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Abstract. We systematically study the moduli theory of symplectic varieties (in the sense of
Beauville) which admit a resolution by an irreducible symplectic manifold. In particular, we prove
an analog of Verbitsky’s global Torelli theorem for the locally trivial deformations of such vari-
eties. Verbitsky’s work on ergodic complex structures replaces twistor lines as the essential global
input. In so doing we extend many of the local deformation-theoretic results known in the smooth
case to such (not-necessarily-projective) symplectic varieties. We deduce a number of applications
to the birational geometry of symplectic manifolds, including some results on the classification of
birational contractions of K3[n]-type varieties.
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1. Introduction

The local and global deformation theories of irreducible holomorphic symplectic man-
ifolds enjoy many beautiful properties. For example, unobstructedness of deformations
[Bo78, Ti87, To89] and the local Torelli theorem [Be83] are at the origin of many results
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on symplectic manifolds. Among the highlights of the global theory are Huybrechts’ sur-
jectivity of the period map [Hu99] and Verbitsky’s global Torelli theorem [Ve13] (see
for example Markman’s survey article [Ma11] and Huybrechts’ Bourbaki talk [Hu11]).
Verbitsky’s result has since paved the way for many important developments, with ap-
plications to a wide variety of questions such as: birational boundedness [Ch16], lattice
polarized mirror symmetry [Ca16], algebraic cycles [CMP19], hyperbolicity questions
[KLV14] and many more. Recent progress in MMP and interest in singular symplec-
tic varieties [GKP11] has made it apparent that a global deformation theory of singular
symplectic varieties would be equally valuable. As for smooth varieties, it is of utmost
importance here to consider not-necessarily-projective Kähler varieties—even if one is
mainly interested in moduli spaces of projective varieties (see e.g. Remark 5.22).

In the present article we initiate a systematic study of the moduli theory of compact
Kähler singular symplectic varieties, beginning with those that admit symplectic reso-
lutions by irreducible symplectic manifolds. We prove general results concerning their
deformation theory and building on this we develop a global moduli theory for locally
trivial families of such varieties. To fix ideas, recall that a symplectic variety X in the
sense of Beauville [Be00, Definition 1.1] is a normal complex variety whose regular part
admits a nondegenerate holomorphic 2-form that extends to some (hence any) resolution.
Usually the extension will have zeroes, but if there is a resolution π : Y −→ X by an
(irreducible) holomorphic symplectic manifold Y , we call π an (irreducible) symplectic
resolution.

Namikawa shows [Na01b, Theorem 2.2] that a projective variety X admitting a reso-
lution π : Y −→ X by a symplectic manifold Y has unobstructed deformations, and that
there is a natural finite map Def(Y ) −→ Def(X). However, a generic deformation of π
becomes an isomorphism, and therefore the only natural period map is that of the reso-
lution Y . From a Hodge-theoretic perspective it is therefore more natural to consider the
locally trivial deformations of X as in this case the pure weight-two Hodge structure on
H 2(X,Z) varies in a local system, and the resulting theory is very closely analogous to
the smooth situation. Our first result is the following.

Theorem 1.1 (see Propositions 4.5 and 5.8). Let π : Y −→ X be an irreducible sym-
plectic resolution of a symplectic variety X and N = N1(Y/X) ⊂ H2(Y,Z) the group of
1-cycles contracted by π . The base space Def lt(X) of the universal locally trivial defor-
mation is smooth, and there is a diagram

Y

��

// X

��
Def(Y,N)

∼= // Def lt(X)

where X −→ Def lt(X) is the universal locally trivial deformation of X, Y −→ Def(Y,N)
⊂ Def(Y ) is the restriction of the universal deformation of Y to the closed subspace
along which N remains Hodge, and Y −→X specializes to π .
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The case of a divisorial contraction π : Y −→ X of a projective symplectic variety
was treated by Pacienza and the second author in [LP16, Proposition 2.3], where it was
shown that locally trivial deformations of X correspond to deformations of Y such that
all irreducible components of the exceptional divisor Exc(π) of π deform along. The
space Def lt(X) of locally trivial deformations of X is smooth of dimension h1,1(X) =

h1,1(Y )−mwherem is the number of irreducible components of Exc(π). This description
is equivalent to that of Theorem 1.1, since the Beauville–Bogomolov–Fujiki form qY on

H 2(Y,Z) yields an isomorphism q̃Y : H
2(Y,Q)

∼=
−→ H2(Y,Q) identifying the subspace

of H 2(Y,Q) spanned by Exc(π) with NQ. In the case where π is a small contraction, X
is not Q-factorial, but we can still recast the description in Theorem 1.1 in terms of line
bundles: under q̃Y , the Hodge classes in the orthogonal N⊥ ⊂ H 2(Y,Q) are the Q-line
bundles on Y that vanish on N and can be pushed forward to Q-line bundles on X (as the
singularities are rational).

An important theorem of Huybrechts [Hu03, Theorem 2.5] shows that birational1 ir-
reducible holomorphic symplectic manifolds are deformation-equivalent. Of course, bira-
tional singular symplectic varieties are not necessarily locally trivially deformation equiv-
alent, and the correct analog of Huybrechts’ theorem is the following.

Theorem 1.2 (see Theorem 4.9). Let π : Y −→ X and π ′ : Y ′ −→ X′ be irreducible
symplectic resolutions of symplectic varieties X, X′. Assume that there is a birational
map φ : Y 99K Y ′ such that the induced map φ∗ : H 2(Y ′,C) −→ H 2(Y,C) sends
H 2(X′,C) isomorphically to H 2(X,C). Then X and X′ are locally trivial deformations
of one another.

Let us now turn to global moduli-theoretic questions. Fixing a lattice 3, there is a nat-
ural locally trivial 3-marked moduli space Mlt

3 obtained by gluing the universal locally
trivial deformation spaces together, and we also have a corresponding notion of parallel
transport operator. Further, there is a period map P :Mlt

3 −→ �3 to the associated period
domain �3 that is a local isomorphism.

The following is an analog of Verbitsky’s global Torelli theorem [Ve13, Theorem
1.17], also encompassing analogs of Huybrechts’ surjectivity of the period map [Hu99,
Theorem 8.1], and Markman’s description of the fibers of the period map in terms of the
Kähler cone decomposition [Ma11, Theorem 5.16].

Theorem 1.3. Let X be a symplectic variety with b2(X) > 4 that admits an irreducible
symplectic resolution. Let Nlt

3 ⊂Mlt
3 be a connected component containing (X, ν). Then

(1) The period map P : Nlt
3 −→ �3 is surjective, generically injective, and the points

in any fiber are pairwise nonseparated. Moreover, varieties underlying points in the
same fiber are birational.

(2) The points in the fiber containing (X, ν) are in bijective correspondence with the
cones obtained by restricting the Kähler chambers of a resolution to H 1,1(X,R).

(3) The locally trivial weight-two monodromy group Mon2(X)lt is a finite index subgroup
of O(H 2(X,Z)).

1 We will use the term birational instead of bimeromorphic for compact Kähler varieties as well.
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See Section 5 for more precise statements. The finiteness of the index of the monodromy
group in the smooth case is proved by Verbitsky [Ve20, Theorem 2.6].

The analogous results in the smooth case heavily rely on the existence of a hy-
perkähler metric, the theory of twistor lines, and deformations of complex structures.
This presents a major difficulty for singular varieties as the aforementioned techniques
are not available or much less understood as in the smooth case. We therefore deduce the
largeness of the image of the period map by density results built on Ratner theory (as first
explored in this context by Verbitsky in [Ve15]; see e.g. Theorem 3.9 and Theorem 4.8 of
that paper and Proposition 3.11 in Section 5 of the present paper), and this is responsible
for the numerical conditions on b2(X). To the best of our knowledge this is the first gen-
eral result in this direction which makes a statement about large deformations of singular
symplectic varieties. Note that X with b2(X) = 3 are locally trivially rigid in the sense
that their only locally trivial deformation is what should be the (unique) twistor deforma-
tion, and in contrast to the smooth case we can give examples (see Remark 5.10). These
density results have many applications, and for instance we have the following application
pointed out by Amerik–Verbitsky [AV19, Theorem 5.6].

Theorem 1.4 (see Corollary 5.9). Let Y be a smooth irreducible symplectic manifold
with b2(Y ) > 5 and τ ⊂ H 1,1(Y,R) a face2 of the Kähler cone meeting the positive cone
for which3 dim τ > 2. Then there is a birational contraction π : Y −→ X contracting
precisely τ⊥.

Somewhat surprisingly, we also obtain a generalization to the non-projective setting of a
result of Namikawa [Na01b, Theorem (2.2)].

Theorem 1.5 (see Proposition 5.24). Let π : Y −→ X be an irreducible symplectic reso-
lution with b2(X) > 4. Then Def(X) is smooth of the same dimension as Def(Y ) and the
induced map p : Def(Y ) −→ Def(X) is finite.

This is noteworthy because one important ingredient in Namikawa’s proof of the corre-
sponding statement for projective varieties is a vanishing theorem by Steenbrink which
we do not know to hold in the Kähler case. Our proof works by reduction to the projective
case using the monodromy action.

Much more can be said when X admits a resolution deformation-equivalent to a
Hilbert scheme of points on a K3 surface. The possible projective contractions M −→ X

of a moduli space of sheavesM on aK3 surface is completely described by wall-crossing
in the space of Bridgeland stability conditions by work of Bayer–Macrı̀ [BM14b]; The-
orem 1.1 combined with density results then implies that no new singularities occur for
general X:

2 By a face of an open cone we mean a linear subspace meeting the closure with nonempty
interior.

3 By this we mean the dimension of the real linear subspace generated by τ . Note that in this case
we know the Kähler cone is locally polyhedral in the positive cone—see Remark 3.16.
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Theorem 1.6 (see Proposition 6.6). Let π : Y −→ X be an irreducible symplectic res-
olution where Y is a K3[n]-type manifold. Provided b2(X) > 4, X is locally trivially
deformation-equivalent to a wall-crossing contraction of a moduli space of Bridgeland
stable objects on a K3 surface.

Extremal contractions are particularly amenable to the lattice theory involved, and we for
example have the following generalization of a beautiful result of Arbarello and Saccà
[AS18, Theorem 1.1(i)]:

Theorem 1.7 (see Proposition 6.8). Let π : Y −→ X be an irreducible symplectic res-
olution where Y is a K3[n]-type manifold, and assume rkN1(Y/X) = 1. Then for any
closed point x ∈ X the analytic germ (X, x) is isomorphic to that of a Nakajima quiver
variety.

As another nice application, we are able to rule out the existence of certain contractions
on K3[n]-type varieties:

Theorem 1.8 (see Corollary 6.11). Let π : Y −→ X be an irreducible symplectic resolu-
tion where Y is a K3[n]-type manifold, and assume rkN1(Y/X) = 1. Then for a generic
closed point x ∈ Xsing the analytic germ (X, x) is isomorphic to (S, 0) × (C2n−2, 0)
where (S, 0) is an A1-surface singularity.

The surprising fact is that relative Picard rank-one contractions whose generic singularity
is transversally an A2-surface singularity do not occur on irreducible symplectic mani-
folds while on other symplectic manifolds they do—see Corollary 6.11 and the discussion
thereafter.

We expect most of our general results to apply to symplectic varieties not necessarily
admitting a symplectic resolution by using a Q-factorial terminalization in place of the
resolution but we do not pursue that level of generality here. We do note however that this
would fit very nicely with another result of Namikawa [Na06, Main Theorem, p. 97] that
every flat deformation of a Q-factorial terminal projective symplectic variety is locally
trivial. As for the applications, we only restrict to K3[n]-type varieties for simplicity,
and our theory should yield similar results for the Kummer and O’Grady types. These
directions are the topic of a forthcoming article.

Outline

In Sections 2 and 3 we explain some basic facts about symplectic varieties admitting
irreducible symplectic resolutions and their Hodge structures. We recall that the Hodge
structure on the second cohomology of such a symplectic variety is always pure and prove
the degeneration of Hodge–de Rham spectral sequence for singular symplectic varieties
in a suitable range.

The locally trivial deformation theory of symplectic varieties admitting an irreducible
symplectic resolution is studied in Section 4. This is one of the two technical centerpieces
of the present paper. All our moduli theory builds on this in an essential way. The main re-
sults are the proof of smoothness of the Kuranishi space, the comparison of deformations
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of a symplectic variety admitting an irreducible symplectic resolution and its resolution,
the local Torelli theorem, and the analog of Huybrechts’ theorem. Even though the defor-
mations of a birational contraction can be characterized locally in the deformation space
in terms of Noether–Lefschetz loci, it is—in contrast to the surface case—nontrivial to
show that a contraction deforms. We also include some remarks and applications to the
question of existence of algebraically coisotropic subvarieties.

In Section 5 we introduce and investigate marked moduli spaces of locally trivial
families of symplectic varieties admitting an irreducible symplectic resolution. We study
the relation to moduli spaces of the resolution through compatibly marked moduli spaces
of irreducible symplectic resolutions as well as various associated monodromy groups.
The analysis of how these moduli spaces and their monodromy groups are connected
is the second main ingredient of this work, and our analysis makes use of Verbitsky’s
ergodicity of complex structures (see [Ve15, Definition 1.12]) and Amerik–Verbitsky’s
concept of MBM classes (see [AV15, Definition 1.13]). It becomes clear at this point
that it is not sufficient to study the moduli spaces of lattice polarized varieties as this
perspective ignores the question of how the contraction deforms on two fronts: locally
in terms of how the singularities smooth (and whether the contraction deforms at all)
and globally in terms of how the monodromy group of the contraction differs from the
isotropy group of the lattice polarization.

In Section 6 we give applications to K3[n]-type varieties. We essentially make use of
the description of the birational geometry of Bridgeland moduli spaces of stable objects
by Bayer and Macrı̀. In principle, our methods allow extending any result on singularities
that can be proven for contractions of Bridgeland moduli spaces to arbitrary K3[n]-type
varieties. The above-mentioned generalization of Arbarello–Saccà’s result is proven here.

Notation and conventions

The term variety will denote an integral separated scheme of finite type over C in the
algebraic setting or an irreducible and reduced Hausdorff complex space in the complex
analytic setting. We will also refer to either (complex) algebraic varieties or (complex)
analytic varieties. Mostly, the term variety stands for an analytic variety though.

For a topological group G we denote by G◦ the connected component of the identity.

2. Hodge theory of rational singularities

In this section we establish some basic facts about the Hodge structure on low degree
cohomology groups of varieties with rational singularities. Recall that the Fujiki class C
consists of all those compact complex varieties which are meromorphically dominated
by a compact Kähler manifold [Fu78, §1]. This is equivalent to saying that there is a
resolution of singularities by a compact Kähler manifold by Lemma 1.1 of op. cit. We
will speak of a variety of Fujiki class for a variety in class C . Let us also recall that by
[Fu78, Corollary 1.7] for each k ≥ 0 the singular cohomology of degree k of a smooth
compact variety of Fujiki class carries a pure Hodge structure of weight k.
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Let X be a variety carrying a pure Hodge structure on H 2k(X,Z). We will write
H k,k(X,Z) for the preimage of H k,k(X) under the map H 2k(X,Z) −→ H 2k(X,C). Re-
call that for k = 1 the transcendental lattice H 2(X)tr ⊂ H 2(X,Z) is defined to be the
smallest integral Hodge substructure such that H 2(X,C)tr := H 2(X)tr ⊗ C contains
H 2,0(X).

While the following lemma is well-known, we include it for the reader’s convenience.

