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Abstract. The main result of this paper, Theorem 1.4, establishes a conjecture of Lyons and Peres:
for a determinantal point process governed by a self-adjoint reproducing kernel, the system of
kernels sampled at the points of a random configuration is complete in the range of the kernel. A key
step in the proof, Lemma 1.9, states that conditioning on the configuration in a subset preserves the
determinantal property, and the main Lemma 1.10 is a new local property for kernels of conditional
point processes. In Theorem 1.6 we prove the triviality of the tail σ -algebra for determinantal point
processes governed by self-adjoint kernels.
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1. Introduction

1.1. The zero set of a Gaussian analytic function on the disc is a uniqueness set for the
Bergman space

Consider the random series

fD(z) =
∞∑
n=0

fnz
n, (1.1)
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where the coefficients fn are independent identically distributed complex Gaussian ran-
dom variables with expectation 0 and variance 1. The series (1.1) has radius of conver-
gence 1 almost surely and defines a holomorphic function on the open unit disc D. Let
Z(fD) be the zero set of (1.1):

Z(fD) = {z ∈ D : fD(z) = 0}.

Denote A2(D) the Bergman space of holomorphic functions on D square-integrable
with respect to the Lebesgue measure Leb. A subset X ⊂ D is called a uniqueness set
for A2(D) if a function h ∈ A2(D) satisfying h�X = 0 must be the zero function. In this
particular case, our main result is

Theorem 1.1. Almost surely, Z(fD) is a uniqueness set for A2(D).

In other words, almost surely, Z(fD) cannot be a zero set of a function in A2(D). Theo-
rem 1.1 is a direct corollary of our main result, Theorem 1.4, formulated below, since, by
the Peres–Virág Theorem [28], the random subset Z(fD) ⊂ D is a realization of the deter-
minantal point process on D governed by the reproducing kernel of A2(D) ⊂ L2(D,Leb)
given by

KD(z, w) =
1

π(1− zw̄)2
.

Remark. After the work on this paper was finished, we became aware of the result of
Lyons and Zhai [24], who prove in particular in a different way that Z(fD) is almost
surely a uniqueness set for A2(D).

For brevity, the set of zeros of a non-zero function in A2(D) will be called an A2(D)-
zero set. Various necessary and sufficient conditions for a subset of the disc to be an
A2(D)-zero set exist in the literature. For example, by Hedenmalm–Korenblum–Zhu [16,
Theorem 4.7], for any A2(D)-zero set Z the Blaschke-type condition∑

z∈Z, z 6=0

1− |z|[
log 1

1−|z|

]1+ε <∞ (1.2)

holds for any ε > 0. Note, however, that for our random set Z(fD), we have

E
( ∑
z∈Z(fD)

1− |z|[
log 1

1−|z|

]1+ε) = ∫D 1− |z|[
log 1

1−|z|

]1+ε 1
π(1− |z|2)2

dA(z) <∞,

where dA is the Lebesgue measure on the unit disc, hence Z(fD) satisfies (1.2) almost
surely.

We next observe that Z(fD) is neither a sampling nor an interpolating set for A2(D).
Recall that a discrete subset Z ⊂ D is called an A2(D)-sampling set if there exist
C1, C2 > 0 such that for any g ∈ A2(D) we have

C1‖g‖
2
A2(D) ≤

∑
z∈Z

|g(z)|2(1− |z|2)2 ≤ C2‖g‖
2
A2(D).
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By definition, an A2(D)-sampling set is also an A2(D)-uniqueness set. A discrete subset
Z = {z1, . . . , zj , . . . } ⊂ D is called an A2(D)-interpolating set if for any sequence {aj }
in C such that {aj (1− |zj |2)} ∈ `2, there exists g ∈ A2(D) such that g(zj ) = aj for all j .
Deleting a finite number of points from any uniqueness set for A2(D) does not change
the uniqueness property of the set, so a function in A2(D) cannot vanish at all points of
a uniqueness set except a finite subset, which means that a uniqueness set for A2(D) is
never A2(D)-interpolating.

Proposition 1.2. The subset Z(fD) is almost surely neither A2(D)-sampling nor A2(D)-
interpolating.

To see that the set Z(fD) is not sampling, we will use Seip’s [36, Theorem 7.1], which
says that anyA2(D)-sampling set is a finite union of sets uniformly separated with respect
to the Lobachevskian distance.

Lemma 1.3. Almost surely, Z(fD) cannot be expressed as a finite union of uniformly
separated sets.

Lemma 1.3, proved in Section 8.3 below with the use of ergodicity, under the mea-
sure PKD , of the action of one-parameter groups of isometries of the Lobachevsky plane
(this ergodicity is due to Hough–Krishnapur–Peres–Virág [19, Proposition 2.3.7]), im-
plies Proposition 1.2.

1.2. An outline of the main results

1.2.1. The Lyons–Peres completeness conjecture. LetE be a locally compact σ -compact
Polish space and let Conf(E) be the space of locally finite configurations on E. Let µ be
a σ -finite Radon measure on E, let K be the kernel of a locally trace class positive con-
traction acting on the complex Hilbert space L2(E,µ), and let PK be the corresponding
determinantal measure on Conf(E) (the precise definitions are recalled in Section 1.3).

Assume moreover that K is a locally trace class orthogonal projection onto a closed
subspace H of L2(E,µ); in other words, K is the reproducing kernel of a reproducing
kernel Hilbert space H ⊂ L2(E,µ). For x ∈ E, introduce a function Kx ∈ L2(E,µ) by
the formula

Kx(t) := K(t, x), t ∈ E. (1.3)

Our main result, Theorem 1.4, establishes

The Lyons–Peres Completeness Conjecture. For PK -almost every X ∈ Conf(E), we
have

spanL
2(E,µ)

{Kx : x ∈ X} = H. (1.4)

Lyons [21, Theorem 7.11] proved that the completeness of reproducing kernels holds
when E is countable and formulated the general statement as Conjecture 4.6 in [22].
Ghosh [13] established the conjecture under the important additional assumption that the
determinantal point process PK is number rigid in the sense of Ghosh and Peres. While
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many determinantal point processes are indeed number rigid (see Ghosh [13] for the sine-
process, Ghosh and Peres [14] for the Ginibre ensemble, [4] for processes governed by the
Airy, the Bessel and more general integrable kernels, [7] for stationary processes, [9] for
generalized Ginibre ensembles), our zero set Z(fD) is not: indeed, Holroyd and Soo [18]
showed that the point process Z(fD) is insertion and deletion tolerant, the opposite of be-
ing number rigid. For determinantal point processes associated with generalized Bergman
spaces on D, insertion and deletion tolerance is established in [9] and the Radon–Nikodym
derivative of the Palm measure with respect to the initial measure is given explicitly as a
generalized multiplicative functional.

1.2.2. Outline of the proof of the Lyons–Peres completeness conjecture. The key ingre-
dient in our proof of the Lyons–Peres completeness conjecture is the preservation of the
determinantal property under conditioning with respect to the configuration in a subset
and the explicit description of a suitable correlation kernel of this conditional determi-
nantal measure.

An informal explanation of our proof is as follows. Suppose that the locally trace
class operator K is an orthogonal projection onto a closed subspace H ⊂ L2(E,µ). For
PK -almost every configuration X ∈ Conf(E), define

H(X) := H 	 spanL
2(E,µ)

{Kx : x ∈ X}.

For f ∈ H , x ∈ E write f (x) = 〈f,Kx〉. ThenH(X) is the space of all functions f ∈ H
vanishing on X.

Proposition 2.6 below shows that for any precompact subset S ⊂ E, the kernel of the
orthogonal projection onto the space

χE\SH(X ∩ S) = {χE\Sh : h ∈ H(X ∩ S)}

corresponds to the conditional measure (which is again determinantal) of PK with respect
to the condition that the restriction of the random configuration onto S coincides with
X ∩ S.

Our key step, Lemma 1.9, is an extension of Proposition 2.6 to conditioning on any
Borel subset of E, in particular, on a subset with precompact complement. Suppose for
contradiction that there exists a subset �0 ⊂ Conf(E) with PK(�0) > 0 such that for
any X ∈ �0, the equality (1.4) is violated and thus there exists f ∈ H(X) \ {0}. Since
f is non-zero, we can find a precompact subset B ⊂ E \ X such that χBf is a non-zero
element of L2(B,µ).

(i) By Lemma 1.9, the conditional measure of our point process PK , denoted later by
PK(· |X,E \ B), with respect to the condition that the restriction of the random
configuration to E \ B coincides with X ∩ (E \ B), is determinantal and is induced
by a specific kernel K [X,E\B]. That is,

PK(· |X,E \ B) = PK [X,E\B] .

(ii) By our explicit description of the kernel K [X,E\B] in Lemma 1.9, the assumption
f ∈ H(X) implies (see Lemma 6.1) that the function χBf is a fixed point of the
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operator K [X,E\B], that is,

K [X,E\B](χBf ) = χBf.

(iii) Since χBf is a non-zero element in L2(B,µ), we have

PK(#B = 0 |X,E \ B) = PK [X,E\B](#B = 0) = det(1−K [X,E\B]) = 0

for almost all X. Here #B denotes the random variable that assigns to each configu-
ration the number of points of this configuration inside B.

(iv) SinceX has no particles inB, the Fubini theorem implies that PK(#B = 0 |X,E\B)
> 0 for almost all X (see Lemma 6.2). This contradiction settles the Lyons–Peres
completeness conjecture.

1.2.3. Kernels of conditional determinantal point processes. The preservation of the de-
terminantal property under conditioning with respect to the configuration in a subset will
be proved using a specific sequence of conditional kernels of determinantal point pro-
cesses which is a kernel-valued martingale and the proof of the martingale property of the
conditional kernels relies on a new local property of those kernels. In the following, we
informally explain the martingale and local properties of our conditional kernels.

Given a Borel probability measure P on Conf(E) and a Borel subset C ⊂ E, the mea-
sure P(· |X,C) on the space Conf(E \C) is defined as the conditional measure of P with
respect to the condition that the restriction of our random configuration to C coincides
with X ∩ C (see Section 2.2 below for the detailed definition).

Lemma 1.9 establishes that, for any determinantal point process PK induced by a self-
adjoint locally trace class kernelK , the conditional measures PK(· |X,C) are themselves
determinantal and governed by explicitly given self-adjoint kernels. For a precompact
subset B ⊂ E, the determinantal property for PK(· |X,B) follows from the characteriza-
tion of Palm measures for determinantal processes due to Shirai–Takahashi [38] and the
characterization of induced determinantal processes [3], [6]. ForX ∈ Conf(E), in Defini-
tion 1.8 below we introduce a specific self-adjoint kernel K [X,B] governing the measure
PK(· |X,B).

In order to prove that conditioning preserves the determinantal property, we shall
show that, along an increasing or a decreasing sequence of precompact subsets Bn, our
kernels K [X,Bn] form a martingale after a suitable compression. The one-step martingale
property (corresponding to the case of two precompact subsets B0 = ∅ and B1 = B) for
spanning trees is due to Benjamini, Lyons, Peres and Schramm [1] and for processes on
general discrete phase spaces to Lyons [21]. It seems to be essential for the argument of
Benjamini, Lyons, Peres and Schramm [1] and Lyons [21] that the phase space be discrete;
we do not see how to extend their argument to continuous phase spaces. Moreover, it
requires some effort to deduce the full martingale property from the one-step martingale
property.

Our proof of the martingale property of the conditional kernels relies on a new local
property for the kernels K [X,B] which we now informally explain. If B ⊂ C ⊂ E, then
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conditioning on the restriction of the configuration to B commutes with the natural pro-
jection map X 7→ X ∩ C from Conf(E) to Conf(C). This commutativity manifests itself
at the level of the kernels chosen in Definition 1.8 below: we have χCK [X∩B,B]χC =
(χCKχC)

[X∩C,B]. Our local property states that instead of χC one can take a much more
general projection Q, and the relation still holds. More precisely, let Q : L2(E,µ) →

L2(E,µ) be an orthogonal projection such that Ran(Q) ⊂ L2(E \ B,µ) and QKQ is
locally trace class. In Lemma 1.10 below we shall see that(

(Q+ χB)K(Q+ χB)
)[X,B]

= (Q+ χB)K
[X,B](Q+ χB) = QK

[X,B]Q. (1.5)

Applying (1.5) to a one-dimensional projection operator Q, we find that, for an arbi-
trary ϕ ∈ L2(E \ B,µ), the quantity 〈K [X,B]ϕ, ϕ〉 is a martingale indexed by B (with
respect to the partial order of inclusion)—see (4.8) below. Using the Radon–Nikodym
property for the space of trace class operators, we obtain an operator-valued martingale
that converges, along an increasing sequence of precompact subsets of E, almost surely
in the space of locally trace class operators. As an immediate consequence, we prove that
for determinantal point processes governed by self-adjoint kernels, conditioning on the
configuration in any Borel subset preserves the determinantal property (see Lemma 1.9).

1.2.4. Triviality of the tail σ -algebra. As an application of the local property for the
conditional kernels, in Theorem 1.6 we establish the triviality of the tail σ -algebra for
determinantal point processes governed by self-adjoint kernels. Lyons [21] proved tail-
triviality in the discrete setting, extending the argument of Benjamini–Lyons–Peres–
Schramm [1] for spanning trees, and conjectured that tail triviality holds in full generality
[22, Conjecture 3.2]. The argument of [1] and [21] relies on an estimate for the decay of
the variance of the conditional kernel; using the local property of Lemma 1.10, we estab-
lish a similar variance estimate in full generality (see Lemma 7.3), and obtain the desired
triviality of the tail σ -algebra. The local property of conditional kernels thus allows us
to carry out the proof of tail triviality in a unified way for both the continuous and the
discrete setting.

