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Abstract. This paper continues our study of the interconnection between controllability and mix-
ing properties of random dynamical systems. We begin with an abstract result showing that the
approximate controllability to a point and a local stabilisation property imply the uniqueness of a
stationary measure and exponential mixing in the dual-Lipschitz metric. This result is then applied
to the 2D Navier–Stokes system driven by a random force acting through the boundary. A by-
product of our analysis is the local exponential stabilisation of the boundary-driven Navier–Stokes
system by a regular boundary control.
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0. Introduction

In the first part of this project [Shi17a], we studied a class of ordinary differential equa-
tions driven by vector fields with random amplitudes and proved that good knowledge of
controllability properties ensures the uniqueness of a stationary distribution and exponen-
tial convergence to it in the total variation metric. A key property used in that work was
the solid controllability from a point, which means, roughly speaking, that we have exact
controllability from that point to a ball, and it is stable under small perturbations. In the
case of partial differential equations, this property is rarely satisfied, and the aim of this
paper is to replace it by a weaker condition of local stabilisation and to prove that it is
still sufficient for the uniqueness of a stationary measure, whereas the convergence to it
holds in the dual-Lipschitz metric, which metrises the weak topology.

To be precise, we confine ourselves in the introduction to the main result of the pa-
per on mixing for the 2D Navier–Stokes system driven by a boundary noise. Thus, we
consider the problem

∂tu+ 〈u,∇〉u− ν1u+∇p = 0, div u = 0, x ∈ D, (0.1)
u|∂D = η, (0.2)

where D ⊂ R2 is a bounded domain with smooth boundary, u = (u1, u2) and p are
unknown velocity field and pressure, ν > 0 is the kinematic viscosity, and η = η(t, x) is
a random force that acts through the boundary and has a piecewise independent structure.
Namely, we assume that

η(t, x) =

∞∑
k=1

I[k−1,k)(t)ηk(t − k + 1, x), (0.3)

where I[k−1,k) is the indicator function of the interval [k − 1, k) and {ηk} is a sequence
of i.i.d. random variables in the space L2([0, 1] × ∂D,R2) that possess some additional
properties ensuring the well-posedness of problem (0.1), (0.2). We are interested in the
problem of mixing for the corresponding random flow.

Let us formulate our main result informally, omitting some inessential technical de-
tails. We set J = [0, 1] and 6 = J × ∂D, and define E as the space of restrictions to 6
of time-dependent divergence-free vector fields u = (u1, u2) on J × D that satisfy the
inclusions

u ∈ L2(J,H 3), ∂tu ∈ L
2(J,H 1), (0.4)

where H k stands for the Sobolev space of order k ≥ 0 on the domain D. An exact
description of E can be found in [FGH02] (see also Section 4.4), where it is shown in
particular thatE has the structure of a separable Hilbert space. We assume that the random
variables ηk belong to E almost surely and their law ` satisfies the following hypothesis:

(H) The measure ` has a compact support in E and is decomposable in the following
sense: there is an orthonormal basis {ej } in E such that ` can be represented as
the tensor product of its projections j̀ to the one-dimensional subspaces spanned
by ej . Moreover, j̀ has a C1-smooth density with respect to the Lebesgue measure
for any j ≥ 1, and its support contains the origin.



Controllability implies mixing 1383

For a random variable ξ , we denote by D(ξ) its law, and we write C(J,L2) for the
space of continuous functions on J with range in the space of square-integrable vector
fields onD. The following theorem is a simplified version of the main result of this paper
(see Section 3.1 for an exact and stronger statement).

Main Theorem. Under the above hypotheses, there is a probability measure µ on the
space C(J,L2) such that any solution u(t, x) of (0.1)–(0.3) issued from a deterministic
initial condition satisfies the inequality

‖D(uk)− µ‖∗L ≤ C(‖u(0)‖L2)e
−γ k, k ≥ 1, (0.5)

where γ is a positive number not depending on u0, uk stands for the restriction of the
function u(t + k − 1, x) to the cylinder [0, 1] ×D, and ‖ · ‖∗L denotes the dual-Lipschitz
metric over the space C(J,L2).

Let us mention that the problem of mixing for randomly forced PDEs attracted a lot of
attention in the last two decades, and the case in which all the determining modes are per-
turbed is rather well understood. We refer the reader to [FM95, KS00, EMS01, BKL02]
for the first achievements and to the book [KS12] and the review papers [Bri02, Fla08,
Deb13] for a detailed account of the results obtained so far in that situation. On the other
hand, there are only a few works dealing with the case when the random noise does not act
directly on the determining modes. Namely, Hairer and Mattingly [HM06, HM11] studied
the 2D Navier–Stokes equations on the torus and the sphere and established the property
of exponential mixing, provided that the random perturbation is white in time and con-
tains the first few Fourier modes. Földes, Glatt-Holtz, Richards, and Thomann [FGRT15]
proved a similar result for the Boussinesq system, assuming that a highly degenerate
random forcing acts only on the equation for the temperature. In [Shi15], the property
of exponential mixing was established for the 2D Navier–Stokes system perturbed by a
space-time localised smooth stochastic forcing. Finally, the recent paper [KNS18] proves
a similar result in the situation when random forces are localised in the Fourier space and
coloured in time. We also mention the papers [Sin91, EKMS00, Bak07, DV15, Bor16,
GS17, Shi17b] devoted to the viscous and inviscid Burgers equation and some scalar
conservation laws, whose flow possesses a strong stability property. To the best of my
knowledge, the problem of mixing for the Navier–Stokes system with a random pertur-
bation acting through the boundary has not been studied in earlier works.

In conclusion, let us mention that this paper is a part of the programme whose goal is
to develop methods for applying the results and tools from control theory in the study of
mixing properties of flows generated by randomly forced evolution equations. It comple-
ments the earlier results established in [AKSS07, Shi15, Shi17a, KNS18] and develops a
general framework for dealing with random perturbations acting through the boundary of
the domain.

The paper is organised as follows. In Section 1, we study an abstract discrete-time
Markov process in a compact metric space and prove a result on uniqueness of a stationary
distribution and its exponential stability. Section 2 is devoted to discussing the initial-
boundary value problem for the Navier–Stokes system and proving some properties of
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the resolving operator. The main result of the paper on mixing for the 2D Navier–Stokes
system perturbed by a random boundary force is presented in Section 3. The appendix
gathers a few auxiliary results used in the main text.

Notation. Let (X, d) be a Polish space, let E be a separable Banach space, let J ⊂ R be
a closed interval, and let D be a bounded domain or a surface in a Euclidean space. In
addition to the conventions of [Shi17a], we use the following notation.

Lb(X) is the space of bounded continuous functions f : X→ R such that

‖f ‖L := ‖f ‖∞ + sup
0<d(u,v)≤1

|f (u)− f (v)|

d(u, v)
<∞,

where ‖ · ‖∞ is the usual supremum norm.
P(X) stands for the set of probability measures with the dual-Lipschitz metric

‖µ1 − µ2‖
∗

L = sup
‖f ‖L≤1

|(f, µ1)− (f, µ2)|,

where the supremum is taken over all functions f ∈ Lb(X) with norm ≤ 1.
Lp(J, E) is the space of Borel-measurable functions f : J → E such that

‖f ‖Lp(J,E) =

(∫
J

‖f (t)‖
p
E dt

)1/p

<∞.

In the case p = ∞, this norm is replaced by ‖f ‖L∞(J,E) = ess supt∈J ‖f (t)‖E . If
J ⊂ R is unbounded, then we write Lploc(J, E) for the space of functions f : J → E

whose restriction to any bounded interval I ⊂ J belongs to Lp(I, E).
L(E, F ) is the space of continuous linear operators from E to another Banach

space F . This space is endowed with the usual operator norm.
W s,q(D) is the standard Sobolev space of measurable functions f : D → R such

that ∂αf ∈ Lq(D) for any multi-index α with |α| ≤ s. In the case q = 2, we shall
write H s(D). The norms in these spaces are denoted by ‖ · ‖W s,q and ‖ · ‖s , respectively.
We write W s,q(D,R2) and H s(D,R2) for the corresponding spaces of vector functions.

H s
0 = H

s
0 (D) is the subspace in H s(D) consisting of the functions vanishing on ∂D.

The corresponding space of vector functions H s
0 (D,R

2) is defined in a similar way. A
function f ∈ H 1

0 (D) extended by zero to a larger domain D′ ⊃ D belongs to H 1
0 (D

′);
we tacitly assume that any function in H 1

0 (D) is extended by zero outside D.
Ci and Ci(. . . ) denote positive numbers, which may depend on the quantities listed

in brackets.

1. Mixing in the dual-Lipschitz metric

1.1. Description of the model

Let us consider the following random dynamical system in a compact metric space (X, d):

uk = S(uk−1, ηk), k ≥ 1. (1.1)
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Here {ηk} is a sequence of i.i.d. random variables in a separable Banach space E and
S : X×E→ X is a continuous mapping. Equation (1.1) is supplemented with the initial
condition

u0 = u, (1.2)

where u is an X-valued random variable independent of {ηk}. We denote by (uk,Pu)
the discrete-time Markov process associated with (1.1) and by Pk(u, 0) its transition
function. The Markov operators corresponding to Pk(u, 0) are denoted by

Pk : C(X)→ C(X), P∗k : P(X)→ P(X), k ≥ 0.

Due to the compactness of X, the Markov process (uk,Pu) has at least one stationary
distribution µ, that is, a probability measure satisfying P∗1µ = µ. In this section, we
investigate uniqueness of stationary distribution and its exponential stability in the dual-
Lipschitz metric. To this end, we introduce some controllability properties for (1.1).

Approximate controllability to a given point. Let û ∈ X be a point and let K ⊂ E be a
compact subset. System (1.1) is said to be globally approximately controllable1 to û by
a K-valued control if for any ε > 0 there exists m ≥ 1 such that, given any initial point
u ∈ X, we can find ζ u1 , . . . , ζ

u
m ∈ K for which

d(Sm(u; ζ
u
1 , . . . , ζ

u
m), û) ≤ ε, (1.3)

where Sk(u; η1, . . . , ηk) denotes the trajectory of (1.1), (1.2).
In [Shi17a], we imposed the condition of solid controllability, which implies, in par-

ticular, the exact controllability to a ball. Here we replace it by a property of local stabili-
sation.

Local stabilisability. Let us set Bδ = {(u, u′) ∈ X×X : d(u, u′) ≤ δ}. We say that (1.1)
is locally stabilisable if for any R > 0 and any compact set K ⊂ E there is a finite-
dimensional subspace E ⊂ E, positive numbers C, δ, α ≤ 1, and q < 1, and a continuous
mapping

Φ : Bδ × BE(R)→ E, (u, u′, η) 7→ η′,

which is continuously differentiable in η and satisfies the following inequalities for any
(u, u′) ∈ Bδ:

sup
η∈BE(R)

(
‖Φ(u, u′, η)‖E + ‖DηΦ(u, u

′, η)‖L(E)
)
≤ C d(u, u′)α, (1.4)

sup
η∈K

d
(
S(u, η), S(u′, η +Φ(u, u′, η))

)
≤ q d(u, u′). (1.5)

Finally, concerning the random variables ηk , we shall assume that their law ` has
a compact support K ⊂ E and is decomposable in the following sense. There are two
sequences {Fn} and {Gn} of closed subspaces in E possessing the two properties below:

1 Note that this concept of approximate controllability is slightly stronger than the one used
in [Shi17a].
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(a) dimFn < ∞ and Fn ⊂ Fn+1 for any n ≥ 1, and the vector space
⋃
n Fn is dense

in E.
(b) E is the direct sum of Fn and Gn, the norms of the corresponding projections Pn

and Qn are bounded uniformly in n ≥ 1, and the measure ` can be written as the
product of its projections Pn∗` and Qn∗` for any n ≥ 1.

1.2. Uniqueness and exponential mixing

From now on, we assume that the phase spaceX is a compact subset of a Banach spaceH ,
endowed with a norm ‖·‖. We shall say that a stationary measureµ ∈ P(X) for (uk,Pu) is
exponentially mixing (in the dual-Lipschitz metric) if there are positive numbers γ and C
such that

‖P∗kλ− µ‖
∗

L ≤ Ce
−γ k for k ≥ 0, λ ∈ P(X). (1.6)

Recall that the law ` of the random variables ηk is assumed to have a compact support
K ⊂ E. The following result provides an analogue of [Shi17a, Theorem 1.1] for the case
when solid controllability is replaced by local stabilisability.

Theorem 1.1. Suppose that S : H × E → H is a C1-smooth mapping such that
S(X × K) ⊂ X, and system (1.1) with phase space X is locally stabilisable and glob-
ally approximately controllable to some point û ∈ X with a K-valued control. Assume in
addition that the law ` is decomposable, and the measures Pn∗` possess C1-smooth den-
sities ρn with respect to the Lebesgue measure on Fn. Then (1.1) has a unique stationary
measure µ ∈ P(X), and µ is exponentially mixing.

Proof. We first outline the scheme2 of the proof, which is based on an application of
Theorem 4.1. To this end, we shall construct an extension (uk,Pu) for the Markov pro-
cess (uk,Pu) associated with (1.1) such that the squeezing and recurrence properties hold.

Let us write X = X ×X and, given a number δ > 0, denote

B = {u = (u, u′) ∈ X : ‖u− u′‖ ≤ δ}.

Suppose we have constructed a probability space (�,F ,P) and measurable functions
R,R′ : X×�→ X such that the following three properties hold for any u = (u, u′) ∈ X:

(a) The pair (R(u, ·),R′(u, ·)) is a coupling for (P1(u, ·), P1(u
′, ·)).

(b) If u /∈ B, then the random variables R(u, ·) and R′(u, ·) are independent.
(c) If u ∈ B, then

P{‖R(u)−R′(u)‖ > r‖u− u′‖} ≤ C‖u− u′‖α, (1.7)

where r < 1, C, and α ≤ 1 are positive numbers not depending on u.

