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Abstract. We answer positively a question of Kaimanovich and Vershik from 1979, showing that
the final configuration of lamps for simple random walk on the lamplighter group over Zd (d ≥ 3)
is the Poisson boundary. For d ≥ 5, this had been shown earlier by Erschler (2011). We extend this
to walks of more general types on more general groups.
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1. Introduction

Suppose that 0 is a countable infinite group and µ is a probability measure on 0 whose
support generates 0 (as a group). A function f : 0 → R is called harmonic if f (x) =∑
z µ(z)f (xz) for all x ∈ 0. If all bounded harmonic functions are constant, then (0, µ)

is said to have the Liouville property. A general theory for the non-Liouville case was
initiated by Furstenberg (1963, 1971a,b), who defined the notion of Poisson boundary
to describe the set of bounded harmonic functions. Such harmonic functions are closely
linked to the µ-walk, which is the Markov chain with transition probabilities p(x, y) :=
µ(x−1y). Earlier work on boundaries for general Markov chains is due to Blackwell
(1955), Feller (1956), Doob (1959), Hunt (1960), and Feldman (1962); a special case for
groups was established by Dynkin and Maljutov (1961).

Rosenblatt (1981) and Kaimanovich and Vershik (1983) (announced in Vershik and
Kaimanovich (1979)) proved a conjecture of Furstenberg (1973) that 0 is amenable iff
there is a symmetric µ whose support generates 0 such that (0, µ) is Liouville. Another
open question had been whether there exists an amenable group with a symmetric non-
Liouville measure. To answer this, Vershik and Kaimanovich (1979) and Kaimanovich
and Vershik (1983) utilized certain restricted wreath products Z2 o Zd , now commonly
called lamplighter groups, where Z2 := Z/(2Z) is referred to as the lamp group and Zd
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as the base group. These are solvable (hence amenable) groups of exponential growth.
To define them more generally, let L and 3 be two groups. Then L o 3 is the semidirect
product (

∑
z∈3 L)o3, where 3 acts on

∑
z∈3 L by

(x8)(z) := 8(x−1z).

Thus, if (8, x), (9, y) ∈
∑
x∈3 L×3, then

(8, x)(9, y) = (8 · (x9), xy).

The interpretation of an element (8, x) is that a lamplighter is at x, there is one lamp at
each element of 3, each lamp has a state in L, and 8 gives the states of all the lamps. If
L and3 are both finitely generated, then so is their restricted wreath product. To see this,
write o for the identity in 3 and id for the identity in L. Write ID for the function that is
equal to id identically on 3. Also, write δs for the element of

∑
z∈3 L that equals s at o

and equals id elsewhere; thus, ID = δid. If S1 and S2 are generating sets for L and 3,
respectively, then an often-used generating set for L o3 is {(δs1 , o) ; s1 ∈ S1}∪{(ID, s2) ;
s2 ∈ S2}. Multiplying (8, x) on the right by a generator (δs1 , o) changes the state of the
lamp at x by s1, while multiplying (8, x) on the right by a generator (ID, s2) moves the
lamplighter to xs2. Since every element of

∑
z∈3 L is the identity of L at all but finitely

many z ∈ 3, the above set does indeed generate L o3.
Let µ be a finitely supported, symmetric probability measure whose support generates

Z2 o Zd . Kaimanovich and Vershik (1983), Proposition 6.4 showed that (Z2 o Zd , µ) is
Liouville iff d ≤ 2. Vershik and Kaimanovich (1979) and Kaimanovich and Vershik
(1983) also asked for a description of the Poisson boundary for finitely supported µ on the
lamplighter groups Z2 oZd when it is nontrivial, which, in the symmetric case, amounts to
d ≥ 3. Moreover, they suggested a natural candidate, namely, (Z2)

Zd with the probability
measure given by the final configuration of lamps under the µ-walk. On Z2 oZd , the final
configuration of lamps, which we will denote by8∞, exists because the projection of the
walk to the base group Zd is transient.

In 2008, a breakthrough was achieved by Erschler (2011, 2010), who proved that the
conjecture of Vershik and Kaimanovich (1979) is correct when d ≥ 5.

We show here that the conjecture of Vershik and Kaimanovich (1979) is correct for
all d ≥ 3. In fact, we prove the following main result. Say that a probability measure µ on
L o3 has bounded lamp range if {x ∈ 3 ; ∃(8, y) ∈ L o3 µ(8, y) > 0 and 8(x) 6= id}
is a finite set. This means that one step of the random walk can change the lamp values on
only a set of bounded size, which holds, for example, if µ has finite support. Write µbase
for the projection of µ on 3.

Theorem 1.1. Let L be a nontrivial finite group and 3 be a finitely generated, infinite
group. Let µ be a probability measure on L o 3 with finite entropy and bounded lamp
range, and whose support generates L o 3. If µbase generates a transient random walk
on 3, then the Poisson boundary is L3 endowed with the law of 8∞.

It follows readily from known results that if the projected measure µbase generates a re-
current random walk on3 and (L, ν) is Liouville for every ν whose support generates L,



Poisson boundaries of lamplighter groups 1135

then the Poisson boundary of (L o 3,µ) is trivial whenever the support of µ generates
L o 3 (see Proposition 4.9). This was proved earlier for abelian lamp groups (Proposi-
tion 1.2 in Kaimanovich (1983)) and, more generally, nilpotent lamp groups (Theorem
3.1 of Kaimanovich (1991)).

Theorem 1.1 is proved in Section 4, with various minor strengthenings. Theorems
3.3 and 4.8 give settings in which the assumptions that L be finite and that 3 be finitely
generated can be removed. The assumptions that L is finite andµ has bounded lamp range
are replaced by a second-moment assumption in Theorem 5.1 when 3 = Zd .

Entropy is a key quantity in the study of Poisson boundaries. We are aware of no
significant results that identify a nontrivial Poisson boundary in the presence of infinite
entropy, although Forghani and Tiozzo (2019) manage to reduce finite logarithmic mo-
ment to finite entropy on free semigroups.

We introduce an enhanced version of the celebrated entropy criterion of Kaimanovich
(2000), which has been the key tool for identification of Poisson boundaries. This is pre-
sented in Corollary 2.3 and used in Section 3. We also discuss it informally below in the
context of the history of the subject.

Poisson boundaries are related to other important aspects of random walks. One fun-
damental aspect is to determine, given a random walk on a group 0, its set of possible
asymptotic behaviors, by which we mean the σ -field I on the path space 0N of events in-
variant under time shifts. There is a well-known correspondence between I and the space
BH of bounded harmonic functions on 0. In particular, the invariant σ -field is trivial (i.e.,
consists only of sets of probability 0 or 1) iff all bounded harmonic functions are constant.

Following the introduction of asymptotic entropy by Avez (1972, 1974, 1976a,b) and
the 0–2 law of Derriennic (1976), a foundational paper by Kaimanovich and Vershik
(1983), announced in Vershik and Kaimanovich (1979), developed a general theory to
analyze Poisson boundaries. In particular, Avez, Derriennic (1980), and Kaimanovich–
Vershik proved that if µ has finite entropy, then the Avez (asymptotic) entropy of the µ-
walk is 0 iff the walk is Liouville. Varopoulos (1985) showed that for finitely supported,
symmetric µ, the rate of escape of the µ-walk is sublinear iff (0, µ) is Liouville. This
was extended by Karlsson and Ledrappier (2007) to symmetric µ with finite first moment
with respect to the word metric for a finite generating set.

Erschler (2004b) showed that (1) every finitely generated solvable group of expo-
nential growth admits a symmetric non-Liouville measure, and (2) every nondegenerate
measure on L o3 whose projection to 3 is transient has nonzero Avez entropy. She also
proved a result similar to (2) for the free metabelian groups Fd/F′′d with d ≥ 3. Further-
more, Erschler (2004a) showed that there are groups of intermediate growth with finite-
entropy, symmetric, non-Liouville measures. Frisch, Hartman, Tamuz, and Vahidi Fer-
dowsi (2019) extended this to show that every finitely generated group that is not of
polynomial growth admits a finite-entropy, symmetric, non-Liouville measure.

Furstenberg (1971b) and Kaimanovich and Vershik (1983) gave entropy criteria for
identifying the Poisson boundary. Two notable papers by Ledrappier (1983, 1985) used
this criterion to determine the Poisson boundary for discrete matrix groups. Ballmann
and Ledrappier (1994) developed further the entropy method in the context of rank-one
manifolds. Kaimanovich (1985, 1994, 2000) refined the entropy method more generally
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and introduced a powerful general criterion for equality of a given boundary and the
Poisson boundary (see Theorem 2.1 and Corollary 2.2 here).

Informally, Kaimanovich’s criterion says that in order that a candidate boundary be
the Poisson boundary, it suffices to find a sequence of random finite sets Qn ⊂ 0,
that depend on points of the candidate boundary, such that |Qn|

1/n
→ 1 as n → ∞

and P[4n ∈ Qn] is bounded below, where 4n is the location of the random walk at
time n. One of Kaimanovich’s important observations was that the sets Qn can often
be defined geometrically. This led to his well-known strip and ray criteria. We enhance
Kaimanovich’s more general criterion so that it suffices that 4m ∈ Qn for some m ≥ n.

Kaimanovich’s criteria led to much progress in identifying Poisson boundaries, such
as the works by Kaimanovich and Masur (1996, 1998), Karlsson (2003), Malyutin (2003),
Karlsson and Woess (2007), Sava (2010b), Brofferio and Schapira (2011), Gautero and
Mathéus (2012), Malyutin, Nagnibeda, and Serbin (2017), Nevo and Sageev (2013), Ma-
her and Tiozzo (2018), and Malyutin and Svetlov (2014).

Using these methods, Kaimanovich (2001) made some progress on the lamplighter
question by showing that for µ whose projection on the base group, Zd , has nonzero
mean, the final lamps do indeed give the Poisson boundary. This problem of identify-
ing the Poisson boundary has been raised repeatedly (e.g., Kaimanovich (1991), Vershik
(2000), Karlsson and Woess (2007), Sava (2010b), Erschler (2011, 2010), Georgakopou-
los (2016)) and has been considered a major open problem in the field.

