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Abstract. We show that in any Q-Gorenstein flat family of klt singularities, normalized volumes
are lower semicontinuous with respect to the Zariski topology. A quick consequence is that smooth
points have the largest normalized volume among all klt singularities. Using an alternative charac-
terization of K-semistability developed by Li, Liu, and Xu, we show that K-semistability is a very
generic or empty condition in any Q-Gorenstein flat family of log Fano pairs.
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1. Introduction

Given an n-dimensional complex klt singularity (x ∈ (X,D)), Chi Li [Li18] introduced
the normalized volume function on the space Valx,X of real valuations of C(X) cen-
tered at x. More precisely, for any such valuation v, its normalized volume is defined
as v̂olx,(X,D)(v) := AX,D(v)

nvol(v), where AX,D(v) is the log discrepancy of v with
respect to (X,D) according to [JM12, BdF+15], and vol(v) is the volume of v according
to [ELS03]. Then we can define the normalized volume of a klt singularity (x ∈ (X,D))
by

v̂ol(x,X,D) := min
v∈Valx,X

v̂olx,(X,D)(v)

where the existence of a minimizer of v̂ol was shown recently in [Blu18]. We also denote
v̂ol(x,X) := v̂ol(x,X, 0).

The normalized volume of a klt singularity (x ∈ (X,D)) carries interesting infor-
mation of its geometry and topology. It was shown by the second author and Xu that
v̂ol(x,X,D) ≤ nn and equality holds if and only if (x ∈ X \ Supp(D)) is smooth (see
[LX19, Theorem A.4] or Theorem 32). By [Xu14] the local algebraic fundamental group
π̂ loc

1 (X, x) of a klt singularity x ∈ X is always finite. Moreover, assuming the conjec-
tural finite degree formula of normalized volumes [LX19, Conjecture 4.1], the size of
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π̂ loc
1 (X, x) is bounded from above by nn/ v̂ol(x,X) (see Remark 36). If X is a Gromov–

Hausdorff limit of Kähler–Einstein Fano manifolds, then Li and Xu [LX18] showed that
v̂ol(x,X) = nn ·2(x,X) where 2(x,X) is the volume density of a closed point x ∈ X
(see [HS17, SS17] for background material).

In this article, it is shown that the normalized volume of a singularity is lower semi-
continuous in families.

Theorem 1. Let π : (X ,D)→ T together with a section σ : T → X be a Q-Gorenstein
flat family of complex klt singularities over a normal variety T . Then the function t 7→
v̂ol(σ (t),Xt ,Dt ) on T (C) is lower semicontinuous with respect to the Zariski topology.

One quick consequence of Theorem 1 is that smooth points have the largest normalized
volumes among all klt singularities (see Theorem 32 or [LX19, Theorem A.4]). Another
natural consequence is that if X is a Gromov–Hausdorff limit of Kähler–Einstein Fano
manifolds, then the volume density function x 7→ 2(x,X) on X(C) is lower semicon-
tinuous in the Zariski topology, which is stronger than being lower semicontinuous in the
Euclidean topology mentioned in [SS17] (see Corollary 34).

We also state the following natural conjecture on constructibility of normalized vol-
umes of klt singularities (see also [Xu18, Conjecture 4.11]).

Conjecture 2. Let π : (X ,D) → T together with a section σ : T → X be a Q-
Gorenstein flat family of complex klt singularities over a normal variety T . Then the
function t 7→ v̂ol(σ (t),Xt ,Dt ) on T (C) is constructible.

Verifying the Zariski openness of K-semistability is an important step in the construction
of an algebraic moduli space of K-polystable Q-Fano varieties. In a smooth family of
Fano manifolds, Odaka [Oda13] and Donaldson [Don15] showed that the locus of fibers
admitting Kähler–Einstein metrics (or equivalently, being K-polystable) with discrete au-
tomorphism groups is Zariski open. This was generalized by Li, Wang and Xu [LWX19]
who proved the Zariski openness of K-semistability in a Q-Gorenstein flat families of
smoothable Q-Fano varieties in their construction of the proper moduli space of smooth-
able K-polystable Q-Fano varieties (see [SSY16, Oda15] for related results). A common
feature is that analytic methods were used essentially in proving these results.

Using the alternative characterization of K-semistability by the affine cone construc-
tion developed by Li, the second author, and Xu [Li17a, LL19, LX20], we apply The-
orem 1 to prove the following result on weak openness of K-semistability. Unlike the
results described in the previous paragraph, our result is proved using purely algebraic
methods and hence can be applied to Q-Fano families with non-smoothable fibers (or
more generally, families of log Fano pairs).

Theorem 3. Let ϕ : (Y, E) → T be a Q-Gorenstein flat family of complex log Fano
pairs over a normal base T . If (Yo, Eo) is log K-semistable for some closed point o ∈ T ,
then the following statements hold:

(1) There exists an intersection U of countably many Zariski open neighborhoods of o
such that (Yt , Et ) is log K-semistable for any closed point t ∈ U . In particular,
(Yt , Et ) is log K-semistable for a very general closed point t ∈ T .
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(2) Denote by η the generic point of T . Then the geometric generic fiber (Yη̄, Eη̄) is log
K-semistable.

(3) Assume Conjecture 2 is true. Then the U from (1) can be chosen as a genuine Zariski
open neighborhood of o.

The following corollary generalizes [Li17b, Theorem 4] and follows easily from Theo-
rem 3. Note that a similar result for Fano cones is proved by Li and Xu independently in
[LX18, Proposition 2.36].

Corollary 4. Suppose a complex log Fano pair (Y,E) specially degenerates to a log
K-semistable log Fano pair (Y0, E0). Then (Y,E) is also log K-semistable.

Our strategy to prove Theorem 1 is to study invariants of ideals instead of invariants of
valuations. From Liu’s characterization of normalized volume by normalized multiplici-
ties of ideals (see [Liu18, Theorem 27] or Theorem 5), we know

v̂ol(σ (t),Xt ,Dt ) = inf
a

lct(Xt ,Dt ; a)n · e(a)

where the infimum is taken over all ideals a ⊂ OXt cosupported at σ(t). These ideals
are parametrized by a relative Hilbert scheme of X /T with countably many components.
Clearly a 7→ lct(Xt ,Dt ; a) is lower semicontinuous on the Hilbert scheme, but a 7→ e(a)
may only be upper semicontinuous. Thus, it is unclear what semicontinuity properties
a 7→ lct(a)n · e(a) may have.

To fix this issue, we introduce the normalized colength of singularitieŝ̀
c,k(σ (t),Xt ,Dt ) by taking the infimum of lct(Xt ,Dt ; a)n · `(Oσ(t),Xt /a) for ideals a

satisfying a ⊃ mkσ(t) and `(Oσ(t),Xt /a) ≥ ckn. The normalized colength function be-
haves better in families since the colength function a 7→ `(Oσ(t),Xt /a) is always locally
constant in the Hilbert scheme, so a 7→ lct(Xt ,Dt ; a)n · `(Oσ(t),Xt /a) is constructibly
lower semicontinuous on the Hilbert scheme. Thus, the properness of Hilbert schemes
implies that t 7→ ̂̀

c,k(σ (t),Xt ,Dt ) is constructibly lower semicontinuous on T . Then we
prove a key equality between the asymptotic normalized colength ̂̀

c,∞(σ (t),Xt ,Dt ) and
the normalized volume v̂ol(σ (t),Xt ,Dt ) when c is small (see Theorem 12) using local
Newton–Okounkov bodies following [Cut13, KK14] (see Lemma 13) and convex geom-
etry (see Appendix A). Then by establishing a uniform approximation of volumes by
colengths (see Theorem 16) and generalizing Li’s Izumi and properness estimates [Li18]
to families (see Theorems 20 and 21), we show that the normalized colength functions
uniformly approximate the normalized volume function from above (see Theorem 26).
Putting these ingredients together, we get the proof of Theorem 1.

This paper is organized as follows. In Section 2, we give the preliminaries includ-
ing notations, normalized volumes of singularities, and Q-Gorenstein flat families of klt
pairs. In Section 3.1, we introduce the concept of normalized colengths of singularities.
We show in Theorem 12 that the normalized volume of a klt singularity is the same
as its asymptotic normalized colength. The proof of Theorem 12 uses a comparison of
colengths and multiplicities established in Lemma 13. In Section 3.2, we study the nor-
malized volumes and normalized colength after algebraically closed field extensions. In
Section 4, we establish a uniform approximation of volume of a valuation by colengths
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of its valuation ideals. In Section 5, we generalize Li’s Izumi and properness estimates to
families. The results from Sections 4 and 5 enable us to prove the uniform approximation
of normalized volumes by normalized colengths from above in families (see Section 6.1).
The proofs of the main theorems are presented in Section 6.2. We give applications of
our main theorems in Section 6.3. Theorem 32 generalizes the inequality part of [LX19,
Theorem A.4]. We show that the volume density function on a Gromov–Hausdorff limit
of Kähler–Einstein manifolds is lower semicontinuous in the Zariski topology (see Corol-
lary 34). We give an effective upper bound on the degree of finite quasi-étale maps over klt
singularities on Gromov–Hausdorff limits of Kähler–Einstein Fano manifolds (see The-
orem 35). In Appendix A we provide certain convex geometric results on lattice points
counting that are needed in proving Lemma 13. In Appendix B, we provide results on
constructibility of Hilbert–Samuel functions that are needed in proving uniform approxi-
mation results in Section 4.

Postscript: After this document was first posted on the arXiv, the authors went on to show
that the global log canonical threshold and the stability threshold are lower semicontin-
uous in families of polarized varieties [BL18]. The results in loc. cit. may be viewed as
global analogues of Theorem 1 and their proofs are similar in spirit (though the technical
details are quite different).

2. Preliminaries

2.1. Notations

In this paper, all varieties are assumed to be irreducible, reduced, and defined over a (not
necessarily algebraically closed) field k of characteristic 0. For a variety T over k, we
denote the residue field of any scheme-theoretic point t ∈ T by κ(t). Given a morphism
π : X → T between varieties over k, we write Xt := X ×T Spec(κ(t)) for the scheme-
theoretic fiber over t ∈ T . We also denote the geometric fiber of π over t ∈ T by
Xt := X ×T Spec(κ(t)). Suppose X is a variety over k and x ∈ X is a k-rational point.
Then for any field extension K/k, we denote (xK, XK) := (x,X)×Spec(k) Spec(K).

Let X be a normal variety over k and D be an effective Q-divisor on X. We say
that (X,D) is a Kawamata log terminal (klt) pair if (KX + D) is Q-Cartier and KY −
f ∗(KX +D) has coefficients > −1 on some log resolution f : Y → (X,D). A klt pair
(X,D) is called a log Fano pair if in additionX is proper and−(KX+D) is ample. A klt
pair (X,D) together with a closed point x ∈ X is called a klt singularity (x ∈ (X,D)).