2 The key coupling construction of this proof goes back to [KS01, Section 3].
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In this case, the discrete-time Markov process (uk,Pu) with the time-1 transition function

P1(u, 0) = P{(R(u, ·),R′(u, ·)) ∈ 0}, u ∈ X, 0 ∈ B(X), (1.8)

is an extension for (uk,Pu) that satisfies the recurrence and squeezing properties of The-
orem 4.1 (see Steps 1 and 2 below), so that we can conclude the proof.

The construction of R and R′ is trivial for u /∈ B: it suffices to take two independent
E-valued random variables η and η′ with law ` and define

R(u) = S(u)+ η, R(u) = S(u′)+ η′, u = (u, u′). (1.9)

The key points are the construction of the pair R = (R,R′) when u ∈ B, and the proof
of (1.7). They are based on an estimate of a cost function (Lemma 4.4) and an abstract
result on the existence of measurable coupling associated with a cost (Proposition 4.3).
We now turn to a detailed proof, which is divided into three steps.

Step 1: Recurrence. Suppose we have constructed a pair R = (R,R′) satisfying proper-
ties (a) – (c) given above. Let us show that the Markov process (uk,Pu)with the transition
function (1.8) possesses the recurrence property of Theorem 4.1.

To this end, we first recall a standard construction of the Markov family with transition
function (1.8). Let us define (�,F ,P) as the tensor product of countably many copies of
the probability space (�,F ,P) on which the pair (R,R′) is defined. We shall denote by
ω = (ω1, ω2, . . . ) the points of � and write ω(k) = (ω1, . . . , ωk). Let us define a family
{Rk(u), k ≥ 0,u ∈ X} recursively by the relation

Rk(u,ω) = (Rk(u,ω),R′k(u,ω)) =R(Rk−1(u,ω), ωk), k ≥ 1, (1.10)

which implies in particular that Rk depends only on ω(k). It is straightforward to check
that the sequences {Rk(u)}k≥0 defined on the probability space (�,F ,P) form a Markov
family with transition function (1.8).

To prove inequality (4.2) for the first hitting time τ = τ (B) of the set B, it suffices to
show that

P{Rm(u, ·) ∈ B} ≥ p for any u ∈ X, (1.11)

where the integer m ≥ 1 and the number p > 0 do not depend on u. Indeed, once this
inequality is established, a simple application of the Markov property will imply that

P{Rkm(u, ·) /∈ B for 1 ≤ k ≤ j} ≤ (1− p)j for any u ∈ X, j ≥ 1.

The required inequality follows now from the Borel–Cantelli lemma.
Inequality (1.11) would be a simple consequence of the approximate controllability

to a given point if the processes {Rk(u), k ≥ 0} and {R′k(u), k ≥ 0} were independent.
However, this is not the case, and we have to proceed differently. We shall need the fol-
lowing auxiliary results established at the end of this section. Given an integer k ≥ 1,
let Xk be the direct product of k copies of X and let Tk := {τ ≥ k}.
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Lemma 1.2. For any integer m ≥ 0, the random variables {Rk(u), k = 0, . . . , m} and
{R′k(u), k = 0, . . . , m} valued in Xm+1 are independent on the set Tm; that is, for any
0,0′ ∈ B(Xm+1), we have

Pu{(R0, . . . ,Rm) ∈ 0, (R′0, . . . ,R
′
m) ∈ 0

′
| Tm}

= Pu{(R0, . . . ,Rm) ∈ 0 | Tm}Pu{(R′0, . . . ,R
′
m) ∈ 0

′
| Tm}. (1.12)

Lemma 1.3. There is C1 > 0 such that, for any u ∈ B, we have

P{‖Rk(u)−R′k(u)‖ ≤ r
k
‖u− u′‖ for all k ≥ 0} ≥ 1− C1‖u− u

′
‖
α, (1.13)

where α and r are the numbers entering (1.7).

Taking these lemmas for granted, we prove (1.11). Let m ≥ 1 be the integer entering the
hypothesis of approximate controllability with ε = δ/2; see (1.3). We claim that (1.11)
holds with this choice of m and a sufficiently small p > 0. To prove this, we write

P{Rm(u) ∈ B} = P({Rm(u) ∈ B} ∩ T cm)+ P({Rm(u) ∈ B} ∩ Tm). (1.14)

In view of the strong Markov property, we have

P({Rm(u) ∈ B} ∩ T cm) = E(IB(Rm(u))IT cm) = E(IT cmE{IB(Rm(u)) | Fτ })

= E(IT cmPRτ (u){Rk ∈ B}|k=m−τ ). (1.15)

Since Rτ ∈ B, it follows from (1.13) that the probability on the right-hand side of (1.15)
is bounded below by 1− C1δ

α . Combining this with (1.14), we see that

P{Rm(u) ∈ B} ≥ (1− C1δ
α)Pu(T

c
m)+ P{Rm(u) ∈ B | Tm

}
P(Tm). (1.16)

Let us fix a small number ν > 0 (it will be chosen below) and assume first that P(T cm) ≥ ν.
In this case, we obtain

P{Rm(u) ∈ B} ≤ (1− C1δ
α) ν > 0,

provided that δ > 0 is sufficiently small. Thus, we can assume that P(T cm) ≤ ν, so that
P(Tm) ≥ 1 − ν. Denoting by Q ⊂ X the closed ball of radius δ/2 centred at û (where
û ∈ X is the point entering the hypothesis of approximate controllability) and using
Lemma 1.2, we can write

P{Rm(u) ∈ B | Tm} ≥ P{Rm(u) ∈ Q,R′m(u) ∈ Q | Tm}
= P{Rm(u) ∈ Q | Tm}P{R′m(u) ∈ Q | Tm}. (1.17)

Suppose we have found κ > 0 such that

P{Rm(u) ∈ Q | Tm} ≥ κ, P{R′m(u) ∈ Q | Tm} ≥ κ for all u ∈ X. (1.18)

In this case, combining (1.16)–(1.18), we obtain

P{Rm(u) ∈ B} ≥ κ2(1− ν).

Thus, it remains to establish inequalities (1.18). We confine ourselves to the first one,
since the proof of the other is similar.
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The approximate controllability to û combined with a standard argument implies that

β := inf
u∈X

P{Rm(u) ∈ Q} > 0.

Assuming that the parameter ν > 0 fixed above is smaller than β, for any u ∈ X we
derive

β ≤ P{Rm(u) ∈ Q} ≤ P{Rm(u) ∈ Q | Tm}P(Tm)+ P(T cm)
≤ P{Rm(u) ∈ Q | Tm} + ν,

whence we conclude that (1.18) holds with κ = β − ν.

Step 2: Squeezing. We now prove that (uk,Pu) satisfies the squeezing property of Theo-
rem 4.1. Namely, we claim that inequalities (4.3) hold for the Markov time

σ(u) = min{k ≥ 0 : ‖Rk(u)−Rk(u)‖ > rkδ}

provided that δ > 0 is sufficiently small.
We first note that if δ ≤ 1 and u ∈ B, then

{σ(u) = ∞} ⊃ {‖Rk(u)−Rk(u)‖ ≤ rk‖u− u′‖ for k ≥ 0}.

Thus, the first inequality in (4.3) follows immediately from (1.13) provided that C1δ
α<1.

Let us prove the second inequality in (4.3). To this end, note that, for k ≥ 0, we have

{σ(u) = k + 1} ⊂ {‖Rk(u)−Rk(u)‖ ≤ δrk, ‖Rk+1(u)−Rk+1(u)‖ > δrk+1
}.

Applying the Markov property and using (1.7), we derive

P{σ(u) = k + 1} ≤ E
(
IGk(u)P{‖R1(v)−R′1(v)‖ > δrk+1

}|v=Rk(u)
)

≤ C(δrk)αP{Gk(u)},

where we set Gk(u) = {‖Rk(u) − Rk(u)‖ ≤ δrk}. Choosing δ ∈ (0, 1] so small that
Cδα ≤ 1, we see that

P{σ(u) = k} ≤ rα(k−1) for any k ≥ 1.

It follows that the second inequality in (4.3) holds for δ2 < α ln r−1.

Step 3: Construction of (R,R′). To complete the proof, it remains to construct the
pair (R,R′) and to prove (1.7). To this end, we shall use Propositions 4.2 and 4.3.

Let us consider the pair of probability measures (P1(u, ·), P1(u
′, ·)) on X depending

on the parameter u ∈ B. Fix any r ∈ (q, 1), where q ∈ (0, 1) is the constant in (1.5),
and define the function ε(u) = r‖u − u′‖. Applying Proposition 4.3 with θ = q/r , we
can construct a pair of random variables (R(u, ·),R′(u, ·)) on the same probability space
(�,F ,P) such that (see (4.8))

P{‖R(u, ·)−R′(u, ·)‖ > r‖u− u′‖} ≤ Cq‖u−u′‖(P1(u, ·), P1(u
′, ·)), (1.19)
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where u = (u, u′) ∈ B. We now use Proposition 4.2 and Lemma 4.4 to estimate the
right-hand side of this inequality.

Let us fix R > 0 so large that K ⊂ BE(R). In view of local stabilisability, one can
find a finite-dimensional subspace E ⊂ E and a mapping Φ : B × BE(R) → E such
that (1.4) and (1.5) hold. The measures P1(u, ·) and P1(u

′, ·) coincide with the laws of
the random variables S(u, ξ) and S(u′, ξ) defined on the probability space (E,B(E), `),
where ξ : E→ E is the identity mapping. Lemma 4.4 with ε = ε(u) = q‖u− u′‖ yields

Cq‖u−u′‖(P1(u, ·), P1(u
′, ·)) ≤ 2‖`− Ψ∗`‖var, (1.20)

where Ψ (ζ ) = ζ + Φ(u, u′, ζ ). Using now Proposition 4.2 and inequality (1.4), we see
that

‖`− Ψ∗`‖var ≤ C1‖u− u
′
‖
α,

where C1 > 0 does not depend on u or u′. Combining this inequality with (1.20)
and (1.19), we arrive at the required inequality (1.7). The proof of Theorem 1.1 is com-
plete. ut

Proof of Lemma 1.2. Let us note that the event Tm can be written as

Tm = {τ ≥ m} = {(R0(u), . . . ,Rm(u)) ∈ G},

where G = Bc × · · · × Bc × X, and the set Bc is repeated m times. Furthermore, on the
set Tm, we have

(R0(u), . . . ,Rm(u)) = Fu(ζ ), (R′0(u), . . . ,R
′
m(u)) = Fu′(ζ

′),

where Fv : Em → Xm+1 is a continuous function depending on v ∈ X, and ζ and ζ ′ are
independent Em-valued random variables. It follows that (1.12) is equivalent to

P{Fu(ζ ) ∈ 0,Fu′(ζ ′) ∈ 0′ | (Fu(ζ ), Fu′(ζ ′)) ∈ G}
= P{Fu(ζ ) ∈ 0 | (Fu(ζ ), Fu′(ζ ′)) ∈ G}P{Fu′(ζ ′) ∈ 0′ | (Fu(ζ ), Fu′(ζ ′)) ∈ G}.

This relation is easily checked for sets G ∈ B(Xm+1) of the form G = G × G′, where
G,G′ ∈ B(Xm+1). The general case can be derived with the help of the monotone class
lemma. ut

Proof of Lemma 1.3. Inequality (1.7) implies that

P{‖R(u)−R′(u)‖ ≤ r‖u− u′‖} ≥ 1− C‖u− u′‖α for u = (u, u′) ∈ B. (1.21)

Let us define the sets

0n(u) = {‖Rk(u)−R′k(u)‖ ≤ r‖Rk−1(u)−R′k−1(u)‖ for 1 ≤ k ≤ n}. (1.22)

Combining (1.21) with the Markov property, for u ∈ B we derive

P(0n(u)) = E
(
I0n−1(u)P{‖Rn(u)−R′n(u)‖ ≤ r‖Rn−1(u)−R′n−1(u)‖ |Fn−1}

)
≥ E

(
I0n−1(u)(1− C‖Rn−1(u)−R′n−1(u)‖

α)
)
. (1.23)
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It follows from (1.22) that, on the set 0n(u), we have

‖Rk(u)−R′k(u)‖ ≤ r
k
‖u− u′‖ for 0 ≤ k ≤ n.

Substituting this into (1.23), we derive

P(0n(u)) ≤ (1− Crα(n−1)
‖u− u′‖α)P(0n−1(u)).

Iteration of this inequality results in

P(0n(u)) ≥
n−1∏
k=0

(1− Crαk‖u− u′‖α) ≥ 1− 2C(1− rα)−1
‖u− u′‖α (1.24)

provided that u = (u, u′) ∈ B and the number δ > 0 is sufficiently small. The left-hand
side of (1.13) is minorised by the probability of

⋂
n≥1 0n(u), and therefore the required

estimate follows from (1.24). ut

2. Initial-boundary value problem for the Navier–Stokes system

In this section, we study the Cauchy problem for the 2D Navier–Stokes equations, supple-
mented with an inhomogeneous boundary condition. This type of results are rather well
known in the literature (e.g., see [FGH02] and the references therein), so that some of
the proofs are only sketched. The additional properties of the resolving operator that are
established in this section will be important when proving the exponential mixing of the
random flow associated with the 2D Navier–Stokes system.

2.1. Resolving operator for the Cauchy problem

Let D ⊂ R2 be a bounded domain with infinitely smooth boundary ∂D such that

D = D̃ \

m⋃
i=1

Di, (2.1)

D1

D2D3

D

Fig. 1. The domain D.

where D1, . . . , Dm and D̃ are simply-connected
domains in R2 satisfying the properties Di ⊂ D̃

andDi ∩Dj = ∅ for all i 6= j ; see Figure 1. Thus,
D is a “domain with m holes.”

