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To the memory of Joseph Shalika

Received March 9, 2018

Abstract. In this paper we pursue the refined global Gross–Prasad conjecture for Bessel periods
formulated by Yifeng Liu in the case of special Bessel periods for SO(2n+ 1)×SO(2). Recall that
a Bessel period for SO(2n+1)×SO(2) is called special when the representation of SO(2) is trivial.
Let π be an irreducible cuspidal tempered automorphic representation of a special orthogonal group
of an odd-dimensional quadratic space over a totally real number field F whose local component πv
at any archimedean place v of F is a discrete series representation. Let E be a quadratic extension
of F and suppose that the special Bessel period corresponding to E does not vanish identically
on π . Then we prove the Ichino–Ikeda type explicit formula conjectured by Liu for the central
value L(1/2, π)L(1/2, π × χE), where χE denotes the quadratic character corresponding to E.
Our result yields a proof of Böcherer’s conjecture on holomorphic Siegel cusp forms of degree two
which are Hecke eigenforms.

Keywords. Böcherer’s conjecture, central L-values, Gross–Prasad conjecture, periods of automor-
phic forms

1. Introduction

Research on special values of arithmetic L-functions is one of the pivotal subjects in
number theory. The central values are of particular interest because of the Birch and
Swinnerton-Dyer conjecture and its natural generalizations.

In the early 1990s, Gross and Prasad [23, 24] proclaimed a conjecture concerning a re-
lationship between non-vanishing of certain period integrals on special orthogonal groups
and non-vanishing of central values of certain tensor product L-functions, together with
the local counterpart conjecture. Recently Gan, Gross and Prasad [17] extended the con-
jecture to classical groups and metaplectic groups. On the other hand, Ichino and Ikeda,
in their very influential paper [27], refined the Gross–Prasad conjecture and formulated
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a conjectural precise formula for the central L-value in terms of the period integral for
a tempered cuspidal automorphic representation in the SO(n + 1) × SO(n) case, i.e. for
codimension 1. Inspired by [27], Harris [25] formulated a similar conjectural formula in
the codimension 1 unitary group case. Recently Liu [37] extended the work of Ichino–
Ikeda and Harris to Bessel periods for orthogonal and unitary groups and formulated a
conjectural precise formula expressing the central L-values in terms of the Bessel periods
in the arbitrary codimension case.

In our previous paper [15], we investigated the Gross–Prasad conjecture for the special
Bessel periods on SO(2n + 1) × SO(2) and proved that the non-vanishing of the period
implies the non-vanishing of the corresponding central L-value. In this paper, we refine
the results in [15] and prove the Ichino–Ikeda type precise L-value formula conjectured
by Liu [37] in the aforementioned case. As a corollary, we also obtain a proof of the long-
standing conjecture by Böcherer in [7], concerning central critical values of imaginary
quadratic twists of spinor L-functions for holomorphic Siegel cusp forms of degree two
which are Hecke eigenforms, thanks to the beautiful work by Dickson, Pitale, Saha and
Schmidt [10].

In order to state our main results, let us introduce some notation. For the convenience
of the reader, we shall use as much as possible the notation in [15], to which this paper is
a sequel.

1.1. Notation

Let F be a number field and AF its ring of adeles. We shall often abbreviate AF as A
for simplicity. Let ψ be a non-trivial character of A which is trivial on F . For a ∈ F×,
we denote by ψa the character of A defined by ψa(x) = ψ(ax). For a place v of F ,
let Fv be the completion of F at v and ψv the character of Fv induced by ψ . When v is
non-archimedean, we denote by Ov and$v the ring of integers in Fv and a prime element
of Fv , respectively.

Let E be a quadratic extension field of F and χE the quadratic character of A×F /F
×

corresponding to E. Throughout the paper, we fix E. We simply write χ for χE when
there is no fear of confusion.

For a positive integer n ≥ 2, let Gn = Gn,E denote a certain set of F -isomorphism
classes of special orthogonal groups defined as follows. Let (V , ( , )) be a quadratic space
over F , i.e. a finite-dimensional vector space over F equipped with a non-degenerate
symmetric bilinear form ( , ). We suppose that dimV = 2n + 1, the Witt index of V
is at least n − 1 and V has an orthogonal direct sum decomposition V = H n−1

⊕ L

where H denotes the hyperbolic plane over F and L is a three-dimensional quadratic
space containing (E, c · NE/F ) for some c ∈ F×. Then we define Gn as the set of F -
isomorphism classes of the special orthogonal groups SO(V ) for such V . Let disc(V )
denote the discriminant of (V , ( , )) which takes a value in F×/(F×)2. We often denote
the quadratic space (V , b·( , )) simply as b V . We note that then disc(b V ) = b·disc(V ) ∈
F×/(F×)2 and SO(b V ) = SO(V ). Thus from now on we shall assume disc(V ) =
(−1)n, i.e. disc(L) = −1, without loss of generality. We shall often identify the group
SO(V ) with its isomorphism class in Gn by abuse of notation. Let us denote by V = Vn
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such a quadratic space with dimV = 2n + 1 and the Witt index n, which is uniquely
determined up to scalar multiplication, and we denote by G = Gn its special orthogonal
group SO(V) (and its F -isomorphism class). We note that G splits over F .

Throughout the paper, for an algebraic group G defined over F , we write Gv for
G(Fv) and we always take the measure dg on G(A) to be the Tamagawa measure, unless
specified otherwise. For each v, we take the self-dual measure with respect to ψv on Fv .
Recall that the product measure on A is the self-dual measure with respect toψ and is also
the Tamagawa measure since Vol(A/F ) = 1. For a unipotent algebraic group U defined
over F , we also specify the local measure duv on Uv to be the measure corresponding to
the gauge form defined over F , together with our choice of the measure on Fv , at each
place v of F . Then for du =

∏
v duv , we have Vol(U(F )\U(A), du) = 1 and du is the

Tamagawa measure on U(A).

1.2. Special Bessel periods

Let G = SO(V ) ∈ G. First we decompose V as a direct sum V = X+ ⊕ L⊕ X− where
X± are totally isotropic (n− 1)-dimensional subspaces of V which are dual to each other
and orthogonal to L. When G = G, i.e. V = V, we extend X+ to V + and X− to V −

respectively so that V ± are totally isotropic n-dimensional subspaces of V which are dual
to each other. We take a basis {e1, . . . , en−1} of X+ and a basis {e−1, . . . , e−n+1} of X−

respectively so that
(ei, e−j ) = δi,j for 1 ≤ i, j ≤ n− 1, (1.1)

where δi,j denotes Kronecker’s delta. When V = V, we take en ∈ V + and e−n ∈ V −

respectively so that (1.1) holds for 1 ≤ i, j ≤ n. We also fix a basis of L. When V = V,
we take it to be of the form {e−n, e, en} where e is a vector in L orthogonal to e−n and en
with (e, e) = 1. Then for a matrix representation of elements of G, as a basis of V , we
employ

e−1, . . . , e−n+1, basis of L, en−1, . . . , e1.

We denote by P ′ the maximal parabolic subgroup ofG defined as the stabilizer of the
isotropic subspace X−. Let

P ′ = M ′S′ (1.2)

be the Levi decomposition where M ′ and S′ denote the Levi part and the unipotent part
of P ′ respectively. Let us take λ ∈ F× so that E = F(

√
λ ). Since L contains the

quadratic space (E, c · NE/F ) and disc(L) = −1, we may take eλ ∈ L(F) such that
(eλ, eλ) = λ and we fix it once and for all. Then there is a homomorphism from S′ to Ga
defined by 1n−1 A B

0 13 A′

0 0 1n−1

 7→ (Aeλ, en−1),

where we regard A as an element of Hom(L,X−) and ( , ) is the symmetric bilinear form
on V , and its stabilizer in the Levi component M ′ is given by

p 0 0
0 h 0
0 0 p∗

 : p ∈ Pn−1, h ∈ SO(L), heλ = eλ


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where Pn−1 denotes the mirabolic subgroup of GLn−1, i.e.

Pn−1 =

{(
α u

0 1

)
: α ∈ GLn−2, u ∈ Gn−2

a

}
,

and p∗ = Jn−1
tp−1Jn−1. Here Jr denotes the r × r matrix with ones on the sinister

diagonal, zeros elsewhere. Let Un−1 denote the group of upper unipotent matrices in
GLn−1. We define ǔ ∈ M ′ for u ∈ Un−1 by

ǔ =

u 0 0
0 13 0
0 0 u∗

 (1.3)

and let S be a unipotent subgroup of P ′ defined by

S := S′S′′ where S′′ = {ǔ : u ∈ Un−1}. (1.4)

Let us define a subgroup Dλ of M ′ by

Dλ :=


1n−1 0 0

0 h 0
0 0 1n−1

 : h ∈ SO(L), heλ = eλ

 ' SO(E) ' E×/F×.

Definition 1. The Bessel subgroup Rλ of G is defined by

Rλ := Dλ S

and we define a character χλ of Rλ(A) by setting χλ(t) := 1 for t ∈ Dλ(A) and

χλ(s
′ǔ) = ψ((Aeλ, en−1))ψ(u1,2 + · · · + un−2,n−1) (1.5)

for

s′ =

1n−1 A B

0 13 A′

0 0 1n−1

 ∈ S′(A) and u = (ui,j ) ∈ Un−1(A).

Then for an automorphic form φ on G(A), its special Bessel period of type E is defined
by

Bλ,ψ (φ) =

∫
Rλ(F )\Rλ(A)

φ(r)χλ(r)
−1 dr.

We refer to [15, (5)] for the dependency of Bλ,ψ on the choice of λ and eλ.

1.3. Refined Gan–Gross–Prasad conjecture by Liu in our case

Let π be an irreducible tempered cuspidal automorphic representation ofG(A) forG ∈ G
and Vπ its space of automorphic forms.
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Let 〈 , 〉 denote the G(A)-invariant Hermitian inner product on Vπ given by the Pe-
tersson inner product, i.e.

〈φ1, φ2〉 =

∫
G(F)\G(A)

φ1(g) φ2(g) dg for φ1, φ2 ∈ Vπ .

Since π = ⊗v πv where πv is unitary, we may also choose aGv-invariant Hermitian inner
product 〈 , 〉v on the space Vπv of πv for each place v so that

〈φ1, φ2〉 =
∏
v

〈φ1,v, φ2,v〉v

for any decomposable vectors φ1 = ⊗v φ1,v and φ2 = ⊗v φ2,v ∈ Vπ .
We choose a local Haar measure dgv on Gv for each place v of F so that

Vol(KG,v, dgv) = 1 at almost all v, where KG,v is a maximal compact subgroup of Gv .
Let us also choose a local Haar measure dtv on Dλ,v = Dλ(Fv) at each place v of F
so that Vol(Kλ,v, dtv) = 1 at almost all v, where Kλ,v is a maximal compact subgroup
of Dλ,v . We define positive constants CG and Cλ, called Haar measure constants in [27],
by

dg = CG ·
∏
v

dgv and dt = Cλ ·
∏
v

dtv (1.6)

respectively. Here we recall that dg and dt are the Tamagawa measures on G(A) and
Dλ(A), respectively.

1.3.1. Local integral. At each place v of F , a local integral αv(φv, φ′v) for φv, φ′v ∈ Vπv
is defined as follows.

First suppose that v is non-archimedean. Let us first recall the definition of a stable
integral by Lapid and Mao [33, Definition 2.1, Remark 2.2].

Definition 2. LetU be a unipotent group over Fv and f a locally constant function onU .
We say that f has a stable integral over U if there exists a compact open subgroup N
of U such that for any compact open subgroup N ′ of U containing N we have∫

N ′
f (u) du =

∫
N

f (u) du.

Then we denote this common value by
∫ st
U
f (u) du and say that the integral stabilizes

at N .

