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Abstract. The main result of this paper, Theorem 1.4, establishes a conjecture of Lyons and Peres:
for a determinantal point process governed by a self-adjoint reproducing kernel, the system of
kernels sampled at the points of a random configuration is complete in the range of the kernel. A key
step in the proof, Lemma 1.9, states that conditioning on the configuration in a subset preserves the
determinantal property, and the main Lemma 1.10 is a new local property for kernels of conditional
point processes. In Theorem 1.6 we prove the triviality of the tail o -algebra for determinantal point
processes governed by self-adjoint kernels.
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1. Introduction

1.1. The zero set of a Gaussian analytic function on the disc is a uniqueness set for the
Bergman space

Consider the random series

o) =) fud", (1.1)
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where the coefficients f; are independent identically distributed complex Gaussian ran-
dom variables with expectation 0 and variance 1. The series (1.1) has radius of conver-
gence 1 almost surely and defines a holomorphic function on the open unit disc D. Let
Z(fp) be the zero set of (1.1):

Z(p) ={zeD:fp(z) =0}.

Denote A%(ID) the Bergman space of holomorphic functions on D square-integrable
with respect to the Lebesgue measure Leb. A subset X C D is called a uniqueness set
for A%(D) if a function & € A%(DD) satisfying h| x = 0 must be the zero function. In this
particular case, our main result is

Theorem 1.1. Almost surely, Z(fp) is a uniqueness set for A>(D).

In other words, almost surely, Z(fp) cannot be a zero set of a function in A%(D). Theo-
rem 1.1 is a direct corollary of our main result, Theorem 1.4, formulated below, since, by
the Peres—Virdg Theorem [28], the random subset Z(fp) C D is a realization of the deter-
minantal point process on ID governed by the reproducing kernel of A>(D) ¢ L?(ID, Leb)
given by

1

K]D)(Z, U)) = m

Remark. After the work on this paper was finished, we became aware of the result of
Lyons and Zhai [24], who prove in particular in a different way that Z(fp) is almost
surely a uniqueness set for A%(ID).

For brevity, the set of zeros of a non-zero function in AZ(D) will be called an A2(DD)-
zero set. Various necessary and sufficient conditions for a subset of the disc to be an
Az(]D)) -zero set exist in the literature. For example, by Hedenmalm—Korenblum—Zhu [16,
Theorem 4.7], for any A%(ID)-zero set Z the Blaschke-type condition

1—|z|

(1.2)
]1+e
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holds for any ¢ > 0. Note, however, that for our random set Z(fp), we have
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where dA is the Lebesgue measure on the unit disc, hence Z(fp) satisfies (1.2) almost
surely.

We next observe that Z(fp) is neither a sampling nor an interpolating set for A%(ID).
Recall that a discrete subset Z C D is called an A?(D)-sampling set if there exist
C1, C2 > 0 such that for any g € AZ(ID)) we have

Cillglap < Y le@PA =121 < Callgla -
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By definition, an A?(ID)-sampling set is also an A%(ID)-uniqueness set. A discrete subset
Z={z1,...,%j,...} C Dis called an A%(D)-interpolating set if for any sequence {aj}
in C such that {a;(1 — |zj|2)} € 2, there exists g € A2(D) such that g(zj) = aj forall j.
Deleting a finite number of points from any uniqueness set for A%(ID) does not change
the uniqueness property of the set, so a function in A%(ID) cannot vanish at all points of
a uniqueness set except a finite subset, which means that a uniqueness set for A%(ID) is
never A%(ID)-interpolating.

Proposition 1.2. The subset Z(fp) is almost surely neither AZ(D)—sampling nor A%2(D)-
interpolating.

To see that the set Z(fp) is not sampling, we will use Seip’s [36, Theorem 7.1], which
says that any A2(ID)-sampling set is a finite union of sets uniformly separated with respect
to the Lobachevskian distance.

Lemma 1.3. Almost surely, Z(fp) cannot be expressed as a finite union of uniformly
separated sets.

Lemma 1.3, proved in Section 8.3 below with the use of ergodicity, under the mea-
sure Pk, of the action of one-parameter groups of isometries of the Lobachevsky plane
(this ergodicity is due to Hough—Krishnapur—Peres—Virdg [19, Proposition 2.3.7]), im-
plies Proposition 1.2.

1.2. An outline of the main results

1.2.1. The Lyons—Peres completeness conjecture. Let E be alocally compact o -compact
Polish space and let Conf(E) be the space of locally finite configurations on E. Let x be
a o-finite Radon measure on E, let K be the kernel of a locally trace class positive con-
traction acting on the complex Hilbert space L>(E, 1), and let Px be the corresponding
determinantal measure on Conf(E) (the precise definitions are recalled in Section 1.3).
Assume moreover that K is a locally trace class orthogonal projection onto a closed
subspace H of L%(E, uu); in other words, K is the reproducing kernel of a reproducing
kernel Hilbert space H C L?(E, ). For x € E, introduce a function K, € L*(E, i) by
the formula
K.(t)=K(t,x), tekE. (1.3)

Our main result, Theorem 1.4, establishes

The Lyons—Peres Completeness Conjecture. For Pg-almost every X € Conf(E), we
have

spant EW (K, 1 x € X} = H. (1.4)

Lyons [21, Theorem 7.11] proved that the completeness of reproducing kernels holds
when E is countable and formulated the general statement as Conjecture 4.6 in [22].
Ghosh [13] established the conjecture under the important additional assumption that the
determinantal point process Pg is number rigid in the sense of Ghosh and Peres. While



1480 Alexander 1. Bufetov et al.

many determinantal point processes are indeed number rigid (see Ghosh [13] for the sine-
process, Ghosh and Peres [14] for the Ginibre ensemble, [4] for processes governed by the
Airy, the Bessel and more general integrable kernels, [7] for stationary processes, [9] for
generalized Ginibre ensembles), our zero set Z(fp) is not: indeed, Holroyd and Soo [18]
showed that the point process Z(fp) is insertion and deletion tolerant, the opposite of be-
ing number rigid. For determinantal point processes associated with generalized Bergman
spaces on D, insertion and deletion tolerance is established in [9] and the Radon—Nikodym
derivative of the Palm measure with respect to the initial measure is given explicitly as a
generalized multiplicative functional.

1.2.2. Outline of the proof of the Lyons—Peres completeness conjecture. The key ingre-
dient in our proof of the Lyons—Peres completeness conjecture is the preservation of the
determinantal property under conditioning with respect to the configuration in a subset
and the explicit description of a suitable correlation kernel of this conditional determi-
nantal measure.

An informal explanation of our proof is as follows. Suppose that the locally trace
class operator K is an orthogonal projection onto a closed subspace H C L?(E, u). For
Pk -almost every configuration X € Conf(E), define

H(X)=HOS spaan(E’“){Kx 1x € X}

For f € H,x € E write f(x) = (f, K,). Then H(X) is the space of all functions f € H
vanishing on X.

Proposition 2.6 below shows that for any precompact subset S C E, the kernel of the
orthogonal projection onto the space

Xe\xsH(X NS) = {xe\sh:he HXNS)}

corresponds to the conditional measure (which is again determinantal) of Pg with respect
to the condition that the restriction of the random configuration onto S coincides with
XnNnS§s.

Our key step, Lemma 1.9, is an extension of Proposition 2.6 to conditioning on any
Borel subset of E, in particular, on a subset with precompact complement. Suppose for
contradiction that there exists a subset Q¢ C Conf(E) with Pg (£2¢) > 0 such that for
any X € o, the equality (1.4) is violated and thus there exists f € H(X) \ {0}. Since
f is non-zero, we can find a precompact subset B C E \ X such that xp f is a non-zero
element of L2(B, ).

(1) By Lemma 1.9, the conditional measure of our point process Pg, denoted later by
Px (-1 X, E \ B), with respect to the condition that the restriction of the random
configuration to E \ B coincides with X N (E \ B), is determinantal and is induced
by a specific kernel KX E\BI That is,

Px(-1 X, E\ B) = Pgix.p\51.

(ii) By our explicit description of the kernel KX: £\Bl in Lemma 1.9, the assumption
f € H(X) implies (see Lemma 6.1) that the function xp f is a fixed point of the
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operator KX.E\B] that is,
KXY BBl (Gp ) = x5 f.
(>iii) Since xp f is a non-zero element in LZ(B, W), we have
Pk (#p = 0| X, E \ B) = Pgix.e\s1(#p = 0) = det(1 — KIX-E\Bly — ¢

for almost all X. Here #p denotes the random variable that assigns to each configu-
ration the number of points of this configuration inside B.

(iv) Since X has no particles in B, the Fubini theorem implies that Px (#p = 0| X, E\ B)
> 0 for almost all X (see Lemma 6.2). This contradiction settles the Lyons—Peres
completeness conjecture.

1.2.3. Kernels of conditional determinantal point processes. The preservation of the de-
terminantal property under conditioning with respect to the configuration in a subset will
be proved using a specific sequence of conditional kernels of determinantal point pro-
cesses which is a kernel-valued martingale and the proof of the martingale property of the
conditional kernels relies on a new local property of those kernels. In the following, we
informally explain the martingale and local properties of our conditional kernels.

Given a Borel probability measure I’ on Conf(E) and a Borel subset C C E, the mea-
sure P(- | X, C) on the space Conf(E \ C) is defined as the conditional measure of P with
respect to the condition that the restriction of our random configuration to C coincides
with X N C (see Section 2.2 below for the detailed definition).

Lemma 1.9 establishes that, for any determinantal point process Pg induced by a self-
adjoint locally trace class kernel K, the conditional measures Pk (- | X, C) are themselves
determinantal and governed by explicitly given self-adjoint kernels. For a precompact
subset B C E, the determinantal property for Pk (- | X, B) follows from the characteriza-
tion of Palm measures for determinantal processes due to Shirai-Takahashi [38] and the
characterization of induced determinantal processes [3], [6]. For X € Conf(E), in Defini-
tion 1.8 below we introduce a specific self-adjoint kernel K [X-8] governing the measure
Px (-1 X, B).

In order to prove that conditioning preserves the determinantal property, we shall
show that, along an increasing or a decreasing sequence of precompact subsets By, our
kernels KX-Bx] form a martingale after a suitable compression. The one-step martingale
property (corresponding to the case of two precompact subsets Bp = ¢ and B; = B) for
spanning trees is due to Benjamini, Lyons, Peres and Schramm [1] and for processes on
general discrete phase spaces to Lyons [21]. It seems to be essential for the argument of
Benjamini, Lyons, Peres and Schramm [1] and Lyons [21] that the phase space be discrete;
we do not see how to extend their argument to continuous phase spaces. Moreover, it
requires some effort to deduce the full martingale property from the one-step martingale
property.

Our proof of the martingale property of the conditional kernels relies on a new local
property for the kernels K X-8] which we now informally explain. If B ¢ C C E, then
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conditioning on the restriction of the configuration to B commutes with the natural pro-
jection map X — X N C from Conf(E) to Conf(C). This commutativity manifests itself
at the level of the kernels chosen in Definition 1.8 below: we have yc KXNB:Bly . =
(xc K xc)XNC Bl Our local property states that instead of x¢ one can take a much more
general projection Q, and the relation still holds. More precisely, let Q : L*(E, u) —
L*(E, W) be an orthogonal projection such that Ran(Q) C L*(E \ B, ) and QK Q is
locally trace class. In Lemma 1.10 below we shall see that

((Q + xp)K(Q + xp) ™ P = (0 + xp) KB1(Q + x3) = K™ Bl0.  (1.5)

Applying (1.5) to a one-dimensional projection operator Q, we find that, for an arbi-
trary ¢ € L*>(E \ B, ), the quantity (K'*-8lp ¢) is a martingale indexed by B (with
respect to the partial order of inclusion)—see (4.8) below. Using the Radon—Nikodym
property for the space of trace class operators, we obtain an operator-valued martingale
that converges, along an increasing sequence of precompact subsets of E, almost surely
in the space of locally trace class operators. As an immediate consequence, we prove that
for determinantal point processes governed by self-adjoint kernels, conditioning on the
configuration in any Borel subset preserves the determinantal property (see Lemma 1.9).