We consider problem (0.1), (0.2), supplemen-
ted with the initial condition

u(0, x) = u0(x). (2.2)

Let us recall some well-known results on the
initial-boundary value problem, specifying, in par-
ticular, the function spaces for u0 and η.
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We set J = [0, 1] and 6 = J × ∂D and define G ⊂ L2(6,R2) as the space of
functions that are restrictions to 6 of divergence-free vector fields u(t, x) in J ×D such
that (0.4) holds. The spaceG is endowed with the natural norm of the quotient space, and
its explicit description is given in Section 4.4. Namely,

G =

{
v ∈ L2(J,H 5/2) : ∂tv ∈ L

2(J,H 1/2),

∫
∂D

〈v(t),nx〉 dσ = 0 for t ∈ J
}
, (2.3)

where H s
= H s(∂D,R2) denotes the Sobolev space of order s ≥ 0 and nx stands

for the outward unit normal to ∂D at the point x. We shall also need a larger space Gs
(with 3/2 ≤ s ≤ 2) defined as the space of functions v ∈ L2(J,H s+1/2) such that
∂tv ∈ L

2(J,H s−3/2) and
∫
∂D
〈v(t),nx〉 dσ = 0 for t ∈ J , so that G = G2. Let us

introduce the space

X = {v ∈ L2(J,H 2
σ ) : ∂tv ∈ L

2(J, L2
σ )}, (2.4)

where H s
σ = H

s
σ (D,R2) stands for the space of divergence-free vector fields on D with

components belonging to the Sobolev space of order s ≥ 0, and L2
σ = H

0
σ . The following

proposition provides a sufficient condition for the well-posedness of the initial-boundary
value problem for the Navier–Stokes equations and establishes some properties of the
resolving operator. Since these results are important for what follows, we give rather
detailed proofs.

Proposition 2.1. For any initial function u0 ∈ V := H
1
σ ∩H

1
0 and any boundary function

η ∈ G vanishing at t = 0, problem (0.1), (0.2), (2.2) has a unique solution u ∈ X , and
the resolving operator S : V ×G→ X taking (u0, η) to u(t, x) is infinitely differentiable
in the Fréchet sense. Moreover, the following properties hold.

(a) The mapping S is continuous and is bounded on bounded subsets. Moreover, its re-
striction to any ball in V ×G is Lipschitz-continuous from3 L2

σ ×Gs to C(J,L2) for
any s ∈ (3/2, 2].

(b) Suppose, in addition, that η belongs to the space

G(τ0) = {ξ ∈ G : supp ξ ⊂ [τ0, 1] × ∂D}, (2.5)

where τ0 > 0 is a constant, and for τ ∈ (0, 1), let Sτ (u0, η) be the restriction
of S(u0, η) to Jτ = [τ, 1]. Then Sτ (u0, η) ∈ C(Jτ ,W

1,q) for any q ∈ [2,∞),
and the corresponding norm remains bounded as (u0, η) varies in a bounded subset
of V ×G(τ0).

Iterating the mapping S constructed in Proposition 2.1, we obtain a global solution u(t, x)
of problem (0.1), (0.2), (2.2) for any initial function u0 ∈ V and boundary forcing η(t, x)
whose restriction to any interval Jk = [k − 1, k] belongs to the space defined in (2.3)
with J = Jk and vanishes at the endpoints. We shall write St (u0, η) for the value of u at
time t , so that St (u0, η) ∈ H

1
σ for t ≥ 0 and Sk(u0, η) ∈ V for any integer k ≥ 0.

3 The space L2
σ ×Gs is certainly not optimal for the validity of Lipschitz continuity of S. How-

ever, it is sufficient for our purposes.
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Remark 2.2. For τ ∈ (0, 1), let X τ be the space X considered on Jτ = [τ, 1]. Analysing
the proof given below, it is easy to see that in Proposition 2.1 one can take any initial
condition u0 belonging to the space

H = {u ∈ L2(D,R2) : div u = 0 in D, 〈u,n〉 = 0 on ∂D}. (2.6)

In this case, the solution will be less regular in an arbitrarily small neighbourhood of
t = 0. However, it will belong to X τ for any τ ∈ (0, 1), the operator Sτ will be continuous
and bounded from H ×G to X τ , and property (b) will be true with V replaced by H .

2.2. Proof of Proposition 2.1

The uniqueness of a solution in the space X is standard and can be proved by taking the
inner product in L2 of the equation for the difference u = u1 − u2 between two solutions
with u. Let us outline the proof of the existence of a solution and the regularity of the
resolving operator.

We seek a solution of (0.1), (0.2), (2.2) in the form u = ζ + v, where ζ = Qη is
an extension of η to the cylinder J × D; see Proposition 4.5 for the definition of the
operator Q. Then v(t, x) must satisfy the equations

∂tv + 〈ζ + v,∇〉(ζ + v)− ν1v +∇p = (ν1− ∂t )ζ, div v = 0, (2.7)
v|6 = 0, v(0, x) = u0(x), (2.8)

where we have used the fact that (Qη)(0) = 0 if η(0) = 0. We claim that problem
(2.7), (2.8) has a unique solution v in the space Y = {u ∈ X : u ∈ C(J, V )}. Indeed,
(2.7) is a Navier–Stokes type system involving an additional function ζ ∈ X2; see (4.11)
for the definition of the spaces Xk . The unique solvability of (2.7), (2.8) in Y can be es-
tablished by repeating the corresponding proof for the 2D Navier–Stokes system; e.g., see
[Tay97, Chapter 17, Section 5]. Thus, we can define the mapping S(u0, η) = Qη + v,
which gives a unique solution of (2.7), (2.8). Moreover, application of the implicit func-
tion theorem shows that the resolving operator taking (u0, η) ∈ V × G to v ∈ Y is
infinitely differentiable, and hence so is S; see [Kuk82, Theorem 2.4] and [VF88, Chap-
ter 1] for the more complicated 3D case. To complete the proof, it remains to establish (a)
and (b).

Proof of (a). Since Q : G → X2 is a continuous linear operator that can be extended
to a continuous operator from Gs to Xs for any s > 3/2 (see Remark 4.8), it suffices to
show that the mapping R : V ×X2 → Y taking (u0, ζ ) to v is continuous, is bounded on
bounded subsets, and satisfies the inequality

‖R(u01, ζ1)− R(u02, ζ2)‖C(J,L2) ≤ Cs(R)(‖u01 − u02‖ + ‖ζ1 − ζ2‖Gs ), (2.9)

where u0i ∈ V and ζi ∈ X2 are arbitrary functions whose norms are bounded by a
number R.

We first derive an estimate for the norm of v in the space C(J,H) ∩ L2(J, V ). De-
noting h = (ν1− ∂t )ζ , taking the L2 scalar product of the first equation in (2.7) and 2v,
and carrying out some standard transformations, we derive

∂t‖v‖
2
+ 2ν‖∇v‖2 = 2(h, v)− 2(〈ζ + v,∇〉ζ, v). (2.10)
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When η varies in a bounded set in G, the norms of ζ and h in the spaces X2
and L2(J,H 1), respectively, remain bounded by a number M . Furthermore, Hölder’s
inequality and Sobolev’s embeddings enable one to show that

|(h, v)| ≤
ν

4
‖∇v‖2 + C1‖h‖

2, (2.11)

|(〈ζ,∇〉ζ, v)| ≤ |(〈ζ,∇〉v, ζ )| ≤ C1‖∇v‖ ‖ζ‖
2
L4

≤
ν

8
‖∇v‖2 + 2C2

1ν
−1
‖ζ‖4

L4 , (2.12)

|(〈v,∇〉ζ, v)| ≤ C1‖ζ‖1‖v‖
2
L4 ≤ C2‖ζ‖1‖v‖ ‖∇v‖

≤
ν

8
‖∇v‖2 + 2C2

2ν
−1
‖ζ‖21‖v‖

2. (2.13)

Substituting these inequalities into (2.10), we derive

∂t‖v‖
2
+ ν‖∇v‖2 ≤ C3(ν)(‖h‖

2
+ ‖ζ‖4

L4 + ‖ζ‖
2
1‖v‖

2),

whence, by Gronwall’s inequality, we obtain

sup
t∈J

(
‖v(t)‖2 +

∫ t

0
‖v(s)‖21 ds

)
≤ C4(ν,M)(‖u0‖

2
+ 1). (2.14)

We now establish the boundedness of the norm of v in X . To this end, we denote by
5 : L2

→ H Leray’s projection to the space H (see (2.6)) and take the L2 scalar product
of the first equation in (2.7) and the function −251v. This results in

∂t‖∇v‖
2
+ 2ν‖51v‖2 = −2(h,51v)− 2

(
〈ζ + v,∇〉(ζ + v),51v

)
. (2.15)

By Schwarz’s inequality,

|(h,51v)| ≤
ν

4
‖51v‖2 + C1‖h‖

2,

|(〈v + ζ,∇〉(v + ζ ),51v)| ≤ ε‖v‖22 + C1‖(ζ + v)⊗ (ζ + v)‖
2
1,

where w ⊗ w denotes the 2 × 2 matrix with entries wiwj , and ε > 0 is a small param-
eter. Using Sobolev’s embeddings and interpolation inequalities, the boundedness of ζ
in C(J,H 2), as well as (2.14), we derive

‖(ζ + v)⊗ (ζ + v)‖21 ≤ ‖ζ + v‖
2
1‖ζ + v‖ ‖ζ + v‖2

≤ ε‖v‖22 + C5(ε, ν,M)(‖u0‖
2
+ 1)(‖v‖41 + 1),

Recalling that the norms ‖51v‖ and ‖v‖2 are equivalent and substituting the above in-
equalities into (2.15), we obtain

∂t‖∇v‖
2
+ C6ν‖v‖

2
2 ≤ C7

(
‖h‖2 + (‖u0‖

2
+ 1)(‖v‖41 + 1)

)
.

Using again Gronwall’s inequality and (2.14), we derive

sup
t∈J

(
‖v(t)‖21 +

∫ t

0
‖v(s)‖22 ds

)
≤ C8(ν,M, ‖u0‖1). (2.16)
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Finally, applying Leray’s projection 5 to the first equation in (2.7) and taking the L2

norm, we easily conclude that ‖∂tv‖L2(J×D) also remains bounded. We have thus proved
that R : V × X2 → X is a bounded mapping.

It remains to prove the continuity of R and inequality (2.9). Let us take two pairs
(u0i, ζi), i = 1, 2, and denote

vi = R(u0i, ζi), ui = ζi + vi, v = v1 − v2, ζ = ζ1 − ζ2.

Then v ∈ X ∩ C(J, V ) is a solution of the equation

∂tv + 〈ζ + v,∇〉u1 + 〈u2,∇〉(ζ + v)− ν1v +∇p = h := (ν1− ∂t )ζ. (2.17)

Taking theL2 scalar product of (2.17) and the function−251v and using some estimates
similar to those above, we establish that R : V × X2 → X is Lipschitz continuous on
every bounded subset. Finally, to prove (2.9), it suffices to take the L2 scalar product of
(2.17) and v and to carry out standard arguments.

Proof of (b). We shall need a result from the theory of the non-autonomous Stokes equa-
tions in Lq spaces. Namely, we consider the problem

∂tv − ν1v +∇p = h(t, x), div v = 0, x ∈ D, (2.18)

supplemented with the initial and boundary conditions (2.8). Let us denote by etAq the
resolving semigroup of the homogeneous problem (corresponding to h ≡ 0) with an
initial condition u0 ∈ L

q
∩ H and by Aq the corresponding generator, which is a closed

operator in Lq ∩ H . In view of [GM85, Proposition 1.2] (see also [Gig81, Theorem 2]),
the operator etAq is continuous from Lq ∩H to the domain D(Aαq ) of the operator Aαq for
any α ≥ 0 and t > 0, and

‖etAq‖L(Lq∩H,D(Aαq )) ≤ Cq,αt
−α. (2.19)

In view of Duhamel’s formula, the solution v(t, x) for problem (2.18), (2.8) with u0 ∈ V

and h ∈ Ls(J, Lq) can be written as

v(t) = etAqu0 +

∫ t

0
e(t−θ)Aq (5h)(θ) dθ. (2.20)

Since the projection 5 : L2
→ H is continuous from Lq to Lq ∩H for any q ∈ (2,∞),

and D(Aαq ) is continuously embedded into W 2α,q(D), it follows from (2.19) and (2.20)
that, for any s > 2, we have

‖v(t)‖W 1,q ≤ C9t
−1/2
‖u0‖Lq + C9

∫ t

0
(t − θ)−1/2

‖h(θ)‖Lq dθ

≤ C10(t
−1/2
‖u0‖V + ‖h‖Ls (J,Lq )), t ∈ J, (2.21)

where we have used Hölder’s inequality and the continuity of the embedding V ⊂ Lq for
1 ≤ q < ∞. It follows in particular that v is a continuous function on the interval (0, 1]
with range in W 1,q .
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On the other hand, if h ∈ L2(J,H r) for some r ∈ (0, 1), then for any initial state
u0 ∈ V problem (2.18), (2.8) has a unique solution v ∈ X , which belongs to the space
L2(Jτ , H

r+2
∩ V )∩W 1,2(Jτ , H

r) for any τ ∈ (0, 1). By interpolation, this space is em-
bedded intoC(Jτ , H r+1), which is a subspace ofC(Jτ ,W 1,qr )with qr = 2

1−r . Moreover,
we have an analogue of inequality (2.21):

‖v(t)‖W 1,qr ≤ C11(t
−1/2
‖u0‖V + ‖h‖L2(J,H r )), t ∈ J. (2.22)

We now go back to the regularity of the function Sτ (u0, η). Since u = ζ + v, where
ζ ∈ X2 ⊂ C(J,H

2), the required properties will be established if we prove that they hold
for the solution v ∈ X1 of (2.7), (2.8). Let us rewrite (2.7) in the form (2.18), where

h(t, x) = h1 + h2, h1 := (ν1− ∂t )ζ, h2 := −〈u,∇〉u. (2.23)

We claim that h1 ∈ L
2(J,H 1), h2 ∈ L

s(J, Lq) for any q < ∞ and some s = sq > 2,
and

‖h1‖L2(J,H 1) + ‖h2‖Ls (J,Lq ) ≤ C12(‖η‖G + ‖u‖
2
X1
). (2.24)

In view of (2.21) and (2.22), this will imply all the required properties.
Since ζ ∈ X2, the function h1 belongs to the space L2(J,H 1), and its norm is

bounded by ‖η‖G. Furthermore, since u ∈ X1, we have

u ∈ C(J,H 1), ∇ ⊗ u ∈ C(J,L2) ∩ L2(J,H 1),

and the corresponding norms are bounded by ‖u‖X1 . Using the interpolation inequality
‖w‖Lp ≤ C13‖w‖

2/p
‖w‖

1−2/p
1 and the continuous embedding H 1

⊂ Lp, we derive

‖〈u,∇〉u‖Lq ≤ ‖u‖Lλq‖∇ ⊗ u‖Lλq/(λ−1) ≤ C14‖u‖
1+rλ
1 ‖u‖

1−rλ
2 ,

where λ ∈ (1,∞) is arbitrary, rλ = 2(λ−1)
λq

, and C14 depends only on λ and q. Given

any q ∈ (2,∞), we choose s > 2 such that q < 2s
s−2 and set λ = 2s

2s−qs+2q , so that
(1− rλ)s = 2. In this case,

‖h2‖Ls (J,Lq ) ≤ C15‖u‖
1+rλ
C(J,H 1)

‖u‖
1−rλ
L2(J,H 2)

≤ C16‖u‖
2
X1
.

