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Abstract. Let V be a rational quadratic space of signature (m, 2). A conjecture of Kudla relates the
arithmetic degrees of top degree special cycles on an integral model of a Shimura variety associated
with SO(V ) to the coefficients of the central derivative of an incoherent Siegel Eisenstein series of
genus m + 1. We prove this conjecture for the coefficients of non-singular index T when T is not
positive definite. We also prove it when T is positive definite and the corresponding special cycle
has dimension 0. To obtain these results, we establish new local arithmetic Siegel–Weil formulas at
the archimedian and non-archimedian places.
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1. Introduction

The classical Siegel–Weil formula connects the arithmetic of quadratic forms with Eisen-
stein series for symplectic groups [Si], [We], [KRal]. In particular, it yields explicit for-
mulas for the representation numbers of integers by the genus of a quadratic form in terms
of generalized divisor sum functions.

The Siegel–Weil formula also has important geometric applications. For instance, it
leads to formulas for the degrees of special cycles on orthogonal Shimura varieties in
terms of Fourier coefficients of Eisenstein series. To describe this, we let (V ,Q) be a ratio-
nal quadratic space of signature (m, 2). To simplify the exposition, we assume throughout
the introduction thatm is even; the general case is treated in the body of the paper. Denote
byH = SO(V ) the special orthogonal group of V , and let D be the corresponding hermi-
tian symmetric space, realized as the Grassmannian of oriented negative definite planes
in V (R). For a compact open subgroup K ⊂ H(Af ) we consider the Shimura variety

XK = H(Q)\(D ×H(Af )/K).
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It is a quasi-projective variety of dimension m, which has a canonical model over Q.
Every positive definite subspace U ⊂ V of dimension n induces an embedding of groups
SO(U⊥)→ H and thereby a special cycle Z(U) of codimension n onXK . Moreover, for
every positive definite symmetric matrix T ∈ Symn(Q) and every K-invariant Schwartz
function ϕ ∈ S(V n(Af )) there is a composite codimension n cycle

Z(T , ϕ)

on XK , which is a certain linear combination of the Z(U) for which U has Gram ma-
trix 2T . The classes of these cycles in the cohomology H 2n(XK ,C) and in the Chow
group Chn(XK) are important geometric invariants. Kudla and Millson also defined cycle
classes Z(T , ϕ) for positive semi-definite T ∈ Symn(Q). They showed that the generat-
ing series of the cohomology classes of these cycles is a Siegel modular form of genus n
and weight 1+m/2 (see [KM2], [Ku3]), generalizing the celebrated work of Hirzebruch–
Zagier for Hilbert modular surfaces [HZ]. The analogous statement for the classes in the
Chow group was conjectured by Kudla and recently proved in [Zh], [BW].

It is natural to ask for more precise information about the automorphic properties of
the generating series. For the special cycles of maximal codimension, that is, for n = m,
this question can be answered by means of the Siegel–Weil formula. If XK has r con-
nected components, the compactly supported cohomology H 2m

c (XK ,C) is isomorphic
to Cr via the degree maps on the connected components. IfXK is compact, Kudla showed
[Ku3, Theorem 10.3] that the generating series of the degrees of the special cycles is given
by a Siegel Eisenstein series of genus n and weight κ = 1+m/2, that is,∑

T

deg(Z(T , ϕ)) · qT = C · E(τ, 1/2, λ(ϕ)⊗8κ). (1.1)

Here τ = u + iv is a variable in the Siegel upper half-plane Hn, and C is an explicit
normalizing constant which is independent of ϕ. Moreover, λ(ϕ) denotes a certain sec-
tion of the induced representation I (s, χV ) of Spn(Af ) associated with ϕ, and 8κ de-
notes the standard section of weight κ of the corresponding induced representation of
Spn(R) (see Section 2.1). If XK is non-compact, the Eisenstein series is usually non-
holomorphic and the treatment of the non-holomorphic contributions needs extra care
(see e.g. [Fu], [FM2]).

The proof of this result involves the Schwartz forms ϕnKM(x, z) ∈ S(V
n(R))⊗A2n(D)

constructed by Kudla–Millson [KM2], which are Poincaré dual to special codimension n-
cycles. Since they transform with weight κ under the maximal compact subgroup U(n) ⊂
Spn(R), the theta series

θnKM(τ, ϕ, z, h) = det(v)−κ/2
∑

x∈V n(Q)
ϕ(h−1x) · (ω(gτ )ϕ

n
KM(x, z))

is a smooth (non-holomorphic) Siegel modular form of weight κ in τ . Here h ∈ H(Af ),
ω denotes the Weil representation of Spn and gτ =

(
1 u

1

)( a
ta−1

)
∈ Spn(R)with a ta = v.

The T -th Fourier coefficient of this theta series represents the de Rham cohomology class
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of Z(T , ϕ). When n = m, the generating series for the degrees is obtained by integrat-
ing θnKM(τ, ϕ, z, h) over XK . This can be evaluated by means of the Siegel–Weil for-
mula, leading to (1.1). As a consequence, it can be shown that the intersection number
of two special cycles Z(T1, ϕ1) and Z(T2, ϕ2) of complementary codimensions n1 and
n2 is given by the corresponding Fourier coefficient of the block diagonal restriction to
Hn1 × Hn2 of the Eisenstein series (see [Ku3, Section 10]). By means of the doubling
method, connections to special values of L-functions can be obtained.

Kudla initiated a program connecting the Arakelov geometry of special cycles on in-
tegral models of orthogonal (and unitary) Shimura varieties to Siegel (hermitian) modular
forms (see e.g. [Ku2], [KRY2]). In particular, in this setting arithmetic degrees of special
cycles are conjecturally connected to derivatives of Siegel Eisenstein series. We describe
some aspects of this program which are important for the present paper.

We consider arithmetic cycles in the sense of Gillet–Soulé (see [GiSo], [SABK]),
which are given by pairs consisting of a cycle on an integral model of XK and a Green
current for the cycle. For x ∈ V (R), Kudla constructed a Green function

z 7→ ξ0(x, z)

on D. It has a logarithmic singularity along the special divisor determined by x (see
(5.1)). More generally, if x = (x1, . . . , xn) ∈ V

n(R) is such that the moment matrix
T = Q(x) = 1

2 ((xi, xj ))i,j is invertible, one obtains a Green current for the special
codimension n cycle Dx = {z ∈ D | (z, x1) = · · · = (z, xn) = 0} by taking the star
product

ξn0 (x, z) = ξ0(x1, z) ∗ · · · ∗ ξ0(xn, z).

It satisfies the current equation

ddc[ξn0 (x, z)] + δDx
= [ϕnKM,0(x, z)],

where ϕnKM,0(x, z) = ϕ
n
KM(x, z) · e

2π trQ(x) is essentially the Poincaré dual form consid-
ered above, and δDx

is the Dirac current given by integration over Dx . For the rest of this
introduction we assume that T ∈ Symn(Q) is invertible. Then we obtain a Green current
for the cycle Z(T , ϕ) on XK by

G(T , ϕ, v, z, h) =
∑

x∈V n(Q)
Q(x)=T

ϕ(h−1x) · ξn0 (xv
1/2, z),

where z ∈ D and h ∈ H(Af ).
To describe the integral models of XK and the special cycles we are working with,

we assume for convenience that V contains a unimodular even lattice L. This assumption
can and will be relaxed when considering local integral models later on (see Remark 1.3).
We letK = SO(L̂) be the stabilizer of L̂ = L⊗ Ẑ inH(Af ), and let ϕ = ϕL = char(L̂n)
be the characteristic function of L̂n. By work of Kisin, Vasiu, and Madapusi Pera, the
Shimura variety XK has a canonical integral model XK , which is a smooth stack over Z
(see [Kis], [MP], [AGHM, Theorem 4.2.2]). There is a polarized abelian scheme A of
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dimension 2m+1 over XK , which is equipped with an action of the Clifford algebra C(L)
of L. For an S-valued point of XK there is a space of special endomorphisms

V (AS) ⊂ EndC(L)(AS)

on the pull-backAS ofA, which is endowed with a positive definite even quadratic formQ

(see [AGHM, Section 4]). It can be used to define an integral model of Z(T , ϕ) ofZ(T , ϕ)
as the substack of XK whose S-valued points have an x ∈ V (AS)n with Q(x) = T . The
pair

Ẑ(T , ϕ, v) = (Z(T , ϕ),G(T , ϕ, v))

determines a class in an arithmetic Chow group. Through the Green current it depends
on v = =(τ ). In analogy with the geometric situation described earlier, we would like to
understand the classes of these cycles and their relations.

As before we focus on the case of top degree cycles, which is here the case n = m+1.
If T is not positive definite, then Z(T , ϕ) vanishes, but the arithmetic cycle Ẑ(T , ϕ, v)
has non-trivial current part. On the other hand, if T is positive definite, then Ẑ(T , ϕ, v)
has trivial current part, and the cycle is entirely supported in positive characteristic. In
fact, if it is non-trivial then it is supported in the fiber above one single prime p. The
dimensions of the irreducible components were recently determined by Soylu [So]. In
particular, he showed that Z(T , ϕ)(F̄p) is finite if and only if the reduction of T modulo
p is of rank n − 1, n − 2, or of rank n − 3 (plus a technical condition). We refer to
Theorem 6.3 for details. Throughout this paper we consider the cases when either T is
not positive definite, or T is positive definite and Z(T , ϕ) has dimension 0.

According to [MP, Theorem 7.4], there exists a regular toroidal compactification XK

of XK with generic fiber XK . The cycle Ẑ(T , ϕ, v) defines a class in Ĉh
n

C(XK). Recall
that there exists an arithmetic degree map

d̂eg : Ĉh
n

C(XK)→ C

which is given as a sum of local degrees

d̂eg(Z,G) =
∑
p≤∞

d̂egp(Z,G),

where for an arithmetic cycle (Z,G) the local degrees are defined as

d̂egp(Z,G) =


∑

x∈Z(F̄p)

htp(x)
|Aut(x)|

· logp if p <∞,

1
2

∫
XK (C)

G if p = ∞.

Here htp(x) denotes the length of the étale local ring OZ,x of Z at the point x. Kudla
conjectured the following description of the arithmetic degrees of special cycles in terms
of derivatives of Siegel Eisenstein series of genus n (see [Ku2], [Ku5]).
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Conjecture 1.1 (Kudla). Assume that n = m+ 1 and T ∈ Symn(Q) is invertible. Then

d̂eg(Ẑ(T , ϕ, v)) · qT = Ĉ · E′T (τ, 0, λ(ϕ)⊗8κ),

where Ĉ denotes a constant which is independent of T and ϕ (see Theorem 7.1),
ET (τ, s,8) denotes the T -th Fourier coefficient of a Siegel Eisenstein series E(τ, s,8),
and the derivative is taken with respect to s.

Note that for T positive definite with Z(T , ϕ) of higher dimension the arithmetic degree
has to be defined more carefully as in [Te], but we do not consider this here. The con-
jecture can be further generalized to include the cases where T is singular, leading to an
identity between the generating series of the arithmetic degrees of the Ẑ(T , ϕ, v) and the
central derivative of the Eisenstein series E(τ, s, λ(ϕ) ⊗ 8κ) analogous to (1.1), which
can be viewed as an arithmetic Siegel–Weil formula. The full conjecture is known for
m = 0 and for the m = 1 case of Shimura curves (see [KRY1], [KRY2]).

To state our results on Conjecture 1.1, we let C =
⊗
p≤∞ Cp be the incoherent

quadratic space over A for which Cf =
⊗
p<∞ Cp ∼= V (Af ) and C∞ is positive defi-

nite of dimension m + 2. The Eisenstein series appearing in Conjecture 1.1 is naturally
associated with the Schwartz function on S(Cn) given by the tensor product of ϕ and the
Gaussian on Cn∞ via the intertwining operator λ. Hence it is incoherent and vanishes at
s = 0. The conjecture gives a formula for the leading term of the Taylor expansion in s at
s = 0. Following Kudla [Ku2], define the Diff set associated with C and T as

Diff(C, T ) = {p ≤ ∞ | Cp does not represent T }. (1.2)

Then Diff(C, T ) is a non-empty finite set, and ∞ ∈ Diff(C, T ) if and only if T is not
positive definite.

Theorem 1.2. Assume that T ∈ Symn(Q) is invertible. Then Conjecture 1.1 holds in the
following cases:

(1) if |Diff(C, T )| > 1; in this case both sides of the equality vanish;
(2) if Diff(C, T ) = {∞}; in this case T is not positive definite, and the only contribution

comes from the archimedian place, i.e.,

d̂eg(Ẑ(T , ϕ, v)) · qT = d̂eg∞(Ẑ(T , ϕ, v)) · qT = Ĉ · E′T (τ, 0, λ(ϕ)⊗8κ);

(3) if Diff(C, T ) = {p} for a finite prime p 6= 2 and Z(T , ϕ)(F̄p) has dimension 0; in
this case, the only contribution comes from the prime p, i.e.,

d̂eg(Ẑ(T , ϕ, v)) · qT = d̂egp(Ẑ(T , ϕ, v))qT = Ĉ · E′T (τ, 0, λ(ϕ)⊗8κ).

Remark 1.3. Since the cycle Ẑ(T , ϕ, v) is supported in a single fiber, all assertions of
Theorem 1.2 can be reformulated in terms of ‘local’ models of XK . We will actually
prove the local analogues in much greater generality.

Generalizing (2) we will show that if∞ ∈ Diff(C, T ) then

d̂eg∞(Ẑ(T , ϕ, v)) · q
T
= Ĉ · E′T (τ, 0, λ(ϕ)⊗8κ). (1.3)
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Since this is an assertion only about the complex fiber XK , we will be able to prove it
for any compact open subgroup K ⊂ H(Af ) (in particular V does not have to contain
an even unimodular lattice) and any K-invariant Schwartz function ϕ ∈ S(V (Af )n) (see
Theorem 7.1).

To generalize (3) we consider the canonical integral model XK,(p) of XK over the
localization Z(p). In this setting we will show that if p ∈ Diff(C, T ) for a finite prime
p 6= 2 and Z(T , ϕ) is 0-dimensional, then

d̂egp(Ẑ(T , ϕ, v)) · qT = Ĉ · E′T (τ, 0, λ(ϕ)⊗8κ). (1.4)

This will be proved under the assumption that K is the stabilizer of a Zp-unimodular
lattice L ⊂ V and for ϕ = char(L̂n) (see Theorem 7.3).

To prove Theorem 1.2, we decompose the Fourier coefficients of the Eisenstein series into
local factors. If 8 =

⊗
v 8v is a factorizable section of the induced representation, then

ET (g, s,8) =
∏
v≤∞

WT ,v(g, s,8v),

where WT ,v(g, s,8v) is the local Whittaker function given by (2.1). It is a basic fact that
the local Whittaker function WT ,p(gp, 0, λp(ϕp)) vanishes for every p ∈ Diff(C, T ).

This implies assertion (1) of Theorem 1.2 in a rather direct way. Indeed, if |Diff(C, T )|
> 1 then the right hand side of the conjectured identity is automatically zero. To prove
that the left hand side also vanishes, we consider for a prime p ≤ ∞ the neighboring
global quadratic space V (p) at p associated with C, which is the quadratic space over Q
with local components V (p)q

∼= Cq for all q 6= p and such that V (p)p and Cp have the same
dimension and quadratic character but different Hasse invariants (for p = ∞ we also
require that V (∞)∞ has signature (m, 2), and hence V (∞) = V ).

If Z(T , ϕ)(F̄p) is non-empty for a prime p < ∞, then one can show (see the proof
of Proposition 7.2 for example) that V (p) represents T . This implies Diff(C, T ) = {p}.
Similarly, the proof of Theorem 7.1 shows that if the Green current G(T , ϕ, v) is non-
vanishing, then V (∞) represents T and hence Diff(C, T ) = {∞}.

In the situation of part (2) of Theorem 1.2, when Diff(C, T ) = {∞}, the local Whit-
taker function WT ,∞(g, 0,8κ) vanishes, and hence

E′T (τ, 0, λ(ϕ)⊗8κ) =
∏
p<∞

WT ,p(g, 0, λ(ϕp))×W ′T ,∞(g, 0,8κ).

The derivative of the archimedian Whittaker function is given by the following arithmetic
local Siegel–Weil formula for the archimedian local height function:

ht∞(x) =
1
2

∫
D
ξn0 (x, z)

on V n(R), which is our second main result (see also Theorem 5.2). The contributions
from the non-archimedian places can be computed by means of the local Siegel–Weil
formula (see Propositions 2.2 and 2.3) .
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Theorem 1.4. Let x ∈ V n(R) be such that the Q(x) = T is invertible. Then

ht∞(xv1/2) · qT = −Bn,∞ det(v)−κ/2 ·W ′T ,∞(gτ , 0,8κ), (1.5)

where

Bn,∞ =
e
(
n2
+n−4

8

)
(n− 1)!

∏n−1
k=1 0

(
n−k

2

)
2n−2(2π)n(n+3)/4 .

In the special case m = 0 Theorem 1.4 was proved in [KRY1], for m = 1 in [Ku2],
and for m = 2 in [YZZ]. For the related case of Shimura varieties associated to unitary
groups of signature (m, 1) it was proved in [Liu]. But the argument of [Liu] does not seem
to generalize to the case of orthogonal groups considered in the present paper. Recently,
Garcia and Sankaran [GaSa] employed Quillen’s theory of super-connections to obtain a
different proof of Theorem 1.4.

In all these works it is first noticed that because of the equivariance of ξn0 (x, z)with re-
spect to the action ofH(R), the local height function ht∞(x) only depends on T = Q(x).
Then a crucial step consists in proving that ht∞(T ) := ht∞(x) is invariant under the ac-
tion of SO(n) on Symn(R) (respectively U(n) on Hermn(C)) by conjugation. Hence it
suffices to prove the claimed identity for diagonal T . In this case the star product reduces
to a single integral, which can be related to the derivative of the Whittaker function by a
direct (but rather involved) computation.