1.2.4. Triviality of the tail o-algebra. As an application of the local property for the
conditional kernels, in Theorem 1.6 we establish the triviality of the tail o-algebra for
determinantal point processes governed by self-adjoint kernels. Lyons [21] proved tail-
triviality in the discrete setting, extending the argument of Benjamini—Lyons—Peres—
Schramm [1] for spanning trees, and conjectured that tail triviality holds in full generality
[22, Conjecture 3.2]. The argument of [1] and [21] relies on an estimate for the decay of
the variance of the conditional kernel; using the local property of Lemma 1.10, we estab-
lish a similar variance estimate in full generality (see Lemma 7.3), and obtain the desired
triviality of the tail o-algebra. The local property of conditional kernels thus allows us
to carry out the proof of tail triviality in a unified way for both the continuous and the
discrete setting.

The triviality of the tail o-algebra for general determinantal point processes with self-
adjoint kernels is the main result of the independent work by [27]. The argument of [27] is
completely different from ours: Osada—Osada [27] construct a special family of discrete
approximations of continuous determinantal point processes and derive the triviality of
the tail o -algebra in the continuous setting from the theorem of Lyons by approximation.
Another approach, due to Lyons [23], for establishing the triviality of the tail o-algebra
in the continuous setting also deduces it from the discrete result using Goldman’s trans-
ference principle (Goldman [15, Proposition 12] and Lyons [22, Section 3.6]).

1.3. Formulation of the main results

Let E be a locally compact o -compact Polish space, equipped with a metric such that any
bounded set is relatively compact, and endowed with a positive o -finite Radon measure (.
Let Conf(E) be the space of locally finite configurations on E. A point process on E is
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by definition a Borel probability measure on Conf(E). Let K : L>(E, u) — L*(E, i)
be a bounded self-adjoint locally trace class operator with spec(K) C [0, 1]. A theorem
obtained by Macchi [25] and Soshnikov [42], as well as by Shirai and Takahashi [37],
gives a unique point process on E, denoted by Px, such that for any compactly supported
bounded measurable function g : E — C, we have

Br [ [0 +800)] = det(1 +sgn@)ls)"? - K 18117 1, senie) =
xeX

Here det(1 + S) denotes the Fredholm determinant of the operator 1 + S (see, e.g., Si-
mon [40]).

The locally trace class self-adjoint operator K is an integral operator. Following Sosh-
nikov [42], we fix a Borel subset Ey C E with u(E \ Ep) = 0 and fix a Borel function
K : Egp x Eg — C, our kernel, in such a way that for any £ € N and any bounded Borel
subset B C E, we have

tr((xpK xp)*) = /Bk K (x1,x2)K(x2,x3) -+ - K (xg, x1) dpe(xp) - - - da (). (1.6)

Theorem 1.4. If K is a locally trace class orthogonal projection onto a closed sub-
space H of L*(E, w), then for Px-almost every X € Conf(E), the functions K, defined
by (1.3) satisfy

spaan(E’“){Kx :xeX})=H.

If we fix a realization for each 4 € H in such a way that the equation h(x) = (h, K;)
holds for every x € Ep and every & € H, then Theorem 1.4 can equivalently be reformu-
lated as follows:

Corollary 1.5. For Pg-almost every X € Conf(E), if h € H satisfies h|y = 0, then
h=0.

Theorem 1.6. Let By C By C --- C E be an increasing exhausting sequence of bounded
Borel subsets of E. The o -algebra (e F(E \ By) is trivial with respect to Pk.

Corollary 1.7. The point process Pk has trivial tail o-algebra.

Remark. Our assumption on o-compactness of E is not essential: in the argument below,
one could everywhere replace “relatively compact” (here equivalent to “bounded”) by
“having finite weight with respect to the measure K (x, x)du(x)”. On the other hand,
the assumption of self-adjointness is used throughout. It would be interesting to obtain
similar results on conditional measures for more general determinantal kernels.

1.3.1. The key lemma. Let K : L*(E, u) — L*(E, j1) be a bounded self-adjoint locally
trace class operator with spec(K) C [0, 1]. Recall that we fix a Borel subset Eg C E with
w(E \ Eg) = 0 and a Borel function K : Eg x Eg — C, the kernel of the operator K,
satisfying (1.6).
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Definition 1.8. For any bounded Borel subset B C E, we define canonical conditional
kernels KX-B1 with respect to the conditioning on the configuration in B as follows:

e For p € Ey, define a kernel K7, for (x, y) € Eg x Ep, by the formula

K(x,p)K(p,y) .
kP = | KO T TRy TEKe D=0 g
0 if K(p, p) =0.

e For an n-tuple (py, ..., py) € EJ, define a kernel KPt-Pn = (... (KP1)P2...)Pn ag
follows (cf. Shirai—Takahashi [38, Corollary 6.6]). Given x,y € Ep, write pg = x,
qgo=y,q; = p;i for1 <i <n, and set

det[K(pi, gj)]o<i,j<n
KPiPr(x yy = { det[K(pi, pj)li<i,j<n
0 if det[K (pi, pj)li<i,j<n = 0.

if det[K (pi, pj)li<ij<n > 0, (1.8)

e For a bounded Borel subset B C E and X € Conf(E) suchthat X N B = {p1, ..., pi}
C Ey, define

KX Bl
_ XE\BK P PI(1 — g KPl-w 1”)_1)(5\3 if 1 — xg KPPl ig invertible,
o if 1 — xgKP1=P! is not invertible.

(1.9)

If 1 — xg KPPl isinvertible, then so is 1 — y g K 71>+ P!l y g. It would follow that the con-
tractive operator yg KP1»+Plyp = (g KPV~Pl)(xp KP1~P)* and hence yp KPP,
is strictly contractive (see the inequalities (3.6) and (3.7) below for the details and see
also [5, Section 2.14] for similar discussions). Therefore, the series

o)
KB = ypnp ) KPP P (KPP (1.10)
n=0

converges in the operator norm topology.

In what follows, we will also deal with the kernel of the operator K-8 as a two-
variable Borel function on Ejy x Ey. This is possible since we may fix a specific Borel
realization of the kernels of the operators in the series (1.10) as follows. Using (1.8), we
fix the kernel of the operator x g\ p KP'P! x g\ p as the two-variable function on Eg x Ey
given by

(x, ) = xe\B(X)XE\B(Y) KPPl (x, y).

For any integer n > 1, by writing 7}, = (xgK?1>~P)"~!, we have

Kﬂl,---,Pl(XBK.Dl,»--,Pl)" — kPl plTnXBKpl ,,,,, P
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and the kernel for the operator K ”1>~PI'T, xp KP1~Pl is given by

= (Tu(xp(YKPP1 (L y)), KPR 20) (L11)

where in the above integrals, 7, (z1, z2) is the kernel of the operator 7, and in particular,
for n = 1, we use the convention T, (z1, z2)du(z2) = 8;,=;,. Therefore, we may fix the
kernel of the operator g\ g KPPl (xg KP1>+P)" y g\ p as the two-variable function on
Ey x Eg given by the last term in (1.11). In particular, for (x, y) € Eg x Ep, we will use
the formula

L2Ew
(1.12)

as our specific Borel realization of the kernel of the operator K X-51,

Remark. We will see in Proposition 2.5 below that under the assumption that B is
bounded, the kernel K[X-B] defined above is the correlation kernel (locally trace class
kernel), inducing a determinantal point process which is exactly the conditional measure
of P, the condition being that the configuration on B coincides with X N B. In particular,
for Px-almost every X, we have X N B = {p1, ..., pi} C Eg,and 1 — xp KPPl is in-
vertible. The second case K[%-Bl = 0 has probability zero. Note that the range of K %8I
is contained in L>(E \ B, n) and we have

KB = yp g KBy . (1.13)

For any Borel subset W C E, not necessarily bounded, consider the Borel surjection
mw : Conf(E) — Conf(W) given by X — X N W. Fibres of this mapping can be
identified with Conf(E \ W). For a Borel probability measure P on Conf(E), the measure
P(-| X, W) on Conf(E \ W) is defined as the conditional measure of PP with respect
to the condition that the restriction of our random configuration to W coincides with
mw (X). More formally, the measures P(- | X, W) are conditional measures, in the sense
of Rokhlin [32], of our initial measure [P on fibres of the measurable partition induced by
the surjection my .

Denote by £ (L2(E , 1)) the space of trace class operators on L2(E , ) and by
.,2”1,106(L2(E , ) the space of bounded and locally trace class operators on L2(E, ).
For more details on trace class operators on a Hilbert space, we refer to Simon [41, Chap-
ter 1]. The space 51,1OC(L2(E , b)) is equipped with the topology induced by the semi-
norms T +— || xT xp|l1, where | - || is the trace class norm and B ranges over bounded
Borel subsets of E.
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For any Borel subset W C E, we denote by F(W) := o(#4 : A C W) the o-
algebra on Conf(E) generated by the mappings #4 : Conf(E) — R defined by #4(X) :=
#(X N A), where A ranges over all bounded Borel subsets of W. We are now ready to
formulate our key lemma.

Lemma 1.9. Let W C E be a Borel subset and let By C By C --- C W be an increasing
exhausting sequence of bounded Borel subsets of W. For Pk -almost every X € Conf(E)
there exists a positive self-adjoint contraction K [X.W] ¢ ,Zl,loc(Lz(E \ W, wu)) such that

n—0oo K[X’ W]
in A 1oc(L*(E\ W, 1))

XE\WK[X’B"]XE\W

and
Pr(-1 X, W) = Pgix.w.

Remark. For a concrete case of the conditional measure of determinantal point pro-
cesses, the reader is also referred to [10] for conditional measures of generalized Ginibre
point processes.

1.3.2. The local property and the martingale lemma. At the centre of our argument lies

Lemma 1.10 (First local property of conditional kernels). Let B C E be a bounded
Borel subset and let Q be an orthogonal projection, acting in L*(E, ), such that Ran(Q)
C L?*(E \ B, ) and the operator QK Q is locally trace class. For Pk-almost every
X € Conf(E), we have

((Q+ xp)K(Q + x) ™ = (0 + xp) KB + xp) = 0K B0, (1.14)

Remark. The formula (1.14) is a strengthening, at the level of kernels, of the general
property of point processes that conditioning on the restriction to a subset commutes
with the forgetting projection onto a larger subset; see Proposition 2.4 below. The local
property can be interpreted in terms of Neretin’s formalism [26]: a determinantal measure
is viewed as a “determinantal state” on a specially constructed algebra, and in order that
conditional states themselves be determinantal the local property must be valid. The local
property can thus be seen as the non-commutative analogue of the fact that the operation
of conditioning commutes with the operation of restriction of a configuration to a subset.

Let A, B be disjoint bounded Borel subsets of E. It is a general property of point pro-
cesses that conditioning first on A and then on B amounts to a single conditioning on
A U B. A manifestation of this general property at the level of kernels is

Lemma 1.11 (Second local property of conditional kernels). Let A, B be disjoint
bounded Borel subsets of E. For Pk -almost every X € Conf(E), we have

(K[X,A])[X,B] — (K[X,B])[X,A] — K[X,AUB].
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Remark. The second local property stated in Lemma 1.11 will be proved using the ele-
mentary local property at the measure-theoretic level of taking the conditional measures
and the first local property stated in Lemma 1.10 applied to a family of rank-one orthog-
onal projections Q.

Using the local properties, we establish the following key martingale property of the ker-
nels KX-81,

Lemma 1.12. Let W C E be a Borel subset let By C By C --- C W be an increasing
exhausting sequence of bounded Borel subsets of W. The sequence of random variables

KXB

(xe\w TXE\W)nen

is an (F(By))nen-adapted operator-valued martingale defined on the probability space
(Conf(E), F(E), Pk).