The triviality of the tail σ -algebra for general determinantal point processes with self-
adjoint kernels is the main result of the independent work by [27]. The argument of [27] is
completely different from ours: Osada–Osada [27] construct a special family of discrete
approximations of continuous determinantal point processes and derive the triviality of
the tail σ -algebra in the continuous setting from the theorem of Lyons by approximation.
Another approach, due to Lyons [23], for establishing the triviality of the tail σ -algebra
in the continuous setting also deduces it from the discrete result using Goldman’s trans-
ference principle (Goldman [15, Proposition 12] and Lyons [22, Section 3.6]).

1.3. Formulation of the main results

Let E be a locally compact σ -compact Polish space, equipped with a metric such that any
bounded set is relatively compact, and endowed with a positive σ -finite Radon measureµ.
Let Conf(E) be the space of locally finite configurations on E. A point process on E is
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by definition a Borel probability measure on Conf(E). Let K : L2(E,µ) → L2(E,µ)

be a bounded self-adjoint locally trace class operator with spec(K) ⊂ [0, 1]. A theorem
obtained by Macchi [25] and Soshnikov [42], as well as by Shirai and Takahashi [37],
gives a unique point process on E, denoted by PK , such that for any compactly supported
bounded measurable function g : E→ C, we have

EPK

[∏
x∈X

(1+ g(x))
]
= det

(
1+ sgn(g)|g|1/2 ·K · |g|1/2

)
L2(µ)

, sgn(g) =
g

|g|
.

Here det(1 + S) denotes the Fredholm determinant of the operator 1 + S (see, e.g., Si-
mon [40]).

The locally trace class self-adjoint operatorK is an integral operator. Following Sosh-
nikov [42], we fix a Borel subset E0 ⊂ E with µ(E \ E0) = 0 and fix a Borel function
K : E0 × E0 → C, our kernel, in such a way that for any k ∈ N and any bounded Borel
subset B ⊂ E, we have

tr((χBKχB)k) =
∫
Bk
K(x1, x2)K(x2, x3) · · ·K(xk, x1) dµ(x1) · · · dµ(xk). (1.6)

Theorem 1.4. If K is a locally trace class orthogonal projection onto a closed sub-
space H of L2(E,µ), then for PK -almost every X ∈ Conf(E), the functions Kx defined
by (1.3) satisfy

spanL
2(E,µ)

{Kx : x ∈ X} = H.

If we fix a realization for each h ∈ H in such a way that the equation h(x) = 〈h,Kx〉
holds for every x ∈ E0 and every h ∈ H , then Theorem 1.4 can equivalently be reformu-
lated as follows:

Corollary 1.5. For PK -almost every X ∈ Conf(E), if h ∈ H satisfies h�X = 0, then
h = 0.

Theorem 1.6. LetB1 ⊂ B2 ⊂ · · · ⊂ E be an increasing exhausting sequence of bounded
Borel subsets of E. The σ -algebra

⋂
n∈N F(E \ Bn) is trivial with respect to PK .

Corollary 1.7. The point process PK has trivial tail σ -algebra.

Remark. Our assumption on σ -compactness ofE is not essential: in the argument below,
one could everywhere replace “relatively compact” (here equivalent to “bounded”) by
“having finite weight with respect to the measure K(x, x)dµ(x)”. On the other hand,
the assumption of self-adjointness is used throughout. It would be interesting to obtain
similar results on conditional measures for more general determinantal kernels.

1.3.1. The key lemma. Let K : L2(E,µ)→ L2(E,µ) be a bounded self-adjoint locally
trace class operator with spec(K) ⊂ [0, 1]. Recall that we fix a Borel subsetE0 ⊂ E with
µ(E \ E0) = 0 and a Borel function K : E0 × E0 → C, the kernel of the operator K ,
satisfying (1.6).
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Definition 1.8. For any bounded Borel subset B ⊂ E, we define canonical conditional
kernels K [X,B] with respect to the conditioning on the configuration in B as follows:

• For p ∈ E0, define a kernel Kp, for (x, y) ∈ E0 × E0, by the formula

Kp(x, y) :=

K(x, y)−
K(x, p)K(p, y)

K(p, p)
if K(p, p) > 0,

0 if K(p, p) = 0.
(1.7)

• For an n-tuple (p1, . . . , pn) ∈ E
n
0 , define a kernel Kp1,...,pn = (· · · (Kp1)p2 · · · )pn as

follows (cf. Shirai–Takahashi [38, Corollary 6.6]). Given x, y ∈ E0, write p0 = x,
q0 = y, qi = pi for 1 ≤ i ≤ n, and set

Kp1,...,pn(x, y) :=


det [K(pi, qj )]0≤i,j≤n
det [K(pi, pj )]1≤i,j≤n

if det [K(pi, pj )]1≤i,j≤n > 0,

0 if det [K(pi, pj )]1≤i,j≤n = 0.
(1.8)

• For a bounded Borel subset B ⊂ E and X ∈ Conf(E) such that X ∩B = {p1, . . . , pl}

⊂ E0, define

K [X,B]

=

{
χE\BK

p1,...,pl (1− χBKp1,...,pl )−1χE\B if 1− χBKp1,...,pl is invertible,
0 if 1− χBKp1,...,pl is not invertible.

(1.9)

If 1−χBKp1,...,pl is invertible, then so is 1−χBKp1,...,plχB . It would follow that the con-
tractive operator χBKp1,...,plχB = (χBK

p1,...,pl )(χBK
p1,...,pl )∗, and hence χBKp1,...,pl ,

is strictly contractive (see the inequalities (3.6) and (3.7) below for the details and see
also [5, Section 2.14] for similar discussions). Therefore, the series

K [X,B] = χE\B

∞∑
n=0

Kp1,...,pl (χBK
p1,...,pl )nχE\B (1.10)

converges in the operator norm topology.
In what follows, we will also deal with the kernel of the operator K [X,B] as a two-

variable Borel function on E0 × E0. This is possible since we may fix a specific Borel
realization of the kernels of the operators in the series (1.10) as follows. Using (1.8), we
fix the kernel of the operator χE\BKp1,...,plχE\B as the two-variable function on E0×E0
given by

(x, y) 7→ χE\B(x)χE\B(y)K
p1,...,pl (x, y).

For any integer n ≥ 1, by writing Tn = (χBKp1,...,pl )n−1, we have

Kp1,...,pl (χBK
p1,...,pl )n = Kp1,...,plTnχBK

p1,...,pl ,
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and the kernel for the operator Kp1,...,plTnχBK
p1,...,pl is given by∫

E

∫
E

Kp1,...,pl (x, z1)Tn(z1, z2)χB(z2)K
p1,...,pl (z2, y) dµ(z2) dµ(z1)

=

∫
E

Kp1,...,pl (z1, x)
[
Tn
(
χB(·)K

p1,...,pl (·, y)
)]
(z1) dµ(z1)

=
〈
Tn
(
χB(·)K

p1,...,pl (·, y)
)
, Kp1,...,pl (·, x)

〉
L2(E,µ)

, (1.11)

where in the above integrals, Tn(z1, z2) is the kernel of the operator Tn and in particular,
for n = 1, we use the convention Tn(z1, z2)dµ(z2) = δz1=z2 . Therefore, we may fix the
kernel of the operator χE\BKp1,...,pl (χBK

p1,...,pl )nχE\B as the two-variable function on
E0 × E0 given by the last term in (1.11). In particular, for (x, y) ∈ E0 × E0, we will use
the formula

K [X,B](x, y) = χE\B(x)χE\B(y)K
p1,...,pl (x, y)

+χE\B(x)χE\B(y)
〈( ∞∑
n=1

(χBK
p1,...,pl )n−1

)
(χB(·)K

p1,...,pl (·, y)), Kp1,...,pl (·, x)
〉
L2(E,µ)

(1.12)

as our specific Borel realization of the kernel of the operator K [X,B].

Remark. We will see in Proposition 2.5 below that under the assumption that B is
bounded, the kernel K [X,B] defined above is the correlation kernel (locally trace class
kernel), inducing a determinantal point process which is exactly the conditional measure
of PK , the condition being that the configuration on B coincides withX∩B. In particular,
for PK -almost every X, we have X ∩B = {p1, . . . , pl} ⊂ E0, and 1− χBKp1,...,pl is in-
vertible. The second case K [X,B] = 0 has probability zero. Note that the range of K [X,B]

is contained in L2(E \ B,µ) and we have

K [X,B] = χE\BK
[X,B]χE\B . (1.13)

For any Borel subset W ⊂ E, not necessarily bounded, consider the Borel surjection
πW : Conf(E) → Conf(W) given by X 7→ X ∩ W . Fibres of this mapping can be
identified with Conf(E \W). For a Borel probability measure P on Conf(E), the measure
P(· |X,W) on Conf(E \ W) is defined as the conditional measure of P with respect
to the condition that the restriction of our random configuration to W coincides with
πW (X). More formally, the measures P(· |X,W) are conditional measures, in the sense
of Rokhlin [32], of our initial measure P on fibres of the measurable partition induced by
the surjection πW .

Denote by L1(L
2(E,µ)) the space of trace class operators on L2(E,µ) and by

L1,loc(L
2(E,µ)) the space of bounded and locally trace class operators on L2(E,µ).

For more details on trace class operators on a Hilbert space, we refer to Simon [41, Chap-
ter 1]. The space L1,loc(L

2(E,µ)) is equipped with the topology induced by the semi-
norms T 7→ ‖χBT χB‖1, where ‖ · ‖1 is the trace class norm and B ranges over bounded
Borel subsets of E.
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For any Borel subset W ⊂ E, we denote by F(W) := σ(#A : A ⊂ W) the σ -
algebra on Conf(E) generated by the mappings #A : Conf(E)→ R defined by #A(X) :=
#(X ∩ A), where A ranges over all bounded Borel subsets of W . We are now ready to
formulate our key lemma.

Lemma 1.9. LetW ⊂ E be a Borel subset and let B1 ⊂ B2 ⊂ · · · ⊂ W be an increasing
exhausting sequence of bounded Borel subsets of W . For PK -almost every X ∈ Conf(E)
there exists a positive self-adjoint contraction K [X,W ] ∈ L1,loc(L

2(E \W,µ)) such that

χE\WK
[X,Bn]χE\W

n→∞
−−−−−−−−−−−−−→
in L1,loc(L

2(E \W,µ))
K [X,W ]

and
PK(· |X,W) = PK [X,W ] .

Remark. For a concrete case of the conditional measure of determinantal point pro-
cesses, the reader is also referred to [10] for conditional measures of generalized Ginibre
point processes.

1.3.2. The local property and the martingale lemma. At the centre of our argument lies

Lemma 1.10 (First local property of conditional kernels). Let B ⊂ E be a bounded
Borel subset and letQ be an orthogonal projection, acting inL2(E,µ), such that Ran(Q)
⊂ L2(E \ B,µ) and the operator QKQ is locally trace class. For PK -almost every
X ∈ Conf(E), we have(

(Q+ χB)K(Q+ χB)
)[X,B]

= (Q+ χB)K
[X,B](Q+ χB) = QK

[X,B]Q. (1.14)

Remark. The formula (1.14) is a strengthening, at the level of kernels, of the general
property of point processes that conditioning on the restriction to a subset commutes
with the forgetting projection onto a larger subset; see Proposition 2.4 below. The local
property can be interpreted in terms of Neretin’s formalism [26]: a determinantal measure
is viewed as a “determinantal state” on a specially constructed algebra, and in order that
conditional states themselves be determinantal the local property must be valid. The local
property can thus be seen as the non-commutative analogue of the fact that the operation
of conditioning commutes with the operation of restriction of a configuration to a subset.

Let A,B be disjoint bounded Borel subsets of E. It is a general property of point pro-
cesses that conditioning first on A and then on B amounts to a single conditioning on
A ∪ B. A manifestation of this general property at the level of kernels is

Lemma 1.11 (Second local property of conditional kernels). Let A,B be disjoint
bounded Borel subsets of E. For PK -almost every X ∈ Conf(E), we have

(K [X,A])[X,B] = (K [X,B])[X,A] = K [X,A∪B].
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Remark. The second local property stated in Lemma 1.11 will be proved using the ele-
mentary local property at the measure-theoretic level of taking the conditional measures
and the first local property stated in Lemma 1.10 applied to a family of rank-one orthog-
onal projections Q.

Using the local properties, we establish the following key martingale property of the ker-
nels K [X,B].

Lemma 1.12. Let W ⊂ E be a Borel subset let B1 ⊂ B2 ⊂ · · · ⊂ W be an increasing
exhausting sequence of bounded Borel subsets of W . The sequence of random variables

(χE\WK
[X,Bn]χE\W )n∈N

is an (F(Bn))n∈N-adapted operator-valued martingale defined on the probability space
(Conf(E),F(E),PK).

By definition, we have K [X,B] = K [X∩B,B]. Hence the mapping X 7→ K [X,B]

is an F(B)-measurable operator-valued random variable defined on the probability
space (Conf(E),F(E),PK). Lemma 1.12 is equivalent to the claim that, for any ϕ ∈
L2(E \ W,µ), the sequence (〈χE\WK [X,Bn]χE\Wϕ, ϕ〉)n∈N is an (F(Bn))n∈N-adapted
real-valued martingale defined on the probability space (Conf(E),F(E),PK). This no-
tion of being a martingale is equivalent to the general notion of Fréchet-space-valued
martingales (see Pisier [31]).

2. Conditional processes and martingales

2.1. Martingales and the Radon–Nikodym property

2.1.1. Vector-valued and measure-valued martingales. Let (�,F , (Fn)
∞

n=1,P) be a fil-
tered probability space. Let B be a Banach space. A map F : �→ B is called Bochner
measurable if there exists a sequence Fn of measurable (in the usual sense) step func-
tions such that Fn(ω) → F(ω) almost everywhere. For any 1 ≤ p < ∞, we denote
by Lp(�,F ,P;B) the set of all Bochner measurable functions F : � → B such that∫
�
‖F(ω)‖

p

B P(dω) <∞. The space Lp(�,F ,P;B) is a Banach space with the norm

‖F‖Lp(B) :=

(∫
�

‖F(ω)‖
p

B P(dω)
)1/p

.