Our approach is different. For general non-singular T , we consider the recursive for-
mula for the star product (see (5.5)) and compute its ‘main term’ by means of the classical
archimedian local Siegel Weil formula (see Theorem 5.4). The result turns out to be the
sum of a main term, which is the desired right hand side of (1.5), plus a boundary term,
given by the derivative of a genus n − 1 Whittaker function. By an inductive argument,
the boundary term cancels against the remaining terms of the star product. This approach
does not require proving SO(n)-invariance of the local height function at the outset. We
obtain this invariance a posteriori from the obvious invariance of the Whittaker function.

Finally, we describe our approach to part (3) of Theorem 1.2. When Diff(C, T ) = {p}
for a finite prime p 6= 2, the local Whittaker functionWT ,p(g, 0,8κ) vanishes, and hence

E′T (τ, 0, λ(ϕ)⊗8κ) = W ′T ,p(1, 0, λ(ϕp))×
∏
q<∞
q 6=p

WT ,q(1, 0, λ(ϕq))×WT ,∞(τ, 0,8κ).

The derivative of the local Whittaker function at p is given by the following arithmetic
local Siegel–Weil formula, which is our third main result paralleling Theorem 1.4. The
terms away from p can again be computed by means of the local Siegel–Weil formula.
Recall that ϕ = ϕL ∈ S(V n(Af )) is the characteristic function of L̂n.

Theorem 1.5. Let p 6= 2 be a prime number and assume that Z(T , ϕ)(F̄p) is finite. Then
for x ∈ Z(T , ϕ)(F̄p), the local height htp(x) is independent of the choice of x and is given
by

htp(x) · logp =
W ′T ,p(1, 0, λ(ϕ))

WT u,p(1, 0, λ(ϕ))
,

where T u is any unimodular matrix in Symn(Zp) (i.e., det T u ∈ Z×p ).
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This theorem will be restated and proved as Theorem 6.9. As in the archimedian case
the proof is given by an inductive argument. According to Soylu’s condition mentioned
above, Z(T , ϕ)(F̄p) being finite implies that T is Zp-equivalent to diag(T1, T2) where
T1 is Zp-unimodular of rank n − 3. On the Whittaker function side, we will prove the
following recursive formula (see Proposition 6.8):

W ′T ,p(1, 0, λ(ϕLp ))

WT u,p(1, 0, λ(ϕLp ))
=
W ′T2,p

(1, 0, λ(ϕL2,p ))

WT u2 ,p
(1, 0, λ(ϕL2,p ))

. (1.6)

Here T u and T u2 are unimodular symmetric Zp matrices of order n and 3 respectively, and
L2,p is a unimodular Zp-quadratic lattice of rank 4 with

Lp = M1,p ⊕ L2,p

for a unimodular Zp-quadratic lattice M1,p whose quadratic matrix is given by T1.
This suggests a similar recursion for the local height function htp(x). Soylu proved

that the abelian variety associated with x is supersingular. The local height function de-
pends only on the associated p-divisible group, and it can be computed using the p-adic
uniformization of the supersingular locus by a Rapoport–Zink space (see Section 6). The
required recursion formula for the local height function is proved by employing recent
work of Li and Zhu ([LZ, Lemma 3.1.1], see Corollary 6.5).

By the recursion formulas, the proof of Theorem 1.5 is reduced to the case n = 3
in the local situation, where L = L2,p is a unimodular Zp-lattice of rank 4 and T =
T2,p is a symmetric Zp-matrix of rank 3, and x = (x1, x2, x3) determines a point in
Z(T , ϕ)(F̄p) on the associated Rapoport–Zink space. This turns out to be exactly the
local case considered by Kudla and Rapoport in their work on (twisted) Hilbert modular
surfaces [KRap1].

This paper is organized as follows. Section 2 contains some preliminaries and ba-
sic facts about Whittaker functions. Moreover, we state the classical local Siegel–Weil
formula with an explicit formula for the constant of proportionality. In Section 3 we
derive a variant of the archimedian local Siegel–Weil formula for integrals of certain
Schwartz functions over the hermitian symmetric space of the orthogonal group, again
with explicit constant of proportionality. The main result, Theorem 3.1, is one of the
key ingredients in the proof of Theorem 1.4. In Section 4 we investigate the asymptotic
behavior of the archimedian Whittaker function as one of the radial parameters goes to
infinity. Our analysis relies on Shimura’s work on confluent hypergeometric functions
[Shi]. The main result, Theorem 4.8, which is of independent interest, is the second main
ingredient in the proof of Theorem 1.4. Section 5 is devoted to the proof of the archi-
median arithmetic Siegel–Weil formula, Theorem 1.4. In Section 6 we recall some facts
about the Rapoport–Zink space for GSpin groups from [HP] and [So] and prove the non-
archimedian local arithmetic Siegel–Weil formula, Theorem 1.5. Finally, Section 7 con-
tains the proofs of our main global results, Theorem 1.2 and the refinements described in
Remark 1.3.
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2. The local Siegel–Weil formula

In this section we introduce the basic local set-up and recall the local Siegel–Weil formula
(see Theorem 2.1). We make the constant involved explicit in Proposition 2.2.

2.1. The basic local set-up and local Whittaker functions

Let F be a local field or the ring of adeles of a number field, and let ψ be a non-trivial
additive character of F (or adele class character). Let P = NM be the standard Siegel
parabolic subgroup of the symplectic group Spn(F ) given by

M =

{
m(a) =

(
a

ta−1

) ∣∣∣∣ a ∈ GLn(F )
}
,

N =

{
n(b) =

(
1 b

1

) ∣∣∣∣ b ∈ Symn(F )

}
.

We also denote

w =

(
0 −In
In 0

)
.

Let Mpn,F be the metaplectic cover of Spn(F ), identified with Mpn,F = Spn(F )× {±1}
via the normalized Rao cocycle cR(g1, g2) given in [Rao] (with the minor correction in
[Ku1, p. 379]):

[g1, ε1][g2, ε2] = [g1g2, ε1ε2cR(g1, g2)].

For g ∈ Spn(F ), we will simply denote g = [g, 1].
Let (V ,Q) be a non-degenerate quadratic space over F of dimension l. Then there is

a Weil representation ω = ωV,ψ of Mpn,F on S(V n) given by [Ku1, p. 400]. In particular,

ω(n(b))φ(x) = ψ(tr(Q(x)b))φ(x),

ω(m(a))φ(x) = χV (det a)γ
(
det a, 1

2ψ
)−l
(det a,−1)l(l−1)/2

F |det a|l/2φ(xa),

ω(w)φ(x) = γ (V n)

∫
V n
φ(y)ψ(− tr(x, y)) dψy,

where dψy is the self-dual Haar measure on V with respect to ψ , and γ (V n) =

γ (ψ ◦ detQ)−n. Here γ (ψ) and γ (a, ψ) (for a ∈ F×) are the local Weil indices de-
fined in [Rao, Appendix], and

detQ = 2−l detV = det
( 1

2 (ei, ej )
)
∈ F×/(F×)2,

for an F -basis {e1, . . . , el} of V . Finally,

χV (a) = (a, (−1)l(l−1)/2 detV )F

is the quadratic character associated to V . It is well-known that the Weil representation
factors through Spn(F ) when l is even. Since

γ
(
a, 1

2ψ
)2
= (a,−1)F ,
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the formula for ω(m(a))φ above works for both even and odd l. From now on, let G =
Spn(F ) or Mpn,F depending on whether n is odd or even, and let P be the standard Siegel
parabolic subgroup or the preimage of the standard Siegel parabolic subgroup. If F = R,
we let KG ⊂ G be the maximal compact subgroup given by either{

k =

(
a b

−b a

) ∣∣∣∣ k = a + ib ∈ U(n)
}
∼= U(n)

or the inverse image of U(n) under the covering map (when G = Mpn,R).
For a character χ of F×, let I (s, χ) = IndGP χ | det |s be the induced representation.

A section 8 ∈ I (s, χ) satisfies

8(n(b)m(a)g, s) =

{
χ(det a)|det a|s+ρn8(g, s) if G = Spn(F ),

χ(det a)γ
(
det a, 1

2ψ
)−1
|det a|s+ρn8(g, s) if G = Mpn,F ,

where
ρn = (n+ 1)/2.

For a symmetric matrix T ∈ Symn(F ), the Whittaker function of 8 with respect to T is
defined to be

WT (g, s,8) =

∫
Symn(F )

8(wn(b)g, s)ψ(− tr(T b)) dψb, (2.1)

where dψb is the self-dual Haar measure on Symn(F ) with respect to the pairing (b1, b2)

7→ ψ(tr(b1b2)). It has the transformation behavior

WT (n(b)m(a)g, s,8)

= ψ(tr(T b))χ(a)−1
|a|ρn−s ·

{
WtaT a(g, s,8) if G = Spn(F ),
γ
(
a, 1

2ψ
)
WtaT a(g, s,8) if G = Mpn,F .

(2.2)

Here we have shortened γ
(
a, 1

2ψ
)
= γ (det a, 1

2ψ) (and similarly for χ(a)). We remark
that γ

(
a, 1

2ψ
)
= 1 when det a > 0 and F = R.

Let sl,n = (l − n− 1)/2. Then there is a G-equivariant map

λ : S(V n)→ I (sl,n, χV ), λ(φ)(g) = (ω(g)φ)(0). (2.3)

We will also denote by λ(φ) the associated standard section in I (s, χV )with λ(φ)(g, sl,n)
= λ(φ)(g). Assume that l = n+ 1. Then a formal unfolding suggests that there is a Haar
measure dh on H = SO(V ) such that for all φ ∈ S(V n),

OT (ω(g)φ, dh) = C ·WT (g, 0, λ(φ)),

where C is some constant which is independent of T and φ, and

OT (φ, dh) =

∫
H(F)

φ(h−1x) dh

if there is x ∈ V n with Q(x) = T (otherwise set the orbital integral to be zero). This is
the content of the so-called local Siegel–Weil formula which we will describe in the next
two subsections. In particular, we will determine the constant C.
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2.2. Kudla’s local Siegel–Weil formula

In this subsection we review the local Siegel–Weil formula given in [KRY2, Section 5.3],
following a general result in [Ra, Chapter 4]. Let the notation be as in Section 2.1, and
assume dimV = n+ 1. Let

Q : V n→ Symn(F ), Q(x) = 1
2 ((xi, xj )), (2.4)

be the moment map. Let V nreg be the subset of x ∈ V n with detQ(x) 6= 0, and let
Symreg

n (F ) be the subset of T ∈ Symn(F ) with det T 6= 0. Then Q induces a regular
map from V nreg to Symreg

n (F ).
Put a(n) = n(n+ 1)/2. We let α be a gauge form on V n, that is, a generator of

(∧2a(n)V n)∗ (a top level differential of the topological vector space V n), and let β be a
gauge form on Symn(F ), i.e., a generator of (∧a(n)(Symn(F )))

∗.
Fix an x = (x1, . . . , xn) ∈ V

n
reg with Q(x) = T . If we identify the tangent space

Tx(V
n
reg) with V n, then the differential dQx is given by

dQx(v) =
1
2 ((x, v)+ (v, x)) ∈ Symn(F ), v ∈ V n.

Let
jx : Symn(F )→ V n, jx(u) =

1
2xQ(x)

−1u. (2.5)

Then dQx ◦ jx(u) = u, and we have the decomposition

Tx(V
n
reg) = Im(jx)⊕ ker(dQx).

Now choose any u = (u1, . . . , ua(n)) ∈ (Symn(F ))
a(n) with β(u) 6= 0. We define an

a(n)-form ν ∈ (∧a(n)V n)∗ on V nreg as follows: for any t = (t1, . . . , ta(n)) ∈ (V n)a(n), we
put

ν(t) = α(jx(u), t)β(u)
−1. (2.6)

This quantity is independent of the choice of u. Then [KRY2, Lemma 5.3.1] asserts that

α = Q∗(β) ∧ ν, (2.7)
ν = (h, g)∗ν, (2.8)

for h ∈ SO(V ) and g ∈ GLn, where SO(V ) × GLn acts on V n via (h, g)x = hxg−1.
Moreover, ν defines a gauge form on Q−1(T ) if we identify ker dQx with the tangent
space Tx(Q−1(T )) of Q−1(T ). Finally, using the isomorphism

ix : SO(V )→ Q−1(T ), ix(h) = hx (2.9)

(here dimV = n + 1 is critical to ensure that the pointwise stabilizer Hx of x is trivial),
we obtain a gauge form i∗x (ν) on SO(V ), which we will still denote by ν for simplicity.
The key point (see [KRY2, Lemma 5.3.2]) is that this gauge form ν does not depend on T
or x, which can be seen by (2.8).

This gauge form ν gives a Haar measure dh = dνh on SO(V ). Let dαx be the Haar
measure on V n associated to α and dβT be the Haar measure on Symn(F ) associated
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to β, and let dψx and dψT be the self-dual Haar measures on V n and Symn(F ) with
respect to ψ , respectively. Then there are constants c(α,ψ) and c(β, ψ) such that

dαx = c(α,ψ)dψx, dβT = c(β, ψ)dψT . (2.10)

Finally, we can state Kudla’s local Siegel–Weil formula, which is [KRY2, Proposition
5.3.3] (although only stated for n = 2 there, the proof goes through for general n without
any change).

Theorem 2.1 (Local Siegel–Weil formula). Given a gauge form α on V n and a gauge
form β on Symn(F ), let dνh be the Haar measure on H(F) associated to α and β as
above. Then for any φ ∈ S(V n), T ∈ Symreg

n (F ), and g ∈ G,

OT (ω(g)φ, dνh) = C(V, α, β,ψ) ·WT (g, 0, λ(φ)),

where

C(V, α, β,ψ) =
c(α,ψ)

γ (V n)c(β, ψ)
,

and γ (V n) = γ (V )n by [Ku1, Lemma 3.4].

We remark that our C(V, α, β,ψ) is the reciprocal of the same notation in [KRY2].

2.3. Explicit construction

Let e = (e1, . . . , en+1) be an ordered basis of V and put J = Q(e) = 1
2 ((ei, ej )) ∈

Symn+1(F ). When F is p-adic, let L =
⊕

OF ej be the associated OF -lattice. Using
this basis, we identify V with F n+1 (column vectors) and V n with Mn+1,n.

Let Eij denote a matrix whose (ij)-entry is one and all other entries are zero (we do
not specify the size of the matrix). Then {Eij | 1 ≤ i ≤ n + 1, 1 ≤ j ≤ n} is a basis
of V n. Let deij be its dual basis, and let α =

∧
ij deij be the gauge form on V n (up to

sign, which does not affect the associated Haar measure) with

α((Eij )) = α(E11, E12, . . . , En+1,n) = 1. (2.11)

Notice that Yij = Eij + Eji is a basis of Symn(F ) (1 ≤ i ≤ j ≤ n), and let dyij be its
dual basis. Let β =

∧
ij dyij . Then (up to sign)

β(Y11, Y12, . . . , Yn,n) = 1. (2.12)

Proposition 2.2. Let J , α, and β be as above, and let dνh be the associated Haar mea-
sure on H(F) = SO(V )(F ). Take ψ(x) = e(x) = e2πix when F = R and assume that
ψ is unramified when F is p-adic. Then

OT (ω(g)φ, dνh) = C(J ) ·WT (g, 0, λ(φ))

for all φ ∈ S(V n) and g ∈ G. Here

C(J ) = γ (V n)−1
|2|n+n(n−1)/4

F |det(2J )|−n/2F .

Finally, when F = R and V has signature (p, q), then γ (V n) = e(n(q − p)/8).
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By the proposition, we see that dνh depends only on |det(2J )|F . For this reason, we will
sometime denote dνh by dJh or dLh in the p-adic case. We also write C(L) = C(J ) in
the p-adic case as det(2J ) = detL.
Proof of Proposition 2.2. First assume that F is p-adic. Let OF be the ring of integers
of F . Let L =

⊕
OF ei = On

F ⊂ V = F n and f = char(Ln) = char(Mn+1,n(OF ))

∈ S(V n). Then the Fourier transforms of f with respect to dαx and dψx are given by

f̂α(X) =

∫
Mn+1,n(OF )

ψ(− tr(2 tXJZ))
∏

dzij = char(L′,n)(X),

f̂ψ (X) =

∫
Mn+1,n(OF )

ψ(− tr(2 tXJZ)) dψZ = char(L′,n)(X) vol(Ln, dψx),

whereL′ is the dual lattice ofLwith respect toψ . Since dψx is the self-dual Haar measure
on V with respect to ψ , one has

vol(L, dψx) = |det(2J )|1/2F .

Consequently, c(α,ψ) = |det(2J )|−n/2F .
Next, for t = (tij ) ∈ Symn(F ), dβ t = |2|

−n
F

∏
dtij . Let f = char(Symn(OF )). Then

f̂β(y) =

∫
Symn(OF )

ψ(− tr(yt))|2|−nF
∏
i

ψ(−yii tii) dtii
∏
i<j

ψ(−2yij tij )dtij

= |2|−nF
∏
i

char(OF )(yii)
∏
i<j

char
( 1

2OF

)
(yij ).

On the other hand, if dψ t is the self-dual Haar measure on Symn(F ) with respect to ψ ,
then

vol(Symn(OF ), dψ t) = |2|
n(n−1)/4
F ,

and

f̂ψ (y) =

∫
Symn(OF )

ψ(− tr(yt)) dψ t

= vol(Symn(OF ), dψ t)
∏

char(OF )(yii)
∏
i<j

char
( 1

2OF

)
(yij ).

So c(β, ψ) = |2|−n−n(n−1)/4
F . Now it is clear that C(V, α, β,ψ) = C(J ) as claimed.

