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Abstract. Let V be arational quadratic space of signature (m, 2). A conjecture of Kudla relates the
arithmetic degrees of top degree special cycles on an integral model of a Shimura variety associated
with SO(V) to the coefficients of the central derivative of an incoherent Siegel Eisenstein series of
genus m + 1. We prove this conjecture for the coefficients of non-singular index 7 when T is not
positive definite. We also prove it when T is positive definite and the corresponding special cycle
has dimension 0. To obtain these results, we establish new local arithmetic Siegel-Weil formulas at
the archimedian and non-archimedian places.
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1. Introduction

The classical Siegel-Weil formula connects the arithmetic of quadratic forms with Eisen-
stein series for symplectic groups [Si], [We], [KRal]. In particular, it yields explicit for-
mulas for the representation numbers of integers by the genus of a quadratic form in terms
of generalized divisor sum functions.

The Siegel-Weil formula also has important geometric applications. For instance, it
leads to formulas for the degrees of special cycles on orthogonal Shimura varieties in
terms of Fourier coefficients of Eisenstein series. To describe this, we let (V, Q) be aratio-
nal quadratic space of signature (m, 2). To simplify the exposition, we assume throughout
the introduction that m is even; the general case is treated in the body of the paper. Denote
by H = SO(V) the special orthogonal group of V, and let D be the corresponding hermi-
tian symmetric space, realized as the Grassmannian of oriented negative definite planes
in V(R). For a compact open subgroup K C H (Ay) we consider the Shimura variety

Xk = HQ\(D x H(Af)/K).
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It is a quasi-projective variety of dimension m, which has a canonical model over Q.
Every positive definite subspace U C V of dimension n induces an embedding of groups
SO(U*+) — H and thereby a special cycle Z(U) of codimension n on X x . Moreover, for
every positive definite symmetric matrix 7 € Sym,,(Q) and every K -invariant Schwartz
function ¢ € S(V"(Ay)) there is a composite codimension n cycle

Z(T, ¢)

on X g, which is a certain linear combination of the Z(U) for which U has Gram ma-
trix 27. The classes of these cycles in the cohomology H 2n (Xk,C) and in the Chow
group Ch" (X g ) are important geometric invariants. Kudla and Millson also defined cycle
classes Z(T, ¢) for positive semi-definite 7 € Sym,, (Q). They showed that the generat-
ing series of the cohomology classes of these cycles is a Siegel modular form of genus n
and weight 1 +m /2 (see [KM2], [Ku3]), generalizing the celebrated work of Hirzebruch—
Zagier for Hilbert modular surfaces [HZ]. The analogous statement for the classes in the
Chow group was conjectured by Kudla and recently proved in [Zh], [BW].

It is natural to ask for more precise information about the automorphic properties of
the generating series. For the special cycles of maximal codimension, that is, for n = m,
this question can be answered by means of the Siegel-Weil formula. If Xg has r con-
nected components, the compactly supported cohomology HCZ’" (Xk, C) is isomorphic
to C” via the degree maps on the connected components. If X x is compact, Kudla showed
[Ku3, Theorem 10.3] that the generating series of the degrees of the special cycles is given
by a Siegel Eisenstein series of genus n and weight k = 1 + m/2, that is,

Y deg(Z(T, ) -q" = C- E(z,1/2,1(g) ® ®y). (1.1)
T

Here T = u + iv is a variable in the Siegel upper half-plane H,, and C is an explicit
normalizing constant which is independent of ¢. Moreover, A(p) denotes a certain sec-
tion of the induced representation I (s, xv) of Sp,(Ar) associated with ¢, and ®, de-
notes the standard section of weight x of the corresponding induced representation of
Sp,, (R) (see Section 2.1). If Xk is non-compact, the Eisenstein series is usually non-
holomorphic and the treatment of the non-holomorphic contributions needs extra care
(see e.g. [Fu], [FM2]).

The proof of this result involves the Schwartz forms ¢% ,, (x, z) € S(V" (R)HRAX (D)
constructed by Kudla—Millson [KM2], which are Poincaré dual to special codimension 7n-
cycles. Since they transform with weight « under the maximal compact subgroup U (n) C
Sp,, (R), the theta series

Ok (T, 9,2, 1) = det@) ™ Y~ o(h™'x) - (0(g0) gy (x, 2))
xeVH(Q)

is a smooth (non-holomorphic) Siegel modular form of weight « in 7. Here h € H(Ay),
o denotes the Weil representation of Sp,, and g, = ( ! H )(a t,—1 ) € Sp,,(R) witha'a = v.

a
The T'-th Fourier coefficient of this theta series represents the de Rham cohomology class
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of Z(T, ¢). When n = m, the generating series for the degrees is obtained by integrat-
ing 0% ,,(t, ¢, z, h) over Xg. This can be evaluated by means of the Siegel-Weil for-
mula, leading to (1.1). As a consequence, it can be shown that the intersection number
of two special cycles Z(T1, ¢1) and Z(T», ¢2) of complementary codimensions n; and
ny is given by the corresponding Fourier coefficient of the block diagonal restriction to
H,, x H,, of the Eisenstein series (see [Ku3, Section 10]). By means of the doubling
method, connections to special values of L-functions can be obtained.

Kudla initiated a program connecting the Arakelov geometry of special cycles on in-
tegral models of orthogonal (and unitary) Shimura varieties to Siegel (hermitian) modular
forms (see e.g. [Ku2], [KRY2]). In particular, in this setting arithmetic degrees of special
cycles are conjecturally connected to derivatives of Siegel Eisenstein series. We describe
some aspects of this program which are important for the present paper.

We consider arithmetic cycles in the sense of Gillet—Soulé (see [GiSo], [SABK]),
which are given by pairs consisting of a cycle on an integral model of X and a Green
current for the cycle. For x € V(R), Kudla constructed a Green function

z = &(x, 2)

on D. It has a logarithmic singularity along the special divisor determined by x (see

(5.1)). More generally, if x = (x1,...,x,) € V*(R) is such that the moment matrix
T = Q0kx) = %((x,-, xj));,j is invertible, one obtains a Green current for the special
codimension n cycle Dy = {z € D | (z,x1) = -+ = (z,x,) = 0} by taking the star
product

&y (x,2) = &o(x1, 2) * - - % Eo(Xn, 2).

It satisfies the current equation
dd [y (x, 21+ 8p, = [¥k . 0(x. D],

where ¢} 1, 0(x, 2) = @, (x, 2) - €27 Q) ig essentially the Poincaré dual form consid-
ered above, and ép, is the Dirac current given by integration over D;. For the rest of this
introduction we assume that 7 € Sym,, (Q) is invertible. Then we obtain a Green current
for the cycle Z(T, ¢) on Xg by

G(T,p,v,z,h) = Y oh 'x) &', 2),
xEVI(Q)
0=T

where z € D and h € H(Ay).

To describe the integral models of Xk and the special cycles we are working with,
we assume for convenience that V contains a unimodular even lattice L. This assumption
can and will be relaxed when considering local integral models later on (see Remark 1.3).
Welet K = SO(i) be the stabilizer of L = L ®Z in H(Ay),and let ¢ = ¢ = Char(i")
be the characteristic function of L. By work of Kisin, Vasiu, and Madapusi Pera, the
Shimura variety X ¢ has a canonical integral model Xk, which is a smooth stack over Z
(see [Kis], [MP], [AGHM, Theorem 4.2.2]). There is a polarized abelian scheme A of
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dimension 2"*1 over X, which is equipped with an action of the Clifford algebra C (L)
of L. For an S-valued point of Xk there is a space of special endomorphisms

V(As) C Endc(r)(As)

on the pull-back A of A, which is endowed with a positive definite even quadratic form Q
(see [AGHM, Section 4]). It can be used to define an integral model of Z(T, ¢) of Z(T, ¢)
as the substack of Xx whose S-valued points have an x € V(Ag)" with Q(x) = T. The
pair

Z(T,p,v) = (Z2(T, 9),G(T, ¢, v))

determines a class in an arithmetic Chow group. Through the Green current it depends
on v = J(7). In analogy with the geometric situation described earlier, we would like to
understand the classes of these cycles and their relations.

As before we focus on the case of top degree cycles, which is here the case n = m + 1.
If T is not positive definite, then Z(7', ¢) vanishes, but the arithmetic cycle Z(T', ¢, v)
has non-trivial current part. On the other hand, if T is positive definite, then Z(T, ¢, v)
has trivial current part, and the cycle is entirely supported in positive characteristic. In
fact, if it is non-trivial then it is supported in the fiber above one single prime p. The
dimensions of the irreducible components were recently determined by Soylu [So]. In
particular, he showed that Z (T, @)(F,,) is finite if and only if the reduction of 7" modulo
pisof rank n — 1, n — 2, or of rank n — 3 (plus a technical condition). We refer to
Theorem 6.3 for details. Throughout this paper we consider the cases when either T is
not positive definite, or 7 is positive definite and Z(T, ¢) has dimension O.

According to [MP, Theorem 7.4], there exists a regular toroidal compactification X g
of Xx with generic fiber X . The cycle §(T, @, v) defines a class in (/3?1% (Xk). Recall
that there exists an arithmetic degree map

dez : Gh(Fy) — C
which is given as a sum of local degrees

deg(2.G) = Y deg, (2. G),

P=00
where for an arithmetic cycle (Z, G) the local degrees are defined as

ht
Z () -logp if p < o0,
— ¢ |Aut(x)]
deg, (2. G) = 1 "=V

- | G if p = oo.
2 Jxx©

Here ht, (x) denotes the length of the étale local ring Oz , of Z at the point x. Kudla
conjectured the following description of the arithmetic degrees of special cycles in terms
of derivatives of Siegel Eisenstein series of genus n (see [Ku2], [KuS5]).
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Conjecture 1.1 (Kudla). Assume thatn =m + 1 and T € Sym, (Q) is invertible. Then
deg(Z(T. 9. ) - q" = C - Ef(1,0,4(¢) ® @),

where C denotes a constant which is independent of T and ¢ (see Theorem 7.1),
Er(t,s, ®) denotes the T-th Fourier coefficient of a Siegel Eisenstein series E(t, s, ®),
and the derivative is taken with respect to s.

Note that for T positive definite with Z(T, ¢) of higher dimension the arithmetic degree
has to be defined more carefully as in [Te], but we do not consider this here. The con-
Jecture can be further generalized to include the cases where T is singular, leading to an
identity between the generating series of the arithmetic degrees of the Z(7', ¢, v) and the
central derivative of the Eisenstein series E (7, s, A(¢) ® ®,) analogous to (1.1), which
can be viewed as an arithmetic Siegel-Weil formula. The full conjecture is known for
m = 0 and for the m = 1 case of Shimura curves (see [KRY 1], [KRY2]).

To state our results on Conjecture 1.1, we let C = ®p§oo CI7 be the incoherent
quadratic space over A for which Cy = ®p<oo C, = V(Ay) and Cs is positive defi-
nite of dimension m + 2. The Eisenstein series appearing in Conjecture 1.1 is naturally
associated with the Schwartz function on S(C") given by the tensor product of ¢ and the
Gaussian on CJ via the intertwining operator A. Hence it is incoherent and vanishes at
s = 0. The conjecture gives a formula for the leading term of the Taylor expansion in s at
s = 0. Following Kudla [Ku2], define the Diff set associated with C and T as

Diff(C, T) = {p < oo | C,, does not represent T'}. (1.2)

Then Diff(C, T') is a non-empty finite set, and co € Diff(C, T') if and only if T is not
positive definite.

Theorem 1.2. Assume that T € Sym,, (Q) is invertible. Then Conjecture 1.1 holds in the
following cases:

(1) if |Dift(C, T)| > 1; in this case both sides of the equality vanish;
(2) if Diff(C, T) = {oo}, in this case T is not positive definite, and the only contribution
comes from the archimedian place, i.e.,

deg(Z(T, ¢, v)) - g7 = deg  (Z(T.¢.v)) - q" = C - E[ (1.0, 1(9) ® Dy):

(3) if Diff(C, T) = {p} for a finite prime p # 2 and Z(T, (p)(IF‘p) has dimension 0; in
this case, the only contribution comes from the prime p, i.e.,

deg(Z(T, ¢, v)) - q" = deg,(Z(T. ¢, v))q" = C - E7(z,0, A(p) ® ).
Remark 1.3. Since the cycle Z (T, ¢, v) is supported in a single fiber, all assertions of
Theorem 1.2 can be reformulated in terms of ‘local’ models of X g. We will actually

prove the local analogues in much greater generality.
Generalizing (2) we will show that if co € Diff(C, T') then

degoo(Z(T, 9, v)) - q" = C - Ef(z,0, M) ® ®y). (1.3)
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Since this is an assertion only about the complex fiber Xk, we will be able to prove it
for any compact open subgroup K C H(Ay) (in particular V does not have to contain
an even unimodular lattice) and any K -invariant Schwartz function ¢ € S(V (Af)") (see
Theorem 7.1).

To generalize (3) we consider the canonical integral model Xk (,) of X over the
localization Z,). In this setting we will show that if p € Diff(C, T') for a finite prime
p # 2 and Z(T, ¢) is 0-dimensional, then

deg,(Z(T. ¢.v) - q" = C - E7(z. 0, A(¢) ® ). (1.4)

This will be proved under the assumption that K is the stabilizer of a Zp-unimodular
lattice L C V and for ¢ = char(I:”) (see Theorem 7.3).

To prove Theorem 1.2, we decompose the Fourier coefficients of the Eisenstein series into
local factors. If ® = ®U ®d,, is a factorizable section of the induced representation, then

Er(g.s,®) = [] Wra(g.s, @),

V<00

where Wr (g, s, ®y) is the local Whittaker function given by (2.1). It is a basic fact that
the local Whittaker function Wr ,(gp, 0, A,(¢p)) vanishes for every p € Diff(C, T).

This implies assertion (1) of Theorem 1.2 in a rather direct way. Indeed, if |Diff(C, T')|
> 1 then the right hand side of the conjectured identity is automatically zero. To prove
that the left hand side also vanishes, we consider for a prime p < oo the neighboring
global quadratic space V() at p associated with C, which is the quadratic space over Q
with local components Vq(p ) Cy forall g # p and such that V;p ) and C » have the same
dimension and quadratic character but different Hasse invariants (for p = oo we also
require that Véooo) has signature (m, 2), and hence V() = ).

If Z(T, <p)(It_7p) is non-empty for a prime p < 00, then one can show (see the proof
of Proposition 7.2 for example) that V(P represents 7. This implies Diff(C, T) = {p}.
Similarly, the proof of Theorem 7.1 shows that if the Green current G(7, ¢, v) is non-
vanishing, then V (° represents T and hence Diff(C, T') = {oo}.

In the situation of part (2) of Theorem 1.2, when Diff(C, T) = {oc}, the local Whit-
taker function Wr (g, 0, ®,) vanishes, and hence

Ep(r.0,1(9) ® @) = [ | Wr.p(s.0.A(9p)) x Wy (2.0, D).

p<oo

The derivative of the archimedian Whittaker function is given by the following arithmetic
local Siegel-Weil formula for the archimedian local height function:

1
hteo (x) = 5/1353()6,1)

on V*(R), which is our second main result (see also Theorem 5.2). The contributions
from the non-archimedian places can be computed by means of the local Siegel-Weil
formula (see Propositions 2.2 and 2.3) .
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Theorem 1.4. Let x € V*(R) be such that the Q(x) = T is invertible. Then
htoo(x0'/%) - g7 = =By o0 det() /% - W} (g7, 0, @), (1.5)

where s
("=~ DL T(%FY)
2n72(2n)n(n+3)/4

Bn,oo =

In the special case m = 0 Theorem 1.4 was proved in [KRY1], for m = 1 in [Ku2],
and for m = 2 in [YZZ]. For the related case of Shimura varieties associated to unitary
groups of signature (m, 1) it was proved in [Liu]. But the argument of [Liu] does not seem
to generalize to the case of orthogonal groups considered in the present paper. Recently,
Garcia and Sankaran [GaSa] employed Quillen’s theory of super-connections to obtain a
different proof of Theorem 1.4.

In all these works it is first noticed that because of the equivariance of &j (x, z) with re-
spect to the action of H (R), the local height function ht, (x) only dependson 7' = Q(x).
Then a crucial step consists in proving that hts (7T') := hty(x) is invariant under the ac-
tion of SO(n) on Sym, (R) (respectively U(n) on Herm, (C)) by conjugation. Hence it
suffices to prove the claimed identity for diagonal T'. In this case the star product reduces
to a single integral, which can be related to the derivative of the Whittaker function by a
direct (but rather involved) computation.