Lemma 2.1. Let π : Y −→ X be a proper birational morphism where X is a complex
variety with rational singularities. Then π∗ : H 1(X,Z) −→ H 1(Y,Z) is an isomorphism
and the sequence

0 −→ H 2(X,Z) π∗

−→ H 2(Y,Z) −→ H 0(X,R2π∗Z) (2.1)

is exact. In particular, if X is compact and Y is a compact manifold of Fujiki class,
then H i(X,Z) carries a pure Hodge structure for i = 1, 2. Moreover, the restriction
π∗ : H 2(X)tr −→ H 2(Y )tr is an isomorphism, and π∗H 1,1(X,Z) is the subspace of
H 1,1(Y,Z) of all classes that vanish on the classes of π -exceptional curves.

Proof. The pushforward of the exponential sequence gives an exact sequence

OX
exp
−−→ O×X −→ R1π∗ZY −→ R1π∗OY −→ · · ·

where the map exp is again surjective. Thus, rationality of the singularities implies that
R1π∗Z = 0. The Leray spectral sequence tells us now that π∗ is an isomorphism on H 1

and that the sequence (2.1) is exact. As H i(Y,Z) carries a pure Hodge structure, so does
H i(X,Z) for i = 1, 2 by strictness of morphisms of Hodge structures.

Let us address the last two statements. By [KM92, (12.1.3) Theorem], the map π∗ :
H2(Y,C) −→ H2(X,C) is surjective and its kernel is generated by algebraic cycles, since
R2π∗OY = 0 by the rationality of the singularities. Taking duals, we see that the re-
striction π∗ : H 2(X)tr −→ H 2(Y )tr is an isomorphism. Moreover, from loc. cit. we also
infer that kerπ∗ ⊂ H2(Y,C) consists of pushforwards of homology classes contained in
the fibers of π . A closer look at the proof reveals that it is in fact generated by algebraic
cycles in the fibers. This is deduced from [KM92, (12.1.1) Lemma] where it is shown us-
ing R2π∗OY = 0 that all degree 2 homology in the fibers of π is algebraic. Consequently,
the kernel is generated by contracted curves and by taking duals again we may conclude
the proof. ut

For projective X the purity of the Hodge structure on the second cohomology was ob-
served by Namikawa: see e.g. [Na06, proof of Proposition 1]. See also [Sc16, Theorem 7]
and [PR13, Lemma 3.1].

We will need to know to what extent the de Rham complex on either a resolution
or the smooth part of a singular variety can be used to compute the singular cohomol-
ogy and the Hodge decomposition on X. Note that there is an obvious morphism of
complexes CX −→ �•X, and for any resolution π : Y −→ X there is a natural pull-
back map of complexes �•X −→ π∗�

•

Y . Likewise for an open embedding j : U −→ X
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whose complement has codimension ≥ 2, there is a pullback �•X −→ j∗�
•

U . The com-
positions CX −→ �•X −→ j∗�

•

U and CX −→ �•X −→ π∗�
•

Y induce canonical maps
H k(X,C) −→ Hk(X, j∗�•U ) and H k(X,C) −→ Hk(X, π∗�•Y ) which we analyze in the
following lemma.

Lemma 2.2. Let X be a normal compact variety of Fujiki class with rational singular-
ities and let j : U = Xreg

−→ X denote the inclusion of the regular part. Then the
following hold:

(1) For each p ∈ N0 the sheaf j∗�
p
U is a coherent and reflexive OX-module.

(2) For all k ≤ 2 the canonical map H k(X,C) −→ Hk(X, j∗�•U ) is an isomorphism and
the Hodge–de Rham spectral sequence

E
p,q

1 = H q(j∗�
p
U )⇒ Hp+q(X, j∗�•U ) (2.2)

degenerates on E1 in the region where p + q ≤ 2.
(3) Let π : Y −→ X be a resolution of singularities. Then for all k ≤ 2 the canonical map

H k(X,C) −→ Hk(X, π∗�•Y ) is an isomorphism and the Hodge–de Rham spectral
sequence

E
p,q

1 = H q(π∗�
p
Y )⇒ Hp+q(X, π∗�•Y ) (2.3)

degenerates on E1 in the region where p + q ≤ 2.

Proof. Observe that �pU is locally free for each p, in particular torsion free. As X is
normal, we infer that j∗�

p
U is coherent by Serre’s result [Se66, Théorème 1]. Here we

use the fact that �X is a coherent extension of �U .
By [KS18, Corollary 1.8], we have j∗�•U = π∗�

•

Y so that in particular j∗�
p
U is

reflexive for every p and (1) follows. This equality together with (3) also implies (2), so
it suffices to prove the third statement. For every morphism C• −→ D• of complexes on Y
the diagram

π∗C• //

��

π∗D•

��
Rπ∗C• // Rπ∗D•

(2.4)

of complexes on X commutes. For C• = C −→ �•Y = D• we obtain the commuting
diagram

H k(X,C) //

π∗

��

Hk(π∗�•Y )

ψ

��
H k(Y,C) // Hk(�•Y )

(2.5)

The lower horizontal map is an isomorphism by Grothendieck’s theorem, and π∗ is injec-
tive for k ≤ 2 by Lemma 2.1. We will show that for k ≤ 2 the map ψ is injective and the
codimension of its image is the same as that of π∗.
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For the injectivity we compare the spectral sequences on X and Y . Let us show first
that the E1-level of the spectral sequence (2.3) embeds into the E1-level of the spectral
sequence of the complex �•Y , which degenerates on E1 by Hodge theory. Note that Y is
also of Fujiki class and therefore it carries a Hodge structure on its cohomology, and the
Hodge–de Rham spectral sequence degenerates on E1.

Now, we have H k(X,OX) ∼= H
k(Y,OY ) by rationality of singularities for all k ∈ N0

and obviously H 0(X, π∗�
k
Y )
∼= H 0(Y,�kY ). The inclusion H 1(X, π∗�Y ) ⊂ H

1(Y,�Y )

is deduced from the Leray spectral sequence.
Thus, degeneration of the spectral sequence and injectivity of ψ will follow once we

show that H 1(X, π∗�Y ) ⊂ H
1(Y,�Y ) has codimension equal to m := dimN1(Y/X) =

dimH 1,1(Y ) − dimH 1,1(X), where N1(Y/X) is the kernel of the surjection N1(Y ) −→

N1(X)—see [KM92, (12.1.5)] and note that log terminal singularities are rational. But
cokerψ1,1 is the image of H 1(�Y ) −→ H 0(R1π∗�Y ). So let C1, . . . , Cm be curves in Y
contracted to a point under π such that their classes form a basis of N1(Y/X) and let
L1, . . . , Lm be line bundles on Y such that their Chern classes ξi := c1(Li) ∈ H

1(�Y )

define linearly independent functionals on N1(Y/X). Choose irreducible components
F1, . . . , Fm of fibers of π such that Ci ⊂ Fi for all i. Take resolutions of singulari-
ties νi : F̃i −→ Fi and curves C̃i ⊂ F̃i such that νi∗C̃i = Ci for all i. If we de-
note F :=

∐
F̃i and by ν : F −→ Y the composition of the resolutions with the in-

clusion, then by the projection formula ν∗ξi .C̃j = ξi .Cj so that the ν∗ξi are still lin-
early independent. This implies that the ξi are mapped to an m-dimensional subspace of
H 1(F,�F ) under the composition H 1(�Y ) −→ H 0(R1π∗�Y ) −→ H 1(F,�F ). In partic-
ular, rk(H 1(�Y ) −→ H 0(R1π∗�Y )) ≥ m, which completes the proof of the lemma. ut

From the proof of the preceding lemma we deduce

Corollary 2.3. Let X be a normal compact variety of Fujiki class with rational singular-
ities, let π : Y −→ X be a resolution of singularities, and denote by j : U = Xreg

−→ X

the inclusion of the regular part. Then for k, p + q ≤ 2 we have

(1) Hp,q(X) ∼= H q(X, π∗�
p
Y )
∼= H q(X, j∗�

p
U ),

(2) H k(X,C) ∼= Hk(X, π∗�•Y ) ∼= Hk(X, j∗�•U ), and
(3) FpH k(X,C) ∼= Hk(X, π∗�

≥p
Y ) ∼= Hk(X, j∗�

≥p
U ).

Proof. The isomorphism Hp,q(X) ∼= H q(X, π∗�
p
Y ) was shown in the proof of Lem-

ma 2.2. There, we saw that Hp,q(X) ⊂ H q(X, π∗�
p
Y ) and both spaces were shown

to have the same codimension in Hp(Y,�
q
Y ). Therefore, they are equal. The statement

about the pushforward of �pU is again deduced from [KS18, Corollary 1.8]. The second
statement is contained in Lemma 2.2, and the third statement is a consequence of the first
two. ut

Again, the second statement was shown by Schwald [Sc16, Theorem 7] for projective
varieties. Now we turn to the relative situation. The following result follows from the
absolute case by homological algebra.
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Lemma 2.4. Let X0 be a normal compact variety of Fujiki class with rational singular-
ities, let f : X −→ S be a flat deformation of X0 over a local Artinian base scheme S of
finite type over C, let j0 : U0 ↪→X0 be the inclusion of the regular locus and let U −→ S

be the induced deformation of U0. Let us denote by j : U ↪→X the inclusion and suppose
that j∗�•U/S is flat over S. Then the following hold:

(1) For each p ∈ N0 and every closed subscheme S′ ↪→ S we have (j∗�
p
U/S) ⊗OS

OS′

= j ′∗�
p

U ′/S′
where j ′ : U ′ ↪→X′ is the base change of j to S′. Moreover, the sheaf

j∗�
p
U/S is a coherent OX-module.

(2) For all k ≤ 2 the canonical map H k(X, f−1OS) −→ Hk(X, j∗�•U/S) is an isomor-
phism and the Hodge–de Rham spectral sequence

E
p,q

1 = H q(j∗�
p
U/S)⇒ Hp+q(X, j∗�•U/S) (2.6)

degenerates on E1 in the region where p + q ≤ 2.
(3) The OS-modules H q(X, j∗�

p
U/S) are free for p + q ≤ 2 and compatible with arbi-

trary base change.

Proof. We put R := 0(S,OS) and denote by m ⊂ R its maximal ideal. The case R = C
was treated in Lemma 2.2.

For the proof of (1), we first note that (j∗�
p
U/S)⊗OS

OS′ = (j∗�
p
U/S)⊗j∗OU

j ′∗OU ′ =

j ′∗�
p

U ′/S′
by normality of X0. It remains to prove coherence. Let us assume m 6= 0 and

denote by n ∈ N the unique natural number such that mn 6= 0 but mn+1
= 0. We will

argue by induction on n. From now on, let S′ ↪→ S be the closed subscheme defined by
mn and let j ′ : U ′ ↪→X′ −→ S′ be the base change of j : U ↪→X to S′. By normality
of X0 we have (j∗�

p
U/S) ⊗ OS′ = j ′∗�

p

U ′/S′
and thus by flatness for each p there is an

exact sequence

0 −→ j0∗�
p
U0
⊗mn −→ j∗�

p
U/S −→ j ′∗�

p

U ′/S′
−→ 0. (2.7)

Note that mn is an R/m = C-vector space. By the inductive hypothesis, the left and the
right term in the sequence are coherent, thus the same holds for the middle term.

The strategy for (2) and (3) is basically the same as in the proof of [De68, Théorème
5.5]. The differentials on all modules Ep,q1 with p + q = k will be zero if and only if∑
p+q=k lgR E

p,q

1 = lgR Hk(X, j∗�•U/S) where lgR denotes the length as an R-module.
Note that both sides are finite.

Flatness and coherence of j∗�•U/S entail that there is a bounded-below com-
plex L• of free R-modules of finite rank such that there is an isomorphism
H q(X, j∗�

p
U/S ⊗ f ∗M) ∼= H q(L ⊗R M) which is functorial in the R-module M

[BS77, Ch. 3, Théorème 4.1]. This is where in the algebraic category, Deligne uses
[EGA3, Théorème (6.10.5)] instead. By [De68, (3.5.1)], we obtain lgR H

q(X, j∗�
p
U/S) ≤

lgR · lgR H
q(X0, j0∗�

p
U0
) and equality holds if and only if H q(X, j∗�

p
U/S) is R-free.
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For k ≤ 2 we have

lgR Hk(X, j∗�•U/S) ≤
∑

p+q=k

lgR H
q(X, j∗�

p
U/S)

≤ lgR ·
∑

p+q=k

dimCH
q(X0, j0∗�

p
U0
)

= lgR ·H k(X0,C) (2.8)

where the first inequality is the existence of the spectral sequence, the second one was
explained just before and the equality is the degeneracy of the spectral sequence for X0
(see Lemma 2.2).

As in the proof of (1) we may assume m 6= 0, and we will show by induction on
the minimal n ∈ N satisfying mn+1

= 0 that Hk(X, j∗�•U/S) = H k(X, f−1OS) =

H k(X,RX) for k ≤ 2 where RX denotes the constant sheaf R. The complexes in (2.7)
have natural augmentations from CX⊗mn,RX, andR′X whereR′ = R/mn = 0(S′,OS′).
Applying cohomology we obtain the following diagram with exact rows. The upper row
is exact by the universal coefficient theorem.

0 // H k(X0,C)⊗mn //

��

H k(X0, RX)
//

��

H k(X0, R
′

X′
) //

��

0

· · · // Hk(X0, j0∗�
•

U0
)⊗mn

βk // Hk(X, j∗�•U/S)
αk // Hk(X′, j ′∗�•U ′/S′) // · · ·

where the outer vertical morphisms are isomorphisms by induction. Thus, αk is surjec-
tive for all k ≤ 2. As the bottom row is part of the long exact sequence in cohomology,
surjectivity of αk−1 implies injectivity of βk . Thus, the middle vertical morphism is an
isomorphism by the 5-lemma. Therefore, the inequality in (2.8) is an equality which en-
tails all the freeness statements we wanted to prove.

The base change property follows from the local freeness by [BS77, Ch. 3, Corollaire
3.10] (this is the analog of [EGA3, (7.8.5)] in the analytic case). ut

3. Symplectic varieties, symplectic resolutions, and periods

In this section we collect some definitions and summarize mostly known results that will
be used in subsequent sections. Some of the proven results are probably well-known to
experts but we include the proofs for the precise statements that we need. In Section 3.1
we introduce our main object of study, singular symplectic varieties and their irreducible
symplectic resolutions. We also provide some basic results about these varieties that will
be essential in Section 4. In Section 3.7 we discuss properties of their periods, and the
associated period domains. In Sections 3.9 and 3.13 we summarize work of Verbitsky
on the classification of monodromy orbit closures in the period domain and the space of
Kähler cones.
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3.1. Symplectic varieties and symplectic resolutions

Recall from [Be83, Proposition 4] that an irreducible symplectic manifold is a simply
connected compact Kähler manifold Y such that H 0(Y,�2

Y ) = Cσ for a holomorphic
symplectic 2-form σ . By [Be83, Théorème 5], there is a nondegenerate quadratic form
qY : H

2(Y,Z) −→ Z of signature (3, b2(Y ) − 3), the Beauville–Bogomolov–Fujiki form.
Thus, the associated bilinear form gives an injection q̃Y : H 2(Y,Z) ↪→H2(Y,Z) which
becomes an isomorphism over Q.

We will need the notion of a Kähler complex space, due to Grauert [Gr62, §3, 3.,
p. 346]. Let X be a reduced complex space. A Kähler form on X is given by an open
covering X =

⋃
i∈I Ui and smooth strictly plurisubharmonic functions ϕi : Ui −→ R

such that on Uij := Ui ∩Uj the function ϕi |Uij − ϕj |Uij is pluriharmonic, i.e., locally the
real part of a holomorphic function. Here, a smooth function on X is by definition just a
function f : X −→ R such that under a local holomorphic embedding of X into an open
set U ⊂ Cn, there is a smooth (i.e., C∞) function on U (in the usual sense) that restricts
to f on X. A Kähler space is then a reduced complex space admitting a Kähler form.
Note that the form is not part of the structure.