Remark 1. Note that if f ∈ L1(U) and f has a stable integral over U , then we have∫
U

f (u) du =

∫ st

U

f (u) du.

Definition 3. For a non-archimedean place v, we define αv(φv, φ′v) for φv, φ′v ∈ Vπv by

αv(φv, φ
′
v) :=

∫
Dλ,v

∫ st

Sv

〈πv(svtv)φv, φ
′
v〉vχλ(sv)

−1 dsv dtv. (1.7)
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Indeed, it is shown in Liu [37] that for any tv ∈ Dλ,v the inner integral of (1.7) stabilizes
at a certain open compact subgroup of Sv [37, Proposition 3.1] and the outer integral
of (1.7) converges [37, Theorem 2.1]. We note that the well-definedness of (1.7) is also
shown in Waldspurger [48, Section 5.1, Lemme].

Now suppose that v is archimedean.

Definition 4. For an archimedean place v, we define αv(φv, φ′v) by a regularized integral
whose regularization is achieved using the Fourier transform. We refer to Liu [37, 3.4] for
the details.

Remark 2. It is shown in Liu [37, Proposition 3.5] that for any place v where πv is
square integrable, the local integral∫

Dλ,v

∫
Sv

〈πv(svtv)φv, φ
′
v〉v χλ(sv)

−1 dsv dtv (1.8)

does converge absolutely and is equal to αv(φv, φ′v) defined as above. We note that later
we are only concerned with the case when πv is a discrete series representation at any
archimedean place v.

We recall that the multiplicity one property, i.e.

dimC HomRλ,v (πv, χλ,v) ≤ 1, (1.9)

holds at any place v. For the proof, we refer to Gan, Gross and Prasad [17, Corol-
lary 15.3] and Jiang, Sun and Zhu [29, Theorem A] for the non-archimedean case and
the archimedean case, respectively.

Moreover when v is non-archimedean, it is shown that

dimC HomRλ,v (πv, χλ,v) = 1
⇐⇒ αv(φv, φ

′
v) 6= 0 for some φv, φ′v ∈ Vv which are KG,v-finite, (1.10)

by Waldspurger [48, Proposition 5.7]. It is expected that the equivalence (1.10) holds also
when v is archimedean. Indeed, Beuzart–Plessis [5] proved the corresponding assertion
in the unitary group case for tempered representations. We also note that the condition on
the right hand side of (1.10) is equivalent to

αv(φv, φv) 6= 0 for some KG,v-finite vector φv ∈ Vv . (1.11)

Indeed, αv(φv, φ′v) 6= 0 implies that the two linear forms L and L′ on Vπv defined by
L(ϕv) = αv(ϕv, φ

′
v) and L′(ϕv) = αv(φv, ϕv) for ϕv ∈ Vπv , respectively, are non-zero

elements of HomRλ,v (πv, χλ,v). By (1.9) there exists c ∈ C× such that L′ = c · L. Thus
L′(φv) = c · L(φv) = c · αv(φv, φ

′
v) 6= 0 and hence αv(φv, φv) 6= 0.

1.3.2. Normalization of local integrals. We fix maximal compact subgroups KG =∏
v KG,v of G(A) and Kλ =

∏
v Kλ,v of Dλ(A).
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A place v is called good (with respect to π and a decomposable vector φ = ⊗v φv ∈
Vπ = ⊗v Vπv ) if:

v is non-archimedean and is not lying over 2; (1.12a)
KG,v is a hyperspecial maximal compact subgroup of Gv; (1.12b)
Ev is an unramified quadratic extension of Fv or Ev = Fv ⊕ Fv; (1.12c)
πv is an unramified representation of Gv; (1.12d)
φv is a KG,v-fixed vector such that 〈φv, φv〉v = 1 and χλ,v is Kλ,v-fixed; (1.12e)
Kλ,v ⊂ KG,v and Vol(KG,v, dgv) = Vol(Kλ,v, dtv) = 1. (1.12f)

Then Liu’s theorem [37, Theorem 2.2] states that when v is good, one has

αv(φv, φv) =
L(1/2, πv)L(1/2, πv × χE,v)

∏n
j=1 ζFv (2j)

L(1, πv,Ad)L(1, χE,v)
. (1.13)

Definition 5. We define the normalized local integral α\v(φv, φ′v) at each place v of F by

α\v(φv, φ
′
v) :=

L(1, πv,Ad)L(1, χE,v)
L(1/2, πv)L(1/2, πv × χE,v)

∏n
j=1 ζFv (2j)

· αv(φv, φ
′
v). (1.14)

We shall often use the notation

αv(φv) := αv(φv, φv) and α\v(φv) := α
\
v(φv, φv). (1.15)

Remark 3. Recall that ζR(s) = π−s/2 0(s/2) and ζC(s) = (2π)1−s 0(s). Here we note
that L(s, π) and L(s, π × χE) are defined by the doubling method as in Lapid and Ral-
lis [36] and are holomorphic for Re(s) > 0 by Yamana [52] since π is tempered. It is
believed that L(s, π,Ad) can be analytically continued to the whole s-plane, is holomor-
phic for Re(s) > 0 and L(1, π,Ad) is non-zero when π is tempered.

1.3.3. Refined global Gross–Prasad conjecture on Bλ,ψ . As in Ichino and Ikeda [27],
we say that π = ⊗vπv is almost locally generic if the local representation πv is generic
at almost all places v of F . Then as explained in [27, Section 2], such a π is conjectured
to come from an elliptic Arthur parameter

9(π) : LF → LG := ĜoWF .

Here LF denotes the conjectural Langlands group of F and LG is the Langlands dual
group of G. The local representation πv is expected to be tempered at every v by the
generalized Ramanujan conjecture. Let S(9(π)) be the centralizer of the image of the
Arthur parameter 9(π) in the complex dual group Ĝ. For G ∈ G, S(9(π)) is a finite
elementary 2-group. We refer to [27, 2.5] for the details.

The conjecture formulated by Liu [37, Conjecture 2.5] reads as follows in our case.
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Conjecture. Let π = ⊗vπv be an irreducible cuspidal automorphic representation
of G(A) for G ∈ G. Suppose that π is almost locally generic.

(1) We have dimC HomRλ,v (πv, χλ,v) = 1 if and only if αv(φ′v) 6= 0 for some KG,v-finite
vector φ′v ∈ Vπv .

(2) For any non-zero decomposable cusp form φ = ⊗v φv ∈ Vπ , we have

|Bλ,ψ (φ)|
2

〈φ, φ〉
=

Cλ

|S(9(π))|
·

( n∏
j=1

ζF (2j)
)

×
L(1/2, π)L(1/2, π × χE)
L(1, π,Ad)L(1, χE)

·

∏
v

α
\
v(φv)

〈φv, φv〉v
(1.16)

where the product is indeed over the finite set of places v of F which are not good in
the sense of (1.12). Here all L-functions in (1.16) denote the completed L-functions.
In particular ζF (s) denotes the completed Dedekind zeta function of F , i.e.

ζF (s) =
∏

v: place ofF

ζFv (s). (1.17)

Remark 4. When n = 2 and G = G, Liu [37], inspired by Prasad and Takloo-
Bighash [40], proved (1.16) for endoscopic Yoshida lifts, and Corbett [9] recently proved
it for non-endoscopic Yoshida lifts. We mention that Qiu [41] considered a non-tempered
case when n = 2, namely the Saito–Kurokawa lifting case. We also mention that Murase
and Narita [39] proved an explicit formula for the central L-values in terms of the Bessel
periods for Arakawa lifts when n = 2 and G is not split.

1.4. Main Theorem

We say that an irreducible cuspidal tempered automorphic representation π = ⊗v πv of
G(A) for G ∈ G has a weak lift to GL2n(A) if there exists an irreducible automorphic
representation 5 = ⊗v5v of GL2n(A) such that 5v is a local Langlands lift of πv at
almost all non-archimedean places and all archimedean places. If such a 5 exists, it is
unique by the classification theorem of Jacquet and Shalika [28, (4.4)] and is written as
an isobaric sum

5 =
l

�
i=1

πi (1.18)

where πi is an irreducible cuspidal automorphic representation of GL2ni (A) such that

L(s, πi,∧
2) has a pole at s = 1,

l∑
i=1

ni = n, πi 6' πj for i 6= j .

When G = G, the existence of a weak lift is guaranteed by Arthur [3, Theorem 1.5.2].
Our aim in this paper is to prove the following theorem.
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Theorem 1. Let F be a totally real number field and π = ⊗v πv an irreducible cuspidal
tempered automorphic representation ofG(A) forG ∈ G such that πv is a discrete series
representation at any archimedean place v of F .

Suppose that the special Bessel period Bλ,ψ of type E does not vanish identically on
the space of cusp forms Vπ for π . Let 5 be a weak lift of π to GL2n(A), which is written
of the form (1.18).

Then the following assertions hold.

(1) At each place v, there exists a KG,v-finite vector φ′v ∈ Vπv such that αv(φ′v) 6= 0.
(2) For any non-zero decomposable cusp form φ = ⊗v φv ∈ Vπ , we have

|Bλ,ψ (φ)|
2

〈φ, φ〉
= 2−l Cλ ·

( n∏
j=1

ζF (2j)
)

×
L(1/2, π)L(1/2, π × χE)
L(1, π,Ad)L(1, χE)

·

∏
v

α
\
v(φv)

〈φv, φv〉v
. (1.19)

Here L(s, π,Ad) is defined as L(s, π,Ad) =
∏
v L(s, πv,Ad) where

L(s, πv,Ad) := L(s,5v,Sym2) (1.20)

for each place v and Sym2 denotes the symmetric square representation of GL2n(C).

Remark 5. The existence of a weak lift 5 readily follows from our previous paper [15,
Theorem 1], as explained in the beginning of 2.1.

Remark 6. When π has a weak lift 5 to GL2n(A) of the form (1.18), it is clear from the
definition of the Arthur parameter that 2l = |S(9(π))|.

Remark 7. Suppose that πv is unramified. Then we may define L(s, πv,Ad) in terms of
the Satake parameter of πv . This coincides with the one defined by (1.20).

The following corollary is proved in Section 4.

Corollary 1. Keep the assumption in Theorem 1 except forBλ,ψ 6≡ 0 on Vπ . If we assume
that Arthur’s conjectures [3, Conjecture 9.4.2, Conjecture 9.5.4] hold for anyG′ ∈ G, the
equality (1.19) holds for any non-zero decomposable cusp form φ = ⊗v φv ∈ Vπ .

We refer to Ichino and Ikeda [27, 2.5] for the relevance of Arthur’s conjectures to the
Gross–Prasad conjecture.

For the sake of the reader, here we explain the skeleton of our proof of (1.19). As in
our previous paper [15], the theta correspondence between G ∈ Gn and S̃pn, i.e. rank n
metaplectic group, plays a pivotal role.

Suppose that Bλ,ψ (φ) 6= 0 for φ ∈ Vπ . The computation in [11] of the pull-back of
the ψλ-Whittaker periodW(θϕψ (φ);ψλ), which is defined by (2.8), of θϕψ (φ), the theta lift
of φ to S̃pn(A) with respect to the additive character ψ and the test function ϕ, yields

Bλ,ψ (φ) =a.a.
C−1
G Cλ ·W(θ

ϕ
ψ (φ);ψλ). (1.21)
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Here we use the symbol “=
a.a.

” to imply that the two sides are equal up to multiplication by
a product of finitely many local factors. Then the remarkable formula obtained by Lapid
and Mao [35] implies that we have

|W(θ
ϕ
ψ (φ);ψλ)|

2

(θ
ϕ
ψ (φ), θ

ϕ
ψ (φ))

=
a.a.