Let (X,D) be a klt pair. For an ideal sheaf a on X, we define the log canonical
threshold of a with respect to (X,D) by

lct(X,D; a) := inf
E

AX,D(ordE)
ordE(a)

,

where the infimum is taken over all prime divisorsE on a log resolution f : Y → (X,D).
We will often use the notation lct(a) to abbreviate lct(X,D; a) once the klt pair (X,D) is
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specified. If a is cosupported at a single closed point x ∈ X, we define the Hilbert–Samuel
multiplicity of a as

e(a) := lim
m→∞

`(Ox,X/a
m)

mn/n!

where n := dim(X) and `(Ox,X/a
m) denotes the length of Ox,X/a

m as an Ox,X-module.

2.2. Valuations

Let X be a variety defined over a field k and x ∈ X closed point. By a valuation of
the function field K(X), we mean a valuation v : K(X)× → R that is trivial on k. By
convention, we set v(0) := +∞. Such a valuation v has center x if v is ≥ 0 on Ox,X

and> 0 on the maximal ideal of Ox,X. We write Valx,X for the set of valuations ofK(X)
with center x.

To any valuation v ∈ Valx,X and m ∈ Z>0 there is an associated valuation ideal
defined locally by am(v) := {f ∈ OX | v(f ) ≥ m}. Note that am(v) is mx-primary for
each m ∈ Z>0. For an ideal a ⊂ OX and v ∈ Valx,X, we set

v(a) := min{v(f ) | f ∈ a ·Ox,X} ∈ [0,+∞].

2.3. Normalized volumes of singularities

Let k be an algebraically closed field of characteristic 0. For an n-dimensional klt sin-
gularity x ∈ (X,D) over k, C. Li [Li18] introduced the normalized volume function
v̂olx,(X,D) : Valx,X → R>0 ∪ {+∞}. Recall that for v ∈ Valx,X,

v̂olx,(X,D)(v) :=

{
AX,D(v)

n
· vol(v) if AX,D(v) < +∞,

+∞ if AX,D(v) = +∞,

where AX,D(v) and vol(v) denote the log discrepancy and volume of v. As defined in
[ELS03], the volume of v is given by

vol(v) := lim sup
m→∞

`(Ox,X/am(v))

mn/n!
.

By [ELS03, Mus02, LM09, Cut13],

vol(v) = lim
m→∞

e(am(v))
mn

.

The log discrepancy of v, denoted AX,D(v), is defined in [JM12, BdF+15] (and [LL19]
for the case of klt pairs).

The normalized volume (also known as local volume) of the singularity x ∈ (X,D) is
given by

v̂ol(x,X,D) := inf
v∈Valx,X

v̂olx,(X,D)(v).

When k is uncountable, the above infimum is a minimum [Blu18].
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The following characterization of normalized volumes using log canonical thresholds
and multiplicities of ideals is crucial in our study. Note that the right hand side of (2.1)
was studied by de Fernex, Ein and Mustaţă [dFEM04] when x ∈ X is smooth andD = 0.

Theorem 5 ([Liu18, Theorem 27]). With the above notation, we have

v̂ol(x,X,D) = inf
a : mx -primary

lct(X,D; a)n · e(a). (2.1)

The following theorem provides an alternative characterization of K-semistability using
the affine cone construction. Here we state the most general form, and special cases can
be found in [Li17a, LL19].

Theorem 6 ([LX20, Proposition 4.6]). Let (Y,E) be a log Fano pair of dimension n−1
over an algebraically closed field k of characteristic 0. For r ∈ N such that L :=
−r(KY + E) is Cartier, the affine cone X = C(Y,L) is defined by

X := Spec
⊕
m≥0

H 0(Y, L⊗m).

LetD be the Q-divisor on X corresponding to E. Denote by x the cone vertex of X. Then

v̂ol(x,X,D) ≤ r−1(−KY − E)
n−1,

and equality holds if and only if (Y,E) is log K-semistable.

2.4. Q-Gorenstein flat families of klt pairs

In this section, the field k is not assumed to be algebraically closed.

Definition 7. (a) Given a normal variety T , a Q-Gorenstein flat family of klt pairs over T
consists of a surjective flat morphism π : X → T from a variety X , and an effective
Q-divisor D on X avoiding codimension 1 singular points of X and such that

• all fibers Xt are connected, normal and not contained in Supp(D);
• KX /T +D is Q-Cartier;
• (Xt ,Dt ) is a klt pair for any t ∈ T .

(b) A Q-Gorenstein flat family of klt pairs π : (X ,D) → T together with a section
σ : T → X is called a Q-Gorenstein flat family of klt singularities. We denote by
σ(t) the unique closed point of Xt lying over σ(t) ∈ Xt .

Proposition 8. Let π : (X ,D) → T be a Q-Gorenstein flat family of klt pairs over a
normal variety T . Then:

(1) There exists a closed subset Z of X of codimension at least 2 such that Zt has codi-
mension at least 2 in Xt for every t ∈ T , and π : X \Z → T is a smooth morphism.

(2) X is normal.
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(3) For any morphism f : T ′ → T from a normal variety T ′ to T , the base change
πT ′ : (XT ′ ,DT ′) = (X ,D) ×T T ′ → T ′ is a Q-Gorenstein flat family of klt pairs
over T ′, and KXT ′/T ′ + DT ′ = g∗(KX /T + D) where g : XT ′ → X is the base
change of f .

Proof. (1) Assume that π is of relative dimension n. We define Z := {x ∈ X |

dimκ(x)�X /T ⊗ κ(x) > n}. It is clear that Z is Zariski closed. Since k is of charac-
teristic 0, Zt = Z ∩ Xt is the singular locus of Xt . Hence codimXtZt ≥ 2 because Xt is
normal.

(2) From (1) we know that Z is of codimension at least 2 in X , and X \ Z is smooth
over T . Thus X \ (Z ∪ π−1(Tsing)) is regular, and Z ∪ π−1(Tsing) has codimension at
least 2 in X . So X satisfies property (R1). Since π is flat, for any point x ∈ Xt we have
depth(Ox,X ) = depth(Ox,Xt ) + depth(Ot,T ) by [Mat80, (21.C) Corollary 1]. Hence it
is easy to see that X satisfies property (S2) since both Xt and T are normal (see [Mat80,
p. 125] for properties (R1) and (S2)). Hence X is normal.

(3) Let ZT ′ := Z×T T ′, and note that XT ′ \ZT ′ is smooth over T ′. Since the fibers of
πT ′ and T ′ are irreducible, XT ′ is also irreducible. Thus the same argument of (2) implies
that XT ′ satisfies both (R1) and (S2), which means XT ′ is normal. Since π |X \Z is smooth,
we know thatKXT ′/T ′+DT ′ and g∗(KX /T +D) are Q-linearly equivalent after restricting
to XT ′ \ZT ′ . Since ZT ′ is of codimension at least 2 in XT ′ , the Q-linear equivalence over
XT ′ \ ZT ′ extends to XT ′ . Thus we finish the proof. ut

Definition 9. (a) Let Y be a normal projective variety. Let E be an effective Q-divisor
on Y . We say that (Y,E) is a log Fano pair if (Y,E) is a klt pair and −(KY + E) is
Q-Cartier and ample. We say Y is a Q-Fano variety if (Y, 0) is a log Fano pair.

(b) Let T be a normal variety. A Q-Gorenstein family of klt pairs ϕ : (Y, E) → T is
called a Q-Gorenstein flat family of log Fano pairs if ϕ is proper and −(KY/T + E)
is ϕ-ample.

The following proposition states a well known result on the behavior of the log canonical
threshold in families. See [Amb16, Corollary 1.10] for a similar statement. The proof is
omitted because the arguments are similar to those in [Amb16].

Proposition 10. Let π : (X ,D) → T be a Q-Gorenstein flat family of klt pairs over a
normal variety T . Let a be an ideal sheaf of X . Then:

(1) The function t 7→ lct(Xt ,Dt ; at ) on T is constructible.
(2) If in addition V (a) is proper over T , then the function t 7→ lct(Xt ,Dt ; at ) is lower

semicontinuous with respect to the Zariski topology on T .

3. Comparison of normalized volumes and normalized colengths

3.1. Normalized colengths of klt singularities

Definition 11. Let x ∈ (X,D) be a klt singularity over an algebraically closed field k of
characteristic 0. Denote its local ring by (R,m) := (Ox,X,mx).
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(a) Given constants c ∈ R>0 and k ∈ N, we define the normalized colength of x ∈
(X,D) with respect to c, k aŝ̀

c,k(x,X,D) := n! · inf
mk
⊂a⊂m

`(R/a)≥ckn

lct(a)n · `(R/a).

Note that the assumption mk ⊂ a ⊂ m implies a is an m-primary ideal.
(b) Given a constant c ∈ R>0, we define the asymptotic normalized colength function of

x ∈ (X,D) with respect to c aŝ̀
c,∞(x,X,D) := lim inf

k→∞

̂̀
c,k(x,X,D).

It is clear that ̂̀c,k is an increasing function in c. The main result in this section is the
following theorem.

Theorem 12. For any klt singularity x ∈ (X,D) over an algebraically closed field k of
characteristic 0, there exists c0 = c0(x,X,D) > 0 such that̂̀

c,∞(x,X,D) = v̂ol(x,X,D) whenever 0 < c ≤ c0. (3.1)

Proof. We first show the “≤” direction. Let us take a sequence {vi}i∈N of valuations such
that limi→∞ v̂ol(vi) = v̂ol(x,X,D). We may rescale vi so that vi(m) = 1 for any i.
Since {v̂ol(vi)}i∈N are bounded from above, by [Li18, Theorem 1.1] we know that there
exists C1 > 0 such that AX,D(vi) ≤ C1 for any i ∈ N. Then by Li’s Izumi type inequality
[Li18, Theorem 3.1], there exists C2 > 0 such that ordm(f ) ≤ vi(f ) ≤ C2 ordm(f ) for
any i ∈ N and any f ∈ R. As a result, we have mk ⊂ ak(vi) ⊂ mdk/C2e for any i, k ∈ N.
Thus `(R/ak(vi)) ≥ `(R/mdk/C2e) ∼

e(m)
n!Cn2

kn. Let us take c0 =
e(m)
2n!Cn2

. Then for k � 1
we have `(R/ak(vi)) ≥ c0k

n for any i ∈ N. Therefore, for any i ∈ N we have

̂̀
c0,∞(x,X,D) ≤ n! lim inf

k→∞
lct(ak(vi))n`(R/ak(vi)) = lct(a•(vi))nvol(vi) ≤ v̂ol(vi).

In the last inequality we use lct(a•(vi)) ≤ AX,D(vi) as in the proof of [Liu18, Theo-
rem 27]. Thus ̂̀

c0,∞(x,X,D) ≤ limi→∞ v̂ol(vi) = v̂ol(x,X,D). This finishes the proof
of the “≤” direction.