We do not need many further details on Kähler spaces. Indeed, we will only use the
fact that compact Kähler spaces can be resolved by compact Kähler manifolds (see e.g.
[Va89, II, 1.3.1 Proposition]) and therefore come equipped with mixed Hodge structures
on their cohomology groups.

Definition 3.2. We will use the term symplectic variety in the same sense as Beauville4

to mean a normal complex Kähler variety X together with a holomorphic symplectic
2-form σ on its regular part that extends holomorphically to one (and hence to any) res-
olution of singularities [Be00, Definition 1.1]. An (irreducible) symplectic resolution is
a resolution π : Y −→ X of a compact Kähler symplectic variety X by an (irreducible)
symplectic manifold Y .

Remark 3.3. (1) Different classes of singular symplectic varieties have been studied re-
cently. The class of irreducible symplectic varieties defined by Greb–Kebekus–Peternell
[GKP11, Definition 8.16] for example is the relevant class of symplectic varieties showing
up in the singular version of the Beauville–Bogomolov decomposition. The decomposi-
tion theorem has been established by Höring–Peternell [HP19] building on work of Druel
[Dru18] and Greb–Guenancia–Kebekus [GGK19].

(2) Of course a symplectic resolution of a symplectic variety is not guaranteed to ex-
ist. Let π : Y −→ X be a resolution of singularities of a symplectic variety X. Then π
is a symplectic resolution if and only if it is a crepant resolution. It is well-known that
not every variety has a crepant resolution: see e.g. Example 3.4 (3.4) below. To ask for
the existence of a symplectic resolution is thus a strong assumption. We expect, how-
ever, that the techniques developed here are applicable in greater generality, namely by
replacing the crepant resolution by a Q-factorial terminalization (for some recent progress

4 To be precise, Beauville studied algebraic varieties whereas we work in the complex analytic
category. Apart from that the definition is however literally the same.
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see [BL18, especially Theorems 1.1 and 1.5]). Note that every algebraic variety with klt
singularities has a Q-factorial terminalization by [BCHM10, Corollary 1.4.3].

Example 3.4. (1) Recall that there are the following known deformation types of irre-
ducible symplectic manifolds, all arising from moduli spaces of sheaves onK3 or abelian
surfaces: for any n > 1, the Hilbert scheme S[n] of length n subschemes of aK3 surface S
as described in [Be83, Section 6] is an irreducible symplectic manifold, which by [Be83,
Lemme 2] satisfies b2 = 23. For any n > 1, the generalized Kummer variety Kn(A),
i.e., the Hilbert scheme of zero-sum length n + 1 subschemes of an abelian surface A as
described in [Be83, Section 7] is irreducible symplectic and satisfies b2 = 7 by [Be83,
Proposition 8]. There are two more sporadic examples: in dimension 10, the symplectic
resolution constructed in [OG99] of a singular moduli space of sheaves on a K3 sur-
face S with a certain Mukai vector is an irreducible symplectic manifold. It has b2 = 24
by [Ra08, Theorem 1.1]. In dimension 6, the symplectic resolution of a singular moduli
space of trivial-determinant sheaves on an abelian surface A is an irreducible symplectic
manifold with b2 = 8 [OG03, (1.4) Theorem]. Note that the Betti numbers are different in
all these examples; as of now, these are all the known examples of irreducible symplectic
manifolds up to deformation.

(2) Evidently, if π : Y −→ X is a proper birational morphism from an (irreducible)
symplectic manifold Y to a normal Kähler variety X, then X is a symplectic variety and
π is an (irreducible) symplectic resolution. Thus, symplectic resolutions can instead be
viewed as birational contractions of symplectic manifolds.

As all known deformation types of irreducible symplectic manifolds arise from mod-
uli spaces of sheaves, a rich source of symplectic resolutions is given by wall-crossing
contractions associated to nongeneric polarizations. We systematically investigate such
examples in Section 6.

(3) Divisorial contractions yield Q-factorialX, and these were studied in [LP16, espe-
cially Section 2]. The more general context dealt with in the current paper allows for small
contractions, the easiest example of which is the contraction of a Lagrangian projective
space to a point. See [Ba15, Examples 8–10] for explicit examples.

(4) Let Y ⊂ P5 be a singular cubic fourfold with ADE singularities not containing a
plane. Then it has been shown in [Le18, Theorem 3.3] that the variety M1(Y ) of lines on
Y is a symplectic variety which is birational to the second punctual Hilbert scheme of an
associatedK3 surface. It follows thatM1(Y ) admits a crepant resolution by an irreducible
symplectic manifold [Le18, Corollary 5.6]. A similar statement is deduced for the target
space Z(Y ) of the MRC-fibration of the Hilbert scheme compactification of the space of
twisted cubics on Y [Le18, Theorem 1.1 and Corollaries 5.5 and 6.2].

(5) As mentioned above, not every symplectic variety admits a symplectic resolution.
For example, every Q-factorial, terminal symplectic variety is either smooth or does not
have any symplectic resolution. Indeed, Q-factoriality implies that the exceptional locus
of a resolution is a divisor and terminality then implies that every irreducible compo-
nent of this divisor has strictly positive discrepancy, in particular, the resolution cannot be
crepant. The n-th symmetric productX(n) with n ≥ 2 of a smooth symplectic varietyX of
dimension≥ 4 provides a concrete example, since group quotients are always Q-factorial
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and terminality for symplectic varieties is equivalent to the singular locus having codi-
mension ≥ 4 [Nam01c, Corollary 1].

Given a symplectic resolution π : Y −→ X, from [KM92, (12.1.3) Theorem] it follows
that we have a short exact sequence

0 −→ H2(Y/X,Q) −→ H2(Y,Q) −→ H2(X,Q) −→ 0. (3.1)

Here, H2(Y/X,Q) denotes the subspace of H2(Y,Q) generated by all pushforwards of
cohomology classes in the fibers of π . Let us recall that N1(Y ) is defined as the abelian
group of algebraic 1-cycles modulo numerical equivalence and that N1(Y/X) ⊂ N1(Y )

is defined as the kernel of the pushforward map π∗ : N1(Y ) −→ N1(X). Then by loc. cit.,
H2(Y/X,Q) is generated by algebraic cycles and therefore coincides withN1(Y/X)Q :=
N1(Y/X) ⊗ Q. As in the introduction, we denote by q̃Y : H 2(Y,Q) −→ H2(Y,Q) the
isomorphism induced by the quadratic form qY .

The following lemma is an elementary consequence of the results of Section 2 and
is fundamental in what follows, especially for the study of locally trivial deformations in
Section 4. Among other things it will be used in the description of deformations of Y that
induce locally trivial deformations of X (see Proposition 4.5).

Lemma 3.5. Let π : Y −→ X be an irreducible symplectic resolution. Then π∗ :

H 2(X,Z) −→ H 2(Y,Z) is injective and this injection is an equality on the transcen-
dental part H 2(X)tr = H 2(Y )tr. The restriction of qY to H 2(X,Z) is nondegenerate.
The qY -orthogonal complement to H 2(X,Q) in H 2(Y,Q) is N := (̃qY )−1(N1(Y/X)Q).
Moreover, N is negative definite with respect to qY .

Proof. Injectivity and equality of the transcendental parts follow from Lemma 2.1. To see
thatN is qY -orthogonal toH 2(X,Q)we only have to unravel the definition ofN : LetC be
a curve in Y that is contracted to a point under π . Then DC := q̃−1

Y ([C]) ∈ H 2(X,Q) is
the unique class such that C.π∗α = qY (DC, π∗α) for all α ∈ H 2(X,Q). But C.π∗α = 0
by the projection formula, so indeed N ⊥ H 2(X,Q).

From (3.1) and the equality H2(Y/X,Q) = N1(Y/X)Q, we infer that dimN +

b2(X) = b2(Y ). To conclude the proof it therefore suffices to show that N is negative
definite. For this we may extend the coefficients to R. The restriction of qY to H 1,1(Y )

is nondegenerate with one positive direction and N ⊂ H 1,1(Y ). We fix a Kähler class h
on X. Then qY (h) > 0 as h is big and nef on Y , so h⊥ ⊂ H 1,1(Y ) is negative definite.
But N ⊂ h⊥, which is what we needed to show. ut

The following is an essential ingredient in the proof of Theorem 4.1 about the unobstruct-
edness of locally trivial deformations.

Proposition 3.6. Let π : Y −→ X be an irreducible symplectic resolution and let j :
U −→ X be the inclusion of the regular locus. Then

TX = j∗TU = j∗�U = π∗�Y .

Proof. Indeed, as X is integral, TX is reflexive so that the first equality follows from
normality of X. The second equality comes from the symplectic form on the regular part,
and the third is again [KS18, Corollary 1.8]. ut
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3.7. Hodge structures of hyperkähler type

Let 3 be a free finitely-generated Z-module. Let q be a nondegenerate symmetric form
on 3 of signature (3, rk(3)− 3).

Definition 3.8. A Hodge structure of hyperkähler type on (3, q) is a weight-two integral
Hodge structure H on 3 with h2,0

= h0,2
= 1 such that q : H ⊗ H −→ Z(−2) is a

morphism of Hodge structures and for which the restriction of q to (H 2,0
⊕ H 0,2)R is

positive definite.

Hodge structures H of hyperkähler type are parametrized by the period domain

�3 := {[σ ] ∈ P(3C) | q(σ, σ ) = 0, q(σ, σ̄ ) > 0}. (3.2)

We denote by Hp the Hodge structure on 3 corresponding to p ∈ �3. The positive real
plane (H 2,0

⊕ H 0,2)R is canonically oriented by Re(σ ) ∧ Im(σ ) where σ ∈ H 2,0 is a
generator. Conversely, a positive oriented plane P in 3R determines an element σ ∈ �3
via σ = v + iw where (v,w) is an oriented orthonormal basis of P . Thus, the period
domain�3 can alternatively be thought of as the space of oriented positive definite planes
in 3R.

3.9. Monodromy orbit closures

We will also need Verbitsky’s classification [Ve17, Theorem 2.5] of orbit closures of
hyperkähler periods under arithmetic lattices in the orthogonal group. We make the fol-
lowing definition:

Definition 3.10. Let H be a pure weight-two integral Hodge structure with underlying
Z-module 3. The rational rank of H is rrk(H) := rk((H 2,0

⊕ H 0,2) ∩ 3). Note that
0 ≤ rrk(H) ≤ 2 ·h2,0. For p ∈ �3 we will also denote by rrk(p) := rrk(Hp) the rational
rank of the Hodge structure Hp on 3 corresponding to p.

Fixing an oriented positive definite plane P0 ∈ �3 as a basepoint, we obtain an isomor-
phism

�3 ∼= SO(3R)
◦/SO(P0)× SO(P⊥0 )

◦ (3.3)

where the superscript stands for the identity component. Let us assume from now on that
rk(3) > 4. This hypothesis ensures that SO(P⊥0 )

◦ is generated by unipotents. Now the
only closed connected Lie subgroups of SO(3, n)◦ containing SO(1, n)◦ are SO(1, n)◦,
SO(2, n)◦, and SO(3, n)◦ (see [Ve17, Theorem 2.1]). Thus, the smallest closed con-
nected Lie subgroup of SO(3R)◦ which contains SO(P⊥0 ) and is defined over Q is
SO((`⊥0 )R)

◦, where `0 := P0 ∩ 3. Note we have rrk(P0) = rk(`0). Given an arith-
metic lattice 0 ⊂ O(3), we set 0◦ := SO(3R)◦ ∩ 0. By an application of Ratner’s
theorem (see [Ve15, Theorem 4.2] for the precise statement, or [Mo15, §1.1.15(2) and
§1.1.19] for further background), the orbit closure of 0◦ · id ∈ 0◦\SO(3R)◦ under
SO(P⊥0 )

◦ is the (closed) orbit under SO((`⊥0 )R)
◦. It follows then that the orbit closure

under SO(P0) × SO(P⊥0 )
◦ is either the orbit itself, (0◦ · id)SO((`⊥0 )

◦

R)SO(P0), or all
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of 0◦\SO(3R)◦ when rk(`0) = 2, 1, or 0, respectively. Note that for the middle case,
(0◦ · id)SO((`⊥0 )

◦

R)SO(P0) is closed (as (0◦ · id)SO((`⊥0 )
◦

R) is closed and SO(P0) com-
pact) and contained in the orbit closure, hence equal to it.

Proposition 3.11 ([Ve17, Theorem 2.5]). There are three possibilities for the orbit clo-
sure of P0 ∈ �3 under an arithmetic lattice 0 ⊂ O(3) depending on r = rrk(P0):

(r = 2) the orbit is closed;
(r = 1) the orbit closure is the union of Gγ `0 for γ ∈ 0, where G` is the subset of

positive planes P containing `;
(r = 0) the orbit is dense.

Remark 3.12. The r = 1 case was omitted in [Ve15, Theorem 4.8] and corrected re-
cently in [Ve17]. Note that in the r = 1 case, G` ⊂ �3 is a real-analytic submanifold of
real codimension rk3− 2 in �3.

3.13. Decompositions of the positive cone

By3 we still denote a lattice of signature (3, rk(3)− 3). Let 0 ⊂ O(3) be an arithmetic
lattice.

Definition 3.14. An MBM collection of 3 (for 0) is a 0-invariant set M ⊂ 3 − {0} of
classes of bounded negative square.

Setup 3.15. In the following, we refer to [Ma11, §4] for details. We denote by
C(3) ⊂ 3R the cone of positive vectors. It has the homotopy type of a 2-sphere,
in particular, it is connected. For a hyperkähler Hodge structure H on 3, we define
C1,1(H) ⊂ H

1,1
R to be the cone of positive vectors in the (1, 1)-part. This cone has

two components, and a choice of component is equivalent to a choice of generator of
H 2(C(3),Z). We fix such a generator ofH 2(C(3),Z) and denote by C1,1(H)+ the cor-
responding component of C1,1(H). Let M be an MBM collection of 3 for 0. For each
p ∈ �3, the collection M induces a wall-and-chamber decomposition of C1,1(Hp)

+

whose open chambers are the connected components of

C1,1(Hp)
+
−

⋃
α∈Mp

α⊥ (3.4)

where Mp = M ∩H
1,1
p .

Remark 3.16. Note that the collection of hyperplanes
⋃
α∈Mp

α⊥ is locally finite in
C1,1(Hp)

+ since the squares of the classes in M are bounded. Indeed, for any ω ∈
C1,1(Hp)

+ the space ω⊥ ∩ (H 1,1
p )R is negative definite, and the fixed radius closed balls

in ω⊥ ∩ (H 1,1
p )R form a proper family over C1,1(Hp)

+, hence only finitely many walls
α⊥ can intersect any given compact subset of C1,1(Hp)

+.

Definition 3.17. The open chambers of C1,1(Hp)
+ defined by (3.4) are called Kähler-

type chambers. The hyperplanes α⊥ for α ∈ Mp are called Kähler-type walls.
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Let C 1,1(�3)
+ be the universal type (1,1) positive cone—that is, the subspace of the

product �3 × C(3) consisting of pairs (p, ω) for which ω ∈ C1,1(Hp)
+. Define

�class
3 := C 1,1(�3)

+
−

⋃
α∈M

α⊥ × α⊥.

