31), (5.14), and
(5.21) we get

L

(
E(z)3N/2(z) 02

02 E(z)3−N/2(z)

)
= L

(
WN/2(z)E(z) 02

02 W−N/2(z)E(z)

)
= (I4 +O(1/z))

(
E(z) 02

02 E(z)

)
,

and this leads to the second equality in (5.23).

5.5. Third transformation U 7→ T

In the third transformation we turn the entries (z−1)±2N in the jump matrix on γ1 into an
off-diagonal entry. It corresponds to the opening of lenses in a steepest descent analysis.
We also remove the 24-entry in the jump matrix on γ1.

We define

T (z) =



U(z) for |z− 1| > r,

U(z)


0 0 −1 0
0 1 0 −(z− 1)2N

1 0 (z− 1)2N 0
0 0 0 1

 for |z− 1| < r.
(5.24)

Straightforward calculations, where we just use (5.24) and the RH problem for U , show
that T satisfies

• T : C \ (γ1 ∪ (−∞,−α
2
] ∪ [−β2, 0])→ C4×4 is analytic,

• T has the jumps

T+ =


T−


1 0 0 0
0 1 0 0

(z− 1)−2N 0 1 0
0 0 0 1

 on γ1,

T−

(
σ1 02
02 σ1

)
on (−∞,−α2

] ∪ [−β2, 0],

(5.25)



Two-periodic Aztec diamond and MVOP 1109

• T has asymptotic behavior

T (z) = (I4 +O(1/z))
(
E(z) 02

02 E(z)

)
as z→∞. (5.26)

5.6. Fourth transformation T 7→ S

We next remove the jumps on the negative real axis. We use
(
E 0
0 E

)
as global parametrix,

since it has the same jump on (−∞,−α2
] ∪ [−β2, 0] as T has (see (5.25)). We define

S = T

(
E−1 02
02 E−1

)
, (5.27)

and then S has no jump on (−∞,−α2) ∪ (−β2, 0), that is, S+ = S− on these two
intervals.

Since E is not invertible at z = 0, z = −α2, z = −β2 (see also (5.18)), we could
have introduced singularities at these points. Therefore we look at the combined transfor-
mations Y 7→ X 7→ U 7→ T 7→ S in order to express S directly in terms of Y . For z
outside γ1 we have, by (5.15), (5.20), (5.24) and (5.27),

S = U

(
E−1 02
02 E−1

)
= LX

(
(z− 1)−N3N/2E−1 02

02 (z− 1)N3−N/2E−1

)
= LY

(
(z− 1)−NE3N/2E−1 02

02 (z− 1)NE3−N/2E−1

)
.

Since E3E−1
= W by (2.16), we simply have (recall N is even)

S = LY

(
(z− 1)−NWN/2 02

02 (z− 1)NW−N/2

)
, |z− 1| > r. (5.28)

This shows indeed that (5.27) does not introduce any singularities, since detW(z) = 1
for every z, and W(z) and W−1(z) have poles at z = 1 only.

Thus S has analytic continuation across (−∞,−α2
] and [−β2, 0) and satisfies the

following RH problem that we obtain from (5.27) and the RH problem for T .

• S : C \ γ1 → C4×4 is analytic,
• S has the jump

S+(z) = S−(z)

(
I2 02

(z− 1)−2NF(z) I2

)
for z ∈ γ1, (5.29)

where F(z) = E(z)
(

1 0
0 0

)
E−1(z) is as in (2.10) and (2.14),

• S has asymptotic behavior S(z) = I4 +O(1/z) as z→∞.
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The RH problem is now normalized at infinity. Note also that the transformation (5.27)
restores the property det S = 1, since det T = detX = (detE)2 (see (5.19)).

The jump matrix in (5.29) is lower triangular, and the RH problem for S is normalized
at infinity. This means that we can solve the RH problem explicitly by a contour integral.
We find

S(z) =

(
I2 02

1
2πi

∮
γ1

F(s)

(s−1)2N (s−z) ds I2

)
, z ∈ C \ γ1. (5.30)

5.7. Proof of Theorem 5.1

We analyze the effect of the transformations on the correlation kernel (5.4). From (5.28)
and (2.15) we have, for z,w outside γ1,

(
02 I2

)
Y−1(w)Y (z)

(
I2
02

)
= (w − 1)N (z− 1)NW−N/2(w)

(
02 I2

)
S−1(w)S(z)

(
I2
02

)
W−N/2(z)

= (w − 1)N (z− 1)NwN/2zN/2A−N (w)
(
02 I2

)
S−1(w)S(z)

(
I2
02

)
A−N (z).

Thus

A2N−m′(w)
(
02 I2

)
Y−1(w)Y (z)

(
I2
02

)
Am(z)w−N

= (w − 1)N (z− 1)Nw−N/2zN/2AN−m
′

(w)
(
02 I2

)
S−1(w)S(z)

(
I2
02

)
A−N+m(z),

(5.31)

which is part of the expression that appears in the double integral in (5.4). Because of
(5.30) and

S−1(w) =

(
I2 02

−
1

2πi

∮
γ1

F(s)

(s−1)2N (s−w) ds I2

)
we have

(
02 I2

)
S−1(w)S(z)

(
I2
02

)
=

1
2πi

∮
γ1

F(s)

(s − 1)2N (s − z)
ds −

1
2πi

∮
γ1

F(s)

(s − 1)2N (s − w)
ds

= −
z− w

2πi

∮
γ1

F(s)

(s − 1)2N (s − w)(s − z)
ds. (5.32)
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Using (5.31) and (5.32) we see that the double integral in (5.4) is equal to

−
1

(2πi)2

∮
γ0,1

∮
γ0,1

AN−m
′

(w)

(
1

2πi

∮
γ1

F(s)

(s − 1)2N (s − w)(s − z)
ds

)
× A−N+m(z)

zN/2

wN/2
(w − 1)N (z− 1)N

wy

zx+1 dz dw. (5.33)

We change the order of integration in (5.33) and evaluate thew-integral first. By a residue
calculation,

1
2πi

∮
γ0,1

AN−m
′

(w)(w−1)Nwy−N/2
1

w − s
dw = AN−m

′

(s)(s−1)N sy−N/2, s ∈ γ1.

(5.34)

Indeed, the singularities at w = 0 and w = 1 in the integrand on the left-hand side of
(5.34) are removable (we use (5.1), N is even, and 2y ≥ m′). The only singularity is at
w = s and (5.34) indeed follows by Cauchy’s formula since s ∈ γ1 lies inside γ0,1.