2−l ·
L(1/2, π × χE)

∏n
j=1 ζF (2j)

L(1, π,Ad)
(1.22)

where (θϕψ (φ), θ
ϕ
ψ (φ)) is the square of the Petersson norm of θϕψ (φ). On the other hand,

some proper adjustments to the proof of the precise Rallis inner product formula in Gan
and Takeda [19] yield one in our case, namely

(θ
ϕ
ψ (φ), θ

ϕ
ψ (φ))

〈φ, φ〉
=
a.a.
CG ·

L(1/2, π)∏n
j=1 ζF (2j)

. (1.23)

Since we have CG ·
∏n
j=1 ζF (2j) = Cλ · L(1, χE), the combination of (1.21), (1.22) and

(1.23) yields

|Bλ,ψ (φ)|
2

〈φ, φ〉
=
a.a.

2−l · Cλ ·
L(1/2, π)L(1/2, π × χE)

∏n
j=1 ζF (2j)

L(1, π,Ad)L(1, χE)
. (1.24)

Thus our task is to elaborate (1.24) to the precise equality (1.19) by executing the above
idea rigorously and proving a certain local equality by some intricate arguments. It is done
in Section 3, which is the heart of the matter of this paper.

1.5. Böcherer’s conjecture

By considering the case when n = 2, F = Q and G = G2 ' PGSp2, Theorem 1 yields
a proof of the long-standing conjecture by Böcherer [7] concerning central critical values
of imaginary quadratic twists of spinor L-functions for holomorphic Siegel cusp forms
of degree two which are Hecke eigenforms, thanks to the recent work of Dickson, Pitale,
Saha and Schmidt [10]. Namely Böcherer’s conjecture holds in the following refined
form.

Theorem 2. Let Φ be a holomorphic Siegel cusp form of degree two and weight k with
respect to Sp2(Z) which is a Hecke eigenform and π(Φ) the associated automorphic
representation of PGSp2(A) ' G2(A). Suppose that Φ is not a Saito–Kurokawa lift. Let

Φ(Z) =
∑
T>0

a(T ,Φ) exp[2π
√
−1 tr(T Z)], Z ∈ H2,

be the Fourier expansion where T runs over semi-integral positive definite two by two
symmetric matrices and H2 denotes the Siegel upper half space of degree two.

For an imaginary quadratic field E with discriminant −DE , define

B(Φ;E) := w(E)−1
∑

{T : det T=DE/4}/∼

a(T ,Φ)
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where ∼ denotes the equivalence relation defined by T1 ∼ T2 if there exists an element γ
of SL2(Z) such that tγ T1γ = T2 and w(E) is the number of roots of unity in E. We recall
that when det T = DE/4, the number of elements in {γ ∈ SL2(Z) : tγ T γ = T } is equal
to w(E).

Then

|B(Φ;E)|2

〈Φ,Φ〉
= 22k−4

·Dk−1
E ·

L(1/2, π(Φ))L(1/2, π(Φ)× χE)
L(1, π(Φ),Ad)

. (1.25)

Here

〈Φ,Φ〉 =

∫
Sp2(Z)\H2

|Φ(Z)|2 det(Y )k−3 dX dY where Z = X +
√
−1Y .

Proof. First we note that π(Φ) is tempered by Weissauer [51] since Φ is not a Saito–
Kurokawa lift, as explained in the proof of [15, Theorem 4].

Recall that it is shown in our previous paper [15, Theorem 5] that

B(Φ;E) 6= 0 ⇐⇒ L(1/2, π(Φ))L(1/2, π(Φ)× χE) 6= 0. (1.26)

When k is odd, we have L(1/2, π(Φ)) = 0 by Andrianov [2, Theorem 3.1.1(II)].
Hence (1.25) holds by (1.26). We mention that B(Φ;E) = 0 also follows in a more ele-
mentary way from tγ {T : det T = DE/4}γ = {T : det T = DE/4} and a(tγ T γ,Φ) =
(det γ )k · a(T ,Φ) for γ ∈ GL2(Z), as remarked in Böcherer [7, p. 31].

Suppose that k is even. If B(Φ;E) = 0, (1.25) holds by (1.26). If B(Φ;E) 6= 0,
(1.25) follows from (1.19) by Dickson et al. [10, 1.13 Theorem]. ut

Remark 8. In [7], Böcherer conjectured that there exists a constant cΦ which depends
only on Φ such that we have

|B(Φ;E)|2 = cΦ ·D
k−1
E · L(1/2, π(Φ)× χE)

for any imaginary quadratic field E. As far as we know, Böcherer did not speculate on
the constant cΦ except when Φ is a Saito–Kurokawa lift. For the exact formula for the
left hand side of (1.25) when Φ is a Saito–Kurokawa lift, we refer to Dickson et al. [10,
3.13 Theorem].

Remark 9. For brevity, only the full modular case is stated in Theorem 2. In fact, The-
orem 1 yields [10, 1.13 Theorem] unconditionally when 3 = 1, i.e. the refined form of
Böcherer’s conjecture has an extension to the odd square free level case.

We expect Theorem 2 and its extension to have a broad spectrum of interesting con-
sequences, e.g. [10, Section 3.6]. We also mention Blomer [6] and Kowalski, Saha and
Tsimerman [31]. It is expected that the extension of Theorem 2 holds also in the case
when k = 2, which we wish to consider in the near future.

Remark 10. In our next paper, we shall pursue the generalization of Theorem 2 and its
extension to the case when the character of the ideal class group is not necessarily trivial.
We shall also pursue the case when the Siegel cusp form in question is vector valued.
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1.6. Organization of the paper

This paper is organized as follows. In Section 2, first we review the precise Rallis inner
product formula by Gan and Takeda [19] and the explicit formula for the Whittaker peri-
ods on the metaplectic group by Lapid and Mao [35]. Both formulas play decisive roles
as explained in Section 1.4. After the review, we turn to the proof of Theorem 1. By com-
bining these two formulas with the pull-back formula for the Whittaker periods on the
metaplectic group in [11], the proof of Theorem 1 is reduced to verifying a certain local
equality, which we prove in Section 3. Then in Section 4 we deduce Corollary 1 from
Theorem 1, assuming Arthur’s conjectures.

2. Reduction to a local equality

2.1. Set up

Throughout this section, π = ⊗vπv is an irreducible cuspidal tempered automorphic
representation of G(A) for G = SO(V ) ∈ Gn over a totally real number field F such that

πv is a discrete series representation at any real place v; (2.1a)
Bλ,ψ , the Bessel model of type E, does not vanish identically on Vπ . (2.1b)

Since π is tempered, by Remark 2 in [15], Theorem 1 in [15] and the arguments in
the course of its proof are all applicable to π . Hence we have

L(1/2, π) · L(1/2, π × χE) 6= 0 (2.1c)

and there exists a globally generic irreducible cuspidal automorphic representation π◦

of G(A) which is nearly equivalent to π . Thus

π is almost locally generic. (2.1d)

We note that when n = 2, F = Q andG = G, the existence of such π◦ also follows from
Weissauer [50].

Since π◦ has a weak lift to GL2n(A) by Arthur [3, Theorem 1.5.2], we may say

π has a weak lift 5 to GL2n(A) of the form (1.18). (2.1e)

We note that the existence of a weak lift of π◦ to GL2n(A) also follows from Cogdell,
Kim, Piatetski-Shapiro and Shahidi [8] since π◦ is generic.

For a positive integer n, let Yn be the space of 2n-dimensional row vectors equipped
with the alternating form

〈w1, w2〉 = w1

(
0 1n
−1n 0

)
tw2 for w1, w2 ∈ Yn.

Let Yn = Y+n ⊕ Y
−
n be the polarization where

Y+n := {(y1, . . . , y2n) : yi = 0 (1 ≤ i ≤ n)}
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and
Y−n := {(y1, . . . , y2n) : yi = 0 (n+ 1 ≤ i ≤ 2n)}.

Let Spn denote the rank n symplectic group defined by

Spn :=
{
g ∈ GL2n : g

(
0 1n
−1n 0

)
tg =

(
0 1n
−1n 0

)}
,

which acts on Yn from the right. We recall that S̃pn(A), the rank n metaplectic group
over A, is a certain twofold central extension of Spn(A). The theta correspondence of
automorphic forms between S̃pn(A) and G(A) for G ∈ Gn plays the essential role as in
our previous paper [15].

Let us realize ωψ = ωψ,V,Yn , the Weil representation of G(A) × S̃pn(A) with re-
spect to ψ , on S((V ⊗ Y+n )(A)), the Schwartz–Bruhat space on (V ⊗ Y+n )(A), by taking
V ⊗ Yn = (V ⊗ Y

+
n )⊕ (V ⊗ Y

−
n ) as a polarization of the symplectic space V ⊗ Yn. For

φ ∈ Vπ and ϕ ∈ S((V ⊗ Y+n )(A)), the theta lift θϕψ (φ) of φ to S̃pn(A) with respect to the
additive character ψ and the test function ϕ is defined by

θ
ϕ
ψ (φ)(h) :=

∫
G(F)\G(A)

( ∑
z∈(V⊗Y+n )(F )

(ωψ (g, h)ϕ)(z)
)
φ(g) dg for h ∈ S̃pn(A).

Let 2n(π, ψ) denote the automorphic representation of S̃pn(A) generated by θ
ϕ
ψ (φ)

where φ and ϕ vary in Vπ and S((V ⊗ Y+n )(A)), respectively. For the sake of simplicity,
we shall write σ for 2n(π, ψ) and Vσ for its space of automorphic forms.

Then by the proof of Theorem 1 in [15], we have

σ = 2n(π, ψ) is ψλ-generic, irreducible and cuspidal. (2.1f)

We refer to Section 2.3 for the definition of ψλ-genericity.

2.2. Rallis inner product formula

Gan and Takeda [19] proved the precise Rallis inner product formula in the (O2n+1, S̃pn)
setting. On the other hand, the one we need for our purpose is in the (SO2n+1, S̃pn) setting.
Here we recall the Rallis inner product formula, with some explanations of adjustments
to the proof in [19] necessary to deduce the one in our setting.

Let W be the quadratic space V ⊕ (−V ), i.e. as a vector space W is a direct sum
V ⊕ V and its symmetric bilinear form ( , )W on W is defined by

(v1 ⊕ v2, v
′

1 ⊕ v
′

2)W := (v1, v
′

1)V − (v2, v
′

2)V .

Let W+ be a maximal isotropic subspace of W defined by

W+ := {v ⊕ v ∈W : v ∈ V }.

We note that there is a natural embedding

ι : SO(V )× SO(−V ) ↪→ SO(W) such that ι(g1, g2)(v1 ⊕ v2) = g1v1 ⊕ g2v2.
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Also there exists an SO(V ,A)× SO(−V,A)-intertwining map

τ : S((V ⊗ Y+n )(A))⊗̂S(((−V )⊗ Y+n )(A))→ S((W+ ⊗ Yn)(A))

with respect to the Weil representations, obtained by composing the natural map

S((V ⊗ Y+n )(A))⊗̂S(((−V )⊗ Y+n )(A))→ S((W⊗ Y+n )(A))

with the partial Fourier transform

S((W⊗ Y+n )(A))
∼
−→ S((W+ ⊗ Yn)(A)).

Namely we have

τ(ωψ,V,Yn(g1)ϕ+ ⊗ ωψ,−V,Yn(g2)ϕ−) = ωψ,W,Yn(ι(g1, g2))τ (ϕ+ ⊗ ϕ−)

for (g1, g2) ∈ SO(V ,A)× SO(−V,A) and ϕ± ∈ S(((±V )⊗ Y+n )(A)).
We also consider the local counterparts of τ .

2.2.1. Local doubling zeta integrals. Let P be the maximal parabolic subgroup of
SO(W) defined as the stabilizer of the isotropic subspace V⊕{0}. Then the Levi subgroup
of P is isomorphic to GL(V ).

At each place v of F , we consider the degenerate principal series representation

Iv(s) := IndSO(W,Fv)
P (Fv)

| |
s
v for s ∈ C.