Now assume that F = R andψ(x) = e(x). To compute the quantity c(α,ψ), we write
J = tP diag(a1, . . . , an+1)P and denote |J | = tP diag(|a1|, . . . , |an+1|)P . We consider
the Schwartz function on Mn+1,n(R) given by

f (x) = e−2π tr(tx|J |x)
= e
−2π

∑
|ai |x̃

2
ij ,

where we write Px = (x̃ij ). Then its Fourier transform with respect to dαx =
∏
dxij is

f̂α(x) =

∫
Mn+1,n(R)

f (y)e(tr(2 txJy))
∏

dyij = 2−n(n+1)/2
|det J |−n/2f (x),

and so c(α,ψ) = |det(2J )|−n/2 as claimed.
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To compute c(β, ψ), notice that dβT = 2−n
∏
i dtii

∏
i<j dtij for T = (tij ) ∈

Symn(R), and consider the Schwartz function on Symn(R) given by

f (T ) = e
−π(

∑
i t

2
ii+2

∑
i<j t

2
ij ).

Then its Fourier transform with respect to dβT is

f̂β(b) =

∫
Symn(R)

f (T )ψ(− tr(T b)) dβT

= 2−n
∏
j

e
−πb2

jj

∫
R
e−π(tjj+ibjj )

2
dtjj

∏
j<k

e
−2πb2

jk

∫
R
e−2π(tjk+ibjk)2dtjk

= 2−n−n(n−1)/4f (b).

This shows the equality c(β, ψ) = 2−n−n(n−1)/4. We again have C(V, α, β,ψ) = C(J )
as claimed. The formula for γ (V n) is given by βV (w) in [Ku1, (3.4)]. ut

The following proposition shows how to compute the Haar measure dνh in some cases
and will be used in Section 7.

Proposition 2.3. Let F be a p-adic local field with p 6= 2 and a uniformizer π , and let
ψ be an unramified additive character of F . For a lattice L over OF , let KL = SO(L)
be the stabilizer of L in SO(V )(F ), where V = L⊗OF

F . Let dLh be the Haar measure
on H(F) = SO(V )(F ) defined above.

(1) When L is unimodular of rank n+ 1, we have

vol(KL, dLh)
C(L)

= WT (1, 0, λ(φL))

for any unimodular symmetric matrix T ∈ Symn(OF ). Here φL = char(Ln).
(2) Assume L = L1 ⊕ L0 with L1 unimodular of rank n − 1 and L0 = (OE, π NE/F ),

where E is the unique unramified quadratic field extension. Let T = diag(T1, π) with
T1 =

1
2 ((ei, ej )) for some OF -basis {e1, . . . , en−1} of L1. Then

vol(KL, dLh)
C(L)

= WT (1, 0, λ(φL)).

In both cases, C(L) = C(J ) is given by Proposition 2.2.

Proof. We prove (2) using Proposition 2.2 with φ = φL, and leave the slightly easier (1)
to the reader. Choose a basis {en, en+1} of L0 so that Q(aen + ben+1) = π(a

2
+ εb2) for

some ε ∈ O×F . Let e = (e1, . . . , en) ∈ L
n. Then Q(e) = T . We claim that

KT := {h ∈ H(F) | he ∈ L
n
} = KL.

Clearly, KL ⊂ KT . We just need to prove that hen+1 ∈ L for h ∈ KT . In this case,
hL1 ⊂ L is unimodular, so L = hL1 ⊕M0, where M0 = L ∩ (hL1)

⊥ is a rank 2 lattice
with detM0 = detL0 = επ

2. Write

M0 = OF ẽn +OF ẽn+1, Q(xẽn + yẽn+1) = ε1π
a1x2
+ ε2π

a2y2
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with ε1ε2 = ε and non-negative integers ai satisfying a1 + a2 = 2. Since

hen = xẽn + yẽn+1 ∈ L ∩ (hL1)
⊥
= M0,

we have x, y ∈ OF and

π = N(en) = N(hen) = ε1π
a1x2
+ ε2π

a2y2,

which implies a1 = a2 = 1. Now write

hen+1 = aẽn + bẽn+1, a, b ∈ F.

Then
επ = N(en+1) = N(hen+1) = π(ε1a

2
+ ε2b

2),

i.e.,
ε1ε = NE/F (ε1a +

√
−ε b),

which implies ε1a +
√
−ε b ∈ E1, which is integral over OF . So a, b ∈ OF and

h(en+1) ∈ L. This provesKT = KL. Applying the local Siegel–Weil formula to φ = φL,
we have ∫

H(F)

φL(h
−1e) dLx = C(L) ·WT (1, 0, λ(φL).

The left hand side is equal to vol(KT , dLx). So we have

vol(KL, dLh) = C(L) ·WT (1, 0, λ(φL)

as claimed. ut

We remark that the Whittaker functions involved in the above proposition have explicit
formulas: see Section 7.

Now we describe ν and dνh = dJh more explicitly by choosing the basis e and thus
J nicely, i.e., we assume J = diag(a1, . . . , an+1). It will be used in the next section.

Let h = so(V ) be the Lie algebra of SO(V ). In terms of coordinates with respect to
the basis e, one has X = (xij ) ∈ h if and only if tXJ + JX = 0, i.e., aixij + ajxji = 0.
Hence we have the following lemma.

Lemma 2.4. Let Xij = ajEij − aiEji for 1 ≤ i < j ≤ n+ 1. Then {Xij } gives a basis
of h as an F -vector space.

Proposition 2.5. Let the notation be as above. Then

ν(X12, X13, . . . , Xn,n+1) = ±1.

Proof. We choose

x = (e1, . . . , en) =

(
In
0

)
∈ V n

and T = Q(x) = diag(a1, . . . , an). Then

jx(Yij ) =
1
2xT

−1Yij =
1
2 (a
−1
i Eij + a

−1
j Yji).
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Recall that ix : H → Q−1(T ), h 7→ hx. Hence the associated map on the tangent spaces,
dix : h→ V a(n), is given by

dix(Xij ) = Xijx =

{
Xij if j ≤ n,
−aiEn+1,i if j = n+ 1.

Therefore, ( ∧
1≤i<j≤n+1

(dix)(Xij )
)
∧

( ∧
1≤j≤n

jx(Yij )
)
= ±

∧
1≤i≤n

1≤j≤n+1

Eij ,

and

ν(∧Xij ) = α
(( ∧

1≤i<j≤n+1

(dix)(Xij )
)
∧

( ∧
1≤j≤n

jx(Yij )
))
β(∧Yij )

−1

= ±α
( ∧

1≤i≤n
1≤j≤n+1

Eij

)
= ±1.

This concludes the proof of the proposition. ut

3. The local Siegel–Weil formula on a hermitian symmetric domain

Let V be a quadratic space over R of signature (m, 2), and let H = SO(V ). Let D be
the corresponding hermitian domain, which we realize as the Grassmannian of oriented
negative 2-planes in V . The purpose of this section is to prove Proposition 3.1, a variant
of the archimedian local Siegel–Weil formula involving an integral over D. Throughout
this section we fix the additive character ψ(x) = e(x) of R and assume that n = m + 1.
Recall that ρn = (n+ 1)/2.

Let e, f ∈ V be isotropic vectors such that (e, f ) = 1, and let V0 = (Re + Rf )⊥
⊂ V . Then V0 has signature (m − 1, 1) and we have the Witt decomposition V =
V0 + Re + Rf . The hermitian symmetric domain D can also be realized as the tube
domain

H = {z = x + iy ∈ V0,C | Q(y) < 0} (3.1)

via the isomorphism

H→ D, z 7→ R<(w(z))+ R=(w(z)),
where

w(z) = z+ e −Q(z)f ∈ VC.

Then H(R) acts on H by linear fractional transformations, characterized by

hw(z) = j (h, z) · w(hz)

where j (h, z) denotes the automorphy factor H(R)×H→ C×, j (h, z) = (hw(z), f ).
The map z 7→ w(z) can be viewed as a section of the tautological bundle over D. The

Petersson norm of this section is − 1
2 (w(z), w(z)) = −(y, y). Hence

� = ddc log(−(y, y)) (3.2)
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defines an invariant (1, 1)-form on H ∼= D, the first Chern form of the dual of the tauto-
logical bundle on D equipped with the Petersson metric. Here dc = 1

4πi (∂−∂̄). According
to [Ku4, Proposition 4.11], in the coordinates of H, it is given by

� = ddc log
(
−

1
2
(ω(z), ω(z̄))

)
= −

1
2πi

(
−
(y, dz) ∧ (y, dz̄)

(y, y)2
+
(dz, dz̄)

2(y, y)

)
. (3.3)

Moreover, it can be obtained from the Kudla–Millson form ϕKM(x, z) (see (5.2)) by

� = ϕKM(0, z), (3.4)

an identity which we will only need in Section 5. Notice that −� is a Kähler form, and
therefore (−�)m is a positive invariant top degree form on H.

Proposition 3.1 (Local Siegel–Weil formula on D). Let φ∞(x, z) ∈ S(V nR) ⊗ C
∞(D)

with φ∞(hx, hz) = φ∞(x, z) for all z ∈ D, x ∈ V nR and h ∈ H(R). Then λ(φ∞) is
independent of z, and ∫

D
φ∞(x, z)�

m
= Bn,∞ ·WT (1, 0, λ(φ∞))

with T = Q(x) and

Bn,∞ =
e
(
n2
+n−4

8

)
(n− 1)!

∏n−1
k=1 0

(
n−k

2

)
2n−2(2π)n(n+3)/4 .

In particular, B2,∞ =
i

4
√

2π2 and

Bn,∞

Bn−1,∞
= in

0(ρn)

(2π)ρn
. (3.5)

The basic idea of the proof is simple and natural: we relate the gauge form on the tangent
space p of D to the differential form �m precisely. The actual calculation is a little long
and technical, and can be skipped on first reading. We will also provide an alternative
proof in Section 5.5.

3.1. The differential �m and the gauge form ν

Let e = (e1, e2, . . . , em, en, en+1) be an ordered basis of V with quadratic matrix

J = 1
2 ((ei, ej )) =

(
Im 0
0 −I2

)
.

We write V+ (respectively V−) for the subspace generated by the ei with 1 ≤ i ≤ m

(respectively i = n, n + 1). Let K± = SO(V±). Then K∞ = K+ × K− is a maximal
connected compact subgroup of H(R). In the notation of the last section, ai = 1 for
1 ≤ i ≤ m and ai = −1 for i = n, n+ 1.
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Let h = so(V ) be the Lie algebra of SO(V ). Then X ∈ h if and only if X =
( X1 X2
tX2 X3

)
with tX1 = −X1 ∈ Mm, tX3 = −X3 ∈ M2, and X2 ∈ Mm,2. In other words, one has a
decomposition

h = k+ ⊕ k− ⊕ p,

where k± is the Lie algebra of K± = SO(V±) given by matrices satisfying tX1 = −X1
(respectively tX3 = −X3).

It is easy to see that the gauge form ν given in Proposition 2.5 has the following
decomposition (up to sign):

ν = ν+ ∧ ν− ∧ νp, (3.6)

where ν+, ν−, and νp are the gauge forms on K+, K−, and H(R)/K∞, which are char-
acterized by

ν+(X12, . . . , Xm−1,m) = 1,
ν−(Xn,n+1) = 1, (3.7)
νp(X1n, X1,n+1, . . . , Xmn, Xm,n+1) = 1.

Now we deal with the relation between �m and νp. We use a tube domain realization
for D as above. To this end we define a different basis e′ of V as follows. Let e =
1
2 (e1 + en+1), f = 1

2 (e1 − en+1), and e′ = (en, e2, . . . , em, e, f ). Its associated matrix is

J ′ =


−1 0 0 0
0 Im−1 0 0
0 0 0 1

2
0 0 1

2 0

 .
We put

V0 =

n⊕
i=2

Rei ∼= Rm, (3.8)

z =
∑

ziei =
t(zn, z2, . . . , zm)

with quadratic form Q(z) =
∑
εiz

2
i with εi = ±1 depending on whether i < n or i ≥ n.

Then V = V0 ⊕ Re ⊕ Rf is a Witt decomposition as considered before. We write H for
the corresponding tube domain realization of D as in (3.1). We will also identify V with
Rn+1 and V n with Mn+1,n(R) with respect to the basis e′:

v =
∑

2≤i≤n

ziei + v0e + v1f =
t(zn, z2, . . . , zm, v0, v1) = [v]e′ ,

x = (x̃1, . . . , x̃n) = [x]e′ ∈ Mn+1,n(R).

Similarly, we will use [v]e and [x]e to denote the coordinates of v and x with respect to
the basis e when necessary. For γ ∈ H(R), we denote [γ ]e and [γ ]e′ for its coordinates
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with respect to the bases e and e′ respectively. Then one has

[v]e′ = A[v]e, [γ ]e′ = A[γ ]eA
−1, A =


0 0 1 0
0 Im−1 0 0
1 0 0 1
1 0 0 −1

 . (3.9)

We now compute the action of H(R) on H more explicitly. For h ∈ H(R), write

[h]e′ =


h̃11 H̃12 h̃13 h̃14
H̃21 H̃22 H̃23 H̃24
h̃31 H̃32 h̃33 h̃34
h̃41 H̃42 h̃43 h̃44

 ,
where all the H̃ij are matrices, all h̃ij s are numbers, and H̃22 is a square matrix of order
m− 1. Then for z = t(zn, z2, . . . , zm) =

( zn
z

)
∈ H, we have

h(z) = j (h, z)−1
(
znh̃11 + H̃12z+ h̃13 − h̃14Q(z)

znH̃21 + H̃22z+ H̃23 − H̃24Q(z)z

)
,

j (h, z) = znh̃31 + H̃32z+ h̃33 − h̃34Q(z).

Fixing the base point z = ien ∈ H, we have the isomorphism

lz : H(R)/K∞ ∼= H, h 7→ h(z) =

(
h̃11i + h̃13 − h̃14
H̃21i + H̃23 − H̃24

)
(h̃31 + h̃33i − h̃34)

−1.

(3.10)

This induces an isomorphism between p and the tangent space Tz(H) ∼= V0,C (extending
to the tangent bundle, too):

dlz : p ∼= V0,C, X 7→ X(z) =

(
x̃13 − x̃14 + x̃31
X̃23 − X̃24

)
+ i

(
x̃11 − x̃33 + x̃34

X̃21

)
, (3.11)

where x̃i and X̃ij are the coordinates of X with respect to e′ just as for h. In terms of the
coordinates with respect to e, one has

[X]e =


0 0 x13 x14
0 0m−1,m−1 X23 X24

x13 Xt23 0 0
x14 Xt24 0 0

 ∈ p,

and by a direct direct calculation using (3.9) we obtain

dlz(X) =

(
−i(x14 + ix13)

X24 + iX23

)
. (3.12)

So we have proved the following lemma.
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Lemma 3.2. The isomorphism dlz induces

(dlz)
∗(dx2 ∧ dy2 ∧ · · · ∧ dxn ∧ dyn) = ±νp,

where (dxj + idyj ) is the dual C-basis of the basis (ej )2≤j≤n of V0,C.

Recall the formula (3.3) for the H(R)-invariant (1, 1)-form �.

Lemma 3.3. Using the above notation, we have

(−�)m =
m!

(2π)m

∧n
j=2 dxj ∧ dyj

(−Q(y))m
.

Proof. Using the coordinates of (3.8), one sees

� = −
1

2πi

(
−

1
Q(y)2

∑
εiεjyiyjdzi ∧ dz̄j +

1
2Q(y)

∑
εidzi ∧ dz̄i

)
= −

1
2πi

(
−

1
Q(y)2

α +
1

2Q(y)
β

)
,

where α and β have the obvious meanings. Notice that

α2
=

n∑
i,j,k,l=2

εiεj εkεlyiyjykyl · α(i, j, k, l)

with
α(i, j, k, l) = dzi ∧ dz̄j ∧ dzk ∧ dz̄l .

Since α(i, j, k, l) = −α(k, j, i, l), we have α2
= 0. This implies

�m =

(
−

1
4πiQ(y)

)m(
βm −

2m
Q(y)

α ∧ βm−1
)
.

It is easy to check that

βm = −m!

n∧
j=2

dzj ∧ dz̄j , βm−1
= −(m− 1)!

n∑
l=2

εlβl,

where βl is
∧n
j=2 dzj ∧ dz̄j with dzl ∧ dz̄l missing. So

α ∧ βm−1
= −(m− 1)!

n∑
l=2

εly
2
l

n∧
j=2

dzj ∧ dz̄j = −(m− 1)!Q(y)
n∧
j=2

dzj ∧ dz̄j ,

and therefore

�m =

(
−

1
4πiQ(y)

)m
m!

n∧
j=2

dzj ∧ dz̄j =
m!

(2πQ(y))m

n∧
j=2

dxj ∧ dyj

as claimed. ut

It is well-known that
∧n
j=2 dxj∧dyj
(−Q(y))m

is theH(R)-invariant Haar measure on H associated to∧n
j=2 dxj ∧ dyj . So we obtain the following proposition from the above two lemmas.
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Proposition 3.4. Let the notation be as above and z = ien ∈ H. Then

(dlz)
∗(−�)m = ±

m!

(2π)m
νp.

Proof of Proposition 3.1. First, let z = ien ∈ H as in Proposition 3.4, let ν = ν+∧ν−∧νp
be as in (3.6), and let dνh, dh+, dh−, and dph be the associated Haar measures. Then, by
Proposition 3.4,∫
H(R)

φ∞(h
−1x, z) dνh = vol(K+, dh+) vol(K−, dh−)

∫
H(R)/K∞

φ∞(x, hz) dph

= vol(K+, dh+) vol(K−, dh−)
(2π)m

m!

∫
H
φ∞(x, z) (−�)

m

= (−1)m vol(K+, dh+) vol(K−, dh−)
(2π)m

m!

∫
D
φ∞(x, z)�

m.

On the other hand, Proposition 2.2 gives∫
H(R)

φ∞(h
−1x, z) dνh = C(diag(Im,−I2)) ·WT ,∞(1, 0, λ(φ∞)).

Consequently,

Bn,∞ =
(−1)mm!C(diag(Im,−I2))

(2π)m vol(K+, dh+) vol(K−, dh−)
.