Using (5.34) in (5.33) and changing the integration variable s to w, we obtain the
double integral in (5.5). The single integral in (5.5) is of course immediate from (5.4).
This completes the proof of Theorem 5.1. ut

6. Asymptotic analysis

In the final section of the paper we analyze the formula (2.8) in a scaling limit where
N → ∞ and the coordinates (m, n) and (m′, n′) scale linearly with N . We are going to
distinguish the three phases of the model, and prove Theorems 2.8, 2.10, and 2.11.

6.1. Preliminaries

We first rewrite the formula (2.8) in a form that already contains the gas phase kernel
(2.28) and double integrals with the phase functions 81 and 82 from (2.22) (see Corol-
lary 6.3). We may and do assume that the contour γ0,1 is a contour in C \ ((−∞,−α2

] ∪

[−β2, 0]) going around the interval [−β2, 0] once in positive direction.

Lemma 6.1. The integrand in the double integral in (2.8) is O(w−N+n
′/2−1/2) as

w→∞.

Proof. From the formulas (2.9)–(2.10) we easily get A(w) = O(w), F(w) = O(w1/2),
A2(w) = O(w) and A(w)F(w) = O(w) as w→∞. This implies that AN−m

′

(w)F (w)

= O(w(N−m
′
+1)/2) as w→∞. Use this in the integrand in (2.8) and the lemma follows.

ut

Note that n′ could go up to 2N − 1, and then O(w−N+n
′/2−1/2) = O(w−1). However,

then we are close to the boundary of the Aztec diamond, and we do not consider this in
what follows, since we focus on the gas phase. So we assume n′ ≤ 2N − 2, and then the
integrand in the double integral in (2.8) is O(w−3/2) as w→∞.
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−α2 −β2 0 1

0

γ0,1

Fig. 12. Contours γ0,1 and 0.

Then for a fixed z ∈ γ0,1, we deform the contour γ1 to a contour 0 going around the
negative real axis, starting at −∞ in the upper half-plane and ending at −∞ in the lower
half-plane, as in Figure 12. Since the integrand is O(w−3/2), by Lemma 6.1, there is no
contribution from infinity, but there is a residue contribution from the pole atw = z. These
residues combine to give the z-integral (we use the fact that F(z) and A(z) commute)

1
2πi

∮
γ0,1

F(z)Am−m
′

(z)
z(m

′
+n′)/2

z(m+n)/2
dz

z

Together with the single integral in (2.8) this gives the limit (2.28) that we expect to get
in the gas phase. We proved the following.

Proposition 6.2. Suppose N is even and (m, n), (m′, n′) ∈ BN with m + n and m′ + n′

even and n′ ≤ 2N − 2. Then

KN (m, n;m′, n′) = Kgas(m, n;m
′, n′)

+
1

(2πi)2

∮
γ0,1

dz

z

∫
0

dw

z− w
AN−m

′

(w)F (w)A−N+m(z)
zN/2(z− 1)N

wN/2(w − 1)N
w(m

′
+n′)/2

z(m+n)/2
.

(6.1)

Thus to establish Theorem 2.8 we have to prove that in the gas phase the double integral
in (6.1) tends to 0 as N →∞ at an exponential rate.

We can rewrite (6.1) where we assume that m = (1 + ξ1)N , n = (1 + ξ2)N , m′ =
(1 + ξ ′1)N and n′ = (1 + ξ ′2)N . We use 81 and 82 as in (2.22), and to emphasize that
these functions depend on ξ1 and ξ2, we write 81(z; ξ1, ξ2) and 82(z; ξ1, ξ2).

Corollary 6.3. Suppose m = (1 + ξ1)N , n = (1 + ξ2)N , m′ = (1 + ξ ′1)N , and n′ =
(1+ ξ ′2)N with −1 < ξ1, ξ2, ξ

′

1, ξ
′

2 < 1. Assume N , m+ n and m′ + n′ are even. Then

KN (m, n;m′, n′) = Kgas(m, n;m
′, n′)

+
1

(2πi)2

∮
γ0,1

dz

z

∫
0

dw

z− w
F(w)F(z)eN(81(z;ξ1,ξ2)−81(w;ξ

′

1,ξ
′

2))/2

+
1

(2πi)2

∮
γ0,1

dz

z

∫
0

dw

z− w
F(w)(I2 − F(z))e

N(82(z;ξ1,ξ2)−81(w;ξ
′

1,ξ
′

2))/2, (6.2)

with contours as in Figure 12.
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Proof. Because of (2.13)–(2.14) we have AN−m
′

(w)F (w) = F(w)
(
ρ1(w)
w−1

)N−m′ . Thus in
view of (2.17) and (2.22) we get

AN−m
′

(w)F (w)
w(m

′
+n′)/2

wN/2(w − 1)N
= F(w)λ

(N−m′)/2
1 (w)

wn
′/2

(w − 1)N

= F(w)e−N81(w;ξ
′

1,ξ
′

2)/2, (6.3)

and similarly

A−N+m(z)
zN/2(z− 1)N

z(m+n)/2
= F(z)eN81(z;ξ1,ξ2)/2 + (I2 − F(z))e

N82(z;ξ1,ξ2)/2. (6.4)

Using (6.3) and (6.4) in (6.1) we arrive at (6.2). ut

6.2. Saddle points

The large N behavior of the z-integrals in (6.2) is dominated by the factors eN81(z) and
eN82(z)/2 that are exponential in N . Similarly the w part is dominated by e−N81(w)/2.

We study the saddle points, which in Definition 2.6 were already introduced as the
zeros of the meromorphic differential 8′(z)dz from (2.23) defined on the Riemann sur-
face R associated wth (2.11). Of course, 8 depends on ξ1, ξ2, and thus the saddle points
depend on these parameters. Throughout we restrict to −1 < ξ1, ξ2 < 1. The differential
has simple poles at 1(1), 1(2), 0 and∞ with residues given in the following table.

residue of residue residue residue
pole of dz

z−1 of dzz of λ
′

λ dz of 8′dz

1(1) 1 0 −2 −2ξ1 + 2
1(2) 1 0 2 2ξ1 + 2

0 0 2 0 −2ξ2 − 2
∞ −2 −2 0 2ξ2 − 2

The residues of λ
′

λ
dz at z = 1(1) and z = 1(2) come from the double pole and double zero

that λ has at these points (see Lemma 5.2(b)). The residues add up to zero, as it should
be.