Here the induction is normalized and | |sv denotes the character of P(Fv) which is given
by |det |sv on its Levi subgroup GL(V , Fv) and is trivial on its unipotent radical.

For φv, φ′v ∈ Vπv and 8v ∈ Iv(s), the local doubling zeta integral is defined by

Zv(s, φv, φ
′
v,8v, πv) :=

∫
Gv

〈πv(gv)φv, φ
′
v〉v 8v(ι(gv, ev)) dgv (2.2)

where ev denotes the unit element of Gv . We recall that the integral (2.2) converges ab-
solutely when Re(s) > − 1

2 by Yamana [52, Lemma 7.2] since πv is tempered.
For ϕv ∈ S((W+ ⊗ Yn)(Fv)), we define 8ϕv ∈ Iv(0) by

8ϕv (gv) = (ωψv (gv)ϕv)(0) for gv ∈ SO(W, Fv). (2.3)

Definition 6. We define Z◦v(φv, ϕv, πv) for φv ∈ Vπv and ϕv ∈ S((V ⊗ Y+n )(Fv)) by

Z◦v(φv, ϕv, πv) :=

∏n
j=1 ζFv (2j)

L(1/2, πv)
·

1
〈φv, φv〉v

· Zv(0, φv, φv,8τv(ϕv⊗ϕv), πv). (2.4)
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2.2.2. Rallis inner product formula. For automorphic forms ϕ̃1 and ϕ̃2 on S̃pn(A), we
define the Petersson inner product (ϕ̃1, ϕ̃2) by

(ϕ̃1, ϕ̃2) :=

∫
Spn(F )\Spn(A)

ϕ̃1(g) ϕ̃2(g) dg

when the integral converges absolutely. We recall that dg is the Tamagawa measure.
Let us first recall the Siegel–Weil formula. Let 8 be a standard section of

IndSO(W)(A)
P (A) | |

s . Then we form the Siegel Eisenstein series by

E(g, s;8) =
∑

γ∈P(F)\SO(W)(F )
8(γg, s).

This sum converges absolutely when Re(s) > n and it has a meromorphic continuation
to C. We note that our Eisenstein series slightly differs from the Eisenstein series E(m,m)

in [19, p. 183] form = 2n+1 since P is also the Siegel parabolic subgroup of O(W) and
P \O(W) 6= P \SO(W).

Let
E(g, s;8) =

∑
d≥−1

Ad(8)(g)s
d

be the Laurent expansion of E(g, s;8) at s = 0 where Ad(8) is an automorphic form
on SO(W)(A). For ϕ ∈ S((W+ ⊗ Yn)(A)), we define the section 8ϕ ∈ IndSO(W)(A)

P (A) | |
s

as in the local situation (2.3) and we simply write Ad(ϕ) for Ad(8ϕ).
On the other hand, let I (2n+1,n)(g, s;ϕ) be the regularized theta integral defined in

[19, p. 185]. Then we have an equality

I (2n+1,n)(g, s;ω(z)ϕ) = Pz(s)E (2n+1,n)(g, s;ϕ)

as in [19, p. 186]. Here z is a regularizing element given in [19, p. 185], Pz(s) is a certain
holomorphic function of s depending on z and E (2n+1,n)(g, s;ϕ) is a certain Eisenstein
series defined in [19, p. 186]. Let us write the Laurent expansion of E (2n+1,n)(g, s;ϕ) at
s = n+1

2 as

E (2n+1,n)(g, s;ϕ) =
∑
d≥−2

B
(2n+1,n)
d (ϕ)

(
s −

n+ 1
2

)d
.

Let ϕ0 denote the spherical Schwartz function defined in [19, p. 181]. We denote by
S◦((W+ ⊗ Yn)(A)) the SO(W)(A)-span of ϕ0. Then we have the following Siegel–Weil
formula.

Proposition 1. With the above notation, we have

A0(ϕ) = B
(2n+1,n)
−1 (ϕ)

for any ϕ ∈ S◦((W+ ⊗ Yn)(A)).
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Proof. The argument for the proof of [19, Proposition 5.3] for (O2n+1, S̃pn) works, mu-
tatis mutandis, for (SO2n+1, S̃pn). It is easily seen that the constant λ2 which appears
in the proof of [19, Lemma 4.3] is given by ξF (1)

2 ξF (2)
in our case. Here ξF (s) denotes the

completed normalized zeta function of F given by

ξF (s) = |DF |
s/2 ζF (s),

where DF is the discriminant of F , ζF is the completed Dedekind zeta function of F
defined by (1.17) and we define ξF (1) := Ress=1 ξF (s) as in [19, p. 180]. Thus the
constant 2 does not appear in the Siegel–Weil formula above unlike [19, Proposition 5.3].

ut

We obtain the following Rallis inner product formula from Proposition 1 as in [19].

Theorem 3. For any non-zero decomposable vectors φ = ⊗v φv ∈ Vπ and ϕ = ⊗v ϕv ∈
S((V ⊗ Y+n )(A)), we have

(θ
ϕ
ψ (φ), θ

ϕ
ψ (φ))

〈φ, φ〉
= CG ·

L(1/2, π)∏n
j=1 ζF (2j)

·

∏
v

Z◦v(φv, ϕv, πv) (2.5)

where Z◦v(φv, ϕv, πv) = 1 for almost all v.

Proof. Since σ = 2n(π, ψ) is cuspidal, by a similar computation to the proof of [19,
Proposition 6.1], it is shown that∑

i

(θ
ϕ1,i
ψ (φ1), θ

ϕ2,i
ψ (φ2)) =

∫
(G×G)(F )\(G×G)(A)

φ1(g1) φ2(g2)

· B
(2n+1,n)
−1

(∑
i

τ(ϕ1,i ⊗ ϕ2,i)
)
(ι(g1, g2)) dg1 dg2

for φi ∈ Vπ and ϕ =
∑
i τ(ϕ1,i ⊗ ϕ2,i) ∈ S◦((W+ ⊗ Yn)(A)) such that 8ϕ = ⊗8v is

factorizable. Then by Proposition 1 and the doubling method, we obtain∑
i(θ

ϕ1,i
ψ (φ), θ

ϕ2,i
ψ (φ))

〈φ1, φ2〉
= CG ·

L(1/2, π)∏n
j=1 ζF (2j)

·

∏
v

Z\v(0, φ1,v, φ2,v,8v, πv)

where we define Z\v(0, φ1,v, φ2,v,8v, πv) by

Z\v(0, φ1,v, φ2,v,8v, πv) =

∏n
j=1 ζFv (2j)

L(1/2, πv)
·

1
〈φ1,v, φ2,v〉v

· Zv(0, φ1,v, φ2,v,8v, πv),

in the same manner as (2.4). Further, we may extend the formula above to the whole space
S((V ⊗ Y+n )(A)) by a simple argument as remarked in [19, p. 243] and (2.5) holds. ut

Remark 11. We note that there is a typo in the Rallis inner product formula stated in [19,
Theorem 6.6]. It needs to be remedied as follows. There the Petersson inner product of
the theta lifts is essentially equal to 2 times a certain L-value. However the Siegel–Weil
formula [19, Proposition 5.3] implies that it is essentially equal to 2−1 times the L-value
instead.
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2.3. Whittaker periods of cusp forms on the metaplectic groups

We recall the Ichino–Ikeda type formula proved by Lapid and Mao [35] for the Whittaker
periods of cusp forms on the metaplectic groups.

Since S̃pn splits trivially over unipotent subgroups of Spn both locally and globally,
we regard these subgroups as subgroups of S̃pn. For a ∈ GLn and a symmetric n × n
matrix S, we denote by m(a) and v(S) the elements of Spn given by

m(a) =

(
a 0
0 ta−1

)
, v(S) =

(
1n S

0 1n

)
.

Let USp = {v(S) :
tS = S} and Un the group of upper unipotent matrices in GLn. Then

the standard maximal unipotent subgroup N = Nn of Spn is given by

N = m(Un)USp. (2.6)

We define a character ψλ of N(A) by

ψλ(m(u)v(S)) = ψ

(
u1,2 + · · · + un−1,n +

λ

2
sn,n

)
(2.7)

where ui,j denotes the (i, j)-entry of u and sn,n the (n, n)-entry of S.

Definition 7. For an automorphic form φ̃ on S̃pn(A), its ψλ-Whittaker period W(φ̃;ψλ)
is defined by

W(φ̃;ψλ) :=

∫
N(F)\N(A)

φ̃(n)ψλ(n)
−1 dn. (2.8)

An automorphic representation of S̃pn(A) is called ψλ-generic when W( ;ψλ) does
not vanish identically on its space of automorphic forms.

As we noted in (2.1f),

σ = 2n(π, ψ) is ψλ-generic, irreducible and cuspidal. (2.9)

Let σ = ⊗v σv . Then by Adams and Barbasch [1],

σv is a discrete series representation at any archimedean place v (2.10)

since so is πv . Let π◦ be the theta lift of σ to G(A) with respect to ψ−λ, which is globally
generic by [15, Proposition 1, 3]. Let 6 = 5 ⊗ χE where 5 is a weak lift of π to
GL2n(A). Then by [15, Lemma 1] and its proof, we have

L(s,6v) = L(s, π
◦
v ) = L(s, πv × χE,v)

at every place v. Thus we may say that 6 is a weak lift of π◦ to GL2n(A).
At each place v, we choose a S̃pn(Fv)-invariant Hermitian inner product ( , )v on Vσv

so that we have (ϕ̃1, ϕ̃2) =
∏
v(ϕ̃1,v, ϕ̃2,v)v for any decomposable vectors ϕ̃1 = ⊗v ϕ̃1,v ,

ϕ̃2 = ⊗v ϕ̃2,v ∈ Vσ .
Then by Lapid and Mao [35, Corollary 1.4], we have the following theorem.
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Theorem 4. For any non-zero decomposable cusp form ϕ̃ = ⊗v ϕ̃v ∈ Vσ , we have

|W(ϕ̃;ψλ)|
2

(ϕ̃, ϕ̃)
= 2−l ·

L(1/2, π × χE)
∏n
j=1 ζF (2j)

L(1, π,Ad)
·

∏
v

Iv(ϕ̃v) (2.11)

where Iv(ϕ̃v) is the stable integral defined by

Iv(ϕ̃v) :=
L(1, πv,Ad)

L(1/2, πv×χE,v)
∏n
j=1 ζFv (2j)

∫ st

Nv

(σv(nv)ϕ̃v, ϕ̃v)v

(ϕ̃v, ϕ̃v)v
·ψ−1
λ (nv) dnv (2.12)

and we have
Iv(ϕ̃v) = 1 for almost all places v of F . (2.13)

Remark 12. When v is non-archimedean, the integrand of (2.12) does have a stable inte-
gral over Nv by [33, Proposition 2.3]. When v is archimedean, by (2.10) the integrand of
(2.12) is integrable over Nv as explained in [33, p. 455]. Thus Iv(ϕ̃v) at an archimedean
place v is indeed given by the absolutely convergent integral over Nv .

The assertion (2.13) was actually proved by Ginzburg, Rallis and Soudry [21] prior
to [33]. Also we recall that for any place v, we have

dimC HomNv (σv, ψλ,v) ≤ 1 (2.14)

by Szpruch [44, Theorem 3.1] and Liu and Sun [38, Theorem A] for the non-archimedean
case and the archimedean case, respectively.

2.4. Pull-back of the ψλ-Whittaker period

Since Bλ,ψ 6≡ 0 on Vπ , we have HomRλ,v (πv, χλ,v) 6= {0} for any place v of F . Hence
when v is non-archimedean, αv 6≡ 0 by (1.10). Here we proceed further assuming the
statement (1) of Theorem 1, i.e. αv 6≡ 0 at any place v of F , which we shall prove later
in Section 3.5.