By definition, we have K[X.:Bl = KIXNB. Bl Hence the mapping X > KI[XBI
is an F(B)-measurable operator-valued random variable defined on the probability
space (Conf(E), F(E), Px). Lemma 1.12 is equivalent to the claim that, for any ¢ €
L*(E\ W, ), the sequence ((xz\w KX Bl we. ¢)ner is an (F(By))nen-adapted
real-valued martingale defined on the probability space (Conf(E), F(E), Pg). This no-
tion of being a martingale is equivalent to the general notion of Fréchet-space-valued
martingales (see Pisier [31]).

2. Conditional processes and martingales

2.1. Martingales and the Radon—Nikodym property
2.1.1. Vector-valued and measure-valued martingales. Let (2, F, (F,)°°,, P) be a fil-

tered probability space. Let B be a Banach space. Amap F : Q — B isncailed Bochner
measurable if there exists a sequence F;,, of measurable (in the usual sense) step func-
tions such that F,,(w) — F(w) almost everywhere. For any 1 < p < oo, we denote
by L? (2, %, P; B) the set of all Bochner measurable functions F : € — 95 such that

fQ I F(a))||’;B P(dw) < oo. The space L? (2, %, P; B) is a Banach space with the norm

1/p
|FllLr sy = </Q IF ()15 P(dw)> .
The algebraic tensor product L? (2, %, P)®@%B is dense in L” (2, %, P; B). The operator
El-| % 1Q1dy : LP(Q2, F,P) QB — L’ (Q, F,P) QB

extends uniquely to a bounded linear operator on L” (2, %, P; B), for which we keep the
name “conditional expectation” and the notation, thus obtaining the operator E[- | .%#,] :
LP(Q,.7,P;B) — LP(Q,.7,P;B). Asequence (R,);,>, in LP(Q, .7, P; B) is called
an (F,),2 | -adapted martingale if R, = E[R, 11| #,] for any n € N.

Assume now that ®B is a separable space. Then there exists a countable subset D of
the unit ball of the dual space 26* such that for any x € B, we have || x| = SUpgep 1§ (X)].
We will need the Pettis measurability theorem for separable Banach spaces.
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Proposition 2.1 ([29, p. 278]). A function F : Q — ‘B is Bochner measurable with
respect to .F if and only if for any & € D, the scalar function o + &(F(w)) is % -
measurable. A sequence (R,);2 | in LP(Q, .7, P;B) is an (F,),- | -adapted martingale
if and only if for any & € D, the sequence (§(Ry,)); is an (Fy);2 | -adapted martingale.

In this paper, we apply Proposition 2.1 in the particular case when B = £ (L*(E, 1)),
the space of trace class operators on L2(E, ) and D is the set of contractive finite rank
operators on L*(E, w). Martingales in 31,1OC(L2(E , b)) are reduced to the previous case
by restricting to L>(B, i) with B a bounded Borel subset of E.

Let (T, <) be a topological space equipped with the o -algebra of Borel subsets of T.
We denote by P(T, <) the space of Borel probability measures on (7, <7). A Borel map
M : Q — SB(T, &) is called a random probability measure. Equivalently, we assume that
for any A € o7, the map w — M(w, A) := M(w)(A) is measurable. For more details,
see Kallenberg [20, Section 1.2]. A sequence (Mn)fli1 of random probability measures is
called an (%), |-adapted measure-valued martingale on (T, <7) if for any A € o7, the
sequence (M, (-, A))nen is a usual (%) | -adapted martingale.

2.1.2. The Radon—Nikodym property. In proving convergence of conditional kernels, we
will use the Radon—-Nikodym property for the space of trace class operators. Here we
briefly recall the Radon—Nikodym property for Banach spaces; see Dunford—Pettis [12],
Phillips [30] and Chapter 2 in Pisier’s recent monograph [31] for a more detailed exposi-
tion.

Let B be a Banach space. Let (2, .%) be a measurable space. Any o -additive map
m : F — ‘B is called a (B-valued) vector measure. A vector measure m is said to have
finite total variation if

n n

sup{z lm(A)|s : Q= |_| A; is a measurable partition of Q} < 00.
i=1 i=1

Given a probability measure P on (2, .%), we say that the vector measure m is absolutely

continuous with respect to P if there exists a non-negative function w € LI(Q, F,P)

such that

||m(A)||r5§/ wdP forany A € .%.
A

Definition 2.2. A Banach space ®B is said to have the Radon—Nikodym property if for any
probability space (2, .7, P) and any B-valued measure m on (2,.%), with m having
finite total variation and being absolutely continuous with respect to P, there exists a
Bochner integrable function F,, € L' (2, .%, P; B) such that

m(A):/FmdP forany A € Z.
A

By Pisier [31, Theorem 2.9], the Radon—Nikodym property for a Banach space ‘B is
equivalent to either one of the following requirements:

(i) Every 2B-valued martingale which is bounded in L! (2, Z, P; B) converges almost
surely.
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(i) Every uniformly integrable ‘B-valued martingale which is bounded in the space
LY (Q, .Z,P; B) converges almost surely and in L' (Q, .7, P; 9B).

(iii) For any p > 1, every B-valued martingale which is bounded in L? (2, Z, P; B)
converges almost surely and in L? (2, .7, P; B).

The Banach space % (L>(E, )) of trace class operators on L>(E, 1) has the Radon—
Nikodym property. More precisely, Pisier [31, Corollary 2.15] proves that if B is sep-
arable and is a dual space of another Banach space, then B has the Radon—Nikodym
property. The separable space .2 (L?(E, 1)) is the dual space of the space of compact
operators on L2(E, p), and therefore we have

Proposition 2.3. The space £ (L*(E, i) has the Radon—Nikodym property.

Note that the first characterization of the Radon-Nikodym property of .2 (L*(E, 1))
will be used in the proof of Lemma 1.9. Each of the characterizations (ii) or (iii) of the
Radon—-Nikodym property can be used to obtain the equality (5.9).

2.2. Conditional measures of point processes

Let E be a locally compact o-compact Polish space, endowed with a positive o-finite
Radon measure . We assume that the metric on E is such that any bounded set is rela-
tively compact (see Hocking and Young [17, Theorem 2-61]).

A configuration X = {x;} on E is by definition a locally finite countable subset
of E, possibly with multiplicities. A configuration is called simple if all points in it have
multiplicity one. Let Conf(E) denote the set of all configurations on E. The mapping
X +— Ny :=); 8, embeds Conf(E) into the space of Radon measures on E. Under the
vague topology (that is, the topology that corresponds to the vague convergence of Radon
measures: a sequence of Radon measures (1, on E converges vaguely to a limit Radon
measure oo if lim, 0 [ f din = [ fdpeo for any compactly supported continuous
function f on E), the space Conf(E) is again a Polish space (see, e.g., Daley and Vere-
Jones [11, Theorem 9.1.IV]). By definition, a point process on E is a Borel probability
measure P on Conf(E). We call P simple if P({X : X is simple}) = 1.

For a Borel subset W C E, let (W) be the o-algebra on Conf(E) generated by all
mappings X +— #p(X) := #(X N B), where B C W is a bounded Borel subset; the
algebra F(FE) coincides with the Borel o-algebra on Conf(E).

Take a Borel subset W C E. A Borel probability measure P on Conf(E) can be
viewed as a measure on Conf(W) x Conf(E\ W); we shall sometimes write P = Py g\w
to stress dependence on W.

Denote by (ww)«(IP) the image measure of P under the surjective mapping mw :
Conf(E) — Conf(W) defined by mw (X) = X N W. By disintegrating the probability
measure Py we, for (mw)«(P)-almost every configuration Xg € Conf(W) there exists
a probability measure, denoted by P(- | X, W), supported on {Xo} x Conf(E \ W) C
Conf(E), such that

Pw, e\w = / P(- | Xo, W) (rw)« (P)(dXo).
Conf(W)
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The measure P(- | X, W) is referred to as the conditional measure on Conf(E \ W) or
the conditional point process on E \ W of P, the condition being that the configuration
on W coincides with Xg. In what follows, we also write

PG| X, W) :=P(|XNW,W) for P-almost every configuration X € Conf(FE).
Moreover, for a random variable f € L'(Conf(E), P), we will write
Ep(f1X, W) :==Ep[f | FW)I(X N W).

Proposition 2.4. Let Wi, W, be disjoint Borel subsets of E. For P-almost every X €
Conf(E), we have

(Twow)«[P1C 1 X, Wi) = (rw,uw,)«[P( | X, W) 2.1

In other words, for fixed disjoint Borel subsets W1, W of E, the following two operations
on point processes commute:

e taking the conditional measure of a point process, with the condition being that the
configuration on Wy coincides with X N Wy;

o taking the push-forward measure of a point process under the map ww,uw, : Conf(E)
— Conf(W; U W»).

Proof. First we have
[ Beix )X,
Conf(E)

(e ow,)s[P] = /

(Tw,uwy) [P | X, W) ]P(dX).
Conf(E)

Since P(- | X, Wy) is supported on the subset {Y € Conf(E) : Y N W; = X N Wy}, and
(mww,uw,)«[P(- | X, W1)]is supported on {Z € Conf(W; U W) : ZN W; = X N Wi}, by
the uniqueness of conditional measures we get (2.1). O

The conditional measure P(- | X, W) is by definition supported on { XN W} x Conf(E\ W),
we may therefore consider P(- | X, W) as a measure on Conf(E \ W). Further identifying
the set Conf(E \ W) in a natural way with the subset Conf(E, E\ W) := {X € Conf(E) :
X NW = @} C Conf(E) when necessary, we may also view P(- | X, W) as a measure on
Conf(E) supported on Conf(E, E \ W).

2.3. Palm measures

The n-th correlation measure p, p of a point process PP on E, if it exists, is the unique
o -finite Borel measure on E" satisfying

: L #X N A
puraf xcoxafy= [ [T SERAEapon
! Conf(E) 17 (H(X N Aj) — ki)!
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for all bounded disjoint Borel subsets Ay, ..., A; C E and positive integers ki, ..., k;
withky +---+kj = n. Here if #(X N A;) < k;, we set #( X NA)!/H# X NA;) —ki)! = 0.
For example, the n-th correlation measure of a determinantal process P is given by

PPy (dxy -+ - dxy) = det (K (xi, %)) 1< j<n - 1" (dx1 - - - dxy),

where K (x, y) is the integral kernel of the operator K satisfying (1.6).

Assume that P is a simple point process on E such that p,, p exists for any n € N. The
reduced n-th order Campbell measure Cgri,]? of P is a o-finite measure on E” x Conf(E)
satisfying

/ F(x, X) 6. p(dx x dX) = f [ > P X\ e wh | PEX)
E"xConf(E) ’ Conf(E) - /cxn

for any Borel function F : E" x Conf(E) — R*. Here Z# is the summation over all
ordered n-tuples (x1, ..., x,) with distinct coordinates x1, ..., x, € X. Disintegrating
an' p(dx x dX), we obtain

/ F(x, X)%,i pldx x dX) = / Oon.p(dx) F(x, X)P'dX), (2.2
E"xConf(E) ’ En Conf(E)

where the probability measures P* are defined for p, p-almost every x € E” and are
called reduced Palm measures of IP. In what follows, by Palm measures we always mean
reduced Palm measures. Note that the Palm measure P*!>~*» is invariant under permuta-
tion of the coordinates in (x1, ..., x,). Therefore, for a configuaration X and a bounded
subset B C E, we will write PX™B for the Palm measure of P corresponding to the points
of X N B, that is,

PXNB .— p¥i%n provided that X N B = {x1, ..., xn}. (2.3)

2.4. Determinantal point processes, conditioning on bounded subsets

In this section, we state an elementary result which gives, for determinantal point pro-
cesses, the form of conditional measures with respect to restricting the configuration to a
bounded subset B C E.

Proposition 2.5. Assume that K : L*(E, n — L*(E, W) is a bounded self-adjoint
locally trace class operator with spec(K) C [0, 1]. Let B C E be a bounded Borel subset.
Then for Pk -almost every X € Conf(E), the conditional point process Px (- | X, B) is

again a determinantal point process on E \ B, induced by a correlation kernel K!X-B!
defined in (1.9).