Beyond Erschler’s result on the Kaimanovich–Vershik conjecture, similar results have
been established for random walks µ of finite first moment whose support generates one
of the following groups L o3:

• L is finitely generated and nontrivial, 3 has subexponential growth, and there is a
homomorphism ψ : 3 → Z such that if π : L o 3 → 3 is the canonical projection,
then (ψπ)∗µ has nonzero mean (Kaimanovich (2001));
• L is finite and 3 is a group with a Cayley graph being a tree of degree at least 3

(Karlsson and Woess (2007));
• L = Z2 and 3 is finitely generated and has infinitely many ends or is nonelementary

hyperbolic (Sava (2010b)).

In all these cases, the projection of the random walk to 3 has linear rate of escape, and
this makes the analysis considerably simpler.

Erschler (2011) also extended her result on L o Zd (L finitely generated and d ≥ 5)
beyond finitely supported µ to those with finite third moment, and noted that similar
techniques work for free metabelian groups Fd/F′′d when d ≥ 5.

Prior to the work of Erschler (2011), Kaimanovich’s entropy criterion was used in
a mostly geometric fashion that did not require detailed knowledge of the probabilistic
behavior of the random walks. Erschler succeeded in her results by discovering how to
leverage such knowledge of random walks in Zd for d ≥ 5. In particular, she relied
heavily on the existence of a positive density of cutpoints (for simple random walk—
and analogous behavior in general). That is, for the lamplighter random walk 〈X̂n〉 on
Z2 o Zd , its projection Xn at time n to the base Zd is a cutpoint with probability bounded
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below over all n. This allowed Erschler to define the required random finite sets Qn that
capture Xn with probability bounded below.

Our enhanced criterion allows the use of cut-spheres, which do not occur with pos-
itive density, but they do occur infinitely often for d = 3, 4. Use of cut-spheres also
simplifies considerably the definition of the random sets Qn. This is a general feature of
our enhanced criterion, which we illustrate with a simple proof of a conjecture of Sava
(2010a). However, we do not use our enhanced criterion to handle general base groups,
where other innovations are used. The innovation that is most closely related to cutpoints
is to use upper bounds on the Green function in order to bound the number of times at
which the future of the walk can get close to the locations of the past of the walk. In order
to handle more general base groups beyond Zd , other innovations convert small entropy
growth found in various places into enumeration with small exponential growth of the
required sets Qn.

We begin with the definition of the Poisson boundary and Kaimanovich’s criterion
in Section 2. In order to present the proof of the original conjecture of Vershik and
Kaimanovich (1979) in the briefest manner, we prove Theorem 1.1 in Section 3 in the
special case where the µ-walk is simple random walk on L o Zd . We then prove the full
Theorem 1.1 in Section 4. As did Erschler, we consider other step distributionsµ on LoZd ;
in Section 5, we extend her result to d ≥ 3 and to µ having finite second moment. In this
broader setting where generators can change lamps arbitrarily far from the location of the
lamplighter, some technical condition is needed to ensure existence of the limiting lamp
configuration, as discussed at the end of Section 5. One can also ask about infinitely gen-
erated base groups3; some of our results apply in that case: see Theorems 3.3 and 4.8. In
Section 6, we give some details about metabelian groups and similar groups and discuss
our extensions to them.

2. Preliminaries

For a discrete probability distribution π on a set S, write H(π) := −
∑
s∈S π(s) logπ(s)

for the entropy of π . For a σ -field F and a discrete random variable X, write H(X)
for the entropy of the distribution of X and H(X | F ) for the conditional entropy of X
given F :

H(X | F ) := −E
[∑
x

P[X = x | F ] · log P[X = x | F ]
]
.

Our Markov chains will begin at a fixed point; when that point is x, we use Px for the cor-
responding probability measure. Usually x will be the identity element, o, of a group, 0.
When a transition matrix is given, we often regard Px as the law on 0N of the trajectory
of the corresponding Markov chain 〈4n ; n ≥ 0〉. The σ -field of shift-invariant events is
denoted by I. We say that two σ -fields are equal mod 0 if their completions are equal,
generally with respect to Po. The diagonal action of 0 by multiplication on 0N induces an
action of 0 on I; a subset J ⊆ I is said to be 0-closed if γ (A) ∈ J for all γ ∈ 0 and
all A ∈ J .
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The following criteria of Kaimanovich (2000) (see Theorem 4.6 and Corollary 4.6
there, or see Theorem 14.35 and Corollary 14.36 of Lyons and Peres (2016)) are essential
in identifying Poisson boundaries:

Theorem 2.1. Let 〈4n ; n ≥ 0〉 be a random walk on 0 with H(41) < ∞. Let I
be the associated invariant σ -field and J ⊆ I be a 0-closed sub-σ -field. Then hJ :=
limn→∞ n

−1HJ (4n) converges a.s. and in L1 to the constant H(41 | J )−H(41 | I).
Furthermore, hJ = 0 iff J = I mod 0.

Corollary 2.2. Let 〈4n ; n ≥ 0〉 be a random walk on 0 with H(41) <∞. Let I be the
associated invariant σ -field and J ⊆ I be a 0-closed sub-σ -field. Suppose that for each
ε > 0, there is a random sequence 〈Qn,ε ; n ≥ 0〉 of finite subsets of 0 such that

(i) Qn,ε is J -measurable;
(ii) lim supn→∞ n

−1 log |Qn,ε | < ε a.s.;
(iii) lim supn→∞ Po[4n ∈ Qn,ε] > 0.

Then J = I mod 0.

When 0 is replaced by the lamplighter group L o3, we will apply this to the L o3-closed
σ -field J := σ(8∞) ⊆ I defined by the limiting configuration of lamps. Thus,Qn,ε will
be a measurable function of configurations φ∞ ∈ L3.

In Section 3, we will illustrate the use of a more flexible version of the preceding
corollary, to wit:

Corollary 2.3. Let 〈4n ; n ≥ 0〉 be a random walk on 0 with H(41) <∞. Let I be the
associated invariant σ -field and J ⊆ I be a 0-closed sub-σ -field. Suppose that for each
ε > 0, there is a random sequence 〈Qn,ε ; n ≥ 0〉 of finite subsets of 0 such that

(i) Qn,ε is J -measurable;
(ii) lim supn→∞ n

−1 log |Qn,ε | < ε a.s.;
(iii) lim supn→∞ Po[∃m ≥ n 4m ∈ Qn,ε] > 0.

Then J = I mod 0.

Proof. Write pJn (x, y) := Px[4n = y | J ] for the transition probabilities of the Markov
chain conditioned on J . We will use the following result of Kaimanovich (2000):

lim
n

1
n

logpJn (o, 4n) = −hJ a.s. (2.1)

It suffices to show that hJ = 0. Suppose that hJ > 0 and define the random J -
measurable sets

Sm := {x ∈ 0 ; pJm (o, x) ≤ exp(−mhJ /2)}.

For ε > 0,
Po[4m ∈ Qn,ε ∩ Sm | J ] ≤ |Qn,ε | · exp(−mhJ /2).

Summing over m ≥ n, we deduce that for 0 < ε < hJ /2,

Po[∃m ≥ n 4m ∈ Qn,ε ∩ Sm | J ] ≤ |Qn,ε | · c exp(−nhJ /2)→ 0 a.s. (2.2)
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as n→∞, where c = c(hJ ) is a constant. Therefore,

Po[∃m ≥ n 4m ∈ Qn,ε ∩ Sm] → 0 as n→∞. (2.3)

By (2.1), Po
[
∃m ≥ n 4m /∈ Sm

]
→ 0 as n→∞. In conjunction with (2.3), this implies

that
Po[∃m ≥ n 4m ∈ Qn,ε] → 0 as n→∞,

contradicting the hypothesis (iii). ut

A Poisson boundary for a random walk on 0 is a quadruple (2,F , ν,b), where
(2,F , ν) is a probability space with F being countably generated and separating points,
and where b : (0N, I)→ (2,F ) is a 0-equivariant measurable map that pushes forward
Po to ν and such that b−1F = I mod Po. It is unique up to isomorphism. For more de-
tails and background, see Kaimanovich (2000) or Definition 14.28 and Theorem 14.29 of
Lyons and Peres (2016).

When we consider random walks on L o 3, we will write X̂n := 4n and X̂n =:
(8n, Xn). Similarly, write 〈Ŷn ; n ≥ 1〉 for the increments of 〈4n ; n ≥ 0〉 on L o3, i.e.,
Ŷn := X̂

−1
n−1X̂n. Write Ŷn =: (9n, Yn). Thus, 〈Yn ; n ≥ 1〉 are IID elements of 3, used as

increments of the random walk 〈Xn ; n ≥ 0〉, i.e., Yn := X−1
n−1Xn. Note that while 〈9n〉

are IID, 9n and Yn are in general dependent for each n. Also, for x ∈ 3,

8n(x) = 8n−1(x)9n(X
−1
n−1x).

We generally assume that the support of (the law of) Y1 generates 3 and, likewise, the
support of Ŷ1 generates L o3.

Let litφ denote the set of “lit lamps”, {x ∈ 3 ; φ(x) 6= id}, of φ ∈ L3, also
sometimes referred to as the support of φ.

Suppose that 8∞ := limn→∞8n exists a.s. For example, this occurs if E[|lit91|]

<∞ and 〈Xn〉 is transient (Kaimanovich (1991), Theorem 3.3, or Erschler (2011), proof
of Lemma 1.1). In various cases, we will show that (L3,F , ν,b) is a Poisson boundary,
where F is the product σ -field, ν is the PID-law of 8∞, and b : ((L o 3)N, I,PID) →
(L3,F , ν) takes a sequence to its limiting configuration of lamps; on the set of measure 0
where the limiting configuration does not exist, we define b to take the value ID for
convenience.

We will use c to stand for a positive constant, whose value can vary from one use to
another.

When a group is finitely generated, we use the word metric to define |x| as the distance
between x and the identity element.

3. Proof for the classical case

Here we give a very short proof of the basic conjecture of Vershik and Kaimanovich
(1979) concerning random walks on L o Zd for d ≥ 3 and L any nontrivial finite or
countable group.
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Theorem 3.1. Let L be a nontrivial finite or countable group. Let d ≥ 3. Let µ be a
probability measure of finite entropy on L o Zd whose support generates L o Zd . Suppose
that µ is concentrated on {(δs, o) ; s ∈ L} ∪ {(ID, x) ; x ∈ Zd}. If the projection of
µ on Zd is finitely supported and has mean 0, then the Poisson boundary of (L o Zd , µ)
is LZd endowed with the law of 8∞.