Our approach is different. For general non-singular 7', we consider the recursive for-
mula for the star product (see (5.5)) and compute its ‘main term’ by means of the classical
archimedian local Siegel Weil formula (see Theorem 5.4). The result turns out to be the
sum of a main term, which is the desired right hand side of (1.5), plus a boundary term,
given by the derivative of a genus n — 1 Whittaker function. By an inductive argument,
the boundary term cancels against the remaining terms of the star product. This approach
does not require proving SO(n)-invariance of the local height function at the outset. We
obtain this invariance a posteriori from the obvious invariance of the Whittaker function.

Finally, we describe our approach to part (3) of Theorem 1.2. When Diff(C, T') = {p}
for a finite prime p # 2, the local Whittaker function Wr (g, 0, ®,) vanishes, and hence

E7(1,0,1(9) ® @) = Wz ,(1,0, A(9p)) ¥ l_[ Wrq (1,0, M(@q)) X Wr,00(7, 0, @p).

q <00

q#p
The derivative of the local Whittaker function at p is given by the following arithmetic
local Siegel-Weil formula, which is our third main result paralleling Theorem 1.4. The
terms away from p can again be computed by means of the local Siegel-Weil formula.
Recall that ¢ = ¢ € S(V"(Ay)) is the characteristic function of L.

Theorem 1.5. Let p # 2 be a prime number and assume that Z(T , ¢) (IF‘p) is finite. Then
forx € Z(T, ¢)(IFp), the local height ht,, (x) is independent of the choice of x and is given
by

Wy (1,0, 4(¢))

WTu,p(] ’ 07 )“((p)) '
where T" is any unimodular matrix in Sym,, (Z,) (i.e., detT" € Z; ).

ht,(x) -log p =
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This theorem will be restated and proved as Theorem 6.9. As in the archimedian case
the proof is given by an inductive argument. According to Soylu’s condition mentioned
above, Z(T, (p)(IF‘p) being finite implies that T is Zp-equivalent to diag(Ty, 72) where
Ty is Zp-unimodular of rank n — 3. On the Whittaker function side, we will prove the
following recursive formula (see Proposition 6.8):

Wi, (1,0,0eL,)) Wi (1,0, AeL, )
Wru p(1,0, AgL,))  Wru (1,0, A(gr, )

(1.6)

Here T* and T,' are unimodular symmetric Z, matrices of order n and 3 respectively, and
L, is a unimodular Z,-quadratic lattice of rank 4 with

L,=M,® Lz,

for a unimodular Z,-quadratic lattice M}, , whose quadratic matrix is given by 7.

This suggests a similar recursion for the local height function ht,(x). Soylu proved
that the abelian variety associated with x is supersingular. The local height function de-
pends only on the associated p-divisible group, and it can be computed using the p-adic
uniformization of the supersingular locus by a Rapoport—Zink space (see Section 6). The
required recursion formula for the local height function is proved by employing recent
work of Li and Zhu ([LZ, Lemma 3.1.1], see Corollary 6.5).

By the recursion formulas, the proof of Theorem 1.5 is reduced to the case n = 3
in the local situation, where L = L3 j, is a unimodular Z-lattice of rank 4 and T =
Tpisa _symmetric Zp-matrix of rank 3, and x = (x1, x2, x3) determines a point in
Z(T, ¢)(F,) on the associated Rapoport—Zink space. This turns out to be exactly the
local case considered by Kudla and Rapoport in their work on (twisted) Hilbert modular
surfaces [KRap1].

This paper is organized as follows. Section 2 contains some preliminaries and ba-
sic facts about Whittaker functions. Moreover, we state the classical local Siegel-Weil
formula with an explicit formula for the constant of proportionality. In Section 3 we
derive a variant of the archimedian local Siegel-Weil formula for integrals of certain
Schwartz functions over the hermitian symmetric space of the orthogonal group, again
with explicit constant of proportionality. The main result, Theorem 3.1, is one of the
key ingredients in the proof of Theorem 1.4. In Section 4 we investigate the asymptotic
behavior of the archimedian Whittaker function as one of the radial parameters goes to
infinity. Our analysis relies on Shimura’s work on confluent hypergeometric functions
[Shi]. The main result, Theorem 4.8, which is of independent interest, is the second main
ingredient in the proof of Theorem 1.4. Section 5 is devoted to the proof of the archi-
median arithmetic Siegel-Weil formula, Theorem 1.4. In Section 6 we recall some facts
about the Rapoport—Zink space for GSpin groups from [HP] and [So] and prove the non-
archimedian local arithmetic Siegel-Weil formula, Theorem 1.5. Finally, Section 7 con-
tains the proofs of our main global results, Theorem 1.2 and the refinements described in
Remark 1.3.
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2. The local Siegel-Weil formula

In this section we introduce the basic local set-up and recall the local Siegel-Weil formula
(see Theorem 2.1). We make the constant involved explicit in Proposition 2.2.

2.1. The basic local set-up and local Whittaker functions

Let F be a local field or the ring of adeles of a number field, and let ¥ be a non-trivial
additive character of F (or adele class character). Let P = N M be the standard Siegel
parabolic subgroup of the symplectic group Sp,, (F) given by

el )

N = {n(b) = (1 l{) ‘ be Symn(F)}.

(0 =1
o=(00)
Let Mp,,  be the metaplectic cover of Sp,, (F), identified with Mp,, » = Sp,(F) x {£1}

via the normalized Rao cocycle cr(g1, g2) given in [Rao] (with the minor correction in
[Kul, p. 379]):

ae GL,,(F)},

We also denote

[g1, €11lg2, €2] = [g182, €1€2¢R (g1, 82)].

For g € Sp, (F), we will simply denote g = [g, 1].
Let (V, Q) be a non-degenerate quadratic space over F of dimension /. Then there is
a Weil representation = wy y of Mp,, r on S(V") given by [Kul, p. 400]. In particular,

o ((n(b)e(x) = Y (tr(Q(x)b))¢ (x),
o (m(@)¢(x) = xv(deta)y (deta, 1v) ' (deta, -1}~V |detal*¢ (xa),

wW)$(x) =y (V") /v MY (—tr(x, y))dyy,

where dyy is the self-dual Haar measure on V with respect to ¥, and y (V") =
y(¢ odet Q)™". Here y () and y(a, ¥) (for a € F*) are the local Weil indices de-
fined in [Rao, Appendix], and

det 0 =27 det V = det(L(e;, ¢))) € F*/(F*)?,
for an F-basis {eq, ..., ¢;} of V. Finally,
xv(@) = (a, (=D!"V2 det V) p

is the quadratic character associated to V. It is well-known that the Weil representation
factors through Sp,,(F) when [ is even. Since

y(a, 39)” = (@, = Dr,
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the formula for w(m(a))¢ above works for both even and odd /. From now on, let G =
Sp, (F) or Mp, r depending on whether n is odd or even, and let P be the standard Siegel
parabolic subgroup or the preimage of the standard Siegel parabolic subgroup. If F = R,
we let Kg C G be the maximal compact subgroup given by either

= (5 2)

or the inverse image of U(n) under the covering map (when G = Mp,, ).

For a character y of F*,let I(s, x) = Indg x| det|® be the induced representation.
A section ® € I(s, x) satisfies

k:a+ibeU(n)} =Un)

(deta)|deta| TP d (g, s) if G =Sp, (F),
®(n(bym(a)g, s) = {X BN . P
X(deta)y(deta, 51//) |detal* " d(g,s) if G =Mp, p,

where

pn=(n+1)/2.
For a symmetric matrix 7 € Sym,, (F), the Whittaker function of ® with respect to T is
defined to be

Wr(g,s, P) = f O (wn(b)g, )Y (—tr(Th))dyb, 2.1
Sym,, (F)

where dy, b is the self-dual Haar measure on Sym,, (F') with respect to the pairing (b1, b2)

— ¥ (tr(b1by)). It has the transformation behavior

Wr(n(bym(a)g, s, ®)

W’aTa(gvs7 CD) lfG = Spn(F)v

y(a, 29)Weara(g, s, ®) if G =Mp, f.

Here we have shortened y(a, %w) = y(deta, %1//) (and similarly for y (a)). We remark
that y (a, %) = 1 when deta > O and F = R.

Lets;, = (I —n — 1)/2. Then there is a G-equivariant map
AS(VT) = I, xv),  Me)(g) = (@(8)9)(0). (2.3)

We will also denote by A(¢) the associated standard section in I (s, xy) with A(¢)(g, S1.n)
= A(¢)(g). Assume that/ = n + 1. Then a formal unfolding suggests that there is a Haar
measure dh on H = SO(V) such that for all ¢ € S(V"),

Or(w(g)¢,dh) = C - Wr(g,0, 1(9)),

where C is some constant which is independent of T and ¢, and

= Y (te(Th) x (@) al~* - { (2.2)

Or($. dh) = / (%) dh
H(F)

if there is x € V" with Q(x) = T (otherwise set the orbital integral to be zero). This is
the content of the so-called local Siegel-Weil formula which we will describe in the next
two subsections. In particular, we will determine the constant C.
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2.2. Kudla’s local Siegel-Weil formula

In this subsection we review the local Siegel-Weil formula given in [KRY2, Section 5.3],
following a general result in [Ra, Chapter 4]. Let the notation be as in Section 2.1, and
assume dimV =n + 1. Let

Q: V"= Sym,(F),  Q(x) = 5((xi, %)), 24
be the moment map. Let Vi, be the subset of x € V" with det Q(x) # 0, and let

re

Symng (F) be the subset of T € Sym,, (F) with detT # 0. Then Q induces a regular
map from Vg, to Symy, (F).

Put a(n) = n(n+1)/2. We let a be a gauge form on V", that is, a generator of
(A2¢myny* (a top level differential of the topological vector space V"), and let 8 be a
gauge form on Sym, (F), i.e., a generator of (A2 (Sym,, (F)))*.

Fix an x = (x1,...,x,) € Vr’ég with Q(x) = T. If we identify the tangent space
Ty (Vr’;g) with V", then the differential d Qy is given by

dQ,(v) = %((x, v) + (v, x)) € Sym,(F), veV"

Let
Je 1 Sym,(F) — V", ji(u) = $x0(x) " 'u. (2.5)

Then d Q, o jy(u) = u, and we have the decomposition
T, (Vi) = Im(ji) @ ker(d Q).

Now choose any u = (41, ..., Uqmn)) € (Symn(F))“(") with B(u) # 0. We define an

a(n)-form v € (A4 VM)* on Vrgg as follows: for any t = (t1, ..., tan)) € (Ve | we
put

V(1) = a (), DB~ (2.6)

This quantity is independent of the choice of u. Then [KRY?2, Lemma 5.3.1] asserts that

a=Q0%PB)Av, 2.7

v =(h, g)*v, (2.8)

for h € SO(V) and g € GL,, where SO(V) x GL, acts on V" via (h, g)x = hxg’l.
Moreover, v defines a gauge form on Q_1 (T) if we identify kerd Q, with the tangent
space TX(Q_l(T)) of Q_I(T). Finally, using the isomorphism

iy :SO(V) = Q0 NT), iy(h) =hx (2.9)

(here dim V = n + 1 is critical to ensure that the pointwise stabilizer H, of x is trivial),
we obtain a gauge form i} (v) on SO(V), which we will still denote by v for simplicity.
The key point (see [KRY?2, Lemma 5.3.2]) is that this gauge form v does not depend on T
or x, which can be seen by (2.8).

This gauge form v gives a Haar measure dh = d,h on SO(V). Let dyx be the Haar
measure on V" associated to o and dgT be the Haar measure on Sym, (F') associated
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to B, and let dyx and dy T be the self-dual Haar measures on V" and Sym, (F) with
respect to ¥, respectively. Then there are constants c(«, ¥) and c(8, ¥) such that

dox = c(a, Y)dyx, dgT =c(B,¥)dyT. (2.10)

Finally, we can state Kudla’s local Siegel-Weil formula, which is [KRY?2, Proposition
5.3.3] (although only stated for n = 2 there, the proof goes through for general n without
any change).

Theorem 2.1 (Local Siegel-Weil formula). Given a gauge form a on V" and a gauge
form B on Sym,, (F), let d,h be the Haar measure on H(F) associated to o and B as
above. Then for any ¢ € S(V"), T € Sym,rfg(F), and g € G,

Or(w(g)p,dvh) = C(V,a, B, ¥) - Wr(g, 0, A(9)),

where

cla, )

CcC(V,a,pB, =
Vo B = et )

and y (V") = y(V)" by [Kul, Lemma 3.4].

We remark that our C(V, «, B8, ¥) is the reciprocal of the same notation in [KRY2].

2.3. Explicit construction

Let e = (e1,...,e,4+1) be an ordered basis of V and put J = Q(e) = %((e,-, ej)) €
Sym, . (F). When F is p-adic, let L = @ Ore; be the associated Op-lattice. Using
this basis, we identify V with F n+1 (column vectors) and V" with Mpi1n.

Let E;; denote a matrix whose (ij)-entry is one and all other entries are zero (we do
not specify the size of the matrix). Then {E;; | 1 <i <n+ 1,1 < j < n}is a basis
of V". Let de;; be its dual basis, and let & = /\;; de;; be the gauge form on V" (up to
sign, which does not affect the associated Haar measure) with

a((Eij)) = a(Er, Ena, ..., Epg10) = 1. 2.11)

Notice that Y;; = E;; + Ej; is a basis of Sym, (F) (1 <i < j < n), and let dy;; be its
dual basis. Let B = /\;; dyi;j. Then (up to sign)

ﬁ(Y]IaYIZa”"YI’l,n)Zl- (212)

Proposition 2.2. Let J, o, and B be as above, and let d,h be the associated Haar mea-
sure on H(F) = SO(V)(F). Take ¥ (x) = e(x) = ¢*™* when F = R and assume that
Y is unramified when F is p-adic. Then

Or(w(g)¢,dvh) = C(J) - Wr(g, 0, 2(¢))
forallp € S(V*') and g € G. Here

C(Jy = y(vH~ 2D der 20y 2.

Finally, when F = R and V has signature (p, q), then y (V") = e(n(q — p)/8).
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By the proposition, we see that d,,s depends only on |det(2J)|r. For this reason, we will
sometime denote d,h by djh or dph in the p-adic case. We also write C(L) = C(J) in
the p-adic case as det(2J) = det L.

Proof of Proposition 2.2. First assume that F is p-adic. Let Of be the ring of integers
of F.Let L = @Ore; = O C V = F"and f = char(L") = char(M,11,,(OF))
€ S(V™). Then the Fourier transforms of f with respect to dyx and dy x are given by

fu(X) = / ¥ (—tr2'xJ 2) [ | dzij = char(L"")(X),
Mn+l,n (OF)

ﬁ/, (X) = / Y (—tr(2'XJZ))dy Z = char(L"")(X) vol(L", dyx),
My 41.2(OF)

where L’ is the dual lattice of L with respect to 1. Since dy x is the self-dual Haar measure
on V with respect to ¥, one has

VOI(L, dyx) = |det(2J)] /.

Consequently, c(a, ¥) = |det(2])|;n/2.
Next, for r = (t;;) € Sym, (F), dgt = |2| " []d#;. Let f = char(Sym, (OF)). Then

fp) = /S on Y (=) 21" [ [ (—yutio) diii | | ¥ (=2yijt:7)dt;
ym, (UF i

i<j

= 21" [ [ char(OF) (yii) [ | char(OF) (vij).-

i i<j
On the other hand, if dy ¢ is the self-dual Haar measure on Sym,, (F') with respect to v,

then
vol(Sym,, (OF), dyt) = 23" D/,

and
fw(y) =/ Y (—tr(yr)) dyt
Symﬂ(OF)

= vol(Sym, (OF). dy1) [ [ char(Or) (yii) [ | char(3OF) (3i)-

i<j

So c(B, ¥) = 217" V/* Now it is clear that C(V, , B, ¥) = C(J) as claimed.

Now assume that F = R and v/ (x) = e(x). To compute the quantity c(«, ), we write
J ='Pdiag(ay, ..., an+1)P and denote |J| = 'P diag(|a1|, .. ., |an+1]) P. We consider
the Schwartz function on M+ ,(R) given by

Flx) = e 2 e(xldIx) eonZ\ailiij

where we write Px = (X;;). Then its Fourier transform with respect to dyx = [1dxi 18
falx) = / FMe@xIy) [ [dyiy =272 (det 7|77 f (x).
It’ln-%—],n(R

and so ¢(o, ¥) = |det(2J)|~"/? as claimed.
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To compute c(B, ¥), notice that dgT = 27" []; dt;; ]_[i<j dtjj for T = (1;;) €
Sym,, (R), and consider the Schwartz function on Sym,, (R) given by

F(T) = e &2 i 1),

Then its Fourier transform with respect to dgT is

fsb) = f FW (= w(Th) ds T
Sym,, (R)

b2 : 2 _ 2 . 2
— " | |e nbj; / e—n(tjj—i-lbjj) dtjj | | e znb/kf e—2n(tjk+lbjk) dtjk
; R ; R
J Jj<k

— anfn(nfl)/4f(b).