This completes the proof (2.24) and that of the proposition.

3. Exponential mixing for the Navier–Stokes system with boundary noise

In this section, we apply Theorem 1.1 to the 2D Navier–Stokes system driven by a bound-
ary noise. We first formulate the main result and outline the key steps of the proof. The
details are given in Sections 3.2 and 3.3.
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3.1. Main result

Let us consider problem (0.1), (0.2), in which η is a random process of the form (0.3). It
is assumed that {ηk} entering (0.3) is a sequence of i.i.d. random variables in the space G
defined by (2.3) such that ηk(k − 1) = 0 almost surely for any k ≥ 1. It follows from
Proposition 2.1 that, for any V -valued random variable u0, there is a unique random
process u(t, x) whose almost every trajectory satisfies the inclusions

u ∈ L2
loc(R+, H

2
σ ), ∂tu ∈ L

2
loc(R+, L

2
σ )

and also (0.1), (0.2), and (2.2). To formulate our main result, we define the outside lateral
boundary 6̃ = (0, 1) × ∂D̃ and introduce the following condition concerning the law `

of the random variables ηk .

Structure of the noise. There is an open subset 60 ⊂ 6̃ whose closure 60 is compact
in 6̃ such that the support of ` is contained in the vector space

G(60) := {v ∈ G : supp v ⊂ 60}.

Moreover, there exists an orthonormal basis {ϕj } in G(60), a sequence {bj } of non-
negative numbers, and independent scalar random variables ξjk with values in [−1, 1]
such that

ηk(t, x) =

∞∑
j=1

bj ξjkϕj (t, x), B :=
∞∑
j=1

b2
j <∞. (3.1)

Finally, there are non-negative functions pj ∈ C1(R) such that

pj (0) 6= 0, D(ξjk) = pj (r) dr for any j ≥ 1. (3.2)

This hypothesis implies that the random perturbation η is space-time localised in 60 (so
that the perturbation acts only through the boundary4 ∂D̃) and possesses some regularity
properties. The following theorem, which is the main result of this paper, shows that
if the law of ηk is sufficiently non-degenerate, then the corresponding random flow is
exponentially mixing. Recall that the space X is defined by (2.4).

Theorem 3.1. Let the above hypotheses be satisfied and let B0 > 0 be any fixed number.
In this case, for any ν > 0 there is an integer Nν ≥ 1 such that if

B ≤ B0, bj 6= 0 for j = 1, . . . , Nν, (3.3)

then the following property holds: there is a measure µν ∈ P(X ) and positive num-
bers Cν and γν such that, for any u0 ∈ V , the solution u(t, x) of (0.1), (0.2), (2.2)
satisfies the inequality

‖D(uk)− µν‖∗L ≤ Cνe
−γνk for k ≥ Cν log(1+ ‖u0‖1), (3.4)

4 Our result remains true in the more general setting when the random perturbation may be non-
zero on the boundaries of the interior domains Di , i = 1, . . . , m. In this case, however, one should
add the condition that the circulation (i.e., the integral of the normal velocity) is zero on the bound-
ary of each of the domains Di ; cf. Proposition 4.9.
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where uk stands for the restriction of u(t + k − 1) to [0, 1], and the dual-Lipschitz
norm ‖ · ‖∗L is taken over the space X . Moreover, for any V -valued random variable u0
independent of η, we have

‖D(u(t))− µν(t̄)‖∗L ≤ Cνe
−γν t (1+ E ‖u0‖1), t ≥ 0, (3.5)

where t̄ ∈ [0, 1) stands for the fractional part of t ≥ 0, µν(s) ∈ P(H 1
σ ) denotes the

projection of µν to the time t = s, and the dual-Lipschitz norm ‖ · ‖∗L is taken over the
space H 1

σ .

Let us note that if bj 6= 0 for all j ≥ 1, then the result is true for any ν > 0. We also
remark that the H 1 regularity of the initial condition u0 is not really needed: we can
take any H -valued function u0 independent of η (see (2.6) for the definition of H ), and
the regularisation property of the Navier–Stokes flow will ensure that u(t) ∈ H 1

σ almost
surely for any t > 0.

A detailed proof of Theorem 3.1 is given in the next two subsections. Here we briefly
outline the main idea.

The dissipativity of the 2D Navier–Stokes system driven by a circulation-free bound-
ary forcing enables one to prove that any solution of (0.1)–(0.3) satisfies the inequality

‖u(t)‖1 ≤ C1(e
−αt
‖u0‖1 + 1), t ≥ 0, (3.6)

where C1 and α are positive numbers depending only on ν. It follows that the stochas-
tic flow restricted to integer times possesses a compact invariant absorbing set X ⊂ V .
Furthermore, since {ηk} is a sequence of i.i.d. random variables in G(60), the family
of all trajectories issued from X and restricted to integer times forms a Markov pro-
cess (uk,Pv). The key point of the proof is the verification of the hypotheses of Theo-
rem 1.1 for (uk,Pv), from which we conclude that inequality (1.6) holds for the corre-
sponding Markov semigroup. Combining this with a result on the behaviour of the dual-
Lipschitz metric under a Lipschitz mapping, we arrive at (3.4). Finally, inequality (3.5) is
a simple consequence of (3.4).

3.2. Proof of Theorem 3.1

Step 1: Compact absorbing invariant set. We claim that the random flow generated
by (0.1), (0.2) possesses a compact invariant absorbing set. More precisely, there is a
compact set X ⊂ V such that

P{Sk(u0, η) ∈ X for any k ≥ 0} = 1 for any u0 ∈ X, (3.7)
P{Sk(u0, η) ∈ X for k ≥ C2 log(‖u0‖1 + 3)} = 1 for any u0 ∈ V , (3.8)

where C2 ≥ 1 does not depend on u0. To this end, it suffices to establish (3.6). Indeed,
if (3.6) is proved, then

‖St (u0, η)‖1 ≤ R for t ≥ T (‖u0‖1), (3.9)
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whereR = 2C1 and T (r) = α−1 log(r+1). It follows from (3.1) that the support K of the
law of ηk is a compact subset of G that is included in G(τ0) for some τ0 > 0 (see (2.5)).
Let us denote by k0(R) ≥ 1 the least integer larger than α−1 log(2R + 1) and define

X =

k0(R)⋃
k=1

Ak(R,K), (3.10)

where the sets Ak are defined recursively by the relations

A1(R,K) = S(BV (R),K), Ak(R,K) = S(Ak−1(R,K),K) for k ≥ 2,

and S = S1. The regularising property of the flow for the homogeneous Navier–Stokes
system implies that each of the sets Ak(R,K) is compact, and therefore so is their finite
union X. Relations (3.7) and (3.8) follow immediately from (3.9) and the definition of X.

To prove (3.6), we first establish an estimate for the L2 norm of solutions. Namely,
we claim that

‖St (u0, η)‖ ≤ C3(e
−αt
‖u0‖ + 1), t ≥ 0, (3.11)

where C3 > 0 does not depend on u0 ∈ V . Indeed, let us fix ε > 0 and denote by
Qε : G(60) → X2 the continuous linear operator constructed in Proposition 4.9. We
now define a random process ζε by the relation

ζε(t) = (Qεηk)(t − k + 1) for t ∈ [k − 1, k] and k ≥ 1. (3.12)

It follows from (4.30) that

|(〈v,∇〉ζε(t), v)L2 | ≤ C4ε‖v‖
2
1 for any v ∈ V , (3.13)

where C4 = supt∈J ‖η(t)‖3/2 < ∞. Let us write a solution u = St (u0, η) of (0.1)–(0.3)
in the form u = ζε+v. Then v must be a solution of problem (2.7), (2.8) in which ζ = ζε.
Taking the L2 scalar product of the first equation in (2.7) and the function 2v, we obtain
(2.10) with ζ = ζε and h = (ν1 − ∂t )ζε. Using (2.11), (2.12), and (3.13) and choosing
ε > 0 sufficiently small, we derive

∂t‖v‖
2
+ ν‖∇v‖2 ≤ C5(‖h‖

2
+ ‖ζε‖

4
L4).

Application of Gronwall’s inequality completes the proof of (3.11).
We now prove (3.6). Since ζε(t) is bounded in H 1, it suffices to establish inequal-

ity (3.6) with u = v. Its validity for 0 ≤ t ≤ 1 follows immediately from (2.16). Assum-
ing now that t ≥ 1, we write v(t) = R1(v(t−1), ζ tε ), whereRt : H×X2 → H denotes the
resolving operator for (2.7), (2.8), and ζ tε stands for the function s 7→ ζε(s− t+1). Com-
bining this with the regularising property for R1 (e.g., [BV92, Chapter 1, Theorem 6.2])
and the boundedness of the norm of the function ζ tε in the space X2, we see that

‖v(t)‖1 ≤ C6(‖v(t − 1)‖ + 1). (3.14)

On the other hand, it follows from (3.11) and the boundedness of the L2 norm of ζε(t)
that

‖v(t)‖ ≤ C7(e
−αt
‖u0‖ + 1) for all t ≥ 0.

Combining this with (3.14), we arrive at (3.6).
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Step 2: Reduction to the dynamics at integer times. In view of (3.7), we can consider
the discrete-time Markov process (uk,Pv) defined by (1.1) in the phase space X. Sup-
pose we have shown that (uk,Pv) has a unique stationary measure µν ∈ P(X), which
is exponentially mixing in the dual-Lipschitz metric over the space X, so that we have
inequality (1.6) in which µ = µν and P∗k denotes the Markov semigroup associated
with (uk,Pv). Let us denote by µν ∈ P(X ) the image of the measure µν⊗` ∈ P(X×G)
under the mapping (u, η) 7→ S(u, η). We claim that both (3.4) and (3.5) hold. To prove
this, we shall use the following lemma, whose proof follows immediately from the defi-
nition of the dual-Lipschitz distance.

Lemma 3.2. (i) LetX1 andX2 be Polish spaces and let F : X1 → X2 be a C-Lipschitz
mapping. Then, for any µ,µ′ ∈ P(X1), we have

‖F∗µ− F∗µ
′
‖
∗

L ≤ C‖µ− µ
′
‖
∗

L, (3.15)

where the dual-Lipschitz metrics on the left- and right-hand sides are taken over the
spaces X2 and X1, respectively.

(ii) Let X and G be Polish spaces and let µ,µ′ ∈ P(X) and λ ∈ P(G). Then

‖µ⊗ λ− µ′ ⊗ λ‖∗L = ‖µ− µ
′
‖
∗

L. (3.16)

To prove (3.4), let us fix u0 ∈ V . In view of (3.8), there is an integer T0 ≥ 1 of order
log ‖u0‖1 such that P{ST0(u0, η) ∈ X} = 1. Therefore, by the Markov property, we can
assume from the very beginning that u0 ∈ V and establish (3.4) for all k ≥ 0.

Inequality (1.6) implies that

‖D(u(k))− µν‖∗L ≤ C8e
−γνk, k ≥ 0, (3.17)

whereC8 and γν are some positive numbers, and the dual-Lipschitz norm is taken over the
space V . Now note that D(uk) is the image of the product measure D(u(k−1))⊗` under
the mapping S. Therefore, combining (3.17) with (3.15) and (3.16), we arrive at (3.4).

To prove (3.5), we first note that it suffices to consider the case of a deterministic
initial condition. Furthermore, since X is continuously embedded into C(J,H 1

σ ), the
linear mapping v 7→ v(s) is continuous from X to H 1

σ . Hence, it follows from (3.4)
and Lemma 3.2(i) that inequality (3.5) with a deterministic function u0 ∈ V holds for
t ≥ Cν log(1+ ‖u0‖1). For t ≤ Cν log(1+ ‖u0‖1), its validity (with a sufficiently small
γν > 0) follows from (3.6).

Thus, to prove Theorem 3.1, it suffices to show that the hypotheses of Theorem 1.1
are satisfied for the discrete-time Markov process (uk,Pv) with phase space X.

Step 3: Reduction to controllability. We wish to apply Theorem 1.1 in which H = V ,
E = G(60), S(u, η) is the time-1 resolving operator for problem (0.1), (0.2), X is given
by (3.10), and K is the support of the law ` of the random variables ηk .