For the “≥” direction, we will show that ̂̀c,∞(x,X,D) ≥ v̂ol(x,X,D) for any c > 0.
By a logarithmic version of the Izumi type estimate [Li18, Theorem 3.1], there exists a
constant c1 = c1(x,X,D) > 0 such that v(f ) ≤ c1AX,D(v) ordm(f ) for any valuation
v ∈ Valx,X and any function f ∈ R. For any m-primary ideal a, there exists a diviso-
rial valuation v0 ∈ Valx,X computing lct(a) by [Liu18, Lemma 26]. Hence we have the
following Skoda type estimate:

lct(a) =
AX,D(v0)

v0(a)
≥

AX,D(v0)

c1AX,D(v0) ordm(a)
=

1
c1 ordm(a)

.

Let 0 < δ < 1. If a 6⊂ mdδke and `(R/a) ≥ ckn, then

lct(a)n · `(R/a) ≥
ckn

cn1(dδke − 1)n
≥

c

cn1δ
n
.
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If we choose δ so small that δn · cn1 v̂ol(x,X,D) ≤ n!c, then for any m-primary ideal a
satisfying mk ⊂ a 6⊂ mdδke and `(R/a) ≥ ckn we have

n! · lct(a)n · `(R/a) ≥ v̂ol(x,X,D).

Thus it suffices to show

v̂ol(x,X,D) ≤ n! · lim inf
k→∞

inf
mk
⊂a⊂mdδke

`(R/a)≥ckn

lct(a)n`(R/a).

By Lemma 13, we know that for any ε > 0 there exists k0 = k0(δ, ε, (R,m)) such that
for any k ≥ k0 we have

n! · inf
mk⊂a⊂mdδke

lct(a)n`(R/a) ≥ (1− ε) inf
mk⊂a⊂mdδke

lct(a)ne(a) ≥ (1− ε) v̂ol(x,X,D).

Hence the proof is finished. ut

The following result on comparison between colengths and multiplicities is crucial in the
proof of Theorem 12. Note that Lemma 13 is a special case of Lech’s inequality [Lec60,
Theorem 3] when R is a regular local ring.

Lemma 13. Let (R,m) be an n-dimensional analytically irreducible Noetherian local
domain. Assume that the residue field R/m is algebraically closed. Then for any numbers
δ, ε ∈ (0, 1), there exists k0 = k0(δ, ε, (R,m)) such that for any k ≥ k0 and any ideal
mk ⊂ a ⊂ mdδke, we have

n! · `(R/a) ≥ (1− ε)e(a).

Proof. By [KK14, 7.8] and [Cut13, Section 4], R admits a good valuation ν : R → Zn
for some total order on Zn. Let S := ν(R \ {0}) ⊂ Nn and C(S) be the closed convex
hull of S. Then we know that

• C(S) is a strongly convex cone;
• there exists a linear functional ξ : Rn→ R such that C(S) \ {0} ⊂ ξ>0;
• there exists r0 ≥ 1 such that for any f ∈ R \ {0}, we have

ordm(f ) ≤ ξ(ν(f )) ≤ r0 ordm(f ). (3.2)

Suppose a is an ideal satisfying mk ⊂ a ⊂ mdδke. Then ν(mk) ⊂ ν(a) ⊂ ν(mdδke). By
(3.2), we know that

S ∩ ξ≥r0k ⊂ ν(a) ⊂ S ∩ ξ≥δk.
Similarly, S ∩ ξ≥r0ik ⊂ ν(ai) ⊂ S ∩ ξ≥δik for any positive integer i.

Let us define a semigroup 0 ⊂ Nn+1 as follows:

0 := {(α,m) ∈ Nn × N | x ∈ S ∩ ξ≤2r0m}.

For any m ∈ N, denote by 0m := {α ∈ Nn | (α,m) ∈ 0}. It is easy to see 0 satisfies
[LM09, (2.3-5)], thus [LM09, Proposition 2.1] implies

lim
m→∞

#0m
mn
= vol(1),



1234 Harold Blum, Yuchen Liu

where 1 := 1(0) is a convex body in Rn defined in [LM09, Section 2.1]. It is easy to
see that 1 = C(S) ∩ ξ≤2r0 .

Let us define 0(k) := {(α, i) ∈ Nn × N | (α, ik) ∈ 0}. Then we know that 1(k) :=
1(0(k)) = k1. For an ideal a and k ∈ N satisfying mk ⊂ a ⊂ mdδke, we define

0(k)a := {(α, i) ∈ 0
(k)
| α ∈ ν(ai)}.

Then it is clear that 0(k)a also satisfies [LM09, (2.3-5)]. Since ν(ai) = (S ∩ ξ>2r0ik)∪0
(k)
a,i

and R/m is algebraically closed, we have `(R/ai) = #(0(k)i \ 0
(k)
a,i) because ν has one-

dimensional leaves. Again by [LM09, Proposition 2.11], we have

n!e(a) = lim
i→∞

`(R/ai)

in
= lim
i→∞

#(0(k)i \ 0
(k)
a,i)

in
= vol(1(k))− vol(1(k)a ),

where 1(k)a := 1(0
(k)
a ). Since 0(k)a,i ⊂ ν(a

i) ⊂ ξ≥δik , we know that 1(k)a ⊂ ξ≥δk . Denote

1′ := C(S) ∩ ξ<δ . Then it is clear that 1(k)a ⊂ k(1 \1
′).

On the other hand,

`(R/a) = #(0(k)1 \ 0
(k)
a,1) ≥ #0k − #(1(k)a ∩ Z

n).

Denote1a,k :=
1
k
1
(k)
a . Then1a,k ⊂ 1 \1

′. Since vol(1a,k) ≤ vol(1)− vol(1′), there
exist positive numbers ε1, ε2 depending only on 1 and 1′ such that

vol(1a,k) ≤ vol(1)− vol(1′) ≤ (1− ε1/ε)vol(1)− ε2/ε. (3.3)

Let us pick k0 such that for any k ≥ k0 and any mk ⊂ a ⊂ mdδke, we have

#0k
kn
≥ (1− ε1)vol(1),

#(1(k)a ∩ Zn)
kn

≤ vol(1a,k)+ ε2.

Here the second inequality is guaranteed by applying Proposition 38 to 1a,k as a convex
body contained in a fixed convex body 1. Thus

`(R/a)− (1− ε)n!e(a)
kn

≥
#0k
kn
−

#(1(k)a ∩ Zn)
kn

− (1− ε)(vol(1)− vol(1a,k))

≥ (1− ε1)vol(1)− vol(1a,k)− ε2 − (1− ε)(vol(1)− vol(1a,k))

= (ε − ε1)vol(1)− ε(1a,k)− ε2 ≥ 0.

Here the last inequality follows from (3.3). Hence we finish the proof. ut
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3.2. Normalized volumes under field extensions

In the rest of this section, we use Hilbert schemes to describe normalized volumes of
singularities after a field extension K/k. Let (X,D) be a klt pair over k and x ∈ X be a k-
rational point. Let Zk := Spec(Ox,X/m

k
x,X) denote the k-th thickening of x. Consider the

Hilbert schemeHk,d := Hilbd(Zk/k). For any field extension K/kwe know thatHk,d(K)
parametrizes ideal sheaves c of XK satisfying c ⊃ mkxK,XK

and `(OxK,XK/c) = d . In
particular, any scheme-theoretic point h ∈ Hk,d corresponds to an ideal b of Oxκ(h),Xκ(h)

satisfying those two conditions, and we denote h = [b].

Proposition 14. Let k be a field of characteristic 0. Let (X,D) be a klt pair over k. Let
x ∈ X be a k-rational point. Then:

(1) For any field extension K/k with K algebraically closed, we have

̂̀
c,k(xK, XK,DK) = n! · inf

d≥ckn, [b]∈Hk,d
d · lct(Xκ([b]),Dκ([b]); b)n.

(2) With the assumption of (1), we have

v̂ol(xK, XK,DK) = v̂ol(x
k̄
, X

k̄
,D

k̄
).

Proof. (1) We first prove the “≥” direction. By definition, ̂̀c,k(xK, XK,DK) is the in-
fimum of n! · lct(XK,DK; c)n`(OXK/c) where c is an ideal on XK satisfying mkxK ⊂
c ⊂ mxK and `(OXK/c) =: d ≥ ck

n. Hence [c] represents a point in Hk,d(K). Suppose
[c] is lying over a scheme-theoretic point [b] ∈ Hk,d . Then it is clear that (XK,DK, c) ∼=
(Xκ([b]),Dκ([b]), b)×Spec(κ([b]))Spec(K). Hence lct(XK,DK; c)= lct(Xκ([b]),Dκ([b]); b)
by [JM12, Proposition 7.13], and the “≥” direction is proved.

Next we prove the “≤” direction. By Proposition 10, we know that the function
[b] 7→ lct(Xκ([b]),Dκ([b]); b) on Hk,d is constructible and lower semicontinuous. De-
note by H cl

k,d the set of closed points in Hk,d . Since the sets of closed points are dense in
any stratum of Hk,d with respect to the lct function, we have

n! · inf
d≥ckn, [b]∈Hk,d

d · lct(Xκ([b]),Dκ([b]); b)n

= n! · inf
d≥ckn, [b]∈H cl

k,d

d · lct(Xκ([b]),Dκ([b]); b)n.

For any [b] ∈ H cl
k,d , κ([b]) is an algebraic extension of k. Since K is algebraically closed,

κ([b]) can be embedded into K as a subfield. Hence there exists a point [c] ∈ Hk,d(K) ly-
ing over [b]. Thus similar arguments imply that lct(XK,DK; c) = lct(Xκ([b]),Dκ([b]); b),
and the “≤” direction is proved.

(2) From (1) we know that ̂̀c,k(xK, XK,DK) = ̂̀c,k(xk̄, Xk̄,Dk̄) for any c, k. Hence
(2) follows from Theorem 12. ut

The following corollary is well-known to experts. We present a proof here using normal-
ized volumes.
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Corollary 15. Let (Y,E) be a log Fano pair over a field k of characteristic 0. The fol-
lowing are equivalent:

(i) (Y
k̄
, E

k̄
) is log K-semistable.

(ii) (YK, EK) is log K-semistable for some field extension K/k with K = K.
(iii) (YK, EK) is log K-semistable for any field extension K/k with K = K.

We say that (Y,E) is geometrically log K-semistable if one (or all) of these conditions
holds.