If we assume moreover that the kernel K is an orthogonal projection, then the kernel
KX-Bl defined in (1.9) has the following meaning.
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Proposition 2.6. If K is the orthogonal projection onto a closed subspace H C L>(E, 1),
then the kernel KP»Pn corresponds to the orthogonal projection from L*(E, i) onto
the subspace

H(pi,...,pn):={he H:h(p1) =---=h(p,) =0}

Moreover, for a bounded Borel subset B C E, the operator K-8l is the orthogonal
projection onto the closure of the subspace

XxE\BH(X N B) = {xg\ph : h € H(X N B)}.

The proofs of Propositions 2.5 and 2.6 will be given in Section 8.1 in the Appendix.

3. The local property: proof of Lemmas 1.10, 1.11

3.1. Proof of Lemma 1.10

Let B C E be a bounded Borel subset and let Q : L>(E, ) — L?*(E, i) be an orthog-
onal projection whose range satisfies Ran(Q) C L?(E \ B, i) and such that QK Q is
locally trace class. Introduce a positive contractive locally trace class operator R by the
formula

R=R(K,B, Q) :=(Q+ xp)K(Q+ xp)- (3.1

Remark. The introduction of the operator R is on the one hand in order to simplify the
notation (Q + xp)K(Q + xB), and on the other hand, in the proof of Lemma 1.11, we
will use in particular an auxiliary determinantal point process Pg when Q is the rank-one
orthogonal projection, thatis, 0 = ¢ ® ¢ with ¢ € L2(E \ B, w). In this case, the cor-
responding determinantal point process Pg has the same law as Px when restricted to B,
and the expected number of particles outside B for Pr will be particularly useful for us in
proving equalities of conditional kernels; see the remark after the proof of Lemma 1.11
for more details.

Recall that in Section 1.3, we fixed a Borel subset Eg C E such that u(E \ Ep) = 0
and the kernel K (x, y) is well-defined on Eg x Ey. Recall also the notation introduced in
Definition 1.8.

Lemma 3.1. Let R be the operator introduced in (3.1). For any p € B N Ey, R =
(Q + xB)KP(Q + xB). More generally, for (p1, ..., pn) € (BN Ey)", we have

RPVPr = (Q + xg) KPP (Q + xp).
In particular,
RX"B = (0 + xp)K*"B(Q + xB) for Px-almost every X € Conf(E).

Proof. First of all, the kernel of the operator R can be chosen such that for any p € BNE),

R(-, p) = (Q + xp)K(, p)]. (3.2
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That is, the function x — R(x, p) is given by the image of the function x — K (x, p)
under the operator Q + xp. Indeed, since p € B N Ep and Ran(Q) C L*(E \ B, u), we
have

[OKQ](,p) =0 and [xpKOQI(, p)=0.
Therefore, for p € B N Ey,

R(-, p) =[(Q + x8)KxB1(, p) =[OK x8](-, p) + x()K (-, p). (3.3)

Now for any ¢ € LZ(B, w,

[OK xpol(x) = Q[fB K(-,y)w(y)du(y)](x)=/BQ[K(-,y)](x)<p(y)du(y).

That means the kernel of QK xp is given by (x,y) — Q[K(:, ¥)](x)xp(y). Thus for
p € BN Ep, we may take [QK xg](:, p) = Q[K (-, p](-). Combining this with (3.3), we
obtain the desired equality (3.2).

Now since R(p, p) = K(p, p), we have

R(,p)®R(, p)
R(p, p)

= (0 + xB)K(Q + xB) —

RP =R —

(Q+ xB)K(, p)1® (O + xB)KC(. p)l
K(p, p)

K(.p®K(,p)
= (0 +xp)|K - |(@+ 1) = @+ x0)K"(Q + 10).
K(p,p)
The formula for R?! P follows immediately by induction on r. O

Lemma 3.2. Let K : L2(~E, w) — L%(E, ) be a bounded self-adjoint locally trace
class operator with spec(K) C [0, 1]. Let B be a bounded Borel subset of E such that
Pz@#p = 0) > 0. Let Q : L*(E,n) — L*(E, W) be an orthogonal projection satis-
Jying Ran(Q) C L%(E \ B, ) and such that QK Q is locally trace class. Let R =
(Q + xB)K(Q + xB) be the operator introduced as in (3.1). Then

XE\Bﬁ(l - XBﬁ)_1XE\B = Q(XE\Bf(l - XBE)_IXE\B)Q~ 349
Proof. The gap probability Pz (#p = 0) is given by
Pr(#p =0) = Pr({X : XN B = @}) = det(1 — xzK xp) > 0. (3.5)

It follows that 1 — xp K xp is invertible and hence 1 is not an eigenvalue of xp K XxB- But
since xp K x p is a priori a positive contraction and x g K x g is compact, its norm coincides
with its maximal eigenvalue. Hence xp K xp is strictly contractive. But we also have

IxaK xall = l(xs K5 (s K|l = llxs K"/ < 1. (3.6)
Hence

lxsKI < lxsK"IIKY?) < 1. (3.7)
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Therefore, both x Bf and BI? =X 3[? (Q + xp) are strictly contractive. In particular,
the operators on both the left hand side and the right hand side of (3.4) are well-defined.
Since Q commutes with x g\ g, we have

XE\B§XE\B = QXE\BI?XE\BQ and XE\B§XB = QXE\B[?XB-

By definition of ﬁ, we have xp ﬁXB = XB fxg. Therefore, forn > 1,

XE\Bﬁ(XBﬁ)nXE\B
= xe\sR((BR) -~ (xR xp\8 = xe\8RxB (X8 RXB)" ' X5 RXE\B
= Oxe\sKxs(xsKx8)" ' xsKxe\80 = Oxe\8K (x5K)" x£\5 Q-

Now since x 3§ and x BI? are both strictly contractive, by using the above equality we
can finally write

o0 o0
xe\sR( = xgR) ' xp\p = Z XE\BR(xBR)" xE\B = Z Oxe\K(xK)" xp\Q
n=0 n=0

= Q)(E\tzl?(1 _XBE)_lXE\BQ~ |

Conclusion of the proof of Lemma 1.10. We want to apply Lemma 3.2 to the oper-
ator K = KXMB_ By our assumption, the orthogonal projection Q with Ran(Q) C
L*(E \ B, ) has QK Q locally trace class. For the definition (1.7) of K, we have
KP? < K in the operator sense. Then by iterating, K = KX"8 < K and hence QK Q <
QK Q in the operator sense. This implies in particular that QK Q is locally trace class.
By Lemma 3.1, for Px-almost every X € Conf(E),

R=(Q+ xs)K(Q+ x8) = (Q + xp)KX"B(Q + xp) = RX"E.  (3.8)

On the other hand, by Propositions 8.1 and 2.5,

]P)[( ( | X, B) = (]P)[()XQB rConf(E\B) = PKXQB rConf(E\B) for PK-a.e. X € COnf(E)
By definition (8.1) of the normalized restriction measure g xns [conf(£\ ) We must have
Prxns(#p = 0) = Pgxns(Conf(E \ B)) >0 for Px-a.e. X € Conf(E).

Thus the assumptions of Lemma 3.2 are satisfied. By (3.4) and (3.8), for Pg-almost every
X € Conf(E),

xe\sR* B — xp R ) ypip = XE\BE(I - XBﬁ)_IXE\B
= Q(XE\BI?(l - XBE)_IXE\B)Q = 0(xe\sK*"B(1 — xgK*") ' xp\5) 0.
By definition (1.9) (applied to both K and R), the above equality means exactly

R Bl = gkX-Blg  for Pg-a.e. X € Conf(E). (3.9)
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By definition (3.1), we thus obtain the desired equality
(0 + x»)K(Q + xp)) " ? = QkXB1Q  for Px-ae. X € Conf(E).
To complete the proof of Lemma 1.10, we only need to observe the elementary equality
QK™ P10 = (0 + xp) KX PI(Q + xp),
which follows from (1.13) and thus xz KX-81 = KIX.-Bly, — 0. o

3.2. Proof of Lemma 1.11

By assumption, A, B are disjoint bounded subsets of E, hence xaup = x4 + xg. Choose
an arbitrary unit vector ¢ € L?>(E \ (AU B), 1) and let Q = ¢ ® @ be the orthogonal
projection from L2(E, 1) onto the one-dimensional subspace spanned by ¢. Define

R=Ry:=(xa+xs+QK(xa+x8+ Q).
Then by using (3.9), with R and B replaced by Rand AUB respectively, we obtain
RIX.AUBl _ o gIX. AUBl ) for Pr-ae. X € Conf(E). (3.10)

Again by using (3.9) this time with R, Q and B replaced by R, O+ xp and A respectively,
we get

R A = (x5 + O)K¥ 4 (x5 + Q) for Px-ae. X € Conf(E). (3.11)

By a further application of (3.9) with K replaced by KX-41 and then by using (3.11) to
replace R in (3.9) by i?\[X’A], we find that for Pg-almost every X € Conf(E) and for
Pxix.a1-almost every Z € Conf(E),

(Ife\[x, ANZ. Bl _ o(kX-AlZ. Bl 3.12)

But since A is bounded, Proposition 2.5 implies that Pgx.41 = Pg(-| X, A). This com-
bined with the equalities RIX: 4] = RIXN4. 4] gpq KX Al = K[XNA Al jmplies that the
double almost every statement (3.12) is equivalent to

(RIX-AWIX. Bl — o (kX ANX.Blg  for Pg-ae. X € Conf(E). (3.13)
By Proposition 2.5, we also have the following description of conditional measures:
Pz(1X,A) =Pgixa and Pp(- | X, AU B) = Pgixaus  for Pg-ae. X € Conf(E).
The first equality above implies that
[PRC1IX, DICIX, B) =Pgix.ai(- 1 X, B) =Ppix.anyx.s  for Pgr-ae. X € Conf(E).
Now we may apply the measure-theoretic identity

[PrC1X, DIC1X,B)=Pz(-|X,AUB) forPg-ae. X € Conf(E)
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and obtain
Pi’e\[x_AUB] = P(iﬂX.A])[X. B] for ]P’k*-a.e. X € COHf(E) (314)
This equality of probability measures implies that for Pz-almost every X € Conf(E),

Ep,[#XN(E\(AUB))|X,AUB] = tr(XE\(AUB)ﬁX’AUB]XE\(AUB))

X,A])[X, B]

= tr(XE\(AUB)(k\[ XE\(AUB))~

Combining this with (3.10), (3.11) and (3.13), we obtain the P-almost sure equality

tr(x£\(AUB) QKX AVB] OxE\(auB)) = tr(XE\(AUB) Q(K X AlIX. Bl O XE\(AUB))-
That is,

<K[X,AUB]

9, ¢) = (KX AYX-Bly 4y for Pz-ae. X € Conf(E).

Since ¢ is arbitrary and since L*(E\ (AU B), ) is separable and both KX-AUBI and
(KX AWX. B] are supported on L2(E \ (A U B), i), we obtain

KXAVBI — (gIX.ABIX. Bl for Psae. X € Conf(E). (3.15)

Observe that the equality x4up I/éXAUB = xauB K xaup implies the equality (mauB)+(Pp)
= (mauB)+(Px). Combining this with (3.15) and the fact that K[X:AYBl and
(KX AX, Bl are F(A U B)-measurable, we get the desired equality

KX AVBL — (KX ABX Bl f6r Pr-ae. X € Conf(E). O

Remark. Since different correlation kernels may correspond to the same determinantal
point process, the coincidence (3.14) of the two determinantal point processes Pzix, aus)
and PP zix, apyix. 51 does not imply that RIX-AUBI and (RIX: ANIX. B] gre the same (1f this

were true, then the desired equality K [X.AUB] — (g[X. AlY[X. B] would follow from (3.10)
and (3.13) by varying Q). Our idea is to derive from (3.14) a useful equality of scalar
qunatities and then to complete the proof of Lemma 1.11 by varying Q = ¢ ® p.