By the multiplicity one property (1.9) of the special Bessel model, there existsC∈ C×
such that

Bλ,ψ (φ) · Bλ,ψ (φ′) = C ·
∏
v

α\v(φv, φ
′
v) (2.15)

for any non-zero decomposable cusp forms φ = ⊗v φv , φ′ = ⊗v φ′v ∈ Vπ . Here we note
that α\v(φv, φ′v) = 1 for almost all v. In particular when φ = φ′, we have

Bλ,ψ (φ) · Bλ,ψ (φ) = C ·
∏
v

α\v(φv, φv). (2.16)

When Bλ,ψ (φ) = 0, we have α\v(φv, φv) = 0 at some place v by (2.16). Hence both
sides of (1.19) vanish and the equality (1.19) holds. Thus from now on we suppose that
Bλ,ψ (φ) 6= 0. Since α\v(φv, φv) 6= 0 for any v by (2.16), we may define

α◦v(gv;φv) := α
\
v(πv(gv)φv, φv)/α

\
v(φv, φv) for gv ∈ Gv (2.17)
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for every place v of F . Then from (2.15), for g = (gv) ∈ G(A), we have

Bλ,ψ (π(g)φ) · Bλ,ψ (φ) = C ·
∏
v

α\v(πv(gv)φv, φv)

= Bλ,ψ (φ) · Bλ,ψ (φ) ·
∏
v

α◦v(gv;φv)

where α◦v(gv;φv) = 1 for almost all v. Hence

Bλ,ψ (π(g)φ) = Bλ,ψ (φ) ·
∏
v

α◦v(gv;φv). (2.18)

Now we recall the pull-back formula for theψλ-Whittaker period. We identify V⊗Y+n
with V n. The group G acts on V n from the left by

g · x = (gv1, . . . , gvn) for x = (v1, . . . , vn) ∈ V
n. (2.19)

Then by [11, (9)], for ϕ ∈ S(V (A)n), we have

W(θ
ϕ
ψ (φ);ψλ) =

∫
R′λ(A)\G(A)

ϕ(g−1
· (e−1, . . . , e−n+1, eλ))Bλ,ψ (π(g)φ) dg (2.20)

where
R′λ := {g ∈ G : ge−j = e−j for 1 ≤ j ≤ n− 1, geλ = eλ}. (2.21)

The integral (2.20) is well-defined since χλ is trivial on R′λ(A). Here we note that

R′λ = DλS
′
λ where S′λ =


1n−1 A B

0 13 A′

0 0 1n−1

 ∈ S′ : Aeλ = 0

. (2.22)

For each j (1 ≤ j ≤ n − 1), let Lj be the subspace of L spanned by e−j , eλ and ej .
Then for a ∈ F , let sj (a) denote the element of G such that

sj (a)|L⊥j
= 1L⊥j and sj (a)|Lj =

1 a −λ−1a2/2
0 1 −λ−1a

0 0 1

 (2.23)

with respect to the basis {e−j , eλ, ej } of Lj . Also for each j (1 ≤ j ≤ n−1), let us define
a subgroup S′j of S′ by

S′j :=


1n−1 A B

0 13 A′

0 0 1n−1

 : Aeλ ∈ Fe−1 + · · · + Fe−j


and S′0 := S

′
λ. We recall that S′ has a filtration

S′λ = S
′

0 � S
′

1 � · · ·� S
′

n−1 = S
′ (2.24)

and we have
S′j−1\S

′

j ' {sj (a) : a ∈ F }. (2.25)
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We also note the induced filtration of Rλ, namely

R′λ = DλS
′
λ = DλS

′

0 �DλS
′

1 � · · ·�DλS
′

n−1 = DλS
′ �DλS

′S′′ = Rλ.

Let ϕ ∈ S(V (A)n) be of the form ϕ = ⊗v ϕv where ϕv ∈ S(V (Fv)n) and suppose
that the local integral

Lv(ϕv;φv) :=
∫
R′λ,v\Gv

ϕv(g
−1
v · (e−1, . . . , e−n+1, eλ))α

◦
v(gv;φv) dgv (2.26)

converges absolutely and Lv(ϕv;φv) 6= 0 at each place v. Then Lv(ϕv;φv) = 1 for
almost all v and we may rewrite (2.20) as

W(θ
ϕ
ψ (φ);ψλ) = (CG C

−1
λ ) · Bλ,ψ (φ) ·

∏
v

Lv(ϕv;φv) (2.27)

and we have W(θϕψ (φ);ψλ) 6= 0.
Let 2(πv, ψv) := HomGv (ωψv , π̄v) where ωψv is the local Weil representation of

Gv×S̃pn(Fv) realized on S(V (Fv)n), the space of Schwartz–Bruhat functions on V (Fv)n.
As in the global case (e.g. see [11, p. 94]), the action of Gv × S̃pn(Fv) via ωψv on ϕ ∈
S(V (Fv)n) is given by the following formulas:

ωψv (g, 1)ϕ(x) = ϕ(g−1
· x), g ∈ Gv, (2.28a)

ωψv (1, (m(a), ε))ϕ(x) = ε
γψ (1)

γψ ((det a)2n+1)
|det a|n+1/2ϕ(xa), a ∈ GLn(Fv),

(2.28b)

ωψv (1, v(S))ϕ(x) = ψv
( 1

2 tr(Gr(x)S
)
)ϕ(x), (2.28c)

where γψ denotes the Weil constant and Gr(x) denotes the Gram matrix ((xi, xj )) for
x = (x1, . . . , xn) ∈ V (Fv)

n. We recall that for σ = 2n(π, ψ), we have σ = ⊗v σv
where σv = θ(πv, ψv), the unique irreducible quotient of 2(πv, ψv) determined by the
Howe duality. The Howe duality was proved by Howe [26] at archimedean places, by
Waldspurger [46] at odd non-archimedean places and finally by Gan and Takeda [20] at
all non-archimedean places. Let

θv : S(V (Fv)n)⊗ Vπv → Vσv

be the Gv × S̃pn(Fv)-equivariant linear map, which is unique up to multiplication by a
scalar. Since the mapping

S(V (A)n)⊗ Vπ 3 (ϕ′, φ′) 7→ θ
ϕ′

ψ (φ
′) ∈ Vσ

isGv × S̃pn(Fv)-equivariant at any place v, by the uniqueness of θv , we may adjust {θv}v
so that

θ
ϕ′

ψ (φ
′) = ⊗v θv(ϕ

′
v ⊗ φ

′
v) for φ′ = ⊗v φ′v ∈ Vπ and ϕ′ = ⊗v ϕ′v ∈ S(V (A)n).
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Hence by combining (2.5), (2.11) and (2.27), we have

|Bλ,ψ (φ)|
2

〈φ, φ〉
= C−1

G C2
λ · 2

−l
·
L(1/2, π)L(1/2, π × χE)

L(1, π,Ad)

×

∏
v

Z◦v(φv, ϕv, πv) Iv(θv(ϕv ⊗ φv))

|Lv(ϕv;φv)|2
(2.29)

where
Z◦v(φv, ϕv, πv) Iv(θv(ϕv ⊗ φv))

|Lv(ϕv;φv)|2
= 1

for almost all v.
Since the right hand side of (1.19) does not depend on the decompositions of the

global Tamagawa measures (1.6), we may take specific local measures which are suit-
able for our further considerations on the local integrals appearing on the right hand side
of (2.29). In Section 3, we shall specify local measures and show that we have

C−1
G Cλ =

∏n
j=1 ζF (2j)

L(1, χE)
(2.30)

and the following proposition holds.

Proposition 2. Let v be an arbitrary place of F . For a given φv ∈ Vπv satisfying
αv(φv, φv) 6= 0, there exists ϕv ∈ S(V (Fv)n) such that the local integral Lv(ϕv;φv)
converges absolutely, Lv(ϕv;φv) 6= 0 and the equality

Z◦v(φv, ϕv, πv) Iv(θv(ϕv ⊗ φv))

|Lv(ϕv;φv)|2
=
α
\
v(φv, φv)

〈φv, φv〉v
(2.31)

holds with respect to the specified local measures.

Then for φ = ⊗v φv ∈ Vπ such that Bλ,ψ (φ) 6= 0, it is clearly seen that the main identity
(1.19) holds by taking ϕv ∈ S(V (Fv)n) as in Proposition 2 for each place v and by
combining (2.29)–(2.31).

3. Proof of the local equality

3.1. Specification of local measures

Recall that the group G acts on V n from the left by (2.19). Let

x0 := (e−1, . . . , e−n+1, eλ) ∈ V
n (3.1)

and Xλ := G · x0 ⊂ V
n. Since R′λ defined by (2.21) is the stabilizer of x0, R′λ\G 3 g 7→

g−1
· x0 ∈ Xλ is a G-homogeneous space isomorphism with the right action of G on Xλ

given by Xλ 3 x 7→ g−1
· x ∈ Xλ. We note that Xλ is a locally closed subvariety of V n

since Xλ is a set of x = (x1, . . . , xn) ∈ V
n such that Gr(x) = Gr(x0) and x1, . . . , xn are

linearly independent, by Witt’s theorem.
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Let ω and ωG be non-zero gauge forms on V n and G, respectively. Let ω0 be the
gauge form on Xλ given by pulling back ω via the inclusion Xλ ↪→ V n. We choose
a gauge form ωλ on R′λ such that ωG, ω0 and ωλ match algebraically in the sense of
Weil [49, p. 24], i.e. ωG = ω0 ωλ. Also, we denote by ωD the gauge form on D given by
pulling back ωλ via D ↪→ R′λ.

In [22], Gross associated a motive of Artin–Tate type to a connected reductive alge-
braic group over F . Thus let MG be the motive associated to G and M∨G(1) its twisted
dual motive. The local Tamagawa measure dgv on Gv corresponding to ωG is given
by dgv = Lv(M

∨

G(1)) · |ωG|v at each place v of F . We refer to Gross [22] and Ro-
gawski [42, 1.7] for the details concerning the definition of local Tamagawa measures.
Then the Haar measure constant CG defined by dg = CG

∏
v dgv , where dg is the Tam-

agawa measure, is given by

CG =
( n∏
j=1

ζF (2j)
)−1

. (3.2)

Similarly we specify the measure dtv on Dλ,v to be the local Tamagawa measure
corresponding to ωD at each place v. Then the Haar measure constant Cλ defined by
dt = Cλ

∏
v dtv , where dt is the Tamagawa measure, is given by

Cλ =
1

L(1, χE)
. (3.3)

For the unipotent group S′λ, let the measure ds′v on S′λ,v at each place v be the measure
specified in Section 1.1 for unipotent groups. We define the measure dr ′v on R′λ,v =
Dλ,vS

′
λ,v by dr ′v = dtv ds

′
λ,v . Finally, we take the quotient measure dhv on R′λ,v\Gv so

that
dgv = dhv dr

′
v. (3.4)

It is clear from (3.2) and (3.3) that the equality (2.30) holds with these choices of the local
measures.

3.2. Two sesquilinear forms on Vσ

Since our discussion is purely local, from now on till the end of Section 3.4 we suppress
the subscript v expressing a place from the notation, e.g. F now denotes a local field.

We construct two sesquilinear forms on Vσ which satisfy the same transformation
property with respect to the subgroup N of S̃pn(F ).

3.2.1. Sesquilinear form W . First we define a Hermitian inner product Bω on S(V n) by

Bω(ϕ, ϕ′) :=
∫
V n
ϕ(x) ϕ′(x) dx for ϕ, ϕ′ ∈ S(V n) (3.5)

where dx denotes the measure corresponding to the gauge form ω on V n in Section 3.1.
Then Liu [37, Lemma 3.19] proved that the integral

Z[(φ, φ′;ϕ, ϕ′) =

∫
G

〈π(g)φ, φ′〉Bω(ωψ (g)ϕ, ϕ′) dg (3.6)



Refined global Gross–Prasad conjecture and Böcherer’s conjecture 1317

converges absolutely for φ, φ′ ∈ Vπ and ϕ, ϕ′ ∈ S(V n). We note that our setting belongs
to Case 2 in the proof of [37, Lemma 3.19].