The hypotheses imposed on ` in Theorem 1.1 are obviously satisfied (see the descrip-
tion of the structure of ηk in Section 3.1). We thus need to check the conditions on S.
Namely, we shall prove the global approximate controllability to some point û ∈ V and
local stabilisability.
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The global approximate controllability to the point û = 0 is an easy consequence
of the dissipativity of the homogeneous Navier–Stokes problem. Indeed, the solution of
problem (0.1), (0.2) with η ≡ 0 satisfies the inequality

‖u(t)‖ ≤ e−αt‖u(0)‖ for t ≥ 0,

where α > 0 does not depend on u. Combining this with the regularising property
of St (u0, η) (e.g., see [BV92, Chapter I, Theorem 6.2]), we see that

‖Sk(v, 0)‖1 ≤ C9e
−αk for all k ≥ 0, v ∈ X, (3.18)

where C9 > 0 does not depend on v or k. Since 0 ∈ K, we infer from (3.18) the global
approximate controllability to û = 0.

We now turn to the more complicated property of local stabilisability. To prove it,
we shall apply a well-known idea in the control theory of PDEs: we extend the domain
through the controlled part of the boundary, establish the required property by a dis-
tributed control with support in the extended part, and then define the control for the
initial problem by restricting the constructed solution to the boundary (see [FI96, Chap-
ter III]). We describe here the main ideas (omitting some inessential technical details),
and give a complete proof in Steps 4 and 5.

We wish to prove that, given sufficiently close initial conditions u0, u
′

0 ∈ X and a
boundary function η ∈ BG(60)(R), one can find η′ ∈ G(60) of the form η′ = η +

Φ(u0, u
′

0, η) such that the mapping Φ is continuous in (u0, u
′

0, η) and continuously dif-
ferentiable in η, its image is contained in a finite-dimensional subspace E ⊂ G(60), and
we have the inequalities

‖Φ(u0, u
′

0, η)‖G + ‖DηΦ(u0, u
′

0, η)‖L(G) ≤ C‖u0 − u0‖1, (3.19)
‖S(u0, η)− S(u

′

0, η +Φ(u0, u
′

0, η))‖1 ≤ q‖u0 − u
′

0‖1, (3.20)

where C and q < 1 are positive numbers not depending on (u0, u
′

0, η). Let us choose
numbers 0 < a < b < c < 1 and a connected segment 0 of the external boundary of D
such that [a, c] × 0 ⊂ 60. Setting ξ = Φ(u0, u

′

0, η), we define ξ(t) = 0 for t ≤ a. To
construct ξ on [a, 1], we set ua = Sa(u0, η) and u′a = Sa(u

′

0, η), and seek a solution of
the form u′ = u+ w. Then w must satisfy the equations

∂tw + 〈u,∇〉w + 〈w,∇〉u+ 〈w,∇〉w − ν1w +∇p = 0, divw = 0, (3.21)
w|∂D = ξ, w(a) = wa := u

′
a − ua . (3.22)

Note that wa ∈ V . Suppose we have found ξ , with appropriate regularity and bound on
its norm, such that

‖w(b)‖1 ≤ ε‖wa‖1, (3.23)

where ε > 0 is sufficiently small. We then extend ξ to [b, 1] so that its norm is still
controlled and ξ(t) = 0 for t ≥ c. All the required properties are then derived from the
above description.
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D1

D2D3

D0

D D′

0

Fig. 2. The domain D′.

The key point is the proof of (3.23). To this end,
we construct a simply-connected domain D̃′ ⊃ D̃

with smooth boundary ∂D̃′ such that

∂D̃ \ (∂D̃′ ∩ ∂D̃) = 0,

and define (see Figure 2 and cf. (2.1))

D′ = D̃′ \

m⋃
i=1

Di .

We next use Corollary 4.11 to extend the function u
to the domain [a, 1]×D′ and also extendwa toD′ by
zero. Denote the extended functions by ũ and w̃a , respectively, and note that w̃a belongs
to the space V considered on D′. Let us fix an open set D0 ⊂ R2 such that D0 ⊂ D

′
\D

and consider the following problem with distributed control:

∂t w̃ + 〈ũ,∇〉w̃ + 〈w̃,∇〉ũ+ 〈w̃,∇〉w̃ − ν1w̃ +∇p = f, div w̃ = 0, (3.24)
w̃|∂D′ = 0, w̃(a) = w̃a, (3.25)

where f (t, x) is a control function supported by [a, b] × D0. We shall construct f such
that the solution w̃ of (3.24), (3.25) satisfies inequality (3.23) in whichw is replaced by w̃.
In this case, the restriction of w̃ to [a, b] × D will be a solution of (3.21), (3.22) with
ξ = w̃|∂D and will satisfy (3.23). Let us mention that, in the proof below, we shall need
to replace the function w̃a in (3.25) by its regularisation (in order to have ξ ∈ G(60)),
to establish a stronger version of (3.23), to follow the dependence of the control ξ on the
data, and to ensure that it belongs to a finite-dimensional subspace of G(60).

Step 4: Construction of a control. Given δ > 0, we set

Bδ = {(u0, u
′

0) ∈ X ×X : ‖u0 − u
′

0‖1 ≤ δ}.

We need to construct, for any R > 0 and a sufficiently small δ > 0, a continuous mapping
Φ : Bδ×BG(60)(R)→ G(60), (u0, u

′

0, η) 7→ η′, that is continuously differentiable in η,
has image contained in a finite-dimensional subspace E , and satisfies (3.19) and (3.20).
We begin with a simple reduction.

Recall that the space Gs with 3/2 ≤ s ≤ 2 was defined before Proposition 2.1. We
claim that it suffices to construct a Banach space F ⊂ G, compactly embedded into Gs
for some s ∈ (3/2, 2) and, for any given κ > 0, a continuous mapping

Φ ′ : Bδ × BG(60)(R)→ G(60) ∩ F

such that Φ(u0, u
′

0, η) is continuously differentiable in η, and

‖Φ ′(u0, u
′

0, η)‖F + ‖DηΦ
′(u0, u

′

0, η)‖L(G) ≤ C‖u0 − u0‖1, (3.26)
‖Sτ (u0, η)− Sτ (u

′

0, η +Φ
′(u0, u

′

0, η))‖ ≤ κ ‖u0 − u
′

0‖1, (3.27)
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where τ ∈ (0, 1) is a fixed number such that 60 ⊂ [0, τ ] × ∂D̃, and C > 0 may depend
on κ. Indeed, if such a mapping is constructed, then denoting by PN the orthogonal
projection in G(60) onto the vector span of5

{ϕ1, . . . , ϕN }, we define Φ = PN ◦Φ
′. Let

us prove that if κ and N−1 are sufficiently small, then Φ has all the required properties.
The image of Φ is contained in the N -dimensional subspace E spanned by the first N

vectors of the basis {ϕj }. The continuity of Φ with respect to its arguments and its
continuous differentiability in η are obvious, and (3.19) is a consequence of (3.26). To
prove (3.20), we first use the Lipschitz continuity of Sτ to write (see Proposition 2.1(a))

‖Sτ (u0, η)− Sτ (u
′

0, η +Φ(u0, u
′

0, η))‖ ≤ ‖Sτ (u0, η)− Sτ (u
′

0, η +Φ
′(u0, u

′

0, η))‖

+ ‖Sτ (u
′

0, η +Φ
′(u0, u

′

0, η))− Sτ (u
′

0, η +Φ(u0, u
′

0, η))‖

≤ κ‖u0 − u
′

0‖1 + C10‖(I − PN )Φ
′(u0, u

′

0, η)‖Gs . (3.28)

Since the embedding F ⊂ Gs is compact, there is a sequence {αN } going to zero such
that

‖(I − PN )ζ‖Gs ≤ αN‖ζ‖F for any ζ ∈ F .
Combining this with (3.28) and (3.26), we see that

‖Sτ (u0, η)− Sτ (u
′

0, η +Φ(u0, u
′

0, η))‖ ≤ (κ + C11αN )‖u0 − u
′

0‖1,

where C11 = C10C. The functions η and η + Φ(u0, u
′

0, η) vanish for t ≥ τ , and the
regularising property of the Navier–Stokes equations with no-slip boundary condition
(e.g., see [BV92, Chapter 1, Theorem 6.2]) implies that

‖S(u0, η)− S(u
′

0, η +Φ(u0, u
′

0, η))‖1 ≤ Cτ‖Sτ (u0, η)− Sτ (u
′

0, η +Φ(u0, u
′

0, η))‖

≤ Cτ (κ + C11αN )‖u0 − u
′

0‖1.

Choosing κ to be sufficiently small and N sufficiently large, we arrive at the required
inequality (3.20).

We now apply the scheme described in Step 3 to construct a mapping Φ ′ with the
above-mentioned properties. To this end, we fix numbers 0 < a < b < c < τ such that
[a, c] × 0 ⊂ 60, and consider a pair of initial conditions (u0, u

′

0) ∈ Bδ and a boundary
function η ∈ BG(60)(R). The required control ξ = Φ ′(u0, u

′

0, η) is defined consecutively
on the intervals [0, a] and [a, 1]. Let us set

ξ(t) = 0 for 0 ≤ t ≤ a. (3.29)

By Proposition 2.1, the function w(t) = St (u′0, η)− St (u0, η) belongs to the space X1 on
the interval [0, a] and satisfies (3.21) and the boundary and initial conditions

w|∂D = 0, w(0) = w0 := u
′

0 − u0. (3.30)

The Lipschitz continuity of the resolving operator for the Navier–Stokes-type sys-
tem (3.21) implies that

‖w(a)‖1 ≤ C12‖w0‖1 ≤ C12δ, (3.31)
where C12 > 0 depends only on R.

5 Recall that {ϕj } is the orthonormal basis in G(60) entering (3.1).
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To define ξ on [a, 1], we use Corollary 4.11 to extend the function u = S(u0, η) to
a larger domain D containing D. In view of Proposition 2.1(b) and the continuity of the
embedding W 1,q(D) ⊂ C(D) for q > 2, the restriction of the resulting function ũ to the
time interval I := [a, 1] belongs to the space

U := L2(I,H 2
σ (D)) ∩W 1,2(I, L2

σ (D)) ∩ C(I ×D).

We extend wa = w(a) ∈ V to D′ \ D by zero and denote w̃a = �γwa , where {�γ } is
the family of regularising operators constructed in Proposition 4.12, and γ ∈ (0, 1) is a
parameter that will be chosen below. Thus, w̃a ∈ H 2

∩ V is a function satisfying

‖w̃a − wa‖ ≤ C12γ ‖w0‖1, ‖w̃a‖2 ≤ C13(γ )‖w0‖1, (3.32)

where we have used (3.31), (4.45), and the boundedness of �γ from V to H 2. Let us
consider problem (3.24), (3.25). We shall need the two results below. The first one deals
with the regularity and an a priori estimate for solutions of (3.24). Given a time interval
I ′ ⊂ R, let us define the space

Z(I ′) := {v ∈ L2(I ′, V ∩H 3
σ ) : ∂tv ∈ L

2(I ′, V ), ∂2
t v ∈ L

2(I ′, V ∗)}, (3.33)

where the function spaces in x are considered on the domainD′. The proof of the follow-
ing result is rather standard and will be given in Section 3.3.

Proposition 3.3. Let ρ > 0, let I = [a, 1], let Q = I × D′, and let R be a mapping
that takes a triple (ũ, w̃a, f ) to the solution w̃ of problem (3.24), (3.25). Then R acts from
BU (ρ)×(H 2

∩V )×H 1(Q) to the space Z(I ) and is a C1 function of its argument that is
bounded on bounded subsets, together with its derivatives of the first order. Moreover, for
anyK > 0 there is CK > 0 such that, for ũ ∈ BU (ρ), w̃a ∈ BV∩H 2(K), f ∈ BH 1(Q)(K),
and any interval Iθ = [θ, 1] with a ≤ θ < 1, we have

‖R(ũ, w̃a, f )‖Z(Iθ ) ≤ CK(‖w̃(θ)‖2 + ‖f ‖H 1(Iθ×D′)
). (3.34)

The second result concerns a control problem for (3.24), (3.25) and is a consequence of
[FGIP04, Theorem 2] and [Shi15, Theorem 3.1] (see Remark 3.5 below).

Proposition 3.4. For any ρ > 0 and ε ∈ (0, 1), there are positive numbers d and C, and
a continuous mapping6

Cε : BU (ρ)→ L(H,H 1
0 (Q0,R2)), Q0 := [a, b] ×D0,

such that the following properties hold.

6 The mapping Cε depends also on R. However, we omit that dependence from the notation,
because the parameter R will be fixed when we apply Proposition 3.4.



Controllability implies mixing 1405

Contraction: For any ũ ∈ BU (ρ) and w̃a ∈ BH (d), the solution w̃ ∈ Z(I ) of prob-
lem (3.24), (3.25) with f = Cε(ũ)w̃a satisfies the inequality7

‖w̃(t)‖2 ≤ ε ‖w̃a‖ for b ≤ t ≤ 1. (3.35)

Regularity: The mapping Cε is infinitely smooth in the Fréchet sense.

Lipschitz continuity: The mapping Cε satisfies the inequality

‖Cε(ũ1)− Cε(ũ2)‖L ≤ C‖ũ1 − ũ2‖U , (3.36)

where ‖ · ‖L stands for the norm in the space L(H,H 1
0 (Q0,R2)).

Let us fix a number ρ > 0 so large that ‖ũ‖U ≤ ρ for any u0 ∈ X and η ∈ BG(60)(R).
Given ε > 0, we denote by dε > 0 the constant constructed in Proposition 3.4 and choose
δ > 0 so small that (C12 + 1)δ ≤ dε, so that (see (3.31) and (3.32))

‖w̃a‖ ≤ dε, ‖w̃a‖2 ≤ K := C12C13(γ )δ. (3.37)

Applying Propositions 3.4 and 3.3, we construct a solution w̃ε ∈ Z(I ) of problem (3.24),
(3.25) with w̃a ∈ BH (d)∩BH 2∩V (K) and f = Cε(ũ)w̃a such that inequality (3.35) holds
for w̃ = w̃ε.