4. The martingale property: proof of Lemma 1.12

Proposition 4.1. For any bounded Borel subset B C E, write
Ep, (KX 81 =/ KX BIpedx).
Conf(E)
Then

Ep, (KX By = xp\ 5K xE\B- 4.1)

Remark. Extending the argument of Benjamini, Lyons, Peres and Schramm [1] for the
case of spanning trees, Lyons [21, Lemma 7.17] proved (4.1) when E is discrete and K
is an orthogonal projection on £2(E). Our proof, based on the local property, is quite
different and works both in the continuous and the discrete settings.
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Proof of Lemma 1.12 assuming Proposition 4.1. Applying Proposition 4.1 to the kernel
KX-Ba] and the bounded Borel subset B,+1\ B, C E\ B,, we obtain

Ep (K[X’ Bn])[va)1+l\Bn]] — XE\B,H.[K[X’ 1-‘311])”:_\311+1 for Px-a.e. X.

[(lvanJ[

The equality Pgx.5,1 = Px (- | X, B,) now yields

Ep (K[X’ Bn])[Xan+l\Bn]] = Ep, [(K[X’ Bll])[X’BnJrl\Bn] | g(Bn)] for Pg-ae. X.

KIX.Bul [
Combining this with Lemma 1.11, we get

KXB

EP[( [K[XaBn+l] |3:(Bn)] = XE\B ]XE\B’1+1 for IPK-a.e. X.

n+1

By linearity of the composition on the left and on the right with the operator of multipli-
cation by x p\w and the elementary equalities x g\w - XE\B,,, = XE\Ww, We get the desired
martingale property:

Elxe\w KX Bretly pow | F(B)1 = xpow KX Py g for Pr-ae. X. |

Proof of Proposition 4.1. Let ¢ € L>(E \ B, i) be such that ||¢|» = 1. We use (3.1) for
0 = ¢ ® @, the orthogonal projection onto the one-dimensional space spanned by ¢, and
thus set

R=(Q+xp)K(Q+x)=(®¢+ xp)K(p®¢+ xB). (4.2)
We have the clear identity
(mB)«(PR) = Pyyrys = Pyprxp = (8)+(Pxk). (4.3)
By Lemma 1.10, for Pg-almost every X € Conf(E), we have
R = 0k1*Plo = (0 @ 9Kl (0 ©9).

Since clearly K[X:Bl = gIXNB. Bl apnq RIX.Bl — RIXNB. Bl the above equality holds for
Pr-almost every X € Conf(E). Now recall that Pr(- | X, B) = Pgix, 5 for Pr-almost
every X € Conf(E). Hence

Epg[#e\5 | X, Bl = Ep y 5 [#e\8] = tr(xe\ 8 R P x 2\ 8)
= (K[X’B]go, ¢) for Pr-almost every X € Conf(E).

Note that by the definition (4.2) of R and the assumption that ¢ is supported on E \ B,
we have

Epg [#e\8] = tr(xe\8 RXE\B) = r(QK Q) = (Ko, ¢).
On the other hand,

Ep, [#£\8] = Ep, (B, [#5\5 | X, B) = Ep, (KX -Blg, o)),
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whence
Ep, (K'XBlp, 0)) = (Ko, ¢). (4.4)

The relation KX-Bl = gXNB. Bl implies that KX-8], when varying X, depends only on
X N B, thus

Ep, (KX Plp, 0)) = Ep, (K78 Blg, 0)) = E(ry),p (KB Blp o). (4.5)
Similarly,

Ep, (KBl 0)) = Ep (KX Bl 0)) = By, p (KB Blg 0)). (4.6)
The equalities (4.5) and (4.6) combined with (4.3) imply that

Ep, (K% Py, ) = Ep, (KX P, 9)). 47)

Therefore, by combining (4.7) with (4.4), we obtain
Ep (K Plg, 0)) = (Ko, ¢). 4.8)
Since ¢ is an arbitrary norm-one function in L?*(E \ B) and since KXBl =
XE\BK[X’B]XE\B,we obtain (4.1). O

5. Proof of Lemma 1.9

Proposition 5.1. Let W C E be a Borel subset, and let By C B, ¢ --- C¢ W
be an increasing exhausting sequence of bounded Borel subsets of W. The sequence
(xe\wkK [X. Bn] XE\W)neN converges Pk -almost surely in the space of locally trace class
operators.

Proof. Since K is locally of trace class, there exists a function ¢ : E\ W — (0, 1] such
that /2K y1/2 is of trace class and for any bounded subset B C E, we have
inf ¥ (x) > 0. 5.1
xeB
Then
Ery (Y- win) = / YK (@, x) pdx) = u @ 2Ky = My < oo,
xeX E
Denote
G(X,n) == xpw KX By p .
Then forany n € N,
My = e (Y v@) = Eey [y (3 w0 |70 ]
xeX

xeX
= Ep, [tr(y > G (X, m)y'/2)]. (5.2)

By the martingale property of the sequence (G (X, n)),cn and the equality (5.2), the se-
quence (Y'2G (X, n)y'/?),en forms a bounded martingale in L' (Px, £ (L*(E, p))).
By Proposition 2.3, the Banach space £ (L?(E, 1)) has the Radon-Nikodym property.
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Therefore there exists a measurable function F (X, co) with values in . (L%(E, 1)) such
that

a6 2
12G(X. m)yw /2 in L (L*(E, )
PIRGOX my! 2 B,

F(X, 00). (5.3)
The assumption (5.1) implies that w—l/zF(X, oo)l/f_l/2 € D%)IOC(LZ(E, Ww)). Moreover,

(5.1) implies that for any bounded subset B C E, since x Bw_l/ 2 is bounded, the conver-
gence (5.3) implies

x8G (X, m)xp = xp¥~ PIY2GX, )y P Ixpy 12

in £ (L2(E, 1)) _ _
P xe YT VPE(X, o)y T 2 xg.

Pk-a.s.
Since B is an arbitrary bounded subset of E, the above convergence means exactly that

in A 1oc (L2(E, p))
_—

xew KX By pvw = G(X, n) YVPE(X, 00)y T2 (5.4)

Pg-a.s.
O
Proof of Lemma 1.9. By (8.14), for Pg-almost every X € Conf(E),
(me\w)«[Pk (| X, By)] m Pk (-1 X, W). (5.5)

By Proposition 2.5, for Pg-almost every X € Conf(E),

@E\W)«[Pr (1 X, Bo)] =P,y kX Balyp - (5.6)

Combining (5.4)—(5.6) with the fact that the convergence of correlation kernels in
,,5,”1,100(L2(E , w)) implies the weak convergence of the corresponding determinantal mea-
sures, we complete the proof of Lemma 1.9. O

Remark. Under the assumption of Proposition 5.1, the limit operator
lim xp\w K58y ey (5.7)
n—oo

is a locally trace class positive contractive operator and thus is a valid kernel for a deter-
minantal point process. In Proposition 5.1, we have already shown that the limit operator
(5.7) is locally trace class. The contractivity of the limit operator (5.7) follows from the
contractivity of KX- 821 for all n and the simple observation: locally trace class conver-
gence implies strong operator convergence, and strong operator convergence preserves
contractivity.

The limit operator (5.7) almost surely does not depend on the specific choice of the func-
tion . Indeed, replace ¥ by another 1// E\ W — (0, 1] such that 1//1/ 2K wl/ 2 is of
trace class and inf,cp W(x) > 0 for any bounded subset B C E. The limit relation (5.3)
becomes

1/2 in LAWLHE, )

Pk-a.s.

VIPGX, n)Y F(X, 00).
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This relation combined with (5.3) implies that F (X, 00) = % F (X, o0) % Therefore,

<

the final limit in (5.4) becomes
YIPFX 00y P =y PE (X, o)y,

proving the independence of the limit operator from the choice of .

Moreover, the limit operator (5.7) almost surely does not depend on the choice of the
exhausting sequence {B,} of bounded subsets of W. Indeed, let By C B, C --- C W
be an exhausting sequence of bounded Borel subsets of W. Fix any positive function
¥ E\ W — (0, 1] such that ¥'/2K /2 is of trace class and for any bounded B C E,
we have inf,cp ¥ (x) > 0. Then

(2K X By U2y (5.8)

is an A (L*(E \ W, w))-valued martingale which is bounded in L?(Conf(E), P;
L(LA*E \ W,wn)). In particular, the sequence converges in L?(Conf(E), P;
Z(L*(E\W, w))). Recall that £, (L*(E\ W, w)) has the Radon-Nikodym property. Us-
ing the characterization (iii) of the Radon—Nikodym property in Section 2.1.2 we obtain,
for Pk -almost every X € Conf(E),

Y12 KX Baly 172 Ep, [@1_1?;0 Y12 X By 172 ) E(Bn):l‘ (5.9)

For the L?(Conf(E), P; £ (L*(E \ W, w)))-boundedness of the sequence (5.8), we
write

1 PREENY ) gy g gy = 0@ PREBAY2) = B (3 (0| X, By,

xeX

By Jensen’s inequality and the inequalities 0 < Y (x)? < ¥(x) and K (x, x)K (v, y) —
K (x, y)I* < K(x, x)K(y,y),

2
B (1 PRXBIY 1212, o0 =B ([Ere (v [ X))

xeX
<Br (N vw)) =Bee( X v@wm) +En (Y vw?)
xeX x,yeX, x#y xeX
<Ero( Y. vy ) +Ee (Y vw)
X,y€X, x#Yy xeX

2
< (/E K(x,x)w(x)dM(X)> +/EK(x,x)1/f(X)dM(x)
= [e(W 2Ky P + (P Ky Y,

which proves the desired boundedness.



Lyons—Peres completeness conjecture 1501

Now take another exhausting sequence {§n} of bounded subsets of W. By (5.9) ap-
plied to the new exhausting sequence {B, = B, U B, } of bounded subsets of W, we find
that for Pg-almost every X € Conf(E),

Yl2gX B2 [z1_1>n;o w12 g IXC By 172 ) &"(En)].

Then using the martingale structure between y /2K X-Bly1/2 and 3 1/2 K 1X.Baly, 1/2 for
the nested sets B, C B, we have, for Pg-almost every X € Conf(E),

Y12 R IXBaly 172 Ep, [w]/zK[X’E”]wW ‘ ?(Bn)]-
Therefore, by combining the previous equalities, for Px-almost every X € Conf(E),

lim 1/,1/2[([?(719;1]1#/2 — nlinéo EPK[Iﬂl/zK[X’B"]wI/Z | F(B)]

n—o0

n—

= lim Eg, (EPK [€1_1)rgo 1//1/21(["’5“1#”2‘?(1?”)] ‘?(Bn))

— lim Ep, (Kl_i)fgolﬂl/zK[X’Edl/fl/z‘?(Bn)) =l1_i)fgol/f1/2K[X’§dlﬁl/2-

n—o0

The same argument will show that for Px-almost every X € Conf(E),

lim Ip1/2K[X,§n]wl/2 — lim w]/zK[x,Eg]w]/Z
n—00 £—00
and thus ~
lim ¢ '2KXBaly /2 — i /21X Baly, 12,
n— o0

n—o0

6. Proof of Theorem 1.4

Recall that we have fixed a realization of our kernel, namely, a Borel function K (x, y)
defined on the set Eg x Eq, where u(E \ Eg) = 0. In this section, we make the additional
assumption that K is the orthogonal projection onto a subspace H C L*(E, it). Recalling
(1.3), we fix a realization for each 4 € H in such a way that h(x) = (h, K, ) forallx € Eg
and & € H. Given any configuration X € Conf(E) and a bounded Borel subset B C E,
weset H(X) :={he H:hly =0}and xpH(X) :={xph : h € H(X)} C L2(E,u).
The subspace H (X) is of course closed, but x g H (X) need not be closed.

Fix an exhausting sequence E1 C Ey C --- C E \ B of bounded Borel subsets of
E \ B, and denote

Fp=E\(BUEy).

Since B is bounded, we have fl,loc(Lz(B, w) = A (L*(B, ). By Lemma 1.9, for Pk -
almost every X € Conf(E) there exists a positive contraction K %-E \Bl ¢ £ (L*(B, )
such that

xpKXEnlyy 12X gIXEVB] ©.1)
in L (L*(B, 1))

Prx(-1X, E\ B) = Pgix.e\51. (6.2)
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Lemma 6.1. For Pg-almost every X € Conf(E), we have K[X’E\B](Xgh) = xph for
anyh € H(X N (E\ B)).