Applying Proposition 2.2 to K+ = SO(V+) and φ∞ = e−2π trQ+(x), one sees by Propo-
sition 4.3 that

vol(K+, dh+)e−2π(m−1)
= C(Im)WIm−1,∞(1, 0,8m/2)

= C(Im)
(−2πi)m(m−1)/2

0m−1(m/2)
e−2π(m−1),

where 0n(s) is given by (4.1). We obtain

vol(K+, dh+) = C(Im)
(−2πi)m(m−1)/2

0m−1(m/2)
=

2m−1πm(m+1)/4∏m−1
k=0 0

(
m−k

2

) .
Similarly, vol(K−, dh−) = 2π . Plugging these formulas into that for Bn,∞, one proves
Proposition 3.1. ut

We remark that the above calculation of vol(K+, dh+) has the following well-known
formula as a consequence.

Corollary 3.5. Let l ≥ 1 be an integer, and let

SOl(R) = {g ∈ GLl(R) | g tg = In, det g = 1}

be the standard special orthogonal group. Let νl be the gauge form defined as ν+ for
K+ = SOm(R), and let dhl be the associated Haar measure on SOl(R). Then

vol(SOl(R), dhl) =
2l−1π l(l+1)/4∏l−1
k=0 0

(
l−k

2

) .
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4. Asymptotic properties of Whittaker functions

Throughout this section we consider the local field F = R, the additive character ψ(x) =
e(x), and the groupG = Spn(R) or Mpn,R. We investigate the asymptotic behavior of the
archimedian Whittaker function forG as one of the radial parameters of the Levi subgroup
M goes to ∞. The main results are Theorem 4.8 and Corollary 4.11. Our analysis is
based on Shimura’s work on confluent hypergeometric functions [Shi]. We fix a quadratic
character χ of R× and a half-integer κ ∈ ρn + Z (not necessarily equal to ρn) satisfying
the compatibility condition{

(−1)κ = χ(−1) if n ≡ 1 (mod 2),
κ ≡ 1

2χ(−1) if n ≡ 0 (mod 2).

We also fix a matrix T ∈ Symn(R).

4.1. Basic properties of archimedian Whittaker functions

Let 8 = 8κ ∈ In(s, χ) be the weight κ standard section, that is, the unique function
in In(s, χ) whose restriction to KG is the character det(k)κ . Then the Whittaker integral
(2.1) can be expressed in terms of Shimura’s confluent hypergeometric function. As in
[Ku2, Lemma 9.3], the following result can be proved.

Lemma 4.1. Assume that det(T ) 6= 0. If a ∈ GL+n (R) and y = a ta, then

WT (m(a), s,8κ) = Cn,∞ · |a|
s+ρnξ(y, T , α, β),

where

ξ(y, T , α, β) =

∫
Symn(R)

det(x + iy)−α det(x − iy)−βe(− tr(T x)) dx

denotes Shimura’s confluent hypergeometric function of matrix argument [Shi, (1.25)]
with

α = 1
2 (s + ρn + κ), β = 1

2 (s + ρn − κ).

Here dx =
∧
i≤i dxij is the Lebesgue measure on Symn(R) ∼= Rn(n+1)/2, and Cn,∞ =

2n(n−1)/4.

The normalizing factor Cn,∞ comes from comparing the measures dn and dx. Recall that
the Siegel gamma function of genus n is defined by

0n(s) : =

∫
x∈Symn(R)

x>0

e− tr(x) det(x)s−ρn dx = πn(n−1)/4
n−1∏
k=0

0(s − k/2). (4.1)
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Following Shimura, we define another special function by

η(y, T , α, β) =

∫
u∈Symn(R)
u>−T
u>T

e− tr(uy) det(u+ T )α−ρn det(u− T )β−ρn du. (4.2)

For all regular T , by [Shi, Remark 4.3], the integral converges when <(α) > ρn − 1 and
<(β) > ρn − 1. According to [Shi, (1.29)], we have

ξ(y, T , α, β) =
in(β−α)2−n(ρn−1)(2π)nρn

0n(α)0n(β)
· η(2y, πT , α, β), (4.3)

and therefore

WT (m(a), s,8κ) = cn(α, β) · |a|
s+ρn · η(2y, πT , α, β), where (4.4)

cn(α, β) = Cn,∞ ·
in(β−α)2−n(ρn−1)(2π)nρn

0n(α)0n(β)
.

Lemma 4.2. If S ∈ GL+n (R), we have

η(tSgS, h, α, β) = |S|2(ρn−α−β)η(g, Sh tS, α, β),

WT (m(a), s,8κ) = |S|
ρn−sWtST S(m(S

−1a), s,8κ).

Proof. The first assertion follows from [Shi, (3.1.K)]. The second assertion follows from
this by means of (4.4). ut

The special values of Eisenstein series and Whittaker functions at s = 0 will be of partic-
ular interest. Here we collect the facts that we will require.

Proposition 4.3. Assume that det(T ) 6= 0 and κ = ρn.

(i) If sig(T ) = (n− j, j) with 0 ≤ j ≤ n, then

ords=0WT (m(a), s,8κ) ≥

⌊
j + 1

2

⌋
.

(ii) If sig(T ) = (n, 0), then

WT (m(a), 0,8κ) =
(−2πi)nκ2−n(n−1)/4

0n(κ)
(det y)κ/2e−2π tr Ty .

Proof. According to [Shi, Theorem 4.2], the function

0n−j

(
β −

j

2

)−1

0j

(
α −

n− j

2

)−1

η(2y, πT , α, β)

is holomorphic for (α, β) ∈ C2. Hence, in view of (4.4), WT (m(a), s,8κ) is equal to a
holomorphic function in a neighborhood of s = 0 times the gamma factor

0n−j (β − j/2)
0n(β)

.
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Therefore, the first assertion follows from (4.1) by working out the vanishing order of this
gamma factor.

To prove (ii), we use [Shi, (4.35.K), (4.12.K), (4.6.K)] to see that for sig(T ) = (n, 0)
we have

η(g, h, ρn, β) = 0n(β) det(g)−βe− tr(gh).

By means of (4.4) we get

WT (m(a), 0,8κ) = cn(ρn, β)|a|s+ρnη(2y, πT , ρn, β)|s=0

=
(−2πi)nρn2−n(n−1)/4

0n(ρn)
(det y)ρn/2e−2π tr Ty,

where y = a ta. This proves the proposition. ut

Remark 4.4. Assume that sig(T ) = (n, 0) and κ = ρn. Then with the constant Bn,∞ of
Proposition 3.1 we have

Bn,∞ ·WT (1, 0,8κ) = −2e−2π tr T .

Later we will also need the following lemmas.

Lemma 4.5. If f is a measurable function on Symn(R) and a ∈ GLn(R), then∫
Symn(R)

f (ab ta) db = |a|−2ρn
∫

Symn(R)
f (b) db.

Lemma 4.6. If S ∈ Symn(R) is positive definite, then∫
Rn
e−

tv Sv dv = πn/2 det(S)−1/2.

Here dv denotes the Lebesgue measure on Rn.

Lemma 4.7. Let u =
( u1 u12
tu12 u2

)
be a symmetric block matrix. Then the following are

equivalent:

(1) u > 0,
(2) u1 > 0 and u2 >

tu12 u
−1
1 u12,

(3) u2 > 0 and u1 > u12 u
−1
2

tu12.

In this case

det(u) = det(u1) det(u2 −
tu12u

−1
1 u12) = det(u2) det(u1 − u12u

−1
2

tu12).

Proof. This is a direct consequence of the Jacobi decompositions(
u1 u12
tu12 u2

)
=

(
1 0

t(u−1
1 u12) 1

)(
u1 0
0 u2 −

tu12u
−1
1 u12

)(
1 u−1

1 u12
0 1

)
,(

u1 u12
tu12 u2

)
=

(
1 u12u

−1
2

0 1

)(
u1 − u12u

−1
2

tu12 0
0 u2

)(
1 0

t(u12u
−1
2 ) 1

)
,

whenever the inverses make sense. See also [Shi, Lemma 2.1]. ut
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4.2. Asymptotic properties

Here we investigate the asymptotic behavior of the Whittaker functionWT (g, s,8κ). We
assume that T ∈ Symn(R) with det(T ) 6= 0, and a ∈ GL+n (R). We put y = a ta. Recall
that

η(y, T , α, β) =

∫
u∈Symn(R)
u>−T
u>T

e− tr(uy) det(u+ T )α−ρn det(u− T )β−ρn du.

We write T and the variable of integration u in block form as

T =

(
T1 T12
tT12 T2

)
, u =

(
u1 u12
tu12 u2

)
(4.5)

with T1 ∈ R, T2 ∈ Symn−1(R), and T12 ∈ R1×(n−1), and analogously for u.

Theorem 4.8. Let y =
( y1 y12
ty12 y2

)
∈ Symn(R) be a positive definite matrix in block form

as in (4.5). If T1 ≤ 0 we have

lim
y1→∞

eT1y1y
β

1 · η
(n)(y, T , α, β) = 0.

If T1 > 0 we have

lim
y1→∞

eT1y1y
β

1 · η
(n)(y, T , α, β)

= e−2T12
ty12+tr(T̃2−T2)y2 · 0(β + 1− ρn)π (n−1)/2(2T1)

α−ρnη(n−1)(y2, T̃2, α − 1/2, β),

where

T̃ =

(
T̃1 0
0 T̃2

)
=

(
T1 0
0 T2 −

tT12T
−1
1 T12

)
.

Here we have added a superscript to η to indicate in which genus it is considered.

Remark 4.9. In the case n = 1 the function η(0) is to be interpreted as the constant
function with value 1. Then the theorem states

lim
y1→∞

eT1y1y
β

1 · η
(1)(y, T , α, β) =

{
0 if T1 < 0,
0(β)(2T1)

α−ρ1 if T1 > 0.
(4.6)

On the other hand, for T ∈ R× and y ∈ R>0 we have

η(1)(y, T , α, β) = e−|T |y · |2T |α+β−1
·

{
0(α)U(α, α + β, 2|T |y) if T < 0,
0(β)U(β, α + β, 2|T |y) if T > 0,

where U(a, b, z) denotes Kummer’s confluent hypergeometric function [AS, (13.1.3)].
The asymptotic behavior of the Kummer function U(a, b, y) = y−a + O(y−a−1) as
y →∞ (see e.g. [AS, (13.5.2)]) matches (4.6).



1638 Jan Hendrik Bruinier, Tonghai Yang

Proof of Theorem 4.8. Step 1. We first consider the case where <(α) > ρn and <(β) >
ρn − 1/2. We put

y′ =

(
y
−1/2
1

1

)
y

(
y
−1/2
1

1

)
=

(
1 y12/y

1/2
1

ty12/y
1/2
1 y2

)
.

By means of Lemma 4.5 we rewrite the integral as follows:

η(y, T , α, β) = e− tr Ty
∫

u∈Symn(R)
u+2T>0
u>0

e− tr(uy)
|u+ 2T |α−ρn |u|β−ρn du

= y
−β

1 e− tr Ty

×

∫
(

u1/y1 u12/y
1/2
1

tu12/y
1/2
1 u2

)
+2T>0

u>0

e− tr(uy′)
∣∣∣∣( u1/y1 u12/y

1/2
1

tu12/y
1/2
1 u2

)
+ 2T

∣∣∣∣α−ρn · |u|β−ρn du.

Here and throughout the proof we briefly write |u| for the determinant of u. In view of
Lemma 4.7, we obtain

η(y, T , α, β)

= y
−β

1 e− tr Ty
∫

u2+2T2>0
u>0

χ(u, y1, T )e
− tr(uy′)

∣∣∣∣( u1/y1 u12/y
1/2
1

tu12/y
1/2
1 u2

)
+ 2T

∣∣∣∣α−ρn ·|u|β−ρn du,
(4.7)

where χ(u, y1, T ) denotes the characteristic function

χ(u, y1, T ) =

1 if u1
y1
+ 2T1 −

(
u12√
y1
+ 2T12

)
(u2 + 2T2)

−1 t( u12√
y1
+ 2T12

)
> 0,

0 if u1
y1
+ 2T1 −

(
u12√
y1
+ 2T12

)
(u2 + 2T2)

−1 t( u12√
y1
+ 2T12

)
≤ 0.

We now compute the desired limit as y1 → ∞ assuming that the integration can
be interchanged with the limit. After that we will come back to the justification of the
interchange. We have

lim
y1→∞

eT1y1y
β

1 · η
(n)(y, T , α, β)

= e−2T12
ty12−tr T2y2

×

∫
u2+2T2>0
u>0

lim
y1→∞

χ(u, y1, T )e
− tr(uy′)

∣∣∣∣( u1/y1 u12/y
1/2
1

tu12/y
1/2
1 u2

)
+ 2T

∣∣∣∣α−ρn · |u|β−ρn du
= e−2T12

ty12−tr T2y2

∫
(

0 0
0 u2

)
+2T>0

u>0

e−u1−tr u2y2
∣∣( 0 0

0 u2

)
+ 2T

∣∣α−ρn · |u|β−ρn du.
If T1 ≤ 0, then the domain of integration is empty and the integral vanishes as claimed.
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If T1 > 0 and n = 1, then the remaining integral reduces to the Euler integral for the
Gamma function, which implies the assertion in this case. If T1 > 1 and n > 1, then we
use Lemma 4.7 again (but now the other of the two formulas) to write∣∣( 0 0

0 u2

)
+ 2T

∣∣α−ρn = 2T1 · |u2 + 2T2 −
t(2T12)(2T1)

−1(2T12)|

= 2T̃1 · |u2 + 2T̃2|.

Inserting this in the integral, we obtain

lim
y1→∞

eT1y1y
β

1 · η
(n)(y, T , α, β)

= e−2T12
ty12−tr T2y2(2T1)

α−ρn

∫
u2+2T̃2>0
u>0

e−u1−tr u2y2
∣∣u2 + 2T̃2

∣∣α−ρn · |u|β−ρn du
= e−2T12

ty12−tr T2y2(2T1)
α−ρn

×

∫
u2+2T̃2>0
u2>0

u1−u12u
−1
2

tu12>0

e−u1−tr u2y2
∣∣u2 + 2T̃2

∣∣α−ρn · |u2|
β−ρn(u1 − u12u

−1
2

tu12)
β−ρn du.

(4.8)

We carry out the u1-integration and employ Lemma 4.6 to get

lim
y1→∞

eT1y1y
β

1 · η
(n)(y, T , α, β)

= e−2T12
ty12−tr T2y2(2T1)

α−ρn0(β − ρn + 1)

×

∫
u2+2T̃2>0
u2>0

e− tr u2y2 · |u2 + 2T̃2|
α−ρn · |u2|

β−ρn

∫
u12∈R1×(n−1)

e−u12u
−1
2

tu12 du12 du2

= e−2T12
ty12−tr T2y2(2T1)

α−ρnπ (n−1)/20(β − ρn + 1)

×

∫
u2+2T̃2>0
u2>0

e− tr u2y2 · |u2 + 2T̃2|
α−ρn · |u2|

β+1/2−ρn du2.

Shifting the variable of integration, we get

lim
y1→∞

eT1y1y
β

1 · η
(n)(y, T , α, β)

= exp(−2T12
ty12 − tr T2y2 + tr T̃2y2)(2T1)

α−ρnπ (n−1)/20(β − ρn + 1)

×

∫
u2+T̃2>0
u2−T̃2>0

e− tr u2y2 · |u2 + T̃2|
α−ρn−1−1/2

· |u2 − T̃2|
β−ρn−1 du2.

Since the latter integral is η(n−1)(y2, T̃2, α − 1/2, β), we obtain the claimed formula.
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Step 2. We now justify the interchange of the integral and the limit in (4.7). To this end
we bound the integrand in∫

u2+2T2>0
u>0

χ(u, y1, T )e
− tr(uy′)

∣∣∣∣( u1/y1 u12/y
1/2
1

tu12/y
1/2
1 u2

)
+ 2T

∣∣∣∣α−ρn · |u|β−ρn du (4.9)

by an integrable function which is independent of y1. On the domain of integration and
where χ(u, y, T ) is non-zero, the quantity∣∣∣∣( u1/y1 u12/y

1/2
1

tu12/y
1/2
1 u2

)
+ 2T

∣∣∣∣
= |u2 + 2T2| ·

(
u1

y1
+ 2T1 −

(
u12
√
y1
+ 2T12

)
(u2 + 2T2)

−1 t
(
u12
√
y1
+ 2T12

))
is bounded by

|u2 + 2T2| · (u1 + 2|T1|)

from above when y1 > 1. It is bounded by 0 from below. Moreover, for y1 > 4y12y
−1
2

ty12
we have

y′ >
1
2

(
1 0
0 y2

)
and therefore

e− tr(uy′)
≤ e−u1/2−tr(u2y2).

Hence, for such y1 the integrand in (4.9) is bounded by

e−u1/2−tr(u2y2)(u1 + 2|T1|)
<(α)−ρn |u2 + 2T2|

<(α)−ρn · |u|<(β)−ρn

on the domain of integration. Here we have also used <(α) > ρn. There exists a constant
C = C(α) > 0 such that this is bounded by

C · e−u1/4−tr(u2y2)|u2 + 2T2|
<(α)−ρn · |u|<(β)−ρn

locally uniformly in α. Note that this function is independent of y1. Consequently, by
the dominated convergence theorem, the interchange of the integral and the limit in (4.7)
follows if

I (y2, T2, α, β) =

∫
u2+2T2>0
u>0

e−u1/4−tr(u2y2)|u2 + 2T2|
<(α)−ρn · |u|<(β)−ρn du (4.10)

converges. But this integral is of the same form as the one on the right hand side of (4.8).
The same computation shows that the integral is a constant times

e
1
2 tr(y2T2) · η(n−1)( 1

2y2, T2,<(α)−
1
2 ,<(β)

)
.