Proof. Let us take the affine cone X = C(Y,L) with L = −r(KY + E) Cartier. Let
D be the Q-divisor on X corresponding to E. Denote by x ∈ X the cone vertex of X.
Let K/k be a field extension with K = K. Then Theorem 6 implies that (YK, EK) is log
K-semistable if and only if v̂ol(xK, XK,DK) = r−1(−KY − E)

n−1. Hence the corollary
is a consequence of Proposition 14(2). ut

We finish this section with a natural speculation. Suppose x ∈ (X,D) is a klt singularity
over a field k of characteristic zero that is not necessarily algebraically closed. The def-
inition of normalized volume of singularities extend verbatim to x ∈ (X,D), which we
also denote by v̂ol(x,X,D). Then we expect v̂ol(x,X,D) = v̂ol(x

k̄
, X

k̄
,D

k̄
), i.e. nor-

malized volumes are stable under base change to algebraic closures. Such a speculation
should be a consequence of the Stable Degeneration Conjecture (SDC) stated in [Li18,
Conjecture 7.1] and [LX18, Conjecture 1.2], which roughly says that a v̂ol-minimizing
valuation vmin over x

k̄
∈ (X

k̄
,D

k̄
) is unique and quasi-monomial, so vmin is invariant

under the action of Gal(k̄/k) and hence has the same normalized volume as its restriction
to x ∈ (X,D).

4. Uniform approximation of volumes by colengths

In this section, we prove the following result that gives an approximation of the volume of
valuation by the colengths of its valuation ideals. The result is a consequence of arguments
in [Blu18, Section 3.4] (which in turn relies on ideas in [ELS03]) and properties of the
Hilbert–Samuel function.

Theorem 16. Let π : (X ,D) → T together with a section σ : T → X be a Q-
Gorenstein flat family of klt singularities. Set n = dim(X )− dim(T ). For every A ∈ R>0
and ε > 0, there exists a positive integer N such that the following holds: If t ∈ T and
v ∈ Valσ(t),Xt satisfies v(mσ(t)) = 1 and AXt ,Dt

(v) ≤ A, then

`(Oσ(t),Xt /am(v))

mn/n!
≤ vol(v)+ ε

for all positive integers m divisible by N .

We begin by approximating the volume of a valuation by the multiplicity of its valuation
ideals.



The normalized volume of a singularity is lower semicontinuous 1237

Proposition 17. Let x ∈ (X,D) be a klt singularity defined over an algebraically closed
field k and r a positive integer such that r(KX +D) is Cartier. Fix v ∈ Valx,X satisfying
v(mx) = 1 and AX,D(v) < +∞.

(a) If x ∈ Xsing ∪ Supp(D), then for all m ∈ Z>0 we have

e(am(v))1/n

m
≤ vol(v)1/n +

dAX,D(v)e e(mx)1/n

m
+

e(OX(−rD) · JacX +mmx )
1/n

m
.

(b) If x /∈ Xsing ∪ Supp(D), then for all m ∈ Z>0 we have

e(am(v))1/n

m
≤ vol(v)1/n +

dAX,D(v)e e(mx)1/n

m
.

Proof. Fix v ∈ Valx,X satisfying v(mx) = 1 and AX,D(v) < +∞. To simplify notation,
we set a• := a•(v) and A := dAX,D(v)e. By [Blu18, Theorem 7.2],

(JacX ·OX(−rD))
`a(m+A)` ⊂ (am)

` (4.1)

for all m, ` ∈ Z>0. Since v(mx) = 1, we see mmx ⊂ am for all m ∈ Z>0. As in the proof
of [Blu18, Proposition 3.7], it follows from the previous inclusion combined with (4.1)
that

(JacX ·OX(−rD)+mmx )
`a(m+A)` ⊂ (am)

` (4.2)

for all m ∈ Z>0. We now apply Teissier’s Minkowski inequality [Laz04, Example 1.6.9]
to the previous inclusion and find that

` e(am)1/n ≤ ` · e(JacX ·OX(−rD)+mmx )
1/n
+ e(a(m+A)`)1/n. (4.3)

Dividing both sides of (4.3) by m · ` and taking the limit as `→∞ gives

e(am)1/n

m
≤

e(JacX ·OX(−rD)+mmx )
1/n

m
+

(
m+ A

m

)
vol(v)1/n.

Since mmx ⊂ am for all m ∈ Z>0, vol(v) ≤ e(mx) and the desired inequality follows.
In the case when x /∈ Xsing ∪ Supp(D), the stronger inequality follows from a similar
argument and the observation that JacX ·OX(−rD) is trivial in a neighborhood of x. ut

Before proceeding, we recall the following definition of the Jacobian ideal. If X is a
variety of dimension n, then the Jacobian ideal of X, denoted JacX, is the n-th Fitting
ideal of �X. More generally, if π : X → T is flat morphism of varieties and n =
dim(X )− dim(T ), then the Jacobian ideal of π , denoted JacX /T , is the n-th Fitting ideal
of �X /T .

Proposition 18. With the same assumptions as in Theorem 16, fix a positive integer r
such that r(KX /T + D) is Cartier. Then, for every ε > 0, there exists M such that if
t ∈ T satisfies σ(t) ∈ V (JacXt ) ∪ Supp(Dt ), then

e(JacXt ·OXt (−rDt )+mmσ(t))

mn
≤ ε

for all m ≥ M .
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Proof. To simplify notation, set Z = {t ∈ T | σ(t) ∈ V (JacXt ) ∪ Supp(Dt )}. We will
prove the following claim: for each ε > 0, there exists a nonempty open set U ⊂ T and
a positive integer M such that if t ∈ U ∩ Z, then

e(JacXt ·OXt (−rDt ) +mmσ(t))

mn
≤ ε

for all m ≥ M . By inducting on the dimension of T , the result will follow.
We proceed to prove the claim. It is enough to consider the case when X and T are

affine, since we may replace π with its restriction to a nonempty open subset of T and
X with an open subset containing σ(T ). Next, note that JacXt = JacX /T ·OX for each
t ∈ T , since the formation of Fitting ideals commutes with base change [SPA, Tag 0C3D].
Hence, Z = σ−1(V (JacX /T ) ∪ Supp(D)) and is closed in T . Now, if T \ Z 6= ∅, then
the above claim (trivially) holds with U = T \ Z. Therefore, we consider the case when
Z = T .

Choose a nonempty affine open set U ⊂ T and g ∈ JacX /T ·OX(−rD)(π−1(U))

such that the restriction of g to Oσ(t),Xt , denoted gt , is nonzero for all t ∈ U . Set Rt :=
Oσ(t),Xt /(gt ) and m̃t = mσ(t) · Rt for each t ∈ U . Now,

e(JacXt ·OXt (−rDt )+mmσ(t)) ≤ e((gt )+mmσ(t))

≤ n! · `(Oσ(t),Xt /((gt )+mσ(t)
m)) · e(mσ(t)),

where the first inequality follows from the inclusion JacXt ·OXt (−rDt )+mmσ(t) ⊂ (gt )+
mmσ(t) and the second is precisely Lech’s inequality [Lec60, Theorem 3]. Thus,

e(JacXt ·OXt (−rDt )+mmσ(t))

mn
≤ n!

(
`(Rt/m̃

m
t )

mn

)
· e(mσ(t)) (4.4)

for all t ∈ U . By Proposition 41, we may shrink U so that U 3 t 7→ e(mσ(t)) and
U 3 t 7→ `(Rt/m̃

m
t )), for all m ≥ 1, are constant. Since dimRt = n − 1, we have

`(Rt/m̃
m
t ) = O(m

n−1). Therefore, there exists an integer M such that

n!

(
`(Rt/m̃

m
t )

mn

)
· e(mσ(t)) ≤ ε

for all m ≥ M and t ∈ U . This proves the claim. ut

The following proposition is a consequence of results in Appendix B.

Proposition 19. Keep the assumptions and notation of Theorem 16, and fix k ∈ Z>0.
Then, for any ε > 0, there exists M ∈ Z>0 such that for any point t ∈ T and ideal
a ⊂ Oσ(t),Xt satisfying mk

σ(t)
⊂ a ⊂ mσ(t),

`(Oσ(t),Xt /a
m)

mn/n!
≤ e(a)+ ε

for all m ≥ M .
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Proof. Set d := max{`(Oσ(t),Xt /m
k
σ(t)
) | t ∈ T }, and consider the union of Hilbert

schemes H :=
⋃d
m=1 Hilbm(Zk/T ), where Zk = Spec(OX /Ikσ(T )). Let τ denote the

morphism H → T . A point h ∈ H corresponds to the ideal bh = b · OX×T κ(h), where
b is the universal ideal sheaf on X ×T H. By applying Proposition 41 to the irreducible
components of H endowed with reduced scheme structure, we see that the set of functions
{Hbh |h ∈ H } is finite.

Next, fix ε > 0. By the previous paragraph, there exists M ∈ Z>0 such that

Hbh(m))

mn/n!
≤ e(bh)+ ε (4.5)

for all m ≥ M . Now, consider a point t ∈ T and an ideal a ⊂ OXt satisfying mk
σ(t)
⊂

a ⊂ mσ(t). Since

`(Oσ(t),Xt /a) ≤ `(Oσ(t),Xt /m
k
σ(t)
) = `(Oσ(t),Xt /m

k
σ(t)) ≤ d,

there is a map ρ : Spec(κ(t)) → H such that a = bρ(0) · OX×T κ(t). Therefore, Ha =

Hbρ(0) and (4.5) implies
`(Oσ(t),Xt /a

m)

mn/n!
≤ e(a)+ ε

for all m ≥ M . ut

We will now deduce Theorem 16 from Propositions 17–19.

Proof of Theorem 16. To simplify notation, we set

Wt = {v ∈ Valσ(t),Xt | v(mσ(t)) = 1 and AXt ,Dt
(v) ≤ A}

for each t ∈ T . It suffices to prove the following claim: For every ε > 0, there exists an
integer N such that if t ∈ T , then(

`(Oσ(t),Xt /am(v))

mn/n!

)1/n

≤ vol(v)1/n + ε

for all v ∈ Wt and m ∈ Z>0 divisible by N . Indeed, if v ∈ Wt , then vol(v) ≤ e(mσ(t)).
Since the set {e(mσ(t)) | t ∈ T } is bounded from above by Proposition 41, the claim
implies the conclusion of the theorem.

We now fix ε > 0 and proceed to bound the latter two terms in Proposition 17(a).
First, we apply Proposition 19 to find a positive integer M1 such that

A · e(mσ(t))1/n

M1
≤ ε/4

for all t ∈ T . Next, we apply Proposition 18 to find a positive integer M2 such that if
t ∈ T and σ(t) ∈ V (JacXt ) ∪ Supp(Dt ), then

e(JacXt ·OXt (−rDt )+mm
′

σ(t)
)1/n

m′
=

e(JacXt ·OXt (−rDt )+mm
′

σ(t))
1/n

m′
< ε/4
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for allm′ ≥ M2. Now, setm′ := max{M1,M2}. Proposition 17 implies that if t ∈ T , then

e(am′(v))1/n

m′
≤ vol(v)1/n + ε/2 (4.6)

for all v ∈ Wt .
Next, note that if t ∈ T and v ∈ Wt , then mm

′

σ(t)
⊂ am′(v). Therefore, we may apply

Proposition 19 to find an integer M such that if t ∈ T and v ∈ Wt , then(
`(Oσ(t),Xt /(am′(v))

`)

(m′ · `)n/n!