Proof. For any n € N, since E,, C E \ B, by definition, we have H(X N (E \ B)) C
H(X N E,). Since E, is bounded and E \ E, = B U F,, by Proposition 2.6 the operator
KX.Enl is the orthogonal projection from L?(E, i) onto the closure of the subspace
XE\E,H(X N E,) = xpur, H(X N Ey). By the limit relation (6.1) (and the elementary
fact that .1 -norm convergence implies operator norm convergence), for Pg -almost every
X € Conf(E) we have

KPR Gghy = Tim (xs KB yp) (esh) = lim xg K5 ()

for any h € H(X N (E \ B)), where the two limits are in the sense of L?-convergence.
Then using the equalities xgh = xpur,h — XF,h, K[X’E"](XBUFnh) = xBuUF,h and the
relation

Ixa K5 (e, )2 < xe, kil === 0,

we obtain the desired equality
KB Gghy = Tim xg KX P (epup,h — xp,h) = xsh — lim xp K E (g, )
n—>00 n—>00
= xsh,
where the two limits are in the sense of L2-convergence. O
Lemma 6.2. Let IP be a point process on E. Then for any bounded Borel subset B C E,

P(#s =#(XNB)| X, E\B) >0 forP-a.e. X € Conf(E). (6.3)

Proof. First of all, decomposing X =Y U Z, Y € Conf(B), Z € Conf(E \ B), we can
rewrite the statement as follows:

P({W € Conf(B) : #(W) = #(Y)} | Z, E\ B) > 0 (6.4)

for (wg\p)«(P)-almost every Z € Conf(E \ B) and P(- | Z, E \ B)-almost every ¥ €
Conf(B). We make a simple general claim: given an integer-valued measurable func-
tion f on a probability space (£2, P), for P-almost every y € 2 we have P{x : f(x) =
f(»} > 0.Indeed, if we define N = {n € Z : P{x : f(x) = n)} = 0}, then the relation
P{x: f(x) = f(y)} > Ofailsonly if f(y) € N, and

P{y: f(eN =) Ply: f(»)=n=0.

nenN
Now for (mg\p)+(P)-almost every Z € Conf(E \ B), by taking 2 = Conf(B), P =
P(-|Z, E\ B), f = #p, we obtain the desired statement (6.4). O

Proof of Theorem 1.4. Fix a countable dense subset 7 of E and let S, be an enumeration
of balls with rational radii centred at 7':

{S,:neN}={B(x,q):xeT, qcQ} 6.5)

Since the family (6.5) is countable, by Lemmas 6.1 and 6.2 there exists a measurable
subset A C Conf(E) such that
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Px(A) =1;
e for all X € A and all n € N, the conditional measures Pg (- | X, E \ S,) and the
conditional kernels K% £\S:] are defined and satisfy

Px (-1 X, E\ Sp) = Pgix.evsu; (6.6)
e forall X € A andall n € N, we have
KXE\S (o )y = s h forany h € H(X N (E \ Sp)); (6.7)
forall X e Aandalln € N.

Pk (#s, =#(X N S | X, E\ Sy) > 0. (6.8)

We now show that the above measurable subset A C Conf(E) has the desired prop-
erty: H(X) = {0} for any X € A. Take a fixed configuration X € A and assume, for
contradiction, that there exists iy € H(X), ho # 0. Clearly, since X is a discrete count-
able subset, there exists ng € N such that

ho[sno #0 and X NS, =0

Therefore, XSnOhO # 0and H(X) = H(X N (E \ Sy,)) and hence hy € H(X N
(E \ Syy)). In view of the assumption (6.7) on A, the non-zero function XSu ho satis-

fies KX-E\S0) (x5 ho) = xs,, ho. whence 1 is an eigenvalue of the operator K X#\5n],

In particular,
det(1 — KXE\Sly —

On the other hand, the relations (6.6), (6.8) together with the gap probability formula (3.5)
imply that

det(l — KBVl = P pxms,g (s, = 0) = P (#s,) = 0 X, E\ Sy)
= P (#s,, = #(X N Sy0) | X, E\ Sy) > 0.

We thus obtain a contradiction and Theorem 1.4 is proved completely. O

Remark. When K is the orthogonal projection with image H C L?(E), we have seen
in Proposition 2.6 that for our exhausting sequence E1 C E; C --- C E \ B of bounded
Borel subsets of E \ B, the operator K[%-£nl is the orthogonal projection onto the clo-
sure of the subspace xg\g, H(X N E;;). The convergence of the sequence of contractions
x8 K Enly p) requires proof. Whether the sequence K X-£] itself converges is not clear
to us. The limit operator
KUCEBL = Jim yp KX Enly g
n—o0

is in general not an orthogonal projection (cf. e.g. [8, Corollary 3.13] for the Bergman ker-
nel): the operator KX-E\B1 acting on L2(B, ), is trace class by the boundedness of B,
but in the example of the Bergman kernel the range of K[X-£\BI has infinite dimension
and therefore K%-£\Bl is not an orthogonal projection.
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7. Triviality of the tail o-algebra: proof of Theorem 1.6

Definition 7.1. Fix any increasing exhausting sequence D1 C Dy C --- C E of bounded
Borel subsets of E. For any Borel subset W C E, set

KXW . n1l>n<;lo XE\WK[X’ WOD,I]XE\W.

The convergence takes place in -7 joc (L2(E, ) by Proposition 5.1.The kernel K X W] g
well-defined for P -almost every X. For fixed W, the limit is almost surely independent
of the choice of the sequence (Dn)f,ozl-

Proposition 7.2. Fix a bounded Borel subset B C E andlet E\B D W1 D Wy D --- be
any decreasing sequence of Borel subsets. Then (xg K'X-Wnlyp),cen is an (F(Wy,))nen-
adapted reverse martingale defined on the probability space (Conf(E), F(E), Pg).

Proof. Tt suffices to prove that for any ¢ € L*(B, 1), the sequence ((KX:Wrlp, ¢)),cn
is an (F(W,)),en-adapted reverse martingale on (Conf(E), F(E), Pg). By definition, for
anyn € N,

(KX Walg ) (KXWl 4y Pg-almost surely. (7.1)

= lim

k— 00
Since all the operators K*-W»! are contractive, by the bounded convergence theorem the
convergence (7.1) takes place in L'(Pk) as well. Fix n € N. For any ¢ > 0, let k € N be

large enough that
”(K[X,Wn](ﬁ’ ®) — (K[X’W”ka]¢v ¢>||L1(IP1<) <e, (7.2)
(KNl gy — (KNP ) 1p ) < 6.
For fixed n € N, the sequence
(Eey [(K1M"9, ) | FWosr 0 DO])Z,

is a martingale that converges in L'-norm to ]EPK[(K[X’W"]¢>, ) | F(W,4+1)]. We can
therefore choose k large enough that

|Ep (KX Y0, 0) | FWoi)] = Epy [(KX Mg, 6) [ F Wit 0 DO 15,y < &
Since Wy, 1 N Dy C W,, N Dy and Dy is bounded, Lemma 1.12 implies
Epy [(KXWOPHg ¢) | F(Wyq1 0 Dp)] = (KX W10Pg gy,
whence
|Epy [(KP"g, ¢) | F Wi 0)] — (KX Wit @)1,
< 2¢ + |Epy (K6, 9) | F(Wasr 0 D] = (KIH V0P g) |

< 36 + [Ep, [(KX WP, @) | F (W1 0 D] — (KXW 0PHg gy = 3e,

(7.3)

and we obtain the desired reverse martingale relation Ep, [(K [X. Wn]d), o) | FWut1)] =
(K[X,Wn+|]¢’¢)_ O
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Lemma 7.3. For any bounded Borel subset B C E and ¢ € L*(E \ B, 1), we have
Varp, (KX P, ¢)] < 1913 - IxaK o113, (7.4)
where | - ||2 is the Hilbert norm on L*(E, 1).

We first prove Lemma 7.3 when K is an orthogonal projection. This part of the proof
is similar to the argument of Benjamini, Lyons, Peres and Schramm [1, Lemma 8.6]
and Lyons [21, Lemma 7.18]. The proof of Lemma 7.3 in full generality proceeds by
reduction to the case of projections (the usual argument of extending the phase space
must be slightly modified in the continuous setting) and is postponed to the end of the
section.

Proof of Lemma 7.3 when K is an orthogonal projection. By homogeneity, we may as-
sume that ||¢]l2 < 1. Since K is an orthogonal projection, by [5, Proposition 2.5] so is
KX-Bl for Py -almost every X € Conf(E). By Proposition 4.1, we have

Varg, [(KPXF1g, ¢)] = Bp [(KXB) - xp K xe\8)9, 6)|
< Ep, (1K™ = xp\ 8K x0\8)8113)
= Ep, (1K™ Bp13 — (K¥-Bl¢, xp\ 8K x£\80)
— (xe\sK xe\po, KX Blg) + ||XE\BKXE\B¢||%)
= EPK((K[X’B]% o) — (KX Bl xp\sK xE\B)
— (xe\sK xp\50, KX Blg) + ||XE\BKXE\B¢||%)
= (xp\sKxE\B9, ®) — I xE\8K XE\BOI5 = (KD, ¢) — | xp\8K 3
= 1Kol — llxe\6K 13 = I xaKll3. (1.5)
]

Proposition 7.4. Fixany ¢ € N. Then (xp, KX-E\Pr+tly b ), cvis an (F(E\ Dy-¢))nen-
adapted reverse martingale defined on the probability space (Conf(E), F(E), Px), and

xp KX E\Duedly ke X0 Kxp, (7.6)
Pk-a.s. in L (L2(E, w) and in L*(Px; L1 (L3(E, 1))
Forany l € N,
o
Er [Pk C1X. E\ Do) | (VFE\Duso)| = (ro)uPi) P-as, (1)
n=1

and, for any A € F(Dy),
1lim Ep [Ep, [x4 | F(E\ Dyyo)] — Pk (A)| = 0. (7.8)

Proof. The reverse martingale property of the sequence follows from Proposition 7.2. Set

T =) F(E\ Dpso). (7.9)

n=1
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Since a Banach space valued reverse martingale converges (see, e.g., Pisier [31, p. 34]),

we obtain

XDZK[X’E\D"“]XDZ
n— oo

Epy [xp, KX ENP 1+, | 71

Pk -almost surely in .%; (L2(E, w)) and in L?>(Px ; £ (L*(E, w)))

Set
Goo(X) = Epy [xp, KX E\Pitly | 71

In particular, for any ¢ € L?(Dy, i) with ||¢]l» < 1, we have
(Goo(X)¢, §) = Ep [(KX-E\P1+tlgy 4)| T7]  Pg-almost surely.