This shows the equality c¢(8, ¥) = 2—n—n(=D/4 Wwe again have C(V, a, 8, ¥) = C(J)
as claimed. The formula for y (V") is given by By (w) in [Kul, (3.4)]. O

The following proposition shows how to compute the Haar measure d,,/ in some cases
and will be used in Section 7.

Proposition 2.3. Let F be a p-adic local field with p # 2 and a uniformizer w, and let
Y be an unramified additive character of F. For a lattice L over OF, let K = SO(L)
be the stabilizer of L in SO(V)(F), where V. = L ®@,. F. Let dih be the Haar measure
on H(F) = SO(V)(F) defined above.

(1) When L is unimodular of rank n + 1, we have
VOI(KL s dLh)
C(L)

Sfor any unimodular symmetric matrix T € Sym, (OF). Here ¢; = char(L").
(2) Assume L = Ly @ Lo with Ly unimodular of rank n — 1 and Ly = (Og, w Ng/F),
where E is the unique unramified quadratic field extension. Let T = diag(Ty, ) with
T, = %((ei, ej)) for some Op-basis {e1, ..., e —1} of L1. Then
VOI(KL , dLh)
C(L)
In both cases, C(L) = C(J) is given by Proposition 2.2.

= Wr(1,0, 2(¢1))

= Wr (1,0, 2(¢r)).

Proof. We prove (2) using Proposition 2.2 with ¢ = ¢, and leave the slightly easier (1)
to the reader. Choose a basis {e,;, €,,41} of Lo so that Q(ae, + be,+1) = 7(a? + €b?) for
some € € Op.Lete = (eq,...,e,) € L". Then Q(e) = T. We claim that

Kr:=1{he H(F) | he e L") = Ky.

Clearly, K; C Kr. We just need to prove that he,y1 € L for h € Kr. In this case,
hL; C L is unimodular, so L = hL{ & My, where My = L N (hLl)J- is a rank 2 lattice
with det My = det Lo = en2. Write

Mo = Opéy + Opént1,  Qxéy + yen1) = er"x? + ea®y?
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with €1€3 = € and non-negative integers a; satisfying a; + ap = 2. Since
hep = xé, + yénp1 € LN (hL)* = Mo,
we have x, y € Of and
7 = N(ep) = N(hep) = e x% + exr?y?,
which implies a; = a; = 1. Now write
heyy1 = ae, + béyy1, a,becF.

Then
e = N(eg41) = N(hept1) = n(e1a® + e2b?),

ie.,
€1€ =Ng/p(e1a + v/ —€b),

which implies €ja + /—€b € E', which is integral over Of. So a,b € Of and
h(en+1) € L. This proves Kt = K. Applying the local Siegel-Weil formula to ¢ = ¢,
we have

/ ¢r(h~'e)drx = C(L) - Wr(1,0, A1)

H(F)

The left hand side is equal to vol(Kr, dzx). So we have
vol(Kz,drh) = C(L) - Wr(1,0, A(¢r)

as claimed. O

We remark that the Whittaker functions involved in the above proposition have explicit
formulas: see Section 7.

Now we describe v and d,,h = djh more explicitly by choosing the basis e and thus
J nicely, i.e., we assume J = diag(ay, ..., ay+1). It will be used in the next section.

Let h = so(V) be the Lie algebra of SO(V). In terms of coordinates with respect to
the basis e, one has X = (x;;) € hif and only if ’XJ + JX = 0, i.e., a;jx;j + ajxj; = 0.
Hence we have the following lemma.

Lemma 2.4. Let X;; = a;E;j —a;Ej; for1 <i < j < n+ 1. Then {X;;} gives a basis
of b as an F-vector space.

Proposition 2.5. Let the notation be as above. Then

v(X12, X135 -+ Xput1) = £1.
Proof. We choose

x=1(e1,...,e,) = <g’) ev”
and T = Q(x) = diag(ay, ..., a,). Then

B (Yip) = 3xT71Y; = a7 By +aj_lei)-
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Recall thati, : H — Q~!'(T), h — hx. Hence the associated map on the tangent spaces,
diy 1 h — V4W s given by

. Xij if j <n,
di(Xij) = Xijx =" . J
—aiEyy1; ifj=n+1.
Therefore,
A @oxip)a( N\ i) == A Ej
1<i<j<n+1 1<j<n 1<i<n
1<j<n+1
and

V(AX;) = a((lgq/ém(dix)(xij)) A (1§J/\5 jx(Yij))>ﬂ(/\Yij)_l

::i:oc( A E,»,-):il.

1<i<n
1<j<n+1

This concludes the proof of the proposition. O

3. The local Siegel-Weil formula on a hermitian symmetric domain

Let V be a quadratic space over R of signature (m, 2), and let H = SO(V). Let D be
the corresponding hermitian domain, which we realize as the Grassmannian of oriented
negative 2-planes in V. The purpose of this section is to prove Proposition 3.1, a variant
of the archimedian local Siegel-Weil formula involving an integral over D. Throughout
this section we fix the additive character ¥ (x) = e(x) of R and assume thatn = m + 1.
Recall that p, = (n + 1) /2.

Let e, f € V be isotropic vectors such that (e, f) = 1, and let Vo = (Re + Rf)*
C V. Then Vy has signature (m — 1,1) and we have the Witt decomposition V =
Vo + Re 4+ R f. The hermitian symmetric domain D can also be realized as the tube
domain

H={z=x+iyeVoc| Q) <0} (3.1
via the isomorphism
H—>D, z+ RX(wk)+RI(w(z),
where
w(@) =z+e— Q@) f € Ve.
Then H (R) acts on H by linear fractional transformations, characterized by
hw(z) = j(h,z) - w(hz)

where j(h, z) denotes the automorphy factor H(R) x H — C*, j(h, z) = (hw(z), f).
The map z — w(z) can be viewed as a section of the tautological bundle over D. The
Petersson norm of this section is —%(w(z), w(z)) = —(y,y). Hence

Q = dd log(—(y,y)) (3.2
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defines an invariant (1, 1)-form on H = D, the first Chern form of the dual of the tauto-

logical bundle on D equipped with the Petersson metric. Here d¢ = L (5-9). According

— Ani

to [Ku4, Proposition 4.11], in the coordinates of #, it is given by

(.d2) A (3. d2) Waﬁv. (33)
(. »)? 23,3

Moreover, it can be obtained from the Kudla—Millson form ¢g s (x, z) (see (5.2)) by

X 1 1
Q =dd" 10g<—§(a)(z), a)(Z))) = _2_711(
Q=9xknu0,2), 349

an identity which we will only need in Section 5. Notice that —<2 is a Kéhler form, and
therefore (—S2)" is a positive invariant top degree form on .

Proposition 3.1 (Local Siegel-Weil formula on D). Let ¢o(x,2) € S(Vg) ® C*(D)
With ¢oo(hx, hz) = ¢oo(x,2) for all z € D, x € Vy and h € H(R). Then A(¢poo) is
independent of z, and

/Dqsoo(x,z) Q" = Byoo - Wr(1, 0, 2(¢o0))
with T = Q(x) and

(") — DT D (5)
n—=2 (271)"("+3)/4

Bn,oo =

In particular, B =—L an
[7 b} 2,00 4«/57{2 d

By o _n I'(on)
By-1,00 (27 )P

(3.5)

The basic idea of the proof is simple and natural: we relate the gauge form on the tangent
space p of D to the differential form Q™ precisely. The actual calculation is a little long
and technical, and can be skipped on first reading. We will also provide an alternative
proof in Section 5.5.

3.1. The differential Q™ and the gauge form v

Lete = (e1, €2, ..., em, ey, en+1) be an ordered basis of V with quadratic matrix
1 In 0
J = 7((ei, €)) = ( 0 —12)-

We write V. (respectively V_) for the subspace generated by the ¢; with 1 < i < m
(respectively i = n,n + 1). Let K+ = SO(V41). Then Koo = K4 x K_ is a maximal
connected compact subgroup of H(R). In the notation of the last section, a¢; = 1 for
l1<i<manda; = —1fori =n,n+1.
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Let h = so(V) be the Lie algebra of SO(V). Then X € b if and only if X = (,’)‘(12 §§§)
with 'X| = —X; € My,, X3 = —X3 € M>, and X2 € M,, 2. In other words, one has a

decomposition
h=¢t Ot Dy,
where £ is the Lie algebra of K+ = SO(V.) given by matrices satisfying ‘X = —X
(respectively ‘X3 = —X3).
It is easy to see that the gauge form v given in Proposition 2.5 has the following
decomposition (up to sign):
V=1Vy AV_ AV, 3.6)

where vy, v_, and vy, are the gauge forms on K, K_, and H(R)/K,, which are char-
acterized by

Vi(X12, s X—1m) = 1,
vo(Xpnt1) =1, 3.7
Vp(Xln» Xl,n+17 vy X, Xm,n+l) =1.

Now we deal with the relation between ™ and vy,. We use a tube domain realization
for D as above. To this end we define a different basis ¢’ of V as follows. Let e =

%(el +ent1), f = %(el —eyyr1),and e’ = (e,, €2, ..., en, e, [).Its associated matrix is
-1 0 0 0
J— 0O I,.1 0 O
o o o}
1
0 0 5 0
We put
n
Vo =EPRe; =R", (3.8)

i=2
2= ziei ="(Zn. 22,2 Zm)

with quadratic form Q(z) = ) eiz,.z with €; = 1 depending on whetheri < n ori > n.
Then V = V& Re & R f is a Witt decomposition as considered before. We write H for
the corresponding tube domain realization of D as in (3.1). We will also identify V with
R"*+! and V" with M, 1 ,(R) with respect to the basis e’:

t
v= Y ziei+ve+vif =" 22, 2m v, 1) = [Vl

2<i<n

x=(X,..., %) = [x]g’ € Mn-l—l,n(R)-

Similarly, we will use [v], and [x], to denote the coordinates of v and x with respect to
the basis e when necessary. For y € H(RR), we denote [y ]. and [y ], for its coordinates
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with respect to the bases e and ¢’ respectively. Then one has

0o 0 1 0
- 0 Iy-1 0 O

bl = Al [le =AlA™. A=|] "o o (3.9)
1 0 0 -1

We now compute the action of H(R) on H more explicitly. For 2 € H (R), write

/211 1?12 f~1~13 f1~14
Hy Hyp Hy Hy

h31 Hzy  hzs  hig

hat Hyp haz  has

’

[h]y =

where all the I:Ii j are matrices, all fzi s are numbers, and 1:122 is a square matrix of order
m — 1. Then for z = '(zn, 22, ..., Zm) = (%) € H, we have

anlll + ﬁlzg‘l‘ 513 — f1~14Q(Z) )
ZnHo1 + Hnz + Hy3 — Hu40(2)z)’
J(h, 2) = zuh31 + Haz + h3z — 134 0(2).

h(z) = j(h,z)"! (

Fixing the base point z = ie,, € H, we have the isomorphism

}:mi +}~l~13 —534

L, HR)/ Koo =H, ht+ h(z)= .
z ()/ 00 (2) <H211+H23—H24

) (h31 + hazi — hag) ™"
(3.10)

This induces an isomorphism between p and the tangent space T;(H) = V¢ (extending
to the tangent bundle, too):

Al :p= Voo, X X(2) = (mf ’”45”31> +i (x” S +x34> RNERT)
Xo3 — Xo4 Xo1

where %; and X ij are the coordinates of X with respect to ¢’ just as for 4. In terms of the
coordinates with respect to e, one has

0 0 X13 X4

0 Op—1m—1 X2z Xoa
Xle=|. " x o o |

13 23

X14 Xt24 0 0

and by a direct direct calculation using (3.9) we obtain

—i(x14 + ix13))

. 3.12
Xo4 +iX03 (3.12)

dl.(X) = (

So we have proved the following lemma.
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Lemma 3.2. The isomorphism dl, induces
dl)*(dxo ANdys A -+~ Adxy Ady,) = Fvp,
where (dx; + idy;) is the dual C-basis of the basis (ej)2<j<n of Vo C.
Recall the formula (3.3) for the H (R)-invariant (1, 1)-form .
Lemma 3.3. Using the above notation, we have
m! Ni—pdxj Adyj
@moym (=)™

Proof. Using the coordinates of (3.8), one sees

1 1 1
Q= ——— €:vividz: ANd7; _ dz: N d7:
Zm'( 0(y)? E €i€jYiYjaz; Z,+2Q(y) E €4z Zz)

(—" =

1 1 1
SRR NS
2mi ( o2 20
where o and B have the obvious meanings. Notice that

n
2

o= Z €i€jereryiyiyiyr - o(i, j, k, 1)
ij k=2

with

a(, j, k1) =dzi Ndzj Ndzg Ndz.

Since «(i, j, k, 1) = —a(k, j, i,1), we have a? = 0. This implies

4wy Q)

It is easy to check that

n

" = —m! /\de Adzj, P = —(m— 1)!261/31,

j=2 1=2

where f; is /\7_, dzj A dz; with dz; A dZ; missing. So
n n n
an Bt =—m =Y ey \dz Adzi=—m— D0 )\ dz; A dz,
_ =2 j=2

and therefore

m_ (VN A e m
¢ _< 47fiQ(y)) mt [\ dzj 3 = (2nQ<y)>m/\dx’Ady’

J=2

as claimed. O

i, dxjndy; . . . .
%W is the H (R)-invariant Haar measure on A associated to

/\7:2 dx;j A dyj. So we obtain the following proposition from the above two lemmas.

It is well-known that
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Proposition 3.4. Let the notation be as above and z = ie, € H. Then

m!
dl) (=)™ =+ .
@) (=" = vy
Proof of Proposition 3.1. First,letz = ie, € H asin Proposition3.4,letv = vy Av_Avp
be asin (3.6), and let d, h, dh, dh_, and dyh be the associated Haar measures. Then, by

Proposition 3.4,

/ boo(h ™' x, 2) dyh = vol(K, dh,) vol(K_, dh_) hoo(x, hz) dyph
H(R) HR)/Koo

@m)™ m
, / Poo(x, 2) (—)
S

m
Sk / foo(, 2) Q.
m! Jp

= vol(K., dh) vol(K_, dh_)

= (=" vol(K4,dhy) vol(K_, dh_)
On the other hand, Proposition 2.2 gives
/ Poo(h ™' x,2) dyh = C(diag(ln, —12)) - Wr 0o (1, 0, A(¢hoo)).
H(R)
Consequently,
(=D"m!C(diag(Ilm, —12))

= @r)"vol(K+, dhy) vol(K_, dh_)

Applying Proposition 2.2 to K4 = SO(V,) and ¢ = e~ 27" 2+ one sees by Propo-
sition 4.3 that

vol(K 4, dhy)e ™™= = C(L,)Wy, | 0o(1,0, @y 2)
(_Zn,i)m(m—l)/2 orm—1)
Cpu—1(m/2) ’

n,oo

= C(Im)

where I',,(s) is given by (4.1). We obtain
(_Zni)m(m—l)/Z 2m—1n,m(m+l)/4
Tw-1(m/2) T[0T ()

Similarly, vol(K_, dh_) = 2m. Plugging these formulas into that for B, ~, one proves
Proposition 3.1. O

vol(K1, dhy) = C(Iy)

We remark that the above calculation of vol(K ., dhy) has the following well-known
formula as a consequence.

Corollary 3.5. Letl > 1 be an integer, and let

SO;(R) = {g € GLy(R) | g'g = I, detg = 1}
be the standard special orthogonal group. Let v; be the gauge form defined as vy for
K+ = S0O,,(R), and let dh; be the associated Haar measure on SO;(R). Then

pl=1,10+1)/4
vol(SO;(R), dh;) = S
k:OF(T)
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4. Asymptotic properties of Whittaker functions

Throughout this section we consider the local field F = R, the additive character ¥ (x) =
e(x), and the group G = Sp,, (R) or Mp,, . We investigate the asymptotic behavior of the
archimedian Whittaker function for G as one of the radial parameters of the Levi subgroup
M goes to co. The main results are Theorem 4.8 and Corollary 4.11. Our analysis is
based on Shimura’s work on confluent hypergeometric functions [Shi]. We fix a quadratic
character x of R* and a half-integer k € p, + Z (not necessarily equal to p,) satisfying
the compatibility condition

(=D = x(—=1) ifn=1 (mod?2),
K=1x(=1 ifn =0 (mod 2).

We also fix a matrix T € Sym,, (R).

4.1. Basic properties of archimedian Whittaker functions

Let ® = &, € I,(s, x) be the weight « standard section, that is, the unique function
in I, (s, x) whose restriction to K¢ is the character det(k)“. Then the Whittaker integral
(2.1) can be expressed in terms of Shimura’s confluent hypergeometric function. As in
[Ku2, Lemma 9.3], the following result can be proved.