As in Gan and Ichino [18, 16.5], there exists a unique S̃pn(F )-invariant Hermitian
inner product Bσ : Vσ × Vσ → C satisfying

Bσ (θ(ϕ ⊗ φ), θ(ϕ′ ⊗ φ′)) = Z[(φ, φ′;ϕ, ϕ′)

for φ, φ′ ∈ Vπ and ϕ, ϕ′ ∈ S(V n). Here we note that for h ∈ S̃pn(F ) we have

Bσ (σ (h)θ(ϕ ⊗ φ), θ(ϕ′ ⊗ φ′)) = Bσ (θ(ωψ (h)ϕ ⊗ φ), θ(ϕ′ ⊗ φ′)). (3.7)

Definition 8. We define a sesquilinear form W =Wϕ,ϕ′ : Vσ × Vσ → C by

W(φ̃1, φ̃2) :=

∫ st

N

Bσ (σ (n)φ̃1, φ̃2)ψλ(n)
−1 dn (3.8)

for φ̃1, φ̃2 ∈ Vσ .

Recall that, by Remark 12, the integrand of (3.8) has a stable integral over N when F is
non-archimedean and it is integrable when F is archimedean.

We note that for n1, n2 ∈ N and φ̃1, φ̃2 ∈ Vσ , we have

W(σ (n1)φ̃1, σ (n2)φ̃2) = ψλ(n1)ψλ(n2)
−1
·W(φ̃1, φ̃2). (3.9)

3.2.2. Sesquilinear form W◦. For φ, φ′ ∈ Vπ and ϕ ∈ C∞c (V
n), let

V(φ, φ′;ϕ) :=
∫
R′λ\G

(ωψ (g, 1)ϕ)(x0) · α(π(g)φ, φ
′) dg. (3.10)

Recall that

α(φ, φ′) =

∫
Dλ

∫ st

S

〈π(st)φ, φ′〉χλ(s)
−1 ds dt.

For ϕ ∈ C∞c (V
n), the support of R′λ\G 3 g 7→ ϕ(g−1

·x0) is compact since Xλ is locally
closed in V n. Hence the integral (3.10) indeed converges absolutely.

We note that when α(φ, φ) 6= 0, we have

V(φ, φ;ϕ) = α(φ, φ) · L(ϕ;φ). (3.11)

Recall that L(ϕ;φ) is defined by (2.26). We also note that

V(π(g)φ, φ′;ωψ (g, 1)ϕ) = V(φ, φ′;ϕ) for g ∈ G. (3.12)

By (3.12) there exists a unique linear form `φ′,ϕ : Vσ → C such that

`φ′,ϕ(θ(ϕ ⊗ φ)) = V(φ, φ′;ϕ) for φ ∈ Vπ and ϕ ∈ C∞c (V
n). (3.13)

Then, for n ∈ N and φ̃ ∈ Vσ , we have

`φ′,ϕ(σ (n)φ̃) = ψλ(n)`φ′,ϕ(φ̃). (3.14)
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Definition 9. For φ, φ′ ∈ Vπ and ϕ, ϕ′ ∈ C∞c (V
n), we define a sesquilinear form W◦ =

W◦
φ,φ′,ϕ,ϕ′

: Vσ × Vσ → C by

W◦(φ̃1, φ̃2) := `φ′,ϕ(φ̃1) · `φ,ϕ′(φ̃2) (3.15)

for φ̃1, φ̃2 ∈ Vσ .

It is clear from (3.14) that for n1, n2 ∈ N and φ̃1, φ̃2 ∈ Vσ ,

W◦(σ (n1)φ̃1, σ (n2)φ̃2) = ψλ(n1)ψλ(n2)
−1
·W◦(φ̃1, φ̃2). (3.16)

3.2.3. Comparison between W and W◦. First we note the following lemma whose proof
is clear since Xλ is locally closed in V n.

Lemma 1. Suppose that α(φ, φ′) 6= 0. Then for any open neighborhoodOx0 of x0 in V n,
there exists ϕ ∈ C∞c (V

n) such that Supp(ϕ), the support of ϕ, is contained in Ox0 and
V(φ, φ′;ϕ) 6= 0. In particular the linear form `φ′,ϕ on Vσ defined by (3.13) is non-zero
for such ϕ.

By the uniqueness of the ψλ-Whittaker model (2.14), the equalities (3.9) and (3.16) imply
that W is a scalar multiple of W◦ when W◦ is non-zero. The following proposition states
that the constant of proportionality is given explicitly.

Proposition 3. Suppose that φ, φ′ ∈ Vπ satisfy α(φ, φ′) 6= 0. Then for any ϕ, ϕ′ ∈
C∞c (V

n) satisfying `φ′,ϕ(φ′) 6= 0 and `φ,ϕ′(φ) 6= 0, we have

Wϕ,ϕ′ =
CE/F

α(φ, φ′)
·W◦φ,φ′,ϕ,ϕ′ (3.17)

where

CE/F =
L(1, χE/F )∏n
j=1 ζF (2j)

. (3.18)

Let us show that Proposition 2 follows from Proposition 3 before proceeding to a proof
of Proposition 3.

Proof of Proposition 2. Suppose that α(φ, φ) 6= 0. By Lemma 1, we may take ϕ ∈
C∞c (V

n) so that V(φ, φ;ϕ) = α(φ, φ) ·L(ϕ;φ) 6= 0. Then W◦ =W◦φ,φ,ϕ,ϕ is non-zero.
Hence by (3.17), we have

W(θ(ϕ ⊗ φ), θ(ϕ ⊗ φ)) =
CE/F

α(φ, φ)
·W◦(θ(ϕ ⊗ φ), θ(ϕ ⊗ φ)),

i.e.
W(θ(ϕ ⊗ φ), θ(ϕ ⊗ φ)) = CE/F · α(φ, φ) · |L(ϕ;φ)|2 (3.19)

by (3.11) and (3.13).
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On the other hand, by using the S̃pn(F )-invariant Hermitian inner product Bσ ( , ) in
the definition (2.12) for I (θ(ϕ ⊗ φ)), we have

Bσ (θ(ϕ ⊗ φ), θ(ϕ ⊗ φ)) · I (θ(ϕ ⊗ φ))

=
L(1, π,Ad)

L(1/2, π × χE)
∏n
j=1 ζF (2j)

·W(θ(ϕ ⊗ φ), θ(ϕ ⊗ φ)) (3.20)

by (3.8). Here by Gan and Ichino [18, 16.3], we have

Bσ (θ(ϕ ⊗ φ), θ(ϕ ⊗ φ)) = Z(0, φ, φ,8τ(ϕ⊗ϕ), π) (3.21)

where the right hand side is the local doubling integral defined by (2.2). Hence by rewrit-
ing (3.21) in terms of Z◦(φ, ϕ, π) defined by (2.4), we have∏n

j=1 ζF (2j)

L(1/2, π)
· Bσ (θ(ϕ ⊗ φ), θ(ϕ ⊗ φ)) = 〈φ, φ〉 · Z◦(φ, ϕ, π). (3.22)

Thus by combining (3.20) and (3.22), we have

L(1, π,Ad)
L(1/2, π × χE)L(1/2, π)

·W(θ(ϕ ⊗ φ), θ(ϕ ⊗ φ))

= 〈φ, φ〉 · Z◦(φ, ϕ, π) · I (θ(ϕ ⊗ φ)). (3.23)

Substituting (3.19) into (3.23) yields (2.31) and thus Proposition 2 holds. ut

3.3. Reduction to another local equality

Here we shall observe that Proposition 3 follows from a local equality (3.26) below.
Since

W◦(θ(ϕ ⊗ φ), θ(ϕ′ ⊗ φ′)) = V(φ, φ′;ϕ) · V(φ′, φ;ϕ′) 6= 0

by (3.13) and (3.15), the equality (3.17) follows from

W(θ(ϕ ⊗ φ), θ(ϕ′ ⊗ φ′)) =
CE/F

α(φ, φ′)
· V(φ, φ′;ϕ) · V(φ′, φ;ϕ′). (3.24)

Here

V(φ, φ′;ϕ) · V(φ′, φ;ϕ′) =
∫
R′λ\G

∫
R′λ\G

α(π(h)φ, φ′) α(π(h′)φ′, φ)

× (ωψ (h, 1)ϕ)(x0) (ωψ (h′, 1)ϕ′)(x0) dh dh
′. (3.25)

We observe that a sesquilinear form A on Vπ defined by

A(φ1, φ
′

1) := α(φ1, φ
′) α(φ′1, φ)

satisfies
A(π(r)φ1, π(r

′)φ′1) = χλ(r) χλ(r
′)−1
·A(φ1, φ

′

1)
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for r, r ′ ∈ Rλ. Hence the uniqueness of the special Bessel model (1.9) implies that there
exists a constant c′ such that A = c′ · α. Since α(φ, φ′) 6= 0, we have

c′ = A(φ, φ′)/α(φ, φ′) = α(φ, φ′).

Hence in the integrand of (3.25), we have

α(π(h)φ, φ′) α(π(h′)φ′, φ) = A(π(h)φ, π(h′)φ′) = α(φ, φ′)α(π(h)φ, π(h′)φ′).

Thus the equality (3.24) follows from the following proposition.

Proposition 4. For any φ, φ′ ∈ Vπ and any ϕ, ϕ′ ∈ C∞c (V
n), we have

W(θ(ϕ ⊗ φ), θ(ϕ′ ⊗ φ′)) = CE/F

×

∫
R′λ\G

∫
R′λ\G

α(π(h)φ, π(h′)φ′)(ωψ (h, 1)ϕ)(x0) (ωψ (h′, 1)ϕ′)(x0) dh dh
′. (3.26)

Remark 13. Note that we shall show (3.26) in more generality than just necessary to
prove (3.24) because of its later use in the proof of Corollary 2. In particular, we do not
assume α(φ, φ′) 6= 0 in Proposition 4.

Remark 14. The equality (3.26) may be naturally regarded as a local pull-back formula
for the ψλ-Whittaker pairing.

3.4. Proof of Proposition 4

By the definition in Section 3.2.1, we have

W(θ(ϕ ⊗ φ), θ(ϕ′ ⊗ φ′)) =

∫ st

Un

∫ st

USp

∫
G

∫
V n

(ωψ (1, m(u)v)ϕ)(g−1
· x) ϕ′(x)〈π(g)φ, φ′〉ψλ(m(u)v)

−1 dx dg dv du. (3.27)

Here we use the decomposition (2.6) of N . We shall show (3.26) by modifying the right
hand side of (3.27) in several steps.

3.4.1. Inner triple integral. We shall take care of the inner triple integral of (3.27) by
adapting Liu’s computations in [37, 3.5] to our setting.

Let V n◦ be a subset of V n consisting of (v1, . . . , vn) ∈ V
n such that v1, . . . , vn are

linearly independent and the inner product (vn, vn) is non-zero. Then V n◦ is open in V n

and Vol(V n \ V n◦ , dx) = 0.
Let Symn denote the set of n× n symmetric matrices with entries in F and

Symn
◦ := {S = (si,j ) ∈ Symn

| sn,n 6= 0}.

We consider a mapping Gr : V n◦ → Symn
◦ given by the Gram matrix Gr(x) for x ∈ V n◦ . It

is clear that Gr is surjective. For each S ∈ Symn
◦ , we fix xS ∈ V n◦ such that Gr(xS) = S.
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Then by Witt’s theorem, the fiber Gr−1(S) of S is given by

Gr−1(S) = {g−1
· xS | g ∈ G}.

Let R′S denotes the stabilizer of xS in G. Then we may identify Gr−1(S) with R′S\G as
G-homogeneous spaces. We have the following integration formula.