As in Remark 3.16, for any (p, ω) ∈ C 1,1(�3)
+ the fixed radius closed balls in ω⊥ ∩

(H
1,1
p )R form a proper family over C 1,1(�3)

+, so the collection
⋃
α∈M α

⊥
× α⊥ of

universal hyperplanes is locally finite in C 1,1(�3)
+ and in particular �class

3 is open in
C 1,1(�3)

+.
Evidently, the fiber of �class

3 over p ∈ �3 is the union of the open chambers of the
wall-and-chamber decomposition ofC1,1(Hp)

+ defined above. We define the space�cone
3

to consist of pairs (p, C) for p ∈ �3 and C an open chamber of the decomposition of
C1,1(Hp)

+, topologized as a quotient of �class
3 . The forgetful map �cone

3 −→ �3 is con-
tinuous since �class

3 −→ �3 is. Moreover, for any p ∈ �3 and any ω in an open chamber
of C1,1(Hp)

+, a sufficiently small ball B around (p, ω) in C 1,1(�3)
+ is contained in the

open subset �class
3 . Such a B therefore defines a section of �cone

3 −→ �3 over its image
in �3, and we have proven the following statement.

Proposition 3.18. The forgetful map �cone
3 −→ �3 is a local isomorphism. ut

Note that both �class
3 and �cone

3 depend on the choice of MBM collection M , and that
0 acts on both by continuous maps. We have the following formulation of result of
Verbitsky:

Theorem 3.19 ([Ve17, Theorem 3.1]). Assume rk(3) > 4 and let M be an MBM col-
lection of 3 for 0. Then the forgetful map π : �cone

3 −→ �3 commutes with closures.

Corollary 3.20. Assume rk(3) > 4. For any x = (p, C) ∈ �cone
3 of nonmaximal Picard

rank, we have 0x = π−1(0p).

Proof. In view of Theorem 3.19, it suffices to show the inclusion ⊇. Let y ∈ 0x, and
suppose y′ ∈ π−1(π(y)), in other words, y′ is inseparable from y. Let U ′ and U be open
neighborhoods of y′ and y, respectively, which we may assume have the same image
in�3. Then U ′ and U must meet at every point in U with Picard rank zero, and therefore
meet at a point in 0x. Hence every open neighborhood of y′ meets 0x which proves the
claim. ut

We will finally need to understand how the cone decompositions defined above restrict to
sublattices.

Definition 3.21. Suppose M ′ is an MBM collection of 3′ for 0′, and that 3 ⊂ 3′ is a
primitive sublattice for which N := 3⊥ is negative definite and rationally generated by
classes in M ′. Let 0 ⊂ 0′ be the stabilizer of N . We define the induced MBM collection
of 3 (for 0) to be the set M ⊂ 3− {0} of primitive vectors of negative square which are
up to scaling the orthogonal projections of classes in M ′ −N .
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Evidently M is invariant under the subgroup 0. Note that the order of the scaling is
bounded by the size of the discriminant group of 3, and it follows that the classes of
M are indeed of bounded square. Thus, M is again an MBM collection in the sense of
Definition 3.14. Note that in Definition 3.21 it is necessary to impose negativity of the
square, as the following example shows.

Example 3.22. Let 3′ be a lattice containing a sublattice spanned by two (−2)-classes
c1, c2 with c1.c2 = 2n. We letM ′ denote the 0-orbit of {c1, c2}. IfN = Zc2 and3 = N⊥,
then c1 + nc2 has square 2(n2

− 1) and is the orthogonal projection of c1. Note that
this situation is realized geometrically by a K3 surface with two smooth rational curves
intersecting in 2n points.

Setup 3.23. Let us fix an MBM collection M ′ ⊂ 3′ and a primitive sublattice 3 ⊂ 3′

such that N := 3⊥ is negative definite and rationally generated by classes in M ′, and let
us denote by M ⊂ 3 the induced MBM collection. We define �class

3′
, �cone

3′
(respectively

�class
3 , �cone

3 ) as before using the classes M ′ (respectively M).

Remark 3.24. Given a point p ∈ �3 ⊂ �3′ , we denote the corresponding Hodge struc-
tures on 3 and 3′ by Hp and H ′p. Given Setup 3.23, we explicitly describe the relation
between the Kähler-type chambers in C1,1(Hp)

+ and in C1,1(H ′p)
+ (see Definition 3.17).

The classes inMp are the projections of classes inM ′p sinceN ⊂ (H ′p)
1,1
R . Thus, the walls

of C1,1(Hp)
+ are the intersections of the walls of C1,1(H ′p)

+ with 3. Moreover, as N is
spanned by classes in M ′, no open chamber C of C1,1(H ′p)

+ intersects 3R. It follows
that each closed chamber of C1,1(Hp)

+ is of the form C̄ ∩3R for an open chamber C of
C1,1(H ′p)

+ for which C̄ ∩3R has nonempty interior (i.e. for which 3R is a face of C).

Definition 3.25. Let �class
3′,3
⊂ �class

3′
be the subspace of points (p, ω) for which p ∈ �3

and the chamber of C1,1(Hp)
+ containing ω has 3R as a face. Let �cone

3′,3
⊂ �cone

3′
be the

subspace of points (p, C) for which p ∈ �3 and C has 3R as a face.

Definition 3.26. Let us fix p ∈ �3 ⊂ �3′ . In Setup 3.23, the resolution chambers of
C1,1(H ′p)

+ (with respect toN ) are the finitely many chambers cut out by the finitely many
hyperplanes α′⊥ for α′ ∈ M ′ ∩N , i.e. the connected components of

C1,1(H ′p)
+
−

⋃
α∈M ′∩N

α⊥. (3.5)

Note that any such resolution chamber τ uniquely determines a resolution chamber in
C1,1(H ′t )

+ for all t ∈ �3, which we will also denote by τ . This is because these chambers
are cut out by the same inequalities q(ω, α′) > 0 or q(ω, α′) < 0 for α′ ∈ M ′ ∩ N
independently of t ∈ �3. We define�class

3′,3
(τ ) ⊂ �class

3′,3
to be the subspace of (p, ω) with

ω ∈ τ . We let �cone
3′,3

(τ ) ⊂ �cone
3′,3

be the image of �class
3′,3

(τ ).

Note that all resolution chambers have 3R as a face. For a very general p ∈ �3 ⊂ �3′
it follows from comparison of (3.4) and (3.5) that the resolution chambers are exactly the
Kähler-type chambers.
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Proposition 3.27. The connected components of �cone
3′,3

are the spaces �cone
3′,3

(τ ) for all
possible resolution chambers τ . Moreover, the “face” map

�cone
3′,3 −→ �cone

3 : (p, C) 7→ (p, int(C̄ ∩3R))

is an isomorphism of each component onto �cone
3 .

Proof. As each chamber of C1,1(H ′p)
+ having 3R as a face is contained in a resolution

chamber, it follows that �cone
3′,3

is covered by the �cone
3′,3

(τ ). Replacing the strict inequal-
ities defining �class

3′,3
(τ ) with nonstrict ones defines the same subset, so �class

3′,3
(τ ) is open

and closed in �class
3′,3

, as both are topologized as subsets of �3′ × C(3′). As �class
3′,3

(τ ) is
saturated with respect to the quotient�class

3′,3
−→ �cone

3′,3
, it follows that the image�cone

3′,3
(τ )

is also open and closed in �cone
3′,3

.
We now claim the face map restricts to a bijection�cone

3′,3
(τ ) −→ �cone

3 . Indeed, for any
open chamber C of C1,1(Hp)

+ for p ∈ �3, if ω ∈ C then for a sufficiently small open
neighborhood B of ω in C1,1(H ′p)

+, the only walls B meets are those of the form α′⊥ for
α′ ∈ N . As B must intersect τ , there is a unique chamber C′ ⊂ C1,1(H ′p)

+ containing
τ ∩ B, and this must be the unique preimage of (p, C) in �cone

3′,3
(τ ).

Noting that �cone
3 is connected (as the very general fiber over �3 is a point), for the

remainder of the claim it suffices to show �cone
3′,3
−→ �3 is a local isomorphism. As in

the argument for Proposition 3.18, for any p ∈ �3 and any lift (p, ω) ∈ �cone
3′,3

, a small
ball B around (p, ω) is contained in �cone

3′,3
and defines a section of �cone

3′,3
−→ �3 over

its image. ut

4. Deformations

As usual in deformation theory, when we speak about the semi-universal deformation
Z −→ Def(Z) of a complex space Z, the complex space Def(Z) has a distinguished point
0 ∈ Def(Z) such that the fiber of Z −→ Def(Z) over 0 is Z and we should actually speak
about the morphism of space germs (Z , Z) −→ (Def(Z), 0). All deformation-theoretic
statements have to be interpreted as statements about germs.

Let X be a normal compact complex variety with rational singularities and let π :
Y −→ X be a resolution of singularities. Recall that by [KM92, Proposition 11.4] there
is a morphism p : Def(Y ) −→ Def(X) between the Kuranishi spaces of Y and X and
also between the semi-universal families Y −→ Def(Y ) and X −→ Def(X) fitting in a
diagram

Y

��

P // X

��
Def(Y )

p // Def(X)

(4.1)

Recall from [FK87, (0.3) Corollary] that there exists a closed complex subspace Def lt(X)

⊂ Def(X) parametrizing locally trivial deformations of X. More precisely, the restriction
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of the semi-universal family to this subspace, which by abuse of notation we denote also
by X −→ Def lt(X), is a locally trivial deformation of X and is semi-universal for locally
trivial deformations of X.

Let π : Y −→ X be an irreducible symplectic resolution with X of dimension 2n.
As H 0(TY ) = 0, every semi-universal deformation of Y is universal. We also have
H 0(TX) = H

0(π∗�Y ) = 0 by Proposition 3.6 so that every semi-universal deformation
of X is universal. Let us fix universal deformations of X and Y and a diagram like (4.1).
It is well-known that Y −→ Def(Y ) is a family of irreducible symplectic manifolds, at
least in the sense of germs, i.e., possibly after shrinking the representative of Def(Y ). If
X is projective, then also X −→ Def(X) is a family of symplectic varieties admitting
irreducible symplectic resolutions by [Na01b, Theorem 2.2]. We will see in Proposition
5.24 that as an application of our results this statement also holds without the projec-
tivity assumption. Our first goal is to address smoothness of the space of locally trivial
deformations. Recall from the introduction and Lemma 3.5 that we have an orthogonal
decomposition

H 2(Y,Q) = H 2(X,Q)⊕N (4.2)

where N corresponds under the isomorphism q̃Y : H
2(Y,Q) −→ H2(Y,Q) to the curves

contracted by π and put m := dimN .

Theorem 4.1. Let X be a symplectic variety admitting an irreducible symplectic resolu-
tion. Then the space Def lt(X) of locally trivial deformations of X is smooth of dimension
h1,1(X) = h1,1(Y )−m.

Proof. Smoothness is shown using the T 1-lifting principle of Kawamata–Ran [Ra92,
Ka92, Ka97], in particular Theorem 1 of [Ka92]. We refer to [GHJ, §14] or [Le11,
VI.3.6] for more detailed introductions. The tangent space to Def lt(X) at the origin
is H 1(TX), which thanks to Proposition 3.6 can be identified with H 1(j∗�U ) where
j : U = Xreg

−→ X is the inclusion. For the T 1-lifting property one has to show
that for every infinitesimal locally trivial deformation X −→ S of X over an Artinian
base scheme S the space H 1(TX /S) is locally OS-free and compatible with arbitrary
base change. We denote again by j : U −→ X the inclusion of the smooth locus of
X −→ S. Take an extension σ ∈ H 0(U , j∗�2

X /S) of the symplectic form on U ⊂ X.
It remains nondegenerate and hence yields an isomorphism TX /S −→ j∗�X /S , conse-
quently also H 1(TX /S) ∼= H 1(�X /S), which is free by Lemma 2.4. Thus, it satisfies the
T 1-lifting property and thus the space Def lt(X) is smooth. It follows from Corollary 2.3
that dimH 1(TX) = h1,1(X), which shows the dimension statement and completes the
proof. ut

It is convenient to introduce the following terminology:

Definition 4.2. An irreducible symplectic resolution π : Y −→ X is deformable if
Def lt(X) is contained in the image of the map p : Def(Y ) −→ Def(X) considered in (4.1).

An easy consequence of Namikawa’s work, Proposition 4.3 below says that any irre-
ducible symplectic resolution of a projective symplectic variety is deformable. We will in
fact see in Proposition 5.8 that all irreducible symplectic resolutions are deformable.



Global Torelli for singular symplectic varieties 969

Proposition 4.3. Let π : Y −→ X be an irreducible symplectic resolution and consider
the corresponding diagram (4.1). Then for every t ∈ Def(Y ), the morphism Pt : Yt −→
Xp(t) is an irreducible symplectic resolution. In particular, if π is deformable, any small
locally trivial deformation of X is again a compact Kähler symplectic variety admitting
an irreducible symplectic resolution. Moreover, any irreducible symplectic resolution of
a projective symplectic variety X is deformable.

Proof. The varietyX has rational singularities, hence X −→ Def(X) is a family of Kähler
varieties by [Na01a, Proposition 5]. As Y −→ Def(X) is a family of irreducible symplec-
tic manifolds, Y −→ X is fiberwise an irreducible symplectic resolution over the image
of p. The second statement follows now directly from the definition of deformability.

Suppose now thatX is projective. Then by [Na01b, Theorem (2.2)], the spaces Def(Y )
and Def(X) are smooth of the same dimension and the map p from diagram (4.1) is finite.
In particular, p is surjective and Def lt(X) is contained in the image. ut

Corollary 4.4. Let π : Y −→ X be a deformable irreducible symplectic resolution and
Y −→ X the base-change of the top map of (4.1) to p−1(Def lt(X)). Then points t ∈
p−1(Def lt(X)) for which Yt and Xt are both projective are dense in every positive-
dimensional subvariety of Def lt(X).

Proof. By [GHJ, Proposition 26.6] the claim is true for Yt . Since Xt has rational singu-
larities (see e.g. [Ki15, Theorem 3.3.3]), and is Kähler, it is projective whenever Yt is, by
Namikawa’s result [Na02, Corollary 1.7]. ut

Next, we describe p−1(Def lt(X)) ⊂ Def(Y ). For N ⊂ H 2(Y,Q) as in (4.2) let us denote
by Def(Y,N) ⊂ Def(Y ) the subspace of those deformations of Y where all line bundles
on Y with first Chern class inN deform along. This is also the subspace whereN remains
of type (1, 1). It is a smooth submanifold of Def(Y ) of codimension m = dimN by
[Hu99, 1.14].

Proposition 4.5. Let π : Y −→ X be a deformable irreducible symplectic resolution. Let
Y −→ Def(Y,N) and X −→ Def lt(X) be the (restrictions of the) universal deforma-
tions. Then for the natural morphism p : Def(Y ) −→ Def(X) we have p−1(Def lt(X)) =

Def(Y,N), and (4.1) restricts to a diagram

Y

��

P // X

��
Def(Y,N)

p // Def lt(X)

(4.3)

Moreover, p : Def(Y,N) −→ Def lt(X) is an isomorphism.

Proof. By Proposition 4.3 we know that for each t ∈ Def(Y ) mapping to Def lt(X) the
morphism Pt : Yt −→ Xp(t) is an irreducible symplectic resolution. By Lemma 2.4 the
second cohomology groups of locally trivial deformations of X form a vector bundle on
Def lt(X), in particular, h1,1(Xp(t)) = h

1,1(X). Thus, by the decomposition H 2(Y,C) =
N⊕H 2(X,C) from Lemma 3.5 we see that the spaceN1(Yt/Xp(t)) of curves contracted
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by Pt has dimension m for all t ∈ p−1(Def lt(X)). As N is the orthogonal complement of
H 2(X,C), it also varies in a local system. This shows the sought-for equality.