Proof. Write R for the maximum distance in Zd from the current location that one step
of the Markov chain can move. For r > 1, consider the events

cutr := [∃m ≥ 1 (∀k < m |Xk| < r and ∀j > m |Xj | > r)].

In the proof of their Proposition 2.1, James and Peres (1996) showed that when the pro-
jection of µ is symmetric, Po(cutr) ≥ c/r and Po(cutr ∩ cutr+j ) ≤ c/(rj). In fact, their
proof depends only on estimates of the Green function, and those hold as long as the
projection of µ has mean 0: see, e.g., Lawler and Limic (2010), Theorem 4.3.1. Thus,
the preceding inequalities of James and Peres (1996) hold not only for symmetric µ,
but also for those µ whose projection has mean 0. The second-moment method applied to∑n2

r=Rn 1cutr , just as in the proof of Proposition 2.1 of James and Peres (1996), then yields

Po(
⋃n2

r=Rn cutr) ≥ c(log n)2/(log n)2 = c > 0 for n > R. Define Qn := Qn,ε(8∞) to
be the set of (φ, x) such that |x| ≤ n2 and

φ(z) =

{
8∞(z) if |z| < |x|,
id if |z| ≥ |x|.

If r ≤ n2 and the time m witnesses the event cutr , then X̂m ∈ Qn and m ≥ r/R.
Therefore, PID[∃m ≥ n X̂m ∈ Qn] ≥ Po(

⋃n2

r=Rn cutr) ≥ c > 0 for n > R; since
|Qn| ≤ cn

2d , Corollary 2.3 implies that σ(8∞) coincides with I mod 0. ut

It is not too hard to extend the above proof to all µ with finite support. We leave this as an
exercise to the reader who wishes to better understand the method. A full proof of a more
general result is given for Theorem 5.1.

As a further illustration of the usefulness of Corollary 2.3, we prove a conjecture of
Sava (2010a). First we remark that the notion of Poisson boundary extends to all Markov
chains, and criteria such as Corollary 2.3 extend to the setting of transitive Markov chains:
see Kaimanovich and Woess (2002) for the required analogues of Theorem 2.1 and equa-
tion (2.1), or see Lyons and Peres (2016), Proposition 14.34 and Theorem 14.35.

Now consider the d-regular tree, Td , and fix an end ξ of Td . The group of graph
automorphisms that preserve ξ is known as the affine group of Td ; it acts transitively
on the vertex set, V (Td). Fix some vertex o ∈ V (Td). There is a horodistance function
dξ : V (Td)→ Z defined by dξ (o) = 0 and dξ (x) = dξ (y)+ 1 when y is the parent of x
(the unique neighbor of x in the direction of ξ ). The affine group preserves differences of
values of the horodistance function.

Let L be a nontrivial finite group. We consider Markov chains 〈X̂n ; n ≥ 1〉 =
〈(8n, Xn) ; n ≥ 1〉 on the state space

L o Td := {(φ, x) ; φ ∈ LV (Td ), |litφ| <∞, x ∈ V (Td)}
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that change lamps only in a bounded neighborhood of the current location, make only
bounded jumps in the base Td , and whose transition probabilities are invariant under the
diagonal action of the affine group. Write R for the maximum distance in Td from the
current location that one step of the Markov chain can move or at which one step of the
Markov chain can change the lamps.

Sava (2010a) conjectured the following Theorem 3.2. She proved that it holds when
E[dξ (X1)] 6= 0 (indeed, with R < ∞ replaced by a first moment condition) or when
〈Xn〉 is a nearest-neighbor random walk that can change lamps only at the location of the
lamplighter.

Theorem 3.2. Let 〈X̂n〉 be a Markov chain that is invariant under the affine group of Td
such that R <∞ and the random walk projected to the base Td is not constant. Then the
Poisson boundary of 〈X̂n〉 is LV (Td ) endowed with the law of 8∞.

Proof. We may assume that E[dξ (X1)] = 0. Cartwright, Kaimanovich, and Woess (1994)
proved that 〈Xn〉 converges to ξ a.s. Let ξn be the ξ -ancestor of o with dξ (ξn) = −n.
Define the cone Cn := {x ; ξn is an ancestor of x}.

The case when 〈Xn〉 is a nearest-neighbor random walk is somewhat simpler for
our method: To see how it follows from Corollary 2.3, let Qn,ε(φ∞) be the single-
ton {(φn, ξn)}, where φn(y) = φ∞(y) for y ∈ Cn and φn(y) = id otherwise. Let
α := Px[∀j ≥ 1 Xj 6= x]; this does not depend on x by transitivity and is positive
by transience. With PID-probability 1, there will be some random smallest time m ≥ n
such that Xm = ξn. For this time m, the chance that Xj /∈ Cn for all j > m is equal to α
by the strong Markov property. Therefore,

PID[∃m ≥ n X̂m ∈ Qn,ε(8∞)] ≥ α > 0,

as desired.
For the general case, let τn be the first exit time of Cn (n ≥ 0). Let Kn be the ball

of radius R about ξn. By transience, for each x ∈ K0, there is some time tx ≥ 0 such
that Px[∀s ≥ tx Xs /∈ K0] > 1/2. Choosing tmax := maxx∈K0 tx gives a time such that
Px[∀s ≥ tmax Xs /∈ K0] > 1/2 for all x ∈ K0. Before time τn, a lamp can be changed
only in Cn ∪ Kn. Let An be the ball of radius R(tmax + 1) about ξn. Then at times in
[τn, τn+ tmax], the lamplighter must stay in An and the changes of lamps must be entirely
within An. We may define Qn,ε(φ∞) to consist of those (φn, xn) such that xn ∈ ARn and
such that

φn(y) =

{
φ∞(y) if y ∈ CRn \ ARn,
id if y /∈ CRn ∪KRn ∪ ARn.

Then Qn,ε(φ∞) is of bounded size and PID[∃m ≥ n X̂m ∈ Qn,ε(8∞)] ≥ 1/2. ut

Our last illustration of the enhanced criterion Corollary 2.3 identifies the Poisson bound-
ary when the projection of µ on the base group 3 does not generate 3 as a semigroup.
Our proof in this case works for all nontrivial lamp groups and all countably infinite base
groups, not necessarily finitely generated. We will not, however, need to use this result in
our later proofs.
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Theorem 3.3. Let L be a nontrivial group and 3 be an infinite group. Let µ be a proba-
bility measure of finite entropy on L o3 whose support generates L o3 (as a group) and
is concentrated on {(δs, o) ; s ∈ L} ∪ {(ID, x) ; x ∈ 3}. If the projection µbase of µ on
3 has support that does not generate 3 as a semigroup, then the Poisson boundary of
(L o3,µ) is L3 endowed with the law of 8∞.

The basic idea of the proof is that the random walk on the base group has infinitely many
cut times.

Proof. Let 1 denote the semigroup generated by the support of µbase, including o. Then
1−1 is also a semigroup, as is 1′ := 1 ∩ 1−1. Because 1 ∪ 1−1 generates 3 as a
semigroup, 1′ 6= 1 and α := P[Y1 /∈ 1

′
] > 0. Let {t ; Yt /∈ 1′} be listed as 〈τn ; n ≥ 1〉

in increasing order. Note that for x ∈ 1 and y ∈ 1 \ 1−1, we have xy1 ⊂ 1 \ 1−1.
Therefore, Xτn+11 ⊂ Xτn(1 \1

−1) ( Xτn1. Furthermore, if x ∈ (1′)k for some k ≥ 0,
then 1 = x1 because x ∈ 1′. That is, we have a decreasing sequence

1 = X01 = X11 = · · · = Xτ1−11 ) Xτ11 = · · · = Xτ2−11 ) Xτ21 = · · · .

Given x, y ∈ 1, write x ≈ y if x1 = y1, and x ≺ y if x1 ) y1. Write x - y if
x ≈ y or x ≺ y. Then for every n, we see that s, t ∈ [τn, τn+1) impliesXs ≈ Xt , whereas
if s < τn ≤ t , then Xs ≺ Xt .

Recall that litφ denotes the set of lit lamps, {x ∈ 3 ; φ(x) 6= id}, of φ ∈ L3. De-
fine the stopping times σn := inf{t ; |{s ≤ t ; Xs ∈ lit(8∞)}| ≥ n, Xt ∈ lit(8∞),
Xt−1 ≺ Xt }; then necessarily σn ≥ n. Then P[Xσn ≺ Xσn+1] ≥ α. On the event
[Xσn ≺ Xσn+1], we have 8σn(x) = 8∞(x) for all x ∈ {Xs ; s ≤ σn} and 8σn(x) = id
for all other x ∈ 0; also, Xt ≈ Xσn only for t = σn on that event.

Let φ∞ ∈ L3 be a possible limiting lamp configuration. For every x, y ∈ lit(φ∞),
exactly one of the following holds: x ≈ y, x ≺ y, or y ≺ x, because x and y lie in the
trace of the random walk on 3. Define Qn(φ∞) to be the set of all (φn, x) such that

(i) x ∈ lit(φ∞),
(ii) |{y - x ; y ∈ lit(φ∞)}| ≥ n,

(iii) if y ∈ lit(φ∞) and y ≈ x, then y = x,
(iv) if lit(φ∞) 3 z ≺ x and |{y - z ; y ∈ lit(φ∞)}| ≥ n, then there is some w ≈ z with

w 6= z and w ∈ lit(φ∞),

and

(v) φn(y) =
{
φ∞(y) if y - x and y ∈ lit(φ∞),

id otherwise.

We have shown that P[∃m ≥ n X̂m ∈ Qn(8∞)] ≥ P[X̂σn ∈ Qn(8∞)] ≥ α. In addition,
|Qn(8∞)| ≤ 1. Thus, the theorem follows from Corollary 2.3. ut

4. Proof of Theorem 1.1

The proof of Theorem 1.1 comes in three parts: one part handles base groups 3 that
have at least cubic growth and are Liouville for the projected walk (Theorem 4.6); one
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handles base groups of less than cubic growth (Theorem 4.7); and the last handles the rest
(Theorem 4.8). In fact, Theorem 4.6 also handles some other cases; the reader interested
in those cases can thereby find a proof that is simpler than the one that uses all three
theorems. We will write “with high probability” to mean “with probability tending to 1 as
n→∞”.