Lemma 2. For each S ∈ Symn
◦ , there exists a Haar measure dr ′S on R′S such that∫

V n
8(x) dx =

∫
Symn

◦

∫
R′S\G

8(h−1
· xS) dhS dS (3.28)

for any 8 ∈ L1(V n). Here dhS denotes the quotient measure dr ′S\dg on R′S\G.

Proof. Since Vol(V n \ V n◦ , dx) = 0, we have∫
V n
8(x) dx =

∫
V n◦

8(x) dx

for 8 ∈ L1(V n). Then the lemma readily follows from the observation above. ut

Remark 15. Let S◦ := Gr(x0) ∈ Symn
◦ where x0 is given by (3.1). We take xS to be x0

when S = S0. Then R′S◦ = R
′
λ defined by (2.21), which has a decomposition R′λ = DλS

′
λ

as (2.22). Recall that we take the local Tamagawa measure as explained in Section 3.1.
Recall also that the measure on the unipotent group S′λ is taken as explained in Section 1.1.
On the other hand, the quotient measure dhS◦ on R′λ\G used in (3.28) is the quotient
measure of the local measures corresponding to the gauge forms ωλ and ωG, which are
not normalized as local Tamagawa measures by the localL-factors. Hence the relationship
between the two quotient measures on R′λ\G, dhS◦ in (3.28) and dh defined by (3.4), is
given by

dhS◦ = CE/F · dh (3.29)

where CE/F is as in (3.17).

Before proceeding further, we note the following lemma, which is proved by an argument
similar to the one for [37, Lemma 3.20] when F is non-archimedean and to the one for
[37, Proposition 3.22] when F is archimedean, respectively.

Lemma 3. For ϕ1, ϕ2 ∈ C
∞
c (V

n) and φ1, φ2 ∈ Vπ , let

Gϕ1,ϕ2,φ1,φ2(S) =

∫
G

∫
R′S\G

ϕ1((hg
′)−1
· xS)ϕ2(h

−1
· xS)〈π(g

′)φ1, φ2〉 dh dg
′

for S ∈ Symn
◦ .

(1) When F is non-archimedean, the integral is absolutely convergent and is locally con-
stant.

(2) When F is archimedean, the integral is absolutely convergent and is a function in
L1(Symn) which is continuous on Symn

◦ .
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Now for ϕ, ϕ′ ∈ C∞c (V
n) and φ, φ′ ∈ Vπ , let

fϕ,ϕ′,φ,φ′(n) :=

∫
G

∫
V n
(ωψ (1, n)ϕ)(g−1

· x) ϕ′(x) 〈π(g)φ, φ′〉 dx dg (3.30)

for n ∈ N . Then

W(θ(ϕ ⊗ φ), θ(ϕ′ ⊗ φ′)) =

∫ st

Un

∫ st

USp

fϕ,ϕ′,φ,φ′(m(u)v)ψλ(m(u)v)
−1 dv du. (3.31)

Since

USp =

{
v(S) =

(
1n S

0 1n

)
: S ∈ Symn

}
,

we may regard
∫ st
USp

as
∫ st

Symn . Then by rewriting the integration over V n in (3.30) using
the integration formula (3.28), we have the following lemma.

Lemma 4. We have∫ st

USp

fϕ,ϕ′,φ,φ′(v)ψλ(v)
−1 dv

= CE/F ·

∫
G

∫
R′λ\G

(ωψ (hg, 1)ϕ)(x0) ϕ′(h−1 · x0) 〈π(g)φ, φ
′
〉 dh dg. (3.32)

Proof. The argument using the Fourier inversion for the proof of [37, Proposition 3.21]
in the non-archimedean case and the one for [37, Corollary 3.23] in the archimedean
case work mutatis mutandis, since Lemma 3 holds. Thus we obtain (3.32) by taking into
account (3.29) also. ut

By Lemma 4, we have

W(θ(ϕ ⊗ φ), θ(ϕ′ ⊗ φ′)) = CE/F ·

∫ st

Un

∫
G

∫
R′λ\G

(ωψ (hg,m(u))ϕ)(x0) ϕ′(h−1 · x0)

× 〈π(g)φ, φ′〉ψλ(m(u))
−1 dh dg du. (3.33)

Then by a change of variable g 7→ h−1g and also noting that we have 〈π(h−1g)φ, φ′〉 =

〈π(g)φ, π(h)φ′〉, we may write (3.33) as

W(θ(ϕ ⊗ φ), θ(ϕ′ ⊗ φ′)) = CE/F ·

∫ st

Un

∫
G

∫
R′λ\G

(ωψ (g,m(u))ϕ)(x0) ϕ′(h−1 · x0)

× 〈π(g)φ, π(h)φ′〉ψλ(m(u))
−1 dh dg du. (3.34)

Here the inner double integral on the right hand side of (3.34) converges absolutely by
Lemma 3. Hence we may change the order of integration and we have

W(θ(ϕ ⊗ φ), θ(ϕ′ ⊗ φ′)) = CE/F ·

∫ st

Un

∫
R′λ\G

∫
G

(ωψ (g,m(u))ϕ)(x0) ϕ′(h−1 · x0)

× 〈π(g)φ, π(h)φ′〉ψλ(m(u))
−1 dg dh du.
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Moreover, since the innermost integral converges absolutely, we may telescope the G-
integration to obtain

W(θ(ϕ ⊗ φ), θ(ϕ′ ⊗ φ′))

= CE/F ·

∫ st

Un

∫
R′λ\G

∫
R′λ\G

∫
R′λ

(ωψ (g,m(u))ϕ)(x0) ϕ′(h−1 · x0)

× 〈π(r ′g)φ, π(h)φ′〉ψλ(m(u))
−1 dr ′ dg dh du. (3.35)

Remark 16. As we have seen, because of Lemma 3,∫
R′λ

〈π(r ′g)φ, π(h)φ′〉 dr ′, (3.36)

the innermost integral of (3.35), converges absolutely. This R′λ-integration appears as an
inner integral of the definition (1.7) for α(π(g)φ, π(h)φ′) since R′λ = DλS

′
λ ⊂ Rλ and

χλ(r
′) = 1 for r ′ ∈ R′λ.

3.4.2. Stable integration over Un. Suppose that F is non-archimedean. We shall trans-
form the stable integration over Un as a subgroup of S̃pn(F ) in (3.35) into an integration
over a subgroup of Rλ by adapting the global argument in [11, pp. 97–98] to our local
setting and shall reduce Proposition 4 to Lemma 6 below.

Recall that Un is the group of upper unipotent matrices in GLn(F ). Let us identify
Un−1 with the subgroup

{(
u 0
0 1

)
: u ∈ Un−1

}
of Un. Let U0 be the subgroup of Un defined

by

U0 =

{(
1n−1 a

0 1

)
∈ Un

}
.

Thus we have Un = U0 o Un−1. We note that for

u′ =

(
1n−1 a

0 1

)
∈ U0 with a =

 a1
...

an−1

 (3.37)

and u1 ∈ Un−1, we have

ωψ (g,m(u
′u1))ϕ(x0) = ωψ (g,m(u1))ϕ

(
e−1, . . . , e−n+1, eλ +

n−1∑
j=1

aj e−j

)
by (2.28b). For u′ ∈ U0 of the form (3.37), let

s(u′) := sn(an−1) · · · s1(a1).

We recall that sj (a) is defined by (2.23). Then by (2.28a), we have

ωψ (g,m(u1))ϕ
(
e−1, . . . , e−n+1, eλ +

n−1∑
j=1

aj e−j

)
= ωψ (s(u

′)−1g,m(u1))ϕ(x0).
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Further we note that by (2.28a) and (2.28b), we have

ωψ (s(u
′)−1g,m(u1))ϕ(x0) = ωψ (ǔ

−1
1 s(u′)−1g, 1)ϕ(x0)

where ǔ1 is defined by (1.3) for u1 ∈ Un−1. We also note that

ψλ(m(u
′u1)) = χλ(s(u

′)ǔ1)

by (1.5). Hence the integral of the right hand side of (3.35) is equal to

∫ st

Un

∫
R′λ\G

∫
R′λ\G

∫
R′λ

ωψ (ǔ
−1
1 s(u′)−1g, 1)ϕ(x0) ϕ′(h−1 · x0)

× 〈π(r ′g)φ, π(h)φ′〉χλ(s(u
′)ǔ1)

−1 dr ′ dg dh du (3.38)

where u = u′u1, u′ ∈ U0 and u1 ∈ Un−1. We note the following elementary lemma.

Lemma 5. (1) For a given compact open subgroup U◦n−1 of Un−1 and a compact open
subgroupU ′0 ofU0, there exists a compact open subgroupU◦0 ofU0 such thatU◦n−1U

◦

0
is a subgroup of Un and U◦0 ⊃ U

′

0.
(2) For a given compact open subgroup U◦ of Un, there exist a compact open subgroup

U◦n−1 of Un−1 and a compact open subgroup U◦0 of U0 such that U◦n−1U
◦

0 is a sub-
group of Un containing U◦n .

Proof. For a positive integer r , let

U
(r)
0 =


(

1n−1 a

0 1

)
: a ∈ $−r

O
...

O

 .
(1) Take r sufficiently large so that U (r)0 ⊃ U ′0. Since U◦n−1 is compact, there exists

an integer s such that all entries of elements of U◦n−1 are in $−sO. Let us take integers
r1, . . . , rn−1 inductively so that rn−1 = r and rn−k ≥ max{r, srn−1, . . . , srn−k+1} for
2 ≤ k ≤ n− 1. Let

U◦0 =


(

1n−1 a

0 1

)
: a ∈

 $−r1O
...

$−rn−1O

 . (3.39)

Then U◦n−1U
◦

0 is a subgroup of Un and U◦0 ⊃ U
′

0.
(2) Let U◦n−1 = U

◦
∩ Un−1. Then U◦n−1 is a compact open subgroup of Un−1. Since

U◦ ⊂
⋃
r≥1 U

◦

n−1U
(r)
0 and U◦ is compact, we have U◦ ⊂ U◦n−1U

(r)
0 for r sufficiently

large. By (1), we may take a compact open subgroup of U◦0 of U0 such that U◦n−1U
◦

0 is a

subgroup Un and U◦0 ⊃ U
(r)
0 . ut
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By the definition of stable integration, for any sufficiently large compact open subgroup
U◦ of Un, the integral (3.38) is equal to

∫
Un

∫
R′λ\G

∫
R′λ\G

∫
R′λ

χU◦(u
′u1) · ωψ (ǔ

−1
1 s(u′)−1g, 1)ϕ(x0) ϕ′(h−1 · x0)

× 〈π(r ′g)φ, π(h)φ′〉χλ(s(u
′)ǔ1)

−1 dr ′ dg dh du′ du1 (3.40)

where χU◦ is the characteristic function of U◦. By Lemma 5, we may take a compact
open subgroup U◦n−1 of Un−1 and a compact open subgroup U◦0 of U0 of the form (3.39)
such that U◦n−1U

◦

0 is a compact open subgroup of Un and U◦n−1U
◦

0 ⊃ U
◦. Then (3.40) is

equal to

∫
U◦
n−1

∫
U◦0

∫
R′λ\G

∫
R′λ\G

∫
R′λ

ωψ (ǔ
−1
1 s(u′)−1g, 1)ϕ(x0) ϕ′(h−1 · x0)

× 〈π(r ′g)φ, π(h)φ′〉χλ(s(u
′)ǔ1)

−1 dr ′ dg dh du′ du1. (3.41)

Since the argument to obtain (3.35) ensures the absolute convergence of the inner triple
integral and the outer double integral is over a compact group U◦n−1U

◦

0 , the integral (3.41)
converges absolutely. Hence we may change the order of integration and we obtain

W(θ(ϕ ⊗ φ), θ(ϕ′ ⊗ φ′))

= CE/F ·

∫
R′λ\G

∫
R′λ\G

∫
R′λ

∫
U◦0

∫
U◦
n−1

(ωψ (g)ϕ)(x0) (ωψ (h)ϕ′)(x0)

× 〈π(r ′s(u′)ǔ1g)φ, π(h)φ
′
〉χλ(s(u

′)ǔ1)
−1 du1 du

′ dr ′ dg dh. (3.42)

Then Proposition 4 is reduced to the following lemma.