This shows the convergence for <(α) > ρn and <(β) > ρn − 1/2.
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Step 3. We now show that the formulas of the theorem actually hold for all α, β ∈ C. If T
is positive definite, we use the functional equation of η under (α, β) 7→ (ρn − β, ρn − α)

and argue as in [Shi, p. 281]. For general T , we then apply the integral representation
(4.24) in [Shi, p. 289] to deduce the assertion. ut

If a ∈ R×, we let

d(a) =


a

1
. . .

1

 ∈ GLn(R). (4.11)

Theorem 4.8 implies the following asymptotic behavior of the Whittaker function.

Corollary 4.10. Let κ = ρn. For general invertible T we have

lim
a→∞

e2π(T1a
2
+T −1

1 T12
tT12)a−ρn ·WT (m(d(a)), s,8κ)

=


i−n(2π)ρn

0(s/2+ ρn)
(πT1)

s/2
·W

T̃2
(1, s,8κ−1/2) if T1 > 0,

0 if T1 ≤ 0.

Here the Whittaker function on the left hand side is in genus n and the one on the right
hand side is in genus n−1 (which is clear from the size of the matrices in the subscripts).

Proof. Let a > 0. According to (4.4), we have

a−ρn ·WT (m(d(a)), s,8κ) = cn(α, β) · a
s
· η(n)(2d(a)2, πT , α, β),

cn(α, β) =
in(β−α)2−n(ρn−1)/2(2π)nρn

0n(α)0n(β)
.

If T1 ≤ 0, by means of Theorem 4.8 we obtain

lim
a→∞

e2π(T1a
2
+T −1

1 T12
tT12)a−ρn ·WT (m(d(a)), s,8κ) = 0.

If T1 > 0, we find

lim
a→∞

e2π(T1a
2
+T −1

1 T12
tT12)a−ρn ·WT (m(d(a)), s,8κ)

= cn(α, β)0(β + 1− ρn)π (n−1)/2(2πT1)
α−ρn2−s/2η(n−1)(2, πT̃2, α − 1/2, β).

Using (4.4) in genus n− 1, we see that

W
T̃2
(1, s,8κ−1/2) = cn−1(s/2+ ρn−1, s/2) · η(n−1)(2, πT̃2, α − 1/2, β).



1642 Jan Hendrik Bruinier, Tonghai Yang

Inserting this we get

lim
a→∞

e2π(T1a
2
+T −1

1 T12
tT12)a−ρn ·WT (m(d(a)), s,8κ)

=
cn(α, β)0(β + 1− ρn)
cn−1(s/2+ ρn−1, s/2)

π (n−1)/2(πT1)
s/2
·W

T̃2
(1, s,8κ−1/2).

Employing the relations

0n−1(β)01(β + 1− ρn) = π−(n−1)/20n(β), (4.12)

0n−1(β + ρn−1)01(β + ρn) = π
−(n−1)/20n(β + ρn), (4.13)

we find

cn(α, β)0(β + 1− ρn)
cn−1(s/2+ ρn−1, s/2)

=
i−n2ρnπ

0(s/2+ ρn)
.

Consequently,

lim
a→∞

e2π(T1a
2
+T −1

1 T12
tT12)a−ρn ·WT (m(d(a)), s,8κ)

=
i−n(2π)ρn

0(s/2+ ρn)
(πT1)

s/2
·W

T̃2
(1, s,8κ−1/2).

This concludes the proof of the corollary. ut

Corollary 4.11. Let κ = ρn. If T has signature (n− j, j) with j ≥ 1, then

lim
a→∞

e2π(T1a
2
+T −1

1 T12
tT12)a−ρn ·W ′T (m(d(a)), 0,8κ)

=


i−n(2π)ρn

0(ρn)
·W ′

T̃2
(1, 0,8κ−1/2) if T1 > 0,

0 if T1 ≤ 0.

5. The archimedian arithmetic Siegel–Weil formula

Here we use the archimedidean local Siegel–Weil formula (see Proposition 3.1), the
asymptotic behavior of Theorem 4.8, and some computations in the induced represen-
tation to prove Theorem 1.4.

We use the same set-up and notation as in Section 3. In particular, V is a quadratic
space over R of signature (m, 2), and κ = (m+ 2)/2. Moreover, D is the hermitian
domain associated with H = SO(V ), realized as the Grassmannian of oriented negative
2-planes in V .



Arithmetic degrees of special cycles 1643

5.1. Green currents and local heights

For z ∈ D the orthogonal complement z⊥ is positive definite of dimension m. If x ∈ V ,
we denote the orthogonal projection of x to z and z⊥ by xz and xz⊥ , respectively. The
quadratic form

(x, x)z = (xz⊥ , xz⊥)− (xz, xz)

is positive definite on V and called the majorant associated with z. We also put

R(x, z) = −(xz, xz)

so that (x, x)z = (x, x)+ 2R(x, z). For 0 6= x ∈ V , we define

Dx = {z ∈ D | z ⊥ x} = {z ∈ D | R(x, z) = 0}.

Then Dx is a non-trivial analytic divisor of D if Q(x) > 0, and it is empty if Q(x) ≤ 0
(which we will view as the zero divisor). Following [Ku2] we define the Kudla Green
function

ξ(x, z) = −Ei(−2πR(x, z)) · e−π(x,x), (5.1)

where Ei(u) =
∫ u
−∞

et dt
t

is the exponential integral [AS, Chapter 5]. If x ∈ V is fixed,
then ξ(x, z) is a smooth function on D \ Dx with a logarithmic singularity along Dx . It
has the equivariance property ξ(gx, gz) = ξ(x, z) for g ∈ H(R). The differential form

ϕKM(x, z) = dd
cξ(x, z) (5.2)

extends to a smooth (1, 1)-form on all of D, where dc = 1
4πi (∂ − ∂̄). It is the Kudla–

Millson Schwartz form which is Poincaré dual to the cycle e−π(x,x)Dx [KM1], [Ku2].
More precisely, as currents on D, we have the identity

ddc[ξ(x)] + e−π(x,x)δDx
= [ϕKM(x)].

Because of the H(R)-equivariance of ξ(x, z), the (1, 1)-form

� = ϕKM(0, z)

isH(R)-invariant on D. In fact, it is equal to the invariant differential form defined earlier
in (3.2).

For x = (x1, . . . , xn) ∈ V
n and z ∈ D we also define the Kudla–Millson Schwartz

form in genus n as

ϕnKM(x, z) = ϕKM(x1, z) ∧ · · · ∧ ϕKM(xn, z).

With respect to the action of G through the Weil representation it transforms under the
maximal compact subgroupKG with the character det(k)κ . IfQ(x) ∈ Symn(R) is invert-
ible, the form ϕnKM(x, z) is Poincaré dual to the special cycle e−π tr(x,x)Dx , where

Dx = {z ∈ D | z ⊥ xi for i = 1, . . . , n}
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(see [KM1]). We define a Green current for the cycle e−π tr(x,x)Dx by taking the star
product

ξn(x, z) = ξ(x1, z) ∗ · · · ∗ ξ(xn, z) (5.3)

in the sense of [GiSo]. As a current on compactly supported smooth differential forms it
satisfies the equation

ddc[ξn(x)] + e−π tr(x,x)
· δDx

= [ϕnKM(x)]. (5.4)

When Dx is compact, it follows from the growth estimates in [KM1, Section 6] that
ξn(x, z) is rapidly decaying and extends to a current on forms of moderate growth with
(5.4) still holding. A recursive formula for the star product is given by

ξn(x, z) = ξ(x1, z) ∧ ϕ
n−1
KM ((x2, . . . , xn), z)+ e

−π(x1,x1)δDx1
∧ ξn−1((x2, . . . , xn), z),

(5.5)

where ϕ0
KM has to be interpreted as 1 and ξ0 as 0. The current ξn(x, z) is invariant under

permutations of the components of x.
Sometimes it is convenient to put

ξn0 (x, z) = ξ
n(x, z) · eπ tr(x,x), ϕnKM,0(x, z) = ϕ

n
KM(x, z) · e

π tr(x,x).

Then the current equation becomes

ddc[ξn0 (x)] + δDx
= [ϕnKM,0(x)].

Note that the current equation (5.4) together with Proposition 4.3 implies the follow-
ing geometric local Siegel–Weil formula, which is the local archimedian version of (1.1).

Proposition 5.1. Assume that n = m and T = Q(x) is invertible. Then∫
D
ϕnKM(x, z) =

{
2e−2π tr T if T is positive definite,
0 if T is not positive definite.

Moreover, in both cases this is equal to

21− n2 (κ+3/2)π−nκ inκ0n(κ)|T |
−1/2WT (1, 1/2,8κ),

where 8κ ∈ In(s, χV ) is the weight κ standard section, that is, the unique standard
section whose restriction to KG is the character det(k)κ .

Proof. The first statement is a direct consequence of the current equation (5.4) applied to
the constant function 1. The second statement can be deduced from the first one by means
of the formulas of [Shi]. Since we do not need it here, we omit the proof. ut
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Throughout the rest of this subsection we assume that n = m+ 1. Then ξn0 (x, z) is a top
degree current, which can be evaluated at the constant function 1. For x ∈ V n we define
the archimedian local height function by

ht∞(x) =
1
2

∫
D
ξn0 (x, z). (5.6)

In this section we prove the archimedian arithmetic local Siegel–Weil formula, Theo-
rem 1.4, relating ht∞(x) to the derivative of a Whittaker function in genus n. It can be
viewed as an arithmetic analogue of Proposition 5.1. We restate the theorem for conve-
nience.

Theorem 5.2. Let x ∈ V n(R) be such that the moment matrix T = Q(x) is invertible.
Then

ht∞(xv1/2) · qT = −Bn,∞ det(v)−κ/2 ·W ′T (gτ , 0,8κ), (5.7)

where Bn,∞ is the constant in Proposition 3.1, and 8κ ∈ In(s, χV ) is the weight κ stan-
dard section, that is, the unique standard section whose restriction toKG is the character
det(k)κ . The derivative of the Whittaker function is taken with respect to s.

Let x ∈ V n and assume that T = Q(x) is invertible. To prove Theorem 5.2 we employ
the recursive formula (5.5) for the star product. It implies that

ht∞(x) = htmain
∞ (x)+

1
2

∫
Dx1

ξn−1
0 ((x2, . . . , xn), z), (5.8)

where we write

htmain
∞ (x) =

1
2

∫
D
ξ0(x1, z) ∧ ϕ

n−1
KM,0((x2, . . . , xn), z) (5.9)

for the main term of the local height function. The second summand on the right hand side
of (5.8) vanishes when Q(x1) ≤ 0, in which case Dx1 is empty. When Q(x1) > 0, this
quantity is a local height function in genus n− 1 for the quadratic space V1 = x

⊥

1 ⊂ V of
signature (m− 1, 2). The divisor Dx1 is naturally isomorphic to the Grassmannian of V1.
Let

pr : V → V1, pr(y) = y −
(y, x1)

(x1, x1)
x1,

be the orthogonal projection and put x̃ = (pr(x2), . . . , pr(xn)) ∈ V n−1
1 . If we write T in

block form as in (4.5) then the moment matrix of x̃ is

T̃2 = Q(x̃) = T2 −
tT12T

−1
1 T12. (5.10)
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Lemma 5.3. Assume the above notation. If z ∈ Dx1 , then

ξn−1
0 ((x2, . . . , xn), z) = ξ

n−1
0 (x̃, z)

and
1
2

∫
Dx1

ξn−1
0 ((x2, . . . , xn), z) = ht∞(x̃).

Here the height function on the right hand side is for the tuple x̃ ∈ V n−1
1 .

Proof. If z ∈ Dx1 and y ∈ V , then R(y, z) = R(pr(y), z). Hence the assertion is a direct
consequence of the definition of ξ0(y, z). ut

The following result gives a formula for the main term of the local height function.

Theorem 5.4. Assume that n = m+ 1. Let x ∈ V n be such that T = Q(x) is invertible,
and put T̃2 = Q(x̃) as in (5.10). Then

e−2π tr T
·htmain
∞ (x) = −Bn,∞ ·W

′

T (1, 0,8κ)+Bn−1,∞e
−2π(tr T−tr T̃2) ·W ′

T̃2
(1, 0,8κ−1/2).

If n = 1, the second summand on the right hand side is interpreted as 0.

The proof of Theorem 5.4 will be given in the next three subsections.

Proof that Theorem 5.4 implies Theorem 5.2. Recall that for τ ∈ Hn we have put gτ =(
1 u

1

)( a
ta−1

)
∈ Spn(R) with a ∈ GL+n (R) and a ta = v. Using the transformation

behavior (2.2) of the Whittaker function, we find that

det(v)−κ/2WT (gτ , s,8κ) = e
2πi tr(T u)

|a|−s ·WtaT a(1, s,8κ). (5.11)

Since the signature of V is (m, 2) and n = m + 1, the matrix T must have negative
eigenvalues. By Proposition 4.3, the Whittaker function WT (g, s,8κ) vanishes at s = 0.
Employing (5.11), we see that (5.7) is equivalent to

ht∞(xa) · e−2π tr taT a
= −Bn,∞ ·W

′
taT a(1, 0,8κ).

Consequently, it suffices to prove (5.7) for τ = i1n, that is

ht∞(x) · e−2π tr T
= −Bn,∞ ·W

′

T (1, 0,8κ). (5.12)

We show (5.12) by induction on n. If n = 1, then htmain
∞ (x) = ht∞(x), and we have

nothing to show. Assume now that n > 1. According to (5.8) and Lemma 5.3 we have

ht∞(x) = htmain
∞ (x)+ ht∞(x̃).

By Theorem 5.4, we obtain

e−2π tr T
· ht∞(x) = −Bn,∞ ·W ′T (1, 0,8κ)

+ Bn−1,∞e
−2π(tr T−tr T̃2) ·W ′

T̃2
(1, 0,8κ−1/2)+ e

−2π tr T
· ht∞(x̃).

If we use Theorem 5.2 in genus n− 1 to compute the last term on the right hand side, we
get the assertion. ut
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5.2. The main term of the local height

In this subsection we assume again that n = m+ 1. We give a first formula for the main
term of the local height in terms of a certain Whittaker function. We begin by rewriting
the Green function ξ(x, z) defined in (5.1) in terms of the Gaussian

ϕG(x, z) = e
−π(x,x)z ∈ S(V ), (5.13)

ϕG,0(x, z) = ϕG(x, z) · e
π(x,x)

= e−2πR(x,z). (5.14)

Lemma 5.5. If x ∈ V and z ∈ D, then

ξ0(x, z) =

∫
∞

t=1
ϕG,0(

√
t x, z)

dt

t
.

Proof. The statement follows from the integral representation

−Ei(−z) =
∫
∞

1

e−zt

t
dt

by inserting the definitions of ξ0(x, z) and R(x, z). ut

By our assumption on m, the Schwartz form ϕn−1
KM is a top degree differential form on D.

We write it as
ϕn−1
KM (y, z) = ϕ

n−1,∗
KM (y, z) ·�n−1.

For x ∈ V n, we define a Schwartz function1 by

ψ∗11(x, z) = ϕG(x1, z) · ϕ
n−1,∗
KM ((x2, . . . , xn), z). (5.15)

Proposition 5.6. Let x ∈ V n, put T = Q(x), and write T =
( T1 T12
tT12 T2

)
as in (4.5). The

main term of the local height function is given by

htmain
∞ (x) = Bn,∞e

2π tr T2

∫
∞

1
Wd(a)T d(a)(1, 0, λ(ψ∗11)) · e

2πQ(x1a)
da

a
,

where Bn,∞ denotes the constant in Proposition 3.1 and d(a) is given by (4.11).
Proof. Using Lemma 5.5 and (5.15), we see that

htmain
∞ (x) =

1
2

∫
D
ξ0(x1, z) ∧ ϕ

n−1
KM,0((x2, . . . , xn), z)

=
1
2

∫
∞

t=1

∫
D
ϕG,0(

√
t x1, z)ϕ

n−1
KM,0((x2, . . . , xn), z)

dt

t

= e2π tr T2 ·

∫
∞

a=1

∫
D
ψ∗11(xd(a), z)�

n−1
· e2πQ(x1a)

da

a
.

By the local Siegel–Weil formula, Proposition 3.1, we have∫
D
ψ∗11(x, z)�

n−1
= Bn,∞ ·WT (1, 0, λ(ψ∗11)).

Inserting this, we obtain the assertion. ut

1 Later we will also define a Symn(R)-valued Schwartz function ψ whose (1, 1)-component will
be ψ11.
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5.3. Some Lie algebra computations

In this subsection, we temporarily drop the assumption that n = m+ 1. We compute the
Whittaker functionWT (1, s, λ(ψ∗11))more explicitly. We begin by recalling from [BFK1,
Section 5] some facts about the Lie algebra of G. Let

g = k+ p+ + p−

be the Harish-Chandra decomposition of g = Lie(G) ⊗R C. Let S = Symn(R). Then
there are isomorphisms

p± : SC→ p±, X 7→ p±(X) =
1
2

(
X ±iX

±iX −X

)
. (5.16)

The group KG acts on g by the adjoint representation, Ad(k)g = kgk−1, and on SC by
k.X = kX tk for k ∈ KG. For the isomorphism (5.16) we have

Ad(k)p+(X) = p+(k.X), (5.17)

Ad(k)p−(X) = p−(k̄.X). (5.18)

The trace pairing
〈p+(X), p−(Y )〉 = tr(XY)

is invariant under the action ofKG, and therefore p∗± ∼= p∓ asKG-modules. Let (eα) be a
basis of S, and write (e∨α ) for the dual basis with respect to the trace form. Then (p−(e∨α ))
is a basis of p−, and we write (η′α) for the dual basis of p∗−. We identify p∗− with SC by
the map

ψ =
∑
α

ψαη
′
α 7→

∑
α

ψαeα. (5.19)

Recall that the Lie algebra gln(C) ∼= Matn(C) is isomorphic to k via the map

k : Matn(C)→ k, Y 7→ k(Y ) =
1
2

(
Y − tY −i(Y + tY )

i(Y + tY ) Y − tY

)
. (5.20)

Let Ejk ∈ Matn(C) be the elementary matrix having 1 at position (j, k) and all other
entries 0. Then the matrices

Yjk = k(Ejk) =
1
2

(
Ejk − Ekj −i(Ejk + Ekj )

i(Ejk + Ekj ) Ejk − Ekj

)
, (5.21)

for 1 ≤ j, k ≤ n, form a basis of k.
We denote by C(`) the KG-module given by the action of KG on C by multiplication

with det(k)`. Recall that the space Ap,q(Hn) of differential forms on Hn can be described
by the isomorphism

Ap,q(Hn)→ [C∞(G)⊗∧p(p∗+)⊗∧
q(p∗−)]

KG .
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Here, the operator corresponding to ∂̄ on Ap,q(Hn) is given by

D =
∑
α

p−(e
∨
α )⊗ η

′
α, (5.22)

where η′α acts on ∧·(p∗) by exterior multiplication.
The following result, which describes the action of KG on ψ11, is taken from the

unpublished manuscript [BFK2]. We thank Jens Funke and Steve Kudla for allowing us
to include it here.