One shows as in [LP16, Proposition 2.3(ii)] that p is an isomorphism, we only sketch
this: It suffices to show that the differential Tp,0 : TDef(Y,N),0 −→ TDef lt(X),0 = H 1(TX)

is an isomorphism. We know from [Hu99, (1.8) and (1.14)] that TDef(Y,N),0 ⊂ H 1(TY )

can be identified with the orthogonal complement to N ⊂ H 1,1(Y ) under the isomor-
phismH 1(TY ) ∼= H

1,1(Y ) induced by the symplectic form. In other words, TDef(Y,N),0 ∼=

H 1,1(X) ⊂ H 1,1(Y ). That this is mapped to H 1(TX) ∼= H
1(j∗�U ) under the restriction

of Tp,0 : H 1(TY ) −→ Ext1(�X,OX) is easily verified. ut

Remark 4.6. Recall from [Fu87, Theorem 4.7] that for an irreducible symplectic mani-
fold Y of dimension 2n there is a deformation-invariant constant cY such that qY (α)n =
cY ·

∫
Y
α2n for any α ∈ H 2(Y,Z). Now if π : Y −→ X is an irreducible symplectic reso-

lution, it follows that the restriction qX(β) := qY (π∗β) only depends on X, since all ir-
reducible symplectic resolutions are deformation-equivalent by [Hu03, Theorem 2.5] and∫
Y
(π∗β)2n =

∫
X
β2n. Furthermore, from Lemma 3.5 we know that qX is nondegenerate

of signature (3, b2(X) − 3), and by Proposition 4.5 it is locally trivially deformation-
invariant. We refer to qX as the Beauville–Bogomolov–Fujiki form of X.

Using the Beauville–Bogomolov–Fujiki form and Proposition 4.5, we obtain a singular
version of the local Torelli theorem for locally trivial deformations as a direct corollary
of the local Torelli theorem for a resolution [Be83, Théorème 5].

Proposition 4.7 (Local Torelli theorem). Let X be a symplectic variety admitting a de-
formable irreducible symplectic resolution, let qX be its Beauville–Bogomolov–Fujiki
form, and let

�(X) := {[σ ] ∈ P(H 2(X,C)) | qX(σ ) = 0, qX(σ, σ̄ ) > 0} ⊂ P(H 2(X,C)) (4.4)

be the period domain for X. If f : X −→ Def lt(X) denotes the universal locally trivial
deformation of X and Xt := f−1(t), then the period map

℘ : Def lt(X) −→ �(X), t 7→ H 2,0(Xt ),

is a local isomorphism. ut

It should be mentioned that Namikawa has proven a local Torelli theorem for certain sin-
gular projective symplectic varieties in [Na01a, Theorem 8] and this has been generalized
by Kirschner [Ki15, Theorem 3.4.12] to a larger class of varieties. In particular, Kirschner
has proven a local Torelli theorem in the context of symplectic compact Kähler spaces.
Let us emphasize, however, that neither Namikawa’s version nor Kirschner’s is what we
need as they do not make any statement about local triviality. Also observe that our ver-
sion of local Torelli—unlike Namikawa’s or Kirschner’s—does not make any assumption
on the codimension of the singular locus of the variety X.

Remark 4.8. In view of the local Torelli theorem 4.7, we will from now on identify
the spaces Def(Y,N) and Def lt(X) via the morphism p if we are given a birational
contraction.
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The following result is a singular analog of [Hu03, Theorem 2.5] which we also use in
the proof.

Theorem 4.9. Let π : Y −→ X and π ′ : Y ′ −→ X′ be deformable irreducible symplectic
resolutions. Assume that there is a birational map φ : Y 99K Y ′ such that the induced
map φ∗ : H 2(Y ′,C) −→ H 2(Y,C) sends H 2(X′,C) isomorphically to H 2(X,C). Then
there is an isomorphism ϕ : Def lt(X) −→ Def lt(X′) such that for each t ∈ Def lt(X) we
have a birational map φt :Xt 99KX ′

ϕ(t). In particular, for general t ∈ Def lt(X) the map
φt is an isomorphism, and X and X′ are locally trivial deformations of one another.

Note that as a birational map between smooth K-trivial varieties, φ has to be an iso-
morphism in codimension one and therefore φ∗ : H 2(Y ′,C) −→ H 2(Y,C) has to be an
isomorphism. For singular varieties, this last conclusion is stronger than being an isomor-
phism in codimension one. It is for example violated if π : X −→ X′ is a small contraction
of an irreducible symplectic manifold X.

Proof of Theorem 4.9. The birational map φ : Y 99K Y ′ between irreducible sym-
plectic manifolds induces an isomorphism between H 2(Y,Z) and H 2(Y ′,Z) compat-
ible with the Beauville–Bogomolov–Fujiki forms and the local Torelli theorem gives
an isomorphism Def(Y ) −→ Def(Y ′). Let us consider the orthogonal decompositions
H 2(Y,Q) = H 2(X,Q)⊕ N and H 2(Y ′,Q) = H 2(X′,Q)⊕ N ′ as in (4.2). By hypoth-
esis, this decomposition is respected by φ∗ from which we infer that the isomorphism
Def(Y ) −→ Def(Y ′) restricts to an isomorphism Def(Y,N) −→ Def(Y ′, N ′) and there-
fore yields an isomorphism ϕ : Def lt(X) −→ Def lt(X′) via Proposition 4.5. It remains to
show the existence of a birational map φt : Xt 99K X ′

ϕ(t) for t ∈ Def lt(X) which is an
isomorphism at the general point. We will identify the spaces

S := Def lt(X) ∼= Def lt(X′) ∼= Def(Y,N) ∼= Def(Y ′, N ′)

and consider the universal families

Y −→X −→ S ←−X ′
←− Y ′

from Proposition 4.5. For any point t ∈ S, the fibers Yt and Y ′t are deformation-equiv-
alent (by Huybrechts’ theorem [Hu03, Theorem 2.5]) and have the same periods, hence
they are birational by Verbitsky’s global Torelli theorem [Ve13, Theorem 1.17]. By count-
ability of components of the Douady space, there is a cycle 0 ⊂ Y ×S Y ′ such that over
a Zariski open U ⊂ S the fiber of 0 over S is the graph of a birational map. For each
t ∈ S, the cycles 0t induce Hodge isometries [0t ]∗ : H 2(Yt ,Q) −→ H 2(Y ′t ,Q) which
form a morphism of local systems when t varies. Choosing t ∈ S very general, we see
that these cycles have to send H 2(Xt ,Q) isomorphically to H 2(X ′

t ,Q), or equivalently,
N to N ′.

The image of 0 in X ×S X ′ is a cycle whose fiber for t ∈ U is the graph of a bira-
tional map ψt : Xt 99K X ′

t ′
. As [0t ]∗ sends H 2(Xt ,Q) isomorphically to H 2(X ′

t ,Q),
we see that ψt∗ sends Pic(Xt )⊗Q isomorphically to Pic(X ′

t )⊗Q. If we choose t ∈ U
such that Xt and X ′

t are projective of Picard number one, then ψ∗ of the ample generator
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of Pic(X ′
t ) is again an ample line bundle on Xt . Therefore, ψt must be regular and hence

an isomorphism. This completes the proof. ut

The following result is a singular analog of [Hu99, Theorem 4.6] and is interesting in its
own right. The same hypotheses as in Theorem 4.9 are needed.

Theorem 4.10. Let X and X′ be projective symplectic varieties with irreducible sym-
plectic resolutions π : Y −→ X and π ′ : Y ′ −→ X′. Let φ : Y 99K Y ′ be a bira-
tional map such that the induced map φ∗ : H 2(Y ′,C) −→ H 2(Y,C) sends H 2(X′,C)
isomorphically to H 2(X,C). Then there are one-parameter locally trivial deformations
f :X −→ 1 and f ′ :X ′

−→ 1 of X and X′ such that X and X ′ are birational over1
and X ∗

= f−1(1×) ∼= (f ′)−1(1×) = (X ′)∗.

Proof. The argument of Huybrechts works in this context almost literally; see [LP16,
Theorem 1.1] for the necessary changes. ut

4.11. Algebraically coisotropic subvarieties

Following Voisin [Vo15, Definition 0.6], we call a subvariety P ⊂ Y of an irreducible
symplectic manifold an algebraically coisotropic subvariety if it is coisotropic and admits
a rational map φ : P 99K B onto a variety of dimension dimY −2 · codimP such that the
restriction of the symplectic form to P satisfies σ |P = φ∗σB for some 2-form σB on B.
In the remainder of this section, we use the deformation-theoretic techniques developed
so far to study algebraically coisotropic subvarieties in families.

Proposition 4.12. Every irreducible component P of the exceptional locus of an irre-
ducible symplectic resolution π : Y −→ X of a projective symplectic variety X is al-
gebraically coisotropic and the coisotropic fibration of P is given by the restriction
π |P : P −→ B := π(P ). In particular, it is holomorphic. Moreover, the general fiber
of π |P is rationally connected.

Proof. Let F denote a resolution of singularities of the general fiber of P −→ B. By
[Ka06, Lemma 2.9] it follows that the pullback of the symplectic form σ of Y to F
vanishes identically so that F is isotropic. It remains to show that dimB = 2(n− dimF)

where dimY = 2n. This is a consequence of [Wi03, Theorem 1.2].
To prove rational connectedness, we use the fact that for every rational curve C on a

symplectic variety admitting an irreducible symplectic resolution the morphism ν : P1
−→

C ⊂ Y obtained by normalization and inclusion deforms in a family of dimension at least
2n − 2 (see [Ra95, Corollary 5.1] or [CMP19, Proposition 3.1]). Being an exceptional
locus, every fiber of π : P −→ B is rationally chain connected by [HM07, Corollary
1.5]. In particular, there are rational curves in P that are contracted by π . Let H be an
ample divisor on Y and take an irreducible rational curve C on P contracted by π such
that the intersection product H.C is minimal among all such rational curves on P . In
the Chow scheme of Y we look at an irreducible component Ch containing [C] of the
locus parametrizing rational curves. Let U ⊂ Ch×Y be the graph of the universal family
of cycles. As C is contracted by π , the same holds true for all curves in Ch (otherwise
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e.g. the intersection with a pullback of an ample divisor from X would change) and as
U is irreducible, we have in fact U ⊂ Ch × P . By minimality of H.C all points in U
correspond to irreducible and reduced rational curves. Thus, U −→ Ch is a family of
curves in the fibers of P −→ B.

By what we noted above, dim Ch ≥ 2n−2 and thus a simple dimension count and the
fact that a positive-dimensional family of rational curves with two basepoints has to have
reducible or nonreduced members (Bend and Break, see e.g. [Ko96, Theorem (5.4.2)])
imply that through the general point of a general fiber F of P −→ B there is a family of
rational curves without further basepoints of dimension dim(F )− 1. Consequently, F is
rationally connected. ut

Remark 4.13. Rational connectedness of F would follow from [CMSB02, Theorem
9.1], the proof of which however seems to be incomplete. Instead, it might also be possi-
ble to use [CMSB02, Theorem 2.8(2)] and the well-known fact that a variety is rationally
connected if and only if it contains a very free rational curve (see e.g. [Ko96, Ch. IV, 3.7
Theorem]).

Remark 4.14. As mentioned in the proof of Proposition 4.12, rational chain connected-
ness follows from the much stronger result [HM07, Corollary 1.5]. This notion coincides
for smooth varieties with rational connectedness, however, this is not the case for singu-
lar varieties. The cone over an elliptic curve is the easiest example of a variety which is
rationally chain connected but not rationally connected.

Recall from [LP19, Theorem 1.1] that given an algebraically coisotropic subvariety P
with almost holomorphic coisotropic fibration φ : P 99K B whose generic fiber F is
smooth, the subvariety F deforms all over its Hodge locus HdgF ⊂ Def(Y ). Moreover, if
for t ∈ HdgF we denote by Yt the corresponding deformation of Y , then the deformations
of F inside Yt cover an algebraically coisotropic subvariety Pt ⊂ Yt with Ft as a generic
fiber of the coisotropic fibration. It seems, however, unclear how to relate the cycle class
of Pt with that of P let alone to show that Pt is a flat deformation.

In the context of birational contractions of symplectic varieties (in dimension ≥ 4
at least) it is rather common that the generic fiber of the exceptional locus over its im-
age is smooth. Thus, it is worthwhile to mention that the main result of [LP19] can be
strengthened in this special situation. But first we need some notation.

Let F ⊂ Y be a closed subvariety in an irreducible symplectic manifold. If Y −→
Def(Y ) denotes the universal deformation we let H −→ Def(Y ) be the union of all
those components of the relative Hilbert scheme (or Douady space) of Y over Def(Y )
which contain [F ]. We define the closed subspace Def(Y, F ) ⊂ Def(Y ) to be the scheme-
theoretic image of H −→ Def(Y ); this is the space of deformations of Y that contain a
deformation of F .

Theorem 4.15. Let π : Y −→ X be an irreducible symplectic resolution of a projective
symplectic variety X, let P ⊂ Y be the exceptional locus of π , put B := π(P ), and let
Y −→ X be the restriction of the universal deformation of Y −→ X over Def(Y,N).
Suppose that P is irreducible and that a general fiber F of π : P −→ B is smooth. Then
Def(Y,N) ⊂ Def(Y, F ) and the Hodge locus HdgP of P contains Def(Y,N).
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Proof. Let F −→ H −→ Def(Y, F ) be the universal deformation of F over the closed
subspace H of the relative Hilbert scheme of Y −→ Def(Y,N). By Proposition 4.12
the variety P is algebraically coisotropic and the fibers of π : P −→ B are rationally
connected so that H 1(F,OF ) = 0 and [LP19, Theorem 4.6] can be applied. We deduce
that Def(Y, F ) and H −→ Def(Y, F ) are smooth at 0 respectively [F ]. In particular, H is
irreducible. Moreover, by [LP19, Corollary 1.2] the period map identifies Def(Y, F ) with
Q ∩ P(K) where Q ⊂ P(H 2(Y,C)) is the period domain of the irreducible symplectic
manifold Y and K = ker(H 2(Y,C) −→ H 2(F,C)). If b ∈ B denotes the point with
F = π−1(b), then by commutativity of

F //

��

Y

��
{b} // X

it follows that H 2(X,C) ⊂ K and hence using H 2(X,C)⊥ = N and the period map
once more we obtain Def(Y,N) ⊂ Def(Y, F ).

In order to show that P remains a Hodge class all over Def(Y,N) we will construct
flat families P1 −→ 1 over curves 1 ⊂ Def(Y,N) passing through the origin such that
the cycle underlying the central fiber P1,0 is a multiple of P . To this end we replace
F −→ H as well as Y −→ X by their restrictions to a given smooth curve germ 1 ⊂

Def(Y,N) and obtain morphisms H ← F −→ Y −→X over1. The map in the middle
is induced by the projection to the second factor of F ⊂ H × Y . As 1 is smooth
and smoothness is stable under base change we may still assume that H , H −→ 1 and
F −→ H are smooth at [F ] respectively in a neighborhood of F ⊂ F . In particular,
there is still a unique irreducible component of H passing through [F ] and by shrinking
the representative of Def(Y, F ) and throwing away components of H we may assume
that H is irreducible.

On the other hand, as X −→ 1 is a locally trivial deformation, it induces a flat
(even locally trivial) deformation of all components of its singular locus (with the reduced
structure). Let B −→ Def(Y,N) be the so induced deformation of B. Then B ⊂X is an
irreducible (and reduced) subspace. If we knew that also Y −→ X were a locally trivial
deformation of Y −→ X, the claim would follow immediately. As we cannot prove this so
far (cf. Question 4.17), we have to argue differently.