For ease in following our proofs, we will assume that µ is concentrated on {(δs, o) ;
s ∈ L} ∪ {(ID, x) ; x ∈ 3}. It will be easy to see that the same proofs—indeed, with
simplifications—extend to all µwhose support is finite and generates Lo3. The extension
to µ with bounded lamp range involves merely technical complications.

We begin with five short lemmas.

Lemma 4.1. If k ≤ n/3, then
∑k
j=0

(
n
j

)
≤ 2(ne/k)k .

Proof. Since k! ≥ (k/e)k by Stirling’s inequality (p. 54 of Feller (1968)), we have
(
n
k

)
≤

(ne/k)k . Since
(
n
j+1

)
≥ 2

(
n
j

)
for j < n/3, the result follows by comparison with a

geometric series. ut

The following theorem of Shannon is well known and easy to prove via the weak law of
large numbers (e.g., Cover and Thomas (2006), Theorem 3.1.2).

Lemma 4.2. If π is a discrete distribution on a set S with entropy H(π) and Yn ∼ π

are independent, then there are sets 3n ⊆ Sn (n ≥ 1) such that limn→∞ n
−1 log |3n| =

H(π) and limn→∞ P[(Y1, . . . , Yn) ∈ 3n] = 1. ut

Write dist(x, y) for the distance between x and y in some Cayley graph of 0, and V0(r)
for the number of points within distance r of the identity, o. Let B(x, r) denote the ball
of radius r about x. The following lemma is well known in cases such as symmetric
simple random walk, due to celebrated results of Varopoulos; see, e.g., Corollary 7.3 of
Coulhon, Grigor’yan, and Pittet (2001) or, for a short proof, Corollary 6.6 of Lyons and
Oveis Gharan (2018). It is easily deduced for nonsymmetric random walks from known
results, but for completeness, we include this derivation.

Lemma 4.3. Let 〈4n〉 be a µ-walk on a group 0 that satisfies V0(r) ≥ crd for all r ∈ N.
Assume that the support of µ generates 0 and that µ(o) ≥ 1/2. Then pt (o, x) ≤ ct−d/2
for all t ≥ 1 and all x ∈ 0.

Proof. Let P be the transition matrix for the µ-walk and P̂ denote its transpose, which
is the transition matrix for another random walk. Since the support of µ generates 0 and
µ(o) > 0, some power P j has the property that (P j + P̂ j )/2 is irreducible. Thus, for
such j , we have α := min{pj (x, y) + p̂j (x, y) ; x ∼ y} > 0. It is well known that∑
x∈S, y /∈S pj (x, y) =

∑
x∈S, y /∈S p̂j (x, y) for all finite S ⊂ 0 (e.g., see Morris and Peres

(2005)). Since the sum of these two quantities is at least α|{(x, y) ; x ∈ S, y /∈ S}|, it
follows that

∑
x∈S, y /∈S pj (x, y) ≥ α|{(x, y) ; x ∈ S, y /∈ S}|/2. Now the result fol-

lows from the isoperimetric inequality of Coulhon and Saloff-Coste (1993) and Corollary
6.32(i) of Lyons and Peres (2016). ut
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Lemma 4.4. For every symmetric, transient µ-walk on a group 0,

∞∑
t=0

sup
x∈0

pt (o, x) <∞.

Proof. It is well known that for even t , we have pt (o, x) ≤ pt (o, o). Choose y with
µ(y) > 0. For odd t , we have pt (o, x) ≤ pt+1(o, xy)/p(x, xy) ≤ pt+1(o, o)/µ(y).
Thus, the result follows from

∑
∞

t=0 pt (o, o) <∞. ut

Lemma 4.5. Let 〈4n〉 be a random walk on 0. Let 0 ≤ k < m. Suppose that M is a
random subset of 0 that is measurable with respect to 〈41, . . . , 4k〉. Then

P[4m ∈M] ≤ E[|M|] sup
x∈0

pm−k(o, x).

If M = B(4k, r), then

P[4m ∈M] =
∑

x∈B(o,r)
pm−k(o, x).

Proof. For each y ∈ 0, we have

P[4m = y | 41, . . . , 4k] = pm−k(o, 4−1
k y) ≤ sup

x∈0

pm−k(o, x).

Summing over y ∈ M and then taking expectation gives the first result. In the second
case, we use instead the identity

P[4m ∈M | 41, . . . , 4k] =
∑
y∈M

pm−k(o, 4−1
k y) =

∑
x∈B(o,r)

pm−k(o, x). ut

Theorem 4.6. Let L be a nontrivial finite group and 3 be a finitely generated, infinite
group. Let µ be a probability measure of finite entropy on L o3 whose support generates
L o 3 and is concentrated on {(δs, o) ; s ∈ L} ∪ {(ID, x) ; x ∈ 3}. Suppose that the
projection µbase of µ on3 is Liouville and generates a transient random walk. If any one
of the following conditions holds, then the Poisson boundary of (L o3,µ) is L3 endowed
with the law of 8∞:

(a) the measure µbase is symmetric; or
(b) the group 3 has at least cubic growth; or
(c) the group 3 is abelian.

A rough sketch of the proof follows. Since 〈Xn〉 is Liouville, its asymptotic entropy is 0,
whence there is some t0 such that H(Xt0) < εt0. Lemma 4.2 converts this to a likely
set of fewer than eεn possibilities for S := 〈Xj t0 ; j ≤ n/t0〉. For a large ρ, partially
obscure the increments 〈Yk ; 1 ≤ k ≤ n〉 by replacing those Yk that satisfy |Yk| ≤ ρ by ∗,
to mean “unknown”; the resulting sequence U ∈ (3 ∪ {∗})n has small entropy, so we
again have a collection of size < eεn containing likely values U of the partially obscured
increments. In this way, we guess the large jumps and bound the others. Knowing S
and U , we define the set Mi(S, U) of possible values for {Xj ; (i − 1)t0 < j ≤ it0}, and
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|Mi(S, U)| ≤ t0V3(ρ)
t0 . In most locations y ∈ Mi(S, U), we have 8n(y) = 8∞(y),

and we can bound the number of possibilities for 8n(y) for the other y.

Proof of Theorem 4.6. Since H(X1) < ∞ and the walk on 3 is Liouville, we have
H(Xn) = o(n).

Let ε > 0. Choose t0 so that H(Xt0) < εt0. For n ∈ t0 · Z+, set sn := n/t0. Write
S := 〈Xj t0 ; 1 ≤ j ≤ sn〉. Applying Lemma 4.2 to the t0-step increments X−1

j t0
X(j+1)t0

yields a set Sn ⊆ 3sn with log |Sn| < εt0sn = εn and P[S ∈ Sn] → 1.
Write

uρ(x) :=

{
x if dist(o, x) > ρ,
∗ otherwise.

(4.1)

Recall that 〈Yk〉 are the increments of the random walk on3. Choose ρ so thatH(uρ(Y1))

< ε.
Write U := 〈uρ(Yk) ; 1 ≤ k ≤ n〉. By Lemma 4.2, there is a set Un ⊆ (3 ∪ {∗})n

with log |Un| < εn and P[U ∈ Un] → 1. For each U ∈ Un and 0 ≤ j1 < j2 ≤ n,
define L(U, j1, j2) ⊂ 3 to be the set of possible values of X−1

j1
Xj2 that are consistent

with U = U . That is, let

Zk :=

{
Yk if |Yk| > ρ,
B(o, ρ) otherwise,

and define
L(U, j1, j2) :=

∏
j1<k≤j2

Zk := Zj1+1Zj1+2 · · ·Zj2 . (4.2)

When 3 is abelian, L(U, j1, j2) is a ball of radius at most ρ(j2 − j1). More generally,

|L(U, j1, j2)| ≤ V3(ρ)
j2−j1 ≤ V3(ρ)

t0 .

Given S = 〈x1, . . . , xsn〉 and 1 ≤ i ≤ sn, write

Mi(S, U) :=

it0⋃
j=(i−1)t0+1

xi−1L(U, (i − 1)t0, j),

where x0 := o, for the set of possible values of {Xj ; (i − 1)t0 < j ≤ it0} that are
consistent with S = S and U = U . Thus,

⋃
i∈[1,sn]Mi(S, U) contains all possible values

of Xj for 0 < j ≤ n that are consistent with S = S and U = U ; outside this set, every
lamp must be the identity at time n. Inside this set, the lamp at time n takes the same value
as at time∞ except possibly at those locations that are visited after time n.

Thus, let W := {i ∈ [1, sn] ; ∃m > n Xm ∈ Mi(S,U)}. At the end of the last
paragraph, we observed that

8n(z) =

{
8∞(z) for z ∈

⋃
i∈[1,sn]\W Mi(S,U),

id for z /∈
⋃
i∈[1,sn]Mi(S,U).
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Choose an :=
√

E[|W|]n. Write An := [|W| ≤ an]. We claim that in all three cases
(a)–(c), limn→∞ E[|W|]/n = 0, whence limn→∞ E[|W|]/an = limn→∞ an/n = 0.
Once we establish that, we may deduce that limn→∞ P(An) = 1 by Markov’s inequality.

In order to show our claim, apply Lemma 4.5 to see that for m > n, 1 ≤ i ≤ sn, and
(i − 1)t0 < j ≤ it0,

P[Xm ∈ X(i−1)t0L(U , (i − 1)t0, j)] ≤ E[|L(U , (i − 1)t0, j)|] sup
x∈3

pm−j (o, x)

≤ V3(ρ)
t0 sup
x∈3

pm−j (o, x).

By virtue of Lemmas 4.3 and 4.4, in cases (a) and (b) we have

α` := V3(ρ)
t0
∑
k>`

sup
x∈3

pk(o, x)→ 0

as ` → ∞. On the other hand, in case (c), X(i−1)t0L(U , (i − 1)t0, j) is a ball of radius
at most ρt0 that contains Xj , whence X(i−1)t0L(U , (i − 1)t0, j) ⊆ B(Xj , 2ρt0). Thus, in
case (c), it follows from Lemma 4.5 that for m > n, 1 ≤ i ≤ sn, and (i − 1)t0 < j ≤ it0,

P[Xm ∈ X(i−1)t0L(U , (i − 1)t0, j)] ≤
∑
|x|≤2ρt0

pm−j (o, x).