Proposition 5.7. Identify p∗− with SC as in (5.19). There is a Schwartz form

ψ ∈ [S(V n)⊗ An−1,n−1(D)⊗ p∗− ⊗ C(−κ)]KG

with diagonal components

ψrr(x) = ϕG(xr) · ϕKM(x1) ∧ · · · ∧ ̂ϕKM(xr) ∧ · · · ∧ ϕKM(xn),

which satisfies ψ(0) = �n−1
· 1n and

ω(k)ψ(x) = det(k)κ · k−1ψ(x) tk−1 for k ∈ KG.

Proof. To prove this result we use the Fock model realization of the Weil representation
as described in the appendix of [FM1]. Let F = F(C(m+2)×n) be the space of polynomial
functions on V nC ∼= C(m+2)×n. As in [FM1] we denote the variables by zαj , zµj , where
α = 1, . . . , m, µ = m + 1, m + 2, and j = 1, . . . , n. The Lie algebra g × so(V )C acts
on F via the Weil representation.

Let so(V )C = kH ⊕ pH be the Cartan decomposition as in Section 3.1. Let Xαµ be
the standard basis of pH and denote by ωαµ the corresponding dual basis of p∗H . The
Kudla–Millson Schwartz forms can be viewed as elements of

[F ⊗∧·p∗H ]
KH .

We have
ϕnKM = ϕKM,(1) ∧ · · · ∧ ϕKM,(n),

where

ϕKM,(j) = −
1

8π2 ·

m∑
α,β=1

zαjzβj ⊗ ωα,m+1 ∧ ωβ,m+2.

The Gaussian ϕG,(j) corresponds to the constant polynomial 1 for every j .
We define the Schwartz form ψ = (ψjk) in the Fock model by putting

ψkk = ϕG,(k) ∧
∏
l 6=k

ϕKM,(l),

ψjk = −
1

8π2

(
−

1
2

m∑
α,β=1

(zαjzβk + zαkzβj )⊗ ωα,m+1 ∧ ωβ,m+2

)
∧

∏
l 6=j,k

ϕKM,(l) for j 6= k.



1650 Jan Hendrik Bruinier, Tonghai Yang

This has the desired diagonal components. Using the intertwining operator between the
Schrödinger and the Fock model of the Weil representation, it is easily checked that
ψjk(0) = 0 for j 6= k. On the other hand, by (3.4), we have ψjj (0) = �n−1, and
therefore ψ(0) = �n−1

· 1n.
To verify the transformation law underKG, we compute the action of the Lie algebra k

under the Weil representation. Recall that the basis element Yjk defined in (5.21) acts by

ω(Yjk) =
1
2
(m− 2)δjk +

m∑
α=1

zαj
∂

∂zαk
−

m+2∑
µ=m+1

zµk
∂

∂zµj
.

In fact, since the element Yjk corresponds to 1
2i (w

′

k ◦ w
′′

j ) in the notation of [FM1], this
claim follows from [FM1, Lemma A.1].

Now a direct computation shows

ω(Yjj )ψll =

{
(κ − 2) · ψll if j = l,
κ · ψll if j 6= l,

ω(Yjk)ψll =

{
−2ψkl if j = l and j 6= k,
0 if j 6= l and j 6= k,

ω(Yjk)ψjk = −ψkk if j 6= k.

This implies that the ψjk generate an irreducible representation of KG, which has ψnn as
a highest weight vector, and which is isomorphic to detκ ⊗Sym2(Cn)∨. Hence, we obtain
the claimed transformation law. ut

The intertwining operator λ : S(V n)→ I (s0, χV ) (see (2.3)) induces a map

[S(V n)⊗ An−1,n−1(D)⊗ p∗− ⊗ C(−κ)]KG

→ [I (s0, χV )⊗ A
n−1,n−1(D)⊗ p∗− ⊗ C(−κ)]KG ,

which we also denote by λ. We define 9 ∈ [I (s0, χV )⊗ p∗− ⊗ C(−κ)]KG by

9 ·�n−1
= λ(ψ), (5.23)

and write 9(g, s) for the corresponding extension to a standard section.

Corollary 5.8. Identify p∗− with SC as in (5.19). For k ∈ KG and g ∈ G we have

9(gk, s) = det(k)κ · k−19(g, s) tk−1.

Moreover, 9(1, s) = 1n.

This corollary characterizes 9 uniquely. We now use the action of p− in the induced
representation to find a different expression for 9.
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Proposition 5.9. Let D be the operator defined in (5.22), and let

r(D) : I (s, χV )→ I (s, χV )⊗ p∗−

be the induced operator on the induced representation. Then

r(D)8κ(g, s) =
1
2 (s + ρn − κ)9(g, s).

Proof. We first show that r(D)8κ(g, s) has the sameKG-type as9. Via the isomorphism
(5.19), the operator D induces an operator

D̃ : I (s, χV )→ I (s, χV )⊗ SC, D̃ =
∑
α

p−(e
∨
α )⊗ eα.

It satisfies
Ad(k)D̃ = k−1.D̃

for k ∈ KG, where the action on the left hand side is on the first factor of the tensor
product and the action on the right hand side on the second factor. In fact, we have

Ad(k)D̃ =
∑
α

p−(k̄.e∨α )⊗ eα =
∑
α

∑
β

tr(k̄.e∨α eβ) · p−(e
∨
β )⊗ eα

=

∑
β

p−(e
∨
β )⊗

∑
α

tr(e∨α (
t k̄.eβ)) · eα =

∑
β

p−(e
∨
β )⊗ k−1.eβ

(see also [BFK1, Lemma 5.1]). But this implies, again using the identification (5.19), that
r(D)8κ has the transformation law

r(k)r(D)8κ(g, s) = r(Ad(k)D)r(k)8κ(g, s) = det(k)κ · k−18κ(g, s)
tk−1.

In other words, it has the same KG-type as 9.
Since the different KG-types in I (s, χV ) have multiplicity 1, there exists a constant

c(s) such that

r(D)8κ(g, s) = c(s)9(g, s). (5.24)

To determine the constant, we evaluate at the unit element. According to Corollary 5.8,
we have 9(1, s) = 1. We now consider r(D)8κ . For X ∈ SC we compute r(p−(X))8κ .
In the Lie algebra g we write

p−(X) =
1
2

(
X −iX

−iX −X

)
=

1
2

(
X 0
0 −X

)
+
i

2

(
0 X

−X 0

)
− i

(
0 X

0 0

)
. (5.25)

We compute the actions of the three summands individually. We have

1
2
dr

(
X 0
0 −X

)
8κ(1, s) =

1
2
d

dt
8κ(m(e

tX), s)

∣∣∣∣
t=0

=
1
2
d

dt
det(etX)s+ρn8κ(1, s)

∣∣∣∣
t=0

=
1
2
(s + ρn) trX.
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Next, we compute, using the action of KG,

i

2
dr

(
0 X

−X 0

)
8κ(1, s) =

i

2
d

dt
8κ

(
exp t

(
0 X

−X 0

)
, s

)∣∣∣∣
t=0

=
i

2
d

dt
8κ

((
cos(tX) sin(tX)
− sin(tX) cos(tX)

)
, s

)∣∣∣∣
t=0

=
i

2
d

dt
det(eitX)κ8κ(1, s)

∣∣∣∣
t=0
= −

1
2
κ tr(X).

Finally, we notice that

−idr

(
0 X

0 0

)
8κ(1, s) = −i

d

dt
8κ

(
exp t

(
0 X

0 0

)
, s

)∣∣∣∣
t=0
= −i

d

dt
8κ(n(tX), s)

∣∣∣∣
t=0

= 0.

Putting the terms together, we obtain

r(p−(X))8κ(1, s) = 1
2 (s + ρn − κ) trX, r(D)8κ(g, s) =

1
2 (s + ρn − κ) · 1n.

This shows that the constant c(s) in (5.24) is equal to 1
2 (s + ρn − κ). ut

Corollary 5.10. Let e11 ∈ S be the matrix whose upper left entry is 1 and whose other
entries are all 0. Then

r(p−(e11))8κ(g, s) =
1
2 (s + ρn − κ)λ(ψ

∗

11)(g, s),

r(p−(e11))WT (g, s,8κ) =
1
2 (s + ρn − κ)WT (g, s, λ(ψ

∗

11)).

Proof. The first equality is a direct consequence of Proposition 5.9. It implies the second
equality, since the Whittaker integral is an intertwining map of (g,K)-modules. ut

Proposition 5.11. For a ∈ GLn(R) we have

r(p−(e11))WT (m(a), s,8κ)

=

(
2π tr(T ae11

ta)−
κ

2
+

1
2

n∑
i=1

ai1 ·
∂

∂ai1

)
WT (m(a), s,8κ).

Proof. For the proof we putX = e11 and split p−(X) as in (5.25). We compute the action
of the three terms individually. We have

1
2
dr

(
X 0
0 −X

)
WT (m(a), s,8κ) =

1
2
d

dt
WT (m(a)m(e

tX), s,8κ)

∣∣∣∣
t=0

=
1
2
d

dt
WT (m(a + taX), s,8κ)

∣∣∣∣
t=0

=
1
2

n∑
i=1

ai1 ·
∂

∂ai1
WT (m(a), s,8κ).
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Next, we compute, using the action of KG,

i

2
dr

(
0 X

−X 0

)
WT (m(a), s,8κ) =

i

2
d

dt
WT

(
m(a) exp t

(
0 X

−X 0

)
, s,8κ

)∣∣∣∣
t=0

=
i

2
d

dt
det(eitX)κWT (m(a), s,8κ)

∣∣∣∣
t=0

= −
κ

2
·WT (m(a), s,8κ).

Finally, we notice that

−idr

(
0 X

0 0

)
WT (m(a), s,8κ) = −i

d

dt
WT (m(a)n(tX), s,8κ)

∣∣∣∣
t=0

= −i
d

dt
WT (n(taX

ta)m(a), s,8κ)

∣∣∣∣
t=0

= −i
d

dt
e(t tr(T aX ta))

∣∣∣∣
t=0

WT (m(a), s,8κ)

= 2π tr(T ae11
ta) ·WT (m(a), s,8κ).

Putting the terms together, we obtain

r(p−(e11))WT (m(a), s,8κ)

=

(
2π tr(T ae11

ta)−
κ

2
+

1
2

n∑
i=1

ai1 ·
∂

∂ai1

)
WT (m(a), s,8κ). ut

Corollary 5.12. Assume that n = m + 1 and det(T ) 6= 0. Write T in block form as in
(4.5), and recall the definition (4.11) of d(a). For a ∈ R>0 we have

WT (m(d(a)), 0, λ(ψ∗11)) = 2
(

2πT1a
2
−
κ

2
+
a

2
∂

∂a

)
W ′T (m(d(a)), 0,8κ).

Proof. Using Corollary 5.10 and Proposition 5.11, we see that

WT (m(d(a)), s, λ(ψ
∗

11))

= 2(s + ρn − κ)−1
·

(
2πT1a

2
−
κ

2
+
a

2
∂

∂a

)
WT (m(d(a)), s,8κ).

Since n = m + 1, we have ρn = κ . Moreover, because of the signature of V , the matrix
T is not positive definite. Hence, according to Proposition 4.3, the Whittaker function on
the right hand side vanishes at s = 0. This implies the assertion. ut

5.4. The main term of the local height revisited

Here we combine the results of the previous two subsections with the asymptotic proper-
ties of Whittaker functions derived in Section 4.2.
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Proof of Theorem 5.4. Recall that n = m + 1, x ∈ V n, and T = Q(x) is invertible. We
have to show that

e−2π tr T
·htmain
∞ (x) = −Bn,∞ ·W

′

T (1, 0,8κ)+Bn−1,∞e
−2π(tr T−tr T̃2) ·W ′

T̃2
(1, 0,8κ−1/2),

where T̃2 is defined by (5.10). According to Proposition 5.6 we know that

htmain
∞ (x) = Bn,∞e

2π tr T2

∫
∞

1
Wd(a)T d(a)(1, 0, λ(ψ∗11)) · e

2πQ(x1a)
da

a
.

Inserting (2.2) and the formula of Corollary 5.12, we obtain

htmain
∞ (x) = 2Bn,∞e2π tr T2

×

∫
∞

1
a−ρn

((
2πT1a

2
−
κ

2
+
a

2
∂

∂a

)
W ′T (m(d(a)), 0,8κ)

)
e2πQ(x1a)

da

a
.

Noticing that

2a−ρn−1e2πQ(x1a)

(
2πT1a

2
−
κ

2
+
a

2
∂

∂a

)
W ′T (m(d(a)), 0,8κ)

=
∂

∂a

(
W ′T (m(d(a)), 0,8κ)e2πQ(x1a)a−ρn

)
,

we find

htmain
∞ (x) = Bn,∞e

2π tr T2

∫
∞

1

∂

∂a

(
W ′T (m(d(a)), 0,8κ)e2πQ(x1a)a−ρn

)
da

= Bn,∞e
2π tr T2

(
−W ′T (1, 0,8κ)e2πQ(x1) + lim

a→∞
W ′T (m(d(a)), 0,8κ)e2πQ(x1a)a−ρn

)
= −Bn,∞e

2π tr T
·W ′T (1, 0,8κ)

+ Bn,∞e
2π tr T2

(
lim
a→∞

W ′T (m(d(a)), 0,8κ)e2πQ(x1a)a−ρn
)
.

We now employ Corollary 4.11 to evaluate the limit on the right hand side. We obtain

htmain
∞ (x) = −Bn,∞e

2π tr T
·W ′T (1, s0,8κ)

+


Bn,∞i

−n(2π)ρn

0(ρn)
· e2π(tr T2−

tT12T
−1
1 T12)W ′

T̃2
(1, 0,8κ−1/2) if T1 > 0,

0 if T1 ≤ 0.

Hence the claim follows from (3.5). ut
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5.5. An alternative proof of Proposition 3.1

Here we use Corollary 5.10 and Proposition 5.1 to give an alternative way of computing
the constant Bn,∞ appearing in Proposition 3.1. Assume that n = m+ 1. Let φ∞(x, z) ∈
S(V n) ⊗ C∞(D) with φ∞(hx, hz) = φ∞(x, z) for all z ∈ D, x ∈ V n and h ∈ H(R).
Then by Theorem 2.1 we know that∫

D
φ∞(x, z)�

m
= Bn,∞ ·WT (1, 0, λ(φ∞)) (5.26)

for some non-zero constant Bn,∞, which is independent of φ∞(x, z) and T = Q(x). To
compute Bn,∞ we pick the special Schwartz function

ψ∗11(x, z) = ϕG(x1, z) · ϕ
n−1,∗
KM ((x2, . . . , xn), z)

as in (5.15). Evaluating (5.26) in the limit x1 → 0 and using the fact that ϕG(0, z) = 1,
we obtain ∫

D
ϕmKM((x2, . . . , xn), z) = Bn,∞ ·WT (1, 0, λ(ψ∗11)), (5.27)

where T =
( 0 0

0 T2

)
and T2 = Q((x2, . . . , xn)). The left hand side of (5.27) is given by

Proposition 5.1. If T2 > 0 we have∫
D
ϕmKM((x2, . . . , xn), z) = 2e−2π tr T2 . (5.28)

We now compute the right hand side of (5.27).

Lemma 5.13. For T =
( 0 0

0 T2

)
with T2 > 0 as above, we have

WT (1, 0, λ(ψ∗11)) = −
2
n
2 (ρn+1)

0n(ρn)

(
π

i

)nρn
e−2π tr T2 .

Proof. We first show that for T =
( 0 0

0 T2

)
, we have

WT (1, s, λ(ψ∗11)) = −WT (1, s,8κ). (5.29)

In fact, using the notation of Corollary 5.10 and Proposition 5.11, we have

WT (1, s, λ(ψ∗11)) =
2
s
·
(
r(p−(e11))WT (g, s,8κ)

)∣∣
g=1

=
2
s
·

(
2π tr(T e11)−

κ

2
+

1
2

∂

∂a11

)
WT (m(a), s,8κ)

∣∣∣∣
a=1

.

Here we have also used the fact that n = m+1 and therefore ρn = κ . Taking into account
the special form of T and the transformation law (2.2), we deduce

WT (1, s, λ(ψ∗11)) =
2
s
·

(
−
κ

2
+

1
2

∂

∂a11

)
(a
ρn−s
11 WT (1, s,8κ))

∣∣∣∣
a11=1

= −WT (1, s,8κ).
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Next we computeWT (1, 0,8κ) for T =
( 0 0

0 T2

)
. According to [Shi, (4.6.K)] and (4.4)

the function ω(g, h, α, β) of [Shi] satisfies

ω(2 · 1n, πT , α, β) = 2−(n−1)α |2πT2|
ρn−α|2 · 1n|α+β−ρn

0n−1(β − 1/2)01(α + β − ρn)
η(2 · 1n, πT , α, β)

= 2−(n−1)α |2πT2|
ρn−α|2 · 1n|α+β−ρn

cn(α, β)0n−1(β − 1/2)01(α + β − ρn)
WT (1n, s,8κ)

= 2−ρn(n/2+1)+nβ−n/2+α(2−n)πα(1−n)−1in(α−β)|T2|
ρn−α

×
0(β)0n(α)

0(α + β − ρn)
WT (1n, s,8κ).