Lemma 4.1. Assume that det(T) # 0. Ifa € GL, (R) and y = a'a, then
Wr(m(a), s, ) = Cn,oo : |a|s+p”§(y» T, a,p),

where

Ey, T,a, B) = / det(x +iy) % det(x — iy)fﬁe(— tr(Tx)) dx
Sym, (R)

denotes Shimura’s confluent hypergeometric function of matrix argument [Shi, (1.25)]
with

a=3+pn+K), B=3(+py—K).

Here dx = /\igi dx;;j is the Lebesgue measure on Sym, (R) = R@+D/2 gnd Choo =
2n(n71)/4.

The normalizing factor C, ~, comes from comparing the measures dn and dx. Recall that
the Siegel gamma function of genus » is defined by

n—1
T(s): = / e "™ det(x)* P dx = g D/4 ]_[ T(s — k/2). 4.1
xeSym, (R) k=0
x>0
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Following Shimura, we define another special function by

n(y, T,a, B) = / e~ ") det(u + T)* P det(u — T)P " du. 4.2)

ueSym, (R)
u>—T
u>T

For all regular T, by [Shi, Remark 4.3], the integral converges when %i(«) > p, — 1 and
M(B) > pn — 1. According to [Shi, (1.29)], we have

M B—e)p=n(on=1) (D7 )P

5()’1 T’ a, ﬁ) = Fn(Dl)Fn(ﬁ) '77(2)’s7TT’ o, :3)’ (43)

and therefore
Wr(m(a), s, @) = cule, B) - lal* T - nQy, nT,«, B), where 4.4)
i”(ﬁ—‘x)z—n(ﬁ?n—l)(zn)npn

cn(@t, B) = Cnyo0 - Ty ()T (B)

Lemma 4.2. If S € GL (R), we have

n(SgS, h,a, B) = |S|**=*=Fy(g, Sh'S, a, B),
Wr(m(a), s, ®,) = |S|""Wigrs(m(S~'a), s, ).

Proof. The first assertion follows from [Shi, (3.1.K)]. The second assertion follows from
this by means of (4.4). ]

The special values of Eisenstein series and Whittaker functions at s = 0 will be of partic-
ular interest. Here we collect the facts that we will require.
Proposition 4.3. Assume that det(T) # 0 and k = p,,.
@) If sig(T) = (n — j, j) with0 < j < n, then
J+1

ordg—g Wr(m(a), s, ®,) > {TJ

(i) If sig(T) = (n, 0), then
_2ri nK2—n(n—1)/4
Wr (@, 0, &) = 20 (doty)*/2e—20 Ty
Ly (%)
Proof. According to [Shi, Theorem 4.2], the function

i AN
Fnj<,3—§> Fj(Ol—T) nQ2y,nT, a,p)

is holomorphic for («, B) € CZ. Hence, in view of (4.4), Wr(m(a), s, ®,) is equal to a
holomorphic function in a neighborhood of s = 0 times the gamma factor
Luej(B—=J/2)
L.(8)
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Therefore, the first assertion follows from (4.1) by working out the vanishing order of this
gamma factor.

To prove (ii), we use [Shi, (4.35.K), (4.12.K), (4.6.K)] to see that for sig(T) = (n, 0)
we have

(g, h, pn. B) = Tn(B) det(g) Pe &N,
By means of (4.4) we get

Wr(m(a), 0, @) = cu(pn, B)lal* P nQ2y, T, pn, B)ls=0
(—27Zi)np" 2,,1(,1,1)/4
N I'n(on)

where y = a ‘a. This proves the proposition. O

(det y)p,,/2e—27r Ty ,

Remark 4.4. Assume that sig(7) = (n,0) and k = p,. Then with the constant B, ~ of
Proposition 3.1 we have

Bn,oo -Wr(1,0, d,) = _26*271 trT.
Later we will also need the following lemmas.

Lemma 4.5. If f is a measurable function on Sym, (R) and a € GL,,(R), then

/ f(ab'a)db = |a| =P / f)db.
Sym,, (R) Sym,, (R)
Lemma 4.6. If S € Sym,, (R) is positive definite, then

/ e VSV gy = /2 det(S) " V2.

Here dv denotes the Lebesgue measure on R".

Lemmad4.7. Let u = (rZ:z LL‘;) be a symmetric block matrix. Then the following are
equivalent:
(1) u >0,

2) uy >0anduy > upp uf]ulz,
B3) up >0anduy > uyp uz_l uis.
In this case
det(u) = det(ur) det(uz — "uiouy 'u12) = det(uz) det(uy — uppu; ' 'ur2).

Proof. This is a direct consequence of the Jacobi decompositions
up  upy 1 0\ [u; 0 1 ul_lulz
iy wy ) \'ui'u) 1)\0 wr —"upuiun)\0 1)
up Uz _ 1 I,tlguz_l Ui —ulzuz_l up, 0 1 0
uyy  un 0 1 0 up J\Murpuy "y 1)

whenever the inverses make sense. See also [Shi, Lemma 2.1]. O
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4.2. Asymptotic properties

Here we investigate the asymptotic behavior of the Whittaker function Wr (g, s, ®,). We
assume that 7 € Sym, (R) with det(T) # 0, and a € GL,J{(]R). We put y = a’a. Recall
that
ny, T,a, B) = / e~ ") det(u + T)* P det(u — T)P P du.
ueSym,, (R)

u>-—T
u>T

We write T and the variable of integration « in block form as

(T T _(ur up
r= (’le Tz)’ "= (’ulz u2> (4.5)
with 71 e R, T; € Sym,,_;(R), and T12 € RIX@®=1) and analogously for u.

Theorem 4.8. Let y = (’i:z yylzz) € Sym,, (R) be a positive definite matrix in block form
as in (4.5). If T1 < 0 we have

lim ey ™ (y, T, o, ) = 0.

y1—>00
If T1 > 0 we have
lim TV yP @y, T, a, B)
y1—>00

= e 2yt BT (g 1 — p)w V2RI Dy, Ty @ — 172, B,

F_ i 0\ _ (T 0
“\o 1) \o Tz—’leTl_lTu'

Here we have added a superscript to n to indicate in which genus it is considered.

where

Remark 4.9. In the case n = 1 the function n© is to be interpreted as the constant
function with value 1. Then the theorem states

' if T <0,
lim oMyl My, T, ¢, p) = !

{ o (4.6)
Moo T(B)QT)* P if T) > 0.

On the other hand, for T € R* and y € Ry we have

T(@)U(a, @+ B,2|T|y) ifT <0,

(1)( T, a, B) = e 1Ty . |2T|01+/3—1 .
70, 1ha, B FB)UB.a+B.2ITly) ifT >0,

where U (a, b, 7) denotes Kummer’s confluent hypergeometric function [AS, (13.1.3)].
The asymptotic behavior of the Kummer function U(a, b, y) = y~* + O(y™*"!) as
y — oo (see e.g. [AS, (13.5.2)]) matches (4.6).
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Proof of Theorem 4.8. Step 1. We first consider the case where 9i(«x) > p, and R(B) >
on — 1/2. We put

_ _ 172
y/ _ <y1 1/2 >y(y1 1/2 ) _ ( 1 - y12/y1/ )
1 1 tle/yl/ 2

By means of Lemma 4.5 we rewrite the integral as follows:

NG, T, ) =e "7 / e N |y 4 2T |2 Pr |y PP dy

ueSym, (R)
u+2T>0
u>0
_ B _—uT
=y e y
—tr(uy”) w/yi un/y)? ahn -
X ey , 12 71 +2T NulPP du.
u12/y, us

12
( ui/yi Mlz/yl/

12
win/v? ua
u>0

>+2T>0

Here and throughout the proof we briefly write |u| for the determinant of u. In view of
Lemma 4.7, we obtain

ny. T,a,pB)
B —uTy — ey ui/y1 una/y? a—pn 4
=y et x @, y1, T)e™ ™ T Yo +2T1 JulP=Pn du,
ui2/y uz
2T,>0
uzt>é> 4.7

where x (u, y1, T') denotes the characteristic function

L if 5+ 270 — (52 + 2T0) (uz + 2T2) ™! l(f}—% +2T12) > 0,

Xy, 1) = 0 if“ 42T :‘/f 2T 2T) 11 (42 +27),) <0
if T+ 1—(ﬁ+ 12)(u2 + 2T») (J_yT+ 12) <0.

We now compute the desired limit as y; — oo assuming that the integration can
be interchanged with the limit. After that we will come back to the justification of the
interchange. We have

lim M1yl ™y, T, a, B)
y1—> 00
— e—2T12’y12—tr oy,

12 a—py
. — ) u ) u —
x / lim x(u, yp, T)e™ ") [ 1 200 ) Lop B gy
y1—>00 u2/y us
ur+27,>0
u>0
_ 2T yn—tTy, —uy—truzy2|(0 0 a=Pn B—p
=e e \(0u2)+2T| < |ulP"Prdu.
00
(Ou2)+2T>O
u>0

If 77 < 0, then the domain of integration is empty and the integral vanishes as claimed.
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If 71 > 0 and n = 1, then the remaining integral reduces to the Euler integral for the
Gamma function, which implies the assertion in this case. If 77 > 1 and n > 1, then we
use Lemma 4.7 again (but now the other of the two formulas) to write

(6 Lf)z) +2T |7 =21 - Jup + 2T — ‘2T T ' 2T)
= 2T - luz +2T>|.

Inserting this in the integral, we obtain

lim e"1yf ™ (y, T, o, B)

Y=

— t — _ e — ~ — _
— ¢ 2Ti2'yi2 erzyz(ZTl)Ot Pn / M1 rU2y? Uy +2T2|°‘ Pn |u|’3 on du

ur+2T>>0
u>0
— ¢ 2T yo—tr oy QT))% P
- — = |oH— — — —
X / eI 3y 1 21" TP g [P (uy — wnouy un2) PP du
u2+27~'2>0
upy>0

4.8)

u17u12u2*1 >0

We carry out the u-integration and employ Lemma 4.6 to get

lim e"1y7 0™ (y, T, o, )

y1—> 00

— Iyis— ) _
— ¢ 2Ti2'y12 thz}z(ZTl)Ol PT(B = pn + 1)
_ ) ~ _ _ _ =1t
X / e T2 yy 4 254 TP up PP / e M12% M2 dyys duy

u2+2T2>O upp €R*=1
uy>0

— ¢ 2T yn—tr Dy, QTHY P @=D2P (B — p, + 1)
x f em T2 |yy 4 25| |un| P2 Gy,

M2+2T2 >0
ur>0

Shifting the variable of integration, we get

lim ey ™y, T, o, B)
y1—>00
= exp(—2T12" yi2 — tr Tayy + tr Toyp) QT P *=V20 (B — p, 4+ 1)
x / e tu2y2 lus + f2|a—ﬂn71—1/2 Nup — f2|ﬂ—ﬂn71 dus.

uz+7~’2>0
M2—T2 >0

Since the latter integral is n("_l)(yg, Tz, o —1/2, B), we obtain the claimed formula.
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Step 2. We now justify the interchange of the integral and the limit in (4.7). To this end
we bound the integrand in

, 172 &—Pn
/ x(u, y1, T)e—tr(uy) ‘([ 141/)’11/2 ui2/y; > 42T . |u|ﬂ—,0n du 4.9)
o u2/y; uz
u >
: u>8

by an integrable function which is independent of y;. On the domain of integration and
where x (u, y, T) is non-zero, the quantity

wr/yi un/y’’
‘( D U 2T

ui2/y, us

= uy + 275 | - (“—‘ 2T — (ﬂ + 2T12) (tr + 2Ty)"! ’(m + 2T12>>
yi VATE VAT

is bounded by
luz +212[ - (u1 + 2|T1)

from above when y; > 1. Itis bounded by 0 from below. Moreover, for y; > 4y12y, Lt Y12

we have
= l 1 0
Y7200 »

o Ty’ < e i1/2-truay2)

and therefore

Hence, for such y; the integrand in (4.9) is bounded by
e—ul/2—tr(uzy2)(u1 +2|T; |)-‘H(0t)—/0n lus + ZTzlm(a)—Pn . |M|-‘H(ﬁ)—/0n

on the domain of integration. Here we have also used (o) > p,,. There exists a constant
C = C(a) > 0 such that this is bounded by
C. e_“'/4_tr(”2y2)|u2 + ZTzlm(a)—pn . |u|m(l3)—pn
locally uniformly in «. Note that this function is independent of y;. Consequently, by
the dominated convergence theorem, the interchange of the integral and the limit in (4.7)
follows if
I(yZ, TZ, @, 13) — / e—u1/4—tr(u2}’2)|u2 + 2T2|m(01)_ﬂn . |u|§ﬁ(ﬂ)—pn du (4]0)

ur+27,>0
u>0

converges. But this integral is of the same form as the one on the right hand side of (4.8).
The same computation shows that the integral is a constant times

22T (=D (L) 7 Gi(ar) — L, (B)).

This shows the convergence for fi(«) > p, and R(B) > p, — 1/2.
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Step 3. We now show that the formulas of the theorem actually hold foralla, 8 € C. If T
is positive definite, we use the functional equation of n under (¢, 8) — (o, — B, Ppn — @)
and argue as in [Shi, p. 281]. For general T, we then apply the integral representation
(4.24) in [Shi, p. 289] to deduce the assertion. ]

If a € R*, we let

d(a) = . € GL,(R). 4.11)
1
Theorem 4.8 implies the following asymptotic behavior of the Whittaker function.

Corollary 4.10. Let k = py. For general invertible T we have

2 —1
Tim 2T T g~ Wy (m(d (@), 5, By)

i~ Q)P
={ (/24 pn)
0 if Ty <0.

@ T2 Wi (1,5, @e1p) if Ty > 0,

Here the Whittaker function on the left hand side is in genus n and the one on the right
hand side is in genus n — 1 (which is clear from the size of the matrices in the subscripts).

Proof. Leta > 0. According to (4.4), we have
a . Wr@m(d(a)),s, ®.) =cu(a, B) -a’° - 7)(”)(261((1)2, 7T, a, B),
in(ﬁ*()l)2*?!(,0,171)/2(27.[)&0”

cn(a, B) = Ty ()T (B)

If 1 < 0, by means of Theorem 4.8 we obtain

—1
im AT TR g0 W (n(d (@), 5, i) = 0.

If 71 > 0, we find

lim 2N+ T0' T 4 =Pn Wy (m(d(a)), s, @)
a— o0
= cp(a, AT (B + 1 — p)n "=V Qr 1) 2= 2y =D 2 7Ty, a — 172, B).
Using (4.4) in genus n — 1, we see that

Wi, (1,5, ®e1/2) = a1 (/24 pu1,5/2) - 0" V@2, 7w T, = 1/2, B).
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Inserting this we get

lim 27 M@HT T Ti2) g =0n Wy (m(d(a)), s, Dy)

_ cn(a, ﬁ)r(ﬁ +1—pn)
Cn—1(5/2 + pu—1,5/2)

7 =2 ()82 Wi, (L s, @c_1/2).

Employing the relations

To i (BT1(B+ 1= py) =7~ " D2r,(B), (4.12)
Tu1(B+ pu-DT1(B + pn) =7~ ""V2T, (B + pu). (4.13)
we find
e, AT(B+1—py)  i7"2xw
n—1(5/2+ pu—-1,5/2)  T(s/2+ pn)
Consequently,

. 2, -1 _
Tim 2T T =0 Wy (m(d (@), 5, @)

i7" (2m)Pn

= TS/2°W" 1,,<D7 .
F(s/2+p,,)(n 1) 7, (L s, @i—1/2)

This concludes the proof of the corollary. O

Corollary 4.11. Let « = pp. If T has signature (n — j, j) with j > 1, then

2, -1
al_ig}o 2 (Ma+T T Tio) y=pn | W/ (m(d(a)), 0, ®,)

i~ (2m)Pn
= ['(on)
0 if T <0.

'W}z(l,O, Dy_12) if T1 >0,

5. The archimedian arithmetic Siegel-Weil formula

Here we use the archimedidean local Siegel-Weil formula (see Proposition 3.1), the
asymptotic behavior of Theorem 4.8, and some computations in the induced represen-
tation to prove Theorem 1.4.