)1/n

≤
e(am′(v))1/n

m′
+ ε/2 (4.7)

for all ` ≥ M . Thus, if t ∈ T and v ∈ Wt , then(
`(Oσ(t),Xt /(am′·`(v)))

(m′ · `)n/n!

)1/n

≤
e(am′(v))1/n

m′
+ ε/2 ≤ vol(v)+ ε

for all ` ≥ M , where the first inequality follows from (4.7) combined with the inclusion
am′(v)

`
⊂ am′·`(v), and the second inequality from (4.6). Therefore, setting N := m′ ·M

completes the proof of the claim. ut

5. Li’s Izumi and properness estimates in families

In this section, we generalize results of [Li18] to families of klt singularities. These results
will be used to prove Theorem 26.

Theorem 20 (Izumi type estimate). Let π : (X ,D) → T together with a section σ :
T → X be a Q-Gorenstein flat family of klt singularities over a variety T . There exists
a constant K0 > 0 such that the following holds: If t ∈ T and v ∈ Valσ(t),Xt satisfies
AXt ,Dt

(v) < +∞, then

v(g) ≤ K0 · AXt ,Dt
(v) · ordσ(t)(g)

for all g ∈ Oσ(t),Xt .

Theorem 21 (Properness estimate). Let π : (X ,D) → T together with a section σ :
T → X be a Q-Gorenstein flat family of klt singularities over a variety T . There exists
a constant K1 > 0 such that the following holds: If t ∈ T and v ∈ Valσ(t),Xt satisfies
AXt ,Dt

(v) < +∞, then

K1 · AXt ,Dt
(v)

v(mσ(t))
≤ AXt ,Dt

(v)n · vol(v).

The proofs of these theorems rely primarily on the result and techniques found in [Li18].
The main new ingredient can be found in Proposition 24, which is proved using arguments
of [BFJ14] and [Li18, Appendix II].
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5.1. Order functions

Let X be a normal variety defined over an algebraically closed field k and x ∈ X a closed
point. For g ∈ Ox,X the order of vanishing of g at x is defined as

ordx(g) := max{j ≥ 0 | g ∈ m
j
x}.

If X is smooth at x, then ordx is a valuation of the function field of X. In the singular
case, ordx may fail to be a valuation. For example, the inequality

ordx(gn+n
′

) ≥ ordx(gn)+ ordx(gn
′

)

may be strict. Following [BFJ14], we consider an alternative function ôrdx , which is
defined by

ôrdx(g) := lim
n→∞

1
n

ordx(gn) = sup
n

1
n

ordx(gn).

Let ν : X+→ X denote the normalized blowup of mx and write

mx ·OX+ = OX

(
−

r∑
i=1

aiEi

)
,

where the Ei are prime divisors on X and each ai ∈ Z>0. The following statement,
which was proved in [BFJ14, Theorem 4.3], gives an interpretation of ôrdx in terms of
the exceptional divisors of ν.

Proposition 22. For any function g ∈ Ox,X and m ∈ Z>0,

(1) ôrdx(g) = mini=1,...,r ordEi (g)/ai;
(2) ôrdx(g) ≥ m if and only if g ∈ mmx .

Building upon results in [BFJ14, Section 4.1], we show a comparison between ordx
and ôrdx .

Proposition 23. If there exists a Q-divisor D such that (X,D) is klt pair, then

ordx(g) ≤ ôrdx(g) ≤ (n+ 1) ordx(g)

for all g ∈ Ox,X and n = dim(X).

Proof. The first inequality follows from the definition of ôrdx(g) as a supremum. For the
second inequality, assume m := ordx(g) > 0 and note that g /∈ mm+1

x . Since

mm+nx ⊂ J ((X,D),mm+nx ) = mm+1
x · J ((X,D),mn−1

x ) ⊂ mm+1
x ,

where the first inclusion follows from the fact that (X,D) is klt and the second from
Skoda’s Theorem [Laz04, 9.6.39], we see g /∈ mm+nx . Therefore, ôrdx(g) < m + n, and
the proof is complete. ut
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5.2. Izumi type estimates

The propositions in the section concern the following setup, which will arise in the proof
of Theorem 20. Let x ∈ (X,D) be an affine klt singularity over an algebraically closed
field k. Fix a projective compactification X ⊂ X and a resolution of singularities π :
Y → X. Assume there exists a very ample line bundle L on Y and the restriction of π
to X, denoted π : Y → X, is a log resolution of (X,D,mx).

Proposition 24. There exists a constant C0 such that the following holds: For any closed
point y ∈ π−1(x) and g ∈ Ox,X, we have

ordy(π∗g) ≤ C0 · ordx(g).

Furthermore, if we write mx ·OY = OY (−
∑r
i=1 aiEi) where each Ei is a prime divisor

on Y and ai ∈ Z>0, then there is a formula for such a constant C0 given in terms of the
coefficients of

∑
aiEi , the intersection numbers (Ei · Ej · Ln−2) for 1 ≤ i, j ≤ r , and

the dimension of X.

The proposition is a refined version of [Li18, Theorem 3.2]. Its proof relies on ideas in
[BFJ14] and [Li18, Appendix II].

Proof. Fix a closed point y ∈ π−1(x) and an element g ∈ Ox,X. Let ρ : ByY → Y

denote the blowup of Y at y with exceptional divisor F0. We write µ := π ◦ ρ and Fi for
the strict transform of Ei . Consider the divisor G given by the closure of {µ∗g = 0} and
write

G =

r∑
i=0

biFi + G̃,

where no Fi lies in the support of G̃. Note that b0 = ordy(π∗g) and bi := ordEi (g)
for 1 ≤ i ≤ r . Since Y → X factors through the normalized blowup of X along mx ,
Proposition 22 implies

min
1≤i≤r

bi

ai
= min

1≤i≤r

ordEi (g)
ai

≤ ôrdx(g).

To simplify notation, we set a := max{ai}.
Our goal will be to find a constant C such that b0 ≤ C · bi for all i ∈ {1, . . . , r}. After

finding such a C, we will have

ordy(π∗g) = b0 ≤ (C/a) ôrdx(g) ≤ (C/a)(n+ 1) ordx(g),

where the last inequality follows from Proposition 23. Thus, the desired inequality will
hold with C0 = (C/a)(n+ 1).

We now proceed to find such a constant C. Set M = ρ∗L− (1/2)F0 and note that M
is ample [Laz04, Example 5.1.6]. For each i ∈ {1, . . . , r}, we consider

r∑
j=0

bj (Fi · Fj ·M
n−2) = (G · Fi ·M

n−2)− (G̃ · Fi ·M
n−2) ≤ (G · Fi ·M

n−2) = 0,
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where the last equality follows from the fact thatG is a principal divisor in a neighborhood
of π−1(x). Now, we set

cij := (Fi · Fj ·M
n−2).

and see ∑
j 6=i

bj cij ≤ −bicii ≤ bi |cii |.

Note that if i 6= j , then cij 6= 0 if and only if Fi ∩ Fj 6= ∅. When that is the case,

bj ≤
|cii |

cij
bi . (5.1)

Computing the cij in terms of intersection numbers on Y , we find that for i, j ∈{1, . . . , r},

cij =

{
(Ei · Ej · L

n−2)− (1/2)n−2 if y ∈ Ei ∩ Ej ,
(Ei · Ej · L

n−2) otherwise.

Additionally,

c0i =

{
(1/2)n−2 if y ∈ Ei,
0 otherwise.

Now, for each i, j ∈ {1, . . . , r} such that i 6= j and Ei ∩ Ej 6= ∅, we set

Cij =
|(Ei · Ei · L

n−2)| + (1/2)n−2

(Ei · Ej · Ln−2)− (1/2)n−2 .

Note that |cii |/cij ≤ Cij . For each i, we set

Ci0 =
|(Ei · Ei · L

n−2)| + (1/2)n−2

(1/2)n−2 .

Similarly, note that |cii |/c0i ≤ Ci0 if y ∈ Ei .
Now, set C′ = max{1, Cij , Ci0}. By our choice of C′, if i, j ∈ {0, 1, . . . , r} are

distinct and Fi ∩ Fj 6= ∅, then bj ≤ C′ · bi . Now, Zariski’s Main Theorem implies
⋃
Fi

is connected. Therefore, we set C = 1+ C′ + C′2 + · · · + C′r and conclude b0 ≤ C · bi
for all i ∈ {1, . . . , r}. ut

Proposition 25. There exists a constant C1 such that the following holds: If v ∈ Valx,X
satisfies AX,D(v) < +∞ and y ∈ cY (v), then

v(g) ≤ C1 · AX,D(v) ordy(π∗g)

for all g ∈ Ox,X. Furthermore, if KY − π∗(KX + D) has coefficients > −1 + ε with
0 < ε < 1, then the condition holds with C1 := 1/ε.

Proof. A proof in the case when D = 0 can be found in [Li18, proof of Theorem 3.1].
The more general statement follows from a similar argument. ut
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5.3. Proofs of Theorems 20 and 21

Proof of Theorem 20. It is sufficient to prove the theorem when both X and T are affine.
We will show that there exists a nonempty open set U ⊂ T and a constant K0 > 0 such
that the conclusion holds for all t ∈ U . By induction on the dimension of T , the proof
will be complete.

Fix a (relative) projective compactification π : X → T . Denote the ideal sheaf of
σ(T ) in X by Iσ(T ). Fix a projective resolution of singularities ρ : Y → X such that its
restriction to X , denoted ρ : Y → X , is a log resolution of (X ,D, Iσ(T )). Set µ = π ◦ρ.
We write

Iσ(T ) ·OY = OY
(
−

k∑
i=1

biEi
)

and KY − ρ
∗(KX +D) =

k∑
i=1

aiEi

where each Ei is a prime divisor on Y . We order these prime divisors so that each Ei
dominates T if and only if 1 ≤ i ≤ r for some positive integer r ≤ k.

By generic smoothness, there exists a nonempty open set U1 ⊂ T such that Yt → Xt
is a log resolution of (Xt ,Dt ,mσ(t)) for all t ∈ U1 and µ−1(U1)→ U1 is smooth. Further
shrinking U1, we may assume Ei,t 6= ∅ if and only if 1 ≤ i ≤ r . Let us assume i ≤ r for
the rest of the proof. Now, we have

mσ(t) ·OYσ(t) = OY
(
−

r∑
i=1

biEi,t
)

and KYt − ρ
∗

t
(KXt +Dt ) =

r∑
i=1

aiEi,t

for each t ∈ U1. Note that the divisors Ei |t may have multiple irreducible components.
Next, we apply [SPA, Tag 0551] to find an étale morphism T ′ → U1 with T ′ irre-

ducible and such that all irreducible components of the generic fiber of E ′ = Ei ×T T ′
→ T ′ are geometrically irreducible. Denote (X ′,D′,Y ′, E ′i) := (X ,D,Y, Ei)×T T

′, and
write η′ for the generic points of T ′. Write

E ′i,η′ = E ′i,1,η′ ∪ · · · ∪ E
′

i,mi ,η
′

for the decomposition of E ′
i,η′

into irreducible components, and set Ei,j equal to the clo-
sure of E ′

i,j,η′
in Y ′. Applying [SPA, Tag 0559], we may find an open subset U ′ ⊂ T ′ such

that each divisor Ei,j,t is geometrically irreducible for all t ∈ U ′. Further shrinking U ′,
we may assume that the divisors Ei,j,t for 1 ≤ i ≤ r and 1 ≤ j ≤ mi are distinct. We
choose U ⊂ T to be a nonempty open subset contained in the image of U ′ in T .