By Definition 7.1 and the inequality |(KX:(E\Pnt)WDilgy 4| < 1, which holds Pg-
almost surely, for any n € N we have

(KX E\DioNDi g gy K209 (g X E\Duvely ) Py-as. and in L2(Pg).  (7.10)
Similarly,
(KIXE\Duid gy ) "% (G (X)h, ¢)  Pg-as. and in L2(Pk). (7.11)

In particular, since (E \ Di14¢) N Dy are bounded for all £k € N, we can apply Proposi-
tion 4.1 to obtain

Epy (Goo(X)$, §) = Epy (KX E\P12dlg, g)] = lim Ep [(KITEVP00PH g, 6))
= (Ko, ).
Now by Lemma 7.3 and the assumption ||¢|]2 < 1, we have
Varp, (KX EAPONDE G )y < x(2\D,p0nD KON3 < 1 XE\D, K13
The convergences (7.10), (7.11) yield
Varp (KIHE\Pretlg, g)) = lim Varp, (KX (E\Pre00Plg, ¢)) < |l xe\p, K913,

Varp, ((Goo (X)¢, ) = lim Varp, (KX-E\Prtelg @)y < Timsup || xg\p,., K3 =0.
n—00 n— 00

Consequently, (Goo(X)9, ¢) = (K¢, ¢) Pg-almost surely. Since xp,Goo(X)xp, =
G (X) and since ¢ is arbitrarily chosen from the separable unit sphere in L%(Dy, 1),
we obtain the desired equality

Go(X) = xp,Kxp, Pxk-as.
Finally, Proposition 8.3 implies that

(7D )+[Pk (| X, E\ Dyyo)] = Epy [Pk (- | X, E\ Dg) |F(E \ Dpyo)]  Pk-as.,
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and

(nDe>*[PK(-|X,E\Dn+e>]%;%EPK[PK(M,E\D@)W] Pg-as. (7.12)

But the convergence (7.6) implies that

n—o0

(@p)«[Px (-1 X, E\ Dpyg)] = PXDZK[X,E\Dn+(]XDZ W Py, K xp,
= (np,)«(Pg) Pk-as. (7.13)

Now (7.12) and (7.13) yield (7.7). Martingale convergence for a bounded random variable
implies (7.8). ]

Proof of Theorem 1.6. Take D,, := B,,. We prove that the o-algebra .7 in (7.9) is trivial
with respect to Pg. Take an event A € 7. For ¢ > 0, find £ € N large enough and
A1 € F(Dy) such that Pg (A A A) < ¢/3. By (7.8), we have

Jlim Epy [Ep [xa, | F(E\ Dure)] — Px(Ap| = 0.
Now find n € N large enough that
Epy |Epg [xa, | F(E\ Duyo)] — Pr(A1)| < &/3.
It follows that for any Ay € F(E \ D,¢), we have
IPx (A1 N Az) — Pg (A1)Pk (A2)]
= |Epy (xa,Erg [xa, | FE\ Dugo)l) — Epg (xa,Px (A1)

= [Epy (X, [Epg [xa, | FE\ Do)l — Px (AD)])]
< Epy (|EpgLxa, | F(E\ Duyo)] — Px(AD]) < &/3. (7.14)

Finally, we obtain

IPx(ANA) —Pg(A)Pg(Ad)]
< 2Pk (A1 A A) + [Pk (A1 NA2) — Pg (AP (A2)| < e.

Taking A> = A, we obtain Px(A) = (P (A))%, whence Pk (A) is either 0 or 1, as
desired. O

Proof of Lemma 7.3 in the general case. Fix a bounded Borel subset B C E and a
function ¢ € L*(E \ B, u) such that ||¢]l» = 1. Recalling (3.1), set

R(K,B,¢)=(p Q¢+ xp)K(P®+ xp). (7.15)
By Lemma 1.10,

(R(K, B, p)XBlg o) = (KXBlg ¢) for Pg-ae. X € Conf(E).
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By definition, K X8l = KIXNB. Bl and similarly R(K, B, ¢)!X-81 = R(K, B, ¢)!X"B- Bl
In particular,

(R(K, B, 9)"Blg, ¢) = (KIX-Blp @) for (mp)«(Pk) = Pyykys-a-e. X € Conf(B),
(7.16)

and
Varp, [(K'XFlg, ¢)] = Varp, . [(K*Plg, ¢)]
= Varp, x50y, (RCK, B, ) XFlg, ¢). (7.17)

Claim (see Lyons [22, Section 3.3]). Let m be the counting measure on N. There exists a
locally trace class orthogonal projection operator K € ], loc(L2(E UN, 1 @ m)) such
that K = x EK XE-

Indeed, the canonical orthogonal projection dilation of K on L?(E, u) @ L*(E, p) is
given by the formula

[K m]
VK—K? 1-K |

but it is not in general locally trace class. Since L?(E, ) is separable and all infinite-
dimensional separable Hilbert spaces are isometrically isomorphic, there exists a unitary
operator U : L*(E, n) — ?2(N) = L%(N, m), and we set

1 0 K VJK—-KZ][1 0

0 UJIVK-K? 1-K 0o Ul

K := (7.18)

Now since K is an orthogonal projection, we can apply (7.5) to finish the proof of
Lemma 7.3 as follows. Consider the subset B C E as a subset of E U N, and consider
the function ¢ € L*(E \ B, ) as an element in L*((EuN) \ B, » & m) (jgst extend
the definition of ¢ so that it vanishes on N). Applying (7.5) to the kernel K and the
determinantal measure Pz, we obtain

Varp. [(K*Flp, ¢)1 < | x5K ¢13.
For the term on the right hand side, we have
x8Ko = xsKo. (7.19)
Similar to the definition (7.15) of R(K, B, ¢), set
RK,B,¢)= (¢ @0+ xp)K (@ + xp). (7.20)

By the definition (7.18) of the kernel K , we have xg K xe = K. Then by using the
elementary equality

PR+ xp=(d®b+ xB)XE = XE(D DD+ xB),
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we obtain, by recalling (7.15) and (7.20),
R(K.B.¢)= (¢ ®b+ x5)K(@®®¢ + xp)
=(®¢+ xB)xeKxe(@® ¢+ xB)
=@®b+xp)K(@®¢+ xp) = R(K, B, ¢). (7.21)
The equality (7.21), combined with (7.16) (applied to both K and K ), implies

(RIXBly, ) =20 (R, B, )X Bl ¢) = (R(K. B.»)*B1p. 9)

P -a.s.
KB (gIXBly g,
The equality xp EXB = xpK xp implies }P’XB,;XB = Py, k- Therefore,
Varp, [(KX P, ¢)] = Varp, ., [(KXP1g, 9)) = Varp o [(K*Flg, ¢)]
= Varp [(K*P1g, 9)1. (7.22)
Combining (7.19) and (7.22), we obtain the desired inequality (7.4). ]

8. Appendix

8.1. Conditioning on bounded subsets of determinantal point processes: proofs of
Propositions 2.5 and 2.6

Let W C E be a Borel subset, not necessarily bounded. Recall that we identify the sets
Conf(W) >~ Conf(E, W) :={X € Conf(E) : X C W} C Conf(E).

Therefore, given a point process [P on E, that is, a Borel probability on Conf(E), we may
set

IP)rC0nf(W) .
m — m if ]P(COHf(W)) > 0, (81)

0 if P(Conf(W)) = 0.

Recall also the notation PX"2 introduced in (2.3) for the Palm measure of the point pro-

cess P with respect to the points inside X N B.
We have the following description of conditional measures of general point process
with respect to restricting the configuration to a bounded subset B C E.

Proposition 8.1. Let B C E be a bounded Borel subset. If P is a simple point process
on E admitting correlation measures of all orders, then P(-| X, B) = PXNB [Conf(E\B)
for P-almost every X € Conf(E). In particular, for P-almost every X € Conf(E), we
have PX"B (Conf(E \ B)) > 0.

Proof. Let Conf,(E) = {X € Conf(E) : #X = n} and define Conf, (B) similarly. Via
the natural map E" — Conf,(E) defined by (x1, ..., x,) — {x1,..., x,}, we define a
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measure ,of p on Conf, (E) as the push-forward of the correlation measure p,,,p and define
a o-finite measure ‘@”}ﬁp on Conf, (E) x Conf(E) as the push-forward of the n-th order
Campbell measure %n' p- The formula (2.2) implies that

% p(dp x dX1) = pif p(dp)PP (dX ). (8.2)

By convention, we set ng(dp) := §y and Cg p = 8p ® P, where dj; is the Dirac measure
at the empty configuration ¢, i.e., the unique element ¢ € Confy(E). Equivalently, for
any positive Borel function H : Conf,(E) x Conf(E) — R,

/ H(p, X1) 6} p(dXo x dX1)
Conf, (E)xConf(E)
#
=f S THr ) X\ () | PAX),
Conf(E) - ycxn
where the summation Z# is taken over all ordered n-tuples (x1, ..., x,) with distinct
coordinates x1, ...,x, € X.In particular, when n = 0, this equality reads: for every

H : Confy(E) x Conf(E) — RT,

H X0 Gl x X = [ HO0PEX),
Conf(E)
The boundedness of B C E implies that Conf(B) = |_|Z°=O Conf, (B). Hence

Conf(E) ~ Conf(B) x Conf(E \ B)

/Confo(E) x Conf(E)

= (| Contu(B)) x Conf(E \ B) = |_| (Conf, (B) x Conf(E \ B)).
n=0 n=0

Foranyn = 0,1, ..., let H : Conf,(E) x Conf(E) — R™ be any non-negative Borel
function supported on Conf, (B) x Conf(E \ B) C Conf,(E) x Conf(E). Then for any
X € Conf(E), we have

Z#H({xl,...,xn},X\{xl,...,xn}) =n!- x@xnp)=n) - H(X N B, XN (E\ B)).

xeX"

When n = 0, this equality reads H (9, X) = xixnp=gy - H(X N B, X N (E \ B)). By
definition of %}f p» We get

/ H(p, X1) 6} p(dp x dX))
Conf, (E)xConf(E)

:/C S H ) X\ () | P@X)

onf(E) -y cxn

=n!. f Xi#xnB)y=n} - H(X N B, X N (E'\ B))P(dX)
Conf(E)

=t [ H(p, X1) Py 5(dp x X)),
Conf, (B)xConf(E\B)
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The above equality, combined with (8.2), yields

1
P E\B | Cont, (B)xConf(E\B) (P X dX1) = n_cngP’rConf,,(B)xConf(E\B)(dp x dX1)

1
= — 0} plcont(s) @D [conr(z ) (4X1)

PP (Conf(E \ B)) -
Tpf Pl conf(8) (AP)PP [contz\B) (AX1).
Consequently,

Z PP(Conf(E \ B)) &

. Pn.plCont(B) (dp))IPP [Conf(£\B) (AX1).

Pp p\p(dp x dX) = (

n=0
This implies both the formula for w5(P)(dp) and the formula for P(dX|p, B) =
Pp p\p(dX1 |p, B):

Z PP (Conf(E \ B)) 4

mp(P)(dp) = Py Pu.p [Cont(B) (dP), (8.3)

n=0
P@dX|p, B) =PP FCOHf(E\B)(Xm) for mp(P)-a.e. p € Conf(B). (8.4)

Hence we get the desired relation P(- | X, B) = PX"B | ¢ £\p) for P-almost every X €
Conf(E). ]

Remark. Kallenberg [20, Section 12.3] defined the compound Campbell measure of P
on Confs, (E) x Conf(E) by

o
Ghdp x dX)) =) —‘K#P(dp x dX1),
n= O

where Confsn(E) = |02, Conf, (E).

To prove Proposition 2.5, we will also need the description of the normalized restriction
of a determinantal measure on Conf(E) to Conf(E \ B) C Conf(E), which is given by
the following

Lemma 8.2 (see [3], [6, Propositions 2.1 and 2.2] and [5, Propositions 2.3 and 2.5]).
Let K : LZ(E w) — L*(E, ) be a bounded self-adjoint locally trace class operator
with spes(K) C [0, 1]. Assume that B C E is a bounded subset such that the operator
1 — xpK is invertible. Then:

(i) The measure

Pz lconf(E\B) (8.5)

is a determinantal point process induced by the kernel

XE\Bg(l - XBE)_lXE\B- (8.6)
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In notation,
]P)I? [Conf(E\B) = PXE\BI?(I—XBE)’IXE\B' 8.7)

(ii) If moreover K isan orthogonal projection, then the operator (8.6) is the orthogonal
projection from L%(E, ) onto the closure of

xe\sRan(K) = {xg\pf : f € Ran(K)}.

Proof. Recall that for any bounded linear operators 7', S on a Hilbert space, the invert-
ibility of 1 — 7S and the invertibility of 1 — ST are equivalent. Therefore, the assumption
that 1 — XBK = 1 — xp - xpK is invertible implies that 1 — xp KXB is invertible and
hence det(1 — xp K xB) # 0. Now from the gap probability formula for determinantal
point processes, we have

P (Conf(E \ B)) = det(1 — xzK xp) > 0.

