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Abstract. We use hyperbolicity of golden-mean renormalization of dissipative Hénon-like maps to
prove that the boundaries of Siegel disks of sufficiently dissipative quadratic complex Hénon maps
with golden-mean rotation number are topological circles.

Conditionally on an appropriate renormalization hyperbolicity property, we derive the same
result for Siegel disks of Hénon maps with all eventually periodic rotation numbers.
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1. Introduction

Consider the complex quadratic Hénon map written as

Hc,a(x, y) = (x
2
+ c + ay, ax) for a 6= 0.

The maps Hc,a and Hc,−a are conjugate by the change of coordinates (x, y) 7→ (x,−y);
and the pair of parameters (c, a2) determines the Hénon map uniquely up to a biholo-
morphic conjugacy. In this parametrization the Jacobian is −a2. Let K± be the sets of
points that do not escape to infinity under forward, respectively backward iterations of
the Hénon map. Their topological boundaries are J± = ∂K±. Let K = K+ ∩ K− and
J = J− ∩ J+. The sets J±, K± are unbounded, connected subsets of C2 (see [BS1]).
The sets J and K are compact (see [HOV1]). In analogy to one-dimensional dynamics,
the set J is called the Julia set of the Hénon map.

In this paper we will always assume that the Hénon map is dissipative, |a| < 1. Note
that for a = 0, the map Hc,a degenerates to

(x, y) 7→ (fc(x), 0),

where fc(x) = x2
+ c is a one-dimensional quadratic polynomial. Thus for a fixed small

value of a0, the one-parameter familyHc,a0 is a small perturbation of the quadratic family.
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Note that an Hénon mapHc,a is determined by the multipliers λ and µ at a fixed point
uniquely up to changing the sign of a. In particular,

λµ = −a2,

and the parameter c is a function of a2 and λ:

c = (1− a2)

(
λ

2
−
a2

2λ

)
−

(
λ

2
−
a2

2λ

)2

.

Hence, we sometimes write Hλ,µ instead of Hc,a , when convenient. When µ = 0, the
Hénon map degenerates to

Hλ,0(x, y) = (Pλ(x), 0), where Pλ(x) = x
2
+ λ/2− λ2/4. (1)

We say that a dissipative Hénon map Hc,a has a semi-Siegel fixed point (or simply
thatHc,a is semi-Siegel) if the eigenvalues of the linear part ofHc,a at that fixed point are
λ = e2πiθ with θ ∈ (0, 1) \Q and µ with |µ| < 1, and Hc,a is locally biholomorphically
conjugate to the linear map

L(x, y) = (λx, µy).

The classical theorem of Siegel [Sie] states, in particular, that Hλ,µ is semi-Siegel when-
ever θ is Diophantine, that is, qn+1 < cqdn , where pn/qn are the continued fraction con-
vergents of θ . The existence of a linearization is a local result, however, in this case there
exists a linearizing biholomorphism φ : D × C → C2 sending (0, 0) to the semi-Siegel
fixed point,

Hλ,µ ◦ φ = φ ◦ L,

such that the image φ(D × C) is maximal (see [MNTU]). We call φ(D × C) the Siegel
cylinder; it is a connected component of the interior of K+ and its boundary coincides
with J+ (see [BS2]). We let

1 = φ(D× {0}),
and by analogy with the one-dimensional case call it the Siegel disk of the Hénon map.
Clearly, the Siegel cylinder is equal to the stable manifold W s(1), and 1 ⊂ K (which is
always bounded). Moreover, ∂1 ⊂ J , the Julia set of the Hénon map.

Remark 1.1. Let q be the semi-Siegel fixed point of the Hénon map. Then 1 ⊂ W c(q),
the center manifold of q (see e.g. [S] for the definition of W c). The center manifold is
not unique in general, but all center manifolds W c(q) coincide on the Siegel disk. This
phenomenon is nicely illustrated in [O, Figure 5].

The main result of this paper is the following theorem:

Theorem A. There exists δ > 0 such that the following holds. Let θ∗ = (
√

5 − 1)/2 be
the inverse golden mean, λ∗ = e2πiθ∗ , and let |µ| < δ. Then the boundary of the Siegel
disk of Hλ∗,µ is a homeomorphic image of the circle.

By the Carathéodory Theorem, the linearizing map

φ : D× {0} → 1 (2)

extends continuously and injectively to the boundary. However, we note:
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Theorem B. The conjugacy
φ : S1

× {0} → ∂1

is not C1-smooth.

It is worth mentioning that if we assume that λ = e2πiθ , µ = e2πiθ ′ and the pair (θ, θ ′)
satisfies the two-dimensional Brjuno condition [Brj], then the conservative Hénon map
Hλ,µ has a bounded maximal domain of linearization, called a Siegel ball. Herman [He]
asked whether the boundary of the Siegel ball is a topological or perhaps a C∞ subman-
ifold of C2. We answer similar questions, in the dissipative setting, as outlined above.

The proofs of Theorems A and B are based on a renormalization theory for two-
dimensional dissipative Hénon-like maps, developed by the first and third authors in
[GaYa2]. An Hénon-like map (see [dCLM]) H : C2

→ C2 can be defined as H(x, y) =
(f (x) + ε(x, y), ax) for some small ε. In this normalization, it has Jacobian −a∂ε/∂y
and it reduces to the standard Hénon map when f (x) = x2

+ c and ε(x, y) = ay. In
general, the Jacobian of an Hénon-like map is not constant. Following [LRT], we say
that an Hénon-like map H has a semi-Siegel fixed point if there exists a local holo-
morphic change of variables φ such that H̃ = φ ◦ H ◦ φ−1 is a skew product of the
form H̃ (x, y) = (λx, µ(x)y) for some holomorphic function µ(x) = µ + O(x), where
λ = e2πiθ with θ ∈ (0, 1) \Q, and |µ| < 1. This condition is equivalent to the existence
of a one-dimensional Siegel disk 1 = φ(D× {0}).

Below, we will be using several different renormalization operators. The first of
them is the renormalization of pairs of two-dimensional dissipative maps introduced in
[GaYa2]. We will recall its definition in §3.

In one complex dimension, it corresponds to the renormalization of commuting
pairs R (cf. [Stir]). In particular, suppose that an analytic map f has a fixed Siegel
disk 1f , with a rotation number θ ∈ (0, 1). Suppose furthermore that ∂1f is a Jordan
curve, and that there is a neighborhood of 1f in which the only critical point of f is a
simple critical point cf ∈ ∂1f . The example to keep in mind is a polynomial Pλ, defined
in (1) with λ = e2πiθ , such that the rotation number θ is of bounded type [Pet, Ya1].