We seek to find a constant C0 such that if t ∈ U , then

ordσ(t)(g) ≤ C0 · ordy(ρ∗t (g)) (5.2)

for all g ∈ Oσ(t),Xt and y ∈ ρ−1
t
(σ (t)). Since (X ′,D′,Y ′)|

t ′
∼= (X ,D,Y)|t if t is the

image of t ′, it suffices to establish an inequality of the form (5.2) on the singularities
σ(t ′) ∈ (X ′

t ′
,D′

t ′
) for t ′ ∈ U ′. Let L be a line bundle on Y such that Lt is very ample

for all t ∈ T , and write L′ for the pullback of L to Y ′. Now, fix 1 ≤ i1, i2 ≤ r such that
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bi1 , bi2 > 0. For fixed 1 ≤ j1 ≤ mi1 and 1 ≤ j2 ≤ mi2 , the function that sends U ′ 3 t ′ to
(E
i1,j1,t ′

· E
i2,j2,t ′

·L′n−2
t ′

) is constant [Kol96, Lemma VI.2.9]. From our choice of U ′, we
know that E

i,j,t ′
is irreducible for any t ′ ∈ U ′. Therefore, we may apply Proposition 24

to find a constant C0 such that the desired inequality holds for all t ′ ∈ U ′.
Next, choose 0 < ε < 1 so that ai < 1 − ε for all 1 ≤ i ≤ r . Set C1 := 1/ε. By

Proposition 25, if t ∈ U and v ∈ Valσ(t),Xt , then

v(g) ≤ C1 · AXt ,Dt
ordy(ρ∗t g) (5.3)

for all g ∈ Oσ(t),Xt and y ∈ cYt (v). Combining (5.2) and (5.3), we see that the desired
inequality holds when K0 = C0 · C1. ut

Proof of Theorem 21. The theorem follows immediately Theorem 20 and [Li18, Theo-
rem 4.1], as in the proof of [Li18, Theorem 4.3]. ut

6. Proofs and applications

6.1. A convergence result for normalized colengths

Theorem 26. Let π : (X ,D) → T together with a section σ : T → X be a Q-
Gorenstein flat family of klt singularities. For every ε > 0, there exists a constant c1 > 0
and an integer N such that if t ∈ T , then̂̀

c,m(σ (t),Xt ,Dt ) ≤ v̂ol(σ (t),Xt ,Dt )+ ε

for all m divisible by N and 0 < c ≤ c1.

Before beginning the proof of the previous theorem, we record the following statement.

Proposition 27. Let π : (X ,D) → T together with a section σ : T → X be a Q-
Gorenstein flat family of klt singularities. There exists a constant A such that

v̂ol(σ (t),Xt ,Dt ) = inf{v̂ol(v) | v ∈ Valσ(t),Xt with v(mσ(t)) = 1 and AXt ,Dt
(v) ≤ A}

for all t ∈ T .

Proof. We first note that there exists a real number B such that v̂ol(σ (t),Xt ,Dt ) ≤ B

for all t ∈ T . Indeed, v̂ol(σ (t),Xt ,Dt ) ≤ lct(mσ(t))n e(mσ(t)) = lct(mσ(t))n e(mσ(t))
and the function that sends t ∈ T to lct(mσ(t))n e(mσ(t)) takes finitely many values by
Propositions 10 and 41. Thus,

v̂ol(σ (t),Xt ,Dt ) = inf{v̂ol(v) | v ∈ Valσ(t),Xt with v(mσ(t)) = 1 and v̂ol(v) ≤ B}

for all t ∈ T .
Next, fix a constant K1 ∈ R>0 satisfying the conclusion of Theorem 21. If v ∈

Valσ(t),Xt satisfies v(mσ(t)) = 1 and v̂ol(v) ≤ B, then AXt ,Dt
(v) ≤ B/K2. Therefore,

the proposition holds with A := B/K2. ut
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Proof of Theorem 26. Fix ε > 0 and a constant A ∈ R>0 satisfying the conclusion of the
previous proposition. To simplify notation, set

Wt = {v ∈ Valσ(t),Xt | v(mσ(t)) = 1 and A(Xt ,Dt )
(v) ≤ A}

for each t ∈ T . We proceed by proving the following two claims.

Claim 1. There exist constants c1 ∈ R>0 and M1 ∈ Z>0 such that if t ∈ T , then

̂̀
c,m(σ (t),Xt ,Dt ) ≤ inf

v∈Wt
n! · lct(am(v))n`(Oσ(t),Xt /am(v))

for all 0 < c < c1 and m ≥ M1.

Proposition 41 implies there exist constants c1 > 0 and M1 ∈ Z>0 such that

`(Oσ(t),Xt /m
m
σ(t)
) ≥ mn · c1

for all t ∈ T and m ≥ M1. Now, consider v ∈ Wt for some t ∈ T . Since v(mσ(t)) = 1,
mm
σ(t)
⊂ am(v) for all m ∈ Z>0. Therefore, `(Oσ(t),Xt /am(v)) ≥ `(Oσ(t),Xt /m

m
σ(t)
). The

claim now follows from the definition of ̂̀c,m(σ (t),Xt ,Dt ).
Claim 2. There exists M2 ∈ Z>0 such that if t ∈ T and v ∈ Wt , then

n! · lct(am(v))n · `(Oσ(t),Xt /am(v)) ≤ v̂ol(v)+ ε

for all integers m divisible by M2.

By Theorem 16, there exists M2 ∈ Z>0 such that if t ∈ T and v ∈ Wt , then

`(Oσ(t),Xt /am(v))

mn/n!
≤ vol(v)+ ε/An (6.1)

for all integers m divisible by M2. Note that

m · lct(am(v)) ≤ lct(a•(v)) ≤ AXt ,Dt
(v).

Therefore, multiplying (6.1) by (m · lct(am(v)))n yields the desired result.
We return to the proof of the corollary. Fix constants M1, M2, and c1 satisfying the

conclusions of Claims 1 and 2. Set M = M1 ·M2. Now, if t ∈ T , m is a positive integer
divisible by M , and c satisfies 0 < c < c1, then

̂̀
c,m(σ (t),Xt ,Dt ) ≤ inf

v∈Wt
n! · lct(am(v))n`(Oσ(t),Xt /am(v))

≤ inf
v∈Wt

v̂ol(v)+ ε = v̂ol(σ (t),Xt ,Dt )+ ε,

where the first (in)equality follows from Claim 1, the second from Claim 2, and the third
from our choice of A. ut
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6.2. Proofs

The following theorem is a stronger result that implies Theorem 1.

Theorem 28. Let π : (X ,D) → T together with a section σ : T → X be a Q-
Gorenstein flat family of klt singularities over a field k of characteristic 0. Then the func-
tion t 7→ v̂ol(σ (t),Xt ,Dt ) on T is lower semicontinuous with respect to the Zariski
topology.

Proof. Let Zk → T be the k-th thickening of the section σ(T ), i.e. Zk =
SpecT (OX /Ikσ(T )). Let dk := maxt∈T `(Oσ(t),Xt /m

k
σ(t),Xt ). For any d ∈ N, denote

Hk,d := Hilbd(Zk/T ). Since Zk is proper over T , we know that Hk,d is also proper
over T . Let Hn

k,d be the normalization of Hk,d . Denote by τk,d the map Hk,d → T . After
pulling back the universal ideal sheaf on X ×T Hk,d over Hk,d to Hn

k,d , we obtain an
ideal sheaf bk,d on X ×T Hn

k,d . Denote by πk,d : (X ×T Hn
k,d ,D ×T Hn

k,d)→ Hn
k,d the

projection. Then πk,d provides a Q-Gorenstein flat family of klt pairs.
Following the notation of Proposition 14, assume h is a scheme-theoretic point of

Hn
k,d lying over [b] ∈ Hk,d . Denote t = τk,d([b]) ∈ T . By construction, the ideal sheaf

bk,d,h on X ×T Spec(κ(h)) is the pullback of b under the flat base change Spec(κ(h))→
Spec(κ([b])). Hence

lct((X ,D)×T Spec(κ(h)); bk,d,h) = lct((X ,D)×T Spec(κ([b])); b).

For simplicity, we abbreviate the above equation to lct(bk,d,h) = lct(b). Applying Propo-
sition 10 to the family πk,d and the ideal bk,d implies that the function8n

: Hn
k,d → R>0

defined as 8n(h) := lct(bk,d,h) is constructible and lower semicontinuous with respect
to the Zariski topology on Hn

k,d . Since lct(bk,d,h) = lct(b), 8n descends to a function
8 on Hk,d as 8([b]) := lct(b). Since Hk,d is proper over T , we know that the function
φ : T → R>0 defined as

φ(t) := n! · min
ckn≤d≤dk

[b]∈τ−1
k,d (t)

8([b])n

is constructible and lower semicontinuous with respect to the Zariski topology on T .
Then Proposition 14 implies φ(t) = ̂̀

c,k(σ (t),Xt ,Dt ). Thus we conclude that t 7→̂̀
c,k(σ (t),Xt ,Dt ) is constructible and lower semicontinuous with respect to the Zariski

topology on T .
Let us fix ε > 0 and a scheme-theoretic point o ∈ T . By Theorem 26, there exist

c1 > 0 and N ∈ N such that

v̂ol(σ (t),Xt ,Dt ) ≥ ̂̀c,k(σ (t),Xt ,Dt )− ε/2 (6.2)

for any t ∈ T , k divisible by N and 0 < c ≤ c1. Since t 7→ ̂̀
c,k(σ (t),Xt ,Dt ) is

constructibly lower semicontinuous on T , there exists a Zariski open neighborhood U
of o such that ̂̀

c,k(σ (t),Xt ,Dt ) ≥ ̂̀c,k(σ (o),Xo,Do) for any t ∈ U. (6.3)
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By Theorem 12, there exist c0 > 0 and N0 ∈ N such that

̂̀
c,k(σ (o),Xo,Do) ≥ v̂ol(σ (o),Xo,Do)− ε/2 (6.4)

for any 0 < c ≤ c0 and any k ≥ N0. Let us choose c = min{c0, c1} and k = N ·N0. Then
combining (6.2)–(6.4) yields

v̂ol(σ (t),Xt ,Dt ) ≥ v̂ol(σ (o),Xo,Do)− ε for any t ∈ U.

The proof is finished. ut

The following theorem is a stronger result that implies Theorem 3.