The algebraic tensor productLp(�,F ,P)⊗B is dense inLp(�,F ,P;B). The operator

E[· |Fn] ⊗ IdB : Lp(�,F ,P)⊗B→ Lp(�,F ,P)⊗B

extends uniquely to a bounded linear operator on Lp(�,F ,P;B), for which we keep the
name “conditional expectation” and the notation, thus obtaining the operator E[· |Fn] :

Lp(�,F ,P;B)→ Lp(�,F ,P;B).A sequence (Rn)∞n=1 inLp(�,F ,P;B) is called
an (Fn)

∞

n=1-adapted martingale if Rn = E[Rn+1 |Fn] for any n ∈ N.
Assume now that B is a separable space. Then there exists a countable subset D of

the unit ball of the dual space B∗ such that for any x ∈ B, we have ‖x‖ = supξ∈D |ξ(x)|.
We will need the Pettis measurability theorem for separable Banach spaces.
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Proposition 2.1 ([29, p. 278]). A function F : � → B is Bochner measurable with
respect to F if and only if for any ξ ∈ D, the scalar function ω 7→ ξ(F (ω)) is F -
measurable. A sequence (Rn)∞n=1 in Lp(�,F ,P;B) is an (Fn)

∞

n=1-adapted martingale
if and only if for any ξ ∈ D, the sequence (ξ(Rn))∞n=1 is an (Fn)

∞

n=1-adapted martingale.

In this paper, we apply Proposition 2.1 in the particular case when B = L1(L
2(E,µ)),

the space of trace class operators on L2(E,µ) and D is the set of contractive finite rank
operators on L2(E,µ). Martingales in L1,loc(L

2(E,µ)) are reduced to the previous case
by restricting to L2(B,µ) with B a bounded Borel subset of E.

Let (T ,A ) be a topological space equipped with the σ -algebra of Borel subsets of T .
We denote by P(T ,A ) the space of Borel probability measures on (T ,A ). A Borel map
M : �→ P(T ,A ) is called a random probability measure. Equivalently, we assume that
for any A ∈ A , the map ω 7→ M(ω,A) := M(ω)(A) is measurable. For more details,
see Kallenberg [20, Section 1.2]. A sequence (Mn)

∞

n=1 of random probability measures is
called an (Fn)

∞

n=1-adapted measure-valued martingale on (T ,A ) if for any A ∈ A , the
sequence (Mn(·, A))n∈N is a usual (Fn)

∞

n=1-adapted martingale.

2.1.2. The Radon–Nikodym property. In proving convergence of conditional kernels, we
will use the Radon–Nikodym property for the space of trace class operators. Here we
briefly recall the Radon–Nikodym property for Banach spaces; see Dunford–Pettis [12],
Phillips [30] and Chapter 2 in Pisier’s recent monograph [31] for a more detailed exposi-
tion.

Let B be a Banach space. Let (�,F ) be a measurable space. Any σ -additive map
m : F → B is called a (B-valued) vector measure. A vector measure m is said to have
finite total variation if

sup
{ n∑
i=1

‖m(Ai)‖B : � =

n⊔
i=1

Ai is a measurable partition of �
}
<∞.

Given a probability measure P on (�,F ), we say that the vector measurem is absolutely
continuous with respect to P if there exists a non-negative function w ∈ L1(�,F ,P)
such that

‖m(A)‖B ≤

∫
A

w dP for any A ∈ F .

Definition 2.2. A Banach space B is said to have the Radon–Nikodym property if for any
probability space (�,F ,P) and any B-valued measure m on (�,F ), with m having
finite total variation and being absolutely continuous with respect to P, there exists a
Bochner integrable function Fm ∈ L1(�,F ,P;B) such that

m(A) =

∫
A

Fm dP for any A ∈ F .

By Pisier [31, Theorem 2.9], the Radon–Nikodym property for a Banach space B is
equivalent to either one of the following requirements:

(i) Every B-valued martingale which is bounded in L1(�,F ,P;B) converges almost
surely.
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(ii) Every uniformly integrable B-valued martingale which is bounded in the space
L1(�,F ,P;B) converges almost surely and in L1(�,F ,P;B).

(iii) For any p > 1, every B-valued martingale which is bounded in Lp(�,F ,P;B)
converges almost surely and in Lp(�,F ,P;B).

The Banach space L1(L
2(E,µ)) of trace class operators on L2(E,µ) has the Radon–

Nikodym property. More precisely, Pisier [31, Corollary 2.15] proves that if B is sep-
arable and is a dual space of another Banach space, then B has the Radon–Nikodym
property. The separable space L1(L

2(E,µ)) is the dual space of the space of compact
operators on L2(E,µ), and therefore we have

Proposition 2.3. The space L1(L
2(E,µ)) has the Radon–Nikodym property.

Note that the first characterization of the Radon–Nikodym property of L1(L
2(E,µ))

will be used in the proof of Lemma 1.9. Each of the characterizations (ii) or (iii) of the
Radon–Nikodym property can be used to obtain the equality (5.9).

2.2. Conditional measures of point processes

Let E be a locally compact σ -compact Polish space, endowed with a positive σ -finite
Radon measure µ. We assume that the metric on E is such that any bounded set is rela-
tively compact (see Hocking and Young [17, Theorem 2-61]).

A configuration X = {xi} on E is by definition a locally finite countable subset
of E, possibly with multiplicities. A configuration is called simple if all points in it have
multiplicity one. Let Conf(E) denote the set of all configurations on E. The mapping
X 7→ NX :=

∑
i δxi embeds Conf(E) into the space of Radon measures on E. Under the

vague topology (that is, the topology that corresponds to the vague convergence of Radon
measures: a sequence of Radon measures µn on E converges vaguely to a limit Radon
measure µ∞ if limn→∞

∫
E
f dµn =

∫
E
f dµ∞ for any compactly supported continuous

function f on E), the space Conf(E) is again a Polish space (see, e.g., Daley and Vere-
Jones [11, Theorem 9.1.IV]). By definition, a point process on E is a Borel probability
measure P on Conf(E). We call P simple if P({X : X is simple}) = 1.

For a Borel subset W ⊂ E, let F(W) be the σ -algebra on Conf(E) generated by all
mappings X 7→ #B(X) := #(X ∩ B), where B ⊂ W is a bounded Borel subset; the
algebra F(E) coincides with the Borel σ -algebra on Conf(E).

Take a Borel subset W ⊂ E. A Borel probability measure P on Conf(E) can be
viewed as a measure on Conf(W)×Conf(E\W); we shall sometimes write P = PW,E\W
to stress dependence on W .

Denote by (πW )∗(P) the image measure of P under the surjective mapping πW :
Conf(E) → Conf(W) defined by πW (X) = X ∩ W . By disintegrating the probability
measure PW,W c , for (πW )∗(P)-almost every configuration X0 ∈ Conf(W) there exists
a probability measure, denoted by P(· |X0,W), supported on {X0} × Conf(E \ W) ⊂
Conf(E), such that

PW,E\W =
∫

Conf(W)
P(· |X0,W) (πW )∗(P)(dX0).
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The measure P(· |X0,W) is referred to as the conditional measure on Conf(E \ W) or
the conditional point process on E \ W of P, the condition being that the configuration
on W coincides with X0. In what follows, we also write

P(· |X,W) := P(·|X ∩W,W) for P-almost every configuration X ∈ Conf(E).

Moreover, for a random variable f ∈ L1(Conf(E),P), we will write

EP(f |X,W) := EP[f |F(W)](X ∩W).

Proposition 2.4. Let W1,W2 be disjoint Borel subsets of E. For P-almost every X ∈
Conf(E), we have

(πW1∪W2)∗[P](· |X,W1) = (πW1∪W2)∗[P(· |X,W1)]. (2.1)

In other words, for fixed disjoint Borel subsetsW1,W2 of E, the following two operations
on point processes commute:

• taking the conditional measure of a point process, with the condition being that the
configuration on W1 coincides with X ∩W1;
• taking the push-forward measure of a point process under the map πW1∪W2 : Conf(E)
→ Conf(W1 ∪W2).

Proof. First we have

P =
∫

Conf(E)
P(· |X,W1)P(dX),

(πW1∪W2)∗[P] =
∫

Conf(E)
(πW1∪W2)∗[P(· |X,W1)]P(dX).

Since P(· |X,W1) is supported on the subset {Y ∈ Conf(E) : Y ∩W1 = X ∩W1}, and
(πW1∪W2)∗[P(· |X,W1)] is supported on {Z ∈ Conf(W1 ∪W2) : Z ∩W1 = X ∩W1}, by
the uniqueness of conditional measures we get (2.1). ut

The conditional measure P(· |X,W) is by definition supported on {X∩W }×Conf(E\W),
we may therefore consider P(· |X,W) as a measure on Conf(E \W). Further identifying
the set Conf(E \W) in a natural way with the subset Conf(E,E \W) := {X ∈ Conf(E) :
X ∩W = ∅} ⊂ Conf(E) when necessary, we may also view P(· |X,W) as a measure on
Conf(E) supported on Conf(E, E \W).

2.3. Palm measures

The n-th correlation measure ρn,P of a point process P on E, if it exists, is the unique
σ -finite Borel measure on En satisfying

ρn,P(A
k1
1 × · · · × A

kj
j ) =

∫
Conf(E)

j∏
i=1

#(X ∩ Ai)!
(#(X ∩ Ai)− ki)!

dP(X)
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for all bounded disjoint Borel subsets A1, . . . , Aj ⊂ E and positive integers k1, . . . , kj
with k1+· · ·+kj = n. Here if #(X∩Ai) < ki , we set #(X∩Ai)!/(#(X∩Ai)−ki)! = 0.

For example, the n-th correlation measure of a determinantal process PK is given by

ρn,PK (dx1 · · · dxn) = det (K(xi, xj ))1≤i,j≤n · µ⊗n(dx1 · · · dxn),

where K(x, y) is the integral kernel of the operator K satisfying (1.6).
Assume that P is a simple point process on E such that ρn,P exists for any n ∈ N. The

reduced n-th order Campbell measure C !
n,P of P is a σ -finite measure on En × Conf(E)

satisfying∫
En×Conf(E)

F(x,X)C !n,P(dx × dX) =
∫

Conf(E)

[ ∑#

x∈Xn

F(x,X \ {x1, . . . , xn})
]
P(dX)

for any Borel function F : En × Conf(E) → R+. Here
∑# is the summation over all

ordered n-tuples (x1, . . . , xn) with distinct coordinates x1, . . . , xn ∈ X. Disintegrating
C !
n,P(dx × dX), we obtain∫
En×Conf(E)

F(x,X)C !n,P(dx × dX) =
∫
En
ρn,P(dx)

∫
Conf(E)

F(x,X)Px(dX), (2.2)

where the probability measures Px are defined for ρn,P-almost every x ∈ En and are
called reduced Palm measures of P. In what follows, by Palm measures we always mean
reduced Palm measures. Note that the Palm measure Px1,...,xn is invariant under permuta-
tion of the coordinates in (x1, . . . , xn). Therefore, for a configuaration X and a bounded
subset B ⊂ E, we will write PX∩B for the Palm measure of P corresponding to the points
of X ∩ B, that is,

PX∩B := Px1,...,xn provided that X ∩ B = {x1, . . . , xn}. (2.3)

2.4. Determinantal point processes, conditioning on bounded subsets

In this section, we state an elementary result which gives, for determinantal point pro-
cesses, the form of conditional measures with respect to restricting the configuration to a
bounded subset B ⊂ E.

Proposition 2.5. Assume that K : L2(E,µ) → L2(E,µ) is a bounded self-adjoint
locally trace class operator with spec(K) ⊂ [0, 1]. LetB ⊂ E be a bounded Borel subset.
Then for PK -almost every X ∈ Conf(E), the conditional point process PK(· |X,B) is
again a determinantal point process on E \ B, induced by a correlation kernel K [X,B]

defined in (1.9).

If we assume moreover that the kernel K is an orthogonal projection, then the kernel
K [X,B] defined in (1.9) has the following meaning.
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Proposition 2.6. IfK is the orthogonal projection onto a closed subspaceH ⊂L2(E,µ),
then the kernel Kp1,...,pn corresponds to the orthogonal projection from L2(E,µ) onto
the subspace

H(p1, . . . , pn) := {h ∈ H : h(p1) = · · · = h(pn) = 0}.

Moreover, for a bounded Borel subset B ⊂ E, the operator K [X,B] is the orthogonal
projection onto the closure of the subspace

χE\BH(X ∩ B) = {χE\Bh : h ∈ H(X ∩ B)}.

The proofs of Propositions 2.5 and 2.6 will be given in Section 8.1 in the Appendix.

3. The local property: proof of Lemmas 1.10, 1.11

3.1. Proof of Lemma 1.10

Let B ⊂ E be a bounded Borel subset and let Q : L2(E,µ)→ L2(E,µ) be an orthog-
onal projection whose range satisfies Ran(Q) ⊂ L2(E \ B,µ) and such that QKQ is
locally trace class. Introduce a positive contractive locally trace class operator R by the
formula

R = R(K,B,Q) := (Q+ χB)K(Q+ χB). (3.1)

Remark. The introduction of the operator R is on the one hand in order to simplify the
notation (Q + χB)K(Q + χB), and on the other hand, in the proof of Lemma 1.11, we
will use in particular an auxiliary determinantal point process PR whenQ is the rank-one
orthogonal projection, that is, Q = ϕ ⊗ ϕ with ϕ ∈ L2(E \ B,µ). In this case, the cor-
responding determinantal point process PR has the same law as PK when restricted to B,
and the expected number of particles outside B for PR will be particularly useful for us in
proving equalities of conditional kernels; see the remark after the proof of Lemma 1.11
for more details.

Recall that in Section 1.3, we fixed a Borel subset E0 ⊂ E such that µ(E \ E0) = 0
and the kernelK(x, y) is well-defined on E0×E0. Recall also the notation introduced in
Definition 1.8.