Let θ ∈ (0, 1) and denote by θ0 = θ, θ1, θ2, . . . its orbit under the Gauss map

G(x) = {1/x};

the orbit is finite if and only if θ ∈ Q. We denote by rk the integer part [1/θk]. Then
the numbers rk form a finite or infinite continued fraction expansion of θ , which we
abbreviate as θ = [r0, r1, . . .]. As usual, the n-th continued fraction convergent of θ will
be denoted by pn/qn ≡ [r0, . . . , rn−1].

The n-th pre-renormalization pRnf is the restriction of the pair of iterates
(f qn+1 , f qn) to appropriate neighborhoods of the critical point cf . Let κ(z) = z̄ denote
the complex conjugation, and set

υn(z) ≡ (f
qn(cf )− cf ) · κ

◦n(z)+ cf ;

this is a linear map if n is even, and an anti-linear map if n is odd. The n-th renormalization
is obtained by rescaling pRnf by υn:

Rnf = (υ−1
n ◦ f

qn+1 ◦ υn, υ
−1
n ◦ f

qn ◦ υn).
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Fig. 1. A three-dimensional plot of the Siegel disk and its boundary for an Hénon map with a semi-
Siegel fixed point with the golden mean rotation number. The parameter a is 0.01+0.01i. The three
axes are Re(x), Im(x) and Re(y) (top) and Re(x), Im(x) and Im(y) (bottom).

A different take on renormalization of one-dimensional analytic maps with Siegel
disks was introduced by the third author [Ya2] based on the cylinder renormalization
operator Rcyl. This operator acts on analytic maps defined in some neighborhood of a
Siegel fixed point, rather than on pairs. The definition of cylinder renormalization involves
a non-linear, rather than linear, rescaling of iterates. There exists a constant s ∈ N such
that the following holds. Let f be a cylinder-renormalizable analytic map f , and denote
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(η, ξ) = Rs−1(f ). Then the cylinder renormalization Rcyl(f ) is obtained by a non-linear
rescaling

8 ◦ η ◦8−1
= Rcyl(f ) (3)

of the map η by the uniformizing coordinate8 of a particular fundamental domain (called
a fundamental crescent in [Ya2]) of the map ξ . Furthermore (cf. [Ya2, Proposition 2.11]),
the dependence ξ 7→ 8 is locally analytic.

For a topological disk Z 3 0 denote by H(Z) the Banach space of holomorphic
functions f in Z with the uniform norm, and set H(Z,W) ≡ H(Z) × H(W). We will
typically use the notation ζ = (η, ξ) for an element of H(Z,W).

We let C(Z,W) denote the Banach subspace of H(Z,W) given by the linear condi-
tions

η′(0) = ξ ′(0) = 0.

We say that a pair (η, ξ) ∈ C(Z,W) is almost commuting to order s ≥ 0 if

(η◦ξ)(n)(0) = (ξ◦η)(n)(0), 0 ≤ n ≤ s; η′′(0) 6= 0; ξ ′′(0) 6= 0; ξ(0) = 1. (4)

In the case s = 2, we will simply call the pair almost commuting (or a.c.). We denote
by B(Z,W) the subset of C(Z,W) consisting of a.c. pairs. In [GaYa2], it is shown that
there exists an open neighborhood U of C(Z,W) such that B(Z,W) ∩ U is a Banach
submanifold of H(Z,W).

Let θ be periodic under the Gauss map with period p, and denote rl = [1/Gl(θ)]
(these are the digits in the continued fraction expansion of θ , and qn+1 = rnqn + qn−1).
Similarly to the above, for a pair ζ = (η, ξ), we define a sequence of pre-renormalizations

pRnζ = ζn = (ηn, ξn)

by ζ0 = ζ and ξn+1 = ηn, ηn+1 = η
rn
n ◦ ξn. The renormalizations Rn(ζ ) are then defined

as
Rn(ζ ) = (υ−1

n ◦ ηn ◦ υn, υ
−1
n ◦ ξn ◦ υn), where υn(z) = ξn(0) · κ(z).

McMullen [Mc] showed that there exists a pair of analytic maps ζλ which is periodic
under the action of R with period p, and such that for every λ1 = e

2πiθ1 where

Gm(θ1) = θ for some m ≥ 0,

we have
Rnp+mPλ1 → ζλ at a rate geometric in n.

Let θ and p be as above. Set

k =

{
p if p is even,
2p if p is odd,

(5)

to guarantee that the operator Rk is holomorphic (rather than anti-holomorphic). Let us
say that the renormalization hyperbolicity property (H) holds for θ if the following is
true:
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(H) There exist a pair of topological disks Z̃ c Z, W̃ c W and n = mk, where m ∈ N
and k is as in (5), such that:

(i) Rn is an analytic operator from an open neighborhood of its fixed point ζλ in
B(Z,W) to B(Z̃, W̃ ).

(ii) The differential DRn
|ζλ is a compact linear operator in TζλB(Z,W). Let M ≡

DRn
|ζλ . Then M has a single simple eigenvalue outside the closed unit disk,

and the rest of the spectrum of M lies inside the open unit disk.

We prove a conditional theorem:

Theorem C. Suppose the renormalization hyperbolicity property (H) holds for θ , and
let θ1 be such that Gm(θ1) = θ for some m ∈ N. Set λ1 = e2πiθ1 . Then the following
statements hold:

(I) there exists δ > 0 such that if |µ| < δ then the mapHλ1,µ lies in the stable set of ζλ;
(II) every Hénon-like map H in W s(ζλ) has a Siegel disk 1H whose boundary is a

topological circle;
(III) the Carathéodory extension of the linearizing coordinate φ as in equation (2) to a

map S1
× {0} → ∂1H is not C1-smooth.

Our Theorems A and B will follow from Theorem C and the following statement proven
in [GaYa2]:

Golden-mean renormalization hyperbolicity ([GaYa2]). The renormalization hyper-
bolicity property (H) holds for θ∗ = (

√
5− 1)/2.