In this case, transience guarantees that

α` :=
∑
k>`

∑
|x|≤2ρt0

pk(o, x)→ 0

as `→∞. Therefore, in all three cases,

E[|W|] ≤
∑
j≤n

∑
m>n

P
[
Xm ∈ X(dj/t0e−1)t0L(U , (dj/t0e − 1)t0, j)

]
≤

∑
j≤n

αn−j =
∑
j≤n

αj = o(n)

as n→∞, as claimed.
Let φ∞ ∈ L3 be a possible limiting lamp configuration. For n ∈ t0 · Z+, define

Qn,ε(φ∞) to be the set of all (φn, x) such that there are U , S, and W satisfying

(i) U ∈ Un,
(ii) S = 〈x1, x2, . . . , xsn〉 ∈ Sn with xsn = x,

(iii) W ⊆ [1, sn] with |W | ≤ an,

and

(iv) φn(z) =
{
φ∞(z) for z ∈

⋃
i∈[1,sn]\W Mi(S, U),

id for z /∈
⋃
i∈[1,sn]Mi(S, U).

We have established that U , S, and W satisfy (i)–(iv) with high probability as choices
for U , S, and W , respectively, when φ∞ = 8∞, φn = 8n, and x = Xn, and thus
limt0·Z+3n→∞ P[X̂n ∈ Qn,ε(8∞)] = 1. To establish the theorem, in light of Corol-
lary 2.2, it suffices to show that |Qn,ε(φ∞)| < e2εn+o(n) because ε was arbitrary.
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By definition, the number of choices of U ∈ Un is at most eεn and the number of
choices of S ∈ Sn is at most eεn. For large n, the number of choices of W is at most
2
(
n
an
e
)an
= eo(n) by Lemma 4.1. Note that |Mi(S, U)| ≤ t0V3(ρ)

t0 . Thus, given S

and W , the number of choices of φn is at most |L||W |t0V3(ρ)
t0
≤ |L|t0V3(ρ)

t0an = eo(n).
Therefore, |Qn,ε(φ∞)| < e2εn+o(n), as desired. ut

In order to handle the case of base groups with less than cubic growth, we modify the pre-
ceding proof in a couple of ways. By Gromov (1981), all such groups are finite extensions
of Z or Z2.

Theorem 4.7. Let L be a nontrivial finite group and 3 be a finitely generated, infinite
group with an abelian subgroup Z of finite index. Let µ be a probability measure of
finite entropy on L o 3 whose support generates L o 3 and is concentrated on {(δs, o) ;
s ∈ L}∪{(ID, x) ; x ∈ 3}. If the projection µbase of µ on3 generates a transient random
walk, then the Poisson boundary of (L o3,µ) is L3 endowed with the law of 8∞.

The idea of the proof is to use the commutativity of Z to further specify the possible
positions of the base walk in the first n steps, beyond what the previous proof accom-
plished. The aim is to pay most attention when the base walk lies in Z. When the base
walk moves far during an excursion between visits to Z, we will specify exactly the incre-
ments during an entire such excursion. With “far” having a sufficiently large threshold,
such specification can be done with a collection of size < eεn of likely values. There are
extra difficulties because the times when the base walk lies in Z are random, but since we
need to know only relatively few of them, we can choose a possible set of such times with
small exponential growth.

Proof of Theorem 4.7. Note that if τ is a stopping time, then

H(〈Yt ; 1 ≤ t ≤ τ 〉) = E
[ τ∑
t=1

logµ(Yt )
]
= E[τ ]E[logµ(Y1)] = E[τ ]H(Y1).

In particular, this is finite when E[τ ] <∞.
Since H(X1) < ∞ and the µbase-walk on 3 is necessarily Liouville, we find that

H(Xn) = o(n). Let ε > 0. Choose t0 so that H(Xt0) < εt0. For n ∈ t0 · Z+, set sn :=
n/t0. Write S := 〈Xj t0 ; 1 ≤ j ≤ sn〉. Applying Lemma 4.2 to the t0-step increments
X−1
j t0
X(j+1)t0 yields a set Sn ⊆ 3sn with log |Sn| < εt0sn = εn and P[S ∈ Sn] → 1.

For a sequence x = 〈xj ; 1 ≤ j ≤ t〉, write

distmax(x) := max {dist(o, xj ) ; 1 ≤ j ≤ t}.

Write

uρ(x) :=

{
x if distmax(x) > ρ,
∗ otherwise.

Let τZ(k) be the time of the kth visit of the µbase-walk to Z, with τZ(0) := 0. Because
[3 : Z] is finite, E[τZ(1)] < ∞. Abbreviate the sequence 〈X−1

τZ(k−1)Xj ; τZ(k − 1) <
j ≤ τZ(k)〉 as Xk . Thus, Xk are IID with finite entropy by our first paragraph. Choose ρ
so that H(uρ(X1)) < ε. We may also assume that dist(x,Z) ≤ ρ for all x ∈ 3.
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Write U := 〈uρ(Xk) ; 1 ≤ k ≤ n〉. Write 3<∞ for the set of finite sequences of
elements from 3. By Lemma 4.2, there is a set Un ⊆ (3<∞ ∪ {∗})n with log |Un| < εn

and P[U ∈ Un] → 1.
The times τZ(k) for which uρ(Xk) 6= ∗ form a renewal process. Let T be the set

of such renewal times ≤ n. The long-term rate αρ of renewals tends to 0 as ρ → ∞.
Let Tn be the collection of subsets of {0, 1, . . . , n} with size at most 2αρn. We have
P[T ∈ Tn] → 1 as n → ∞. By Lemma 4.1, for sufficiently large ρ, the size of Tn
is less than eεn for all large n. Without loss of generality, we may assume that ρ is that
large. Let also T ′ be the set of times τZ(k − 1) ≤ n for which uρ(Xk) 6= ∗. Because
|T ′| ≤ |T | + 2, we also have P[T ′ ∈ Tn] → 1 as n→∞. Write T′′n for the set of pairs
(T , T ′) ∈ Tn × Tn that are possible values of (T , T ′): that is, they must interleave with
the minimum coming from T ′.

Observe that (S, T , T ′,U) determines Xj for j ∈ [1, sn]t0 and also for (i − 1)t0 ≤
j ≤ τZ(k) when τZ(k − 1) ≤ (i − 1)t0 and uρ(Xk) 6= ∗, where 1 ≤ i ≤ sn. For all other
j ≤ n, that quadruple forces Xj to lie in a ball of radius 3ρt0 about some point βj ∈ Z
that is measurable with respect to (S, T , T ′,U). Indeed, fix a map ζ : 3 → Z such that
dist(x, ζ(x)) ≤ ρ. Let j ∈ [(i − 1)t0, it0). Define k by τZ(k − 1) < (i − 1)t0 ≤ τZ(k).
Suppose first that j ≤ τZ(k). In case uρ(Xk) 6= ∗, Xj is determined by (S, T , T ′,U),
so we may take βj := ζ(Xj ), whereas if uρ(Xk) = ∗, then Xj ∈ B(ζ(X(i−1)t0), 2ρ), so
we may take βj := ζ(X(i−1)t0). Suppose next that j > τZ(k). Write ξ for the product of
X−1
τZ(`−1)XτZ(`) over all ` > k with τZ(`) ≤ j and uρ(X`) 6= ∗. Because Z is abelian,

Xj ∈ B(XτZ(k)ξ, ρt0) and XτZ(k)ξ is (S, T , T ′,U)-measurable in case uρ(Xk) 6= ∗, so
we may take βj := ζ(XτZ(k)), and Xj ∈ B(ζ(X(i−1)t0)ξ, 2ρ + ρt0) and X(i−1)t0ξ is
(S, T , T ′,U)-measurable in the other case, so we may take βj := ζ(X(i−1)t0)ξ .

For each S ∈ Sn, (T , T ′) ∈ T′′n, U ∈ Un, i ∈ [1, sn], and j ∈ ((i − 1)t0, it0],
define L(S, T , T ′, U, j) ⊂ 3 to be the set of possible values of Xj that are consistent
with S = S, T = T , T ′ = T ′, and U = U . The preceding paragraph established that
L(S, T , T ′, U, j) is contained in a ball of radius 3ρt0. Write

Mi(S, T , T
′, U) :=

it0⋃
j=(i−1)t0+1

L(S, T , T ′, U, j).

Thus,
⋃
i∈[1,sn]Mi(S, T , T

′, U) contains all possible values of Xj for 0 < j ≤ n that are
consistent with (S, T , T ′,U) = (S, T , T ′, U); outside this set, every lamp must be the
identity at time n. Inside this set, the lamp at time n takes the same value as at time ∞
except possibly at those locations that are visited after time n.

Thus, let W := {i ∈ [1, sn] ; ∃m > n Xm ∈ Mi(S, T , T ′,U)}. At the end of the last
paragraph, we observed that

8n(z) =

{
8∞(z) for z ∈

⋃
i∈[1,sn]\W Mi(S, T , T ′,U),

id for z /∈
⋃
i∈[1,sn]Mi(S, T , T ′,U).

Choose an :=
√

E[|W|]n. Write An := [|W| ≤ an]. We claim that limn→∞ E[|W|]/n
= 0, whence limn→∞ E[|W|]/an = limn→∞ an/n = 0. Once we establish that, we may
deduce that limn→∞ P(An) = 1 by Markov’s inequality.
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In order to show our claim, apply Lemma 4.5 to see that for m > n, 1 ≤ i ≤ sn, and
(i − 1)t0 < j ≤ it0, because L(S, T , T ′,U , j) ⊆ B(Xj , 6ρt0),

P[Xm ∈ L(S, T , T ′,U , j)] ≤
∑
|x|≤6ρt0

pm−j (o, x).