We take the unique closed irreducible and reduced subspace F ′ ⊂ F that coincides
with F in a neighborhood of F . As ρ : F ′ −→ H is proper, it therefore is surjective as
well. If we take the Stein factorization, F ′ −→ H̃ −→ H , then by the Rigidity Lemma
(see e.g. [De01, Lemma 1.15]) there is a commutative diagram

F

��

// Y

��
H̃ // X
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Note that H̃ −→ H is finite, birational, and an isomorphism over [F ] ∈ H , and that
H̃ is irreducible. Moreover, the image of H̃ −→ X coincides in a neighborhood of
[f ] ∈ H̃ with the closed subvariety B ⊂ X thanks to the smoothness of F −→ H
in a neighborhood of F ⊂ F . Invoking the irreducibility of H̃ and B we conclude that
H̃�B ⊂ X . We define P =P1 ⊂ Y to be the image of F ′ −→ Y . The variety F ′

being irreducible, the same holds true for P and hence the induced map ρ : P −→ 1 is
flat. It remains to show that P ⊂ P is the unique component of the central fiber P0 of
ρ of dimension dimP . This follows from the irreducibility of P by invoking the Rigidity
Lemma once more. ut

Recall from [Vo15, Definition 1.5] that a cohomology class p ∈ H 2i(Y,C) on a sym-
plectic manifold is called coisotropic if it is a Hodge class and [σ ]n−i+1

∪ p = 0 in
H 2n+2(Y,C)where σ is the symplectic form on Y . We refer to Huybrechts’ article [Hu14,
Definition 3.1] for the notion of a constant cycle subvariety. This is roughly speaking a
subvariety of a given variety all of whose points have the same cycle class in the ambient
variety.

Corollary 4.16. In the situation of Theorem 4.15, the class of [P ] remains an effective
coisotropic Hodge class all over S = Def(Y,N). Moreover, there are varieties Pt ⊂ Yt
for each t ∈ S representing (a multiple of ) [P ] which are algebraically coisotropic with
rationally connected fibers. In particular, the fibers are constant cycle subvarieties of Yt .

Proof. It follows from the preceding theorem that the class [Pt ] of the subvarieties Pt⊂Yt
for a deformation Yt of Y with t ∈ Def(Y,N) is (a multiple of) [P ]. The proof showed
moreover that Pt is covered by deformations of the general fiber F of the coisotropic fi-
bration of P . The claim follows as F was rationally connected and rational connectedness
is known to be invariant under deformations (for smooth varieties). ut

Question 4.17. LetX be a projective symplectic variety, Y −→ X an irreducible symplec-
tic resolution, N = q̃−1(N1(Y/X)Q) (cf. Lemma 3.5), and Y −→ X be the morphism
between universal families over S := Def(Y,N) = Deflt(X) from diagram (4.3). In this
case we ask:

Is Y −→X a locally trivial deformation of Y −→ X?

Note that if this were the case, the whole diagram

E

��

// Y

��
S // X

of complex spaces over S where S −→ S is the singular locus of X −→ S and E −→ S is
the exceptional locus of Y −→ X were a locally trivial (in particular flat) deformation
over S of its central fiber.
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5. Period maps and monodromy groups

In this section we first show that any irreducible symplectic resolution π : Y −→ X is
deformable in the sense of Definition 4.2. We then use this to develop the global theory
of locally trivial deformations.

5.1. Cones and period maps in the smooth case

This subsection contains nothing new, and serves only to summarize known results about
decompositions of the positive cone for irreducible symplectic manifolds. Let Y0 be a
fixed irreducible symplectic manifold and denote by 3′ the abstract lattice underlying
H 2(Y0,Z). The moduli space of3′-marked irreducible symplectic manifolds is the com-
plex space M3′ whose points are isomorphism classes of pairs (Y, µ) consisting of an
irreducible symplectic manifold Y deformation-equivalent to Y0 together with an isom-
etry µ : H 2(Y,Z) −→ 3′, also referred to as a marking. The space M3′ obtains the
structure of a not necessarily Hausdorff complex space from patching the spaces Def(Y )
using the local Torelli theorem [Hu99, 1.18]. In particular, M3′ is smooth of dimension
h1,1(Y0) = rk(3′)− 2. We also refer to [Hu11, §4.2] and the references therein.

The period map for 3′-marked irreducible symplectic manifolds is defined by

P :M3′ −→ �3′ , P (Y, µ) = µ(H 2,0(Y )). (5.1)

Recall that in this context there is the notion of a parallel transport operator and we may
consider the corresponding monodromy group 0′ ⊂ O(3′) (see [Ma11, Definition 1.1]
for details). We continue with some preliminary remarks regarding the Kähler cone of an
irreducible symplectic manifold.

Definition 5.2. In parallel to the notation of Setup 3.15, we denote by C(Y ) ⊂ H 2(Y,R)
and C1,1(Y ) ⊂ H 1,1(Y,R) the cones of positive vectors for the Beauville–Bogomolov–
Fujiki form qY . Note that in the notation of Setup 3.15 we have C(Y ) = C(H 2(Y,Z))
and C1,1(Y ) = C1,1(H) where H denotes the Hodge structure on H 2(Y,Z). The cone
C1,1(Y ) has two connected components, and we define C1,1(Y )+ to be the component
containing a Kähler class.

For an irreducible symplectic manifold Y , the cone C1,1(Y )+ further has a wall-and-
chamber decomposition whose open chambers are the images of the Kähler cones of
birational models of Y under monodromy operators that preserve the Hodge structure
(see [Ma11, Definition 5.10] for details). Following Markman, the walls and chambers of
this decomposition will be referred to as Kähler-type walls and Kähler-type chambers, re-
spectively. The Kähler-type walls of C1,1(Y )+ have been described by Amerik–Verbitsky
in terms of monodromy birationally minimal (MBM) classes [AV15, Definition 1.13] (see
also the wall divisors of [Mo15]) whose definition we now recall.

Definition 5.3. A nonzero class α ∈ H 1,1(Y,Z) with qY (α) < 0 is MBMY if up to
the action of the monodromy group α⊥ ⊂ H 1,1(Y,R) is a wall of the Kähler cone of a
birational model of Y . We say a class α ∈ H 2(Y,Z) is MBM if it becomes MBMY ′ for
some deformation Y ′ of Y .
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The following proposition summarizes what we need about MBM classes and also ex-
plains our choice of terminology in Definition 3.17.

Proposition 5.4 (Amerik–Verbitsky). Let Y be an irreducible symplectic manifold, de-
note by 3′ the abstract lattice underlying (H 2(Y,Z), qY ), and let 0′ ⊂ O(3′) be the
monodromy group. Then the following hold.

(1) The MBMY classes are precisely the Hodge MBM classes.
(2) The Kähler-type walls of C1,1(Y )+ in the sense of Markman are precisely the hyper-

planes α⊥ for α ranging over all MBMY classes.
(3) Assume b2(Y ) > 5. After a choice of marking, the MBM classes form an MBM col-

lection MBM3′ ⊂ 3′ of 3′ for the monodromy group 0′ ⊂ O(3′) in the sense
of Definition 3.14. In particular, the notion of Kähler-type walls and chambers from
Definition 3.17 coincides with the notion due to Markman in this case.

Proof. The first statement follows because MBMY classes are deformation-invariant
along deformations for which they remain of Hodge type (1, 1) by [AV15, Theorem 1.17]
and the second is by [AV15, Theorem 1.19]. For the third, MBM classes have bounded
square assuming b2(Y ) > 5 by [AV17, Theorem 5.3]. ut

In particular, if b2(Y ) > 5 the Kähler cone is locally polyhedral in C1,1(Y )+ and if
Pic(Y ) is negative definite there are only finitely many Kähler-type chambers. Next, we
summarize the relation between the wall and chamber decomposition of the positive cone
and the Torelli theorem. Recall the cone space �cone

3 as defined after Definition 3.17.

Theorem 5.5 (Markman, Verbitsky). For any connected component N3′ of M3′ and
any (Y, µ) ∈ N3′ the points in the same fiber of P : N3′ −→ �3′ as (Y, µ) are in natural
correspondence with the Kähler-type chambers of C1,1(Y )+.

Moreover, the natural enhancement P cone of the period map obtained by “taking the
Kähler cone”

N3′
P cone
−−−→ �cone

3′ , (Y, µ) 7→ (P (Y, µ),K(Y ))

where K(Y) is the chamber of C1,1(Y )+ corresponding to the Kähler cone of Y , is an
isomorphism.

Proof. The map P cone is continuous as Kähler classes remain Kähler in nearby deforma-
tions provided they remain of type (1, 1), and the fact that it is an isomorphism is obtained
by combining Verbitsky’s global Torelli theorem [Ve13, Theorem 1.17] and Markman’s
results on the Kähler-type chamber decomposition [Ma11, Theorem 5.16]. ut

5.6. Deformability of resolutions

Let π : Y −→ X be an irreducible symplectic resolution. Here we show that π is de-
formable. We will need the following

Lemma 5.7. Let π : Y −→ X be an irreducible symplectic resolution with b2(Y ) > 5.
ThenN(Y/X) := (π∗H 2(X,Z))⊥⊂H 2(Y,Z) is rationally generated by MBMY classes.

Proof. We know that that N(Y/X)⊥ in H 1,1(Y,R) intersects the nef cone of Y in an
extremal face τ because N(Y/X) is generated by the duals of curves that are contracted.
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As τ contains a positive class ω (namely the pullback of a Kähler class of X) and the
nef cone is polyhedral near ω (by Remark 3.16) and cut out by α⊥ for α ranging over all
MBMY classes, it follows that N(Y/X)Q is generated by MBMY classes. ut

We are thus in the situation of Setup 3.23 where we can “restrict” the cone decomposition
of Y to X. Precisely, given an irreducible symplectic resolution π : Y −→ X we denote
by H the Hodge structure on H 2(X,Z) and set

C1,1(X)+ := C1,1(H)+

in analogy with Definition 5.2. We let 3′ be the lattice underlying H 2(Y,Z), M ′ be
the MBM classes in 3′, and 3 be the sublattice underlying π∗H 2(X,Z). In the no-
tation of Setup 3.23 we then find that N is given by (̃qY )−1(N1(Y/X)Q) for q̃Y as in
Lemma 3.5, and the role of the cones C1,1(H ′p)

+ and C1,1(Hp)
+ is played by C1,1(Y )+

andC1,1(X)+, respectively. We thereby refer to the resolution chambers ofC1,1(Y )+ with
respect to π in the sense of Definition 3.26. We also obtain a decomposition of C1,1(X)+

into Kähler-type chambers. This will be needed in the proof of the following:

Proposition 5.8. Every irreducible symplectic resolution π : Y −→ X with b2(X) > 4 is
deformable.

Proof. Note that if b2(Y ) = b2(X) then π is an isomorphism by (3.1) and there is nothing
to prove. We may thus assume b2(Y ) > 5. Choose a marking µ : 3′

∼=
−→ H 2(Y,Z) and

define 3 := µ−1(π∗H 2(X,Z)). Let N3′ be the component of M3′ containing (Y, µ).
Consider the subspace N3′,3 of N3′ for which N = 3⊥ is Hodge, i.e. N3′,3 is the
preimage of �3 ⊂ �3′ under the period map (5.1) restricted to N3′ . Let 0N ⊂ O(3′)
be the subgroup of the monodromy group of Y which fixes N pointwise. For a choice of
resolution chamber τ of π (which we identify with its image in 3′), let Nτ

3′,3
⊂ N3′,3

be the subspace of those (Y ′, µ′)whose Kähler cone is contained in τ and has3 as a face.
By Theorem 5.5, the map N3′ −→ �cone

3′
is an isomorphism. Evidently it restricts to an

isomorphism Nτ
3′,3
−→ �cone

3′,3
(τ ) in the notation of Definition 3.26. By Proposition 3.27,

the “face” map
Nτ
3′,3 −→ �cone

3

is an isomorphism. Clearly 0N acts on both Nτ
3′,3

and �cone
3 in a compatible way.

By Proposition 4.3 we may assume X is not projective, and in particular not of max-
imal Picard rank. Now, 0N is a finite index subgroup of O(3), so by Proposition 3.11
and Corollary 3.20 we can choose a projective point (Y0, µ0) ∈ Nτ

3′,3
in the orbit clo-

sure of (Y, µ). By the basepoint free theorem [Ka85, Theorem 6.1] there is a contraction
π0 : Y0 −→ X0 to a primitive symplectic variety contracting the classes in N , and more-
over by Proposition 4.3 this contraction deforms to Y0 −→X0 over Def(Y0, N) ⊂ Nτ

3′,3
,

with X0 deforming locally trivially. After changing the marking by an element of 0N ,
we have (Y, µ′) ∈ Def(Y0, N), and therefore there is a deformable contraction π ′ :
Y −→ X′. As π ′ contracts exactly N , it follows that this is in fact the original contrac-
tion π : Y −→ X. ut
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We record the following corollary of the proof, which was pointed out by Amerik–
Verbitsky [AV19, Theorem 5.5]. The condition on the dimension of the face is required
to ensure the contraction X has b2(X) > 4.

Corollary 5.9. Let Y be a smooth irreducible symplectic manifold and τ ⊂ H 1,1(Y,R)
a face of the Kähler cone meeting the positive cone C1,1(Y )+ for which dim τ > 2. Then
there is a birational contraction π : Y −→ X contracting precisely τ⊥.

Remark 5.10. It should be noted that the assumption b2(X) > 4 that we used several
times throughout this section is nontrivial. In contrast to the smooth case, we know that
there are examples of symplectic varieties X with b2(X) = 3 that admit an irreducible
symplectic resolution: it may well happen that a birational contraction Y −→ X of an
irreducible symplectic manifold Y contracts a negative definite subspace of H 2(Y,R) of
maximal dimension. In the case of K3 surfaces for example, one may take X to be S/G
where S is a K3 surface and G is a group of symplectic automorphisms with minimal in-
variant second cohomology latticeH 2(S,Z)G (i.e. of rank 3). Finite groups of symplectic
automorphisms were classified by Nikulin [Ni76] and Mukai [Mu88]; explicit examples
of groups with the sought-for rank of H 2(S,Z)G may be found in [Xi96, Ha12]. An ex-
ample of a different kind may be found in [OZ96]. The minimal resolution Y −→ X then
gives us an example of a contraction of relative Picard rank 19. The induced contraction
Hilbn(Y ) −→ Symn(Y ) −→ Symn(X) gives an example of a contraction of a K3[n]-type
variety of dimension 2n with relative Picard rank 20.

5.11. Marked moduli spaces—the singular case

Recall that given a lattice 3 with quadratic form q of signature (3, rk(3)− 3), we define
an analytic coarse moduli space M3 of 3-marked irreducible symplectic manifolds by
gluing together the Kuranishi spaces. Likewise, we define Mlt

3 to be the analytic space
obtained by gluing together the locally trivially Kuranishi spaces of3-marked symplectic
varieties admitting irreducible symplectic resolutions. By Theorem 4.1, Mlt

3 is a not-
necessarily-Hausdorff complex manifold.