Lemma 3.1. Let R be the operator introduced in (3.1). For any p ∈ B ∩ E0, Rp =
(Q+ χB)K

p(Q+ χB). More generally, for (p1, . . . , pn) ∈ (B ∩ E0)
n, we have

Rp1,...,pn = (Q+ χB)K
p1,...,pn(Q+ χB).

In particular,

RX∩B = (Q+ χB)K
X∩B(Q+ χB) for PK -almost every X ∈ Conf(E).

Proof. First of all, the kernel of the operatorR can be chosen such that for any p ∈ B∩E0,

R(·, p) = (Q+ χB)[K(·, p)]. (3.2)
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That is, the function x 7→ R(x, p) is given by the image of the function x 7→ K(x, p)

under the operator Q+ χB . Indeed, since p ∈ B ∩ E0 and Ran(Q) ⊂ L2(E \ B,µ), we
have

[QKQ](·, p) = 0 and [χBKQ](·, p) = 0.

Therefore, for p ∈ B ∩ E0,

R(·, p) = [(Q+ χB)KχB ](·, p) = [QKχB ](·, p)+ χB(·)K(·, p). (3.3)

Now for any ϕ ∈ L2(B,µ),

[QKχBϕ](x) = Q

[∫
B

K(·, y)ϕ(y) dµ(y)
]
(x) =

∫
B

Q[K(·, y)](x)ϕ(y) dµ(y).

That means the kernel of QKχB is given by (x, y) 7→ Q[K(·, y)](x)χB(y). Thus for
p ∈ B ∩ E0, we may take [QKχB ](·, p) = Q[K(·, p](·). Combining this with (3.3), we
obtain the desired equality (3.2).

Now since R(p, p) = K(p, p), we have

Rp = R −
R(·, p)⊗ R(·, p)

R(p, p)

= (Q+ χB)K(Q+ χB)−
(Q+ χB)[K(·, p)] ⊗ (Q+ χB)[K(·, p)]

K(p, p)

= (Q+ χB)
[
K −

K(·, p)⊗K(·, p)

K(p, p)

]
(Q+ χB) = (Q+ χB)K

p(Q+ χB).

The formula for Rp1,...,pn follows immediately by induction on n. ut

Lemma 3.2. Let K̃ : L2(E,µ) → L2(E,µ) be a bounded self-adjoint locally trace
class operator with spec(K̃) ⊂ [0, 1]. Let B be a bounded Borel subset of E such that
PK̃(#B = 0) > 0. Let Q : L2(E,µ) → L2(E,µ) be an orthogonal projection satis-
fying Ran(Q) ⊂ L2(E \ B,µ) and such that QK̃Q is locally trace class. Let R̃ =
(Q+ χB)K̃(Q+ χB) be the operator introduced as in (3.1). Then

χE\BR̃(1− χBR̃)−1χE\B = Q
(
χE\BK̃(1− χBK̃)−1χE\B

)
Q. (3.4)

Proof. The gap probability PK̃(#B = 0) is given by

PK̃(#B = 0) = PK̃({X : X ∩ B = ∅}) = det(1− χBK̃χB) > 0. (3.5)

It follows that 1− χBK̃χB is invertible and hence 1 is not an eigenvalue of χBK̃χB . But
since χBKχB is a priori a positive contraction and χBK̃χB is compact, its norm coincides
with its maximal eigenvalue. Hence χBK̃χB is strictly contractive. But we also have

‖χBK̃χB‖ = ‖(χBK̃
1/2)(χBK̃

1/2)∗‖ = ‖χBK̃
1/2
‖

2 < 1. (3.6)

Hence

‖χBK̃‖ ≤ ‖χBK̃
1/2
‖ ‖K̃1/2

‖ < 1. (3.7)
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Therefore, both χBK̃ and χBR̃ = χBK̃(Q + χB) are strictly contractive. In particular,
the operators on both the left hand side and the right hand side of (3.4) are well-defined.

Since Q commutes with χE\B , we have

χE\BR̃χE\B = QχE\BK̃χE\BQ and χE\BR̃χB = QχE\BK̃χB .

By definition of R̃, we have χBR̃χB = χBK̃χB . Therefore, for n ≥ 1,

χE\BR̃(χBR̃)
nχE\B

= χE\BR̃(χBR̃) · · · (χBR̃)χE\B = χE\BR̃χB(χBR̃χB)
n−1χBR̃χE\B

= QχE\BK̃χB(χBK̃χB)
n−1χBK̃χE\BQ = QχE\BK̃(χBK̃)

nχE\BQ.

Now since χBR̃ and χBK̃ are both strictly contractive, by using the above equality we
can finally write

χE\BR̃(1− χBR̃)−1χE\B =

∞∑
n=0

χE\BR̃(χBR̃)
nχE\B =

∞∑
n=0

QχE\BK̃(χBK̃)
nχE\BQ

= QχE\BK̃(1− χBK̃)−1χE\BQ. ut

Conclusion of the proof of Lemma 1.10. We want to apply Lemma 3.2 to the oper-
ator K̃ = KX∩B . By our assumption, the orthogonal projection Q with Ran(Q) ⊂
L2(E \ B,µ) has QKQ locally trace class. For the definition (1.7) of Kp, we have
Kp
≤ K in the operator sense. Then by iterating, K̃ = KX∩B

≤ K and hence QK̃Q ≤
QKQ in the operator sense. This implies in particular that QK̃Q is locally trace class.
By Lemma 3.1, for PK -almost every X ∈ Conf(E),

R̃ = (Q+ χB)K̃(Q+ χB) = (Q+ χB)K
X∩B(Q+ χB) = R

X∩B . (3.8)

On the other hand, by Propositions 8.1 and 2.5,

PK(· |X,B) = (PK)X∩B�Conf(E\B) = PKX∩B �Conf(E\B) for PK -a.e. X ∈ Conf(E).

By definition (8.1) of the normalized restriction measure PKX∩B �Conf(E\B), we must have

PKX∩B (#B = 0) = PKX∩B (Conf(E \ B)) > 0 for PK -a.e. X ∈ Conf(E).

Thus the assumptions of Lemma 3.2 are satisfied. By (3.4) and (3.8), for PK -almost every
X ∈ Conf(E),

χE\BR
X∩B(1− χBRX∩B)−1χE\B = χE\BR̃(1− χBR̃)−1χE\B

= Q
(
χE\BK̃(1− χBK̃)−1χE\B

)
Q = Q

(
χE\BK

X∩B(1− χBKX∩B)−1χE\B
)
Q.

By definition (1.9) (applied to both K and R), the above equality means exactly

R[X,B] = QK [X,B]Q for PK -a.e. X ∈ Conf(E). (3.9)
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By definition (3.1), we thus obtain the desired equality(
(Q+ χB)K(Q+ χB)

)[X,B]
= QK [X,B]Q for PK -a.e. X ∈ Conf(E).

To complete the proof of Lemma 1.10, we only need to observe the elementary equality

QK [X,B]Q = (Q+ χB)K
[X,B](Q+ χB),

which follows from (1.13) and thus χBK [X,B] = K [X,B]χB = 0. ut

3.2. Proof of Lemma 1.11

By assumption, A,B are disjoint bounded subsets of E, hence χA∪B = χA+χB . Choose
an arbitrary unit vector ϕ ∈ L2(E \ (A ∪ B),µ) and let Q = ϕ ⊗ ϕ be the orthogonal
projection from L2(E,µ) onto the one-dimensional subspace spanned by ϕ. Define

R̂ = Rϕ := (χA + χB +Q)K(χA + χB +Q).

Then by using (3.9), with R and B replaced by R̂ and A ∪ B respectively, we obtain

R̂[X,A∪B] = QK [X,A∪B]Q for PK -a.e. X ∈ Conf(E). (3.10)

Again by using (3.9) this time withR,Q and B replaced by R̂,Q+χB andA respectively,
we get

R̂[X,A] = (χB +Q)K
[X,A](χB +Q) for PK -a.e. X ∈ Conf(E). (3.11)

By a further application of (3.9) with K replaced by K [X,A] and then by using (3.11) to
replace R in (3.9) by R̂[X,A], we find that for PK -almost every X ∈ Conf(E) and for
PK [X,A] -almost every Z ∈ Conf(E),

(R̂[X,A])[Z,B] = Q(K [X,A])[Z,B]Q. (3.12)

But since A is bounded, Proposition 2.5 implies that PK [X,A] = PK(· |X, A). This com-
bined with the equalities R̂[X,A] = R̂[X∩A,A] and K [X,A] = K [X∩A,A] implies that the
double almost every statement (3.12) is equivalent to

(R̂[X,A])[X,B] = Q(K [X,A])[X,B]Q for PK -a.e. X ∈ Conf(E). (3.13)

By Proposition 2.5, we also have the following description of conditional measures:

PR̂(· |X,A) = PR̂[X,A] and PR̂(· |X,A ∪ B) = PR̂[X,A∪B] for PR̂-a.e. X ∈ Conf(E).

The first equality above implies that

[PR̂(· |X,A)](· |X,B) = PR̂[X,A](· |X,B) = P(R̂[X,A])[X,B] for PR̂-a.e. X ∈ Conf(E).

Now we may apply the measure-theoretic identity

[PR̂(· |X,A)](· |X,B) = PR̂(· |X,A ∪ B) for PR̂-a.e. X ∈ Conf(E)
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and obtain

PR̂[X,A∪B] = P(R̂[X,A])[X,B] for PR̂-a.e. X ∈ Conf(E). (3.14)

This equality of probability measures implies that for PR̂-almost every X ∈ Conf(E),

EPR̂ [#(X ∩ (E \ (A ∪ B)) |X,A ∪ B] = tr
(
χE\(A∪B)R̂

[X,A∪B]χE\(A∪B)
)

= tr
(
χE\(A∪B)(R̂

[X,A])[X,B]χE\(A∪B)
)
.

Combining this with (3.10), (3.11) and (3.13), we obtain the PR̂-almost sure equality

tr
(
χE\(A∪B)QK

[X,A∪B]QχE\(A∪B)
)
= tr

(
χE\(A∪B)Q(K

[X,A])[X,B]QχE\(A∪B)
)
.

That is,

〈K [X,A∪B]ϕ, ϕ〉 = 〈(K [X,A])[X,B]ϕ, ϕ〉 for PR̂-a.e. X ∈ Conf(E).

Since ϕ is arbitrary and since L2(E \ (A ∪ B),µ) is separable and both K [X,A∪B] and
(K [X,A])[X,B] are supported on L2(E \ (A ∪ B),µ), we obtain

K [X,A∪B] = (K [X,A])[X,B] for PR̂-a.e. X ∈ Conf(E). (3.15)

Observe that the equality χA∪BR̂χA∪B =χA∪BKχA∪B implies the equality (πA∪B)∗(PR̂)
= (πA∪B)∗(PK). Combining this with (3.15) and the fact that K [X,A∪B] and
(K [X,A])[X,B] are F(A ∪ B)-measurable, we get the desired equality

K [X,A∪B] = (K [X,A])[X,B] for PK -a.e. X ∈ Conf(E). ut

Remark. Since different correlation kernels may correspond to the same determinantal
point process, the coincidence (3.14) of the two determinantal point processes PR̂[X,A∪B]
and P(R̂[X,A])[X,B] does not imply that R̂[X,A∪B] and (R̂[X,A])[X,B] are the same (if this
were true, then the desired equalityK [X,A∪B] = (K [X,A])[X,B] would follow from (3.10)
and (3.13) by varying Q). Our idea is to derive from (3.14) a useful equality of scalar
qunatities and then to complete the proof of Lemma 1.11 by varying Q = ϕ ⊗ ϕ.

4. The martingale property: proof of Lemma 1.12

Proposition 4.1. For any bounded Borel subset B ⊂ E, write

EPK (K
[X,B]) =

∫
Conf(E)

K [X,B] PK(dX).

Then

EPK (K
[X,B]) = χE\BKχE\B . (4.1)

Remark. Extending the argument of Benjamini, Lyons, Peres and Schramm [1] for the
case of spanning trees, Lyons [21, Lemma 7.17] proved (4.1) when E is discrete and K
is an orthogonal projection on `2(E). Our proof, based on the local property, is quite
different and works both in the continuous and the discrete settings.
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Proof of Lemma 1.12 assuming Proposition 4.1. Applying Proposition 4.1 to the kernel
K [X,Bn] and the bounded Borel subset Bn+1 \ Bn ⊂ E \ Bn, we obtain

EP
K[X,Bn]

[
(K [X,Bn])[X,Bn+1\Bn]

]
= χE\Bn+1K

[X,Bn]χE\Bn+1 for PK -a.e. X.

The equality PK [X,Bn] = PK(· |X,Bn) now yields

EP
K[X,Bn]

[
(K [X,Bn])[X,Bn+1\Bn]

]
= EPK

[
(K [X,Bn])[X,Bn+1\Bn]

∣∣F(Bn)] for PK -a.e. X.

Combining this with Lemma 1.11, we get

EPK [K
[X,Bn+1] |F(Bn)] = χE\Bn+1K

[X,Bn]χE\Bn+1 for PK -a.e. X.

By linearity of the composition on the left and on the right with the operator of multipli-
cation by χE\W and the elementary equalities χE\W ·χE\Bn+1 = χE\W , we get the desired
martingale property:

E[χE\WK [X,Bn+1]χE\W |F(Bn)] = χE\WK
[X,Bn]χE\W for PK -a.e. X. ut

Proof of Proposition 4.1. Let ϕ ∈ L2(E \ B,µ) be such that ‖ϕ‖2 = 1. We use (3.1) for
Q = ϕ⊗ ϕ, the orthogonal projection onto the one-dimensional space spanned by ϕ, and
thus set

R = (Q+ χB)K(Q+ χB) = (ϕ ⊗ ϕ + χB)K(ϕ ⊗ ϕ + χB). (4.2)

We have the clear identity

(πB)∗(PR) = PχBRχB = PχBKχB = (πB)∗(PK). (4.3)

By Lemma 1.10, for PK -almost every X ∈ Conf(E), we have

R[X,B] = QK [X,B]Q = (ϕ ⊗ ϕ)K [X,B](ϕ ⊗ ϕ).