2. Dynamical partitions and multi-indices

Consider the space I of multi-indices s̄ = (a1, b1, a2, b2, . . . , am, bm) where aj ∈ N
for 2 ≤ m, a1 ∈ N ∪ {0}, bj ∈ N for 1 ≤ j ≤ m − 1, and bm ∈ N ∪ {0}. We in-
troduce a partial ordering on multi-indices: s̄ � t̄ if s̄ = (a1, b1, a2, b2, . . . , am, bm),
t̄ = (a1, b1, . . . , ak, bk, c, d), where k < m and either c < ak+1 and d = 0, or c = ak+1
and d < bk+1.

For a pair of maps ζ = (η, ξ) and s̄ as above we will denote

ζ s̄ ≡ ξbm ◦ ηam ◦ · · · ◦ ξb2 ◦ ηa2 ◦ ξb1 ◦ ηa1 .

Similarly,

ζ−s̄ ≡ (ζ s̄)−1
= (ηa1)−1

◦ (ξb1)−1
◦ · · · ◦ (ηam)−1

◦ (ξbm)−1.

Consider the n-th pre-renormalization of ζ :

pRnζ = ζn = (ηn|Zn , ξn|Wn),

where Zn = αn(Z), Wn = αn(W), and

αn(z) = ηn(0)z. (6)
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We define s̄n, t̄n ∈ I to be such that

ηn = ζ
s̄n , ξn = ζ

t̄n .

A straightforward induction shows:

Lemma 2.1. For n ≥ 1, let r̄ = s̄n or t̄n. Write r̄ = (a1, b1, a2, b2, . . . , amn , bmn). Then
bmn = 0, and

either amn ≥ 2 or amn = bmn−1 = 1.

Furthermore, if s̄n ends in . . . , 1, 1, 0 then so does t̄n.

Let τθ : R→ R be the translation x 7→ x+ θ with θ ∈ (0, 1) and λ = exp(2πiθ). Define

f (x) = τθ (x) g(x) = x − 1,

and set
I = [−1, 0], J = [0, θ], T = (f |I , g|J ). (7)

Define
Tn = (fn, gn) = (T

s̄n , T t̄n),

and set
In = [0, gn(0)], Jn = [0, fn(0)]

(the notation [a, b] denotes the interval with endpoints a, b, not necessarily in that order).
Now consider the collection of intervals

Pn ≡ {T w̄(In) for all w̄ ≺ s̄n and T w̄(Jn) for all w̄ ≺ t̄n}. (8)

It is easy to see that:

(a)
⋃
H∈Pn H = I ∪ J ;

(b) for any distinct H1, H2 ∈ Pn, the interiors of H1 and H2 are disjoint.

In view of the above, we call Pn the n-th dynamical partition of the segment I ∪ J .
Consider the sequence of domains

Vn ≡ {ζ w̄(Zn) for all w̄ ≺ s̄n and ζ w̄(Wn) for all w̄ ≺ t̄n}.

By analogy with the above definition (and somewhat abusing the notation) we call Vn the
n-th dynamical partition of the pair ζ .

Proposition 2.2. Suppose that the renormalization hyperbolicity property holds for θ ,
and

ζ ∈ W s(ζλ), where λ = e2πiθ .

Then there exist N = N(ζ), K > 0, and 0 < γ < 1 such that for every n > N the
following properties hold:

(1) If Qn ∈ Vn then diam(Qn) < γ n.
(2) Any two neighboring domains Qn,Q

′
n ∈ Vn are K-commensurable.

(3) For every w̄ ≺ s̄n (or w̄ ≺ t̄n) setψζw̄ = ζ
w̄αn. Then ‖Dψζw̄|Z‖∞ < γ n (‖Dψ

ζ
w̄|W‖∞

< γ n, respectively).
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Proof. By our assumption, there exists N > 0 and a pair of domains Ẑ c Z and Ŵ c W

such that for all n ≥ N the maps of the pair Rnζ are in C(Ẑ, Ŵ ). By the Koebe Distortion
Theorem, this implies that for all w̄ ≺ s̄n (or w̄ ≺ t̄n) the branches ζ−w̄ have bounded
distortion. The domain Zn = αn(Z) has diameter O(γ n). The claims readily follow. ut

3. Renormalization for pairs of two-dimensional dissipative maps

This section contains a summary of the extension of the renormalization operator from
the space B(Z,W) of almost commuting pairs to an appropriately defined space of two-
dimensional maps. The details of the procedure can be found in [GaYa3].

Let �,0 be domains in C2. We denote by O(�,0) the Banach space of bounded
analytic functions F = (F1(x, y), F2(x, y)) from � and 0 respectively to C2 equipped
with the norm

‖F‖ =
1
2

(
sup

(x,y)∈�

|F1(x, y)| + sup
(x,y)∈0

|F2(x, y)|
)
. (9)

We let O(�,0, δ) stand for the δ-ball around the origin in this Banach space.
In what follows, we fixW , Z, Z̃, and W̃ as in (H), and R > 0 such that DR ⊂ Z∩W ,

and let � = Z × DR , 0 = W × DR . We select Ẑ and Ŵ so that

Z b Ẑ b Z̃, W b Ŵ b W̃ .

We define an isometric embedding ι of the space H(Z,W) intoO(�,0) which sends the
pair ζ = (η, ξ) to the pair of functions ι(ζ ):((

x

y

)
7→

(
η(x)

η(x)

)
,

(
x

y

)
7→

(
ξ(x)

ξ(x)

))
. (10)

Let U be an open neighborhood of ζλ as in (H) in C(Z,W), and let Q be a neigh-
borhood of 0 in C. We will consider an open subset of O(�,0) of pairs of maps of the
form

A(x, y) = (a(x, y), h(x, y)) = (ay(x), hy(x)), (11)
B(x, y) = (b(x, y), g(x, y)) = (by(x), gy(x)), (12)

such that:

• the pair (a(x, y), b(x, y)) is in a δ-neighborhood of U in O(�,0);
• (h, g) ∈ O(�,0) are such that |∂xh(x, 0)| > 0 and |∂xg(x, 0)| > 0 whenever x /∈ Q̄,

and
(h(x, y)− h(x, 0), g(x, y)− g(x, 0)) ∈ O(�,0, δ).

This open subset of O(�,0) will be denoted A(U ,Q, δ) for brevity.
We say that a pair (A,B) is a pre-renormalization of a map H , written

(A,B) = pRnH,

if
A = H qn and B = H qn+1 for some n ≥ 0.
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3.1. Defining renormalization: coordinate transformations

Let (η, ξ) ∈ B(Z,W) be n ≥ 2 times renormalizable, and consider its n-th pre-renormal-
ization written as

pRnζ = (ζ s̄n , ζ t̄n).