Here, in the latter equality, we have also used (4.12). We find

ω(2, πT , ρn, 0) = 2−
3
2nρn+ρn−n/2πρn(1−n)−1inρn0n(ρn)WT (1, 0,8κ).

On the other hand, by [Shi, Theorem 4.2 and (4.35.K)], we have

ω(2, πT , ρn, 0) = ω(2, πT , ρn + 1/2, 1/2) = 2−(n−1)ρnπ (n−1)/2e−2π tr T ,

and therefore

e−2π tr T
= 2−

n
2 (ρn+1)π−nρn inρn0n(ρn)WT (1, 0,8κ). (5.30)

Putting this identity into (5.29), we obtain the assertion. ut

Combining (5.27), (5.28), and Lemma 5.13, we find

Bn,∞ = −2
4−n2

−3n
4

(
i

π

)nρn
0n(ρn).

In particular, Bn,∞/Bn−1,∞ = i
n 0(ρn)
(2π)ρn , B1,∞ =

1
πi

, and B2,∞ =
i

4
√

2π2 .

6. The local arithmetic Siegel–Weil formula at an odd prime p

In this section we assume that p 6= 2 is a prime. Let W = W(F̄p) be the Witt ring
of F̄p and K = WQ be the fraction field of W , which is the completion of the maximal
unramified extension of Qp. Let σ be the Frobenius of W (such that its reduction to F̄p is
the Frobenius x 7→ xp).

Let L be a unimodular quadratic lattice over Zp of rank n+ 1 and put V = LQp . Let
C(L) be the Clifford algebra of L, and let D(L) = Hom(C(L),Zp) be its dual. We write
H̃ = GSpin(L) for the general Spin group over Zp, and notice that H̃ (Zp) ⊂ C(L)× acts
on C(L) via left multiplication and thus acts onDL. Let ι be the main involution on C(V )
which fixes V pointwise. If δ ∈ C(V )× with δι = −δ, then ψδ(x, y) = tr(xδyι) defines a
non-degenerate symplectic form on C(V ). We will require that δ ∈ C(L) and δδι ∈ Z×p ,
which implies that C(L) is unimodular under this symplectic form. This induces an em-
bedding

i = iδ : H̃ → GSp(C(L)). (6.1)
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It is also known that H̃ is ‘cut out’ by a family of tensors (sα), sα ∈ C(L)⊗, in the sense
that for any Zp-algebra R we have

H̃ (R) = {h ∈ GSp(C(L))(R) | hsα = sα}.

6.1. The local unramified Shimura datum and the Rapoport–Zink space associated to H̃

Here we set up some notation for the rest of this section. We recall the construction of
an unramified local Shimura datum for H̃ due to Howard and Pappas, and the associated
Rapoport–Zink space. We refer to [HP] for details.

Choose a Zp-basis e = {e1, . . . , en+1} of L with Gram matrix

((ei, ej )) = diag
(
In−2, εL,

(
0 1
1 0

))
, (6.2)

with εL = − detL. Define

µ : Gm→ H̃ , t 7→ µ(t) = t−1enen+1 + en+1en ∈ H̃ , (6.3)

b = en−1(p
−1en + en+1) ∈ H̃ (Qp) ⊂ H̃ (K). (6.4)

Then (H̃ , [b], {µ}, C(L)) is the local unramified Shimura datum constructed by Howard
and Pappas in [HP, Section 4] for H̃ . Here {µ} is the conjugacy class of the cocharacter
µ under H̃ (K), and [b] is the σ -conjugacy class of the basic element b, i.e., the set of
elements hσbh−1 with h ∈ H̃ (K). Associated to b there are two isocrystals

(VK = V ⊗Qp K, b ◦ σ) and (DK = D(L)⊗Zp K, b ◦ σ).

Let
V = V b◦σK and L = (L⊗Zp W)

b◦σ .

A direct calculation shows that L has a Zp-basis e′ = {e′1, . . . , e
′

n+1} with Gram matrix

((e′i, e
′

j )) = diag(In−2, εL, p,−pu) (6.5)

where u ∈ Z×p with (p, u) = −1 and −uεL = εL. We can actually take e′i = ei for
i ≤ n − 2. In particular, V = L ⊗Zp Qp is a quadratic space over Qp with the same
dimension and the same determinant as V , but with opposite Hasse invariant.

According to [HP, Lemma 2.2.5], there is a unique p-divisible group

X0 = X0(H̃ , [b], {µ}, C(L))

over F̄p whose contravariant Dieudonné module is D(X0)(W) ∼= DW = D(L) ⊗Zp W

with Frobenius F = b ◦ σ . Moreover, the Hodge filtration on D(X0)(F̄p) is induced
by µF̄p (up to conjugation). The symplectic form ψδ induces a principal polarization λ0

on X0.
Let RZ(X0, λ0) be the Rapoport–Zink space associated to GSp(C(L), ψδ) (see [RZ]

and [HP, Section 2.3]). It is a smooth formal scheme over Spf(W) representing the moduli
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problem over NilpW of triples (X, λ, ρ)/S, where S is a formal scheme overW on which
p is Zariski locally nilpotent, (X, λ) is a p-divisible group with principal polarization λ,
and ρ is a quasi-isogeny

ρ : X0 ×F̄p S̄ 99K X ×S S̄, S̄ = S ×W F̄p,

which respects polarization up to a scalar, in the sense that Zariski locally on S̄, we have

ρ∨ ◦ λ ◦ ρ = c(ρ)−1λ0, c(ρ) ∈ Q×p .

Let RZ = RZ(H̃ , [b], {µ}, C(L)) be the GSpin Rapoport–Zink space constructed in [HP,
Section 4]. This space comes with a closed immersion RZ → RZ(X0, λ0), and by re-
stricting the universal object one obtains a universal triple (Xuniv, λuniv, ρuniv) over RZ.
The universal quasi-isogeny preserves the polarization only up to a scalar, which induces
a decomposition of RZ as a union of open and closed formal subschemes,

RZ =
⊔
l

RZ(l), (6.6)

where RZ(l) ⊂ RZ is cut out by the condition ordp c(ρuniv) = l ∈ Z. According to [HP,
Section 7] (see also Section 7.3 here), RZ can be used to uniformize the supersingular
locus at p of some Shimura variety associated with (H̃ ,D).

Notice that VK acts on C(V )K via right multiplication, which induces an action on
the isocrystal DK. This gives an embedding VK ⊂ End(DK). Moreover, V = V b◦σK ⊂

End(DK) commutes with the Frobenius F = b ◦σ . SinceDK ∼= D(X0)(K), we obtain an
embedding V ⊂ End0(X0). Following [HP] we call V the special endomorphism space
of X0.

Let H̃ be the algebraic group GSpin(V). Then H̃(Qp) = {h ∈ H̃ (K) | hb = bσ(h)}
acts by automorphisms on DK, giving rise to a quasi-action on X0. This quasi-action has
the property

c(hρ) = µH̃(h)c(ρ),

where µH̃ is the spin character of H̃. So h ∈ H̃(Qp) induces an isomorphism RZ(l) ∼=
RZ(l+ordp µH̃(h)). In particular,

pZ\RZ ∼= RZ(0) t RZ(1). (6.7)

According to [She, Corollary 7.8], RZ = pZ\RZ is exactly the Rapoport–Zink space
of H associated to the basic local unramified Shimura datum induced from the datum
(H̃ , [b], {µ}, C(L)).

Finally, let J ⊂ V be an integral Zp-submodule of rank 1 ≤ r ≤ n. We define the
special cycle Z(J ), following Soylu [So], as the formal subscheme of RZ cut out by the
condition

ρ ◦ J ◦ ρ−1
⊂ End(X). (6.8)

Here, for an S-point α : S → RZ, X = α∗(Xuniv) and ρ = α∗(ρuniv) are the pull-backs
of the universal objects.

If J has an ordered Zp-basis x = (x1, . . . , xr) ∈ Vr , we also denote Z(J ) = Z(x).
The moment matrix T = Q(x) = 1

2 ((xi, xj )) in Symr(Qp) is determined by J up to
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Zp-equivalence. Soylu gave an explicit formula for the dimension of the reduced scheme
Z(J )red underlying Z(J ) in terms of T and L [So, Section 4.2].

The purpose of this section is to prove a local arithmetic Siegel–Weil formula for
Z(J ). We show that when Z(J ) is 0-dimensional, the local height of each point P ∈
Z(J ) depends only on T , not on the choice of the point P , and is equal to the central
derivative of some local Whittaker function (Theorem 6.9).

6.2. Dual vertex lattices and decomposition of the Rapoport–Zink space

A Zp-lattice 3 ⊂ V = V b◦σK is called a dual vertex lattice if p3′ ⊂ 3 ⊂ 3′, i.e., its dual
3′ is a vertex lattice in the sense of [HP]. Let

�3 = 3
′/3, Q3(x) = pQ(x) mod Zp,

be the associated quadratic space over Fp. Then t3 = dimFp �3 is called the type number
of 3. Let �̄3 = �3⊗Fp F̄p. According to [HP, Section 5.3], there is a projective variety
S3 over F̄p such that

S3(F̄p) = {L ⊂ �̄3 | maximal isotropic and dim(L+ Frob(L)) = t3/2+ 1}.

Moreover, S3 = S+3 ∪ S
−

3 has two connected components, both smooth and projective of
dimension t3/2− 1.

For a dual vertex lattice 3 of V, let RZ3 be the closed formal subscheme of RZ
defined by the condition

ρ ◦3 ◦ ρ−1
⊂ End(X).

The following theorem summarizes some of the basic properties of RZ3 and RZ. As-
sertions (1), (3), (4) are due to Howard and Pappas [HP, Proposition 5.1.2, Section 6.5,
Remark 6.5.7]. The second assertion is due to Li and Zhu [LZ, Theorem 4.2.11].

Theorem 6.1. (1) For a dual vertex lattice 3, t3 is even and

t3 ≤ tmax =


n if n is even,
n− 1 if n is odd, detL = (−1)(n+1)/2,

n+ 1 if n is odd, detL 6= (−1)(n+1)/2.

Moreover, �3 is the unique non-split space over Fp of dimension t3, and every dual
vertex lattice contains a ‘minimal’ dual vertex lattice with t3 = tmax. Moreover, RZred

3

is of dimension t3/2− 1.
(2) The formal scheme RZ3 is reduced.
(3) One has

RZ =
⋃

t3=tmax

RZ3,

and
RZred

=

⊔
3

BT3, BT3 = RZ3 −
⋃
31(3

RZ31 .

(4) Let RZ3 = pZ\RZ3. Then RZ3 ∼= S3 as projective varieties over F̄p.
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Proposition 6.2. Up to Zp-isomorphism, there is a unique dual vertex lattice3(t) of type
number t for every even integer 1 < t = 2r ≤ tmax, which is given by 3(t) =

⊕
Zpfi

with Gram matrix
((fi, fj )) = diag(In−t , α, pIt−1, pβ) (6.9)

with α, β ∈ Z×p /(Z×p )2 satisfying

(p, (−1)rβ) = −1 and αβ = detL mod (Z×p )
2.

In particular, 3(2) is the lattice given by (6.5).
Proof. Since p3′ ⊂ 3 ⊂ 3′, we see that 3 =

⊕
Zpei with

Q
(∑

xiei

)
=

∑
αip

aix2
i

with αi ∈ Z×p and 0 ≤ a1 ≤ · · · ≤ an+1 ≤ 1. The condition t3 = dimFp 3
′/3 = t

implies a1 = · · · = an−t+1 = 0, and an−t+2 = · · · = an+1 = 1. So we can change the
basis to make (6.9) true. Since L is unimodular, V has Hasse invariant 1, and hence V has
Hasse invariant −1, i.e.,

−1 = (2p, (2p)t−1β)(2p, (2p)t−2β) · · · (2p, 2pβ) = (2p, (2p)rβ) = (p, (−1)rβ).

In particular, E = Qp(
√
(−1)rβ) is the unique unramified quadratic field extension

of Qp, and β is uniquely determined up to a square by this condition. On the other hand,
detV = detV gives

αβ = detL mod (Z×p )
2,

which then determines α uniquely up to a square. ut

6.3. Special cycles and local heights

Recall the definition of the special cycle Z(J ) at the end of Section 6.1. It is not hard to
see [So, Section 4.2] that

Z(J )red
=

⋃
3 dual vertex lattice

J⊂3

RZred
3 .

The following theorem is part of [So, Theorems 4.13, 4.16 and Proposition 4.15].
(Recall our convention that dimV = n+ 1 and notice that our 2T is Soylu’s T .)

Theorem 6.3 (Soylu). Let Z(J )red be the reduced scheme of Z(J ) and assume that J =
J (x1, . . . , xn) ⊂ V has rank n and is integral. Assume that T = Q(x) is Zp-equivalent
to diag(T1, T2) where T1 is unimodular of rank r = r(T ) (which is also the rank of T
(mod p) over F̄p), and T2 ∈ p Symn−r(Zp). Then Z(J )red is 0-dimensional if and only
if one of the following conditions holds:
(1) r(T ) = n− 1, n− 2.
(2) r(T ) = n− 3 and det(2T1) = detL.
In that case,

Z(J )red
=

⊔
J⊂3
t3=2

RZ3 =
⊔
J⊂3
3∼=3(2)

RZ3.
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Proof. We give a sketch of the proof in this special case to give a rough idea what
is involved in the general theorems of Soylu [So, Section 4]. Choose a Zp-basis e =
{e1, . . . , en} of J with 1

2 (ei, ej ) = diag(T1, T2), and letM1 be the submodule of J gener-
ated by e1, . . . , er , which is unimodular. To have J ↪→ 3, one has to have t3 ≤ n−r+1.
In the case r = n−1, n−2, one has t3 = 2, and RZ3 = RZred

3 is reduced of dimension 0.
So

Z(J )red
=

⊔
3⊃J
t3=2

RZ3.

In the case r(T ) = n − 3, one might have t3 = 2 or 4. If t3 = 4, then (as M1 is
unimodular)

3 ∼= M1 ⊕32,

where 32 has a Zp-basis with Gram matrix p diag(1, 1, 1, ε). Since the Hasse invariant
of V is −1, we see (p,−ε) = −1. On the other hand, detV = detV forces

ε = detM1 detL = det(2T1) detL, i.e., det(2T1) 6= detL.

Therefore, if det(2T1) = detL, we cannot embed J into a dual vertex lattice 3 with
t3 = 4, and thus Z(J ) is 0-dimensional and reduced as argued above.

When det(2T1) 6= detL, Soylu proved that there is indeed some embedding J ⊂ 3
with t3 = 4. We refer to [So, Section 4] for the details. ut

LetM1 be a unimodular quadratic Zp-lattice of rank r < n− 2, and assume that there are
isometric embeddingsM1 ⊂ L andM1 ⊂ 3, where3 ⊂ V is a dual vertex lattice. Write

L = M1 ⊕ L2, 3 = M1 ⊕32. (6.10)

Notice that, choosing proper bases of M1 and L, the data b and µ defined in (6.3)
and (6.4) still make sense for the unimodular lattice L2, so we have a local unramified
Shimura datum (H̃ (r), [b], {µ}, C(L2)) and its associated Rapoport–Zink space RZ(r).
Here H̃ (r) = GSpin(L2). Moreover, one can easily check that V2 = L2

b◦σ
K is a direct

summand of V, and 32 is a dual vertex lattice of V2. The embdding L2 ⊂ L induces a
closed immersion

i(r) : RZ(r) ↪→ RZ. (6.11)

The following proposition is a direct consequence of [LZ, Lemma 3.1.1].

Proposition 6.4 (Li–Zhu). Let the notation be as above and assume r ≤ n− 3.

(1) i(r)RZ(r) = Z(M1).

(2) Assume that J = M1 ⊕ J2 is a Zp-submodule of 3. Then i(r)ZRZ(r)(J2) = ZRZ(J ).

Proof. Assume that {x1, . . . , xr} is a basis ofM1 with Gram matrix diag(α1, . . . , αr) and
αi ∈ Z×p . Applying [LZ, Lemma 3.1.1] r times, we obtain the above proposition. Notice
that the cited lemma still holds with the same proof when the norm of xn is a unit in Zp
(not necessarily equal to 1). ut
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From now on, we assume that Z(J ) is 0-dimensional. For P ∈ Z(J ), its local height
index is defined to be

htp(P ) = the length of the formal complete local ring ÔZ(J ),P . (6.12)

By Theorem 6.3, we have r(T ) ≥ n− 3. There is a decomposition

J = M1 ⊕ J2

with M1 unimodular of rank n − 3. Furthermore we can choose bases of M1 and J2 so
that the Gram matrix of J becomes 2T with T = diag(T1, T2) where 2T1 is the Gram
matrix of M1 and T2 = diag(α1p

a1 , α2p
a2 , α3p

a3) is the matrix of J2 with αi ∈ Z×p and
0 ≤ a1 ≤ a2 ≤ a3. We can always embed M1 into L. Assume that Z(J )(F̄p) is not
empty. Then there is an embedding M1 ⊂ J ⊂ 3 for some dual vertex lattice 3.

Corollary 6.5. Let the notation and hypotheses be as above (in particular Z(J ) is
0-dimensional). For P ∈ Z(J ) write P ∗ = i(n− 3)−1P ∈ RZ(n− 3). Then

htp(P ) = htp(P ∗).

The local height htp(P ∗) has been studied in [KRap1] (the case a1 = 0 actually follows
from [KRY2] with n − 3 replaced by n − 2). Assume the decompositions (6.10). Notice
that L2 is unimodular of rank 4. There are two cases: either

(i) detL2 = 1 and L2 ∼= M2(Zp) with Q(x) = det x, or
(ii) detL2 = u ∈ Z×p where E = Qp(

√
u) is the unique unramified quadratic field

extension of Qp, i.e., (p, u) = −1.