Theorem 29. Let ϕ : (Y, E)→ T be a Q-Gorenstein flat family of log Fano pairs over a
field k of characteristic 0. Assume that some geometric fiber (Yo, Eo) is log K-semistable
for a point o ∈ T . Then:

(1) There exists an intersection U of countably many Zariski open neighborhoods of o
such that (Yt , Et ) is log K-semistable for any point t ∈ T . If, in addition, k = k̄ is
uncountable, then (Yt , Et ) is log K-semistable for a very general closed point t ∈ T .

(2) The geometrically log K-semistable locus

T K-ss
:= {t ∈ T | (Yt , Et ) is log K-semistable}

is stable under generalization.

Proof. (1) For r ∈ N satisfying L = −r(KY/T + E) is Cartier, we define the relative
affine cone X of (Y,L) by

X := SpecT
⊕
m≥0

ϕ∗(L⊗m).

Assume r is sufficiently large. Then it is easy to see that ϕ∗(L⊗m) is locally free on T for
all m ∈ N. Thus we have Xt ∼= Spec

⊕
m≥0H

0(Yt ,L⊗mt ) := C(Yt ,Lt ). Let D be the Q-
divisor on X corresponding to E . By [Kol13, Section 3.1], the projection π : (X ,D)→ T

together with the section of cone vertices σ : T → X is a Q-Gorenstein flat family of klt
singularities.

Since (Yo, Eo) is K-semistable, Theorem 6 implies

v̂ol(σ (o),Xo,Do) = r−1(−KYo − Eo)n−1.

Then by Theorem 28, there exists an intersection U of countably many Zariski open
neighborhoods of o such that v̂ol(σ (t),Xt ,Dt ) ≥ v̂ol(σ (o),Xo,Do) for any t ∈ U .
Since the global volumes of log Fano pairs are constant in Q-Gorenstein flat families, we
have

v̂ol(σ (t),Xt ,Dt ) ≥ v̂ol(σ (o),Xo,Do) = r−1(−KYo − Eo)n−1
= r−1(−KYt − Et )n−1.

Then Theorem 6 implies that (Yt , Et ) is K-semistable for any t ∈ U .
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(2) Let o ∈ T K-ss be a scheme-theoretic point. Then by (1) there exist countably many
Zariski open neighborhoods Ui of o such that

⋂
i Ui ⊂ T

K-ss. If t is a generalization of o,
then t belongs to all Zariski open neighborhoods of o, so t ∈ T K-ss. ut

Proof of Theorem 3. It is clear that (1) and (2) follow from Theorem 29. For (3), the
constructibility of normalized volumes implies that the set U in the proof of Theorem 29
(1) can be chosen as a Zariski open neighborhood of o. Then the same argument as in the
proof of Theorem 29(1) works. ut

The following corollary is a stronger result that implies Corollary 4.

Corollary 30. Let π : (Y, E)→ T be a Q-Gorenstein family of complex log Fano pairs.
Assume that π is isotrivial over a Zariski open subset U ⊂ T , and (Yo, Eo) is log K-
semistable for a closed point o ∈ T \U . Then (Yt , Et ) is log K-semistable for any t ∈ U .

Proof. Since (Yo, Eo) is log K-semistable, Theorem 29 implies that (Yt , Et ) is log K-
semistable for a very general closed point t ∈ T . Hence for some (hence any) t ∈ U ,
(Yt , Et ) is log K-semistable. ut

Remark 31. If the ACC of normalized volumes (in bounded families) were true, then
Conjecture 2 follows by applying Theorem 1. Moreover, we suspect that a much stronger
result on discreteness of normalized volumes away from 0 (see also [LX19, Question
4.3]) might be true, but we do not have much evidence yet.

6.3. Applications

In this section we present applications of Theorem 1. The following theorem generalizes
the inequality part of [LX19, Theorem A.4].

Theorem 32. Let x ∈ (X,D) be a complex klt singularity of dimension n. Let a be the
largest coefficient of components of D containing x. Then v̂ol(x,X,D) ≤ (1− a)nn.

Proof. SupposeDi is the component ofD containing x with coefficientD. LetDn
i be the

normalization of Di . By applying Theorem 1 to pr2 : (X×D
n
i ,D×D

n
i )→ Dn

i together
with the natural diagonal section σ : Dn

i → X × Dn
i , we find that v̂ol(x,X,D) ≤

v̂ol(y,X,D) for a very general closed point y ∈ Di . We may pick y to be a smooth point
in both X and D. Then v̂ol(x,X,D) ≤ v̂ol(0,An, aAn−1) where An−1 is a coordinate
hyperplane of An. Let us take local coordinates (z1, . . . , zn) of An such that An−1

=

V (z1). Then the monomial valuation va on An with weights ((1−a)−1, 1, . . . , 1) satisfies
AAn(v) =

1
1−a + (n− 1), ordva (An−1) = 1

1−a and vol(va) = 1− a. Hence

v̂ol(x,X,D) ≤ v̂ol0,(An,aAn−1)(va) = (AAn(v)− a ordva (A
n−1))n · vol(va) = (1− a)nn.

The proof is finished. ut

Theorem 33. Let (X,D) be a klt pair over C. Then:

(1) The function x 7→ v̂ol(x,X,D) on X(C) is lower semicontinuous with respect to the
Zariski topology.
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(2) Let Z be an irreducible subvariety of X. Then for a very general closed point z ∈ Z
we have

v̂ol(z,X,D) = sup
x∈Z

v̂ol(x,X,D).

In particular, there exists a countable intersection U of nonempty Zariski open sub-
sets of Z such that v̂ol(·, X,D)|U is constant.

Proof. Part (1) follows quickly by applying Theorem 1 to pr2 : (X × X,D × X) → X

together with the diagonal section σ : X → X × X. For part (2), denote by Zn the
normalization of Z. Then we apply Theorem 1 to pr2 : (X×Z

n,D×Zn)→ Zn together
with the natural diagonal section σ : Zn

→ X × Zn. ut

Next we study the case when X is a Gromov–Hausdorff limit of Kähler–Einstein Fano
manifolds. Note that the function x 7→ v̂ol(x,X) = nn ·2(x,X) is lower semicontinuous
with respect to the Euclidean topology on X by [SS17, LX18]. The following corollary
improves this result and follows easily from Theorem 33(1).

Corollary 34. Let X be a Gromov–Hausdorff limit of Kähler–Einstein Fano manifolds.
Then the function x 7→ v̂ol(x,X) = nn ·2(x,X) on X(C) is lower semicontinuous with
respect to the Zariski topology.

The following theorem partially generalizes [SS17, Lemma 3.3 and Proposition 3.10].

Theorem 35. Let X be a Gromov–Hausdorff limit of Kähler–Einstein Fano manifolds.
Let x ∈ X be any closed point. Then for any finite quasi-étale morphism of singularities
π : (y ∈ Y )→ (x ∈ X), we have deg(π) ≤ 2(x,X)−1. In particular:

(1) |π̂ loc
1 (X, x)| ≤ 2(x,X)−1.

(2) For any Q-Cartier Weil divisor L on X, we have ind(x, L) ≤ 2(x,X)−1 where
ind(x, L) denotes the Cartier index of L at x.

Proof. By [LX18, Theorem 1.7], the finite degree formula holds for π , i.e. v̂ol(y, Y ) =
deg(π) · v̂ol(x,X). Since v̂ol(y, Y ) ≤ nn by [LX19, Theorem A.4] or Theorem 32 and
v̂ol(x,X) = nn ·2(x,X) by [LX18, Corollary 3.7], we have deg(π) ≤ nn/ v̂ol(x,X) =
2(x,X)−1. ut

Remark 36. If the finite degree formula [LX19, Conjecture 4.1] were true for any klt
singularity, then clearly deg(π) ≤ nn/ v̂ol(x,X) for any finite quasi-étale morphism π :

(y, Y ) → (x,X) between n-dimensional klt singularities. In particular, we would get
an effective upper bound |π̂ loc

1 (X, x)| ≤ nn/ v̂ol(x,X) where π̂ loc
1 (X, x) is known to be

finite by [Xu14, BGO17] (see [LX19, Theorem 1.5] for a partial result in dimension 3).

Theorem 37. Let V be a K-semistable complex Q-Fano variety of dimension n− 1. Let
q be the largest integer such that there exists a Weil divisor L satisfying −KV ∼Q qL.
Then

q · (−KV )
n−1
≤ nn.
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Proof. Consider the orbifold cone X := C(V,L) = Spec(
⊕

m≥0H
0(V ,OV (bmLc))

with the cone vertex x ∈ X. Let X̃ := SpecV
⊕

m≥0 OV (bmLc) be the partial resolution
of X with exceptional divisor V0. Then by [Kol04, 40-42], x ∈ X is a klt singularity, and
(V0, 0) ∼= (V , 0) is a K-semistable Kollár component over x ∈ X. Hence [LX20, Theo-
rem A] implies that ordV0 minimizes v̂olx,X. By [Kol04, 40-42] we have AX(ordV0) = q,
vol(ordV0) = (L

n−1). Hence

v̂ol(x,X) = AX(ordV0)
nvol(ordV0) = q

n(Ln−1) = q(−KV )
n−1,

and the proof is finished since v̂ol(x,X) ≤ nn by [LX19, Theorem A.4] or Theorem 32.
ut

Appendix A. Asymptotic lattice points counting in convex bodies

In this appendix, we will prove the following proposition.

Proposition 38. For any positive number ε, there exists k0 = k0(ε, n) such that for any
closed convex body 1 ⊂ [0, 1]n and any integer k ≥ k0, we have∣∣∣∣#(k1 ∩ Zn)kn

− vol(1)
∣∣∣∣ ≤ ε. (A.1)

Proof. We use induction on dimension. If n = 1, then k1 is a closed interval of length
kvol(1), hence

kvol(1)− 1 ≤ #(k1 ∩ Z) ≤ kvol(1)+ 1.

So (A.1) holds for k0 = d1/εe.
Next, assume that the conclusion is true for dimension n− 1. Denote by (x1, . . . , xn)

the coordinates of Rn. Let 1t := 1∩ {xn = t} be the sectional convex body in [0, 1]n−1.
Let [t−, t+] be the image of 1 under the projection onto the last coordinate. Then we
know that vol(1) =

∫ t+
t−

vol(1t ) dt . By induction hypothesis, there exists k1 ∈ N such
that

vol(1t )− ε/3 ≤
#(k1t ∩ Zn−1)

kn−1 ≤ vol(1t )+ ε/3 for any k ≥ k1.