Let s̄n be given by (a1, b1, a2, b2, . . . , amn , 0) (recall Lemma 2.1). We denote

ŝn =

{
(a1, b1, a2, b2, . . . , amn − 2, 0), amn ≥ 2,
(a1, b1, a2, b2, . . . , 0, 0, 0), amn = 1,

φ0(x) =

{
η2, amn ≥ 2,
η ◦ ξ amn = 1.

Define t̂n in an identical way to ŝn (see Lemma 2.1). Then pRnζ can be written as

pRnζ = φ0 ◦ (ζ
ŝn , ζ t̂n).

For n sufficiently large, η−1 is a diffeomorphism of the neighborhood αn(Z ∪ W), and
one can define the n-th pre-renormalization of ζ in η−1(αn(Z ∪W)) as

p̂Rnζ = (η−1
◦ ζ s̄n ◦ η, η−1

◦ ζ t̄n ◦ η) = (f ◦ ζ ŝn ◦ η, f ◦ ζ t̂n ◦ η),

where f = η if an ≥ 2 and f = ξ if an = 1.
Next, suppose 6 = (A,B) lies in A(U ,Q, δ) with U and δ sufficiently small, so that

the following pre-renormalization is defined in a neighborhood of η−1(αn(Z∪W))×{0}:

p̂Rn6 = (F ◦6 ŝn ◦ A,F ◦6 t̂n ◦ A),

where F = A if an ≥ 2 and F = B if an = 1.
We will denote

π1(x, y) = x, π2(x, y) = y.

Set

φy(x) = φ(x, y) :=

{
π1A

2(x, y), an ≥ 2,
π1A ◦ B(x, y), an = 1.

For sufficiently small δ, the map φz is close to φ0 and is a diffeomorphism of a neigh-
borhood of π16

ŝn(αn(Z), 0) ≈ ζ ŝn(αn(Z)) for all z ∈ DR for some R = R(δ) > 0.
Similarly, gz is a diffeomorphism of a neighborhood of π16

ŝn(αn(Z), 0) for all z ∈ DR
for some R = R(δ) > 0.

Furthermore, set

qz(x) ≡ q(x, z) = π2F(x, z) =

{
hz(x), an ≥ 2,
gz(x), an = 1.

According to our definition of the class A(U ,Q, δ), this is a diffeomorphism outside a
neighborhood of zero. Also, set

wz(x) ≡ w(x, z) := qz(φ
−1
z (x)),
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a diffeomorphism of a neighborhood of π1φz ◦6
ŝn(αn(Z), 0) in C2 onto its image for all

z ∈ DR for some R = R(δ) > 0. Notice that ∂zwz(x) and ∂zw−1
z (x) are functions whose

uniform norms are O(δ).
Define

H6(x, y) = (ay(x), w
−1
q−1

0 (y)
(y)). (13)

This transformation is δ-close to (η(x), φ0(q
−1
0 (y))) in O(�,0), and therefore, for

small δ, is a diffeomorphism of a neighborhood of π1F ◦6
ŝn(αn(Z), 0) ≈ f (ζ ŝn(αn(Z)))

onto its image. In particular,

A ◦H−1
6 (x, y) = (x, h(η−1(x), y))+O(δ). (14)

We use H6(x, y) to pull back p̂Rn6 to a neighborhood of definition of the n-th pre-
renormalization of a pair (η, ξ)—that is, a neighborhood of αn(Z ∪W) in C2:

pRn6 = (Ā, B̄) = H6 ◦ F ◦ (6
ŝn , 6 t̂n) ◦ A ◦H−1

6 (x, y).

The following has been proved in [GaYa2].

Lemma 3.1. There is an n ∈ N and a choice of U , Q, δ0 and C > 0 such that the
following holds. For every δ < δ0 and every 6 ∈ A(U ,Q, δ) the pair pRn6 is defined,
lies in O(�̂, 0̂) where �̂ = Ẑ × DR , 0̂ = Ŵ × DR , and

dist(pRn6, ι(H(αn(Ẑ), αn(Ŵ )))) < Cδ(‖π16 − π26‖ + δ).

Let us write

Ā(x, y) =

(
η̄1(x)+ τ̄1(x, y)

η̄2(x)+ τ̄2(x, y)

)
, (15)

where
η̄1(x) ≡ π1Ā(x, 0), η̄2(x) ≡ π2Ā(x, 0)

are O(δ‖π16 − π26‖ + δ
2)-close to each other, and both are δ-close to πηpRnζ = ζ s̄n ,

where πη and πξ are the projections on, correspondingly, the first and the second map in
a pair, and

τ̄1(x, y) ≡ π1Ā(x, y)− π1Ā(x, 0), τ̄2(x, y) = π2Ā(x, y)− π2Ā(x, 0),

are functions whose norms are O(δ2). Similarly,

B̄(x, y) =

(
ξ̄1(x)+ π̄1(x, y)

ξ̄2(x)+ π̄2(x, y)

)
,

where
ξ̄1(x) ≡ π1B̄(x, 0), ξ̄2(x) ≡ π2B̄(x, 0)

are O(δ‖π16 − π26‖ + δ
2)-close to each other, and both are δ-close to πξpRnζ = ζ t̄n ,

and

π̄1(x, y) ≡ π1B̄(x, y)− π1B̄(x, 0), π̄2(x, y) ≡ π2B̄(x, y)− π2B̄(x, 0)

are functions whose norms are O(δ2).
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3.2. Defining renormalization: critical projection

By the Argument Principle, if δ is sufficiently small, then the function π1B̄ ◦ Ā(x, 0) has
a unique critical point c1 in a neighborhood of 0. Set T1(x, y) = (x + c1, y). Then

∂x(π1T
−1

1 ◦ B̄ ◦ Ā ◦ T1)(0, 0) = 0.

Similarly, if δ is sufficiently small, the function π1T
−1

1 ◦ Ā ◦ B̄ ◦ T1(x, 0) has a unique
critical point c2 in a neighborhood of 0. Set T2(x, y) = (x + c2, y). Then

∂x(π1T
−1

2 ◦ T −1
1 ◦ Ā ◦ B̄ ◦ T1 ◦ T2)(0, 0) = 0.