Since clearly K [X,B] = K [X∩B,B] and R[X,B] = R[X∩B,B], the above equality holds for
PR-almost every X ∈ Conf(E). Now recall that PR(· |X,B) = PR[X,B] for PR-almost
every X ∈ Conf(E). Hence

EPR [#E\B |X,B] = EP
R[X,B]
[#E\B ] = tr(χE\BR[X,B]χE\B)

= 〈K [X,B]ϕ, ϕ〉 for PR-almost every X ∈ Conf(E).

Note that by the definition (4.2) of R and the assumption that ϕ is supported on E \ B,
we have

EPR [#E\B ] = tr(χE\BRχE\B) = tr(QKQ) = 〈Kϕ, ϕ〉.

On the other hand,

EPR [#E\B ] = EPR (EPR [#E\B |X,B]) = EPR (〈K
[X,B]ϕ, ϕ〉),
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whence

EPR (〈K
[X,B]ϕ, ϕ〉) = 〈Kϕ, ϕ〉. (4.4)

The relation K [X,B] = K [X∩B,B] implies that K [X,B], when varying X, depends only on
X ∩ B, thus

EPR (〈K
[X,B]ϕ, ϕ〉) = EPR (〈K

[X∩B,B]ϕ, ϕ〉) = E(πB )∗PR (〈K
[X∩B,B]ϕ, ϕ〉). (4.5)

Similarly,

EPK (〈K
[X,B]ϕ, ϕ〉) = EPK (〈K

[X∩B,B]ϕ, ϕ〉) = E(πB )∗PK (〈K
[X∩B,B]ϕ, ϕ〉). (4.6)

The equalities (4.5) and (4.6) combined with (4.3) imply that

EPK (〈K
[X,B]ϕ, ϕ〉) = EPR (〈K

[X,B]ϕ, ϕ〉). (4.7)

Therefore, by combining (4.7) with (4.4), we obtain

EPK (〈K
[X,B]ϕ, ϕ〉) = 〈Kϕ, ϕ〉. (4.8)

Since ϕ is an arbitrary norm-one function in L2(E \ B) and since K [X,B] =

χE\BK
[X,B]χE\B , we obtain (4.1). ut

5. Proof of Lemma 1.9

Proposition 5.1. Let W ⊂ E be a Borel subset, and let B1 ⊂ B2 ⊂ · · · ⊂ W

be an increasing exhausting sequence of bounded Borel subsets of W . The sequence
(χE\WK

[X,Bn]χE\W )n∈N converges PK -almost surely in the space of locally trace class
operators.

Proof. Since K is locally of trace class, there exists a function ψ : E \W → (0, 1] such
that ψ1/2Kψ1/2 is of trace class and for any bounded subset B ⊂ E, we have

inf
x∈B

ψ(x) > 0. (5.1)

Then

EPK

(∑
x∈X

ψ(x)
)
=

∫
E

ψ(x)K(x, x) µ(dx) = tr(ψ1/2Kψ1/2) = Mψ <∞.

Denote
G(X, n) := χE\WK

[X,Bn]χE\W .

Then for any n ∈ N,

Mψ = EPK

(∑
x∈X

ψ(x)
)
= EPK

[
EPK

(∑
x∈X

ψ(x)

∣∣∣F(Bn))]
= EPK [tr(ψ

1/2G(X, n)ψ1/2)]. (5.2)

By the martingale property of the sequence (G(X, n))n∈N and the equality (5.2), the se-
quence (ψ1/2G(X, n)ψ1/2)n∈N forms a bounded martingale in L1(PK ,L1(L

2(E,µ))).
By Proposition 2.3, the Banach space L1(L

2(E,µ)) has the Radon–Nikodym property.
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Therefore there exists a measurable function F(X,∞) with values in L1(L
2(E,µ)) such

that

ψ1/2G(X, n)ψ1/2 in L1(L
2(E,µ))

−−−−−−−−−→
PK -a.s.

F(X,∞). (5.3)

The assumption (5.1) implies that ψ−1/2F(X,∞)ψ−1/2
∈ L1,loc(L

2(E,µ)). Moreover,
(5.1) implies that for any bounded subset B ⊂ E, since χBψ−1/2 is bounded, the conver-
gence (5.3) implies

χBG(X, n)χB = χBψ
−1/2
[ψ1/2G(X, n)ψ1/2

]χBψ
−1/2

in L1(L
2(E,µ))

−−−−−−−−−→
PK -a.s.

χBψ
−1/2F(X,∞)ψ−1/2χB .

Since B is an arbitrary bounded subset of E, the above convergence means exactly that

χE\WK
[X,Bn]χE\W = G(X, n)

in L1,loc(L
2(E,µ))

−−−−−−−−−−−→
PK -a.s.

ψ−1/2F(X,∞)ψ−1/2. (5.4)

ut

Proof of Lemma 1.9. By (8.14), for PK -almost every X ∈ Conf(E),

(πE\W )∗[PK(· |X,Bn)]
n→∞
−−−−→
weakly

PK(· |X,W). (5.5)

By Proposition 2.5, for PK -almost every X ∈ Conf(E),

(πE\W )∗[PK(· |X,Bn)] = PχE\WK [X,Bn]χE\W . (5.6)

Combining (5.4)–(5.6) with the fact that the convergence of correlation kernels in
L1,loc(L

2(E,µ)) implies the weak convergence of the corresponding determinantal mea-
sures, we complete the proof of Lemma 1.9. ut

Remark. Under the assumption of Proposition 5.1, the limit operator

lim
n→∞

χE\WK
[X,Bn]χE\W (5.7)

is a locally trace class positive contractive operator and thus is a valid kernel for a deter-
minantal point process. In Proposition 5.1, we have already shown that the limit operator
(5.7) is locally trace class. The contractivity of the limit operator (5.7) follows from the
contractivity of K [X,Bn] for all n and the simple observation: locally trace class conver-
gence implies strong operator convergence, and strong operator convergence preserves
contractivity.

The limit operator (5.7) almost surely does not depend on the specific choice of the func-
tion ψ . Indeed, replace ψ by another ψ̂ : E \ W → (0, 1] such that ψ̂1/2Kψ̂1/2 is of
trace class and infx∈B ψ̂(x) > 0 for any bounded subset B ⊂ E. The limit relation (5.3)
becomes

ψ̂1/2G(X, n)ψ̂1/2 in L1(L
2(E,µ))

−−−−−−−−−→
PK -a.s.

F̂ (X,∞).
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This relation combined with (5.3) implies that F̂ (X,∞) = ψ̂1/2

ψ1/2F(X,∞)
ψ̂1/2

ψ1/2 . Therefore,
the final limit in (5.4) becomes

ψ̂−1/2F̂ (X,∞)ψ̂−1/2
= ψ−1/2F(X,∞)ψ−1/2,

proving the independence of the limit operator from the choice of ψ .
Moreover, the limit operator (5.7) almost surely does not depend on the choice of the

exhausting sequence {Bn} of bounded subsets of W . Indeed, let B1 ⊂ B2 ⊂ · · · ⊂ W

be an exhausting sequence of bounded Borel subsets of W . Fix any positive function
ψ : E \W → (0, 1] such that ψ1/2Kψ1/2 is of trace class and for any bounded B ⊂ E,
we have infx∈B ψ(x) > 0. Then

(ψ1/2K [X,Bn]ψ1/2)n∈N (5.8)

is an L1(L
2(E \ W,µ))-valued martingale which is bounded in L2(Conf(E),P;

L1(L
2(E \ W,µ))). In particular, the sequence converges in L2(Conf(E),P;

L1(L
2(E\W,µ))). Recall that L1(L

2(E\W,µ)) has the Radon–Nikodym property. Us-
ing the characterization (iii) of the Radon–Nikodym property in Section 2.1.2 we obtain,
for PK -almost every X ∈ Conf(E),

ψ1/2K [X,Bn]ψ1/2
= EPK

[
lim
`→∞

ψ1/2K [X,B`]ψ1/2
∣∣∣F(Bn)]. (5.9)

For the L2(Conf(E),P;L1(L
2(E \W,µ)))-boundedness of the sequence (5.8), we

write

‖ψ1/2K [X,Bn]ψ1/2
‖L1(L2(E\W,µ)) = tr(ψ1/2K [X,Bn]ψ1/2) = EPK

(∑
x∈X

ψ(x)

∣∣∣X,Bn).
By Jensen’s inequality and the inequalities 0 ≤ ψ(x)2 ≤ ψ(x) and K(x, x)K(y, y) −
|K(x, y)|2 ≤ K(x, x)K(y, y),

EPK (‖ψ
1/2K [X,Bn]ψ1/2

‖
2
L1(L2(E\W,µ))

) = EPK

([
EPK

(∑
x∈X

ψ(x)

∣∣∣X,Bn)]2)
≤ EPK

((∑
x∈X

ψ(x)
)2)
= EPK

( ∑
x,y∈X, x 6=y

ψ(x)ψ(y)
)
+ EPK

(∑
x∈X

ψ(x)2
)

≤ EPK

( ∑
x,y∈X, x 6=y

ψ(x)ψ(y)
)
+ EPK

(∑
x∈X

ψ(x)
)

≤

(∫
E

K(x, x)ψ(x) dµ(x)
)2

+

∫
E

K(x, x)ψ(x) dµ(x)

= [tr(ψ1/2Kψ1/2)]2 + tr(ψ1/2Kψ1/2),

which proves the desired boundedness.
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Now take another exhausting sequence {B̂n} of bounded subsets of W . By (5.9) ap-
plied to the new exhausting sequence {B̃n = Bn ∪ B̂n} of bounded subsets of W , we find
that for PK -almost every X ∈ Conf(E),

ψ1/2K [X,B̃n]ψ1/2
= EPK

[
lim
`→∞

ψ1/2K [X,B̃`]ψ1/2
∣∣∣F(B̃n)].

Then using the martingale structure between ψ1/2K [X,Bn]ψ1/2 and ψ1/2K [X,B̃n]ψ1/2 for
the nested sets Bn ⊂ B̃n we have, for PK -almost every X ∈ Conf(E),

ψ1/2K [X,Bn]ψ1/2
= EPK

[
ψ1/2K [X,B̃n]ψ1/2

∣∣∣F(Bn)].
Therefore, by combining the previous equalities, for PK -almost every X ∈ Conf(E),

lim
n→∞

ψ1/2K [X,Bn]ψ1/2
= lim
n→∞

EPK [ψ
1/2K [X,B̃n]ψ1/2

|F(Bn)]

= lim
n→∞

EPK

(
EPK

[
lim
`→∞

ψ1/2K [X,B̃`]ψ1/2
∣∣∣F(B̃n)] ∣∣∣F(Bn))

= lim
n→∞

EPK

(
lim
`→∞

ψ1/2K [X,B̃`]ψ1/2
∣∣∣F(Bn)) = lim

`→∞
ψ1/2K [X,B̃`]ψ1/2.

The same argument will show that for PK -almost every X ∈ Conf(E),

lim
n→∞

ψ1/2K [X,B̂n]ψ1/2
= lim
`→∞

ψ1/2K [X,B̃`]ψ1/2

and thus
lim
n→∞

ψ1/2K [X,Bn]ψ1/2
= lim
n→∞

ψ1/2K [X,B̂n]ψ1/2.

6. Proof of Theorem 1.4

Recall that we have fixed a realization of our kernel, namely, a Borel function K(x, y)
defined on the set E0×E0, where µ(E \E0) = 0. In this section, we make the additional
assumption thatK is the orthogonal projection onto a subspaceH ⊂ L2(E,µ). Recalling
(1.3), we fix a realization for each h ∈ H in such a way that h(x) = 〈h,Kx〉 for all x ∈ E0
and h ∈ H . Given any configuration X ∈ Conf(E) and a bounded Borel subset B ⊂ E,
we set H(X) := {h ∈ H : h�X ≡ 0} and χBH(X) := {χBh : h ∈ H(X)} ⊂ L2(E,µ).

The subspace H(X) is of course closed, but χBH(X) need not be closed.
Fix an exhausting sequence E1 ⊂ E2 ⊂ · · · ⊂ E \ B of bounded Borel subsets of

E \ B, and denote
Fn = E \ (B ∪ En).

SinceB is bounded, we have L1,loc(L
2(B,µ)) = L1(L

2(B,µ)).By Lemma 1.9, for PK -
almost every X ∈ Conf(E) there exists a positive contraction K [X,E\B] ∈ L1(L

2(B,µ))

such that

χBK
[X,En]χB

n→∞
−−−−−−−−−→
in L1(L

2(B,µ))
K [X,E\B], (6.1)

PK(· |X,E \ B) = PK [X,E\B] . (6.2)
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Lemma 6.1. For PK -almost every X ∈ Conf(E), we have K [X,E\B](χBh) = χBh for
any h ∈ H(X ∩ (E \ B)).