It is clear that
#(k1 ∩ Zn) =

∑
t∈[t−,t+]∩

1
k
Z

#(k1t ∩ Zn−1),

so for any k ≥ k1 we have∣∣∣#(k1∩Zn)−kn−1
·

∑
t∈[t−,t+]∩

1
k
Z

vol(1t )
∣∣∣ ≤ ε

3
kn−1
·#
(
[t−, t+]∩

1
k
Z
)
≤

2ε
3
kn. (A.2)

Next, we know that the function t 7→ vol(1t )1/(n−1) is concave on [t−, t+] by the
Brunn–Minkowski theorem. In particular, we can find t0 ∈ [t−, t+] such that g(t) :=
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vol(1t ) reaches its maximum at t = t0. Hence g is increasing on [t−, t0] and decreasing
on [t0, t+]. Then applying Proposition 39 to g|[t−,t0] and g|[t0,t+] respectively yields∣∣∣∣∫ t0

t−

vol(1t ) dt −
1
k

∑
t∈[t−,t0]∩

1
k
Z

vol(1t )
∣∣∣∣ ≤ 2

k
,

∣∣∣∣∫ t+

t0

vol(1t ) dt −
1
k

∑
t∈[t0,t+]∩

1
k
Z

vol(1t )
∣∣∣∣ ≤ 2

k
.

Since 0 ≤ vol(1t0) ≤ 1, we have∣∣∣∣∫ t+

t−

vol(1t ) dt −
1
k

∑
t∈[t+,t−]∩

1
k
Z

vol(1t )
∣∣∣∣ ≤ 5

k
. (A.3)

Therefore, by setting k0 = max(k1, d15/εe), the inequality (A.1) follows easily by com-
bining (A.2) and (A.3). ut

Proposition 39. For any monotonic function g : [a, b] → [0, 1] and any k ∈ N, we have∣∣∣∣∫ b

a

g(s) ds −
1
k

∑
t∈[a,b]∩ 1

k
Z

g(t)

∣∣∣∣ ≤ 2
k
.

Proof. We may assume that g is an increasing function. Denote ak := dkae/k and bk :=
bkbc/k, so [a, b] ∩ 1

k
Z = [ak, bk] ∩ 1

k
Z. Since

∫ t
t−1/k g(s) ds ≤ g(t)/k whenever t ∈

[ak + 1/k, bk], we have∫ bk

ak

g(s) ds ≤
1
k

∑
t∈[ak+1/k,bk]∩ 1

k
Z

g(t) ≤
1
k

∑
t∈[a,b]∩ 1

k
Z

g(t),

Similarly,
∫ t+1/k
t

g(s) ds ≥ g(t)/k for any t ∈ [ak, bk − 1/k], we have∫ bk

ak

g(s) ds ≥
1
k

∑
t∈[ak,bk−1/k]∩ 1

k
Z

g(t) ≥
1
k

∑
t∈[a,b]∩ 1

k
Z

g(t)−
1
k
.

It is clear that ak ∈ [a, a + 1/k] and bk ∈ [b − 1/k, b], so we have∫ bk

ak

g(s) ds ≥

∫ b

a

g(s) ds −
2
k
,

∫ bk

ak

g(s) ds ≤

∫ b

a

g(s) ds.

As a result,

1
k

∑
t∈[a,b]∩ 1

k
Z

g(t)−
1
k
≤

∫ b

a

g(s) ds ≤
1
k

∑
t∈[a,b]∩ 1

k
Z

g(t)+
2
k
. ut
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Appendix B. Families of ideals and the Hilbert–Samuel function

The following proposition concerns the behavior of the Hilbert–Samuel function along a
family of ideals. The statement is not new. The proof we give follows arguments found in
[FM00].

Definition 40. If (R,m) is a local ring and I is an m-primary ideal, then the Hilbert–
Samuel function of I , denoted HI : N→ N, is given by HI (m) := `R(R/Im). Note that
e(I ) = limn→∞ HI (m)/mn, where n = dim(R).

Proposition 41. Let π : X → T be a morphism of finite type k-schemes. Assume T is
integral and π has a section σ : T → X . If a ⊂ OX is an ideal and at = a · OXσ(t) is
mσ(t)-primary for all t ∈ T , then T has a filtration

∅ = T0 ⊂ T1 ⊂ · · · ⊂ Tm = T

such that for every 1 ≤ i ≤ m, Ti is closed in T and the function Ti \ Ti−1 3 t 7→ Hat is
constant.

Proof. It is sufficient to show that there exists a nonempty open set U ⊂ T such that Hat
is constant for all t ∈ U . We proceed to find such a set U .

For each t ∈ T , we have Hat (m) =
∑m−1
i=0 `(a

i
t/a

i+1
t ). Therefore, we consider the

finitely generated OX-algebra gra :=
⊕

i≥0 a
i/ai+1. By generic flatness, we may choose

a nonempty open set U ⊂ T such that both OX|π−1(U) and gra |π−1(U) are flat over U .
For each i ∈ N, the function U 3 t 7→ dimκ(t)(a

i/ai+1
|t ) is constant, since each

ai/ai+1 is flat over U and ai/ai+1
|t has zero-dimensional support for each t ∈ U . Since

κ(t) ' Oσ(t),X /mσ(t), dimκ(t)(a
i/ai+1

|t ) = `(ai/ai+1
|t ) for all t ∈ T . Furthermore,

Lemma 42 below implies ai/ai+1
|t = ait/a

i+1
t for all t ∈ U . Therefore, U 3 t 7→

`(ait/a
i+1
t ) is constant, and the proof is complete. ut

Before stating the following lemma, we introduce some notation. Let A be a ring, I ⊂ A
an ideal, and M an A-module. We set

grI (M) :=
⊕
m≥0

ImM

Im+1M
.

Lemma 42. Let B → A be a morphism of rings, I ⊂ A an ideal, and M ∈ Mod(A). If
grI M and M are both flat over B, then for any N ∈ Mod(B),

(grI M)⊗B N ' grI (M ⊗B N).

Proof. We follow the argument given in [FM00]. Consider the surjective map αm :
(ImM) ⊗B N → Im(M ⊗B N). We claim that, for each m ∈ Z>0, αm is injective
and ImM is flat over B.

We induct on m. The claim holds when m = 0, since α0 is clearly an isomorphism
and M is flat over B by assumption. Next, consider the exact sequence

0→ Im+1M → ImM → ImM/Im+1M → 0
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and assume the claim holds for a positive integer m. Since ImM and ImM/Im+1M are
flat over B, so is Im+1M . By the flatness of ImM/Im+1M , we may tensor by N to get an
exact sequence

0→ Im+1M ⊗B N → ImM ⊗B N → ImM/Im+1M ⊗B N → 0.

By the above exact sequence, the injectivity of αm implies the injectivity of αm+1. Now
that the claim has been proven, the lemma follows from applying the claim to the previous
short exact sequence. ut
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[Mus02] Mustaţǎ, M.: On multiplicities of graded sequences of ideals. J. Algebra 256, 229–249
(2002) Zbl 1076.13500 MR 1936888

[Oda13] Odaka, Y.: On the moduli of Kähler–Einstein Fano manifolds. In: Proceedings of Ki-
nosaki Algebraic Geometry Symposium (2013)

[Oda15] Odaka, Y.: Compact moduli spaces of Kähler–Einstein Fano varieties. Publ. RIMS Ky-
oto Univ.. 51, 549–565 (2015) Zbl 1333.14039 MR 3395458

[SS17] Spotti, C., Sun, S.: Explicit Gromov–Hausdorff compactifications of moduli spaces
of Kähler–Einstein Fano manifolds. Pure Appl. Math. Quart. 13, 477–515 (2017)
Zbl 1403.32013 MR 3882206

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1400.14105&format=complete
http://www.ams.org/mathscinet-getitem?mr=3783213
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1397.32009&format=complete
http://www.ams.org/mathscinet-getitem?mr=3735865
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1272.14016&format=complete
http://www.ams.org/mathscinet-getitem?mr=3060755
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1315.13013&format=complete
http://www.ams.org/mathscinet-getitem?mr=3482603
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0877.14012&format=complete
http://www.ams.org/mathscinet-getitem?mr=1440180
http://arxiv.org/abs/math/0404386
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1282.14028&format=complete
http://www.ams.org/mathscinet-getitem?mr=3057950
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1093.14501&format=complete
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1093.14500&format=complete
http://www.ams.org/mathscinet-getitem?mr=2095471
http://www.ams.org/mathscinet-getitem?mr=2095472
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1182.14004&format=complete
http://www.ams.org/mathscinet-getitem?mr=2571958
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0192.13901&format=complete
http://www.ams.org/mathscinet-getitem?mr=0140536
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1409.14008&format=complete
http://www.ams.org/mathscinet-getitem?mr=3715806
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1388.53076&format=complete
http://www.ams.org/mathscinet-getitem?mr=3731324
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1423.14025&format=complete
http://www.ams.org/mathscinet-getitem?mr=3803800
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1404.32044&format=complete
http://www.ams.org/mathscinet-getitem?mr=3872852
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:07080115&format=complete
http://www.ams.org/mathscinet-getitem?mr=3959862
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:07227742&format=complete
http://www.ams.org/mathscinet-getitem?mr=4118616
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1423.14262&format=complete
http://www.ams.org/mathscinet-getitem?mr=4059992
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1397.14052&format=complete
http://www.ams.org/mathscinet-getitem?mr=3797604
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1436.14085&format=complete
http://www.ams.org/mathscinet-getitem?mr=3992032
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0441.13001&format=complete
http://www.ams.org/mathscinet-getitem?mr=0575344
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1076.13500&format=complete
http://www.ams.org/mathscinet-getitem?mr=1936888
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1333.14039&format=complete
http://www.ams.org/mathscinet-getitem?mr=3395458
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1403.32013&format=complete
http://www.ams.org/mathscinet-getitem?mr=3882206


1256 Harold Blum, Yuchen Liu

[SSY16] Spotti, C., Sun, S., Yao, C.: Existence and deformations of Kähler–Einstein metrics on
smoothable Q-Fano varieties. Duke Math. J. 165, 3043–3083 (2016) Zbl 1362.53082
MR 3566198

[SPA] The Stacks Project Authors: Stacks Project. http://stacks.math.columbia.edu
[Xu14] Xu, C.: Finiteness of algebraic fundamental groups. Compos. Math. 150, 409–414

(2014) Zbl 1291.14057 MR 3187625
[Xu18] Xu, C.: Interaction between singularity theory and the minimal model program.

In: Proc. Int. Congress Math. 2018, Rio de Janeiro, Vol. 1, 807–830 (2018)
Zbl 1441.14125 MR 3966790

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1362.53082&format=complete
http://www.ams.org/mathscinet-getitem?mr=3566198
http://stacks.math.columbia.edu
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1291.14057&format=complete
http://www.ams.org/mathscinet-getitem?mr=3187625
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1441.14125&format=complete
http://www.ams.org/mathscinet-getitem?mr=3966790

	1. Introduction
	2. Preliminaries
	3. Comparison of normalized volumes and normalized colengths
	4. Uniform approximation of volumes by colengths
	5. Li's Izumi and properness estimates in families
	6. Proofs and applications
	Appendix A. Asymptotic lattice points counting in convex bodies
	Appendix B. Families of ideals and the Hilbert–Samuel function
	References