We assume α > 1 so that the genus of R is one. Then there are also four zeros of
8′dz counting multiplicities. Recall that the real part of the Riemann surface consists of
the cycles C1 and C2 as in (2.24).

Proposition 6.4. For every ξ1, ξ2 ∈ (−1, 1) there are at least two distinct saddle points
on the cycle C1.

Proof. If C is a path from P to Q on the Riemann surface avoiding the poles, then by
(2.22), ∫

C
8′(z) dz = [2 log(z− 1)− (1+ ξ2) log z+ ξ1 log λ(z)]QP
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for a choice of continuous branches of the logarithms along the path. Since ξ1 and ξ2 are
real, it follows that the real part is well-defined, it depends on P and Q, but is otherwise
independent of the path. Thus

Re
(∮

C
8′(z) dz

)
= 0 (6.5)

for a closed path C.
Observe that there are no poles on the cycle C1, and 8′ is real there. If there were no

two distinct zeros on C1, then there would be no sign change, and the integral would be
non-zero and real, which would contradict the condition (6.5). ut

The saddle points are explicit in case ξ1 = 0, since then by (2.23),

8′(z)dz =

(
2

z− 1
−

1+ ξ2

z

)
dz. (6.6)

The equation 2
z−1 =

1+ξ2
z

has the unique solution

zc(ξ2) = −
1+ ξ2

1− ξ2
. (6.7)

This gives us two saddle points, namely the two points on R with (6.7) as z-coordinate.
The other two saddles come from the branch points −α2, −β2, which are zeros of the
differential dz. The branch point z = 0 is also a zero of dz, but this zero gets cancelled
by the (double) pole of 1+ξ2

z
in (6.6).

For special values of ξ2 the saddles at z = zc(ξ2) coincide with the saddle at −α2

or −β2. This happens for the values ±ξ∗2 with

ξ∗2 =
α − β

α + β
∈ (0, 1). (6.8)

Then depending on the value of ξ2, we are in the liquid or gas phase, or on the liquid-gas
transition, as defined in Definition 2.7.

Lemma 6.5. Suppose ξ1 = 0 and −1 < ξ2 < 1.

(a) (0, ξ2) cannot be in the solid phase.
(b) If ξ2 ∈ (−1,−ξ∗2 ) ∪ (ξ

∗

2 , 1) then (0, ξ2) ∈ L.
(c) If −ξ∗2 < ξ2 < ξ∗2 then (0, ξ2) ∈ G.
(d) If ξ2 = ±ξ

∗

2 then (0, ξ2) is on the liquid-gas transition.

Proof. (a) It is clear from (6.7) that zc(ξ2) < 0 and so there are no saddles on the positive
real axis.

(b) If −1 < ξ2 < −ξ
∗

2 then zc(ξ2) ∈ (−β
2, 0), and if ξ∗2 < ξ2 < 1 then zc(ξ2) ∈

(−∞,−α2). Even though zc(ξ2) is real, the two saddles with z-coordinate equal to zc(ξ2)

are not on the real part of the Riemann surface, and thus in both cases we are in the liquid
phase.
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(c) If −ξ∗2 < ξ2 < ξ∗2 then zc(ξ2) ∈ (−α
2,−β2). Then the saddles with z-coordinate

equal to zc(ξ2) are on the cycle C1. The branch points −α2 and −β2 are the other two
saddles and they are also on the cycle. Thus all four saddles are on the cycle C1 and they
are distinct, and we are in the gas phase.

(d) If ξ2 = −ξ
∗

2 then zc(ξ2) = −β
2 and if ξ2 = ξ

∗

2 then zc(ξ2) = −α
2. In both cases

there is a triple saddle point at one of the branch points, and we are on the liquid-gas
transition. ut

6.3. Algebraic equation

The condition of coalescing saddle points leads to an algebraic equation for ξ1 and ξ2. We
are able to calculate it with the help of Maple.

First of all, the saddle point equation 8′(z)dz = 0 (see (2.23)) leads us to consider

2
z− 1

−
1+ ξ2

z
+ ξ1

λ′(z)

λ(z)
= 0,

which after clearing denominators, and using (2.17) and (2.12), gives a polynomial equa-
tion in z and y =

√
z(z+ α2)(z+ β2). We eliminate the square root to obtain a polyno-

mial equation in z of degree 4, which is

(1− ξ2)
2z4
+ ((α2

+ β2)((1− ξ2)
2
− ξ2

1 )+ 2(1− ξ2
2 − ξ

2
1 ))z

3

+ (2(α2
+ β2)(1− ξ2

2 − ξ
2
1 )+ 2− 4ξ2

1 + 2ξ2
2 ))z

2

+ ((α2
+ β2)((1+ ξ2)

2
− ξ2

1 )+ 2(1− ξ2
2 − ξ

2
1 ))z+ (1+ ξ2)

2
= 0. (6.9)

By definition, the saddles are the four zeros of the polynomial (6.9).
The discriminant with respect to z of (6.9) is a polynomial in ξ1 and ξ2 that has trivial

factors ξ2
1 and ξ2

2 . The remaining factor is a degree 8 polynomial, which is symmetric in
the two variables. Setting this to zero, we obtain the following equation for coalescing
saddles:

(α2
+ 1)6(ξ8

1 + ξ
8
2 )− 4(α2

+ 1)4(α2
+ 2α − 1)(α2

− 2α − 1)(ξ6
1 ξ

2
2 + ξ

2
1 ξ

6
2 )

−4(α2
+1)4(α4

−α2
+1)(ξ6

1 +ξ
6
2 )+2(α2

+1)2(3α8
−20α6

+82α4
−20α2

+3)ξ4
1 ξ

4
2

+4(α2
+1)2(α8

+17α6
−48α4

+17α2
+1)(ξ4

1 ξ
2
2 +ξ

2
1 ξ

4
2 )

+6(α4
−1)2(α4

+1)(ξ4
1 +ξ

4
2 )+4(α2

−1)2(α8
−22α6

−42α4
−22α2

+1)ξ2
1 ξ

2
2

−4(α2
−1)4(α2

+α+1)(α2
−α+1)(ξ2

1 +ξ
2
2 )+(α

2
−1)6 = 0. (6.10)

Up to a multiplicative constant, the equation (6.10) coincides with the one given by Chhita
and Johansson [20, Appendix A]. See also [61, Section 8] for an equation that corresponds
to (6.10) with α = 2 up to a change of variables. For α = 1, (6.10) reduces (up to a
numerical factor) to (1− ξ2

1 − ξ
2
2 )(ξ

2
1 + ξ

2
2 )

3
= 0, and the real section is the unit circle.