We use the same set-up and notation as in Section 3. In particular, V is a quadratic
space over R of signature (m, 2), and k = (m + 2)/2. Moreover, D is the hermitian
domain associated with H = SO(V), realized as the Grassmannian of oriented negative
2-planesin V.
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5.1. Green currents and local heights

For z € D the orthogonal complement z is positive definite of dimension m. If x € V,
we denote the orthogonal projection of x to z and z* by x, and x,1, respectively. The
quadratic form

(X, x)z = (xp1, x,0) — (xz, xz)
is positive definite on V and called the majorant associated with z. We also put
R(x,z2) = —(xz, x;)
so that (x, x); = (x, x) + 2R(x, z). For 0 # x € V, we define
Dy={zeD|zLlx}={zeD| R(x,z) =0}

Then D, is a non-trivial analytic divisor of D if Q(x) > 0, and it is empty if Q(x) < 0
(which we will view as the zero divisor). Following [Ku2] we define the Kudla Green
function

£(x,z) = —Ei(—27R(x, 7)) - e &), (5.1)

where Ei(u) = [* o€ % is the exponential integral [AS, Chapter 5]. If x € V is fixed,
then £(x, z) is a smooth function on D \ D, with a logarithmic singularity along D,. It
has the equivariance property £(gx, gz) = £(x, z) for g € H(R). The differential form

oxm(x,2) =dd6(x, 2) (5.2)

extends to a smooth (1, 1)-form on all of D, where d¢ = #(8 — 9). It is the Kudla—

Millson Schwartz form which is Poincaré dual to the cycle e *®)D, [KM1], [Ku2].
More precisely, as currents on D, we have the identity

ddIE(x)] + e 8 = [prm (x)].

Because of the H (R)-equivariance of £(x, z), the (1, 1)-form

Q= pru0,2)

is H(R)-invariant on D. In fact, it is equal to the invariant differential form defined earlier
in (3.2).

For x = (x1,...,x,) € V" and z € D we also define the Kudla—Millson Schwartz
form in genus n as

O, 2) = ormx1, 2) A A @rm (X, 2).

With respect to the action of G through the Weil representation it transforms under the
maximal compact subgroup K¢ with the character det(k)“. If Q(x) € Sym,, (R) is invert-
ible, the form @Y% ,,(x, z) is Poincaré dual to the special cycle e ()P where

Dy=1{zeD|zLxjfori=1,...,n}
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(see [KM1]). We define a Green current for the cycle e ™ "¥)D, by taking the star
product

§"(x,2) =&, 2) % % E(xn, 2) (5.3)

in the sense of [GiSo]. As a current on compactly supported smooth differential forms it
satisfies the equation

dd[€" (X)) + e TN L5 = [ (0], (5.4)

When D, is compact, it follows from the growth estimates in [KM1, Section 6] that
&"(x, z) is rapidly decaying and extends to a current on forms of moderate growth with
(5.4) still holding. A recursive formula for the star product is given by

E"(x,2) =E(1L, D ARy (2, o), D)+ €T Vop  AET (0, x), 2),
(5.5)

where gpoK  has to be interpreted as 1 and £9 as 0. The current £ (x, z) is invariant under
permutations of the components of x.
Sometimes it is convenient to put

E(x,2) =&"(x,2) - "D ) 0(x,2) = @y (x,2) €T T

Then the current equation becomes
dd°[88 ()] + 8p, = (¢ 4y 0 (O]

Note that the current equation (5.4) together with Proposition 4.3 implies the follow-
ing geometric local Siegel-Weil formula, which is the local archimedian version of (1.1).

Proposition 5.1. Assume thatn = m and T = Q(x) is invertible. Then

/ ") 2e727 T if T is positive definite,
X,2) =
Pxm 0 if T is not positive definite.

Moreover, in both cases this is equal to
217U D g e n, ()| T1 2 W (1,1/2, @),

where &, € I,(s, xy) is the weight k standard section, that is, the unique standard
section whose restriction to K¢ is the character det(K)*.

Proof. The first statement is a direct consequence of the current equation (5.4) applied to
the constant function 1. The second statement can be deduced from the first one by means
of the formulas of [Shi]. Since we do not need it here, we omit the proof. O
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Throughout the rest of this subsection we assume that # = m + 1. Then 56‘ (x,z)isatop
degree current, which can be evaluated at the constant function 1. For x € V" we define
the archimedian local height function by

1
htoo () = /D 5 (x. 2). (5.6)

In this section we prove the archimedian arithmetic local Siegel-Weil formula, Theo-
rem 1.4, relating hty(x) to the derivative of a Whittaker function in genus n. It can be
viewed as an arithmetic analogue of Proposition 5.1. We restate the theorem for conve-
nience.

Theorem 5.2. Let x € V"(R) be such that the moment matrix T = Q(x) is invertible.
Then

htoo (xv'/%) - g7 = = By oo det(v) /2 - W (g1, 0, @), (5.7)
where B, o is the constant in Proposition 3.1, and ®, € I, (s, xv) is the weight « stan-
dard section, that is, the unique standard section whose restriction to K g is the character

det(K)“. The derivative of the Whittaker function is taken with respect to s.

Let x € V" and assume that T = Q(x) is invertible. To prove Theorem 5.2 we employ
the recursive formula (5.5) for the star product. It implies that

. 1
htoo (x) = ™7 (x) + 5/ (2, - X)), (5.8)
'DX1
where we write
o 1 _
b ) = 3 fD §0(r1, ) A @3 o(Ceas - ), 2) (5.9)

for the main term of the local height function. The second summand on the right hand side
of (5.8) vanishes when Q(x1) < 0, in which case Dy, is empty. When Q(x1) > 0, this
quantity is a local height function in genus n — 1 for the quadratic space V| = xf‘ C Vof
signature (m — 1, 2). The divisor Dy, is naturally isomorphic to the Grassmannian of V;.
Let

(y, x1)
pr:V—>Vy, pr(y)=y— —x1,
(x1, x1)
be the orthogonal projection and put X = (pr(x2), ..., pr(x,)) € V{ ~LIf we write T in

block form as in (4.5) then the moment matrix of X is

Ty = Q) =T, — 'TinT; ' Tha. (5.10)
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Lemma 5.3. Assume the above notation. If z € Dy,, then

EN (o x), 2) = EDTNE, 2)

and

1
5 ‘/fpﬂ 56171(()62’ cee 7-xn)7 Z) = htoo(i)

Here the height function on the right hand side is for the tuple X € VI"_I.

Proof. If z € Dy, and y € V, then R(y, z) = R(pr(y), z). Hence the assertion is a direct
consequence of the definition of &y(y, z). ]

The following result gives a formula for the main term of the local height function.

Theorem 5.4. Assume thatn =m + 1. Let x € V" be such that T = Q(x) is invertible,
and put T, = Q(x) as in (5.10). Then

e T B (1) = — By o W (1,0, D)+ Byt o0e 20T WL (1,0, 0 ).
If n = 1, the second summand on the right hand side is interpreted as 0.

The proof of Theorem 5.4 will be given in the next three subsections.

Proof that Theorem 5.4 implies Theorem 5.2. Recall that for T € H,, we have put g, =
(1 Ll’)(a ta—l) € Sp,(R) with a € GL,T(]R) and a’a = v. Using the transformation
behavior (2.2) of the Whittaker function, we find that

det(v) “PWr(ge, s, @) = 2T g™ - Wira(1, s, Dy). (5.11)

Since the signature of V is (m,2) and n = m + 1, the matrix 7 must have negative
eigenvalues. By Proposition 4.3, the Whittaker function Wr (g, s, @) vanishes at s = 0.
Employing (5.11), we see that (5.7) is equivalent to

hteo(xa) - e 27" aTa — _ B W/ . (1,0, ).
Consequently, it suffices to prove (5.7) for T = il,, that is
htoo (x) - e 75T = —B, o - W} (1,0, d,). (5.12)

We show (5.12) by induction on n. If n = 1, then htg‘oai“ (x) = htyo(x), and we have
nothing to show. Assume now that n > 1. According to (5.8) and Lemma 5.3 we have

htoo (x) = htT47 (x) + htoo (£).
By Theorem 5.4, we obtain
e T hteo(x) = —Byoo - Wi(1,0, )
t Byot,oce T LWL (1,0, By o) + e htog (B).

If we use Theorem 5.2 in genus n — 1 to compute the last term on the right hand side, we
get the assertion. O
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5.2. The main term of the local height

In this subsection we assume again that n = m + 1. We give a first formula for the main
term of the local height in terms of a certain Whittaker function. We begin by rewriting
the Green function £ (x, z) defined in (5.1) in terms of the Gaussian

96 (x,7) = e "Wz e §(V), (5.13)
96.0(x,2) = gG (x,2) - 7N = 72RO, (5.14)

Lemma 5.5. Ifx € V and z € D, then

o0 d
folx. 2) = /_1 wc,o(«/;x,z)Tt.

1
Proof. The statement follows from the integral representation

oo ,—zt
—Bi(—z) = / ¢ ar
1

t
by inserting the definitions of £y(x, z) and R(x, z). ]

By our assumption on m, the Schwartz form (p"K;,} is a top degree differential form on D.

We write it as
n—1,x%

Pru (2 2) = g (.2 - QT
For x € V", we define a Schwartz function' by

Ui, 2) = 06 (1. 2) - @y (2 x). 2). (5.15)

Proposition 5.6. Let x € V", put T = Q(x), and write T = (,22 %2) as in (4.5). The
main term of the local height function is given by

- > da
ht}e™ (x) = Bucoe™ / Wara@ (1,0, A(¥fp) - 27000 —,
1

where B, o denotes the constant in Proposition 3.1 and d(a) is given by (4.11).
Proof. Using Lemma 5.5 and (5.15), we see that

. 1 _
B () = 2 /D 8001, D) A Pt ((x2. - ). 2)

1 [ n_1 dt
== 9G.0(V1 X1, PR o (20 - Xn), 2) —
2 t=1JD ’ t

2 tr T *© * n—1 27 Q(x1a) da
=e . Yy (xd(a), z) Q e —.
a=1JD a
By the local Siegel-Weil formula, Proposition 3.1, we have
/D%*] (x,2) Q""" = Buoo - Wr (1,0, 1(¥})).
Inserting this, we obtain the assertion. O

' Later we will also define a Sym,, (R)-valued Schwartz function i whose (1, 1)-component will
be ¥11.
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5.3. Some Lie algebra computations

In this subsection, we temporarily drop the assumption that n = m + 1. We compute the
Whittaker function Wr (1, s, A(];)) more explicitly. We begin by recalling from [BFK1,
Section 5] some facts about the Lie algebra of G. Let

g=t+py+p-

be the Harish-Chandra decomposition of g = Lie(G) ®r C. Let § = Sym,,(R). Then
there are isomorphisms

1/ X &4iX
P+ 1 SC = P+, XHpi(X)=§<iiX —X)' (5.16)

The group K¢ acts on g by the adjoint representation, Ad(k)g = kgk~!, and on Sc by
k.X = kX 'k for k € K. For the isomorphism (5.16) we have

Ad(k) p1(X) = p+(k.X), (5.17)

Ad(k)p_(X) = p_(k.X). (5.18)
The trace pairing

(p+(X), p—(Y)) = r(XY)

is invariant under the action of K¢, and therefore p = p as Kg-modules. Let (e, ) be a
basis of S, and write (eovt) for the dual basis with respect to the trace form. Then (p_— (eg))
is a basis of p_, and we write (},) for the dual basis of p* . We identify p* with S¢ by
the map

V= Yatly > Y Vaca (5.19)
o o
Recall that the Lie algebra gl (C) = Mat, (C) is isomorphic to ¢ via the map
. Y=Y —i(Y+'Y)
k : Mat, (C) — &, YHk(Y)_E(i(Y+,Y) vy ) (5.20)

Let Ej; € Mat,(C) be the elementary matrix having 1 at position (j, k) and all other
entries 0. Then the matrices

l Ejx — Ex;j —i(Ejk+Ekj)> (5.21)

Viie = k(Ejp) = 2 (i(Ejk + Exj)  Ejk — Exj

for 1 < j, k < n, form a basis of &.

We denote by C(£) the Kg-module given by the action of K on C by multiplication
with det(k)¢. Recall that the space AP 9(H,,) of differential forms on H,, can be described
by the isomorphism

AP4(H,) — [C®(G) @ AP (ph) @ A (p*)1%e.
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Here, the operator corresponding to d on A?-4(H,) is given by

D= p () ®n, (5.22)

where 7/, acts on A" (p*) by exterior multiplication.

The following result, which describes the action of K¢ on 11, is taken from the
unpublished manuscript [BFK2]. We thank Jens Funke and Steve Kudla for allowing us
to include it here.

Proposition 5.7. Identify p* with Sc as in (5.19). There is a Schwartz form

v e [S(V") @ A" N(D) @ p* @ C(—k)]Ke

with diagonal components

Yrr(x) = @G(xr) “PkMXD) A A <P15/1_(\xr) A AN p(Xn),
which satisfies ¥ (0) = Q"' . 1,, and
()Y (x) = detk) -k 'y (x)'’k™"  fork € Kg.

Proof. To prove this result we use the Fock model realization of the Weil representation
as described in the appendix of [FM1]. Let F = F(C"+2*") be the space of polynomial
functions on V@ = C" 2" As in [FM1] we denote the variables by zq;, z,;, where
a=1,....mpu=m+1,m+2,and j = 1,...,n. The Lie algebra g x so(V)c acts
on F via the Weil representation.

Let s0(V)c = €5 @ pu be the Cartan decomposition as in Section 3.1. Let X, be
the standard basis of py and denote by wy,, the corresponding dual basis of p7,;. The
Kudla—Millson Schwartz forms can be viewed as elements of

[F® Apy1%n.
We have

Ok = PRM,(1) A=+ ANOKM,(n)s

where
1

m
3 Z Zaj28j @ Wa,m+1 N WB m+2-

PKM,(j) = —
8
o, =1

The Gaussian ¢, ;) corresponds to the constant polynomial 1 for every j.
We define the Schwartz form ¥ = (v;) in the Fock model by putting

Ve = 96,0 A | [exm.o,
Ik

1 1 &
Yk = a2\ 73 Q;I(ZajZﬁk + ZakZBj) @ Wam+1 A Ofm+2

A l_[ OK M, () for j # k.
I£].k
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This has the desired diagonal components. Using the intertwining operator between the
Schrodinger and the Fock model of the Weil representation, it is easily checked that
¥jx(0) = 0 for j # k. On the other hand, by (3.4), we have v/;;(0) = Q"1 and
therefore ¥ (0) = "~ ! - 1,,.

To verify the transformation law under K ¢, we compute the action of the Lie algebra £
under the Weil representation. Recall that the basis element Y defined in (5.21) acts by

1 m
oY) = =(m —2)éi; + Zoj— —
( jk) 2( ) jk ; oj 9zan
In fact, since the element Y} corresponds to %(w;( ) w;’ ) in the notation of [FM1], this
claim follows from [FM1, Lemma A.1]. ‘
Now a direct computation shows

—-2)- if j =1,
w(ij)lﬁu:{(K )y if

K- Y if j #1,

-2 if j=1land j #k,
oWy = | V1 s

0 if j Al and j #k,

oY) ¥jix =~V if j # k.

This implies that the v/;; generate an irreducible representation of K, which has v, as
a highest weight vector, and which is isomorphic to det‘ ® Sym?(C")V. Hence, we obtain
the claimed transformation law. O

The intertwining operator A : S(V") — I(sg, xv) (see (2.3)) induces a map

[S(V") ® A" 1(D) ® p* @ C(—«)1K¢
— [I(s0, xv) ® A" """ 1(D) @ p* ® C(—k)1¥C,

which we also denote by 1. We define W € [ (sg, xv) ® p* ® C(—«)]Ke by
v =y, (5.23)
and write W (g, s) for the corresponding extension to a standard section.
Corollary 5.8. Identify p* with Sc as in (5.19). Fork € Kg and g € G we have
W(gk,s) = det(k)* -k~ 'W(g,s)' k.
Moreover, ¥(1,s) = 1,.

This corollary characterizes W uniquely. We now use the action of p_ in the induced
representation to find a different expression for W.
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Proposition 5.9. Let D be the operator defined in (5.22), and let
r(D) : I(s, xv) — I(s, xv) ® pZ
be the induced operator on the induced representation. Then

r(D)®(g.5) = 5(s + pn — K)W(g. ).

Proof. We first show that r (D), (g, s) has the same K-type as W. Via the isomorphism
(5.19), the operator D induces an operator

D:I(s.xv) = 1. xv)®Sc. D= p(e])®ea
o
It satisfies _ ~
Ad()D =k™'.D

for k € K, where the action on the left hand side is on the first factor of the tensor
product and the action on the right hand side on the second factor. In fact, we have

Ad(k)D = Z p_(ke)) @ ey = Z Ztr(l_(.e;/eﬂ) - p-(e}) ® eq
o o B
= p-(e)® ) uley(kep) -ea =) p-(ef) Ok g
p o B
(see also [BFK1, Lemma 5.1]). But this implies, again using the identification (5.19), that
r(D)®, has the transformation law
r(k)r(D)®,(g.5) = r(Ad(k)D)r(k)®, (g, 5) = det(k)* - k™' D, (g, ) 'k

In other words, it has the same Kg-type as W.
Since the different Kg-types in I (s, xy) have multiplicity 1, there exists a constant
c(s) such that

r(D)®,(g,s) =c(s)¥(g,s). (5.24)

To determine the constant, we evaluate at the unit element. According to Corollary 5.8,
we have W (1, s) = 1. We now consider »(D)®,.. For X € S¢ we compute r(p_(X))PD,.
In the Lie algebra g we write

1/ x —ix\ 1/(x o\ i/0 X\ .[0 X
p‘(X)=§<—iX —X>=§<0 —X)+§<—X 0)"(0 o>' (525)

We compute the actions of the three summands individually. We have

1 X 0
Edr(O _X>CDK(1,S) =

d,(m(e'X), s)

t =0

det(e'X)* TP @, (1, 5)

S 3a

t=0

(s 4+ pp)tr X.