With the period domain �3 defined as in (3.2), by the local Torelli theorem (see
Corollary 4.7), there is a period map P :Mlt

3 −→ �3 that is a local isomorphism.
Let (X, ν) be a3-marked symplectic variety admitting an irreducible symplectic res-

olution. By Proposition 5.8 and [Hu03, Theorem 2.5], the deformation type of an irre-
ducible symplectic resolution is constant along each connected component of Mlt

3. Given
a lattice3′ with quadratic form q ′ of signature (3, rk(3′)−3) and a primitive embedding
of lattices ι : 3↪→3′, we define a compatibly marked irreducible symplectic resolution
π : (Y, µ) −→ (X, ν) to be an irreducible symplectic resolution π and a commutative
diagram

3′
µ

∼=

// H 2(Y,Z)

3

ι

OO

ν

∼= // H 2(X,Z)

π∗

OO
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compatible with q and q ′. We define Mres
3′,3

to be the set of compatibly marked irreducible
symplectic resolutions (Y, µ) −→ (X, ν) modulo the following equivalence relation: we
identify π : (Y, µ) −→ (X, ν) with π ′ : (Y ′, µ′) −→ (X′, ν′) provided there is an isomor-
phism

Y
∼= //

π

��

Y ′

π ′

��
X

∼= // X′

compatible with the markings. There are obvious forgetful maps that fit into a diagram

Mlt
3

P // �3

��

Mres
3′,3

<<

##
M3′

P // �3′

(5.2)

where the vertical arrow is the embedding of�3 into�3′ as the Noether–Lefschetz locus
�3′ ∩ P(3⊗ C). The set Mres

3′,3
is given the structure of an analytic space by requiring

the top diagonal map to be a local isomorphism, using Proposition 4.5.
For the following proposition, let M3′,3 be the inverse image under P of �3 ⊂ �3′

in M3′—that is, the locus where 3⊥ is Hodge. Recall from the proof of Proposition 5.8
that for a component N3′ ⊂ M3′ and for a choice of resolution chamber τ the subset
Nτ
3′,3

consists of those (Y, µ) for which the Kähler cone of Y is contained in τ and has
3R as a face. We have Nτ

3′,3
∼= �cone

3′,3
(τ ) in the notation of Section 3.13.

Proposition 5.12. Assume rk(3) > 4. For each choice of component Nres
3′,3

of Mres
3′,3

,
the diagonal map from (5.2) yields an isomorphism onto some Nτ

3′,3
⊂ M3′,3 (re-

spectively some component Nlt
3′

of Mlt
3). Moreover, each such Nτ

3′,3
(respectively Nlt

3)

arises as the image of some component Nres
3′,3

of Mres
3′,3

.

Proof. Given the first claim, the second claim is obvious by Corollary 5.9 (respectively
by taking a resolution). Both diagonal maps are local isomorphisms, so for the first claim
we need only show bijectivity.

For the bottom diagonal map, Nres
3′,3

lands in the union
⋃
τ N

τ
3′,3

, and therefore in
a single Nτ

3′,3
. Corollary 5.9 implies that any path in Nτ

3′,3
can be locally lifted to

Nres
3′,3

, as both are locally isomorphic to �3. The lift of a point is unique if it exists (as
a contraction is unique if it exists and the marking is determined), so paths lift globally,
and it follows that Nres

3′,3
bijects onto Nτ

3′,3
.

For the top diagonal map, suppose Nres
3′,3

lands in a component Nlt
3. Note that a

very general point in Mlt
3 has uniformly finitely many lifts to Mres

3′,3
, as the Kähler cone

decomposition of a resolution Y has finitely many chambers and the marking extends in
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finitely many ways. By Proposition 5.8, for any path γ ⊂ Nlt
3 and for each very general

point x ∈ γ we can find an open neighborhood in which the path lifts through every
lift of x. As γ can be covered by finitely many such neighborhoods, paths can be lifted
globally, and Nres

3′,3
−→ Nlt

3 is surjective.
The injectivity of the top diagonal map means the following: if we have two res-

olutions π : Y −→ X and π ′ : Y ′ −→ X together with a parallel transport operator
f : H 2(Y,Z) −→ H 2(Y ′,Z) arising from a simultaneously resolved family connecting π
to π ′ which is the identity on H 2(X,Z), then f arises from an isomorphism φ : Y −→ Y ′

such that π ′ ◦ φ = π . By the statement of the proposition regarding the lower diagonal
map, f must send the resolution chamber τ of π containing the Kähler cone of Y to the
resolution chamber τ ′ of π ′ containing the Kähler cone of Y ′. Moreover, f fixes a Kähler
class on X and therefore both the image of the nef cone of Y and the nef cone of Y ′ have
the same intersection with π ′∗H 2(X,R). It follows from Proposition 3.27 that f maps
the Kähler cone of Y to the Kähler cone of Y ′ and the claim then follows. ut

Corollary 5.13. Assume rk(3) > 4. If (X, ν) and (X′, ν′) are inseparable in Mlt
3, then

X and X′ are birational.

Proof. (X, ν) and (X′, ν′) admit marked resolutions that are inseparable in moduli, hence
birational. ut

5.14. Monodromy groups

Each of the above moduli spaces M has a corresponding notion of parallel transport op-
erator, which we call locally trivial parallel transport operators for Mlt

3 and simultane-
ously resolved parallel transport operators for Mres

3′,3
. Precisely, for (X, ν) and (X′, ν′)

in the same component of Mlt
3, we define ν′ ◦ ν−1

: H 2(X,Z) −→ H 2(X′,Z) to be
a locally trivial parallel transport operator, and likewise for the simultaneously resolved
parallel transport operators. A simultaneously resolved parallel transport operator from
π : Y −→ X to π ′ : Y ′ −→ X′ yields a diagram

H 2(Y,Z)
f // H 2(Y ′,Z)

H 2(X,Z)

π∗

OO

g // H 2(X′,Z)

π ′∗

OO

and f, g are evidently locally trivial parallel transport operators.
First note the following:

Corollary 5.15. Assume rk(3) > 4. Any locally trivial (respectively simultaneously re-
solved) parallel transport operator can be realized as parallel transport along a path in
a locally trivial (respectively simultaneously resolved) family over a connected analytic
base.
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Proof. It follows from Proposition 5.12 that a Picard rank zero point of Mlt
3 (respectively

Mres
3′,3

) is a separated point (i.e. can be separated from any other point). Thus, any path
in Mlt

3 (respectively Mres
3′,3

) can be covered by finitely many open sets over which fami-
lies exist, and these may be glued at very general points. ut

Proposition 5.12 allows us to describe the relationship between these three notions of
parallel transport operators.

Corollary 5.16. Suppose X admits an irreducible symplectic resolution and b2(X) > 4.

(1) For each choice of irreducible symplectic resolution π : Y −→ X, a locally trivial
parallel transport operator g : H 2(X,Z) −→ H 2(X′,Z) lifts uniquely to a simulta-
neously resolved parallel transport operator.

(2) Let π : Y −→ X be an irreducible symplectic resolution. A parallel transport operator
f : H 2(Y,Z) −→ H 2(Y ′,Z) for which f (N(Y/X)) is Hodge extends to a simultane-
ously resolved parallel transport operator if and only if the image of the resolution
Kähler cone of Y contains the Kähler cone of Y ′.

Let us now turn to the associated monodromy groups. We adopt the following notation:

(1) Mon2(X)lt ⊂ O(H 2(X,Z)) will be the image of the monodromy representation as-
sociated to locally trivial families. Here, the orthogonal group is taken with respect to
the Beauville–Bogomolov–Fujiki form qX on H 2(X,C) (see Remark 4.6). Likewise
we define Mon2(Y ) if Y is a smooth irreducible symplectic manifold.

(2) Likewise for an irreducible symplectic resolution π : Y −→ X we define Mon2(π) ⊂

O(H 2(Y,Z)) × O(H 2(X,Z)) to be the monodromy group associated to simultane-
ously resolved families. Note that we can in fact think of Mon2(π) ⊂ O(H 2(Y,Z)).

Let π : Y −→ X be an irreducible symplectic resolution. The monodromy group Mon2(Y )

clearly acts on the resolution chambers of π .

Corollary 5.17. Let π : Y −→ X be an irreducible symplectic resolution with b2(X) > 4.

(1) Mon2(π) ⊂ Mon2(Y ) is the stabilizer of the resolution chamber of π containing the
Kähler cone of Y .

(2) Mon2(X)lt is the image of Mon2(π) in O(H 2(X,Z)).

Corollary 5.18. With the above setup, Mon2(π) (respectively Mon2(X)lt) has finite in-
dex in O(H 2(Y,Z)) (respectively O(H 2(X,Z))).

5.19. Global Torelli theorem

As noted after Lemma 5.7, under the assumption on the second Betti number, an irre-
ducible symplectic resolution determines an induced MBM collection.

Definition 5.20. Let π : Y −→ X be an irreducible symplectic resolution with b2(Y ) > 5.
We define the MBM classes ofX (with respect to π ) as the MBM collection ofH 2(X,Z)
induced by the MBM classes of H 2(Y,Z) (via the embedding π∗ : H 2(X,Z) −→
H 2(Y,Z)) in the sense of Definition 3.21 (and using Lemma 5.7). We say a class
α ∈ H 2(X,Z) is MBMX if it is in the MBM collection and Hodge.
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As in Section 3.13, the MBM classes of H 2(X,Z) then define an induced wall-and-
chamber decomposition of C1,1(X)+ whose open chambers are the connected compo-
nents of

C1,1(X)+ −
⋃

α∈MBMX

α⊥ (5.3)

which via π∗ is identified with

π∗C1,1(X)+ −
⋃

α′∈MBMY−N(Y/X)

α′⊥.

As in Definition 3.17, we refer to this as the Kähler-type wall-and-chamber decomposi-
tion.

Proposition 5.21. Let X be a symplectic variety admitting an irreducible symplectic res-
olution with b2(X) > 4. The MBM classes of X do not depend on a choice of resolution
and are locally trivial deformation invariant. Moreover, for any component Nlt

3 of the
locally trivial marked moduli space of X, the natural map

P cone
: Nlt

3 −→ �cone
3

by taking the Kähler-type chamber containing the Kähler cone is an isomorphism, where
we define �cone

3 as in Section 3.13 with respect to the MBM classes.

Note that it is not clear that the Kähler cone of X is an open chamber of the Kähler-type
decomposition.

Proof of Proposition 5.21. Picking an irreducible symplectic resolution π : Y −→ X and
a resolution chamber τ of π we obtain an identification Nτ

3′,3
−→ �cone

3 as in the proof
of Proposition 5.8, where�cone

3 is defined using the MBM classes of X with respect to π .
From Proposition 5.12 it then follows that Nlt

3 −→ �cone
3 is an isomorphism. Noting that a

class α ∈ 3 is MBM (with respect to π ) if and only if the fiber of �cone
3 −→ �3 above a

period with Picard group generated by α has exactly two points, it follows that the notion
is independent of the resolution and locally trivial deformation invariant. ut

We have now proved all the statements in our main Torelli theorem.

Proof of Theorem 1.3. Parts (1) and (2) follow from the more precise formulation in
Proposition 5.21 and Corollary 5.13. Part (3) is Corollary 5.18. ut

Remark 5.22. The Hausdorff reduction of the moduli space of quasi-polarized locally
trivial deformations of a given projective symplectic variety admitting an irreducible sym-
plectic resolution is thus a locally symmetric variety of orthogonal type. Therefore, Mum-
ford’s theory of toroidal compactifications applies and enables one to use methods from
algebraic geometry. The geometry of such varieties, and in particular their Kodaira dimen-
sions, have been studied using modular forms by Gritsenko–Hulek–Sankaran in a series
of papers; see for example [GHS07, GHS08, GHS10]. A rather general recent result in
this direction has been obtained by Ma [Ma18]. The singularities of compactifications of
such moduli spaces have studied by Giovenzana [Gio19].
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5.23. On Namikawa’s result

We conclude this section by generalizing the result of Namikawa [Na01b, Theorem (2.2)],
used in the proof of Proposition 4.3.

Proposition 5.24. Let π : Y −→ X be an irreducible symplectic resolution with
b2(X) > 4. Then Def(X) is smooth of the same dimension as Def(Y ) and the induced
map p : Def(Y ) −→ Def(X) is finite.

Proof. Consider the analytic locus Z ⊂ Deflt(X) where the dimension of the tangent
space to the full Kuranishi space Def(Xt ), dim Ext1(�1

Xt
,OXt

), is nongeneric, that is,
strictly greater than dimH 1,1(Y ). The projective points in Def lt(X) (and in every subva-
riety) are dense by Corollary 4.4, so by [Na01b, Theorem (2.2)], Z is at most the distin-
guished point 0 ∈ Def lt(X) (possibly after shrinking Def lt(X)). Now we may assume X
is not projective (and in particular not of maximal Picard rank), so for any open neighbor-
hood 0 ∈ U ⊂ Def lt(X), by Proposition 3.11, Corollary 3.20, and Proposition 5.21 there
is another point 0 6= t ∈ U corresponding to an isomorphic variety Xt

∼= X, and thus
dim Ext1(�1

X,OX) = dimH 1,1(Y ).
We now claim p : Def(Y ) −→ Def(X) has no positive-dimensional fibers. If it did,

then the projective points would be dense in such a fiber by [GHJ, Proposition 26.6],
and by the same argument as in Corollary 4.4, X would be projective, contradicting
Namikawa’s theorem [Na01b, Theorem (2.2)]. Thus,

dimH 1,1(Y ) = dim Def(Y ) ≤ dim Def(X) ≤ dim Ext1(�1
X,OX)

and by the above we have equality everywhere. This proves that Def(X) must be smooth
at 0 as well. The finiteness claim follows from quasi-finiteness upon shrinking the repre-
sentative Def(X) as in Namikawa’s proof from [Fi87, 3.2 Lemma, p. 132]. ut

6. Applications to K3[n]-type manifolds

Recall that a compact Kähler manifold Y is said to be of K3[n]-type if it is deformation-
equivalent to a Hilbert scheme of n points on a K3 surface. The K3[n]-type manifolds
form one of the two known infinite families of irreducible symplectic manifolds. We
assume throughout that n ≥ 2 (i.e. dimY ≥ 4).

By work of Markman [Ma11, Corollary 9.5] there is a canonical extension of weight-
two integral Hodge structures

0 −→ H 2(Y,Z) −→ 3̃(Y,Z) −→ Q −→ 0 (6.1)

where Q ∼= Z(−1). The lattice underlying 3̃(Y,Z) is the Mukai lattice 3̃K3 =

E8(−1)2 ⊕ U4. We denote the primitive generator of the orthogonal to H 2(Y,Z) in
3̃(Y,Z) by v = v(Y ), which is determined up to sign and satisfies v2

= 2 − 2n. Note
that

H 2(Y,Z) ∼= 3K3[n] := E8(−1)2 ⊕ U3
⊕ (2− 2n).
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Denote by Mon2(K3[n]) ⊂ O(3K3[n]) the image of the weight-two monodromy
representation, which has been computed by Markman [Ma08] to be the subgroup
Õ+(3K3[n]) preserving the orientation class and acting as ±1 on the discriminant group
D(3K3[n]) := 3∗

K3[n]/3K3[n] . We have the following well-known consequence of this
computation and Verbitsky’s global Torelli theorem: the extension (6.1) determines the
birational class of Y . More precisely, for two symplectic manifolds Y, Y ′, there is a Hodge
isometry φ : H 2(Y,Z) −→ H 2(Y ′,Z) lifting to a Hodge isometry φ̃ : 3̃(Y,Z) −→
3̃(Y ′,Z) of the Markman Hodge structures if and only if Y is birational to Y ′ [Ma11,
Corollary 9.8]. We therefore refer to (6.1) as the extended period.