Because of transience,
α` :=

∑
k>`

∑
|x|≤6ρt0

pk(o, x)→ 0

as `→∞, whence

E[|W|] ≤
∑
j≤n

∑
m>n

P[Xm ∈ L(S, T , T ′,U , j)] ≤
∑
j≤n

αn−j =
∑
j≤n

αj = o(n)

as n→∞, as claimed.
Let φ∞ ∈ L3 be a possible limiting lamp configuration. For n ∈ t0 · Z+, define

Qn,ε(φ∞) to be the set of all (φn, x) such that there are S, T , T ′, U , and W satisfying

(i) S = 〈x1, x2, . . . , xsn〉 ∈ Sn with xsn = x,
(ii) (T , T ′) ∈ T′′n,

(iii) U ∈ Un,
(iv) W ⊆ [1, sn] with |W | ≤ an,

and

(v) φn(z) =
{
φ∞(z) for z ∈

⋃
i∈[1,sn]\W Mi(S, T , T

′, U),

id for z /∈
⋃
i∈[1,sn]Mi(S, T , T

′, U).

We have established that (S, T , T ′,U ,W) satisfy (i)–(v) with high probability as a choice
for (S, T , T ′, U,W) when φ∞ = 8∞, φn = 8n, and x = Xn, and thus

lim
t0·Z+3n→∞

P[X̂n ∈ Qn,ε(8∞)] = 1.

To establish the theorem via Corollary 2.2, it suffices to show that |Qn,ε(φ∞)| < e4εn+o(n)

since ε was arbitrary.
By definition, |Sn| < eεn, |T′′n| < e2εn, and |Un| < eεn. For large n, the number of

choices of W is at most 2( n
an
e)an = eo(n) by Lemma 4.1. Note that |Mi(S, T , T

′, U)| ≤

t0V3(3ρt0). Thus, given (S, T , T ′, U,W), the number of choices of φn is at most

|L||W |t0V3(3ρt0) ≤ |L|t0V3(3ρt0)an = eo(n).

Therefore, |Qn,ε(φ∞)| < e4εn+o(n), as desired. ut

Theorem 4.8. Let L be a nontrivial finite or countable group and 3 be a countably
infinite group. Let µ be a probability measure of finite entropy on L o 3 whose support
generates L o 3 and that is concentrated on {(δs, o) ; s ∈ L} ∪ {(ID, x) ; x ∈ 3}. If
the projection of µ on 3 is non-Liouville, then the Poisson boundary of (L o3,µ) is L3

endowed with the law of 8∞.
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A rough sketch of the proof follows. Let τx := inf {n ; Xn = x}. Let ρ3(x) :=
− log Po[τx < ∞], the negative log of the probability that the projection of the µ-
walk to 3, started at o, ever visits x ∈ 3. Because the walk on 3 is non-Liouville,
its Avez entropy is h′ > 0. It is known that n−1ρ3(Xn) → h′ a.s. Consider the sets
W(r) := {x ∈ 3 ; ρ3(x) ≤ r}, the sizes of which will not concern us. Given ε > 0,
it is likely that for large n, we have Xk ∈ W := W(nh′(1 + ε)) for all k ≤ n and
also that Xm /∈ W for all m > n(1 + 3ε). At the same time, there is a reasonable
chance that 8∞(Xn) 6= id. Thus, there is a reasonable chance that 8n agrees with 8∞
on W \ {Xn+1, . . . , Xn(1+ε)}, and it is likely that 8n(z) = id for all z /∈ W . Furthermore,
there are likely fewer than n(1 + 3ε) locations z ∈ W where 8∞(z) 6= id, whence it
is likely, seeing 8∞, that there are not many possibilities for where Xn is. Finally, it is
likely that Ŷm for n < m ≤ n(1+3ε) belongs to a set of size ecεn (which does not depend
on 8∞). From 8∞ and these possibilities, we can thus likely deduce 8n.

Proof of Theorem 4.8. Let h′ > 0 be the Avez entropy of the projection of the µ-
walk to 3. By Proposition 6.2 of Benjamini and Peres (1994) in the symmetric case
or Blachère, Haı̈ssinsky, and Mathieu (2008) in general, limn→∞ n

−1ρ3(Xn) = h′ a.s.;
this result is also proved as Theorem 14.50 of Lyons and Peres (2016). Write W(r) :=
{x ∈ 3 ; ρ3(x) ≤ r}. Let ε ∈ (0, 1/3). Let W := W(nh′(1 + ε)) and W ′ :=
W(n(1+ 3ε)h′(1− ε)). Since (1+ 3ε)(1− ε)− (1+ ε) = ε(1− 3ε) > 0, it follows that
W ′ ⊃ W .

Write U := 〈Ŷm ; n < m ≤ n+ 3εn〉. By Lemma 4.2, there is a set Un ⊆ (L o3)b3εnc
with log |Un| < 6εnH(X̂1) and P[U ∈ Un] → 1 as n→∞.

Let An be the event that Xk ∈ W for all k ≤ n. Since every sequence 〈rn〉 with
limn→∞ rn/n = h′ has the property that for all sufficiently large n, and all k ≤ n, we
have rk < nh′(1 + ε), it follows that limn→∞ P(An) = 1. In addition, at any time, the
walk may leave its current location with the lamp not equal to id, after one or two steps,
and never return. Therefore, infn P[8∞(Xn) 6= id] > 0.

Recall that litφ denotes the set of lit lamps, {x ∈ 3 ; φ(x) 6= id}, of φ ∈ L3.
Let Dn be the event that Xm /∈ W for all m > n + 3εn. Since P[∀m > n Xm /∈

W(n(1+3ε)h′(1−ε))] → 1 as n→∞ andW(n(1+3ε)h′(1−ε)) = W ′ ⊃ W , it follows
that P(Dn)→ 1. On the eventDn, we have |W ∩ lit8∞| ≤ n+3εn. Now, the lamp at any
z ∈ W is changed at time m ∈ (n, n + 3εn] by multiplying by 9m(X−1

m−1z), whence the

total change from what it was at time n due to the changes in U is
∏n+b3εnc
m=n+1 9m(X

−1
m−1z).

Therefore, on the event Dn, for every z ∈ W ,

8∞(z) = 8n(z)

n+b3εnc∏
m=n+1

9m(X
−1
m−1z).

Let φ∞ ∈ L3. Define Qn,ε(φ∞) to be the set of all (φn, x) such that there is U
satisfying

(i) U = 〈(ψn+1, yn+1), . . . , (ψn+b3εnc, yn+b3εnc)〉 ∈ Un,
(ii) |W ∩ litφ∞| ≤ n+ 3εn,

(iii) x ∈ W ∩ litφ∞,
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and
(iv) writing zm := x

∏m
j=n+1 yj for n ≤ m ≤ n+ b3εnc and

ψ(z) :=

n+b3εnc∏
m=n+1

ψm(z
−1
m−1z),

we have

φn(z) =

{
φ∞(z)ψ(z)

−1 for z ∈ W ,
id for z /∈ W .

Clearly usingU :=U satisfies (i) with high probability. We have proved that for φ∞=8∞
and x = Xn, the probability of (iii) is bounded away from 0. In addition, (ii) and (iv) hold
on the event Dn, which is likely. Therefore, lim supn→∞ P[X̂n ∈ Qn,ε(8∞)] > 0.

By assumption, the number of choices of U ∈ Un is at most e6εnH(X̂1). The number
of choices of x is at most 2n. Therefore, |Qn,ε(φ∞)| < e6εnH(Ĥ1)+o(n). This completes
the proof. ut

Define ζn(x) := − log Po[τx ≤ n]. We remark that one may use in the proof the more
elementary fact that

lim
n→∞
−n−1ζn(Xn) = h′

(Benjamini and Peres (1994), proof of Proposition 6.2) in place of limn→∞ n
−1ρ3(Xn)

= h′.
Lastly, we explain why a recurrent base walk yields a Liouville measure. A group

is called Choquet–Deny if every convolution walk on it is Liouville. Frisch, Hartman,
Tamuz, and Vahidi Ferdowsi (2019) prove that such groups are exactly those groups with
no ICC quotients, where an ICC group is a nontrivial group all of whose elements other
than the identity have infinite conjugacy classes.

Proposition 4.9. Let L be a Choquet–Deny group and 3 be a countable group. Let µ
be a probability measure on L o 3 whose support generates L o 3. If µbase generates a
recurrent random walk on 3, then (L o3,µ) is Liouville.

Proof. By the assumption that the µbase-walk is recurrent, the subgroup 1 of elements
of the form (8, o) is a recurrence set. Let ν denote the probability measure giving the
first return to 1 from the identity. Then the Poisson boundary of (L o3,µ) is isomorphic
to that of (1, ν) by Lemma 4.2 of Furstenberg (1971b). Clearly, 1 is isomorphic to a
direct sum of copies of L. On the other hand, the direct sum of Choquet–Deny groups
is Choquet–Deny. To see this, let 0i (i ≥ 1) each have no ICC quotients and 0 be their
direct sum. Identify 0i with the subgroup of elements of 0 all of whose coordinates other
than the ith are the identity. Let φ be a homomorphism of 0. We want to show that φ(0)
is not ICC. Because 0 is generated by all 0i , we see that φ(0) is generated by all φ(0i).
If φ(0) is not trivial, then some φ(0i) is not trivial and, by hypothesis, has a nontrivial
element φ(γi), where γi ∈ 0i , with finite conjugacy class in φ(0i). Since 0i commutes
with all other 0j (j 6= i) and φ is a homomorphism, the conjugacy class of φ(γi) in φ(0i)
is the same as in φ(0). Thus, we obtain our desired result that φ(0) contains a nontrivial
element with finite conjugacy class, so is not ICC. ut
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5. General generators

Here we extend the result of Erschler (2011) from finite third moments to finite second
moments on Zd , and from d ≥ 5 to d ≥ 3. We also allow infinite lamp groups.

Theorem 5.1. Let L be a nontrivial finitely generated group and d ≥ 3. Let µ be a
probability measure on L o Zd whose support generates L o Zd with

∑
x |x|

2 µ(x) < ∞.
Then the Poisson boundary of (L o Zd , µ) is L3 endowed with the law of 8∞.