Let us denote by ξ̃ ε the restriction of w̃ε to I × D′, choose an arbitrary function
χ ∈ C∞(R) such that

0 ≤ χ ≤ 1, χ(t) =

{
1 for t ≤ b,
0 for t ≥ c,

and extend (see (3.29)) the function ξ to [a, 1] by the relation ξ(t) = χ(t)ξ̃ ε(t). We
claim that the mapping Φ ′ taking (u0, u

′

0, η) to ξ satisfies all the required properties for
an appropriate choice of the parameters ε and γ . Indeed, let us denote by F the class of
boundary functions ζ ∈ G such that ζ(t) = 0 for 0 ≤ t ≤ a and ζ |I belongs to the space
of restrictions to I × ∂D′ of the elements of Z(I ). Note that F has a natural structure
of the quotient (Banach) space and is compactly embedded into Gs for any s ∈ (3/2, 2).
The construction implies that ξ ∈ F . Furthermore, we have ξ(t, x) = 0 for t /∈ [a, c] or
x /∈ 0, and since [a, c] × 0 ⊂ 60, we conclude that ξ ∈ G(60). To prove the regularity
of the mapping Φ ′ with respect to η, we note that its restriction to [a, 1] can be written as

Φ ′(u0, u
′

0, η) = (χ(t)R(ũ, w̃a,Cε(ũ)w̃a))|∂D, (3.38)
ũ = L(S(u0, η)), w̃a = �γ (Sa(u0, η)− Sa(u

′

0, η)),

where L is the extension operator in Proposition 4.10, {�γ } is the family of regularising
operators in Proposition 4.12, and the function Sa(u0, η)−Sa(u

′

0, η) is extended toD′ by

7 The result established in [Shi15] claims only an estimate for the L2 norm of the solution at time
t = b: ‖w̃(b)‖ ≤ ε‖w̃a‖. However, the regularising property of the Navier–Stokes flow implies that
the L2 norm on the left-hand side can be replaced with the H 2 norm for b ≤ t ≤ 1; cf. proof of
Proposition 3.3.
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zero. Since all the mappings that enter (3.38) are C1-smooth, so is Φ ′. Thus, it remains to
establish inequalities (3.26) and (3.27).

Step 5: Proof of (3.26) and (3.27). To estimate the norm of ξ = Φ ′(u0, u
′

0, η) in F , we
note that

‖ξ‖F ≤ C14‖w̃
ε
‖Z(I ). (3.39)

In view of inequality (3.34) with θ = a and the second inequality in (3.32), we have

‖w̃ε‖Z(I ) ≤ C15(γ, ε)‖w0‖1. (3.40)

Combining this with (3.39), we see that ‖Φ ′(u0, u
′

0, η)‖F can be estimated by the right-
hand side of (3.26). Differentiating (3.38) with respect to η and using the boundedness of
the derivatives of R , S, and Cε on bounded subsets, we can apply similar arguments to
prove that ‖DηΦ ′(u0, u

′

0, η)‖L(G) also does not exceed right-hand side of (3.26).
To establish (3.27), let us denote

u(t) = St (u0, η), u′(t) = St (u0, η +Φ
′(u0, u

′

0, η)), uε(t) = u(t)+ w̃ε(t)
∣∣
D
,

where w̃ε = R(ũ, w̃a,Cε(ũ)w̃a) and a ≤ t ≤ 1 in the last relation. Then, in view of
inequality (3.35) and the Lipschitz continuity of the resolving operator for the Navier–
Stokes system considered on [a, τ ] (see Proposition 2.1(a)), we can write

‖u(τ)− u′(τ )‖ ≤ ‖w̃ε(τ )‖ + ‖uε(τ )− u′(τ )‖

≤ ε‖w̃a‖ + C16(‖wa − w̃a‖ + ‖ξ − ξ̃
ε
‖Gs ), (3.41)

where C16 > 0 does not depend on ε or γ . Since χ(t) = 1 for t ≤ b and Cε(ũ)w̃a is
supported by [a, b] × D0, using (3.34) on the interval Ib = [b, 1] and inequality (3.35),
we see that

‖ξ − ξ̃ ε‖Gs ≤ C17‖w̃
ε
‖Z(Ib) ≤ C18‖w̃

ε(b)‖2 ≤ C18ε‖w̃a‖.

Combining this with (3.41), (3.31), and the first inequality in (3.32), we derive

‖u(τ)− u′(τ )‖ ≤ ε(1+ C16C18)‖w̃a‖ + C16‖wa − w̃a‖

≤ 2C12(1+ C16C18)ε‖w0‖1 + C16C12γ ‖w0‖1.

Choosing γ = (2C16C12)
−1κ and ε = (4C12(1 + C16C18))

−1κ, and taking δ > 0 so
small that (3.37) holds, we arrive at (3.27). This completes the proof of Theorem 3.1.

Remark 3.5. Theorem 3.1 in [Shi15] was established under the hypothesis that the func-
tion ũ is a solution of the Navier–Stokes system. Namely, it was required that ũ should
belong to the space Z(I ) and in particular should vanish on the boundary ∂D′. However,
the key ingredient of the proof—the observability inequality—remains valid if we only
assume that ũ ∈ U . This can be seen by analysing the proof of [FGIP04, Lemma 1], which
is the main step in the proof of the local exact controllability (see [FGIP04, Theorem 2]).
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3.3. Proof of Proposition 3.3

We confine ourselves to the proof of inequality (3.34) in the case θ = a. The remain-
ing assertions are standard facts of the general theory of non-linear PDEs (cf. [Kuk82]
and [VF88, Chapter 1]).

Projecting (3.24) to the space H over D′, we reduce it to the evolution equation

ẇ + νLw + B(w)+ B(u,w)+ B(w, u) = 5f, (3.42)

where L = −51, B(u,w) = 5(〈u,∇〉w), B(w) = B(w,w), and we write w and u
instead w̃ and ũ to simplify notation. The proof of (3.34) is divided into several (standard)
steps (cf. [BV92, proof of Theorem 6.2]).

Step 1: Estimate in L2(V ) ∩ C(H). Taking the L2 inner product of (3.42) and 2w and
using the relation (B(v,w),w) = 0, we derive

∂t‖w‖
2
+ 2ν‖w‖21 = 2(f,w)+ 2(B(w, u),w). (3.43)

It follows from Hölder’s inequality and a well-known estimate for the quadratic term B

that
2|(f,w)+ (B(w, u),w)| ≤ ν‖w‖21 + C1(‖w‖

2
+ ‖f ‖2), (3.44)

where we denote by Ci positive numbers depending only on ν, ρ, and K . Combin-
ing (3.43) and (3.44), we derive

∂t‖w‖
2
+ ν‖w‖21 ≤ C1(‖w‖

2
+ ‖f ‖2).

Application of Gronwall’s inequality results in

‖w‖C(Ia ,H) + ‖w‖L2(Ia ,V )
≤ C2(‖w(a)‖ + ‖f ‖L2(Q)). (3.45)

Step 2: Estimate in L2(H 2) ∩ W 1,2(H). Let us take the L2 inner product of (3.42)
and 2Lw. Using the inequalities

|(B(w), Lw)| ≤ C3‖w‖∞‖w‖1‖w‖2 ≤ C4‖w‖
1/2
‖w‖1‖w‖

3/2
2

≤
ν

8
‖w‖22 + C5‖w‖

2
‖w‖41,

|(B(u,w), Lw)| ≤ C3‖u‖∞‖w‖1‖w‖2 ≤ C4‖u‖2‖w‖1‖w‖2

≤
ν

8
‖w‖22 + C5‖u‖

2
2‖w‖

2
1,

|(B(w, u), Lw)| ≤ C3‖w‖∞‖u‖1‖w‖2 ≤ C4‖w‖
1/2
‖u‖1‖w‖

3/2
2

≤
ν

8
‖w‖22 + C5‖u‖

4
1‖w‖

2

and carrying out some simple transformations, we derive

∂t‖w‖
2
1 + ν‖w‖

2
2 ≤ C6(‖w‖

2
‖w‖21 + ‖u‖

2
2)‖w‖

2
1 + C6‖u‖

2
‖u‖22‖w‖

2
+ C6‖f ‖

2.
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Applying Gronwall’s inequality and using (3.45), we derive

‖w‖C(Ia ,V ) + ‖w‖L2(Ia ,H 2) ≤ C7(‖w(a)‖1 + ‖f ‖L2(Q)). (3.46)

Furthermore, it follows from (3.42) that

‖ẇ‖2 ≤ C8(‖w‖
2
2 + ‖f ‖

2
+ ‖B(w)+ B(u,w)+ B(w, u)‖2)

≤ C8(‖w‖
2
2 + ‖f ‖

2)+ C9(‖w‖
2
2‖w‖

2
1 + ‖u‖

2
2‖w‖

2
1 + ‖w‖

2
2‖u‖

2
1).

Combining this with (3.46), we see that

‖ẇ‖L2(Q) ≤ C10(‖w(a)‖1 + ‖f ‖L2(Q)). (3.47)

Step 3: Estimate in L∞(W 1,q). Let us rewrite (3.42) in the form

ẇ + νLw = h(t, x),

where we set (cf. (2.23))

h = h1 + h2, h1 = 5f, h2 = −
(
B(w)+ B(u,w)+ B(w, u)

)
.

If we prove that, for any q ∈ (2,∞),

‖h‖L2(Ia ,Lq )
≤ C11(‖f ‖H 1(Q) + ‖w‖C(Ia ,V ) + ‖w‖L2(Ia ,H 2)), (3.48)

then the argument in the proof of Proposition 2.1(b) combined with (3.46) will show that

‖w‖L∞(Ia ,W 1,q ) ≤ C12(‖w(a)‖W 1,q+‖f ‖H 1(Q)) ≤ C13(‖w(a)‖2+‖f ‖H 1(Q)). (3.49)

The continuity of Leray’s projection in the Lq norm implies that ‖h1‖Lq ≤ ‖f ‖1, so that
we only need to establish a bound for the norm of h2. It follows from Hölder’s inequality
and the continuous embedding H 1

⊂ L2q that

‖B(v1, v2)‖Lq ≤ ‖v1‖L2q‖∇ ⊗ v2‖L2q ≤ C14‖v1‖1‖v2‖2,

whence we see that

‖B(v1, v2)‖L2(Ia ,Lq )
≤ C14‖v1‖C(Ia ,H 1) ‖v2‖L2(Ia ,H 2).

This implies the required bound (3.48) for h2.

Step 4: Estimate for ∂tw. Differentiating (3.42) in time, we derive

ż+ νLz+Q(u, u̇, w, z) = g(t), (3.50)

where z = ∂tw, g = ∂t (5f ), and

Q(u, u̇, w, z) = B(z,w)+ B(w, z)+ B(z, u)+ B(u, z)+ B(u̇, w)+ B(w, u̇).
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Let us take the L2 inner product of (3.50) and 2z. Since (B(v, z), z) = 0, we derive

∂t‖z‖
2
+ 2ν‖z‖21 = 2(g, z)− 2(B(z,w), z)

+ 2(B(z), u)+ 2(B(u̇, z), w)+ 2(B(w, z), u̇). (3.51)

Now note that

|2(g, z)| ≤ 2‖g‖ ‖z‖ ≤ ‖∂tf ‖2 + ‖z‖2,

|(B(z,w), z)| ≤ C15‖z‖ ‖z‖1‖w‖1 ≤
ν

8
‖z‖21 + C16‖w‖

2
1‖z‖

2,

|(B(z), u)| ≤ C15‖z‖ ‖z‖1‖u‖L∞ ≤
ν

8
‖z‖21 + C16‖z‖

2,

|(B(u̇, z), w)| ≤ C15‖u̇‖ ‖z‖1‖w‖L∞ ≤
ν

8
‖z‖21 + C16‖u̇‖

2
‖w‖2

W 1,q ,

|(B(w, z), u̇)| ≤ C15‖w‖L∞‖z‖1‖u̇‖ ≤
ν

8
‖z‖21 + C16‖u̇‖

2
‖w‖2

W 1,q ,

where the last two estimates use the continuous embedding W 1,q(D′) ⊂ L∞(D′) valid
for q > 2. Substituting these inequalities into (3.51) and recalling (3.46) to estimate ‖w‖1,
we derive

∂t‖z‖
2
+ ν‖z‖21 ≤ C17(‖z‖

2
+ ‖∂tf ‖

2
+ ‖u̇‖2‖w‖2

W 1,q ).

Relation (3.42) implies that ‖z(a)‖ ≤ C18(‖w(a)‖2 + ‖f ‖H 1(Q)). Applying Gronwall’s
inequality and using (3.49), we obtain

‖∂tw‖C(Ia ,L2) + ‖∂tw‖L2(Ia ,H 1) ≤ C19(‖w(a)‖2 + ‖f ‖H 1(Q)). (3.52)

Finally, resolving (3.50) with respect to ż and taking the norm in V ∗, we easily conclude
that ‖∂tw‖L2(Ia ,V ∗)

can be estimated by the right-hand side of (3.52) (cf. the derivation
of (3.47)). Thus, to complete the proof of (3.34), it remains to estimate the norm of w
in L2(Ia, H

3).