For α > 1, the real section of (6.10) has two components, as shown in Figure 6, both
contained in the square −1 ≤ ξ1, ξ2 ≤ 1. The outer component is a smooth closed curve
that touches the square in the points (±1, 0) and (0,±1). The inner component is a closed
curve with four cusps at

(
±
α−β
α+β

, 0
)

and
(
0,±α−β

α+β

)
.
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Proposition 6.6. Let −1 < ξ1, ξ2 < 1.

(a) (ξ1, ξ2) ∈ G (gas phase) if and only if (ξ1, ξ2) is inside the inner component of the
algebraic curve.

(b) (ξ1, ξ2) ∈ L (liquid phase) if and only (ξ1, ξ2) is outside the inner component and
inside the outer component.

(c) (ξ1, ξ2) ∈ S (solid phase) if and only if (ξ1, ξ2) is outside the outer component.

Proof. If ξ1 = 0 then all statements of the proposition follow from Lemma 6.5.
The proof in the general cases follows by a continuity argument, since the saddles

depend continuously on the parameters ξ1, ξ2, and a saddle can only leave the real part of
the Riemann surface if it coalesces with another saddle and then the pair can move away
from the real part. This transition can thus only occur for ξ1, ξ2 satisfying the algebraic
equation (6.10). Note that this argument also applies to the point at infinity, since by
definition (2.24) the point at infinity is included in the real part.

Combining this with Lemma 6.5 we find that any point (ξ1, ξ2) inside the inner com-
ponent belongs to the gas phase, and any point in between the inner and outer component
belongs to the liquid phase.

To treat the solid phase, we check that any (ξ1, ξ2) close enough to a corner point is in
the solid phase. We can see this from the equation (6.10). If ξ1 = ±1 and ξ2 = −1 then
(6.9) has solutions z = 0, z = 1 (and two other solutions that are on the cycle C1), and if
ξ1 = ±1 and ξ2 = 1 then (6.9) has solutions z = ∞ and z = 1. Thus for each of the four
corner points there are two distinct saddles on C2. Then by continuity this continues to be
the case if (ξ1, ξ2) is close enough to one of the corner points, and it continues to be so
until the two saddles on C2 coalesce, and this happens on the outer component.

This completes the proof of Proposition 6.6. ut

6.4. Gas phase: steepest descent paths

In the gas phase all four saddles are located on the cycle C1, and they are all simple. To
prepare for the proof of Theorem 2.8, we need more precise information on the location
of the saddles.

Lemma 6.7. Suppose (ξ1, ξ2) ∈ G. Then the function

Re8(z) = 2 log |z− 1| − (1+ ξ2) log |z| + ξ1 log |λ(z)| , z ∈ C1, (6.11)

attains a local minimum at two of the saddles, say zs,1 and zs,2, where zs,j is on the j th
sheet for j = 1, 2.

It attains a local maximum on C1 at the other two saddles zs,3 < zs,4. If ξ1 > 0 then
zs,3 and zs,4 are on the first sheet and −α2 < zs,3 < zs,1 < zs,4 < −β

2; if ξ1 < 0 then
zs,3 and zs,4 are on the second sheet and−α2 < zs,3 < zs,2 < zs,4 < −β

2; and if ξ1 = 0
then zs,3 = −α2 and zs,4 = −β2 are at the branch points.

Proof. The conclusion is easy to verify if ξ1 = 0, since z 7→ 2 log |z−1|−(1+ξ2) log |z|
attains a local minimum at z = zc(ξ2) given by (6.7). Thus zs,j = (zc(ξ2))

(j) for j = 1, 2,
and the other saddles zs,3 and zs,4 are at the branch points.
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For ξ1 6= 0, we notice that both λ1 and λ2 are real and negative on the interval
[−α2,−β2

] (see (5.12)), with a square root behavior at endpoints (which follows from
(2.17) and the square roots in (2.12)). Thus λ′1,2 become infinite at the endpoints, and a
closer inspection of (2.12), (2.17) shows that

lim
z→−α2+

λ′1(z)

λ1(z)
= +∞, lim

z→−β2−

λ′1(z)

λ1(z)
= −∞, (6.12)

lim
z→−α2+

λ′2(z)

λ2(z)
= −∞, lim

z→−β2−

λ′2(z)

λ2(z)
= +∞. (6.13)

Thus if ξ1 6= 0, both functions

8′j (z) =
2

z− 1
−

1+ ξ2

z
+ ξ1

λ′(z)

λj (z)
, j = 1, 2, (6.14)

are infinite at the endpoints of the interval [−α2,−β2
] but with opposite signs. By con-

tinuity, each function has an odd number of zeros. There are exactly four simple saddles
on the cycle C1 as we are in the gas phase, and therefore one of 8′j , j = 1, 2, has three
simple zeros and the other one has one simple zero.

We already noted that for ξ1 = 0,

Re8j (z) = 2 log |z− 1| − (1+ ξ2) log |z| + ξ1 log |λj (z)| (6.15)

attains a local minimum at an interior saddle for j = 1, 2. Because of analytic dependence
on parameters this continues to be the case for ξ1 6= 0, and in fact, since there is no
coalescence of saddle points, it remains true for every (ξ1, ξ2) ∈ G. Thus saddles zs,1 and
zs,2 where Re8 has a local minimum exist, and zs,j is on the j th sheet.

Now, if ξ1 > 0 then from (6.12) and (6.14) it follows that limz→−α2+8
′

1(z) = +∞,
limz→−β2−8

′

1(z) = −∞, and so Re81 increases on an interval [−α2,−α2
+ δ] and

decreases on [−β2
− δ,−β2

] for some δ > 0. Since there is a local minimum at zs,1
on the first sheet, it should be that Re81 has two local maxima, say zs,3 < zs,4, with
−α2 < zs,3 < zs,1 < zs,4 < −β

2.
In case ξ1 < 0 we find in the same way that the local maxima are on the second sheet,

with −α2 < zs,3 < zs,2 < zs,4 < −β
2. ut

The path of steepest descent from the saddle zs,j , j = 1, 2, is the curve γsd,j through zs,j
where the imaginary part of8j is constant and the real part decays if we move away from
the saddle. Since Re8j on C1 has a local minimum at zs,j , the path of steepest descent
meets the real line at a right angle.