Lemma 6. Keep the above notation. Then

∫
R′λ

∫
U◦0

∫
U◦
n−1

〈π(r ′s(u′)ǔ1g)φ, π(h)φ
′
〉χλ(s(u

′)ǔ1)
−1 du1 du

′ dr ′

= α(π(g)φ, π(h)φ′). (3.43)

Assume that (3.43) holds. Then by replacing the the most inner triple integral of (3.42)
by α(π(g)φ, π(h)φ′), we obtain the equality (3.26) in Proposition 4.

3.4.3. Proof of Lemma 6. Let us prove Lemma 6 and complete the proof of Proposition 2
in the non-archimedean case.

Since U◦0 and U◦n−1 are compact, the integral on the left hand side of (3.43) converges
absolutely by Remark 16. Hence by noting that R′λ = DλS

′
λ where S′λ is as given in (2.22)
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and by changing the order of integration, we have∫
R′λ

∫
U◦0

∫
U◦
n−1

〈π(r ′s(u′)ǔ1g)φ, π(h)φ
′
〉χλ(s(u

′)ǔ1)
−1 du1 du

′ dr ′

=

∫
Dλ

∫
U◦
n−1

∫
U◦0

∫
S′λ

〈π(s0s(u
′)ǔ1tg)φ, π(h)φ

′
〉χλ(s0s(u

′)ǔ1)
−1 ds0 du

′ du1 dt.

(3.44)

Let us define an open subgroup S] of S′ by

S] :=


1n−1 A B

0 13 A′

0 0 1n−1

 : Aeλ ∈ $−r1Oe−1 + · · · +$
−rn−1Oe−n+1


with ri given in (3.39). Then by considering a filtration of S] given by

S′λ � (S
′

1 ∩ S
])� · · ·� (S′n−1 ∩ S

]) = S]

induced from (2.24) and by taking (2.25) into account, the integral (3.44) is equal to∫
Dλ

∫
S?
〈π(stg)φ, π(h)φ′〉χλ(s)

−1 ds dt. (3.45)

Here S? is an open subgroup of S given by S? = Ǔ◦n−1S
] where Ǔ◦n−1 is a subgroup

{ǔ : u ∈ U◦n−1} of S′′. Hence, by the definition (1.7) of α(π(g)φ, π(h)φ′), it suffices for
us to show∫

S?
〈π(stg)φ, π(h)φ′〉χλ(s)

−1 ds =

∫ st

S

〈π(stg)φ, π(h)φ′〉χλ(s)
−1 ds (3.46)

in order to prove Lemma 6.
We recall that the integrand of (3.45) has a stable integral over S by [37, Proposi-

tion 3.1]. Hence there exists a compact open subgroup S[ of S such that for any compact
open subgroups S◦ of S containing S[, we have∫ st

S

〈π(stg)φ, π(h)φ′〉χλ(s)
−1 ds =

∫
S◦
〈π(stg)φ, π(h)φ′〉χλ(s)

−1 ds.

By taking U◦n−1 and ri sufficiently large, we may suppose that S[ ⊂ S?. Then for any
compact open subgroups S◦ of S containing S[, we have∫

S◦∩S?
〈π(stg)φ, π(h)φ′〉χλ(s)

−1 ds =

∫ st

S

〈π(stg)φ, π(h)φ′〉χλ(s)
−1 ds

since S◦ ∩ S? is a compact open subgroup of S containing S[. Let f denote a function
on S defined by

f (s) := χS?(s) · 〈π(stg)φ, π(h)φ
′
〉χλ(s)

−1



Refined global Gross–Prasad conjecture and Böcherer’s conjecture 1327

for s ∈ S, where χS? denotes the characteristic function of S?. Then we have∫
S◦
f (s) ds =

∫
S◦∩S?
〈π(stg)φ, π(h)φ′〉χλ(s)

−1 ds

=

∫ st

S

〈π(stg)φ, π(h)φ′〉χλ(s)
−1 ds.

This implies that f has a stable integral over S and we have∫ st

S

f (s) ds =

∫ st

S

〈π(stg)φ, π(h)φ′〉χλ(s)
−1 ds.

Hence by applying Remark 1 to f , we have (3.46). This completes the proof of Lemma 6
and the proof of Proposition 2 in the non-archimedean case.

3.4.4. Archimedean case. Suppose that F is archimedean. Since Xλ is locally closed
in V n, the function R′λ\G 3 g 7→ ϕ(g−1

· x0) is compactly supported for any ϕ ∈
C∞c (V

n). Therefore, by Liu [37, Proposition 3.5], the integral∫
R′λ\G

∫
R′λ\G

∫
Dλ

∫
S

〈π(stg)φ, π(h)φ′〉χλ(s)
−1 ds dt dg dh (3.47)

converges absolutely. Then we may change the order of integration in (3.47) and, by an
argument similar to the one in Sections 3.4.2 and 3.4.3 in the non-archimedean case,
we may show that the integral (3.47) is equal to the right hand side of (3.35). Then the
equality (3.26) readily follows and Proposition 4 is proved also in the archimedean case.

3.4.5. Corollary of Proposition 4. We note the following, which is a local counterpart of
[15, Proposition 2 and 3], as a corollary of Proposition 4.

Corollary 2. Let π be an irreducible unitary representation of G. Suppose that π is
tempered when F is non-archimedean and π is a discrete series representation when F
is archimedean. Then for σ = θ(π,ψ), we have

HomN (σ, ψλ) 6= {0} ⇐⇒ α 6≡ 0. (3.48)

Proof. By Lapid and Mao [33, Proposition 2.10], HomN (σ, ψλ) 6= {0} implies that W
defined by (3.8) is not identically zero. Then (3.26) clearly implies that α is not identically
zero. Conversely suppose that there exist φ, φ′ ∈ Vπ such that α(φ, φ′) 6= 0. Then by
Lemma 1 and Proposition 3, W is not identically zero and it clearly implies that σ is
ψλ-generic, i.e. HomN (σ, ψλ) 6= {0}, by (3.9). ut

3.5. Proof of the statement (1) of Theorem 1

We return to the global setting. As we noted in (2.1f), σ = 2n(π, ψ) is ψλ-generic when
Bλ,ψ 6≡ 0. Hence its local component σv is ψλ,v-generic at every place v of F . Thus at
any place v of F , αv does not vanish identically by Corollary 2.
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4. Proof of Corollary 1

By Theorem 1, it is enough to show that the right hand side of (1.19) vanishes identically
when Bλ,ψ ≡ 0. Suppose the contrary. Then in particular L(1/2, π)L(1/2, π ×χE) 6= 0.
By the assumption that Conjecture 9.5.4 in Arthur [3] holds for any group in G, π
has a weak lift to GL2n(A). Then the global descent method by Ginzburg, Rallis and
Soudry [21] gives an irreducible cuspidal globally generic automorphic representation π◦

of G(A) which is nearly equivalent to π . Thus Proposition 5 in [15] is applicable to π .
Hence there exist G′ = SO(V ′) ∈ G where disc(V ′) = (−1)n and an irreducible cusp-
idal automorphic representation π ′ of G′(A) having the special Bessel model of type E,
which is nearly equivalent to π . We shall reach a contradiction by showing that G = G′

and π = π ′.
Since Bλ,ψ 6≡ 0 on Vπ ′ , 2n(π ′, ψ), the theta lift of π ′ to S̃pn(A) with respect to ψ is

ψλ-generic by [15, Proposition 2]. In particular θ(π ′v, ψv) is ψλ,v-generic for any v. On
the other hand, we have αv 6≡ 0 on Vπv since the right hand side of (1.19) is not identically
zero. Hence θ(πv, ψv) is also ψλ,v-generic for any v by Corollary 2.

Suppose that v is finite. Since π and π ′ are nearly equivalent, it is readily shown that
they have the same A-parameter by an argument similar to the one in Atobe and Gan [4].
Further the temperedness of π implies that π and π ′ share the same local L-parameter at
each finite place. Here we recall the assumption that the local Langlands correspondence
[3, Conjecture 9.4.2] holds for any element of G. Since πv and π ′v both have the special
Bessel model of type Ev , we have Gv ' G′v and πv ' π ′v by Waldspurger [47, 48].

When v is real, θ(πv, ψv) and θ(π ′v, ψv) have the same L-parameter by Adams and
Barbasch [1]. Then we have θ(πv, ψv) ' θ(π ′v, ψv) by the uniqueness of generic element
in tempered L-packets (see Kostant [30], Shelstad [43] and Vogan [45]). Since V and V ′

have the same discriminant, we have Gv ' G′v by [1]. Hence by the Howe duality, we
have πv ' π ′v .

Thus we have shown that Gv ' G′v and πv ' π ′v for any place v of F . Hence we
have G = G′ and π ' π ′. The latter actually implies that π = π ′ since the multiplicity
of π is one by Arthur [3, Conjecture 9.5.4].
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Math. 23, Birkhäuser, Boston, MA (1982) Zbl 0493.14028 MR 0670072

[50] Weissauer, R.: Existence of Whittaker models related to four dimensional symplectic Galois
representations. In: Modular Forms on Schiermonnikoog, Cambridge Univ. Press, Cambridge,
285–310 (2008) Zbl 1228.11080 MR 2530981

[51] Weissauer, R.: Endoscopy for GSp(4) and the cohomology of Siegel modular threefolds. Lec-
ture Notes in Math. 1968, Springer, Berlin (2009) Zbl 1273.11089 MR 2498783

[52] Yamana, S.: L-functions and theta correspondence for classical groups. Invent. Math. 196,
651–732 (2014) Zbl 1303.11054 MR 3211043

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1367.11053&format=complete
http://www.ams.org/mathscinet-getitem?mr=3619910
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1418.11076&format=complete
http://www.ams.org/mathscinet-getitem?mr=3649366
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1188.11023&format=complete
http://www.ams.org/mathscinet-getitem?mr=2192828
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1404.11065&format=complete
http://www.ams.org/mathscinet-getitem?mr=3530537
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1286.22012&format=complete
http://www.ams.org/mathscinet-getitem?mr=3110504
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1408.11029&format=complete
http://www.ams.org/mathscinet-getitem?mr=3454680
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1228.11070&format=complete
http://www.ams.org/mathscinet-getitem?mr=2806111
https://arxiv.org/abs/1312.5793
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0724.11031&format=complete
http://www.ams.org/mathscinet-getitem?mr=1081540
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1159.22007&format=complete
http://www.ams.org/mathscinet-getitem?mr=2448289
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1221.11130&format=complete
http://www.ams.org/mathscinet-getitem?mr=2366363
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0389.17002&format=complete
http://www.ams.org/mathscinet-getitem?mr=0506503
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0722.22009&format=complete
http://www.ams.org/mathscinet-getitem?mr=1159105
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1200.22010&format=complete
http://www.ams.org/mathscinet-getitem?mr=2684300
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1290.22012&format=complete
http://www.ams.org/mathscinet-getitem?mr=3202558
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0493.14028&format=complete
http://www.ams.org/mathscinet-getitem?mr=0670072
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1228.11080&format=complete
http://www.ams.org/mathscinet-getitem?mr=2530981
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1273.11089&format=complete
http://www.ams.org/mathscinet-getitem?mr=2498783
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1303.11054&format=complete
http://www.ams.org/mathscinet-getitem?mr=3211043

	1. Introduction
	2. Reduction to a local equality
	3. Proof of the local equality
	4. Proof of Corollary 1
	References