We now set

51(Ā, B̄) = (Ã, B̃) := (T
−1

2 ◦ T −1
1 ◦ Ā ◦ T1, T

−1
1 ◦ B̄ ◦ T1 ◦ T2)

=

((
η̃1(x)+ τ̃1(x, y)

η̃2(x)+ τ̃2(x, y)

)
,

(
ξ̃1(x)+ π̃1(x, y)

ξ̃2(x)+ π̃2(x, y)

))
,

where the norms of the functions τ̃k , π̃k , k = 1, 2, are O(δ2).
The critical points of the functions π1(Ā ◦ B̄)(x, 0) and π1(B̄ ◦ Ā)(x, 0) are

O(δ‖π16 − π26‖ + δ
2)-close to each other, and therefore

T2 = Id+O(δ‖π16 − π26‖ + δ
2). (16)

Let us set
6̃ = (Ã, B̃) = 51pRn6.

We note that if the maps Ā and B̄ commute, then the critical point of π1T
−1
1 ◦ Ā ◦ B̄ ◦

T1(x, 0) is at 0. We therefore have

Proposition 3.2. Suppose (A,B) is a pre-renormalization of a map H . Then T2 ≡ Id,
and hence the projection 51 is the conjugacy by T1.

3.3. Defining renormalization: commutation projection

At the next step we will project the pair (Ã, B̃) onto the subset of pairs satisfying the
following almost commutation conditions:

∂ ixπ1(Ã ◦ B̃(x, 0)− B̃ ◦ Ã(x, 0))|x=0 = 0, i = 0, 2, (17)

π1B̃(0, 0) = 1. (18)

To that end we set

52(Ã, B̃)(x, y) =

((
η̃1(x)+ ax

4
+ bx6

+ τ̃1(x, y)

η̃2(x)+ ax4 + bx6 + τ̃2(x, y)

)
,

(
ξ̃1(x)+ c + π̃1(x, y)

ξ̃2(x)+ c + π̃2(x, y)

))
,

and require that (17) and (18) are satisfied for maps in the pair 52(Ã, B̃)(x, y). The
following proposition is proved in [GaYa2].
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Proposition 3.3. There exists ρ > 0 such that for all 6̃ in the ρ-neighborhood of

ι(C(αn(Ẑ), αn(Ŵ )))

there is a unique tuple (a, b, c, d) such that the pair 52(Ã, B̃) satisfies (17) and (18).
Moreover, in this neighborhood, the dependence of 52 on 6 is analytic. Furthermore, if
A ◦ B = B ◦ A, then 52 = Id.

Let us fix n ∈ 2N, U , Q, δ so that Lemma 3.1 holds, and furthermore, the image
51pRnA(U ,Q, δ) lies in the ρ-neighborhood of ι(C(αn(Ẑ), αn(Ŵ ))) as in Proposi-
tion 3.3. We then have

Proposition 3.4. For every 6 ∈ A(U ,Q, δ),

dist(5251pRn6, ι(B(αn(Ẑ), αn(Ŵ )))) < Cδ(‖π16 − π26‖ + δ).

Let `n = π1B̄(0, 0) and 3n(x, y) = (`nx, `ny).

Definition 3.5. We define the renormalization of depth n of a pair 6 ∈ A(U ,Q, δ) as

Rn6 = 3
−1
n ◦52 ◦51 ◦ pRn6 ◦3n. (19)

Given a map H from a subset of C2 to C2 such that (A,B) = pRnH = (H qn+1 , H qn) ∈

A(U ,Q, δ) for some integer n, we will also use the shorthand notation

RnH ≡ 3
−1
n ◦52 ◦51 ◦ pRnH ◦3n.

3.4. Hyperbolicity of renormalization of 2D dissipative maps

We conclude this section by formulating the following theorem:

Theorem 3.6. Given a p-periodic θ , set λ = e2πiθ . Assume that (H) holds. Then there
exists an even n = mk, where m ∈ N and k is as in (5), such that ι(ζλ) is a fixed point
of Rn in O(�,0). The linear operator N = DRn|ι(ζλ) is compact. The spectrum of N
coincides with the spectrum of M , where M is as in (H). More specifically, κ 6= 0 is an
eigenvalue ofM , and h is a corresponding eigenvector if and only if κ is an eigenvalue of
N , and Dι(h) is a corresponding eigenvector.

Proof. Since ι is an immersion on C(Z,W), and

ι ◦Rk
= Rk ◦ ι,

the spectral decomposition ofN splits into the direct sum T1⊕T2, where T1 is the tangent
subspace

T1 = Tι(ζλ)ι(B(Z,W)).
The restriction N |T1 is isomorphic to M . Further, by Proposition 3.4, the magnitude of a
perturbation of ι(ζλ) in the direction of a vector in T2 is decreased quadratically by (Rn)

2.
Hence, in the spectral decomposition, the subspace T2 corresponds to the zero eigenvalue.

ut
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4. Proof of Theorem C

4.1. The Hénon family intersects W s(ζλ)

Let us fix θ , θ1, λ, λ1 as in Theorem C. As before, let k be as in (5), and let n be as in
Theorem 3.6. For brevity, we set

R = Rn. (20)

We prove

Theorem 4.1. There exists δ > 0 such that if |µ| < δ then the one-parameter family
l 7→ Hl,µ intersects the stable set of ζλ under R.

Proof. Let U 3 0 be a Jordan domain in C and let CU denote the Banach space of
bounded analytic maps f in U equipped with the uniform norm ‖ · ‖U and such that
f (0) = 0. Let f∗ be the periodic point of Rcyl with f ′∗(0) = e

2πiθ constructed in [Ya2].
We denote the period of f∗ under Rcyl by p. As shown in [Ya2], there exists a choice of
domains U1 c U such that

f∗ ∈ CU , Rcylf∗ ∈ CU1 .

Let n be as in Theorem 3.6. For the quadratic polynomial Pλ1 there exists N such that
the Nn-th cylinder renormalization of Pλ1 lies in the local stable set of f∗ in CU .

As shown in [Ya2], the family l 7→ RN
cylPl lies in the unstable cone field of Rcyl.