Emanating from zs,j , j = 1, 2, are also curves γl,j and γr,j where the real part is
constant (l stands for left, and r stands for right). The curve γl,j emanates from zs,j
at angles ±3π/4. It consists of a part in the upper half-plane and its mirror image with
respect to the real line in the lower half-plane. Similarly, γr,j emanates from zs,j at angles
±π/4, and it is also symmetric in the real line. Near zs,j we find that γl,j is to the left of
the steepest descent path γsd,j , and γr,j is to the right.
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Then γl,j and γr,j are parts of the boundary of the domains

�−j = {z ∈ C | Re8j (z) < Re8j (zs,j )}, (6.16)

�+j = {z ∈ C | Re8j (z) > Re8j (zs,j )}. (6.17)

Lemma 6.8. Suppose (ξ1, ξ2) ∈ G, and j = 1, 2. Then the following hold.

(a) All three curves γsd,j , γl,j and γr,j are simple closed curves enclosing the interval
[−β2, 0].

(b) The steepest descent path γsd,j intersects the positive real line at 1, γl,j intersects the
positive real line at a value > 1, while γr,j intersects the positive real line at a value
< 1.

(c) �−j is a bounded open set with at most three connected components. One component
(which we call the main component) contains γsd,j \ {zs,j }. There are at most two
other components: a component containing−β2 (if Re8j (−β2) < Re8j (zs,j )) and
a component containing−α2 (if Re8j (−α2) < Re8j (zs,j )). The other components
(if they exist) are at positive distance from the main component.

(d) �+j is an open set with an unbounded component that contains a contour 01,j that
goes around (−∞,−α2

] and with a bounded component that contains a contour 02,j
going around [−β2, 0].

Proof. The conclusion is straightforward to verify if ξ1 = 0, since in that case

Re81(z) = Re82(z) = 2 log |z− 1| − (1+ ξ2) log |z| (6.18)

and zs,1 = zs,2 = zc(ξ2) = −
1+ξ2
1−ξ2

, which is in (−α2,−β2) since we are in the gas phase.
Then γl,j , γsd,j , and γr,j are independent of j and we have a situation as in Figure 13.
The curves γl,j and γr,j enclose the domain �−j that is shaded in the figure, and �−j has
only one component in this case.

The non-shaded domain �+j has an unbounded component with boundary γl,j ∪
(−∞,−α2

] and a bounded component with boundary γr,j ∪ [−β2, 0]. The contours 01,j
and 02,j can be taken in �+j as specified in part (d) of the lemma.

From (6.18) it is easy to see that Re8j is strictly decreasing on (−∞, zc(ξ2)], strictly
increasing on (zc(ξ2), 0] with value+∞ at 0, then strictly decreasing on [0, 1] with value
−∞ at 1, and finally strictly increasing on [1,∞) with limiting value +∞ at∞.

For ξ1 6= 0 the behavior on the positive real axis is the same: for both j = 1 and
j = 2, 8j (x) is real for x > 0 and it decreases from +∞ to −∞ on [0, 1] and increases
from −∞ to +∞ on [1,∞). This is so because otherwise there would be a zero of the
derivative, which would be a saddle point, but all saddle points are on the cycle C1 since
we are in the gas phase.

The behavior of Re8j on the cuts (−∞,−α2
] ∪ [−β2, 0] is exactly the same as for

ξ1 = 0. Indeed, it does not depend on ξ1 at all, since |λj,±(x)| = 1 for x on the cuts (see
(5.10) and (6.15)). Thus

Re8j (x) is strictly decreasing for x ∈ (−∞,−α2
],

Re8j (x) is strictly increasing for x ∈ [−β2, 0].
(6.19)
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γsd,j

γr,j

γl,j

−α2

�−
j

�+
j

Fig. 13. Illustration for Lemma 6.8. The figure shows the steepest descent curve γsd,j (dark curve)
from the saddle zs,j and the level lines γl,j and γr,j of Re8j that enclose the domain �−

j
for the

case ξ1 = 0. In this case �−
j

has one component, but for ξ1 6= 0, there could be a component
containing −α2, and a component containing −β2.

Now let us follow the paths γl,j and γr,j , where the real part Re8j is constant, as
they move away from zs,j into the upper half-plane. These paths remain bounded, since
Re8j (z) → +∞ as |z| → ∞, which follows from (6.15), Lemma 5.2(c), and the fact
that ξ2 < 1. The two paths cannot come together in the upper half-plane, since they would
then enclose a domain on which Re8j is harmonic and constant on the boundary, which
violates the maximum/minimum principle of harmonic functions. For the same reason
they cannot meet at a point on the positive real axis.

Suppose now one of the paths comes to the cut (−∞,−α2
] at a point q. Then this

path, together with its mirror image in the real line, encloses a bounded domain D and
Re8j has the constant value Re8j (zs,j ) on its boundary. The value of Re8j is smaller
on [q,−α2

] because of (6.19). Also Re8j is harmonic onD\[q,−α2
] and it follows from

the maximum principle for harmonic functions that Re8j (z) < Re8j (zs,j ) for z ∈ D.
This is a contradiction, since zs,j is a saddle at which Re8j attains a local minimum
when restricted to the cycle C1.

We arrive at a similar contradiction if one of the paths γl,j and γr,j comes to the cut
[−β2, 0].

Thus the two paths can only leave the upper half-plane via the positive real axis. Since
8j is strictly decreasing on [0, 1] and strictly increasing on [1,∞], we conclude that γl,j
comes to the unique value in (1,∞) and γr,j to the unique value in (0, 1) where 8j is
equal to Re8j (zs,j ). Together with their mirror images in the real axis, they both form
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simple closed curves that go around the cut [−β2, 0]. They enclose a domain where Re8j
is smaller than Re8j (zs,j ), i.e., it is contained in �−j (see (6.16)).

The path of steepest descent γsd,j lies in �−j , and Re8j decreases along γsd,j in the
upper half-plane. It will meet the positive real axis at 1, where Re8j is −∞, since if it
met the positive real axis at some other point, this point would be a saddle—but there is
no saddle on C2.

We have thus proved parts (a) and (b) of Lemma 6.8. We have also proved that the
component of �−j that is bounded by γl,j and γr,j contains the steepest descent curve
γsd,j \ {zs,j }. We also see that �−j is bounded since Re8j (z)→+∞ as |z| → ∞.

Any other connected component of�−j has to intersect the branch cuts (−∞,−α2
] ∪

[−β2, 0], since otherwise we have again a contradiction with the minimum principle for
harmonic functions.