Since

1_[ XE\B(X) = XcCont(E\B)(X),
xeX

we have
[Tiex xE\B(X) - Pg
fConf(E) [Liey xE\B(X) - Pg(dY)

Pz lconf(E\B) =
Now item (i) reads

[Liex xe\B8(x) - PR _ - -
=P K(—xgK)~! )
Jeontzy [xey XxE\B(X) - PR(dy) — XE\BRUZXBRIXEE

(8.8)

which follows from [3], [6, Proposition 2.1] or [5, Proposition 2.3] (by taking the function
g in [6, Proposition 2.1] or in [5, Proposition 2.3] to be the characteristic function x g\ g).
Item (ii) follows from [6, Proposition 2.2] (see also [5, Proposition 2.5]). ]

Remark. In the discrete setting, see also Borodin and Rains [2] and Lyons [21] for the
statements in Lemma 8.2.

Remark. For the reader’s convenience, we include the proof of (8.8) under the additional
assumption

xsK € LA(L*(E, ).

Take any bounded measurable function f on E such that (f — 1)1? € L(LA(E, p)).
Then

(fxe\s — DK = xe\p(f — DK — xK € Z1(L*(E, ).

By direct computation,

L+ (fxevs — DK =[1+(f = DxesK (1 = x5K)7"] - (1 - x5 K).
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Therefore, using elementary properties of Fredholm determinants, we get
det(1 + (f xe\p — DK) = det(1 + (f = Dxp\sK (1 = xsK)™") det(l — x5 K)

= det(1+ (f = Dxp\sK (1 = x3K) ™' xp\8) det(1 = xzK),
which in turn implies

fConf(E) erX fx)- erX XE\B()C) ]P’]?(dX)
fConf(E) [Tiex xE\B(X) Pg(dX)

N /;onf(E) <l_[ f(x)>PXE\Bf(IXBﬁ)—1XE\B (dX),

xeX

and the equality (8.8) follows immediately.

Proof of Proposition 2.5. Since the determinantal point process Pk is a simple point
process, by Proposition 8.1 for P -almost all X € Conf(E) we have Pﬁmg (Conf(E \ B))
> (0 and

Pk (- | X, B) = PX"B [contce\ B)- (8.9)
Recall that the measure IP’?‘B , introduced in (2.3), is the Palm measure of Px with respect
to the points inside X N B. By Shirai and Takahashi [38, Theorem 1.7], for Px -almost
every X € Conf(E), the Palm measure ]P’I’gmB is a determinantal point process on E,
induced by the correlation kernel

KXNB — gPrsPn if X\ B = {p1,..., pa}, (8.10)
where KP1--Pr is defined by (1.8). In notation,
PXE = Py xns. 8.11)

The above identity combined with IP’;gmB (Conf(E \ B)) > 0 for Pg-almost every X €
Conf(E) implies that

det(1 — xg KX xp) = Pgxns (Conf(E \ B)) = PX"8(Conf(E \ B)) > 0

for Pg-almost every X € Conf(E). This in turn implies that 1 — xp K XNB x and hence

1 — xgKX"B is invertible. So Lemma 8.2 in the Appendix is applicable to the kernel
KXNB and the subset B C E. Combining (8.7) with K replaced by K*™8 and the equal-
ities (8.9), (8.11), we obtain

Pk (-1 X, B) =Px"B [cont(E\B) = Pk x08 [Cont(E\B) = Py, p KXOB (1— 35 KXNB)=1 -
Now using the definition (8.10) of K*X™8 and the definition (1.9) of KX-8] we obtain
XE\BKXHB(l _ XBKXHB)ile\B — K[X,B].

This completes the proof of Proposition 2.5. O
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Proof of Proposition 2.6. The first assertion of Proposition 2.6 can be proved by induction
on n, by noting that K?1>~Pn = ((KP'))P» In particular, when n = 1, the equality
KPi(x,y) = K(x,y) — W implies that K”' = K — g, where I, is the
rank-one orthogonal projection onto the linear space spanned by the function K, () =
K (-, p1). Therefore, KP! is the orthogonal projection onto H (py).

The second assertion of Proposition 2.6 is an immediate consequence of

Lemma 8.2(ii). ]

8.2. Martingales corresponding to conditional processes

Let IP be a point process on E and let W C E be a Borel subset of E. Let W; C W, C
.-+ C W be an increasing sequence of Borel subsets of W such that W = (2, W,,.

Proposition 8.3. The sequence ((mp\w)+[P(-| X, Wy)Dnen is an (F(Wy,)),en-adapted
martingale defined on the probability space (Conf(E), F(E), P). Moreover,

Te\w)[PC 1 X, W)l = Ep[P(-| X, W) | F(W,)]  forP-a.e. X € Conf(E). (8.12)

In particular, by the martingale convergence theorem, for all Borel subsets A C
Conf(E \ W) and any 1 < p < 00,

(Grevw)«[PC 1 X, W) (A) e P(A| X, W). (8.13)
P-a.s. and in L? (Conf(E), P)

Moreover, for P-almost every X € Conf(E),

n—oo

(Te\w)«[P(- 1 X, Wy)] ety PC1X, W). (8.14)

Remark. In general, (8.13) cannot be strengthened to the claim that for P-almost every
n—oo

X € Conf(E), we have ((mp\w)«[P(- | X, W) D(A) —— P(A| X, W), for all Borel
subsets A C Conf(E \ W).

We prepare a simple lemma. Let ;,i = 1,2, ..., and Q* be standard Borel spaces. Fix
n € N and denote

X = (xi)?il

and ¢ =: (X;))iznt1,

while z will stand for the coordinate on *. Let Q (dx x dz) be a Borel probability measure
on (]_[?il Q;) x Q*. Forany n € N, let g,(x1, ..., X,; dz) be the marginal on Q* of the
conditional measure Q(dt x dz | xy, ..., Xn).

Lemma 8.4. We have

qn(x1,...,xn;dz) ZE[Q(dZ“Cl’--~7xnat)|x1a--~»xn]~
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Proof. Denote by Q, the marginal measure of Q on Q1 x --- x €,. Let Qs be the
marginal measure of Q on [[72, ;. By definition of conditional measures, we have

Q(dx X dZ) = QOO(dx)Q(dZ|-xlv cees Xn, t)v
Q(dx xdz) = Qu(dxy ---dx,)Q(dt x dz | x1, ..., x,).

And also

E[Q(dz|x17-"axnat)|-x17~"9-xl’l]

Z/ Q(dzlxla"'7xnvt)QOO(dt|xla~-"x}’l)‘
tenioinJrl Qi

Since Qoo (dx) = Oy (dxy - - - dxy,) Qoo(dt | X1, ..., Xxp), We get
Q(dx x dz) = Qpn(dxy -+ dxp) Qoo(dt | X1, ..., Xp) Q(dzZ | X1, ...\ Xy, 1).
Consequently,
Q(dt xdz|x1,...,xp) = Qoo(dt | X1, ..., x,) Oz | X1, ..., X5, 1).
By definition, we have
Qn(xl»u-axn;dZ):f O(dt x dz|x1,..., %)
T2

:/ QOO(dt|xl9'~~1xn)Q(dZ|xl7-"7-xl’lst)
tel_[ioier Q;

=E[Q@dz|x1, ..., %0, 1) [ X1, .00y Xp]. o
Proof of Proposition 8.3. Apply Lemma 8.4 to ; = Conf(W; \ W;_1). m]

8.3. Mixing for Mobius transformations acting on (Conf(D), Py ) and proof of
Lemma 1.3

For any n € N and any ¢ > 0, we have
P#Z(fp)N{zeD:|z| <e}) =n) > 0.

To conclude the proof of Lemma 1.3, it suffices to establish the ergodicity of the dis-
tribution of Z(fp) under the group Aut(D) of Mobius transformations, in other words,
the group of isometries of the Lobachevsky plane. We prove mixing for hyperbolic and
parabolic one-dimensional subgroups of Aut(DD).

Lemma 8.5. If y € Aut(D) is either hyperbolic or parabolic, then the dynamical system
(Conf(D), Pk, ) is strongly mixing.
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Proof. Fix an increasing sequence ry in (0, 1) such that limg ry = 1. Let A, B be any
fixed measurable subsets in Conf(DD). For any ¢ > 0, there exist A, B, C Conf(D) and
a compact subset C; C D such that A,, B, are both F(C,)-measurable and

Prp(AAA:) <&, Pgp(BAB,) <e. (8.15)
Since Py, is y-invariant, we have
sup [Pgp (A Ny~ "(B)) — Pgp(Ae Ny " (Be))| < 2e. (8.16)
neN

For any ry denote D, := {z € D : |z] < r}. By the assumption on y, for any k € N,
there exists n; € N such that

Yy "(Ce)ND, =@ foralln > ng.
It follows that for any n > ny,
Pry(Ae Ny " (Be)) = Ep (Xy-1(3,) Epy, [xa, [T\ Dy)]).
Therefore, for any &,
li:llsi)p IPkp (Ae Ny " (Be)) — Pryy (Ae)Piy (Be)|

= limsup |[Ep, (xy-n(8,)Ery, [xa, | FO\ D)) — Epy (Xy-n (3, Erg, [x4. D]

n—oo

IA

limsup Epy [y -3, Epg, [xa, | FD\NDr)] = xy—n(B)Epg, [xa]l
n—oo

< Epy, [Epg, X, | FD\Dy)] — Epy [xa,]l.

Theorem 1.6 now implies
lim Ep, [Epy [xa, | FO\Dy)]l —Ep, [xa.11=0
k— 00 D D D

and hence

limsup [Pk, (Ae Ny " (Be)) — Piyy (Ae)Pry (Be)| = 0. 8.17)

n—oo
Combining (8.15)—(8.17), we obtain
lim P, (ANy™"(B)) = Pky, (A)Pky (B)
n—oo
and thus complete the proof of the strong mixing property of the dynamical system
(Conf(D), Py, v). O

Proof of Lemma 1.3. We need to show that almost surely,

sup #(Z(fp) Ny~ '(D,)) =00 foralle € (0,1) N Q.
y eAut(D)

Since (0, 1) N Q is countable, we only need to show that for any fixed ¢ € (0, 1) N Q,

sup #(Z(fp) Ny~ '(D,)) = oo  almost surely. (8.18)
y eAut(D)
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Now fix any ¢ € (0, 1) N Q. The distribution of Z(fp) N Dy is given by the determi-
nantal measure induced by the kernel xp, Kp xp, . Since rank(xp, Kpxp,) = oo, for any
£ € N we have

P@#(Z(fjp) NDe) > £) > 0.

If yo € Aut(D) is hyperbolic or parabolic, then Lemma 8.5 implies that the dynamical
system (Conf(ID), Pk, v0) is ergodic, whence for any £ € N, the relation

#(Z(fp) N V()_n (De)) = ¢

holds for infinitely many n’s on a set of full measure. Since ¢ is arbitrary, the desired
equality (8.18) follows. O

We conclude this section with a conjecture on the asymptotic density of zeros of Gaussian
analytic functions. Let F be a finite subset of the unit circle T and s ¢ be the corresponding
Stolz star domain, which, by definition, is the union, over all z € F, of the Euclidean
convex hulls of the unions {z}U{w € D : |w| < 1/\/5} . Let {I; }; be the complementary
arcs of the subset F in T, and set
~ el . |kl
k(F):=1-— — log —.
(F) Xk: 2 o8 2
For a countable subset X C D without accumulation points in the interior of the disc,
following [16, Chapter 4, Definition 4.9] write
1 1—x*>:xespnNX
DT (X) := = limsup 2 |XL rEoF }
2 2Py soo k(F)

1 1—|x?: nx
D~(X) =  Jiming 2ol =¥ ix €sr O X}
2 K(F)—»o0 k(F)

’

For p > 1, let A”(D) be the LP-version of Bergman space. Theorem 4.31 and Corol-
lary 4.38 in [16] state that

X isan A>T¢ (D)-zero set for some ¢ > 0 if and only if D™ (X) < 1/2,
X is an Az_g(]D))—zero setforall ¢ > 0 if and only if DY(X) < 1/2.

Conjecture. DV (Z(fp)) = 1/2 almost surely.
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