Specifically, if lt = λ+ t, then

‖R(i+N)n
cyl Plt −R(i+N)n

cyl Pλ‖U = aβ
i t + o(t), where β > 1 and a > 0. (21)

Let us select i large enough, so that R(i+N)n
cyl Pλ ∈ CU2 with U2 c U . By the Koebe

Distortion Theorem,

‖R(i+N)n
cyl Plt −R(i+N)n

cyl Pλ‖U ∼ |(R(i+N)n
cyl Plt )(1)− (R(i+N)n

cyl Pλ)(1)|, (22)

where 1 is the critical point, and ∼ denotes K-commensurability with a uniform K .
Let us turn to renormalization of commuting pairs. We recall that, according to (3),

sn steps of R correspond to n steps of Rcyl. Using the Koebe Distortion Theorem again,
we see that

‖R(i+N)snPlt −R(i+N)snPλ‖ ∼ |(R(i+N)snPlt )(0)− (R(i+N)snPλ)(0)|. (23)

Denote
(ηl, ξl) = Rs−1(R(i+N)n−1

cyl Pl).

Let 8t , 80 denote the uniformizing coordinates of the fundamental crescents of ξlt , ξλ
respectively (3). Note that, by complex a priori bounds [Ya2] and the Koebe Distortion
Theorem, 8t has universally bounded distortion and 8′t ' 1. We have

‖8t −80‖ ∼ ‖R(i+N)snPlt −R(i+N)snPλ‖. (24)
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The estimates (21)–(24) imply that

‖R(i+N)snPlt −R(i+N)snPλ‖ ∼ β
i t.

Thus the family
l 7→ gl ≡ ιRNsnPl

lies in the expanding cone field of ζλ under R.

ζλ
W s

loc(ζλ)

W u
loc(ζλ)

Pλ1

Pl
Hl,µ

Hl∗,µ

Rj

Fig. 2. An illustration to the proof of Theorem 4.1; j = Nns.

Since for µ small enough, the family l 7→ Gl ≡ RNsHl,µ is a C1-small perturbation
of gl , it is transverse to W s

loc(ζλ) and hence intersects it (see Fig. 2). ut

4.2. Construction of an invariant curve

In this section we prove the following statement:

Proposition 4.2. There exists ε > 0 such that the following holds. Let |µ| < ε, and

Hl∗,µ ∈ W
s(ζλ) where λ = e2πiθ .

Denote by �n, 0n the domains of definition of the n-th pre-renormalization pRnHl∗,µ.
Then there exists a curve γ∗ ⊂ C2 such that the following properties hold:

• γ∗ is a homeomorphic image of the circle;
• γ∗ ∩�n 6= ∅ and γ∗ ∩ 0n 6= ∅ for all n ≥ 0;
• there exists a topological conjugacy ϕ∗ : T → γ∗ between the rigid rotation x 7→
x + θ1 modZ and Hl∗,µ|γ∗ ;
• there exists m such that Gm(θ1) = θ ;
• the conjugacy ϕ∗ is not C1-smooth.

Before proving the above proposition, we need to introduce some further notation. Below,
for brevity, we will denote ϒ1

= �,ϒ2
= 0.
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We set n = km as in Theorem 3.6 for some m ≥ 1 (to be fixed later).
To differentiate between transformations for different pairs we will use the folllowing

notation. Denote

s̄n = (a1, b1, . . . , amn , 0), t̄n = (c1, d1, . . . , cln , 0).

Given a pair 6, denote by 36 the rescaling that corresponds to the first renormalization
R, and by H6 the transformation constructed for 6 in (13), that is,

R6 = 3−1
6 ◦ T

−1
6 ◦H6 ◦ (6

s̃n , 6 t̃n) ◦H−1
6 ◦ T6 ◦36 = L

−1
6 ◦ p̂Rn6 ◦ L6,

where

s̃n = (1, 0, a1, b1, . . . , amn − 1, 0), t̃n = (1, 0, c1, d1, . . . , cln − 1, 0), (25)

and
L6 = H

−1
6 ◦ T6 ◦36 .

Note that since the elements of 6 pairwise commute, the projection 52 is Id and 51 is
the conjugation by the translation T6 := T1.

Let s̄ln and t̄ ln be defined by

(p̂Rn)lζ = (ζ s̄
l
n , ζ t̄

l
n).

For each multi-index

w̄ = (a0, b0, a1, b1, . . . , ak, bk) ≺ s̄
l
n or w̄ = (a1, b1, . . . , ak, bk) ≺ t̄

l
n

we define a domain

Qi
w̄ = 6

w̄
◦L6◦LR6◦. . .◦LRl−16(ϒ

i), i = 1 for w̄ ≺ s̄ln, i = 2 for w̄ ≺ t̄ ln. (26)

By analogy with a dynamical partition of a commuting pair from Section 2, the collection

Qln ≡ {Q
i
w̄}

will be referred to as the ln-th partition for the two-dimensional pair 6.
Given6 ∈ W s

loc(ζλ), consider the following collection of functions defined on�∪0:

96w̄ = 6
w̄
◦ L6 .

Given a collection of index sets {w̄i}, w̄i ≺ s̄n or w̄i ≺ t̄n, consider the following renor-
malization microscope:

8
j

w̄0,w̄1,...,w̄j−1,6
= 96

w̄0 ◦9
R6
w̄1 ◦ · · · ◦9

R(j−1)6
w̄j−1 ,

which we will also denote 8j
ŵ
j−1
0 ,6

, where ŵj−1
0 = {w̄0, w̄1, . . . , w̄j−1

}, for brevity.
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Lemma 4.3. The renormalization microscope maps each set ϒ i onto an element of the
partition Qjn for 6.

Proof. The claim holds for j = 1 by the definition (26) of the elements of the partition.
Assume that 8j

ŵ
j

0 ,6
(ϒ i) is an element of the partition Qjn for 6, and consider

8
j+1
ŵ
j

0 ,6
(ϒ i) = 96

w̄0 ◦9
R6
w̄1 ◦ · · · ◦9

Rj6
w̄j

(ϒ i).