N = = N =
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Next, we compute, using the action of K¢,

i 0 X i d 0 X
Edr<—X 0>®”(1’”:§E©K<expt(—x 0)’S> =0
_ii(b cos(tX) sin(tX) i
T 2dr “\\=sin(tX) cos(tX))
i

d .
=§Emm”y%am

=0

1
= —EK tl'(X)

t=0

Finally, we notice that

. 0 X .d 0 X
—zdr(o O)q)"(l’s)__lEQ’((eth(O 0),s>

=0.

= 'dd> X
——ZE «n(tX),s)

t=0 t=0

Putting the terms together, we obtain
r(p-(X))Pe(l,5) = 55 + pu =) U X,  r(D)Di(g,8) = 5(s + oo — ) - L.
This shows that the constant c(s) in (5.24) is equal to %(s + pn — k). ]

Corollary 5.10. Let e11 € S be the matrix whose upper left entry is 1 and whose other
entries are all 0. Then

F(p—(e1) P (8. 8) = 5(s + pn — AT (8, 5),
F(p—(e1))Wr (g, s, ®) = 5(s + pu — )W (g, 5, A(Y{))).

Proof. The first equality is a direct consequence of Proposition 5.9. It implies the second
equality, since the Whittaker integral is an intertwining map of (g, K)-modules. O

Proposition 5.11. For a € GL,(R) we have
r(p-(e1)Wr(m(a), s, D)

= |27 te(T ! ) — —K + —1 E — |Wr(m(a) D)
ae a ail - ma), s, .
i 2 21’ 1 il dajy

Proof. For the proof we put X = ey and split p_(X) as in (5.25). We compute the action
of the three terms individually. We have

Sar (’0( _OX) Wr (@), s, ®0) = 3 5 Wrm@m(@X). s, @) g
1d
=5 EWT(m(a +taX),s, ®,) Y
1 & a
=52 4" MWT(W(G),& D).

I
-
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Next, we compute, using the action of K¢,

i 0 X i d 0 X
zd}’(_x O)WT(m(a),S, CDK)Z §EWT<m(a)eXpt(_X 0),5‘,(1),()

. 4 .
= ZE dr det(e") Wy (m(a), s, D)

t=0

t=0
K
=-3 Wr(m(a), s, Py).
Finally, we notice that
d
—iar(2 XVWron@), s, @) = =i S Wrn(@n(X), s, &)
0 0 dt 1=0
.d ‘
=—i—Wrm(taX'a)ym(a),s, ®)
dt t=0

d
=—i—e(ttr(TaX'a)) Wr(m(a), s, )
dt =0

=27 tr(Tae; 'a) - Wr(m(a), s, ®,).

Putting the terms together, we obtain
r(p—(e1)Wr(m(a), s, ;)

= |27 tI‘(T ! )— —K + —1 E b WT( ( ) [} ) O
ae a ail - m(a), s, .
1 2 2i 1 il 3611‘1 *

Corollary 5.12. Assume that n = m + 1 and det(T) # 0. Write T in block form as in
(4.5), and recall the definition (4.11) of d(a). For a € R.¢ we have

Wr(m(d(a)), 0, A(¥]))) = 2(2nT1a2 _ g + % z%) Wi (m(d(a)), 0, ).

Proof. Using Corollary 5.10 and Proposition 5.11, we see that

Wr(m(d(a)), s, A(y{))

1 s kK a d
=2(s+pn—k) - |\2nTia” — = + = — |Wr(m(d(a)), s, D).
2 2 da

Since n = m + 1, we have p, = k. Moreover, because of the signature of V, the matrix
T is not positive definite. Hence, according to Proposition 4.3, the Whittaker function on
the right hand side vanishes at s = 0. This implies the assertion. O

5.4. The main term of the local height revisited

Here we combine the results of the previous two subsections with the asymptotic proper-
ties of Whittaker functions derived in Section 4.2.
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Proof of Theorem 5.4. Recallthatn =m + 1, x € V*, and T = Q(x) is invertible. We
have to show that

e TR () = =By Wi (1,0, @)+ Byt cce TR WE (1,0, @y 2),

where T3 is defined by (5.10). According to Proposition 5.6 we know that

. o0 da
hig™ (x) = By coe®™ 12 / Wa@rat (1,0, AW{)) - 2710 =,
1

Inserting (2.2) and the formula of Corollary 5.12, we obtain

htgloain(x) — ZBn,oer” trTp

00 9 d
x / a=((2nTia® - = + 2 2 \Whm(d(@)). 0, ) )X 20 2L
1 2 20a a

Noticing that
3
2a=P—127010) <271T1a2 - % 4 % 8—)W;(m(d(a)), 0, d,)
a

d
= %(‘4/7/"(”1((1(a))7 0’ q)K)ean(xla)a_pn)’

we find

[o,0]
, 3
ht™% (x) = By, noe? * 12 f g(W/T(m(d(a)),O, D) N1V g~ dg
1
= Buoce™ " (= W7 (1,0, D)™ 4 tim Wi (m(d(@)), 0, B)e? N1 )
= —Byoce™ " - Wi(1,0, D)

+ Bn’oerU tr > ( lim W} (m(d(a)), O’ CDK)eZUQ(Xl(l)a*Pn) .
a—> o0
We now employ Corollary 4.11 to evaluate the limit on the right hand side. We obtain

htTan () = — B, e® T . Wi(1, s0, D)
Byl " (27)Pn

+ I (on)
0 if 71 <O.

_t —1 .
. 2 (D= Tio T, T12)w%2(1, 0, de_10) if Ty >0,

Hence the claim follows from (3.5). O
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5.5. An alternative proof of Proposition 3.1

Here we use Corollary 5.10 and Proposition 5.1 to give an alternative way of computing
the constant B, ~, appearing in Proposition 3.1. Assume thatn = m + 1. Let ¢ (x, 2) €
S(V") @ C*®(D) with ¢oo(hx, hz) = ¢oo(x,z) forallz € D, x € V* and h € H(R).
Then by Theorem 2.1 we know that

/ Poo(x,2) Q" = By oo - Wr (1,0, A(doo)) (5.26)
D

for some non-zero constant B, o, Which is independent of ¢oo(x,z) and T = Q(x). To
compute B, » we pick the special Schwartz function

Yi(x, 2) = 96 (x1,2) - <ﬂ}1<}}’*((xz, ceey Xn), 2)

as in (5.15). Evaluating (5.26) in the limit x; — 0 and using the fact that ¢ (0, z) = 1,
we obtain

/Dfﬂ?M((xz, e Xn), 2) = Buoo - Wr (1,0, A(¥))), (5.27)

where T = ({) %) and 7> = Q((x2, ..., X,)). The left hand side of (5.27) is given by
Proposition 5.1. If 7, > 0 we have

f P ((x2y .., xp), 7) = 2072702, (5.28)
D

We now compute the right hand side of (5.27).

Lemma 5.13. For T = (8 })2) with T>» > 0 as above, we have

25(ont1) /o \ Pn
Wr (1,0, A(UF)) = __<T) 2T
! Culon) \ i

Proof. We first show that for T = (8 })2 ), we have
Wr (1, s, A(yf)) = =Wr (1,5, D). (5.29)

In fact, using the notation of Corollary 5.10 and Proposition 5.11, we have

2
Wr(l, s, AW )) = = - (r(p— (i) Wr (g, s, @)
_2 (o ir 1, o
_;-<7Tr( 6]1)—5"‘5%) T(m(a), s, K)a:l

Here we have also used the fact that n = m + 1 and therefore p, = «. Taking into account
the special form of 7" and the transformation law (2.2), we deduce

2 k 1 0 _
WT(l,S,)x(l/fﬁ)) = ; : (—E + E %)(a{)l SWT(LS, D))

=-Wr(,s, ®c).

ap=1
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Next we compute Wr (1,0, &) for T = 09 . According to [Shi, (4.6.K)] and (4.4)
0T
the function w(g, &, o, B) of [Shi] satisfies
2 TH|Pn=|2 . 1, |2+B—pn
0@y 7T, a, p) =2 0-be 2T T2 Ll N2 1, 7T, e, B)
Fho1(B—1/2)T1( + B — pn)
2 To|Pn |2 - 1, |*FF—Pn
=2 = De 2D 12 Ll Wr(1ly, s, Do)
cnle, B)Tn—1(B = 1/2)T1(a + B — pu)
— 2—,0,,(11/2+1)+nﬁ—n/2+a(2—n)n,a(l—n)—lin(a—/fi)|T2|pn—a

y C(B)n(e)
L@+ B — pon)
Here, in the latter equality, we have also used (4.12). We find

WT(lnv s, qDK)

02, 7T, pp, 0) = 2730w ton=n/2 e pu(l=m)=Linpa (5 YW (1,0, B,).
On the other hand, by [Shi, Theorem 4.2 and (4.35.K)], we have
0@, 7T, pn,0) = w2, 7T, pp+1/2,1/2) = 2= Dong (1=D/2 ,=2w T
and therefore
e T — =5t D) g =npnineny (5 YW (1,0, ®,). (5.30)

Putting this identity into (5.29), we obtain the assertion. O
Combining (5.27), (5.28), and Lemma 5.13, we find

4-n2—3n l "on
Byoo=-2"1 (;) Ty (on).

In particular, By, oo/ Bn—1,00 = i" (27(,’;'};2. , Bloo = %, and By oo =

i
422"

6. The local arithmetic Siegel-Weil formula at an odd prime p

In this section we assume that p # 2 is a prime. Let W = W(F p) be the Witt ring
of I_Fp and K = Wy be the fraction field of W, which is the completion of the maximal
unramified extension of Q,. Let o be the Frobenius of W (such that its reduction to F, is
the Frobenius x +— xP).
Let L be a unimodular quadratic lattice over Z, of rank n + 1 and put V = Lq,. Let
C (L) be the Clifford algebra of L, and let D(L) = Hom(C(L), Z,) be its dual. We write
H= GSpin(L) for the general Spin group over Z,, and notice that H (Zp) C C(L)* acts
on C (L) via left multiplication and thus acts on Dy . Let ¢ be the main involution on C (V)
which fixes V pointwise. If § € C(V)* with §* = —§, then ¥s(x, y) = tr(x8y"') defines a
non-degenerate symplectic form on C (V). We will require that § € C(L) and 68 € Z,;,
which implies that C (L) is unimodular under this symplectic form. This induces an em-
bedding
i =is: H— GSp(C(L)). (6.1)
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It is also known that H is ‘cut out’ by a family of tensors (sy), S¢ € C(L)®, in the sense
that for any Z,-algebra R we have

H(R) = {h € GSp(C(L))(R) | hsy = sq}-

6.1. The local unramified Shimura datum and the Rapoport—Zink space associated to H

Here we set up some notation for the rest of this section. We recall the construction of
an unramified local Shimura datum for H due to Howard and Pappas, and the associated
Rapoport—Zink space. We refer to [HP] for details.

Choose a Z,-basis e = {ey, ..., e;41} of L with Gram matrix
(e =ding( e, (1)), 62)
with €;, = — det L. Define
w:Gm— H, t u@t)=t"epensi + entren € H, 6.3)
b=en1(p~ en+ens1) € HQp) C HK). (6.4)

Then (H, [b], {}, C(L)) is the local unramified Shimura datum constructed by Howard
and Pappas in [HP, Section 4] for H. Here {u} is the conjugacy class of the cocharacter
w under H(K), and [b] is the o-conjugacy class of the basic element b, i.e., the set of
elements h?bh~! withh € H (K). Associated to b there are two isocrystals

(Vk =V ®g,K.boo) and (Dx = D(L)®z, K,boo).

Let
V=V and L= (L®z, W)*.
A direct calculation shows that IL has a Z-basis ¢’ = {e}, ..., €], 41} with Gram matrix
(e, 6})) = diag(l,—2, €L, p, —pu) (6.5)
where u € Z; with (p,u) = —1 and —ue, = €r. We can actually take etf = ¢; for

i < n — 2. Inparticular, V. = L ®z, Qp is a quadratic space over Q, with the same
dimension and the same determinant as V, but with opposite Hasse invariant.
According to [HP, Lemma 2.2.5], there is a unique p-divisible group

Xo = Xo(H, [b], {u}, C(L))

over I_Fp whose contravariant Dieudonné module is D(Xo)(W) = Dw = D(L) ®z, W
with Frobenius F = b o 0. Moreover, the Hodge filtration on D(Xq) (IE_TP) is induced
by 1, (up to conjugation). The symplectic form s induces a principal polarization 1g
on Xj.

Let RZ(Xy, Ao) be the Rapoport—Zink space associated to GSp(C (L), ¥5) (see [RZ]
and [HP, Section 2.3]). It is a smooth formal scheme over Spf(W) representing the moduli
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problem over Nilpy, of triples (X, A, p)/S, where § is a formal scheme over W on which
p is Zariski locally nilpotent, (X, A) is a p-divisible group with principal polarization A,
and p is a quasi-isogeny

p:Xox]FpS——->Xsz, S =S8 xwlp,
which respects polarization up to a scalar, in the sense that Zariski locally on S, we have
pYorop=clp) 'h. clp) €Qy.

LetRZ = RZ(ﬁ , [b1, {1}, C(L)) be the GSpin Rapoport—Zink space constructed in [HP,
Section 4]. This space comes with a closed immersion RZ — RZ(Xj, X¢), and by re-
stricting the universal object one obtains a universal triple (X', AUV punivy oyer RZ.
The universal quasi-isogeny preserves the polarization only up to a scalar, which induces
a decomposition of RZ as a union of open and closed formal subschemes,

RZ = |_| RZD, (6.6)
l

where RZ¥) ¢ RZ is cut out by the condition ord, c(p™Vy = € Z. According to [HP,
Section 7] (see also Section 7.3 here), RZ can be used to uniformize the supersingular
locus at p of some Shimura variety associated with (H, D).

Notice that Vi acts on C(V)k via right multiplication, which induces an action on
the isocrystal Dg. This gives an embedding Vx C End(Dk). Moreover, V = Vﬂgo" C
End(Dx) commutes with the Frobenius F = boo. Since Dg = D(Xg)(KK), we obtain an
embedding V C End’(Xo). Following [HP] we call V the special endomorphism space
of Xo.

Let H be the algebraic group GSpin(V). Then H(Q,) = {h € H(K) | hb = bo (h))
acts by automorphisms on Dy, giving rise to a quasi-action on Xg. This quasi-action has
the property

c(hp) = pg(h)c(p),
where w7 is the spin character of H.Soh € ]I:H((@,,) induces an isomorphism RZ() =
RzHordy k5 1 particular,

pM\RZ = RZ© uRZD. (6.7)

According to [She, Corollary 7.8], RZ = pZ\RZ is exactly the Rapoport—Zink space
0f~H associated to the basic local unramified Shimura datum induced from the datum
(H, [b], {u}, C(L)).

Finally, let J C V be an integral Z,-submodule of rank 1 < r < n. We define the
special cycle Z(J), following Soylu [So], as the formal subscheme of RZ cut out by the
condition

polJop ' cEnd(X). (6.8)
Here, for an S-point « : S — RZ, X = o*(X") and p = a*(p"™") are the pull-backs
of the universal objects.

If J has an ordered Z,-basis x = (x1,...,x,;) € V", we also denote Z(J) = Z(x).
The moment matrix 7 = Q(x) = %((x,-, x;)) in Sym, (Q,) is determined by J up to
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Zy-equivalence. Soylu gave an explicit formula for the dimension of the reduced scheme
Z(J)™ underlying Z(J) in terms of T and L [So, Section 4.2].

The purpose of this section is to prove a local arithmetic Siegel-Weil formula for
Z(J). We show that when Z(J) is 0-dimensional, the local height of each point P €
Z(J) depends only on T, not on the choice of the point P, and is equal to the central
derivative of some local Whittaker function (Theorem 6.9).

6.2. Dual vertex lattices and decomposition of the Rapoport—Zink space

A Zp-lattice A CV = Vﬂg"" is called a dual vertex lattice if pA’ C A C A’,i.e., its dual
A’ is a vertex lattice in the sense of [HP]. Let

Qa=AN/A,  Qa(x)=pQ(x) modZ,,

be the associated quadratic space over F),. Then 7y = dimp, Q4 is called the type number
of A.Let Qp = Q4 ®F, IF‘p. According to [HP, Section 5.3], there is a projective variety
SA over IE_T,, such that

Sa(Fp) = {€ C Q4 | maximal isotropic and dim(£ + Frob(£)) = 14 /2 + 1}.