Proof. For any n ∈ N, since En ⊂ E \ B, by definition, we have H(X ∩ (E \ B)) ⊂
H(X ∩En). Since En is bounded and E \En = B ∪ Fn, by Proposition 2.6 the operator
K [X,En] is the orthogonal projection from L2(E,µ) onto the closure of the subspace
χE\EnH(X ∩ En) = χB∪FnH(X ∩ En). By the limit relation (6.1) (and the elementary
fact that L1-norm convergence implies operator norm convergence), for PK -almost every
X ∈ Conf(E) we have

K [X,E\B](χBh) = lim
n→∞

(χBK
[X,En]χB)(χBh) = lim

n→∞
χBK

[X,En](χBh)

for any h ∈ H(X ∩ (E \ B)), where the two limits are in the sense of L2-convergence.
Then using the equalities χBh = χB∪Fnh − χFnh, K [X,En](χB∪Fnh) = χB∪Fnh and the
relation

‖χBK
[X,En](χFnh)‖2 ≤ ‖χFnh‖2

n→∞
−−−→ 0,

we obtain the desired equality

K [X,E\B](χBh) = lim
n→∞

χBK
[X,En](χB∪Fnh− χFnh) = χBh− lim

n→∞
χBK

[X,En](χFnh)

= χBh,

where the two limits are in the sense of L2-convergence. ut

Lemma 6.2. Let P be a point process on E. Then for any bounded Borel subset B ⊂ E,

P
(
#B = #(X ∩ B)

∣∣X,E \ B) > 0 for P-a.e. X ∈ Conf(E). (6.3)

Proof. First of all, decomposing X = Y ∪ Z, Y ∈ Conf(B), Z ∈ Conf(E \ B), we can
rewrite the statement as follows:

P
(
{W ∈ Conf(B) : #(W) = #(Y )} |Z,E \ B

)
> 0 (6.4)

for (πE\B)∗(P)-almost every Z ∈ Conf(E \ B) and P(· |Z,E \ B)-almost every Y ∈
Conf(B). We make a simple general claim: given an integer-valued measurable func-
tion f on a probability space (�,P), for P-almost every y ∈ � we have P{x : f (x) =
f (y)} > 0. Indeed, if we define N = {n ∈ Z : P{x : f (x) = n)} = 0}, then the relation
P{x : f (x) = f (y)} > 0 fails only if f (y) ∈ N , and

P{y : f (y) ∈ N} =
∑
n∈N

P{y : f (y) = n} = 0.

Now for (πE\B)∗(P)-almost every Z ∈ Conf(E \ B), by taking � = Conf(B), P =
P( · |Z,E \ B), f = #B , we obtain the desired statement (6.4). ut

Proof of Theorem 1.4. Fix a countable dense subset T of E and let Sn be an enumeration
of balls with rational radii centred at T :

{Sn : n ∈ N} = {B(x, q) : x ∈ T , q ∈ Q}. (6.5)

Since the family (6.5) is countable, by Lemmas 6.1 and 6.2 there exists a measurable
subset A ⊂ Conf(E) such that
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• PK(A) = 1;
• for all X ∈ A and all n ∈ N, the conditional measures PK(· |X,E \ Sn) and the

conditional kernels K [X,E\Sn] are defined and satisfy

PK(· |X,E \ Sn) = PK [X,E\Sn]; (6.6)

• for all X ∈ A and all n ∈ N, we have

K [X,E\Sn](χSnh) = χSnh for any h ∈ H(X ∩ (E \ Sn)); (6.7)

• for all X ∈ A and all n ∈ N.

PK
(
#Sn = #(X ∩ Sn)

∣∣X,E \ Sn) > 0. (6.8)

We now show that the above measurable subset A ⊂ Conf(E) has the desired prop-
erty: H(X) = {0} for any X ∈ A. Take a fixed configuration X ∈ A and assume, for
contradiction, that there exists h0 ∈ H(X), h0 6= 0. Clearly, since X is a discrete count-
able subset, there exists n0 ∈ N such that

h0�Sn0
6= 0 and X ∩ Sn0 = ∅.

Therefore, χSn0
h0 6= 0 and H(X) = H(X ∩ (E \ Sn0)) and hence h0 ∈ H(X ∩

(E \ Sn0)). In view of the assumption (6.7) on A, the non-zero function χSn0
h0 satis-

fies K [X,E\Sn0 ](χSn0
h0) = χSn0

h0, whence 1 is an eigenvalue of the operator K [X,E\Sn0 ].
In particular,

det(1−K [X,E\Sn0 ]) = 0.

On the other hand, the relations (6.6), (6.8) together with the gap probability formula (3.5)
imply that

det(1−K [X,E\Sn0 ]) = P
K
[X,E\Sn0 ](#Sn0

= 0) = PK(#Sn0
= 0 |X,E \ Sn0)

= PK
(
#Sn0
= #(X ∩ Sn0)

∣∣X,E \ Sn0

)
> 0.

We thus obtain a contradiction and Theorem 1.4 is proved completely. ut

Remark. When K is the orthogonal projection with image H ⊂ L2(E), we have seen
in Proposition 2.6 that for our exhausting sequence E1 ⊂ E2 ⊂ · · · ⊂ E \ B of bounded
Borel subsets of E \ B, the operator K [X,En] is the orthogonal projection onto the clo-
sure of the subspace χE\EnH(X ∩En). The convergence of the sequence of contractions
χBK

[X,En]χB ) requires proof. Whether the sequenceK [X,En] itself converges is not clear
to us. The limit operator

K [X,E\B] = lim
n→∞

χBK
[X,En]χB

is in general not an orthogonal projection (cf. e.g. [8, Corollary 3.13] for the Bergman ker-
nel): the operator K [X,E\B], acting on L2(B,µ), is trace class by the boundedness of B,
but in the example of the Bergman kernel the range of K [X,E\B] has infinite dimension
and therefore K [X,E\B] is not an orthogonal projection.
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7. Triviality of the tail σ -algebra: proof of Theorem 1.6

Definition 7.1. Fix any increasing exhausting sequenceD1 ⊂ D2 ⊂ · · · ⊂ E of bounded
Borel subsets of E. For any Borel subset W ⊂ E, set

K [X,W ] := lim
n→∞

χE\WK
[X,W∩Dn]χE\W .

The convergence takes place in L1,loc(L
2(E,µ)) by Proposition 5.1.The kernelK [X,W ] is

well-defined for PK -almost every X. For fixed W , the limit is almost surely independent
of the choice of the sequence (Dn)∞n=1.

Proposition 7.2. Fix a bounded Borel subset B ⊂ E and letE\B ⊃ W1 ⊃ W2 ⊃ · · · be
any decreasing sequence of Borel subsets. Then (χBK [X,Wn]χB)n∈N is an (F(Wn))n∈N-
adapted reverse martingale defined on the probability space (Conf(E),F(E),PK).
Proof. It suffices to prove that for any φ ∈ L2(B,µ), the sequence (〈K [X,Wn]φ, φ〉)n∈N
is an (F(Wn))n∈N-adapted reverse martingale on (Conf(E),F(E),PK). By definition, for
any n ∈ N,

〈K [X,Wn]φ, φ〉 = lim
k→∞
〈K [X,Wn∩Dk]φ, φ〉 PK -almost surely. (7.1)

Since all the operators K [X,Wn] are contractive, by the bounded convergence theorem the
convergence (7.1) takes place in L1(PK) as well. Fix n ∈ N. For any ε > 0, let k ∈ N be
large enough that

‖〈K [X,Wn]φ, φ〉 − 〈K [X,Wn∩Dk]φ, φ〉‖L1(PK ) ≤ ε,

‖〈K [X,Wn+1]φ, φ〉 − 〈K [X,Wn+1∩Dk]φ, φ〉‖L1(PK ) ≤ ε.
(7.2)

For fixed n ∈ N, the sequence(
EPK

[
〈K [X,Wn]φ, φ〉

∣∣F(Wn+1 ∩Dk)
])∞
k=1

is a martingale that converges in L1-norm to EPK [〈K
[X,Wn]φ, φ〉 |F(Wn+1)]. We can

therefore choose k large enough that∥∥EPK
[
〈K [X,Wn]φ, φ〉

∣∣F(Wn+1)
]
− EPK

[
〈K [X,Wn]φ, φ〉

∣∣F(Wn+1 ∩Dk)
]∥∥
L1(PK ) ≤ ε.

Since Wn+1 ∩Dk ⊂ Wn ∩Dk and Dk is bounded, Lemma 1.12 implies

EPK
[
〈K [X,Wn∩Dk]φ, φ〉

∣∣F(Wn+1 ∩Dk)
]
= 〈K [X,Wn+1∩Dk]φ, φ〉,

whence∥∥EPK
[
〈K [X,Wn]φ, φ〉

∣∣F(Wn+1)
]
− 〈K [X,Wn+1]φ, φ〉

∥∥
L1(PK )

≤ 2ε +
∥∥EPK

[
〈K [X,Wn]φ, φ〉

∣∣F(Wn+1 ∩Dk)
]
− 〈K [X,Wn+1∩Dk]φ, φ〉

∥∥
L1(PK )

≤ 3ε +
∥∥EPK

[
〈K [X,Wn∩Dk]φ, φ〉

∣∣F(Wn+1 ∩Dk)
]
− 〈K [X,Wn+1∩Dk]φ, φ〉

∥∥
L1(PK ) = 3ε,

(7.3)

and we obtain the desired reverse martingale relation EPK [〈K
[X,Wn]φ, φ〉 |F(Wn+1)] =

〈K [X,Wn+1]φ, φ〉. ut
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Lemma 7.3. For any bounded Borel subset B ⊂ E and φ ∈ L2(E \ B,µ), we have

VarPK [〈K
[X,B]φ, φ〉] ≤ ‖φ‖22 · ‖χBKφ‖

2
2, (7.4)

where ‖ · ‖2 is the Hilbert norm on L2(E,µ).

We first prove Lemma 7.3 when K is an orthogonal projection. This part of the proof
is similar to the argument of Benjamini, Lyons, Peres and Schramm [1, Lemma 8.6]
and Lyons [21, Lemma 7.18]. The proof of Lemma 7.3 in full generality proceeds by
reduction to the case of projections (the usual argument of extending the phase space
must be slightly modified in the continuous setting) and is postponed to the end of the
section.

Proof of Lemma 7.3 when K is an orthogonal projection. By homogeneity, we may as-
sume that ‖φ‖2 ≤ 1. Since K is an orthogonal projection, by [5, Proposition 2.5] so is
K [X,B] for PK -almost every X ∈ Conf(E). By Proposition 4.1, we have

VarPK [〈K
[X,B]φ, φ〉] = EPK

∣∣〈(K [X,B] − χE\BKχE\B)φ, φ〉∣∣2
≤ EPK

(
‖(K [X,B] − χE\BKχE\B)φ‖

2
2
)

= EPK
(
‖K [X,B]φ‖22 − 〈K

[X,B]φ, χE\BKχE\Bφ〉

− 〈χE\BKχE\Bφ,K
[X,B]φ〉 + ‖χE\BKχE\Bφ‖

2
2
)

= EPK
(
〈K [X,B]φ, φ〉 − 〈K [X,B]φ, χE\BKχE\Bφ〉

− 〈χE\BKχE\Bφ,K
[X,B]φ〉 + ‖χE\BKχE\Bφ‖

2
2
)

= 〈χE\BKχE\Bφ, φ〉 − ‖χE\BKχE\Bφ‖
2
2 = 〈Kφ, φ〉 − ‖χE\BKφ‖

2
2

= ‖Kφ‖22 − ‖χE\BKφ‖
2
2 = ‖χBKφ‖

2
2. (7.5)

ut

Proposition 7.4. Fix any ` ∈ N. Then (χD`K
[X,E\Dn+`]χD`)n∈N is an (F(E\Dn+`))n∈N-

adapted reverse martingale defined on the probability space (Conf(E),F(E),PK), and

χD`K
[X,E\Dn+`]χD`

n→∞
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
PK -a.s. in L1(L

2(E,µ)) and in L2(PK ;L1(L
2(E,µ)))

χD`KχD` . (7.6)

For any ` ∈ N,

EPK

[
PK(· |X,E \D`)

∣∣∣ ∞⋂
n=1

F(E \Dn+`)
]
= (πD`)∗(PK) PK -a.s., (7.7)

and, for any A ∈ F(D`),

lim
n→∞

EPK
∣∣EPK [χA |F(E \Dn+`)] − PK(A)

∣∣ = 0. (7.8)

Proof. The reverse martingale property of the sequence follows from Proposition 7.2. Set

T :=
∞⋂
n=1

F(E \Dn+`). (7.9)
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Since a Banach space valued reverse martingale converges (see, e.g., Pisier [31, p. 34]),
we obtain

χD`K
[X,E\Dn+`]χD`

n→∞
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
PK -almost surely in L1(L

2(E,µ)) and in L2(PK ;L1(L
2(E,µ)))

EPK [χD`K
[X,E\D1+`]χD` |T ].

Set
G∞(X) = EPK [χD`K

[X,E\D1+`]χD` |T ].

In particular, for any φ ∈ L2(D`, µ) with ‖φ‖2 ≤ 1, we have

〈G∞(X)φ, φ〉 = EPK [〈K
[X,E\D1+`]φ, φ〉 |T ] PK -almost surely.

By Definition 7.1 and the inequality |〈K [X,(E\Dn+`)∩Dk]φ, φ〉| ≤ 1, which holds PK -
almost surely, for any n ∈ N we have

〈K [X,(E\Dn+`)∩Dk]φ, φ〉
k→∞
−−−→ 〈K [X,E\Dn+`]φ, φ〉 PK -a.s. and in L2(PK). (7.10)

Similarly,

〈K [X,E\Dn+`]φ, φ〉
n→∞
−−−→ 〈G∞(X)φ, φ〉 PK -a.s. and in L2(PK). (7.11)

In particular, since (E \ D1+`) ∩ Dk are bounded for all k ∈ N, we can apply Proposi-
tion 4.1 to obtain

EPK 〈G∞(X)φ, φ〉 = EPK [〈K
[X,E\D1+`]φ, φ〉] = lim

k→∞
EPK [〈K

[X,(E\D1+`)∩Dk]φ, φ〉]

= 〈Kφ, φ〉.

Now by Lemma 7.3 and the assumption ‖φ‖2 ≤ 1, we have

VarPK (〈K
[X,(E\Dn+`)∩Dk]φ, φ〉) ≤ ‖χ(E\Dn+`)∩DkKφ‖

2
2 ≤ ‖χE\Dn+`Kφ‖

2
2.

The convergences (7.10), (7.11) yield

VarPK (〈K
[X,E\Dn+`]φ, φ〉)= lim

k→∞
VarPK (〈K

[X,(E\Dn+`)∩Dk]φ, φ〉)≤ ‖χE\Dn+`Kφ‖
2
2,

VarPK (〈G∞(X)φ, φ〉)= lim
n→∞

VarPK (〈K
[X,E\Dn+`]φ, φ〉)≤ lim sup

n→∞
‖χE\Dn+`Kφ‖

2
2 = 0.