By assumption,
8
j

ŵ
j

1 ,R6
(ϒ i) ≡ 9R6

w̄1 ◦ · · · ◦9
Rj6
w̄j

(ϒ i)

is an element of the partition of level jn for the pair R6, that is, by (26),

8
j

ŵ
j

1 ,R6
(ϒ i) = (R6)v̄ ◦ LR6 ◦ LR26 ◦ · · · ◦ LRj6(ϒ

i)

for some admissible v̄ = (α0, β0, α1, β1, . . . , αm, βm). Therefore, using the shorthand

R6 = (A1, B1),

we have

8
j+1
ŵ
j

0 ,6
(ϒ i) = 96

w̄0 ◦8
j

ŵ
j

1 ,R6
(ϒ i) = 6w̄

0
◦ L6 ◦ (R6)

v̄
◦ LR6 ◦ · · · ◦ LRj6(ϒ

i)

= 6w̄
0
◦ L6 ◦ (B

βm
1 ◦ A

αm
1 ◦ · · · ◦ B

β0
1 ◦ A

α0
1 ) ◦ LR6 ◦ · · · ◦ LRj6(ϒ

i)

= 6w̄
0
◦ L6 ◦3

−1
6 ◦H6 ◦ T

−1
6 ◦

(
(6 t̃n)βm ◦ (6 s̃n)αm ◦ . . . ◦ (6 t̃n)β0 ◦ (6 s̃n)α0

)
◦ T6 ◦H

−1
6 ◦36 ◦ LR6 ◦ · · · ◦ LRj6(ϒ

i)

= 6ū ◦ L6 ◦ · · · ◦ LRj6(ϒ
i),

for some index ū. By (26), the latter is an element of the partititon Q(j+1)n. ut

Since Rl6 converges to ζλ at a geometric rate, the function 9Rl6
w̄ converges to the func-

tion (ψζ∗w̄ , ψ
ζ∗
w̄ ), defined in Proposition 2.2, at a geometric rate in C1-metric. Therefore,

by Proposition 2.2, there exists a neighborhood S in W s
loc(ζλ), and a sufficiently large l,

such that
‖D9Rl6

w̄ |ϒ i‖∞ < 1/2 whenever Rl6 ∈ S.

For every 6 ∈ W s
loc(ζλ), there exists i0 ∈ N such that Ri6 ∈ S for i ≥ i0. Hence,

there exists C = C(6) such that

‖D8
j

ŵ,6
|ϒ i‖∞ < C/2j , (27)

and thus the renormalization microscope is a uniform metric contraction.
We are now ready to prove Proposition 4.2.

Proof of Proposition 4.2. Let

Rr(Hl∗,µ) ≡ 6 = (A,B) ∈ W
s(ζλ)
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for some r ∈ N. Select a distinct point (xw̄, yw̄) in each of the sets Qi
w̄ ∈ Qln. Consider

the ln-th dynamical partition Pln for the pair T as defined in (7). Consider a piecewise
constant map ϕl sending the element of the partition with a multi-index w̄ to (xw̄, yw̄).
According to (27), the diameters of the sets Qi

w̄ decrease at a geometric rate. Thus, the
maps ϕl converge uniformly to a continuous map ϕ of the interval [−1, θ] which is a
homeomorphism onto the image. Set

ϕ([−1, θ]) ≡ γ.

By construction,
ϕ ◦ T = 6 ◦ ϕ.

Let γ1 ⊂ K
+(Hl∗,µ) be the preimage of γ under renormalization rescaling, and set

γ∗ ≡
⋃
n∈N

Hl∗,µ(γ1).

The conjugacy ϕ induces a conjugacy ϕ∗ : T→ γ∗ between a rigid rotation and Hl∗,µ|γ∗ .
Hence, setting l∗ = e2πiθ1 , we have Gr(θ1) = θ for some r ≥ 0.

Finally, since the limiting pair ζλ has a critical point at z = 0, the conjugacies ϕ
and ϕ∗ cannot be C1-smooth. Indeed, assume the contrary. This would imply that there
exists K > 1 such that for every arc J ⊂ γ∗ and every n ∈ N, we have

1
K

diam(J ) < diam(H n
l∗,µ
(J )) < K diam(J ). (28)

However, let �n, 0n denote the domains of the pair pRnHl∗,µ. Let z ∈ γ∗ ∩ �n and
z′ = H

qn
l∗,µ
(z), and denote by Jn the smaller subarc of γ∗ bounded by these two points.

Since RHl∗,µ ≈ ζλ for large n, we have

diam(H qn+1
l∗,µ

(Jn)) ∼ (diam(Jn))2.

This clearly contradicts (28). ut

4.3. The curve γ∗ bounds a Siegel disk

Let us define a %-vertical cone field in the tangent bundle T� where � is a subdomain
of C2 as

C
vert,%
(x,y) = {(u, v) ∈ T(x,y)� : |u| < %|v|}.

Let f, g : U → C be holomorphic maps. We consider two-dimensional perturbations
F : �→ C2 of the map (f, g) of the form

F(x, y) = (w(x, y), h(x, y)) = (f (x)+ τ(x, y), g(x)+ χ(x, y)). (29)

We note:
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Proposition 4.4. Suppose |f ′(x)|, |g′(x)| > κ and |f ′(x)|, |g′(x)| < K on the do-
main U for some κ > 0. Let F−1 be defined on 1 = F(�). Then there exist ε, % > 0
such that the following holds. Suppose the uniform norms of τ and χ in (29) on � are
bounded by ε. Given 1̂ b 1, for every (x, y) ∈ 1̂, denoting (x1, y1) = F(x, y), we have

DF−1
|(x1,y1)(C

vert,%
(x1,y1)

) ⊂ C
vert,%
(x,y) ,

and ‖DF−1
‖ > O

(
κ
Kε

)
in Cvert,%.

Proof. Let wi(x, y) = ∂iw(x, y) denote the i-th partial derivative of w(x, y), i = 1, 2,
and similarly for hi(x, y). A simple computation shows that

DF−1(x1, y1)

[
u

v

]
=

1
D(x, y)

[
h2(x, y)− w2(x, y)

−h1(x, y) w1(x, y)

]
·

[
u

v

]
=

1
D(x, y)

[
ũ

ṽ

]
, (30)

where D(x, y) = w1(x, y)h2(x, y)− w2(x, y)h1(x, y), and

|ũ| < Cε(|u| + |v|) < Cε(% + 1)|v|,
|ṽ| > (κ − Cε)|v| − (|g1(x1)| + Cε)|u| > (κ − C(1+ %)ε − %K)|v|,

and |ũ| < %|ṽ| if %(κ − %K) > Cε(%+ 1)2. Furthermore, |D(x, y)| < 2(K +Cε)Cε for
some C > 0 and all (x, y) ∈ 1̂. The lower bound on the operator norm ‖DF−1

‖ on the
vertical cone field follows. ut

As before, for Hl∗,µ ∈ W
s(ζλ), we let �n, 0n be the domains of the pair

Zn = (An,Bn) ≡ pRnHl∗,µ.