6.1. Bridgeland stability conditions

Recall that for aK3 surface S, the total cohomologyH ∗(S,Z) carries the so-called Mukai
Hodge structure

H̃ (S,Z) := H 0(S,Z)(−1)⊕H 2(S,Z)⊕H 4(S,Z)(1)

which comes equipped with the Mukai pairing defined by

(a0 + a2 + a4, b0 + b2 + b4) := (a2, b2)S − a0b4 − a4b0

for ai, bi ∈ H i(S,Z). The Bridgeland stability condition and moduli space formalism we
discuss below will also work in the larger category of twistedK3 surfaces. Recall that the
cohomological Brauer group Br(S) of aK3 surface S can be defined as the torsion part of
the cohomology group H 2(S,O∗S) in the analytic topology and is naturally the image of
H 2(S,Q/Z) under the exponential map e(−) = e2πi−. A twistedK3 surface (S, α) in the
sense of [HS05, §1] is a K3 surface together with a Brauer class α ∈ Br(S) and a choice
of β ∈ H 2(S,Q) with e(β) = α, which exists for any α since H 3(S,Z) = 0. A twisted
K3 surface (S, α) likewise has a Mukai Hodge structure H̃ (S, α,Z) with underlying
lattice H 2(S,Z), and we say (S, α) is projective if S is. We refer to [BM14b, §2] and the
references therein for more details and for the theory of α-twisted sheaves and Bridgeland
stability conditions on twisted K3 surfaces.

Throughout the following we will only consider primitive Mukai vectors v ∈
H̃ (S, α,Z). By work of Bayer–Macrı̀ [BM14a, Theorem 1.3], for a generic Bridgeland
stability condition σ on (S, α), the moduli space Y = Mσ (v) of Bridgeland σ -stable
objects on (S, α) of a Mukai vector v ∈ H̃ (S, α,Z)alg is a projective K3[n]-type mani-
fold, and we canonically have 3̃(Y,Z) = H̃ (S, α,Z) with v(Y ) = v. The identification

v⊥
∼=
−→ H 2(Y,Z) is achieved by the Fourier–Mukai transform.
Note that by [BM14b, Theorem 1.2(c)], every symplectic birational model of a

Bridgeland moduli space is a Bridgeland moduli space. We will need below the follow-
ing Hodge-theoretic characterization of Bridgeland moduli spaces which follows from
[Hu17, Lemma 2.5] and [Ad16, Proposition 4].

Proposition 6.2. A projectiveK3[n]-type manifold Y is isomorphic to a Bridgeland mod-
uli space on a projective twisted K3 surface if and only if one of the following equivalent
conditions holds:
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(1) 3̃(Y,Q)alg contains U as a sublattice;
(2) the rational transcendental lattice H 2(Y,Q)tr ∼= 3̃(Y,Q)tr is Hodge-isometric to the

rational transcendental lattice of a projective K3 surface.

Furthermore, the projective twisted K3 surface can be taken untwisted if and only if one
of the following equivalent conditions holds:

(1′) 3̃(Y,Z)alg contains U as a primitive sublattice;
(2′) the transcendental lattice H 2(Y,Z)tr ∼= 3̃(Y,Z)tr is Hodge-isometric to the tran-

scendental lattice of a projective K3 surface.

6.3. K3[n]-type contractions

We now turn to the singular case.

Definition 6.4. Let X be a symplectic variety and π : Y −→ X a irreducible symplectic
resolution. We say π is aK3[n]-type contraction if in addition Y is aK3[n]-type manifold.
We will often abuse terminology and refer to X itself as a K3[n]-type contraction as well.

Note that if X is a K3[n]-type contraction, then every (Kähler) symplectic resolution is a
K3[n]-type manifold by Huybrechts’ theorem [Hu03, Theorem 2.5].

Example 6.5. Our main examples of K3[n]-type contractions come from contractions
of Bridgeland moduli spaces, which we call Bridgeland contractions. Bridgeland mod-
uli spaces of untwisted K3 surfaces will be called untwisted Bridgeland contractions for
emphasis. Their geometry is beautifully described via wall-crossing by Bayer–Macrı̀ the-
ory [BM14b]. Given a projective twisted K3 surface (S, α), a primitive Mukai vector
v ∈ H̃ (S, α,Z)alg, and an open chamber C ⊂ Stab†(S) associated to v, by [BM14a,
Theorem 1.4(a)] any σ0 ∈ ∂C yields a semiample class `σ0 on MC(v), and the associated
morphism π : MC(v) −→ M is a K3[n]-type contraction. Conversely, by [BM14b, Theo-
rem 1.2(c)] any contraction arises from this construction. By [BM14a, Theorem 1.1] the
morphism π contracts a curve if and only if two generic stable objects in the correspond-
ing family are S-equivalent with respect to σ0.

Much is known about the singularities of Bridgeland contractions, and Theorem 4.9
roughly says that arbitrary K3[n]-type contractions exhibit no new singularities:

Proposition 6.6. Any K3[n]-type contraction is locally trivially deformation-equivalent
to a Bridgeland contraction. Furthermore, if b2(X) > 4, it is locally trivially deforma-
tion-equivalent to an untwisted Bridgeland contraction.

Proof. Fix an identification 3K3[n] = H
2(Y,Z), and let 3 = π∗H 2(X,Z). If we choose

an arbitrary primitive embedding U ⊂ 3̃K3 containing 3⊥
K3[n] , then U ∩ 3 is of rank

at most 1 and negative definite. Assuming b2(X) > 4, then there is a rational-rank-zero
projective period ω ∈ U⊥ ∩ �3, and we can find a point of its orbit under 0 ⊂ O(3)
arbitrarily close to the period of X by Proposition 3.11. Here we take 0 to be the finite-
index subgroup of isometries extending to 3̃K3 and stabilizing 3K3[n] (and 3). Thus, π
has a (small) locally trivial deformation to a contraction π ′ : Y ′ −→ X′ where Y ′ is an
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untwisted Bridgeland moduli space, by Proposition 6.2; and π ′ is necessarily a Bridge-
land contraction since every contraction of a Bridgeland moduli space is a Bridgeland
contraction.

If b2(X) = 3 or 4, let 5 be the orthogonal to 3 in 3̃K3. As rk(5) > 4, we can find
U ⊂ 5Q since 5 has (many) isotropic vectors by a classical theorem of Meyer, and the
claim again follows from Corollary 4.4. ut

The work of Bayer–Macrı̀ [BM14b] in principle provides a complete description of the
singularities of Bridgeland contractions as they are all realized by wall-crossing. For the
following we refer specifically to [BM14b, §5]. A Bridgeland stability condition σ0 on a
projective twisted K3 surface (S, α) comes with a central charge Z0 : H̃ (S, α,Z) −→ C,
and we denote by Hσ0(v) ⊂ H̃ (S, α,Z)alg the primitive sublattice of Hodge vectors
a such that Im Z(a)

Z(v)
= 0, i.e., those vectors for which Z(a) and Z(v) are R-linearly

dependent. For a generic σ0 on a wall of the Bridgeland stability space, Hσ0(v) is of
signature (1, 1) and

Nσ0(v) := Hσ0(v) ∩H
2(Mσ (v),Z) = Hσ0(v) ∩ v

⊥

is generated by a vector of negative square. A nearby generic stability condition σ

yields a relative Picard rank-one contraction π : Mσ (v) −→ M which identifies
σ -stable sheaves which are S-equivalent with respect to σ0. Denoting by Rσ0(v) ⊂

H2(Mσ (v),Z) the primitive sublattice corresponding to Nσ0(v) under the isomorphism
H 2(Mσ (v),Q) ∼= H2(Mσ (v),Q) given by the Mukai pairing, we see that Rσ0(v) is
identified with N1(Mσ (v)/M), and Nσ0(v)Q with the orthogonal to π∗H 2(M,Q) in
H 2(Mσ (v),Q) (which we have called simply NQ above).

For an arbitrary K3[n]-type contraction π : Y −→ X, we likewise denote by N and H
the orthogonals to π∗H 2(X,Z) in H 2(Y,Z) and 3̃(Y,Z), respectively. Relative Picard
rank-one contractions are particularly easy to analyze:

Lemma 6.7. Let π : Y −→ X be a relative Picard rank-oneK3[n]-type contraction. Then
the locally trivial deformation type of X is uniquely determined by each of the following:

(1) the abstract isomorphism class of (H, v) as a pointed lattice;
(2) qY (λ) and div(λ) := [Z : qY (λ,H 2(Y,Z))], where λ ∈ N is a primitive generator.

Proof. Suppose π ′ : Y ′ −→ X′ is a second K3[n]-type contraction with associated lattices
N ′ and H′. By Corollary 5.16, X and X′ are locally trivially deformation-equivalent if
and only if there is a parallel transport operator f : H 2(Y,Z) −→ H 2(Y ′,Z) sending N
toN ′, which in this case is equivalent to there being an isometry f̃ : 3̃(Y,Z) −→ 3̃(Y ′,Z)
sending (H, v) to (H′, v′). Such an f̃ exists if and only if (H, v) ∼= (H′, v′) by [Ni79,
Corollary 1.5.2]. This proves (1).

For (2), Mon2(K3[n]) orbits of primitive vectors λ are uniquely determined by λ2 and
div(λ), see [Ei74, Section 10]. ut

Proposition 6.8. Let X be a relative Picard rank-one K3[n]-type contraction and x ∈ X
a (closed) point. The analytic germ (X, x) is isomorphic to that of a Nakajima quiver
variety.
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Proof. By [AS18, Theorem 1.1], the statement is known for Gieseker moduli spaces
X = MH0(v0) where v0 is a primitive Mukai vector of a pure 1-dimensional sheaf on
a K3 surface S with v2

0 ≥ 2 and H0 is a nongeneric polarization. Let H be a generic
polarization such that MH (v0) −→ MH0(v0) is a symplectic resolution, and set H0 =

H(MH (v0)/MH0(v0)).
By the previous lemma, we just need to show that any pointed lattice (H, v) arising

from a relative Picard rank-one contraction π : Y −→ X is abstractly isomorphic to
some (H0, v0). By Proposition 6.6 we infer π : Y −→ X is a Bridgeland contraction,
and then by [BM14b, Theorem 12.1] we must have that H contains a class a ∈ H with
0 ≤ (v, a) ≤ (v, v)/2 and (a, a) ≥ −2. Let S be a K3 surface such that

(1) Pic(S) ∼= H; let D ∈ Pic(S) correspond to v and A to a;
(2) D − εA is ample for ε > 0 sufficiently small.

Such a surface S exists since H embeds primitively into 3K3 [Ni79, Theorem 1.1.2].
Then D,A and D − A are effective by the conditions on a, so |D| contains reducible
curves. Choose an ample H0 and δ, α ∈ Z nonzero such that

δ

H0.D
=

α

H0.A
.

Then there are strictly H0-semistable sheaves of Mukai vector v0 = (0,D, δ). Indeed,
taking an irreducible curve C1 ∈ |A| (respectively C2 ∈ |D − A|) as well as a line
bundle L1 on C1 (respectively L2 on C2) with Mukai vector (0, A, α) (respectively
(0,D − A, δ − α)), any extension of L1 by L2 will be a strictly semistable sheaf with
Mukai vector v0.

Set M± = MH±(v0) for H± = H0 ± εD, and M0 = MH0(v0). We conclude by
noticing that the lattice H0 in H̃ (S,Z) = 3̃(M+,Z) associated to the wall crossing

M+

!!

// M−

}}
M0

is the saturation of 〈(0,D, δ), (0, A, α)〉, which is isomorphic to H and the isomorphism
takes v0 to v. ut

The proof of Proposition 6.8 gives explicit models for every relative Picard rank-one
K3[n]-type contraction among compactified Jacobians of linear systems on K3 surfaces.
Knutsen, Lelli-Chiesa, and Mongardi [KLCM19] have also used compactified Jacobians
to construct contractible ruled subvarieties of K3[n]-type manifolds, and analyze the ge-
ometry more closely. Models for such contractions have further been treated by Hassett–
Tschinkel [HT16], where it is shown that every wall H can be realized on the Hilbert
scheme of points for a projective K3 surface of Picard rank one.

The Bayer–Macrı̀ picture strongly suggests that the answer to the following question
is affirmative:
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Question 6.9. Let π : Y −→ X be a relative Picard rank oneK3[n]-type contraction, and
let E ⊂ Y be an irreducible component of the exceptional locus. Is the generic fiber of
the map E −→ X isomorphic to PcodimE?

Indeed, for a Bridgeland moduli space Y = Mσ+(v) and a contraction induced by a wall-
crossing, the Harder–Narasimhan filtration of a generic point [F ] ∈ E with respect to a
generic nearby stability condition σ− on the other side of the wall is often of the form

0 −→ A −→ F −→ B −→ 0 (6.2)

forA,B σ0-stable. All such extensions are σ+-stable, and this yields a Pk = PExt1(B,A)
fiber that is contracted. Moreover, setting a = v(A) and b = v(B),

dimE = k + dimMst
σ0
(a)+ dimMst

σ0
(b)

= ((a, b)− 1)+ (a2
+ 2)+ (b2

+ 2) = (v2
+ 2)− k

so k = codimE. Thus, in this case, we are done if the Harder–Narasimhan filtration of
the general point of E has the form (6.2) for fixed5 a and b. By Lemma 6.7 and [LP19],
it would be sufficient to consider one model in each monodromy orbit, and many special
cases have been established previously [HT16, KLCM19].

It is also not difficult to prove the following special case, since for ADE singularities
the singularity determines the general fiber of the exceptional divisor of the (unique)
symplectic resolution:

Proposition 6.10. Let π : Y −→ X be a relative Picard rank one K3[n]-type contraction,
and let E ⊂ Y be an irreducible divisorial component of the exceptional locus. Then the
exceptional locus is irreducible and the generic fiber of the map E −→ X is P1.

Proof. First suppose there is another irreducible component E′ of the exceptional locus,
and let C (resp. C′) be an integral curve in the general fiber of E −→ X (resp. E′ −→ X).
On the one hand we must haveE.C′ ≥ 0, but on the other hand we have q̃([E]) ∈ R>0[C]

for instance by deforming to a contraction π ′ : Y ′ −→ X′ for which X′ is of Picard rank
zero and using both q([E], [E]) < 0 and E.C < 0. Thus, [C′] cannot be a positive
multiple of [C], a contradiction.

In the notation of the proof of Proposition 6.8, we may assume the contraction is of
the form π : MH (v0) −→ MH0(v0) where v0 = (0,D, δ). MH (v0) is stratified by the
decomposition ofD into the supports of the Harder–Narasimhan factors, with the generic
stratum corresponding to the trivial decomposition D = D (even if D has a fixed part).
The generic point of E corresponds to a decomposition D = D1 + D2; let F be the
generic fiber of E −→ X. For each component F0 of F , any two generic points of F0 have
the sameH0-Harder–Narasimhan factors, which are sheavesA1, A2 supported onD1,D2
respectively. There is a Pn of such sheaves—namely, the extensions PExt1(A1, A2) (or in
the reverse direction), all of which are semistable—which must be a P1 as it is necessarily
a curve. Thus, all points in F must be extensions of this form, and so F ∼= P1. ut

5 Note the constancy of the Mukai vectors is automatic if a universal family exists over E, by the
existence of Harder–Narasimhan filtrations in families.
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In [Ba15] the first author classified contractions at the other extreme, namely those for
which the exceptional locus contains a Lagrangian Pn.

As an application, assume that Y is a symplectic 2n-fold which admits a divisorial
contraction π : Y −→ X of relative Picard rank one such that X has transversal A2
singularities. We call this an A2-contraction. Note that while ADE singularities admit
unique symplectic resolutions, in the relative Picard rank one setting the monodromy
action on the set of components of the general fiber of the exceptional locus yields a
group of automorphisms of the ADE graph in question acting transitively on the nodes,
so only A1 and A2 singularities remain as possibilities. We would like to know whether
an A2 contraction exists if Y is an irreducible symplectic manifold.

Corollary 6.11. Let Y be aK3[n]-type manifold. Then Y does not admit anyA2-contrac-
tion of relative Picard rank one.

Note that there are however examples of A2-contractions of relative Picard rank one of
smooth and projective symplectic varieties. See e.g. [Wi03, §1.4, Example 2] for an ex-
plicit construction.
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