Consequently, 〈G∞(X)φ, φ〉 = 〈Kφ, φ〉 PK -almost surely. Since χD`G∞(X)χD` =
G∞(X) and since φ is arbitrarily chosen from the separable unit sphere in L2(D`, µ),
we obtain the desired equality

G∞(X) = χD`KχD` PK -a.s.

Finally, Proposition 8.3 implies that

(πD`)∗[PK(· |X,E \Dn+`)] = EPK
[
PK(· |X,E \D`)

∣∣F(E \Dn+`)] PK -a.s.,
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and

(πD`)∗[PK(· |X,E \Dn+`)]
n→∞
−−−−→
weakly

EPK
[
PK(· |X,E \D`)

∣∣T ]
PK -a.s. (7.12)

But the convergence (7.6) implies that

(πD`)∗[PK(· |X,E \Dn+`)] = P
χD`K

[X,E\Dn+`]χD`

n→∞
−−−−→
weakly

PχD`KχD`

= (πD`)∗(PK) PK -a.s. (7.13)

Now (7.12) and (7.13) yield (7.7). Martingale convergence for a bounded random variable
implies (7.8). ut

Proof of Theorem 1.6. Take Dn := Bn. We prove that the σ -algebra T in (7.9) is trivial
with respect to PK . Take an event A ∈ T . For ε > 0, find ` ∈ N large enough and
A1 ∈ F(D`) such that PK(A1 4A) < ε/3. By (7.8), we have

lim
n→∞

EPK
∣∣EPK [χA1 |F(E \Dn+`)] − PK(A1)

∣∣ = 0.

Now find n ∈ N large enough that

EPK
∣∣EPK [χA1 |F(E \Dn+`)] − PK(A1)

∣∣ ≤ ε/3.
It follows that for any A2 ∈ F(E \Dn+`), we have

|PK(A1 ∩A2)− PK(A1)PK(A2)|

=
∣∣EPK

(
χA2EPK [χA1 |F(E \Dn+`)]

)
− EPK (χA2PK(A1)

)
|

=
∣∣EPK

(
χA2

[
EPK [χA1 |F(E \Dn+`)] − PK(A1)

])∣∣
≤ EPK

(∣∣EPK [χA1 |F(E \Dn+`)] − PK(A1)
∣∣) ≤ ε/3. (7.14)

Finally, we obtain

|PK(A ∩A2)− PK(A)PK(A2)|

≤ 2PK(A1 4A)+ |PK(A1 ∩A2)− PK(A1)PK(A2)| ≤ ε.

Taking A2 = A, we obtain PK(A) = (PK(A))2, whence PK(A) is either 0 or 1, as
desired. ut

Proof of Lemma 7.3 in the general case. Fix a bounded Borel subset B ⊂ E and a
function φ ∈ L2(E \ B,µ) such that ‖φ‖2 = 1. Recalling (3.1), set

R(K,B, φ) = (φ ⊗ φ + χB)K(φ ⊗ φ + χB). (7.15)

By Lemma 1.10,

〈R(K,B, φ)[X,B]φ, φ〉 = 〈K [X,B]φ, φ〉 for PK -a.e. X ∈ Conf(E).
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By definition,K [X,B] = K [X∩B,B] and similarlyR(K,B, φ)[X,B] = R(K,B, φ)[X∩B,B].
In particular,

〈R(K,B, φ)[X,B]φ, φ〉 = 〈K [X,B]φ, φ〉 for (πB)∗(PK) = PχBKχB -a.e. X ∈ Conf(B),
(7.16)

and
VarPK [〈K

[X,B]φ, φ〉] = VarPχBKχB [〈K
[X,B]φ, φ〉]

= VarPχBR(K,B,φ)χB 〈R(K,B, φ)
[X,B]φ, φ〉. (7.17)

Claim (see Lyons [22, Section 3.3]). Let m be the counting measure on N. There exists a
locally trace class orthogonal projection operator K̃ ∈ L1,loc(L

2(E t N, µ⊕m)) such
that K = χEK̃χE .

Indeed, the canonical orthogonal projection dilation of K on L2(E,µ) ⊕ L2(E,µ) is
given by the formula [

K
√
K −K2

√
K −K2 1−K

]
,

but it is not in general locally trace class. Since L2(E,µ) is separable and all infinite-
dimensional separable Hilbert spaces are isometrically isomorphic, there exists a unitary
operator U : L2(E,µ)→ `2(N) = L2(N,m), and we set

K̃ :=

[
1 0
0 U

] [
K

√
K −K2

√
K −K2 1−K

] [
1 0
0 U−1

]
. (7.18)

Now since K̃ is an orthogonal projection, we can apply (7.5) to finish the proof of
Lemma 7.3 as follows. Consider the subset B ⊂ E as a subset of E t N, and consider
the function φ ∈ L2(E \ B,µ) as an element in L2((E t N) \ B,µ ⊕ m) (just extend
the definition of φ so that it vanishes on N). Applying (7.5) to the kernel K̃ and the
determinantal measure PK̃ , we obtain

VarPK̃ [〈K̃
[X,B]φ, φ〉] ≤ ‖χBK̃φ‖

2
2.

For the term on the right hand side, we have

χBK̃φ = χBKφ. (7.19)

Similar to the definition (7.15) of R(K,B, φ), set

R(K̃, B, φ) = (φ ⊗ φ + χB)K̃(φ ⊗ φ + χB). (7.20)

By the definition (7.18) of the kernel K̃ , we have χEK̃χE = K . Then by using the
elementary equality

φ ⊗ φ + χB = (φ ⊗ φ + χB)χE = χE(φ ⊗ φ + χB),
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we obtain, by recalling (7.15) and (7.20),

R(K̃, B, φ) = (φ ⊗ φ + χB)K̃(φ ⊗ φ + χB)

= (φ ⊗ φ + χB)χEK̃χE(φ ⊗ φ + χB)

= (φ ⊗ φ + χB)K(φ ⊗ φ + χB) = R(K,B, φ). (7.21)

The equality (7.21), combined with (7.16) (applied to both K̃ and K), implies

〈K̃ [X,B]φ, φ〉
PχB K̃χB -a.s.
======== 〈R(K̃, B, φ)[X,B]φ, φ〉 = 〈R(K,B, φ)[X,B]φ, φ〉

PχBKχB -a.s.
======== 〈K [X,B]φ, φ〉.

The equality χBK̃χB = χBKχB implies PχB K̃χB = PχBKχB . Therefore,

VarPK [〈K
[X,B]φ, φ〉] = VarPχBKχB [〈K

[X,B]φ, φ〉] = VarPχBK̃χB [〈K̃
[X,B]φ, φ〉]

= VarPK̃ [〈K̃
[X,B]φ, φ〉]. (7.22)

Combining (7.19) and (7.22), we obtain the desired inequality (7.4). ut

8. Appendix

8.1. Conditioning on bounded subsets of determinantal point processes: proofs of
Propositions 2.5 and 2.6

Let W ⊂ E be a Borel subset, not necessarily bounded. Recall that we identify the sets

Conf(W) ' Conf(E,W) := {X ∈ Conf(E) : X ⊂ W } ⊂ Conf(E).

Therefore, given a point process P on E, that is, a Borel probability on Conf(E), we may
set

P�Conf(W) :=


P�Conf(W)

P(Conf(W))
if P(Conf(W)) > 0,

0 if P(Conf(W)) = 0.
(8.1)

Recall also the notation PX∩B introduced in (2.3) for the Palm measure of the point pro-
cess P with respect to the points inside X ∩ B.

We have the following description of conditional measures of general point process
with respect to restricting the configuration to a bounded subset B ⊂ E.

Proposition 8.1. Let B ⊂ E be a bounded Borel subset. If P is a simple point process
on E admitting correlation measures of all orders, then P(· |X,B) = PX∩B�Conf(E\B)
for P-almost every X ∈ Conf(E). In particular, for P-almost every X ∈ Conf(E), we
have PX∩B(Conf(E \ B)) > 0.

Proof. Let Confn(E) = {X ∈ Conf(E) : #X = n} and define Confn(B) similarly. Via
the natural map En → Confn(E) defined by (x1, . . . , xn) 7→ {x1, . . . , xn}, we define a
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measure ρ#
n,P on Confn(E) as the push-forward of the correlation measure ρn,P and define

a σ -finite measure C #
n,P on Confn(E) × Conf(E) as the push-forward of the n-th order

Campbell measure C !
n,P. The formula (2.2) implies that

C #
n,P(dp× dX1) = ρ

#
n,P(dp)P

p(dX1). (8.2)

By convention, we set ρ#
0,P(dp) := δ∅ and C#

0,P := δ∅⊗P, where δ∅ is the Dirac measure
at the empty configuration ∅, i.e., the unique element ∅ ∈ Conf0(E). Equivalently, for
any positive Borel function H : Confn(E)× Conf(E)→ R+,∫

Confn(E)×Conf(E)
H(p, X1)C

#
n,P(dX0 × dX1)

=

∫
Conf(E)

[ ∑#

x∈Xn

H({x1, . . . , xn}, X \ {x1, . . . , xn})
]
P(dX),

where the summation
∑# is taken over all ordered n-tuples (x1, . . . , xn) with distinct

coordinates x1, . . . , xn ∈ X. In particular, when n = 0, this equality reads: for every
H : Conf0(E)× Conf(E)→ R+,∫

Conf0(E)×Conf(E)
H(p, X1)C

#
0,P(dp× dX1) =

∫
Conf(E)

H(∅, X)P(dX).

The boundedness of B ⊂ E implies that Conf(B) =
⊔
∞

n=0 Confn(B). Hence

Conf(E) ' Conf(B)× Conf(E \ B)

=

( ∞⊔
n=0

Confn(B)
)
× Conf(E \ B) =

∞⊔
n=0

(
Confn(B)× Conf(E \ B)

)
.

For any n = 0, 1, . . . , let H : Confn(E) × Conf(E) → R+ be any non-negative Borel
function supported on Confn(B) × Conf(E \ B) ⊂ Confn(E) × Conf(E). Then for any
X ∈ Conf(E), we have∑#

x∈Xn

H({x1, . . . , xn}, X \ {x1, . . . , xn}) = n! · χ{#(X∩B)=n} ·H(X ∩ B,X ∩ (E \ B)).

When n = 0, this equality reads H(∅, X) = χ{X∩B=∅} · H(X ∩ B,X ∩ (E \ B)). By
definition of C #

n,P, we get∫
Confn(E)×Conf(E)

H(p, X1)C
#
n,P(dp× dX1)

=

∫
Conf(E)

[ ∑#

x∈Xn

H({x1, . . . , xn}, X \ {x1, . . . , xn})
]
P(dX)

= n! ·

∫
Conf(E)

χ{#(X∩B)=n} ·H(X ∩ B,X ∩ (E \ B))P(dX)

= n! ·

∫
Confn(B)×Conf(E\B)

H(p, X1)PB,E\B(dp× dX1).
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The above equality, combined with (8.2), yields

PB,E\B�Confn(B)×Conf(E\B)(dp× dX1) =
1
n!

C #
n,P�Confn(B)×Conf(E\B)(dp× dX1)

=
1
n!
ρ#
n,P�Conf(B)(dp)Pp�Conf(E\B)(dX1)

=
Pp(Conf(E \ B))

n!
ρ#
n,P�Conf(B)(dp)Pp�Conf(E\B)(dX1).

Consequently,

PB,E\B(dp× dX1) =

( ∞∑
n=0

Pp(Conf(E \ B))
n!

ρ#
n,P�Conf(B)(dp)

)
Pp�Conf(E\B)(dX1).

This implies both the formula for πB(P)(dp) and the formula for P(dX1 | p, B) =
PB,E\B(dX1 | p, B):

πB(P)(dp) =
∞∑
n=0

Pp(Conf(E \ B))
n!

ρ#
n,P�Conf(B)(dp), (8.3)

P(dX1 | p, B) = Pp�Conf(E\B)(dX1) for πB(P)-a.e. p ∈ Conf(B). (8.4)

Hence we get the desired relation P(· |X,B) = PX∩B�Conf(E\B) for P-almost every X ∈
Conf(E). ut

Remark. Kallenberg [20, Section 12.3] defined the compound Campbell measure of P
on Conffin(E)× Conf(E) by

C #
P (dp× dX1) :=

∞∑
n=0

1
n!

C #
n,P(dp× dX1),

where Conffin(E) =
⊔
∞

n=0 Confn(E).

To prove Proposition 2.5, we will also need the description of the normalized restriction
of a determinantal measure on Conf(E) to Conf(E \ B) ⊂ Conf(E), which is given by
the following

Lemma 8.2 (see [3], [6, Propositions 2.1 and 2.2] and [5, Propositions 2.3 and 2.5]).
Let K̃ : L2(E,µ) → L2(E,µ) be a bounded self-adjoint locally trace class operator
with spec(K̃) ⊂ [0, 1]. Assume that B ⊂ E is a bounded subset such that the operator
1− χBK̃ is invertible. Then:

(i) The measure

PK̃�Conf(E\B) (8.5)

is a determinantal point process induced by the kernel

χE\BK̃(1− χBK̃)−1χE\B . (8.6)
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In notation,

PK̃�Conf(E\B) = PχE\B K̃(1−χB K̃)−1χE\B
. (8.7)

(ii) If moreover K̃ is an orthogonal projection, then the operator (8.6) is the orthogonal
projection from L2(E,µ) onto the closure of

χE\BRan(K̃) = {χE\Bf : f ∈ Ran(K̃)}.

Proof. Recall that for any bounded linear operators T , S on a Hilbert space, the invert-
ibility of 1−T S and the invertibility of 1−ST are equivalent. Therefore, the assumption
that 1 − χBK̃ = 1 − χB · χBK̃ is invertible implies that 1 − χBK̃χB is invertible and
hence det(1 − χBK̃χB) 6= 0. Now from the gap probability formula for determinantal
point processes, we have

PK̃(Conf(E \ B)) = det(1− χBK̃χB) > 0.