If a component of �−j intersects (−∞,−α2
] then it will do so along an interval

(q,−α2
] for some q < −α2, because of (6.19). Hence there can be at most one such

component, and it exists if and only if Re8j (−α2) < Re8j (zs,j ). Similarly, there is
at most one component that intersects [−β2, 0], and thus in total there are at most three
components.

Finally, since zs,j is a simple saddle, and Re8j attains a minimum at zs,j when we
restrict to the cycle C1, there is δ > 0 such that

(zs,j − δ, zs,j ) ∪ (zs,j , zs,j + δ) ⊂ �
+

j .

Thus the boundary of another component (if it exists) intersects the interval (−α2,−β2)

at a point different from zs,j , and thus the component stays at positive distance from the
main component. This proves part (c) of the lemma.

The component of �−j that contains −α2 (if it exists) is bounded and belongs to the
exterior of the closed contour γl,j . However, by part (c), it remains at a positive distance
from γl,j , and therefore we can find a contour 01,j as in the statement of part (d) that goes
around the interval (−∞,−α2

] and avoids the closure of the domain �−j while staying
to the left of γl,j . Similarly, we can find 02,j as in part (d). See Figures 14 and 15 for
plots of γsd,j and 01,j and 02,j in the situations where �−j has no component containing
−α2 or−β2 (Figure 14) and where�−j has a component containing−α2 that 01,j should
avoid (Figure 15).

−α2 −β2 0 1

γsd,j

01,j 02,j

Fig. 14. Steepest descent contour γsd,j and contours 01,j and 02,j in case �−
j

has only one
component.
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−α2
−β2 0 1

γsd,j

01,j 02,j

Fig. 15. Steepest descent contour γsd,j and contours 01,j and 02,j in case �−
j

has a component
containing −α2, but no component containing −β2.

This completes the proof of Lemma 6.8. ut

6.5. Gas phase: proof of Theorem 2.8

To establish Theorem 2.8 we are going to show that in the gas phase the two double
integrals in (6.2) tend to 0 as N →∞ at an exponential rate.

In the situation of Theorem 2.8 we havem = (1+ξ1)N+o(N), n = (1+ξ2)N+o(N),
m′ = (1 + ξ1)N + o(N), n′ = (1 + ξ2)N + o(N), so that in (6.2) we should replace ξ1
and ξ ′1 by ξ1 + o(1), and ξ2 and ξ ′2 by ξ2 + o(1). The o(1) terms give only a subleading
contribution, and it is enough to prove that both integrals

1
(2πi)2

∮
γ0,1

dz

z

∫
0

dw

z− w
F(w)F(z)eN(81(z)−81(w))/2 (6.20)

and
1

(2πi)2

∮
γ0,1

dz

z

∫
0

dw

z− w
F(w)(I2 − F(z))e

N(82(z)−81(w))/2 (6.21)

are exponentially small as N → ∞. Here we write again 81 and 82 instead of
81(·; ξ1, ξ2) and 82(·; ξ1, ξ2).

We move the contour γ0,1 in (6.20) to the steepest descent path γsd,1 through zs,1, and
we have

Re81(z) ≤ Re81(zs,1), z ∈ γsd,1. (6.22)

The contour 0 in (6.20) traverses the interval (−α2,−β2) twice, but in opposite direc-
tions. The integrand has no branching on this interval, and therefore the two contributions
cancel out. We can thus replace 0 by two contours 01,1 and 02,1 as in Lemma 6.8(d),
where 01,1 goes around (−∞,−α2

], 02,1 goes around [−β2, 0], and

Re81(w) > Re81(zs,1), w ∈ 01,1 ∪ 02,1 (6.23)

since the contours are in �+1 (see (6.17)), and Re81(w) = (1 − ξ2) log |w| + O(1) as
w→∞.

By (6.22) and (6.23) the factor eN(81(z)−81(w))/2 is O(e−cN ) for some c > 0, uni-
formly for (z, w) ∈ γsd,1 × (01,1 ∪ 02,1). Thus (6.20) tends to 0 at an exponential rate as
N →∞.
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We are going to apply a similar argument to (6.21) and deform γ0,1 to the steepest de-
scent contour γsd,2 passing through zs,2. We again replace 0 by the union of two contours,
one going around (−∞,−α2

] and the other around [−β2, 0], but now we are going to
move these contours to the cuts, where we note that λ1,± = λ2,∓ and 81,± = 82,∓ plus
a purely imaginary constant (depending on the precise branches of the logarithms that we
choose in (2.22)). We also note that there is no pole at w = 0, and that I2 − F(w) is the
analytic continuation of F(w) to the second sheet. Then we deform the contours further
to 01,2 and 02,2 as in Lemma 6.8(d), and we see that (6.21) is equal to

−
1

(2πi)2

∮
γsd,2

dz

z

∫
01,2∪02,2

dw

z− w
(I2 − F(w))(I2 − F(z))e

N(82(z)−82(w))/2. (6.24)

The minus sign comes since we use the orientation on 01,2 and 02,2 as in Figure 15.
Analogously to (6.22) and (6.23) we now have

Re82(z) ≤ Re82(zs,2) < Re82(w), z ∈ γsd,2, w ∈ 01,2 ∪ 02,2,

and the integral (6.24) tends to 0 at an exponential rate as N →∞.
This completes the proof of Theorem 2.8. ut

6.6. Cusp points: proof of Theorem 2.10

For the proof of Theorem 2.10 we are going to use (6.2) once more.
In the scaling (2.30) of the parameters, the saddle points coalesce to a triple saddle

point at −α2. We are going to deform γ0,1 so that it comes close to −α2. The main
contribution to the integrals in (6.2) then comes from the triple saddle at −α2, as the
integrands are exponentially small ifw and/or z are outside a small neighborhood of−α2.
This follows as in the proof of the gas phase.

Hence, our task is to investigate how the entries in the integrals in (6.2) behave for z
andw close to−α2. We do this in the following two lemmas and their corollaries. Besides
the constants c1 and c2 from (2.31) we also use

c0 =
α + β
√

2
. (6.25)

Lemma 6.9. We have

81,2(z; ξ1, ξ2) = 2 log(α2
+ 1)− (1+ ξ2) log(α2)+ (1− ξ2 ± ξ1)πi sgn(Im z)

±
2
√
α − β
√
α + β

ξ1

(
z+ α2

α2

)1/2

+ (ξ2 − ξ
∗

2 )

(
z+ α2

α2

)
+

1
(α + β)2

(
z+ α2

α2

)2

+ ξ1O(z+ α
2)+ (ξ2 − ξ

∗

2 )O((z+ α
2)2)+O((z+ α2)3). (6.26)

The sign ± means that + applies to 81 and − applies to 82.