Moreover, Sp = SX U S, has two connected components, both smooth and projective of
dimension 75 /2 — 1.
For a dual vertex lattice A of V, let RZ5 be the closed formal subscheme of RZ
defined by the condition
poAop ' cEnd(X).
The following theorem summarizes some of the basic properties of RZ, and RZ. As-

sertions (1), (3), (4) are due to Howard and Pappas [HP, Proposition 5.1.2, Section 6.5,
Remark 6.5.7]. The second assertion is due to Li and Zhu [LZ, Theorem 4.2.11].

Theorem 6.1. (1) For a dual vertex lattice A, ty is even and

n if nis even,
A <tmx=13in—1 ifnisodd detL = (—1)"+tD/2
n+1 ifnisodd detL # (—1)"+D/2,

Moreover, Q4 is the unique non-split space over I\, of dimension t5, and every dual

vertex lattice contains a ‘minimal’ dual vertex lattice with t A = tmax. Moreover, RZrIfd

is of dimension tp /2 — 1.
(2) The formal scheme RZ is reduced.
(3) One has

RZ= | RZa,
IA =Imax
and
RZ™d — I_lBTA, BT, = RZ, — U RZ,,.
A A1CA

(4) Let RZ)\ = pZ\RZA. Then RZp = S as projective varieties over IF'I,.
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Proposition 6.2. Up to Z,-isomorphism, there is a unique dual vertex lattice A(t) of type
number t for every even integer 1 <t = 2r < tmax, which is given by A(t) = @ Z, fi
with Gram matrix

((fi, fj)) = diag(ly—, @, pli—1, pp) (6.9)
witha, B € Z; [(Z, )2 satisfying

(p.(=1)'B)=—1 and op =detL mod (Zy).

In particular, A(2) is the lattice given by (6.5).
Proof. Since pA’ C A C A', we see that A = @ Z,e; with

;2
oS e) = e
with o; € Z; and 0 < a; < --- < ap4+1 < 1. The condition tp = dim]Fp AN/A =t
impliesa; = -+- = ay—4+1 = 0,and a,_;42 = -+ = ay4+1 = 1. So we can change the
basis to make (6.9) true. Since L is unimodular, V has Hasse invariant 1, and hence V has
Hasse invariant —1, i.e.,

—1=Qp, 2p) 'B)2p, 2p)2B)--- 2p,2pB) = 2p, 2p) B) = (p, (=1)"B).

In particular, E = Q,(y/(—=1)"B) is the unique unramified quadratic field extension
of Qp, and B is uniquely determined up to a square by this condition. On the other hand,
detV = det V gives

af = det L mod (Z)*,

which then determines « uniquely up to a square. O

6.3. Special cycles and local heights

Recall the definition of the special cycle Z(J) at the end of Section 6.1. It is not hard to
see [So, Section 4.2] that

Zyred = U RZ,

A dual vertex lattice
JCA

The following theorem is part of [So, Theorems 4.13, 4.16 and Proposition 4.15].
(Recall our convention that dim V = n + 1 and notice that our 27 is Soylu’s T'.)

Theorem 6.3 (Soylu). Let Z(J)*4 be the reduced scheme of Z(J) and assume that J =
J(x1,...,x,) CV has rank n and is integral. Assume that T = Q(x) is Zp-equivalent
to dlag(Tl, T>) where Ty is unimodular of rank r = r(T) (which is also the rank of T
(mod p) over Fp) and T € pSym,,_,(Zp). Then Z(J)red is O-dimensional if and only
if one of the following conditions holds:

M r(Ty=n—-1,n-2.

) r(T) =n—3and det(2T;) = det L.

In that case,

Z(J)red = I_lRZA_ |_| RZ,.

JCA CA
tA=2 A”A(Z)
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Proof. We give a sketch of the proof in this special case to give a rough idea what
is involved in the general theorems of Soylu [So, Section 4]. Choose a Z,-basis e =
{e1, ..., ey} of J with %(ei, ej) = diag(T1, T»), and let My be the submodule of J gener-
ated by ey, ..., e,, which is unimodular. To have J < A, one hastohavery <n—r+1.
Inthecaser =n—1,n—2,onehasty =2,andRZ, = RZFXCl is reduced of dimension 0.
So
Z(n"™ = | | Rza.
ADJ
IA=2
In the case r(T) = n — 3, one might have ty = 2 or 4. If 1, = 4, then (as M is
unimodular)
A=M & A,

where Aj has a Z,-basis with Gram matrix p diag(1, 1, 1, €). Since the Hasse invariant
of Vis —1, we see (p, —€) = —1. On the other hand, detV = det V forces

€ =det Mjdet L = det(2Ty)detL, i.e., det(2T)) #detL.

Therefore, if det(277) = det L, we cannot embed J into a dual vertex lattice A with
ta = 4, and thus Z(J) is 0-dimensional and reduced as argued above.

When det(27}) # det L, Soylu proved that there is indeed some embedding J C A
with ro = 4. We refer to [So, Section 4] for the details. ]

Let M be a unimodular quadratic Z,-lattice of rank r < n — 2, and assume that there are
isometric embeddings M C L and M| C A, where A C V is a dual vertex lattice. Write

L=M &Ly, A=M A (6.10)

Notice that, choosing proper bases of M; and L, the data b and p defined in (6.3)
and (6.4) still make sense for the unimodular lattice L,, so we have a local unramified
Shimura datum (H (r), [b], {1}, C(L»)) and its associated Rapoport—Zink space RZ(r).
Here H (r) = GSpin(L3). Moreover, one can easily check that V, = Lzﬂb("" is a direct
summand of V, and Aj is a dual vertex lattice of V;. The embdding L, C L induces a
closed immersion

i(r) : RZ(r) = RZ. 6.11)

The following proposition is a direct consequence of [LZ, Lemma 3.1.1].

Proposition 6.4 (Li—Zhu). Let the notation be as above and assume r < n — 3.

(1) i(rRZ(r) = Z(My).
(2) Assume that J = My @ J» is a Zy-submodule of A. Then i(r)Zrzy(J2) = Zrz(J).

Proof. Assume that {x1, ..., x,} is a basis of M| with Gram matrix diag(«q, ..., ;) and
o € Z;. Applying [LZ, Lemma 3.1.1] » times, we obtain the above proposition. Notice
that the cited lemma still holds with the same proof when the norm of x, is a unit in Z,,
(not necessarily equal to 1). O
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From now on, we assume that Z(J) is 0-dimensional. For P € Z(J), its local height
index is defined to be

ht, (P) = the length of the formal complete local ring o Z(J), P+ (6.12)
By Theorem 6.3, we have r(T') > n — 3. There is a decomposition
J=M &)

with M7 unimodular of rank n — 3. Furthermore we can choose bases of M and J; so
that the Gram matrix of J becomes 27T with T = diag(7, T») where 27) is the Gram
matrix of M| and T, = diag(o; p%, aa p®2, a3 p™®) is the matrix of J, with o; € Z;; and
0 < a1 < ap < az. We can always embed M; into L. Assume that Z(J)(I_Fp) is not
empty. Then there is an embedding M| C J C A for some dual vertex lattice A.

Corollary 6.5. Let the notation and hypotheses be as above (in particular Z(J) is
0-dimensional). For P € Z(J) write P* = i(n —3)~' P € RZ(n — 3). Then

ht,(P) = ht, (P*).

The local height ht,, (P*) has been studied in [KRap1] (the case a; = 0 actually follows
from [KRY?2] with n — 3 replaced by n — 2). Assume the decompositions (6.10). Notice
that L, is unimodular of rank 4. There are two cases: either

(i) detLy = 1and Ly = M»(Zp) with Q(x) = detx, or
(i) detLy, = u € Z; where E = Q,(4/u) is the unique unramified quadratic field
extension of Q, i.e., (p, u) = —1.

In the second case, Lj is Zp-equivalent to Z;‘, with the quadratic form Q(x) = x1x2 +

2 2
X35 — uxj, or more conceptually

Ly={A=(39)|abeZy ac O}, Q(A) =detA,

where o is the Galois conjugate of . The second case only occurs when r(T) > n — 2,
ie.,a; = 0.Indeed, ifa; > 0,1i.e., r(T) = n — 3, then we would have

det(2T}) = det L = det M| det L, = det(2T}) det L,,

which implies 1 = det L, = u, a contradiction. The condition a; = 0 is exactly the
condition given in [KRapl, Theorem 2] for ZRZ(n_3)(]2)(I_Fp) to be finite. So in both
cases, RZ(n — 3) is associated to the supersingular locus at p of the Hilbert modular
surface over a real quadratic field F* with p split or inert in F, F, = Q, x Q, or E. In
[KRap1], Kudla and Rapoport considered twisted Hilbert modular surfaces to avoid issues
with the boundary. But their localization at p, considered in [KRap1, Sections 6-12], is
for our p the same as for a regular Hilbert modular surface, and hence their local results
apply. We restate it here as the following theorem for convenience. In case (ii), a; = 0,
it is [KRap1, Proposition 6.2]. In case (i), it is [GK, Proposition 5.4], restated in [KRapl1,
Proposition 11.2] with a minor mistake (it should not assume a; = 0 in this case).
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Proposition 6.6 (Kudla—Rapoport). Let the notation and hypotheses be as above, in par-
ticular Zrz(n—3)(J2) is 0-dimensional, and let P* € Zrz(,—3)(J2). Recall that T; is Z,-
equivalent to diag(o; p®', o p®, a3p®) with 0 < a1 < a» < a3, and «; € Z;,‘. Then
ht, (P*) = v, (T2), where v, (T2) is given as follows:

(1) When a; = a1 (mod 2), v,(T2) is equal to

a;—1

Z(i + 1)(ay +2 +a3 — 3i)p’

i=0

(a1+az)/2—1 Coa +1
+ ) (@t DhQatata—4)p + (a3 —a+ Dp e,
i=ay
(2) When ap # a1 (mod 2), v, (T2) is equal to

a-1 C @+a=D)/2 ,
DG+ D@ +24a3=30p + Y (@14 DQar+ax+az —4i)p'.
i=0 i=ay

6.4. Local Whittaker functions and the local arithmetic Siegel-Weil formula

Let ¢ = v, be the ‘canonical’ unramified additive character of Q,, used in this paper. Let
L be an integral quadratic lattice over Z, of rank /, and let x; = (=D!=D/2get L, Ip
be the associated quadratic character. For every integer » > 0 we also consider the lattice
L") = L & H", where H = Z is the standard hyperbolic plane with the quadratic form
Q(x, y) = xy. We temporarily allow L to be non-unimodular.

Let T € Sym, (Z,) be non-singular with n < /. Then according to [Ku2, Appendix]
and [Ya], there is a local density polynomial a, (X, T, L) of X such that for every integer
r > 0, one has

ap(p ", T,L) = / Y(trb(Q(x) —T))dx db,

Sym, (Q,) JL®)-

where dx and db are the standard Haar measures with vol(L, dx) = vol(L", dx) = 1
and vol(Sym, (Zp), db) = 1. We write ¢; = char(L") € § (L&,)) for the characteristic
function of L. Then it is easy to see that

y(L) )" _S
— | « ,T,L).

1) " (P )
Here y(L) = y(L ®z, Qp) is the local Weil index. We also recall [Ya, Section 2] that
a,(p™", T, L) is the local representation density o, (M7, L(’)) = Bp(Mr, L(r)) studied
in Kitaoka’s book [Kit, Section 5.6]. Here My = Z;’, is the quadratic lattice associated to
T,1i.e., with the quadratic form Q(x) = xT x. For a unimodular lattice L of rank [, define

WT.[)(la s, )\'((pL)) = (

5, = {0 if I/ =1 (mod 2), 6.13)

xL(p) if I =0 (mod 2).
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Lemma 6.7. Let T € Sym, (Z,) withdetT € Zy, i.e., T is unimodular.

(1) Assume that L = Ly @ Lo is an integral lattice over Z, such that Q(x) € pZ, for
every x € Lo. Then ap(X, T, L) = ap(X, T, Ly).
(2) Assume that L is Z,-unimodular of rank | > n. Then

a,(X,T,L)
=1 =8.p7"*X)(1 + Sypgr-p~TMX) I (1= p7Xx?).
(I—n+1)/2<e<(-1)/2
Here L™ denotes the lattice L with the rescaled quadratic form Q= (x) = —Q(x).

Proof. Let L = L/pL with the F)-valued quadratic form O(x) = Q(x) mod p for an
integral quadratic Z-lattice L. Replacing L by L"), we may assume X = 1 in the proof.

For (1), write / and /; for the rank of L and L; respectively with [ = Iy + I;. Notice
that Ly is a zero quadratic space of dimension /y. Every isometry from MrtoL splits into
the sum of an isometry from M7 to L1 and a homomorphism from MT to Lo So [Kit,
p- 99, exercise] gives

oap(1,T,L) = pD/2=nl fisometries from My to L}
= p" D271l Gsometries from My to L1}| - [Hom(M7, Lo)|
= p" D21l isometries from M7 to L1}
=ap(1, T, Ly).

For (2), [Kit, Theorem 1.3.2] and the formula in [Kit, p. 99, exercise] imply

ap(1,T,.L) == xL)p A+ xMr @ LH)p~ "7 ] a-p™,

[—n+1<e<l—1
e even

where x (M) for a unimodular quadratic Z,-lattice M is defined as follows. When [ =
dim M is odd, X(M) = 0. When [ is even, X(IVI) is £1 depending on whether M is
equivalent to a direct sum of hyperbolic planes or not. Assume [ = 2r + 2 is even. Since
M is unimodular, M is equivalent to H” & Mo with Mo = Z2 with Q(x, y) = x* — €y?
for some € € Z[f. Then x (M) = 1 if and only if My is a hyperbolic plane, which is the
same as saying that € is a square in I, i.e., (¢, p) = 1. On the other hand, it is easy to
check that

xm(x) = (=D Tl det M, x) = (e, x).

So X(M) = xm (p) in this case. This proves (2). ]

Proposition 6.8. Assume T is Zy-equivalent to diag(Ty, T>) with T\ being unimodular
of rank n — 3 and T, = diag(a| p®, oo p®?, a3 p®) with o; € Z; and0 < a; <ap < as.
Let L be a unimodular lattice of rank n + 1. Let M be the unimodular quadratic lattice
with Gram matrix 2Ty, and fix an embedding M| — L, which results in a decomposition
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L = My ® Ly. Then Wr (1,0, A(¢r)) = 0 if and only if Wr, ,(1,0, A(¢r,)) = 0. In
that case, we have
W},p(I,O,)\((PL)) _ W%z,,,(l,O,)»(ﬁﬂLz))
Wru p (1,0, A(pr)) Wru (1,0, A(¢L,))

=vp(T2).

Here T" and T;' denote any unimodular symmetric matrices over 7, of order n and 3,
respectively, and v, (T») is given in Proposition 6.6.

Proof. By Lemma 6.7, Wru (1,0, A(¢r)) = y(V,)'a(1, T", L) does not depend on the
choice of the p-unimodular 7". We choose T = diag(T1, T') with T, being unimodu-
lar. Now [Kit, Corollary 5.6.1] implies (X = p~*)
Wrp(l,s, ML)  op(X,T,L)  ap(X,Th, L)ay(X, T2, L2)
Wre (1,5, A(9))  ap(X, T*, L)  ap(X,Ti, L)ay(X, T, Ly)
_ Wp p(1,s, M(01,))
W, (15, Mgr,)) |

This proves the first identity and also the claim about the vanishing at s = 0. Assume
Wr »(1,0, A(pL)) = 0. By [KRapl, Propositions 11.5 and 7.2], we have

Wi, p(1, 0. 4(@1,)) = y (V) (1 = p~2) (1 = X1, (p)p ) vp(T2).
On the other hand, Lemma 6.7 gives
Wra (1,0, 2(01,)) = y (V)1 = p~) (1 = x1,(p)p ™).
Now the second identity is clear. O

Combining Propositions 6.6 and 6.8 and Corollary 6.5, we obtain the following local
arithmetic Siegel-Weil formula.

Theorem 6.9. Let L be a unimodular quadratic Z,-lattice of rank n + 1 with p # 2, and
let RZ be the Rapoport—Zink space as in Section 6.1. Let T € Sym, (Z,) be of rank n and
let J C 'V be a Zy-sublattice of rank n which has a basis with Gram matrix 2T . Assume
Z(J) is O-dimensional and let P € Z(J). Then

Wy (1.0, (p1))

ht Pl = P}
pr(Plogr = 5 1.0, o))

where T" is a unimodular matrix in Sym, (Z,) (i.e., detT" € Z[f ).