Step 5: Estimate in L2(H 3). Solving (3.42) with respect to Lw and using the elliptic
regularity for the Stokes operator L, we see that

‖w(t)‖3 ≤ C20(‖f (t)‖1 + ‖B(w)+ B(u,w)+ B(w, u)‖1). (3.53)

To estimate the second term on the right-hand side, we note that

‖B(v1, v2)‖1 ≤ C21(‖v1‖W 1,4‖v2‖W 1,4 + ‖v1‖L∞‖v2‖2)

≤ C22(‖v1‖1‖v2‖2 + ‖v2‖1‖v1‖2)+ C21‖v1‖L∞‖v2‖2,

whence it follows that

‖B(v1, v2)‖L2(Ia ,H 1) ≤ C23

2∑
i=1

‖vi‖C(Ia ,H 1)‖v2−i‖L2(Ia ,H 2)

+ C23‖v1‖L∞(Q)‖v2‖L2(Ia ,H 2).
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Substitution of this inequality into the right-hand side of (3.53) results in

‖w‖L2(Ia ,H 3) ≤ C24(‖f ‖H 1(Q) + ‖w‖C(Ia ,H 1) + ‖w‖L2(Ia ,H 2) + ‖w‖L∞(Q)).

Recalling (3.46) and (3.49), we see that ‖w‖L2(Ia ,H 3) can be estimated by the right-hand
side of (3.52). This completes the proof of (3.34)

4. Appendix

4.1. Sufficient condition for mixing

Consider a discrete-time Markov process (uk,Pu) in a compact metric space X.
Let Pk(u, 0) be the transition function for (uk,Pu) and let Pk and P∗k be the corre-
sponding Markov semigroups. In this section, we recall a result on the uniqueness of a
stationary measure for (uk,Pu) and its exponential stability in the dual-Lipschitz metric.

Let us define the product space X = X×X and denote by5,5′ : X→ X the natural
projections to its components, taking a point u = (u, u′) ∈ X to u and u′, respectively.
A Markov process (uk,Pu) with phase space X is called an extension for (uk,Pu) if, for
all k ≥ 0 and u = (u, u′) ∈ X, we have

5∗Pk(u, ·) = Pk(u, ·), 5′∗Pk(u, ·) = Pk(u
′, ·), (4.1)

where Pk(u,0) stands for the transition function of (uk,Pu). We have the following the-
orem established in [Shi08] (see also [KS12, Section 3.1.3]).

Theorem 4.1. Let X be a compact metric space and let (uk,Pu) be a family of discrete-
time Markov processes in X that has an extension (uk,Pu) satisfying the following prop-
erties for some closed subset B ⊂ X.

Recurrence: The Markov time τ(B) = min{k ≥ 0 : uk ∈ B} is Pu-almost surely finite for
any u ∈ X, and there are positive numbers β and C1 such that

Eue
βτ(B)

≤ C1 for any u ∈ X. (4.2)

Squeezing: There are positive numbers q < 1, d, δ1, δ2, and C2 such that the Markov
time σ = min{k ≥ 0 : d(uk, u′k) > qkd} satisfies the inequalities

Pu{σ = ∞} ≥ δ1, Eu(e
δ2σ I{σ<∞}) ≤ C2 for u ∈ B. (4.3)

Then (uk,Pu) has a unique stationary measure µ ∈ P(X), which is exponentially mixing
for the dual-Lipschitz metric in the sense that (1.6) holds for some positive constants γ
and C.

4.2. Image of measures under regular mappings

Let E be a separable Banach space represented as the direct sum of two closed sub-
spaces F and F ′,

E = F u F ′, (4.4)
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where dimF < ∞. We denote by P and P′ the projections associated with (4.4). Let
` ∈ P(E) be a measure that has a bounded support and can be written as the tensor
product of its marginals `F = P∗` and `F ′ = (P′)∗`. We assume that `F has a C1-
smooth density with respect to the Lebesgue measure on F . A proof of the following
result can be found in [Shi15, Proposition 5.6].

Proposition 4.2. In addition to the above hypotheses, assume that Ψ : E → E is a
mapping written in the form Ψ (ζ ) = ζ + Φ(ζ), where Φ : E → E is a C1-smooth
mapping such that Φ(E) ⊂ F and

‖Φ(ζ1)‖ ≤ κ, ‖Φ(ζ1)−Φ(ζ2)‖ ≤ κ‖ζ1 − ζ2‖ for all ζ1, ζ2 ∈ E, (4.5)

where κ > 0 is a constant. Then

‖`− Ψ∗`‖var ≤ Cκ, (4.6)

where C > 0 does not depend on κ.

4.3. Measurable coupling associated with a cost

Let X be a compact subset of a separable Banach space H . For any ε > 0, we consider a
function dε : X ×X→ R given by

dε(u1, u2) =

{
1 if ‖u1 − u2‖ > ε,

0 if ‖u1 − u2‖ ≤ ε,

where ‖ · ‖ is the norm in H . Given two measures µ1, µ2 ∈ P(X), we define the cost
associated with dε by the relation

Cε(µ1, µ2) = inf
M∈5(µ1,µ2)

∫
X×X

dε(u1, u2)M( du1, du2) = inf
M∈5(µ1,µ2)

M(Bcε), (4.7)

where5(µ1, µ2) stands for the set of measures on X×X with marginals µ1 and µ2, and
Bε = {(u1, u2) ∈ X ×X : ‖u1 − u2‖ ≤ ε}. Kantorovich’s celebrated theorem states that
the infimum in (4.7) is always achieved (see [Vil09, Theorem 5.10]).

Now let (Z,Z) be a measurable space and let {µz, z ∈ Z} ⊂ P(X) be a family of
measures. Recall that {µz} is called a random probability measure on X if the function
z 7→ µz(0) fromZ to R is measurable for any 0 ∈ B(X). The following result is a simple
consequence of [Vil09, Corollary 5.22]; its proof can be found in [Shi15, Proposition 5.3].

Proposition 4.3. Let {µzi , z ∈ Z}, i = 1, 2, be two random probability measures on X,
let ε : Z → R be a positive measurable function, and let θ ∈ (0, 1). Then there is a
probability space (�,F ,P) and measurable functions ξ zi (ω), i = 1, 2, from �× Z to X
such that, for any z ∈ Z, the law Mz of (ξ z1 , ξ

z
2 ) belongs to 5(µz1, µ

z
2) and satisfies the

inequality ∫
X×X

dε(z)(u1, u2)M
z(du1, du2) ≤ Cθε(z)(µ

z
1, µ

z
2). (4.8)
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We now formulate a simple result providing an estimate for Cε(µ1, µ2). Its proof is based
on the Kantorovich duality (see [Vil09, Theorem 5.10]) and can be found in [Shi15,
Proposition 5.2].

Lemma 4.4. Let µ1 and µ2 be two probability measures on a compact metric space X
that are the laws of some random variables U1 and U2 defined on a probability space
(�,F ,P). Suppose there is a measurable mapping Ψ : �→ � satisfying

dX(U1(ω), U2(Ψ (ω))) ≤ ε for a.e. ω ∈ �, (4.9)

where dX is the metric on X and ε > 0 is a constant. Then

Cε(µ1, µ2) ≤ 2‖P− Ψ∗P‖var. (4.10)

4.4. Restriction to and extension from the boundary

LetD ⊂ R2 be a bounded domain that has an infinitely smooth boundary ∂D and satisfies
the hypotheses mentioned at the beginning of Section 2.1. Given a real number s ≥ 1, we
write

Xs = {u ∈ L2(J,H s+1
σ ) : ∂tu ∈ L

2(J,H s−1
σ )}, (4.11)

where J = [0, 1], H s(D,R2) is the usual Sobolev space of order s and H s
σ denotes

the space of divergence-free vector fields in H s(D,R2). Recall that, for s ≥ 3/2, we
have also defined the space Gs of functions v ∈ L2(J,H s+1/2(∂D)) such that ∂tv ∈
L2(J,H s−3/2(∂D)) and8 ∫

∂D

〈v(t),nx〉 dσ = 0 for t ∈ J . (4.12)

The spaces Xs andGs are endowed with the natural Hilbert structures and the correspond-
ing norms. The following proposition gives a characterisation of traces of the functions
in Xs to the lateral boundary 6 = J × ∂D. Its proof can be found in the paper [FGH02]
(see Theorems 2.1 and 2.2), where the more complicated 3D case is discussed. For the
reader’s convenience, we present a simple proof in the 2D case, establishing an additional
property.

Proposition 4.5. For any integer s ≥ 2, the operator R taking u ∈ Xs to its restriction
to 6 is continuous from Xs to Gs and possesses a right inverse in the following sense:
there is a continuous operator Q : G2 → X2 such that RQv = v for v ∈ G2, and for
any integer s ≥ 2, we have

‖Qv‖Xs ≤ Cs‖v‖Gs for v ∈ Gs, (4.13)

where Cs > 0 does not depend on v.

8 Note that if the equality in (4.12) holds for a.e. t ∈ J , then the continuity of v from J

to L2(∂D,R2) implies it is true for all t ∈ J .
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Proof. The standard trace theorem for Sobolev spaces (e.g., see [Ada75, Chapter 4])
implies that, for any v ∈ Xs , we have

v|6 ∈ L
2(J,H s+1/2(∂D)), ∂t (v|6) ∈ L

2(J,H s−3/2(∂D)),

and the corresponding norms are bounded by ‖v‖Xs . Furthermore, since div v = 0
in J × D, and the function t 7→ v(t) is continuous from J to H 1(D,R2), we have∫
D

div v(t) dx = 0 for t ∈ J , whence (4.12) holds. Thus, the restriction operator
R : Xs → Gs is continuous. To construct its right inverse, we shall need the lemma
below. For r ≥ 0, let us denote by Ḣ r

= Ḣ r(∂D,R2) the space of vector functions
v : ∂D→ R2 that belong to the Sobolev space of order r and satisfy

∫
∂D
〈v,nx〉 dσ = 0.

Lemma 4.6. There is a continuous operator E : Ḣ 1/2(∂D,R2)→ H 1
σ (D,R2) such that

the restriction of E v to ∂D coincides with v. Moreover, for any integer s ≥ 1 there is
C′s > 0 such that

‖E v‖s ≤ C
′
s‖v‖s−1/2 for any v ∈ Ḣ s−1/2. (4.14)

Taking this lemma for granted, let us complete the proof of the proposition. Let us fix
v ∈ G2. It follows from (4.12) that v(t) ∈ Ḣ 5/2 for t ∈ J . We can thus define a func-
tion u(t, x) by the relation u(t, ·) = E v(t, ·) for t ∈ J , where E is the operator in
Lemma 4.6. By continuity of E , we have u ∈ L2(J,H 3

σ ). Moreover, since ∂t and E are
commuting operators, we see that ∂tu ∈ L2(J,H 1), so that u ∈ X2. The above argument
also shows that (4.13) holds for s = 2. Finally, it follows from (4.14) that (4.13) is valid
for any s ≥ 2. This completes the proof of the proposition. ut

Remark 4.7. The proof of Proposition 4.5 implies that if v = 0 in a region [α, β] × ∂D,
then Qv vanishes in [α, β] ×D.

Proof of Lemma 4.6. To make the main idea more transparent, we first consider the case
in which D is simply-connected. Let us fix a function v ∈ Ḣ 1/2(∂D,R2) and write it in
the form

v = vnnx + vττ x, vn(x) = 〈v(x),nx〉, vτ (x) = 〈v(x), τ x〉, (4.15)

where nx and τ x are the unit (outward) normal and tangent vectors at a point x ∈ ∂D
chosen so that (nx, τ x) is a positively oriented basis of R2. We shall construct two vector
functions un and uτ belonging to H 1

σ (D,R2) such that

〈un,n〉|∂D = vn, 〈uτ ,n〉|∂D = 0, 〈uτ , τ 〉|∂D = vτ − 〈un, τ 〉|∂D. (4.16)

The operator E is then defined by E v = un + uτ . The construction will imply that (4.14)
is satisfied.

Step 1: Construction of un. We seek un in the form un = ∇
⊥p, where ∇⊥ = (−∂2, ∂1)

and p ∈ H 2(D). The first relation in (4.16) can be rewritten in terms of the derivatives
of p and the tangent vector τ as follows:

∂p

∂τ

∣∣∣∣
∂D

= −vn.
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Since
∫
∂D
vn dσ = 0, we can find a function w ∈ H 3/2(∂D) such that

∂w

∂τ
= −vn, ‖w‖H 3/2 ≤ C1‖vn‖H 1/2 . (4.17)

Let p ∈ H 2(D) be a harmonic function in D such that p|∂D = w. Then

‖p‖H 2 ≤ C2‖w‖H 3/2 . (4.18)

Combining (4.17) and (4.18), we see that the function un = (−∂2p, ∂1p) satisfies the
required properties. Moreover, the construction implies that

‖un‖H s ≤ C3‖vn‖H s−1/2 for any integer s ≥ 1, (4.19)

where C3 > 0 depends only on s.

Step 2: Construction of uτ . The required function is sought in the form uτ = ∇
⊥q,

where q ∈ H 2(D) is an unknown function. Let us note that the function ṽτ defined by the
right-hand side of the third relation in (4.16) belongs to the space H 1/2(∂D) and satisfies
the inequality

‖ṽτ‖H s−1/2 ≤ C4‖v‖H s−1/2 for any integer s ≥ 1, (4.20)

where C4 > 0 depends only on s. Furthermore, the second and third relations in (4.16)
with uτ = (−∂2q, ∂1q) are equivalent to

q|∂D = C,
∂q

∂n

∣∣∣∣
∂D

= ṽτ , (4.21)

where C ∈ R is a constant. Since uτ is obtained by differentiating q, we can take
C = 0. The elliptic equation12q = 0 supplemented with the boundary conditions (4.21)
has a unique solution q ∈ H 2(D), and the elliptic regularity implies that ‖q‖H s+1 ≤

C5‖ṽτ‖H s−1/2 . Combining this with (4.20), we see that the function uτ = (−∂2q, ∂1q)

possesses all required properties.

Step 3: General case. The construction of uτ in Step 2 does not use the assumption thatD
should be simply-connected. We thus need only extend the argument of Step 1 to the case
of an arbitrary domain satisfying the hypotheses of Section 2.1.