Note that for x ∈ Zd , its graph distance |x| to 0 ∈ Zd is comparable to the `2-norm
‖x‖ := 〈Cov(X1)x, x〉

1/2, which we define for x ∈ Rd . Write B(r) := {z ; ‖z‖ ≤ r}.
We have assumed that L is finitely generated only for brevity in the assumptions; see

the first paragraph of the proof for what we use without this assumption.
We preface the proof of Theorem 5.1 with a sketch. The case when E[X1] 6= 0 was

established by Kaimanovich (2001), so assume that E[X1] = 0. The main new difficulty
compared to our previous proofs is that lamps may be changed at distances arbitrarily
far from the lamplighter. Control over this distance is given by the moment assumption.
When s is a large constant, for each n there is a high chance that the first n steps of the
walk on the base Zd do not exit the ball B(s

√
n), nor change any lamps outside the ball

B(2s
√
n). In particular, there are only cnd/2 possibilities for Xn in this case. There is a

tiny, but bounded below, chance that the walk on Zd also has the property that it never
visits the ball B(4s

√
n) after time n(1+ ε); conditional on this event, the chance is very

small that any lamp in B(2s
√
n) is changed after time n(1 + ε). There is a set of size

ecεn that is likely to contain Ŷn+1, . . . , Ŷn(1+ε). Having guessed Xn ∈ B(s
√
n), seeing

8∞�B(s
√
n), and having changed the lamps therein according to Ŷn+1, . . . , Ŷn(1+ε), we

arrive at our guess of X̂n.

Lemma 5.2. Let d ≥ 3. Consider a random walk 〈Xn〉 on Zd with E[|X1|
2
] < ∞ and

E[X1] = 0.

(i) We have lims→∞ infn P0
[
∀k ≤ n ‖Xk‖ ≤ s

√
n
]
= 1.

(ii) For every s > 0,

lim
n→∞

inf
‖x‖≥2s

√
n

Px
[
∀m ≥ 0 ‖Xm‖ > s

√
n
]
= 1−

1
2d−2 .

Proof. Part (i) is immediate from Kolmogorov’s maximal inequality (Theorem 2.5.2 in
Durrett (2010)).

To prove part (ii), we let A := Cov(X1)
−1/2 and define Ym := s−1AXm. Let | · |2 be

the standard Euclidean norm and B2(r) be the associated closed ball of radius r about the
origin. Then (ii) can be rewritten in the form

lim
n→∞

sup
|y|2≥2

√
n

Py
[
∃m ≥ 0 |Ym|2 ≤

√
n
]
= 2d−2.

First recall that if standard Brownian in Rd starts at z with |z|2 = 2, then the proba-
bility that it ever visits the ball B2(α) of radius α < 2 is (α/2)d−2 (see, e.g., Mörters and
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Peres (2010), Corollary 3.1). Given ε > 0, we can select T = T (ε) so that the probability
this visit occurs before time T is at least (α/2)d−2

− ε; taking α := 1 − ε, we deduce
from the d-dimensional Donsker invariance principle (see, e.g., Whitt (2002), Theorem
4.3.5) that

lim
n→∞

sup
|y|2≥2

√
n

Py
[
∃m ∈ [0, nT ] |Ym|2 ≤

√
n
]
≥ ((1− ε)/2)d−2

− ε,

and this gives the lower bound in (ii).
In dimension three, a matching upper bound follows from the asymptotic relation

g(0, y) = (c3 + o(1))|y|−1
2

for the Green function of 〈Yj 〉 (see Spitzer (1976), Proposition P26.1), where c3 is a
positive constant. Indeed, if τ is the hitting time of the ball B2(

√
n) by 〈Yj 〉 (which may

be infinite), then the optional stopping theorem (e.g., Durrett (2010), Theorem 5.7.4) for
the bounded martingale 〈g(0, Yτ∧j ) ; j ≥ 0〉 yields

g(0, y) ≥ Py[τ <∞] · min
y1∈B2(

√
n)
g(0, y1).

It follows that
(c3 + o(1))|y|−1

2 ≥ Py[τ <∞](c3 + o(1))n−1/2;

the two occurrences of o(1) do not necessarily denote the same function. Since |y|2 ≥
2
√
n , we conclude that Py[τ <∞] ≤ 1/2+ o(1).
It remains to prove the upper bound in (ii) for dimensions d > 3. Given ε > 0, let

T := ddε−4
e. Another application of Donsker’s theorem yields

lim
n→∞

sup
|y|2≥2

√
n

Py
[
∃m ∈ [0, nT ] |Ym|2 ≤

√
n
]
≤ (1/2+ ε)d−2.

By the central limit theorem, for every y in Rd and sufficiently large n > 1,

Py
[
|YnT |2 ≤ ε

√
nT
]
≤ Cdε

d .

If z ∈ Rd satisfies |z|2 > ε
√
nT ≥

√
nd/ε, then one of the coordinate projections

of z must have absolute value greater than
√
n/ε; projecting to a three-dimensional space

containing that coordinate, we infer (from optional stopping in three dimensions) that as
n→∞,

Pz
[
∃m ∈ [0,∞) |Ym|2 ≤

√
n
]
≤ (1+ o(1))ε.

By considering whether |YnT |2 ≤
√
nd/ε, we conclude that for some constant Cd ,

sup
|y|2≥2

√
n

Py
[
∃m ≥ 0 |Ym|2 ≤

√
n
]
≤ (1/2+ ε)d−2

+ Cdε
d
+ (1+ o(1))ε. ut

Let rad denote the radius of a subset of 3, meaning the maximum distance in the word
metric of any of its elements from the identity o ∈ 3. Although we will apply the follow-
ing lemma only for 3 = Zd , we state it in general as it may find other uses. This lemma
controls the changes of lamps far from the projection of the walk on the base group.
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Lemma 5.3. Let L be a group and3 be a finitely generated group. Let 〈(9k, Yk) ; k ≥ 1〉
be the increments of a µ-walk 〈X̂n ; n ≥ 0〉 on L o3 such that P[Y1 = o] ≥ 1/2. Suppose
that V3(r)/rd is bounded above and below by positive finite constants for some d ≥ 3
and that E[(rad lit91)

2
] <∞. Then for some constant cµ and every a > 0,∑

k≥1

P[rad lit9k > a · |Xk−1|] ≤ cµa
−2 E[(rad lit91)

2
].

Proof. Let R be a random variable independent of 〈Xk〉 that has the same distribution
as a−1 rad lit91. Since 9k has the same law as 91 and is independent of Xk−1, we have∑

k≥1

P[rad lit9k > a · |Xk−1|] =
∑
k≥1

P[R > |Xk−1|] = E
[∑
k≥1

1[R>|Xk−1|]

]
.

The idea now is that for k > R2, we control the chance that |Xk−1| < R by using
Lemma 4.3, summing over the relevant possible values of Xk−1. Thus,

E
[∑
k≥1

1[R>|Xk−1|]

]
≤ E

[
R2
+ E

[∑
k>R2

1[R>|Xk−1|]

∣∣∣ R]]
≤ E

[
R2
+

∑
k>R2

V3(R)ck
−d/2

]
≤ E[R2

+ cRd(R2)1−d/2] = cE[R2
]. ut

Proof of Theorem 5.1. Our assumption is that E[|X̂1|
2
] <∞. However, all we will use of

this moment condition is weaker, namely, that H(X̂1) <∞, that E[|X1|
2
] <∞, and that

E[(rad lit81)
2
] < ∞. The first is a well-known consequence of the weaker assumption

E[|X̂1|] <∞; the latter two follow from |(φ, x)| ≥ max{|x|, rad litφ} + |litφ|. Thus, we
need not assume that L is finitely generated.

The case E[X1] 6= 0 was done by Kaimanovich (2001), so assume that E[X1] = 0.
Let ε ∈ (0, 1). Choose s so large that

inf
n

P0
[
∀k ≤ n ‖Xk‖ ≤ s

√
n
]
>

1
2
+

E[(rad lit81)
2
]

s2 ;

such an s exists by Lemma 5.2. We will define random setsQn,ε that are8∞-measurable
in order to apply Corollary 2.2.

Abbreviate 3 := Zd .
Write U := 〈Ŷm ; n < m ≤ n+ εn〉. By Lemma 4.2, there is a set Un ⊆ (L o3)bεnc

with log |Un| < 2εnH(X̂1) and P[U ∈ Un] → 1.
We wish to define a set Qn,ε(8∞) that will contain X̂n with reasonable probability

and that will have small exponential growth. We will consider the possible increments U
and the possible values of Xn ∈ B(s

√
n). Given such possible values, we guess values

for 8n from the ones we see, 8∞, by correcting by the changes caused by U . Namely,
the lamp at some z ∈ B(2s

√
n) is changed at time m ∈ (n, n + εn] by multiplying by

9m(z−Xm−1), whence the total change from what it was at time n due to the changes in
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U is
∏n+bεnc
m=n+19m(z−Xm−1). Provided that the lamps in B(2s

√
n) are not changed after

time n+ εn, we may multiply 8∞(z) by the inverse of this product to guess 8n(z).
Thus, we proceed as follows. Let φ∞ ∈ L3. Define Qn,ε(φ∞) to be the set of all

(φn, x) such that there is some U = 〈(ψn+1, yn+1), . . . , (ψn+bεnc, yn+bεnc)〉 ∈ Un and
some x ∈ B(s

√
n) such that, writing zm := x +

∑m
j=n+1 yj for n ≤ m ≤ n+ εn and

ψ(z) :=

n+bεnc∏
m=n+1

ψm(z− zm−1),

we have

φn(z) =

{
φ∞(z)ψ(z)

−1 for z ∈ B(2s
√
n),

id for z /∈ B(2s
√
n).

By assumption, the number of choices of U ∈ Un is at most e2εnH(X̂1). The number of
choices of x is at most cnd/2. Therefore, |Qn,ε(φ∞)| < e2εnH(X̂1)+o(n).

We will prove that lim supn→∞ P[X̂n ∈ Qn,ε(8∞)] > 0.
Let An be the event that ‖Xk‖ ≤ s

√
n for all k ≤ n. Let Cn be the event that

rad lit9k > s
√
n for some k ≤ n. Then

P
[
rad lit9k > s

√
n
]
≤

E[(rad lit9k)2]
s2n

=
E[(rad lit81)

2
]

s2n

by Chebyshev’s inequality, whence P(Cn) ≤ E[(rad lit81)
2
]/s2 by a union bound. Let

Dn be the event that 8n(y) = id for all y /∈ B(2s
√
n). Then An \ Dn ⊆ Cn, whence

P(An ∩Dn) = P(An)− P(An \Dn) ≥ P(An)− P(Cn) > 1/2 by choice of s.
Let En be the event that ‖Xn+bεnc −Xn‖ > 5s

√
n . Then lim infn→∞ P(En) > 0 and

En is independent of An ∩Dn; on the event An ∩Dn ∩En, we have ‖Xn+bεnc‖ > 4s
√
n .