Proof. We recall

81(z; ξ1, ξ2) = 2 log(z− 1)− (1+ ξ2) log z+ ξ1 log λ1(z)

= 81(z; 0, ξ∗2 )− (ξ2 − ξ
∗

2 ) log z+ ξ1 log λ1(z). (6.27)
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All terms are multi-valued because of the logarithms. We take principal branches of
log(z − 1) and log z, and the analytic branch of log λ1(z) in C \ ((−∞, 0] ∪ [1,∞))
that is real and positive on (0, 1) (recall λ1(x) > 1 for x ∈ (0, 1)).

Since 81(z; 0, ξ∗2 ) has a critical point at z = −α2 with second derivative equal to
d2

dz281(z; 0, ξ∗2 ) =
2

α4(α+β)2
, we have, as z→−α2,

81(z; 0, ξ∗2 ) = 2 log(α2
+ 1)− (1+ ξ∗2 ) log(α2)+ (1− ξ∗2 )πi sgn(Im z)

+
1

(α + β)2

(
z+ α2

α2

)2

+O((z+ α2)3). (6.28)

By an expansion of log z around z = −α2,

log z = log(α2)+ πi sgn(Im z)−
z+ α2

α2 +O((z+ α2)2). (6.29)

From the formula (2.12) for ρ1,

ρ1(z) = −α
2(α + β)− α

√
α2 − β2 (z+ α2)1/2 +O(z+ α2),

and then from the formula (2.17) for λ1 we get

λ1(z) = −1− 2
√
α − β
√
α + β

(
z+ α2

α2

)1/2

+O(z+ α2),

which confirms the fact that λ1(x) < −1 for x ∈ (−α2,−β2) as stated in (5.12) of
Lemma 5.2(e). Our choice of log λ1(z) is such that log λ1(z) → ±πi as z → −α2 with
± Im z > 0. Hence

log λ1(z) = πi sgn(Im z)+ 2
√
α − β
√
α + β

(
z+ α2

α2

)1/2

+O(z+ α2) (6.30)

as z→∞. Using (6.28), (6.29), and (6.30) in (6.27) we find the expansion (6.26) for81.
The expansion for 82 also follows, since λ2 = 1/λ1 by Lemma 5.2(d), which means

log λ2 = − log λ1, and so 82 is obtained from 81 by simply changing the sign of ξ1. ut

Corollary 6.10. Suppose

z+ α2

α2 = c0sN
−1/2,

w + α2

α2 = c0tN
−1/2, (6.31)

with constant c0 as in (6.25). Then under the scaling assumptions (2.30) and (2.31),

exp
(
N(81,2(z; ξ1, ξ2)−81(w; ξ

′

1, ξ
′

2))/2
)

= (−1)(1n−1m)/2(±1)mα1n
e±us

1/2
+

1
2 vs+

1
4 s

2

eu
′t1/2+ 1

2 v
′t+ 1

4 t
2
(1+O(N−1/4)) (6.32)

as N →∞.
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Proof. From Lemma 6.9 and the scalings (2.30) and (6.31) we find after straighforward
calculations

81,2(z; ξ1, ξ2) = 2 log(α2
+ 1)− (1+ ξ2) log(α2)+ (1− ξ2 ± ξ1)πi sgn(Im z)

+
(
±2us1/2

+ vs + 1
2 s

2)N−1
+O(N−5/4), (6.33)

and similarly for 81(w; ξ
′

1, ξ
′

2). Thus for Im z, Imw > 0,

81,2(z; ξ1, ξ2)−81(w; ξ
′

1, ξ
′

2) = (ξ
′

2 − ξ2) log(α2)+ (−ξ ′1 ± ξ1 + ξ
′

2 − ξ2)πi

+
(
2(±us1/2

− u′t1/2)+ vs − v′t + 1
2 (s

2
− t2)

)
N−1
+O(N−5/4). (6.34)

We note
e
N
2 (ξ
′

2−ξ2) log(α2)
= e

1
2 (n
′
−n) log(α2)

= α1n (6.35)

since ξ2 = n/N − 1 and ξ ′2 = n
′/N − 1, and

e
N
2 (−ξ

′

1±ξ1+ξ
′

2−ξ2)πi = e
1
2 (−m

′
±m+n′−n)πi (6.36)

since also ξ1 = m/N − 1 and ξ ′2 = m
′/N − 1. Recall m + n and m′ + n′ are even, and

−m′ ±m+ n′ − n is even as well. Thus

e
N
2 (−ξ

′

1±ξ1+ξ
′

2−ξ2) = (−1)(1n−1m)/2(±1)m. (6.37)

The expansion (6.32) is immediate from (6.34), (6.35), and (6.37).
We have derived (6.32) for Im z, Imw > 0. Similar calculations give (6.32) for other

combinations of signs of Im z and Imw. ut

We also need the behavior of F(z) near the saddle z = −α2.

Lemma 6.11. (a) As z→−α2,

F(z) =

√
α − β

2
√
α + β

(
1 1
−1 −1

)(
z+ α2

α2

)−1/2

+
1
2I2+O((z+α

2)1/2). (6.38)

(b) As w, z→−α2,

F(w)F(z)

=

√
α − β

4
√
α + β

(
1 1
−1 −1

)((
w + α2

α2

)−1/2

+

(
z+ α2

α2

)−1/2)
+O(1). (6.39)

(c) As w, z→−α2,

F(w)(I2 − F(z))

=

√
α − β

4
√
α + β

(
1 1
−1 −1

)((
w + α2

α2

)−1/2

−

(
z+ α2

α2

)−1/2)
+O(1). (6.40)
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Proof. Part (a) follows from (2.10) where we have to take into account that
√
z(z+ β2)

is the negative square root for z = −α2.
Parts (b) and (c) follow from (a) since

( 1 1
−1 −1

)
is a nilpotent matrix. ut

Corollary 6.12. Under the same scaling (6.31) as in Corollary 6.10 we have

F(w)F(z) =
21/4√α − β

4(α + β)

(
1 1
−1 −1

)
(s−1/2

+ t−1/2)N1/4
+O(1) (6.41)

and

F(w)(I2 − F(z)) =
21/4√α − β

4(α + β)

(
1 1
−1 −1

)
(−s−1/2

+ t−1/2)N1/4
+O(1) (6.42)

as N →∞.