Since ∏
x∈X

χE\B(x) = χConf(E\B)(X),

we have

PK̃�Conf(E\B) =

∏
x∈X χE\B(x) · PK̃∫

Conf(E)
∏
x∈Y χE\B(x) · PK̃(dY )

.

Now item (i) reads ∏
x∈X χE\B(x) · PK̃∫

Conf(E)
∏
x∈Y χE\B(x) · PK̃(dY )

= PχE\B K̃(1−χB K̃)−1χE\B
, (8.8)

which follows from [3], [6, Proposition 2.1] or [5, Proposition 2.3] (by taking the function
g in [6, Proposition 2.1] or in [5, Proposition 2.3] to be the characteristic function χE\B ).
Item (ii) follows from [6, Proposition 2.2] (see also [5, Proposition 2.5]). ut

Remark. In the discrete setting, see also Borodin and Rains [2] and Lyons [21] for the
statements in Lemma 8.2.

Remark. For the reader’s convenience, we include the proof of (8.8) under the additional
assumption

χBK̃ ∈ L1(L
2(E,µ)).

Take any bounded measurable function f on E such that (f − 1)K̃ ∈ L1(L
2(E,µ)).

Then
(f χE\B − 1)K̃ = χE\B(f − 1)K̃ − χBK̃ ∈ L1(L

2(E,µ)).

By direct computation,

1+ (f χE\B − 1)K̃ =
[
1+ (f − 1)χE\BK̃(1− χBK̃)−1]

· (1− χBK̃).
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Therefore, using elementary properties of Fredholm determinants, we get

det(1+ (f χE\B − 1)K̃) = det
(
1+ (f − 1)χE\BK̃(1− χBK̃)−1) det(1− χBK̃)

= det
(
1+ (f − 1)χE\BK̃(1− χBK̃)−1χE\B

)
det(1− χBK̃),

which in turn implies∫
Conf(E)

∏
x∈X f (x) ·

∏
x∈X χE\B(x)PK̃(dX)∫

Conf(E)
∏
x∈X χE\B(x)PK̃(dX)

=

∫
Conf(E)

(∏
x∈X

f (x)

)
PχE\B K̃(1−χB K̃)−1χE\B

(dX),

and the equality (8.8) follows immediately.

Proof of Proposition 2.5. Since the determinantal point process PK is a simple point
process, by Proposition 8.1 for PK -almost allX ∈ Conf(E) we have PX∩BK (Conf(E \B))
> 0 and

PK(· |X,B) = PX∩BK �Conf(E\B). (8.9)

Recall that the measure PX∩BK , introduced in (2.3), is the Palm measure of PK with respect
to the points inside X ∩ B. By Shirai and Takahashi [38, Theorem 1.7], for PK -almost
every X ∈ Conf(E), the Palm measure PX∩BK is a determinantal point process on E,
induced by the correlation kernel

KX∩B
= Kp1,...,pn if X ∩ B = {p1, . . . , pn}, (8.10)

where Kp1,...,pn is defined by (1.8). In notation,

PX∩BK = PKX∩B . (8.11)

The above identity combined with PX∩BK (Conf(E \ B)) > 0 for PK -almost every X ∈
Conf(E) implies that

det(1− χBKX∩BχB) = PKX∩B (Conf(E \ B)) = PX∩BK (Conf(E \ B)) > 0

for PK -almost every X ∈ Conf(E). This in turn implies that 1− χBKX∩BχB and hence
1 − χBKX∩B is invertible. So Lemma 8.2 in the Appendix is applicable to the kernel
KX∩B and the subset B ⊂ E. Combining (8.7) with K̃ replaced by KX∩B and the equal-
ities (8.9), (8.11), we obtain

PK(· |X,B) = PX∩BK �Conf(E\B) = PKX∩B �Conf(E\B) = PχE\BKX∩B (1−χBKX∩B )−1χE\B
.

Now using the definition (8.10) of KX∩B and the definition (1.9) of K [X,B], we obtain

χE\BK
X∩B(1− χBKX∩B)−1χE\B = K

[X,B].

This completes the proof of Proposition 2.5. ut
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Proof of Proposition 2.6. The first assertion of Proposition 2.6 can be proved by induction
on n, by noting that Kp1,...,pn = ((Kp1)···)pn . In particular, when n = 1, the equality
Kp1(x, y) = K(x, y)−

K(x,p1)K(p1,y)
K(p1,p1)

implies that Kp1 = K −5Kp1
where 5Kp1

is the
rank-one orthogonal projection onto the linear space spanned by the function Kp1(·) =

K(·, p1). Therefore, Kp1 is the orthogonal projection onto H(p1).
The second assertion of Proposition 2.6 is an immediate consequence of

Lemma 8.2(ii). ut

8.2. Martingales corresponding to conditional processes

Let P be a point process on E and let W ⊂ E be a Borel subset of E. Let W1 ⊂ W2 ⊂

· · · ⊂ W be an increasing sequence of Borel subsets of W such that W =
⋃
∞

n=1Wn.

Proposition 8.3. The sequence ((πE\W )∗[P(· |X,Wn)])n∈N is an (F(Wn))n∈N-adapted
martingale defined on the probability space (Conf(E),F(E),P). Moreover,

(πE\W )∗[P(· |X,Wn)] = EP
[
P(· |X,W)

∣∣F(Wn)
]

for P-a.e. X ∈ Conf(E). (8.12)

In particular, by the martingale convergence theorem, for all Borel subsets A ⊂

Conf(E \W) and any 1 ≤ p <∞,(
(πE\W )∗[P(· |X,Wn)]

)
(A)

n→∞
−−−−−−−−−−−−−−−−→
P-a.s. and in Lp(Conf(E),P)

P(A |X,W). (8.13)

Moreover, for P-almost every X ∈ Conf(E),

(πE\W )∗[P(· |X,Wn)]
n→∞
−−−→
weakly

P(· |X,W). (8.14)

Remark. In general, (8.13) cannot be strengthened to the claim that for P-almost every
X ∈ Conf(E), we have ((πE\W )∗[P(· |X,Wn)])(A)

n→∞
−−−→ P(A |X,W), for all Borel

subsets A ⊂ Conf(E \W).

We prepare a simple lemma. Let �i , i = 1, 2, . . . , and �∗ be standard Borel spaces. Fix
n ∈ N and denote

x := (xi)
∞

i=1 and t =: (xi)i≥n+1,

while zwill stand for the coordinate on�∗. LetQ(dx×dz) be a Borel probability measure
on (

∏
∞

i=1�i) × �
∗. For any n ∈ N, let qn(x1, . . . , xn; dz) be the marginal on �∗ of the

conditional measure Q(dt × dz | x1, . . . , xn).

Lemma 8.4. We have

qn(x1, . . . , xn; dz) = E[Q(dz | x1, . . . , xn, t) | x1, . . . , xn].
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Proof. Denote by Qn the marginal measure of Q on �1 × · · · × �n. Let Q∞ be the
marginal measure of Q on

∏
∞

i=1�i . By definition of conditional measures, we have

Q(dx × dz) = Q∞(dx)Q(dz | x1, . . . , xn, t),

Q(dx × dz) = Qn(dx1 · · · dxn)Q(dt × dz | x1, . . . , xn).

And also

E[Q(dz | x1, . . . , xn, t) | x1, . . . , xn]

=

∫
t∈
∏
∞

i=n+1 �i

Q(dz | x1, . . . , xn, t)Q∞(dt | x1, . . . , xn).

Since Q∞(dx) = Qn(dx1 · · · dxn)Q∞(dt | x1, . . . , xn), we get

Q(dx × dz) = Qn(dx1 · · · dxn)Q∞(dt | x1, . . . , xn)Q(dz | x1, . . . , xn, t).

Consequently,

Q(dt × dz | x1, . . . , xn) = Q∞(dt | x1, . . . , xn)Q(dz | x1, . . . , xn, t).

By definition, we have

qn(x1, . . . , xn; dz) =
∫
t∈
∏
∞

i=n+1 �i

Q(dt × dz | x1, . . . , xn)

=

∫
t∈
∏
∞

i=n+1 �i

Q∞(dt | x1, . . . , xn)Q(dz | x1, . . . , xn, t)

= E[Q(dz | x1, . . . , xn, t) | x1, . . . , xn]. ut

Proof of Proposition 8.3. Apply Lemma 8.4 to �i = Conf(Wi \Wi−1). ut

8.3. Mixing for Möbius transformations acting on (Conf(D),PKD) and proof of
Lemma 1.3

For any n ∈ N and any ε > 0, we have

P
(
#(Z(fD) ∩ {z ∈ D : |z| ≤ ε}) ≥ n

)
> 0.

To conclude the proof of Lemma 1.3, it suffices to establish the ergodicity of the dis-
tribution of Z(fD) under the group Aut(D) of Möbius transformations, in other words,
the group of isometries of the Lobachevsky plane. We prove mixing for hyperbolic and
parabolic one-dimensional subgroups of Aut(D).

Lemma 8.5. If γ ∈ Aut(D) is either hyperbolic or parabolic, then the dynamical system
(Conf(D),PKD , γ ) is strongly mixing.
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Proof. Fix an increasing sequence rk in (0, 1) such that limk rk = 1. Let A,B be any
fixed measurable subsets in Conf(D). For any ε > 0, there exist Aε,Bε ⊂ Conf(D) and
a compact subset Cε ⊂ D such that Aε,Bε are both F(Cε)-measurable and

PKD(A4Aε) ≤ ε, PKD(B4Bε) ≤ ε. (8.15)

Since PKD is γ -invariant, we have

sup
n∈N
|PKD(A ∩ γ

−n(B))− PKD(Aε ∩ γ
−n(Bε))| ≤ 2ε. (8.16)

For any rk denote Drk := {z ∈ D : |z| < rk}. By the assumption on γ , for any k ∈ N,
there exists nk ∈ N such that

γ−n(Cε) ∩ Drk = ∅ for all n ≥ nk.

It follows that for any n ≥ nk ,

PKD(Aε ∩ γ
−n(Bε)) = EPKD

(
χγ−n(Bε)EPKD [χAε

|F(D \ Drk )]
)
.

Therefore, for any k,

lim sup
n→∞

|PKD(Aε ∩ γ
−n(Bε))− PKD(Aε)PKD(Bε)|

= lim sup
n→∞

∣∣EPKD
(
χγ−n(Bε)EPKD [χAε

|F(D \ Drk )]
)
− EPKD (χγ−n(Bε)EPKD [χAε

])
∣∣

≤ lim sup
n→∞

EPKD |χγ−n(Bε)EPKD [χAε
|F(D \ Drk )] − χγ−n(Bε)EPKD [χAε

]|

≤ EPKD |EPKD [χAε
|F(D \ Drk )] − EPKD [χAε

]|.

Theorem 1.6 now implies

lim
k→∞

EPKD |EPKD [χAε
|F(D \ Drk )] − EPKD [χAε

]| = 0

and hence

lim sup
n→∞

|PKD(Aε ∩ γ
−n(Bε))− PKD(Aε)PKD(Bε)| = 0. (8.17)

Combining (8.15)–(8.17), we obtain

lim
n→∞

PKD(A ∩ γ
−n(B)) = PKD(A)PKD(B)

and thus complete the proof of the strong mixing property of the dynamical system
(Conf(D),PKD , γ ). ut

Proof of Lemma 1.3. We need to show that almost surely,

sup
γ∈Aut(D)

#(Z(fD) ∩ γ−1(Dε)) = ∞ for all ε ∈ (0, 1) ∩Q.

Since (0, 1) ∩Q is countable, we only need to show that for any fixed ε ∈ (0, 1) ∩Q,

sup
γ∈Aut(D)

#(Z(fD) ∩ γ−1(Dε)) = ∞ almost surely. (8.18)
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Now fix any ε ∈ (0, 1) ∩ Q. The distribution of Z(fD) ∩ Dε is given by the determi-
nantal measure induced by the kernel χDεKDχDε . Since rank(χDεKDχDε ) = ∞, for any
` ∈ N we have

P(#(Z(fD) ∩ Dε) ≥ `) > 0.

If γ0 ∈ Aut(D) is hyperbolic or parabolic, then Lemma 8.5 implies that the dynamical
system (Conf(D),PKD , γ0) is ergodic, whence for any ` ∈ N, the relation

#(Z(fD) ∩ γ−n0 (Dε)) ≥ `

holds for infinitely many n’s on a set of full measure. Since ` is arbitrary, the desired
equality (8.18) follows. ut

We conclude this section with a conjecture on the asymptotic density of zeros of Gaussian
analytic functions. Let F be a finite subset of the unit circle T and sF be the corresponding
Stolz star domain, which, by definition, is the union, over all z ∈ F , of the Euclidean
convex hulls of the unions {z} ∪ {w ∈ D : |w| ≤ 1/

√
2} . Let {Ik}k be the complementary

arcs of the subset F in T, and set

k̂(F ) := 1−
∑
k

|Ik|

2π
log
|Ik|

2π
.

For a countable subset X ⊂ D without accumulation points in the interior of the disc,
following [16, Chapter 4, Definition 4.9] write

D+(X) :=
1
2

lim sup
k̂(F )→∞

∑
n{1− |x|

2
: x ∈ sF ∩X}

k̂(F )
,

D−(X) :=
1
2

lim inf
k̂(F )→∞

∑
n{1− |x|

2
: x ∈ sF ∩X}

k̂(F )
.

For p > 1, let Ap(D) be the Lp-version of Bergman space. Theorem 4.31 and Corol-
lary 4.38 in [16] state that

X is an A2+ε(D)-zero set for some ε > 0 if and only if D+(X) < 1/2,

X is an A2−ε(D)-zero set for all ε > 0 if and only if D+(X) ≤ 1/2.

Conjecture. D+(Z(fD)) = 1/2 almost surely.
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