Let Fn be the event that for all m > n + εn, we have ‖Xm‖ > 2s
√
n . By Lemma 5.2,

limn→∞ P(Fn | An ∩Dn ∩ En) = 1− 1/2d−2.
Let Gn be the event that at no time after n + bεnc does the walk change a lamp in

B(2s
√
n). ThenAn∩Dn∩En∩Fn\Gn is contained in the event that for somem > n+εn,

we have rad lit9m > ‖Xm−1‖/2, which by the Borel–Cantelli lemma and Lemma 5.3 has
probability tending to 0 as n→∞. Therefore, lim infn→∞ P(An∩Dn∩En∩Fn∩Gn) > 0.

On the event An ∩Dn ∩ En ∩ Fn ∩Gn, for every z ∈ B(2s
√
n) we have

8∞(z) = 8n(z)

n+bεnc∏
m=n+1

9m(z−Xm−1),

as desired. ut

Recall that our proof of Theorem 5.1 did not use the full strength of the hypothesis
E[|X̂1|

2
] < ∞, but only the weaker hypotheses that H(X̂1) < ∞, E[|X1|

2
] < ∞,

and E[(rad lit81)
2
] < ∞. This last assumption cannot be weakened to finiteness of a

smaller moment, even if 〈Xn〉 is simple random walk on Z3 and L = Z2. To see this, we
adapt Kaimanovich (1983), Proposition 1.1, which gave an example of a µ-walk on Z2 oZ
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that yielded a nontrivial Poisson boundary but with no limiting configuration of lamps a.s.
Indeed, suppose that X̂1 has the following distribution: With probability 1/2, 91 = 0 and
X1 is a step of simple random walk on Z3, while for each n ≥ 1, with probability c0/n

3,
91 = 1B(n) and X1 = 0, where c0 := 1/(2ζ(3)) is a normalizing constant. We still have
H(X̂1) < ∞, while E[(rad lit81)

a
] < ∞ iff a < 2. We claim that while 8∞ does not

exist a.s. for this walk, the Poisson boundary is nontrivial. To see this, condition on the
walk in the base, 〈Xn〉. IfXn = Xn+1, then the chance that at time n+1 the lamp changes
at the origin is of order 1/(1+‖Xn‖2), independently of all other steps of the walk. Now∑
n(1 + ‖Xn‖

2)−1
= ∞ a.s. by the law of the iterated logarithm, whence the Borel–

Cantelli lemma yields infinitely many changes of the lamp at the origin a.s. On the other
hand, the difference between the lamp at the origin and the lamp at (1, 0, 0) changes only
finitely many times a.s., again by the Borel–Cantelli lemma, since ifXn = Xn+1, then the
chance that at time n+1 this difference changes is of order 1/(1+‖Xn‖3), independently
of all other steps of the walk, and

∑
n(1 + ‖Xn‖

3)−1 < ∞ a.s. by Dvoretzky and Erdős
(1951). Therefore, the Poisson boundary is nontrivial. On the other hand, if µ has a finite
first moment and projects to a transient random walk on Zd , then a limiting lamp config-
uration exists; see Theorem 3.3 of Kaimanovich (1991) or Lemma 1.1 of Erschler (2011).
This general case is still open: is the harmonic measure on the limiting lamp configuration
equal to the Poisson boundary? We remark that Erschler (2011) shows that the Poisson
boundary can be nontrivial even for some random walks where no combination of lamps
stabilizes.

6. Metabelian groups

As Erschler (2011) noted following Vershik (2000), free metabelian groups are suffi-
ciently similar to lamplighter groups on Zd that similar results on their Poisson boundaries
carry over. A group F is metabelian if F ′′ is trivial, where prime indicates commutator
subgroup. Those of the form Fd/F′′d are called free metabelian groups, where Fd is the
free group on d generators. More generally, consider groups of the form Fd/H ′, where
H is a normal subgroup of Fd . As explained by Erschler (2004b), with more details given
by Vershik and Dobrynin (2005), the groups Fd/H ′ are isomorphic to groups of finite
configurations on 3 := Fd/H as follows.

Let G be the right Cayley graph of Fd/H corresponding to the free generators of Fd .
Orient each edge of G so as to form the group C1(G) = C1(G,Z) of 1-chains. For each
x ∈ 3, fix a finite path 〈e1, . . . , ek〉 of edges from o ∈ 3 to x. To this path associate the
1-chain θx :=

∑k
j=1±ej , where we choose the plus sign iff ej is oriented in the direction

from o to x along the path. For simplicity, we choose θo := 0. Let Z1(G) denote the space
of cycles in C1(G). (As there are no 2-cells, this is the same as H1(G,Z).) Note that H
is the fundamental group of G, and its abelianization, H/H ′, is canonically isomorphic
to Z1(G), meaning that the homomorphism ϕ : Fd → C1(G) defined by ϕ(a) := θaH for
generators a of Fd has kernel H ′ and ϕ(H) = Z1(G). Now 3 acts on G by translation
from the left, and so also acts on C1(G), which we denote by (x, f ) 7→ Txf . Define 3̃
to be the subset {θx + f ; x ∈ 3, f ∈ Z1(G)} ⊂ C1(G); this set is clearly independent
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of the choices of the chains θx . In addition, the map θx + f 7→ x from 3̃ to 3 is well
defined. Define a multiplication on 3̃ by

(θx + f )(θy + g) := θx + Txθy + f + Txg.

Then 3̃ is closed under this multiplication because θx+Txθy corresponds to a path from o

to xy. It is easy to check that 3̃ is a group with identity element 0. Indeed, 3̃ is canonically
isomorphic to Fd/H ′ via the homomorphism ϕ defined above.

A random walk 〈θXn +8n〉 on 3̃ yields a.s. an edgewise limiting configuration in the
space of cochains, C1(G), under weak conditions: As Erschler (2011) proved, it suffices
that the walk on 3̃ has finite first moment and projects to a transient random walk on 3.
Under conditions similar to those in our previous theorems and with similar proofs, the
subset of possible limits, together with harmonic measures, is the Poisson boundary. For
example, if 3 = Fd/H has at least cubic growth, then this holds for every finitely sup-
ported walk on 3̃. In the case of free metabelian groups with d ≥ 3, it holds for every
walk having finite second moment. Erschler (2011) proved this for free metabelian groups
with d ≥ 5 and µ having finite third moment.
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Gautero, F., Mathéus, F. (2012): Poisson boundary of groups acting on R-trees. Israel J. Math. 191,
585–646 Zbl 1293.20027 MR 3011489

Georgakopoulos, A. (2016): The boundary of a square tiling of a graph coincides with the Poisson
boundary. Invent. Math. 203, 773–821 Zbl 1332.05039 MR 3461366

Gromov, M. (1981): Groups of polynomial growth and expanding maps. Inst. Hautes Études Sci.
Publ. Math. 53, 53–73 Zbl 0474.20018 MR 0623534

Hunt, G. A. (1960): Markoff chains and Martin boundaries. Illinois J. Math. 4, 313–340
Zbl 0094.32103 MR 0123364

James, N., Peres, Y. (1996): Cutpoints and exchangeable events for random walks. Teor. Veroyat-
nost. i Primenen. 41, 854–868 Zbl 0896.60035 MR 1687097

Kaimanovich, V. A. (1983): Examples of nonabelian discrete groups with nontrivial exit boundary.
Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklova 123, 167–184 (in Russian); English
transl.: J. Soviet Math. 28, 579–591 (1985) Zbl 558.6001 MR 0697250

Kaimanovich, V. A. (1985): An entropy criterion of maximality for the boundary of random walks
on discrete groups. Dokl. Akad. Nauk SSSR 280, 1051–1054 (in Russian) MR 780288

Kaimanovich, V. A. (1991): Poisson boundaries of random walks on discrete solvable groups.
In: Probability Measures on Groups. X, Plenum, New York, 205–238 Zbl 0823.60006
MR 1178986

Kaimanovich, V. A. (1994): The Poisson boundary of hyperbolic groups. C. R. Acad. Sci. Paris Sér.
I Math. 318, 59–64 Zbl 0792.60006 MR 1260536

Kaimanovich, V. A. (2000): The Poisson formula for groups with hyperbolic properties. Ann. of
Math. (2) 152, 659–692 Zbl 0984.60088 MR 1815698

Kaimanovich, V. A. (2001): Poisson boundary of discrete groups. http://citeseerx.ist.psu.edu/ view-
doc/summary?doi=10.1.1.6.6675

Kaimanovich, V. A., Masur, H. (1996): The Poisson boundary of the mapping class group. Invent.
Math. 125, 221–264 Zbl 0864.57014 MR 1395719

Kaimanovich, V. A., Masur, H. (1998): The Poisson boundary of Teichmüller space. J. Funct. Anal.
156, 301–332 Zbl 0953.30029 MR 1636940

Kaimanovich, V. A., Vershik, A. M. (1983): Random walks on discrete groups: Boundary and
entropy. Ann. Probab. 11, 457–490. Zbl 0641.60009 MR 0704539

Kaimanovich, V. A., Woess, W. (2002): Boundary and entropy of space homogeneous Markov
chains. Ann. Probab. 30, 323–363 Zbl 1021.60056 MR 1894110

Karlsson, A. (2003): Boundaries and random walks on finitely generated infinite groups. Ark. Mat.
41, 295–306. MR 2011923

Karlsson, A., Ledrappier, F. (2007): Linear drift and Poisson boundary for random walks. Pure
Appl. Math. Quart. 3, 1027–1036. Zbl 1142.60035 MR 2402595

Karlsson, A., Woess, W. (2007): The Poisson boundary of lamplighter random walks on trees.
Geom. Dedicata 124, 95–107 Zbl 1125.60082 MR 2318539

Lawler, G. F., Limic, V. (2010): Random Walk: A Modern Introduction. Cambridge Stud. Adv.
Math. 123, Cambridge Univ. Press, Cambridge Zbl 1210.60002 MR 2677157

Ledrappier, F. (1983): Une relation entre entropie, dimension et exposant pour certaines marches
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