Proof. This follows from inserting (6.31) into (6.39) and (6.40) and taking note of the
value (6.25) for c0. ut

Proof of Theorem 2.10. We deform the contour γ0,1 in (6.2) to the one shown in Fig-
ure 16. It consists of the steepest descent contour γsd,1 for 81(·; 0, ξ∗2 ) through −α2,
but with a slight indentation around −α2 of size O(N−1/2). The steepest descent curve
γsd,1 is actually a perfect circle passing through −α2 and 1, since ξ1 = 0 in the present
situation. Also 81 = 82, since ξ1 = 0.

The contour 0 in (6.2) is split into two components, as in the proof of Theorem 2.8.
We denote them by 01 and 02 as shown in Figure 16. We reverse the orientation on both
01 ∪ 02 and γ0,1, which does not change the values of the double integrals in (6.2).

01 02

γ0,1

−α2 −β2 0
1

Fig. 16. The contours 01 and 02 and γ0,1 with the reversed orientation.

As in the proof of Theorem 2.8, we then have

Re81,2(z) < Re81(−α
2) < Re81(w)

whenever z ∈ γ0,1 and w ∈ (01 \ {−α
2
}) ∪ 02. From these inequalities we find that it

is only a neighborhood of −α2 that contributes, and in particular the component 02 that
goes around [−β2, 0] will not contribute to the limit. Near −α2 we introduce the change
of variables

z = −α2
+ α2c0sN

−1/2, w = −α2
+ α2c0tN

−1/2 (6.43)



1126 Maurice Duits, Arno B. J. Kuijlaars

with c0 as in (6.25). Then

dzdw

z(z− w)
=
α2c0

z

dsdt

s − t
N−1/2

≈
α + β
√

2

dsdt

t − s
N−1/2 (6.44)

where we have used z ∼ −α2 and the value (6.25) for c0.
From (6.32), (6.41)–(6.42) and (6.44), we find that the leading order behavior for the

sum of the two double integrals in (6.2) as N →∞ is determined by

(−1)(1n−1m)/2α1n
√
α − β

4 · 21/4

(
1 1
−1 −1

)
N−1/4

×

(
1

(2πi)2

∫
s∈61

∫
t∈62

eus
1/2
+

1
2 vs+

1
4 s

2

eu
′t1/2+ 1

2 v
′t+ 1

4 t
2
(s−1/2

+ t−1/2)
ds dt

t − s

+ (−1)m
1

(2πi)2

∫
s∈61

∫
t∈62

e−us
1/2
+

1
2 vs+

1
4 s

2

eu
′t1/2+ 1

2 v
′t+ 1

4 t
2
(−s−1/2

+ t−1/2)
ds dt

t − s

)
(6.45)

where 61 and 62 are as in Figure 17. 62 is the image of 01 under the mapping (6.43).
It is a contour going around the negative real axis. 61 arises from applying (6.43) to the
part of γ0,1 in a small disk around −α2, and deforming and extending it so that 61 is the
imaginary axis with an indentation around 0.

61

62

Fig. 17. The contours 61 and 62.

We make a further change of variables by mapping t = (t ′)2, t ′ ∈ iR, in both integrals,
and s = (s′)2, s′ ∈ 6, in the first integral, but s = (s′)2, s′ ∈ (−6), in the second double
integral. Recall that 6 and −6 are as in Figure 7. We find a sum of two double integrals,
but the integrands are exactly the same. We pick up a Jacobian 4s′t ′ from the change of
variables, and we use

((s′)−1
+ (t ′)−1)

s′t ′

(t ′)2 − (s′)2
=

1
t ′ − s′

to simplify the expression. Then the integrand on the right-hand side of (2.32) and (2.33)
follows (provided we drop the accents from s′ and t ′).

This completes the proof of Theorem 2.10. ut
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6.7. Cusp points: proof of Theorem 2.11

The proof of Theorem 2.11 is based on the integral representation (2.29) for Kgas.
We already noted in Remark 2.9 that Kgas(m, n;m

′, n′) tends to zero at an exponential
rate whenever |1m| + |1n| → ∞. In the situation of Theorem 2.11 we have

1m = (ξ ′1 − ξ1)N = c1(u
′
− u)N1/4

+ o(N1/4),

1n = (ξ ′2 − ξ2)N = c2(v
′
− v)N1/2

+ o(N1/2),

as N →∞. Thus (2.35) holds if v < v′ or if v = v′ and u 6= u′.
So we assume v > v′. Then Kgas(m, n;m

′, n′) still decays to 0 as N →∞, but α−1n

increases since 1n < 0, and the limit in (2.35) will exist, as we shown next.
We argue similar to the proof of Theorem 2.10. We start by deforming the contour

γ to a contour going around the interval (−∞,−α2
] as before. That is, we deform γ to

01 as in Figure 16 but with opposite direction. We can do this since for 1n < 0 there is
enough decay of the integrand in (2.29) as z→∞.

It is then helpful to rewrite (2.29) to

Kgas(m, n;m
′, n′) =


1

2πi

∫
γ

F(z)eN(81(z;ξ1,ξ2)−81(z;ξ
′

1,ξ
′

2))/2
dz

z
if 1m ≥ 0,

1
2πi

∫
γ

(F (z)− I2)e
N(82(z;ξ1,ξ2)−82(z;ξ

′

1,ξ
′

2))/2
dz

z
if 1m < 0.

After a change of variables (6.43), using the expansions (6.33) and (6.38), and finally
changing s to s2, all as in the proof of Theorem 2.10, we find

N1/4(−1)(1n−1m)/2α−1nKgas(m, n;m
′, n′)

=



√
α − β

21/4

(
1 1
−1 −1

)
1

2πi

∫ i∞

−i∞

e
1
2 s

2(v−v′)+s(u−u′) ds + o(1), 1m ≥ 0,

(−1)1m
√
α − β

21/4

(
1 1
−1 −1

)
1

2πi

∫ i∞

−i∞

e
1
2 s

2(v−v′)−s(u−u′) ds + o(1), 1m < 0,

(6.46)

asN →∞. The limit (2.35) then follows after observing that the integral is a well-known
representation of the gaussian∫ i∞

−i∞

e
1
2 s

2(v−v′)±s(u−u′) ds =

√
2π i

√
v − v′

e
−
(u−u′)2

v−v′ for v > v′.

This concludes the proof of Theorem 2.11. ut
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