For brevity, let us also write

1n ≡ �n ∪ 0n, 1′n ≡ Zn(1n) ≡ An(�n) ∪Bn(0n).

Let α∗ be the scaling factor αn (see definition (6)) for the pair ζλ.

Proposition 4.5. There exists N ∈ N such that for any n ≥ N we can select δ0 > 0,
k ∈ N and % > 0 so that the following holds. Let |µ| < δ < δ0 andHl∗,µ ∈ W

s(ζλ). Then
the derivatives of the inverse branches of the restriction of the pair Zn to the domains
1n \1n+k preserve the vertical cone field Cvert,% and expand vectors in Cvert,% at a rate
O(|α∗|

kδ−2).

Proof. Let Zn = (fn(x)+τn(x, y), gn(x)+χn(x, y)). By Lemma 3.1, the uniform norms
of τn and χn on 1n are bounded from above by O(δ2).

Notice that 1n+k is the image of 1n under a linear map which converges to (αk∗, 0)
as n→∞. Therefore, if (x, 0) ∈ (1n \1n+k) ∩ {y = 0}, then

C2|α∗|
n > |x| > C1|α∗|

n+k

for some C1 and C2, which gives

C4|α∗|
n > |f ′n(x)|, |g

′
n(x)| > C3|α∗|

n+k

for some C3 and C4. The result follows from Proposition 4.4 with ε = O(δ2), κ =
O(|α∗|

n+k) and K = O(|α∗|n). ut

The following result will be used in the proof of Proposition 4.7.
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Lemma 4.6 (Löwner [Löw]). Let f : D → D be holomorphic with f (0) = 0. If f
extends to a homeomorphism of ∂D itself, then f is a rotation.

We can now complete the proof of Theorem C:

Proposition 4.7. There exists δ > 0 such that the following holds. Let Hl∗,µ ∈ W
s(ζλ)

with |µ| < δ and let γ∗ be the invariant curve constructed in Proposition 4.2. Then γ∗
bounds a Siegel disk for Hl∗,µ. The eigenvalue l∗ is equal to λ1,

λ1 = e
2πiθ1 with θ = Gm(θ1) for some m ≥ 0. (31)

Finally, there exists ε1 > 0 such that for all |µ| < ε1 and for all λ1 satisfying (31), we
have Hλ1,µ ∈ W

s(ζλ).

Proof. Let us select k, N , and % as in Proposition 4.5. Let i ≥ N . Fix an open subdomain
1̂i b 1i ∩ 1

′

i . Since Hl∗,µ is a δ-small perturbation of the Siegel quadratic polyno-
mial Pl∗ , we can select δ > 0 small enough so that the map Hl∗,µ is normally hyperbolic
in a sufficiently large neighborhood of the α-fixed point of Pl∗ . In particular, by Proposi-
tion 4.5, it is normally hyperbolic in the set 1̂i \1i+k . Let q be the fixed point of Hl∗,µ
which is closest to the α-fixed point of Pl∗ . By the Graph Transform, the map Hl∗,µ has
a weak stable/unstable/center manifold W of q which is δ-close to the slice {y = 0} (see
[HPS]), and therefore W ∩ 1̂i 6= ∅ if δ is sufficiently small.

Let us begin with the case when q is attracting. By Proposition 4.5 the inverse
branches of Zi+mk , m ≥ 0, are normally hyperbolic in 1i+mk \ 1i+(m+1)k . Therefore,
the weak attracting submanifold W interesects 1i+mk for all m ∈ N. We conclude that
the invariant curve γ∗ lies in the closure of W . Applying Löwner’s Lemma 4.6, we arrive
at a contradiction.

Suppose q is hyperbolic. Then W = Wu(q), the unstable manifold of q, and suc-
cessive applications of Proposition 4.5 as above imply that W extends to the invariant
curve γ∗, which is then its boundary. This, again, contradicts Löwners Lemma 4.6.

Finally, suppose that q is semi-neutral (that is, the linear part of the Hénon map at q
has a neutral eigenvalue of absolute value 1 and a dissipative eigenvalue of absolute value
smaller than 1). In this case W = W c(q): it is only smooth, and a priori, not uniquely
defined. The restriction Hl∗,µ|W is not necessarily holomorphic.

By density of the irrationals of bounded type in the circle, we can choose a se-
quenceHlj ,µ of maps whose neutral eigenvalue lj equals e2πiϑj for some angle ϑj ∈ R\Q
of bounded type, converging to Hl∗,µ. By continuity of the renormalization operator, for
every M ∈ N, there exists J = J (M) such that for all j > J(M), Hlj ,µ is i + Mk
times renormalizable with the height of the renormalizations coinciding with those for
the map Hl∗,µ. The Siegel disk Wj of Hlj ,µ is an analytic submanifold of C2. Applying
Proposition 4.5 to the inverse branches of Zji+mk , 0 ≤ m ≤ M of Hlj ,µ, and using con-
siderations of dominated splitting, we can extend Wj for large j to intersect each 1̂i+km,
0 ≤ m ≤ M . The rotation numbers of the orbits of points inWj∩1̂i+km, whose continued
fraction expansion is given by the renormalization heights, approach θ1. Since the rotation
number of the orbits ofHlj ,µ|Wj is constant, ϑj 7→ θ1,DHl∗,µ(q) = limj→∞DHlj ,µ(qj ),
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and l∗ = e2πiθ1 . Therefore, W is a Siegel disk for Hl∗,µ, and Hl∗,µ|W is holomorphic. By
Proposition 4.5 the submanifoldW interesects1i+mk for allm ∈ N, and therefore γ∗ lies
in the closure ofW . By Proposition 4.2, the restriction Hl∗,µ|γ∗ is homeomorphically, but
not smoothly conjugate to the rigid rotation, so γ∗ cannot lie in W .

Conversely, let λ1 = e2πiθ1 satisfy (31). As shown in Theorem 4.1, if µ is small
enough, then the family l 7→ Hl,µ intersects the stable set of ζλ near Pλ1 . Denote by
l = λ2 the parameter of the intersection. As shown above, if |µ| < ε, then λ2 = e

2πiθ2 ,
where θ = Gj (θ2). The digits in the continued fraction expansion of θ2 correspond
to the periods of renormalizations of Hλ2,µ. By considerations of continuity, if µ is
small enough, then the digits in the continued fractions of θ2 and θ1 coincide, and hence
λ2 = λ1. ut
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