7. Arithmetic Siegel-Weil formulas

In this section, we will prove the arithmetic Siegel-Weil formulas as stated in Theorem 1.2
and Remark 1.3. Throughout, let V be a quadratic space over QQ of signature (m, 2), and
let H = SO(V).
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7.1. Vanishing of coefficients of Eisenstein series

Letn =m+ landletC = & <00 Cp be the incoherent quadratic space over A defined
in the introduction. Recall the G -equivariant map

A=®p: SC") = 10, xv), AP (g) = w(g)$(0).

For simplicity, we also write A(¢) for the associated standard section in I (s, xv). Let
¢go(x) = T ¢ S(CL), then Ao (o) = P € I(s, xv) is the standard section
of weight k = (m + 2)/2. Recall that for a standard factorizable section ® = [[®, €
I(s, xv), the Eisenstein series

E@gs®= Y  O(g.s)
y€Pg\Sp, (Q)

has a meromorphic continuation to the whole complex s-plane and is holomorphic at
s = 0. It has a Fourier expansion of the form

E@g s, ®= Y  Er(gs ).
TESymn(Q)

When T € Sym,,(Q) is non-singular, the 7 -th Fourier coefficient factorizes,

Er(g.s,®) = [] Wr.p(gp.s. @p),

p=00

into a product of local Whittaker functions (see (2.1)). For every ¢ € S(V(Af)") =
S(CK/_), we define the Siegel-Eisenstein series of weight « on the Siegel upper half-

plane Hj, as
E(t,5,M(¢) ® D) = det(v) /% - E(gr, 5, M) ® D), (7.1)

where we write g = n(u)m(a) € Ggr with u = R(r) € Sym,(R) and a € GL,(R)
such that a’a = v as usual. In particular, we have g;(i1,) = 7. We could choose for
a the positive symmetric square root of v but we do not have to. The Eisenstein series
vanishes automatically at s = 0 due to incoherence. The arithmetic Siegel-Weil formula,
envisioned by Kudla, aims to give an arithmetic meaning to its central derivative at s = 0.
From now on, assume 7" = Sym,,(Q) is non-singular, and let

Diff(C, T) = {p < oo | Cp does not represent 7T’} (7.2)

be Kudla’s Diff set defined in the introduction. Then Diff(C, T') is a non-empty finite set,
and oo € Diff(C, T) if and only if T is not positive definite. Moreover, if p € Diff(C, T),
then Wr ,(gp, 0, Ap(¢p)) = 0. So

ords=0 E7(g, 5, A(¢) ® ®,) > |Diff(C, T)| (7.3)

for every ¢ € S(V(Ap)").
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7.2. The arithmetic Siegel-Weil formula at infinity

Here we prove Theorem 1.2(2). We begin by recalling the global set-up.
For a compact open subgroup K C H(Ay) we consider the Shimura variety X g
whose associated complex space is

Xk (C) =HQ\D x H(Af)/K.

It is a quasi-projective variety of dimension m, which has a canonical model over Q.

Given x = (x1,...,x,) € V(Q" with Q(x) = $(x,x) = 3((x;,x;)) > 0, let
H, be the stabilizer of x in H. For h € H(Ay), let K, = H (Ap) N hKh~! be the
corresponding compact open subgroup of H, (Ay). Then

He(QN\Dx x He(Ap)/Knx = Xk, [z, il [z, hih],

gives rise to a cycle Z(h, x) in Xk of codimension n. More generally, given a positive
definite 7 € Sym, (Q) and any K-invariant Schwartz function ¢ € S(V"(Ar)), Kudla
[Ku3] defines a weighted cycle as follows: If there exists an x € V"(Q) with Q(x) = T,
put
Z(T, ) = > eT'0Z0 x) € 2 (Xk).
heHy(Ap\H(Af)/K

If there is no such x, set Z(T, ¢) = 0. These weighted cycles behave well under pull-back
(for varying K). Moreover, if T € Sym, (Q) is regular but not positive definite, we put
Z(T,p) =0.

If T € Sym,,(Q) is regular, we define a Green current for the cycle Z(T', ¢) by

G(T.p.v.z.h)= Y o 'x) & (xa,2),

xeV'(Q)
Q(x)=T

where z € D, h € H(Ay), and a'a = v = J(). The pair
Z(T, ¢, v) = (Z(T,¢). G(T, 9, v)) € Ch:(X)

defines an arithmetic cycle, which depends on v. For the rest of this section we assume
that n = m + 1. In this case, the cycles Z(T, ¢) are all trivial (in the generic fiber) for
signature reasons. However, for indefinite 7', the arithmetic cycles Z (T, ¢, v) typically
have a non-trivial current part. We are interested in their archimedian arithmetic degree

— = 1
degoo(Z(T’ @, U)) = 5/ G(Tv @, U)'
Xk (©

We are now ready to prove Theorem 1.2(2) of the introduction, which we restate here
in a version which also gives an explicit value for the constant of proportionality.
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Theorem 7.1. Assume that T € Sym,, (Q) is of signature (n — j, j) with j > 0 and that
¢ € S(V(Ap)") is K-invariant. Then the arithmetic Siegel-Weil formula holds for T, i.e.,

deg oo Z(T, ,v) - q7 = Cpoo - Ef (1,0, M) ® D,),

where the constant C, o is given as follows. Let L C V be an integral lattice, and
let dih = ]_[p<oo deh be the associated Haar measure on H(Ay), and C(L) =
]_[p<oo C(Lp) be the associated constant given in Proposition 2.3 (with respect to the
unramified additive character Yy of Ar). Then

C(L)
vol(K, drh)’
Proof. The archimedian arithmetic degree is given by

Cn,oo = —Dpn,c

= 5 1
Fen 2T =5 [ 6o
2 Jxx©
1 —
"2 f Y. o0 & (xa, ) dhy.
V)"
H(Q\DxH(Ap)/K XQG(X)gT

This quantity vanishes if V (Q) does not represent 7. Then, by the Hasse principle, there
is at least one finite prime p such that V(Q,) does not represent T, i.e., p € Diff(C, T).
As oo € Diff(C, T), we see that |Diff(C, T)| > 1 and E7.(g,0, A(¢) ® ®,) = 0. Hence
the theorem holds trivially.

We now assume that there exists an xg € V(Q)" with Q(xo) = T. Then, by Witt’s
theorem, any other x € V(Q)" with Q(x) = T is an H (Q)-translate of xo. Let dhs be
any prefixed Haar measure on H (A (). Notice also that the pointwise stabilizer Hy,(Q) of
Xo is trivial since n = m + 1. By unfolding, the above integral is equal to

— o~ 1 _ _
deg  (Z(T, ¢, v)) = 3 vol(K, dhy) ! / (p(hf 1xo) . E(’)l(xoa, 2)dhy
Hyy (Q\DxH(Ar)

1
= EVOI(K,dhf)_I/ (p(hflxo)dhf / g(’)l(xoa,z).
H(Ap) D
By Theorem 5.2, the archimedian integral is equal to

1 - _
Efpg(’)’(xoa,z) = hteo (x0a) = — By det(v) /% - W}, (g7, 50, D) g~ .

On the other hand, the quantity

vol(K, dhy)™! /

¢(hy ' x0) dhy
H(Ay)

is clearly independent of the choice of the product Haar measure dhy. We choose dhy =
dp h; then the local Siegel-Weil formula, Proposition 2.2, gives

Vol(K,dhf)_I/ (h7 ' x0) dhy = cL)

————Wr £(1,0, A(p)).
) vol(K, dihy 07 ¢

This implies the assertion. O
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7.3. The arithmetic Siegel-Weil formula at a finite prime

Assume thatn = m + 1. Let p # 2 be a prime number. Let L C V be a p-unimodular
lattice. Let H = SO(L) and put H = GSpin(L). Let K = K,K?” be a compact open
subgroup of H(Ay) fixing L with

K,=H(Z,) =t{he HQ,) | hL, = L,}.

For convenience, we assume that there is a compact open subgroup K ¢ H (Ay) which
contains Z* and which maps onto K. Such a K always exists if K is contained in the
discriminant kernel subgroup of some even lattice in V (see Remark 7.4). Under this
assumption, the Shimura variety X associated to (H, K) is the same as the Shimura
variety associated to (H, K). The associated complex spaces are both equal to

H@Q\D x H(Ap)/K = H@Q\D x H(Ap)/K.

Lete, f € V be orthogonal vectors of negative length in Z(Xp). Then§ = ef € C(V) with
8' = =8 and N(8) = 88 € Z(Xp). This determines a symplectic form y¥s(x, y) = tr(x5y")
on C(V), for which the lattice C(L) is p-unimodular. We obtain an embedding

H — GSp(C(V))

and a morphism of Shimura varieties over Q from Xg to the Siegel Shimura variety
determined by the symplectic space (C(V), ¥s) and a suitable compact open subgroup.

The integral model of the Siegel Shimura variety induces then an integral model
X = Xk of Xk [Kis], [AGHM, Section 4]. Kisin showed that A" is smooth over Z)
if the compact open subgroup K” C H (A]’Z ) is sufficiently small.

By pulling back the universal abelian scheme, we obtain a polarized abelian scheme
(.AKS, AKS nKs) with level structure over X, the Kuga—Satake abelian scheme. It is
equipped with a right C (L)-action.

Given a Zp)-scheme S and an S-point a : § — A, we obtain a triple A, =
(A, A, n) = aF (AKS, 2KS, nKS) by pulling back the Kuga—Satake scheme. In particular,
n is a KP-level structure

n:Hyp = QH(A) ®z Q) — C(V) @g Af.
l<oo

I#p

sending V Al (the étale realization of the motive associated to the representation of H

onV)onto VQ® A}’ .Let V(Ay) C Endc(z,)(A)(p) be the space of special endomorphisms
of A, defined in [So, Definition 3.3].

Given T € Sym,,(Q) with detT # 0, the special cycle Z(T) — A’ is defined as the
stack over X with functor of points

Z(TM)(S) ={(a,x) |a € X(S), x = (x1,...,x1) € VA",
Q) =T, noxjon ' e LW},
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where L") =[], Li, and L = [], L;. In this subsection we drop the Schwartz func-
tion ¢ from the notation of Z(7', ¢), since we only consider it here for the characteristic
function of L".

Soylu [So, Proposition 3.7] showed that the image of the forgetful map

Z(T) — X

sends Z (T)(]Fp) into the supersingular locus X3 C X (I_F‘p). According to [HP, Proposi-
tion 7.2.3], there exists an g € Xy such that the p-divisible group (Xg, Ao) associated
to Ay, is equal the p-divisible group (X, A¢) considered in Section 6.1.

According to [HP, Theorem 7.2.4] or [She, Theorem 1.2], there is an isomorphism of
formal schemes

© : H(Q)\RZ x H(AP)/K? = H(Q)\RZ x FI(A)/KP = (Xw) ) x,,. (7.4)

where (/"Y\W) /X, 18 the completion of Xy along the supersingular locus X, and RZ =

pZ\RZ. The above discussion implies that for every (o, x) € Z (T)(IF',,) the space of
special endomorphisms satisfies

VAx) ®Q =V,
where V is the neighboring quadratic space over QQ associated with C at p.

Proposition 7.2. Let IL be a fixed lattice of V such that L, is a dual vertex lattice in 'V, of

type 2 as in Section 6.2 and ]ALq = f,q forq # p. Let g, = char(]AL"). Let T € Sym,(Q)
and assume that it satisfies the conditions of Theorem 6.3 at the prime p. Then

_ 1 CcWL
|Z2(T)([Fp)| := er%;(]F‘ Ao = zvol(K, i Wr 7 (1,0, A(¢L)) < 0.

Here K = K, K? is the compact open subgroup of H(Ay) with K, = SO(L,) C H(Q)).
In particular, if Z(T)(IF,) is not empty, then Diff(C, T) = {p}.

Proof. Letmw : Z(T) — X be the forgetful map, and identify via (7.4)

X5 (Fp) = H(Q)\RZ x H(A])/K?,

where X (IF‘,,) denotes the supersingular locus of X' (F »). By aresult of Soylu [So, Propo-
sition 3.7] the image of Z(T)(F),) lies in Xy (F ). Notice that (A, x) € Z(T)(F,) implies
that the p-divisible group X of A belongs to Z(J (x))(Fp), where J (x) is the sublattice
of V,, generated by the p-adic components of x (recall that the stabilizer of x in I:I,, is
trivial).

By Proposition 6.2, we have

ZUE) = || sa@®p = || Snr, @),
A=2 hpeH(Q,) /K,
xEA" xehpLy
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where Z(J) is the image of Z(J) in RZ. Recall that |SA (IE_TP)| = 2 for any dual vertex
lattice A C 'V, of type 2. So we find

1 1 _
2 amm = X 2 et
xeZ(T)(Fp) xeV" heH(@\H(A/)/K
o(x)=T
2

= L %) dyh,
Vol(K, dih) Juaga) ¢

if there is an x € V" with Q(x) = T (otherwise, it is zero). Here df, is the Haar measure
on H(A ) associated to the lattice I, and |I';| = h~'H(Q)hN K. Now applying the local
Siegel-Weil formula, we obtain the proposition. O

Recall that the arithmetic degree of Z(T') at p is defined as

— ht, (x)
deg,(Z(T)) = P 7.5
eg,(2(T)) > G| 98P (7.5)
x€Z(T)(Fp)
where ht, (x) is the length of the étale local ring Ozt , of Z(T) at the point x. The
following result is a refinement of Theorem 1.2(3).

Theorem 7.3. Fix a prime number p # 2. Let L C V be a p-unimodular lattice. Let
T € Sym, (Q) be such that T, satisfies the conditions in Theorem 6.3. Then the arithmetic
Siegel-Weil formula holds for T with

deg,(Z(T)) - q" = Cp - Ef(1,0,1(p1) ® ),

where
C o — C(L)
TP T GONK, dh)
In particular, Cy, p = Cp 0.

Proof. By Theorem 6.9 and Propositions 7.2, 6.8, and 2.3 we have

— 1
deg,(Z(T) = ) gy M) log p
xeZ(T)(Fp)
20(L)
=— W 1,0, 1 . )1
Vol(K. duh) 7,1 (1,0, A(¢r)) - vp(T2) log p

2C(L)  vol(Kp,dyr,) CLyp)

- Wr.,(1,0, 4
vol(K,dph) — C(Lp)  vol(K,,dy,h) T.p( (¢1,))

Wy (1.0, 2(gr,))

. (q};[)o Wrg(Ls oo, ))| - Wr (1,0, 71,

2C(L) E7(1,0, A(pL) ® D)
vol(K, di.h) Wroo(1,0, @)

Here T € Sym,,(Z,) is any p-unimodular matrix. Remark 4.4 gives

—3Bnoo - Wroo(1,0, &) = e 2707 (7.6)
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for any positive definite n x n matrix 7. So
~1Byoo - (detv) ™/ Wr 0o (g:, 0, @) = ¢
Hence we obtain the claimed formula. O

Remark 7.4. In this subsection we have assumed for convenience that ¢ is the character-
istic function of L, and that there is a compact open subgroup K C H (Ay) containing Z*
and mapping onto K. Both can be relaxed. First, we can naturally modify the definition
Z(T) in [So] to include Z(T, ¢) for all ¢ = ¢,¢? € S(V(Af)”)K with ¢, = char(LZ).
The proof of Proposition 7.2 goes through without any change. As already mentioned,
the assumption on K is always fulfilled if there exists an even lattice M C V which is
stabilized by K and such that K acts trivially on M'/M. In other words, every ‘suffi-
ciently small’ compact open subgroup K satisfies the condition. Finally, we indicate how
the results can be modified to hold for general K. Take a compact open subgroup K of
H (Ay) containing 7 such that its image K in H (Ay) is contained in K. Then there is
a natural projection Xy, — Xk and an analogous projection of Rapoport—Zink spaces.
The p-adic uniformization identity (7.4) still holds according to [She, Theorem 1.2]. For
p €S (V(Af)")K , the special cycle Zg, (T, ¢) is K-invariant and descends to a special
cycle Zx (T, ¢) on Xk.

Remark 7.5. Assume that Diff(C, T) = {p}. We observe the following variant of the
local arithmetic Siegel-Weil formula:

Wy (1.0, A1)

ht, (x) log p = —; , p<o00o,where T is p-unimodular,
1 W%OO(I,O,QK) ~ . .. . . ind
~htw(x) = ————-——-, p=o00, where T is positive definite with tr 7 =tr T
2 Wf Oo(l, 0, d,)

Here the extra % makes sense as we take the integral over the whole symmetric domain D
instead of its connected component DT, while at a finite prime p, we did it at each indi-
vidual point (connected component). This reinterpretation is different from the previous
ones used in [KRY2], [KRap1], [KRap2], and [HY] among others.
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