Let us denote by 0i the boundary of the domainDi and by 0̃ that of D̃. For 1 ≤ i ≤ m,
let zi ∈ C∞(D) be a harmonic function in D with zero mean value such that

∂zi

∂n

∣∣∣∣
0i

= 1,
∂zi

∂n

∣∣∣∣
0j

= 0 for j 6= i,
∂zi

∂n

∣∣∣∣
0̃

= −|0i |/|0̃|, (4.22)

where |γ | stands for the length of a curve γ . It is straightforward to check that the bound-
ary conditions (4.22) satisfy the compatibility condition for the existence of a solution of
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the Neumann problem for the Laplace equation (see [Tay97, Chapter 5, Proposition 7.7]),
so that the functions zi are well defined. We seek un in the form

un = ∇
⊥p +

m∑
i=1

ci∇zi, (4.23)

where p ∈ H 2(D) and ci ∈ R are chosen below. The first relation in (4.16) is equivalent
to

−
∂p

∂τ

∣∣∣∣
0i

= v(i)n := vn|0i − ci for 1 ≤ i ≤ m, (4.24)

−
∂p

∂τ

∣∣∣∣
0̃

= ṽn := vn|0̃ + |0̃|
−1

m∑
i=1

ci |0i |. (4.25)

Choosing ci = |0i |−1 ∫
0i
vn dσ , we see that∫

0̃

ṽn dσ = 0,
∫
0i

v(i)n dσ = 0 for 1 ≤ i ≤ m, (4.26)

where we have used the fact that

0 =
∫
∂D

vn dσ =
∫
0̃

vn dσ +
m∑
i=1

∫
0i

vn dσ.

It follows from (4.26) that there are functions wi ∈ H 3/2(0i) and w̃ ∈ H 3/2(0̃) such that
(cf. (4.17))

∂wi

∂τ

∣∣∣∣
0i

= −v(i)n ,
∂w̃

∂τ

∣∣∣∣
0̃

= −ṽn, (4.27)

m∑
i=1

‖wi‖H s+1/2 + ‖w̃‖H s+1/2 ≤ C6‖vn‖H s−1/2 . (4.28)

Let p ∈ H 2(D) be a harmonic function in D such that

p|0i = wi for 1 ≤ i ≤ m, p|0̃ = w̃.

Combining this with (4.24), (4.25), and (4.27), we see that the function un defined
by (4.23) with the above choice of ci belongs to H 1

σ (D,R2) and satisfies the first re-
lation in (4.16). Finally, it follows from (4.28) that (4.19) also holds. This completes the
proof of the lemma. ut

Remark 4.8. Analysing the proof of Proposition 4.5, it is straightforward to see that the
result remains true for any s ∈ (3/2, 2). More precisely, the map Q : G2 → X2 can
be extended by continuity to an operator Qs : Gs → Xs for s ∈ (3/2, 2) such that
RQsv = v for any v ∈ Gs .
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We now consider a particular case of the above extension theorem when the normal com-
ponent of v ∈ Gs has a vanishing mean value not only on the entire boundary, but also
on each of the connected components. In this case, it is possible get an extension that sat-
isfies an additional property. Namely, let us denote by G0

s the space of functions v ∈ Gs
such that ∫

∂Di

〈v(t),nx〉 dσ = 0 for t ∈ J and 1 ≤ i ≤ m. (4.29)

The following result is due to E. Hopf, and its proof is essentially contained in [Tem79,
Section II.1.4], so that we only outline the argument.

Proposition 4.9. For any ε > 0, there is a linear operator Qε : G
0
2 → X2 such that, for

any v ∈ G0
2, the restriction of Qεv to J × ∂D coincides with v, inequality (4.13) holds

for Q = Qε and a number Cs depending on ε and s, and

|(〈u,∇〉(Qεv)(t), u)L2 | ≤ ε‖v(t)‖3/2‖u‖
2
1 for any u ∈ V , t ∈ J . (4.30)

Sketch of the proof. As in the case of Proposition 4.5, it suffices to construct an extension
operator in x (see Lemma 4.6). Namely, let H 1/2,0(∂D,R2) be the subspace of those
functions v ∈ Ḣ 1/2(∂D,R2) that satisfy the relations∫

∂Di

〈v,nx〉 dσ = 0 for 1 ≤ i ≤ m.

We claim that, for any ε > 0, there is a continuous linear extension operator

Eε : H
1/2,0(∂D,R2)→ H 1

σ (D,R
2)

that satisfies (4.14) with E = Eε and any integer s ≥ 1, as well as the inequality

|(〈u,∇〉Eεv, u)L2 | ≤ ε ‖v‖3/2‖u‖
2
1 (4.31)

for any u ∈ V and v ∈ (H 1/2,0
∩ H 3/2)(∂D,R2). Once this is proved, one can use the

same argument as in the proof of Proposition 4.5.
Analysing the proof of Lemma 4.6, we can easily see that the extension operator E

constructed there possesses the following property: there exists a continuous operator
E ′ : H 1/2,0(∂D,R2)→ H 2(D) such that, for v ∈ H 1/2,0(∂D,R2), we have9

E v = ∇⊥(E ′v), ‖E ′v‖s+1 ≤ Cs‖v‖s−1/2 for any integer s ≥ 1. (4.32)

We now choose a function θδ ∈ C∞(D) such that

θδ(x) = 1 for d(x, ∂D) ≤ 1
2e
−2/δ,

θδ(x) = 0 for d(x, ∂D) ≥ 2e−1/δ,

|∇θδ(x)| ≤ δ/d(x, ∂D) for d(x, ∂D) ≤ 2e−1/δ,

9 For functions belonging to H 1/2,0(∂D,R2), the coefficients ci entering (4.23) are zero.
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where d(x, ∂D) denotes the distance from x to ∂D (see [Tem79, Section II.1, Lem-
ma 1.9]). The operator Eε is sought in the form

(Eεv)(x) = ∇
⊥
(
θδ(x)(E

′v)(x)
)
,

where δ = δ(ε) > 0. Inequality (4.14) follows from (4.32), and a simple calculation
based on Hardy’s inequality shows that (4.31) is true for sufficiently small δ (see [Tem79,
Section II.1 proof of Lemma 1.8]). ut

4.5. Extension to a larger domain

D1

D2D3

D

D̃

Fig. 3. The domain D.

As before, we denote by D ⊂ R2 a bounded do-
main satisfying the hypotheses of Section 2.1.
In Section 3.2, we used the fact that the func-
tions in Xs can be extended to a larger domain.
Namely, let D̃ ⊂ R2 be a simply-connected do-
main containing the closure of D̃ (see Figure 3)
and let

D = D̃ \
m⋃
i=1

Di (4.33)

(cf. (2.1)). The following proposition shows
how to extend the divergence-free vector fields
from D to D.

Proposition 4.10. There is a continuous linear operator L : L2
σ (D,R2) → L2

σ (D,R2)

possessing the following properties.

(a) For any v ∈ L2
σ (D,R2), the restriction of Lv to D coincides with v.

(b) If, in addition, v ∈ W r,q(D,R2) for some r ≥ 0 and q ∈ [2,∞), then Lv belongs
to W r,q(D,R2) and satisfies the inequality

‖Lv‖W r,q (D) ≤ Cr,q‖v‖W r,q (D), (4.34)

where Cr,q > 0 does not depend on v.

Before proving this result, we state a straightforward corollary concerning the extension
of functions belonging to Xs . We denote by Xs(D) the space Xs constructed on the do-
main D.

Corollary 4.11. For any integer s ≥ 1 and any u ∈ Xs , the function ũ(t, x) defined by
ũ(t) = Lu(t) belongs to Xs(D) and satisfies the inequality

‖ũ‖Xs (D) ≤ Cs‖u‖Xs , (4.35)

where Cs > 0 does not depend on u. If, in addition, u ∈ C(J,W r,q(D)) for some r ≥ 0
and q ∈ [2,∞), then ũ ∈ C(J,W r,q(D)), and

‖ũ‖C(J,W r,q (D)) ≤ C
′
r,q‖u‖C(J,W r,q (D)), (4.36)

where C′r,q > 0 does not depend on u.
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Proof of Proposition 4.10. We first derive a necessary and sufficient condition for a func-
tion w ∈ L2

σ (D,R2) to be representable in the form

w = ∇⊥p = (−∂2p, ∂1p), (4.37)

where p ∈ Ḣ 1(D), and Ḣ k
= Ḣ k(D) stands for the space of functions in H k(D) with

zero mean value. Namely, we claim that (4.37) holds if and only if∫
0i

〈w,n〉 dσ = 0 for 1 ≤ i ≤ m, (4.38)

and in this case p linearly depends on w and satisfies the inequality

‖p‖W k+1,q ≤ C1‖w‖W k,q , (4.39)

where we denote by Ci > 0 some constants depending only on k and q. Indeed, sup-
pose that (4.37) holds and denote by χi ∈ C∞(D̃) a function equal to 1 in a small
neighbourhood of Di and to 0 outside a larger neighbourhood not intersecting ∂D \ ∂Di .
Then div(∇⊥(χip)) = 0 in D. Taking the integral of this relation over D and integrat-
ing by parts, we arrive at (4.38). Conversely, suppose that (4.38) is fulfilled. It follows
from the Leray decomposition (see [Tem79, Chapter I, Theorem 1.5]) that the function
(w2,−w1) ∈ L

2(D,R2) can be written as ∇p for some p ∈ Ḣ 1(D) if and only if∫
D

(w2ϕ1 − w1ϕ2) dx = 0 for any ϕ = (ϕ1, ϕ2) ∈ V, (4.40)

where V stands for the space of infinitely smooth divergence-free vector fields on R2

with compact support in D. Thus, we need to establish (4.40). To this end, we define
ψ ∈ C∞(R2) by the relation

ψ(x) =

∫
γ (a,x)

(ϕ2 dx1 − ϕ1 dx2),

where a ∈ R2
\ D̃ is a fixed point, and γ (a, x) is an arbitrary smooth curve without

self-intersection going from a to x. The Stokes theorem implies that ψ is a well-defined,
infinitely smooth function with compact support in D̃ such that ∇⊥ψ = ϕ. It follows that∫

D

(w2ϕ1 − w1ϕ2) dx = −
∫
D

〈w,∇〉ψ dx =
m∑
i=1

∫
0i

ψ〈w,n〉 dσ = 0,

where the last equality follows from (4.38) and the fact that ψ is constant on each of the
curves 0i . We have thus shown that w can be written in the form (4.37). The proof of the
Leray decomposition given in [Tem79, Chapter I], together with the regularity theory for
the boundary value problems for the Laplace operator, implies that p is a linear function
of w that satisfies (4.39).
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We now construct the operator L. Let z ∈ H 1(D) be the unique solution of the prob-
lem

1z = 0 in D,
∂z

∂n

∣∣∣∣
∂Di

= 〈v,n〉|∂Di for 1 ≤ i ≤ m, z|
∂D̃ = 0. (4.41)

It is straightforward to check that z is a linear function of v, and standard estimates for
solutions of elliptic boundary value problems imply that

‖z‖W r+1,q ≤ C2‖v‖W r,q for any r ≥ 0, q ≥ 2. (4.42)

Let us consider the function w = v − ∇z defined in D. It is not difficult to see that
w ∈ L2

σ (D,R2) ∩W r,q(D,R2) if v ∈ W r,q(D,R2) and that w satisfies (4.38). Thus, we
can represent w in the form (4.37), where p ∈ Ḣ 1(D) is a linear function of w satisfy-
ing (4.39). Recalling that z is also a linear function of v, we see that p linearly depends
on v. Furthermore, it follows from (4.39) and (4.42) that p satisfies the inequalities

‖p‖W r+1,q ≤ C3‖v‖W r,q for r ≥ 0. (4.43)

Let L0 : H
1(D)→ H 1(D) be an extension operator such that, for any r ≥ 0 and q ≥ 2,

‖L0h‖W 1+r,q ≤ C4‖h‖W 1+r,q for h ∈ W 1+r,q(D) (4.44)

(see [Ada75, Theorem 5.22 and Remark 5.23]). We now set

Lv = ∇⊥(L0p)+∇z.

Then Lv ∈ L2
σ (D,R2) and Lv|D = v. Moreover, it follows from (4.42)–(4.44) that (4.34)

is valid. This completes the proof of the proposition. ut

4.6. Approximation by regular functions

Recall that, given a domain D ⊂ R2, we denote by V the space of divergence-free vector
functions v ∈ H 1(D,R2) vanishing on ∂D. We shall sometimes write V (D) to indicate
the domain on which the space V is considered.

Proposition 4.12. Let D ⊂ D′ ⊂ R2 be some domains satisfying the hypotheses of Sec-
tion 3.2 (see Figure 2) and let VD(D′) be the subspace in V (D′) that consists of the func-
tions vanishing onD′ \D. Then there is a family {�γ : VD(D′)→ (H 2

∩V )(D′)}γ∈(0,1)
of bounded linear operators such that the image of �γ is contained in VD(D′) and

‖v −�γ v‖ ≤ γ ‖v‖1 for any v ∈ VD(D′), γ ∈ (0, 1). (4.45)

Proof. As was established in the proof of Proposition 4.10, for any v ∈ V (D′) there is
p ∈ H 2(D′) such that10 v = ∇⊥p and ‖p‖2 ≤ C‖v‖1. Moreover, the construction of p

10 It suffices to apply the argument used in the proof of Proposition 4.10 to the domain D′ and
note that, since v is zero on the boundary, the solution z ∈ H 1(D′) of problem (4.41) with D̃ = D̃′
vanishes identically.
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given there implies that if v ∈ VD(D′), then p can be extended to a function in H 2(R2)

that vanishes outsideD. Using a partition of unity and convolution with an approximation
of identity, one can construct a family of regularising operators ωγ : H 2(R2)→ H 3(R2)

such that ωγp vanishes onDc if so does p, and ‖ωγp−p‖1 ≤ C−1γ ‖p‖2. The required
family of operators can be defined by �γ = ∇⊥(ωγp). The details of the procedure
described above are very standard (e.g., see [Ada75, Chapter 5]), and therefore we omit
them. ut
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