In the second case, L2 is Zp-equivalent to Z4
p with the quadratic form Q(x) = x1x2 +

x2
3 − ux

2
4 , or more conceptually

L2 ∼=
{
A =

(
α a
b α′

) ∣∣ a, b ∈ Zp, α ∈ OE

}
, Q(A) = detA,

where α′ is the Galois conjugate of α. The second case only occurs when r(T ) ≥ n− 2,
i.e., a1 = 0. Indeed, if a1 > 0, i.e., r(T ) = n− 3, then we would have

det(2T1) = detL = detM1 detL2 = det(2T1) detL2,

which implies 1 = detL2 = u, a contradiction. The condition a1 = 0 is exactly the
condition given in [KRap1, Theorem 2] for ZRZ(n−3)(J2)(F̄p) to be finite. So in both
cases, RZ(n − 3) is associated to the supersingular locus at p of the Hilbert modular
surface over a real quadratic field F with p split or inert in F , Fp = Qp × Qp or E. In
[KRap1], Kudla and Rapoport considered twisted Hilbert modular surfaces to avoid issues
with the boundary. But their localization at p, considered in [KRap1, Sections 6–12], is
for our p the same as for a regular Hilbert modular surface, and hence their local results
apply. We restate it here as the following theorem for convenience. In case (ii), a1 = 0,
it is [KRap1, Proposition 6.2]. In case (i), it is [GK, Proposition 5.4], restated in [KRap1,
Proposition 11.2] with a minor mistake (it should not assume a1 = 0 in this case).
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Proposition 6.6 (Kudla–Rapoport). Let the notation and hypotheses be as above, in par-
ticular ZRZ(n−3)(J2) is 0-dimensional, and let P ∗ ∈ ZRZ(n−3)(J2). Recall that T2 is Zp-
equivalent to diag(α1p

a1 , α2p
a2 , α3p

a3) with 0 ≤ a1 ≤ a2 ≤ a3, and αi ∈ Z×p . Then
htp(P ∗) = νp(T2), where νp(T2) is given as follows:

(1) When a2 ≡ a1 (mod 2), νp(T2) is equal to

a1−1∑
i=0

(i + 1)(a1 +2 +a3 − 3i)pi

+

(a1+a2)/2−1∑
i=a1

(a1 + 1)(2a1 + a2 + a3 − 4i)pi +
a1 + 1

2
(a3 − a2 + 1)p(a1+a2)/2.

(2) When a2 6≡ a1 (mod 2), νp(T2) is equal to

a1−1∑
i=0

(i + 1)(a1 +2 +a3 − 3i)pi +
(a1+a2−1)/2∑

i=a1

(a1 + 1)(2a1 + a2 + a3 − 4i)pi .

6.4. Local Whittaker functions and the local arithmetic Siegel–Weil formula

Let ψ = ψp be the ‘canonical’ unramified additive character of Qp used in this paper. Let
L be an integral quadratic lattice over Zp of rank l, and let χL = ((−1)l(l−1)/2 detL, ·)p
be the associated quadratic character. For every integer r ≥ 0 we also consider the lattice
L(r) = L⊕H r , where H = Z2

p is the standard hyperbolic plane with the quadratic form
Q(x, y) = xy. We temporarily allow L to be non-unimodular.

Let T ∈ Symn(Zp) be non-singular with n ≤ l. Then according to [Ku2, Appendix]
and [Ya], there is a local density polynomial αp(X, T , L) of X such that for every integer
r ≥ 0, one has

αp(p
−r , T , L) =

∫
Symn(Qp)

∫
L(r),n

ψ(tr b(Q(x)− T )) dx db,

where dx and db are the standard Haar measures with vol(L, dx) = vol(L(r), dx) = 1
and vol(Symn(Zp), db) = 1. We write ϕL = char(Ln) ∈ S(LnQp ) for the characteristic
function of L. Then it is easy to see that

WT ,p(1, s, λ(ϕL)) =
(

γ (L)
√
[L′ : L]

)n
αp(p

−s, T , L).

Here γ (L) = γ (L ⊗Zp Qp) is the local Weil index. We also recall [Ya, Section 2] that
αp(p

−r , T , L) is the local representation density αp(MT , L
(r)) = βp(MT , L

(r)) studied
in Kitaoka’s book [Kit, Section 5.6]. Here MT = Znp is the quadratic lattice associated to
T , i.e., with the quadratic formQ(x) = txT x. For a unimodular lattice L of rank l, define

δL =

{
0 if l ≡ 1 (mod 2),
χL(p) if l ≡ 0 (mod 2).

(6.13)
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Lemma 6.7. Let T ∈ Symn(Zp) with det T ∈ Z×p , i.e., T is unimodular.

(1) Assume that L = L1 ⊕ L0 is an integral lattice over Zp such that Q(x) ∈ pZp for
every x ∈ L0. Then αp(X, T , L) = αp(X, T , L1).

(2) Assume that L is Zp-unimodular of rank l ≥ n. Then

αp(X, T , L)

= (1− δLp−l/2X)(1+ δMT⊕L
−p−(l−n)/2X)

∏
(l−n+1)/2≤e≤(l−1)/2

(1− p−2eX2).

Here L− denotes the lattice L with the rescaled quadratic form Q−(x) = −Q(x).

Proof. Let L̃ = L/pL with the Fp-valued quadratic form Q̃(x) = Q(x) mod p for an
integral quadratic Zp-lattice L. Replacing L by L(r), we may assume X = 1 in the proof.

For (1), write l and li for the rank of L and Li respectively with l = l0 + l1. Notice
that L̃0 is a zero quadratic space of dimension l0. Every isometry from M̃T to L̃ splits into
the sum of an isometry from M̃T to L̃1 and a homomorphism from M̃T to L̃0. So [Kit,
p. 99, exercise] gives

αp(1, T , L) = pn(n+1)/2−nl
|{isometries from M̃T to L̃}|

= pn(n+1)/2−nl
|{isometries from M̃T to L̃1}| · |Hom(M̃T , L̃0)|

= pn(n+1)/2−nl1 |{isometries from M̃T to L̃1}|

= αp(1, T , L1).

For (2), [Kit, Theorem 1.3.2] and the formula in [Kit, p. 99, exercise] imply

αp(1, T , L) = (1− χ(L̃)p−l/2)(1+ χ(M̃T ⊕ L̃
−)p−(l−n)/2)

∏
l−n+1≤e≤l−1

e even

(1− p−e),

where χ(M̃) for a unimodular quadratic Zp-lattice M̃ is defined as follows. When l =
dim M̃ is odd, χ(M̃) = 0. When l is even, χ(M̃) is ±1 depending on whether M̃ is
equivalent to a direct sum of hyperbolic planes or not. Assume l = 2r + 2 is even. Since
M is unimodular, M is equivalent to H r

⊕M0 with M0 = Z2
p with Q(x, y) = x2

− εy2

for some ε ∈ Z×p . Then χ(M̃) = 1 if and only if M̃0 is a hyperbolic plane, which is the
same as saying that ε is a square in Fp, i.e., (ε, p) = 1. On the other hand, it is easy to
check that

χM(x) = ((−1)r+1 detM,x) = (ε, x).

So χ(M̃) = χM(p) in this case. This proves (2). ut

Proposition 6.8. Assume T is Zp-equivalent to diag(T1, T2) with T1 being unimodular
of rank n− 3 and T2 = diag(α1p

a1 , α2p
a2 , α3p

a3) with αi ∈ Z×p and 0 ≤ a1 ≤ a2 ≤ a3.
Let L be a unimodular lattice of rank n+ 1. Let M1 be the unimodular quadratic lattice
with Gram matrix 2T1, and fix an embeddingM1 ↪→ L, which results in a decomposition
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L = M1 ⊕ L2. Then WT ,p(1, 0, λ(ϕL)) = 0 if and only if WT2,p(1, 0, λ(ϕL2)) = 0. In
that case, we have

W ′T ,p(1, 0, λ(ϕL))

WT u,p(1, 0, λ(ϕL))
=
W ′T2,p

(1, 0, λ(ϕL2))

WT u2 ,p
(1, 0, λ(ϕL2))

= νp(T2).

Here T u and T u2 denote any unimodular symmetric matrices over Zp of order n and 3,
respectively, and νp(T2) is given in Proposition 6.6.

Proof. By Lemma 6.7,WT u,p(1, 0, λ(ϕL)) = γ (Vp)nα(1, T u, L) does not depend on the
choice of the p-unimodular T u. We choose T u = diag(T1, T

u
2 ) with T u2 being unimodu-

lar. Now [Kit, Corollary 5.6.1] implies (X = p−s)

WT ,p(1, s, λ(ϕL))
WT u,p(1, s, λ(ϕL))

=
αp(X, T , L)

αp(X, T u, L)
=
αp(X, T1, L)αp(X, T2, L2)

αp(X, T1, L)αp(X, T
u

2 , L2)

=
WT2,p(1, s, λ(ϕL2))

WT u2 ,p
(1, s, λ(ϕL2))

.

This proves the first identity and also the claim about the vanishing at s = 0. Assume
WT ,p(1, 0, λ(ϕL)) = 0. By [KRap1, Propositions 11.5 and 7.2], we have

W ′T2,p
(1, 0, λ(ϕL2)) = γ (V

3
2 )(1− p

−2)(1− χL2(p)p
−2)νp(T2).

On the other hand, Lemma 6.7 gives

WT u2 ,p
(1, 0, λ(ϕL2)) = γ (V

3
2 )(1− p

−2)(1− χL2(p)p
−2).

Now the second identity is clear. ut

Combining Propositions 6.6 and 6.8 and Corollary 6.5, we obtain the following local
arithmetic Siegel–Weil formula.

Theorem 6.9. Let L be a unimodular quadratic Zp-lattice of rank n+1 with p 6= 2, and
let RZ be the Rapoport–Zink space as in Section 6.1. Let T ∈ Symn(Zp) be of rank n and
let J ⊂ V be a Zp-sublattice of rank n which has a basis with Gram matrix 2T . Assume
Z(J ) is 0-dimensional and let P ∈ Z(J ). Then

htp(P ) logp =
W ′T ,p(1, 0, λ(ϕL))

WT u,p(1, 0, λ(ϕL))
,

where T u is a unimodular matrix in Symn(Zp) (i.e., det T u ∈ Z×p ).

7. Arithmetic Siegel–Weil formulas

In this section, we will prove the arithmetic Siegel–Weil formulas as stated in Theorem 1.2
and Remark 1.3. Throughout, let V be a quadratic space over Q of signature (m, 2), and
let H = SO(V ).
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7.1. Vanishing of coefficients of Eisenstein series

Let n = m + 1 and let C =
⊗
p≤∞ Cp be the incoherent quadratic space over A defined

in the introduction. Recall the GA-equivariant map

λ = ⊗λp : S(Cn)→ I (0, χV ), λ(φ)(g) = ω(g)φ(0).

For simplicity, we also write λ(φ) for the associated standard section in I (s, χV ). Let
φC∞(x) = e−π tr(x,x)

∈ S(Cn∞), then λ∞(φ∞) = 8κ ∈ I (s, χV ) is the standard section
of weight κ = (m+ 2)/2. Recall that for a standard factorizable section 8 =

∏
8p ∈

I (s, χV ), the Eisenstein series

E(g, s,8) =
∑

γ∈PQ\Spn(Q)
8(γg, s)

has a meromorphic continuation to the whole complex s-plane and is holomorphic at
s = 0. It has a Fourier expansion of the form

E(g, s,8) =
∑

T ∈Symn(Q)
ET (g, s,8).

When T ∈ Symn(Q) is non-singular, the T -th Fourier coefficient factorizes,

ET (g, s,8) =
∏
p≤∞

WT ,p(gp, s,8p),

into a product of local Whittaker functions (see (2.1)). For every φ ∈ S(V (Af )n) =
S(CnAf ), we define the Siegel–Eisenstein series of weight κ on the Siegel upper half-
plane Hn as

E(τ, s, λ(φ)⊗8κ) = det(v)−κ/2 · E(gτ , s, λ(φ)⊗8κ), (7.1)

where we write gτ = n(u)m(a) ∈ GR with u = <(τ ) ∈ Symn(R) and a ∈ GLn(R)
such that a ta = v as usual. In particular, we have gτ (i1n) = τ . We could choose for
a the positive symmetric square root of v but we do not have to. The Eisenstein series
vanishes automatically at s = 0 due to incoherence. The arithmetic Siegel–Weil formula,
envisioned by Kudla, aims to give an arithmetic meaning to its central derivative at s = 0.
From now on, assume T = Symn(Q) is non-singular, and let

Diff(C, T ) = {p ≤ ∞ | Cp does not represent T } (7.2)

be Kudla’s Diff set defined in the introduction. Then Diff(C, T ) is a non-empty finite set,
and∞ ∈ Diff(C, T ) if and only if T is not positive definite. Moreover, if p ∈ Diff(C, T ),
then WT ,p(gp, 0, λp(φp)) = 0. So

ords=0 ET (g, s, λ(φ)⊗8κ) ≥ |Diff(C, T )| (7.3)

for every φ ∈ S(V (Af )n).
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7.2. The arithmetic Siegel–Weil formula at infinity

Here we prove Theorem 1.2(2). We begin by recalling the global set-up.
For a compact open subgroup K ⊂ H(Af ) we consider the Shimura variety XK

whose associated complex space is

XK(C) = H(Q)\D ×H(Af )/K.

It is a quasi-projective variety of dimension m, which has a canonical model over Q.
Given x = (x1, . . . , xn) ∈ V (Q)n with Q(x) = 1

2 (x, x) =
1
2 ((xi, xj )) > 0, let

Hx be the stabilizer of x in H . For h ∈ H(Af ), let Kh,x = Hx(Af ) ∩ hKh−1 be the
corresponding compact open subgroup of Hx(Af ). Then

Hx(Q)\Dx ×Hx(Af )/Kh,x → XK , [z, h1] 7→ [z, h1h],

gives rise to a cycle Z(h, x) in XK of codimension n. More generally, given a positive
definite T ∈ Symn(Q) and any K-invariant Schwartz function ϕ ∈ S(V n(Af )), Kudla
[Ku3] defines a weighted cycle as follows: If there exists an x ∈ V n(Q) with Q(x) = T ,
put

Z(T , ϕ) =
∑

h∈Hx (Af )\H(Af )/K
ϕ(h−1x)Z(h, x) ∈ Zn(XK).

If there is no such x, set Z(T , ϕ) = 0. These weighted cycles behave well under pull-back
(for varying K). Moreover, if T ∈ Symn(Q) is regular but not positive definite, we put
Z(T , ϕ) = 0.

If T ∈ Symn(Q) is regular, we define a Green current for the cycle Z(T , ϕ) by

G(T , ϕ, v, z, h) =
∑

x∈V n(Q)
Q(x)=T

ϕ(h−1x) · ξn0 (xa, z),

where z ∈ D, h ∈ H(Af ), and a ta = v = =(τ ). The pair

Ẑ(T , ϕ, v) =
(
Z(T , ϕ),G(T , ϕ, v)

)
∈ Ĉh

n

C(XK)

defines an arithmetic cycle, which depends on v. For the rest of this section we assume
that n = m + 1. In this case, the cycles Z(T , ϕ) are all trivial (in the generic fiber) for
signature reasons. However, for indefinite T , the arithmetic cycles Ẑ(T , ϕ, v) typically
have a non-trivial current part. We are interested in their archimedian arithmetic degree

d̂eg∞(Ẑ(T , ϕ, v)) =
1
2

∫
XK (C)

G(T , ϕ, v).

We are now ready to prove Theorem 1.2(2) of the introduction, which we restate here
in a version which also gives an explicit value for the constant of proportionality.
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Theorem 7.1. Assume that T ∈ Symn(Q) is of signature (n− j, j) with j > 0 and that
ϕ ∈ S(V (Af )n) isK-invariant. Then the arithmetic Siegel–Weil formula holds for T , i.e.,

d̂eg∞Ẑ(T , ϕ, v) · q
T
= Cn,∞ · E

′

T (τ, 0, λ(ϕ)⊗8κ),

where the constant Cn,∞ is given as follows. Let L ⊂ V be an integral lattice, and
let dLh =

∏
p<∞ dLph be the associated Haar measure on H(Af ), and C(L) =∏

p<∞ C(Lp) be the associated constant given in Proposition 2.3 (with respect to the
unramified additive character ψf of Af ). Then

Cn,∞ = −Bn,∞
C(L)

vol(K, dLh)
.

Proof. The archimedian arithmetic degree is given by

d̂eg∞(Ẑ(T , ϕ, v)) =
1
2

∫
XK (C)

G(T , ϕ, v)

=
1
2

∫
H(Q)\D×H(Af )/K

∑
x∈V (Q)n
Q(x)=T

ϕ(h−1
f x) · ξn0 (xa, z) dhf .

This quantity vanishes if V (Q) does not represent T . Then, by the Hasse principle, there
is at least one finite prime p such that V (Qp) does not represent T , i.e., p ∈ Diff(C, T ).
As∞ ∈ Diff(C, T ), we see that |Diff(C, T )| > 1 and E′T (g, 0, λ(ϕ) ⊗ 8κ) = 0. Hence
the theorem holds trivially.

We now assume that there exists an x0 ∈ V (Q)n with Q(x0) = T . Then, by Witt’s
theorem, any other x ∈ V (Q)n with Q(x) = T is an H(Q)-translate of x0. Let dhf be
any prefixed Haar measure onH(Af ). Notice also that the pointwise stabilizerHx0(Q) of
x0 is trivial since n = m+ 1. By unfolding, the above integral is equal to

d̂eg∞(Ẑ(T , ϕ, v)) =
1
2

vol(K, dhf )−1
∫
Hx0 (Q)\D×H(Af )

ϕ(h−1
f x0) · ξ

n
0 (x0a, z) dhf

=
1
2

vol(K, dhf )−1
∫
H(Af )

ϕ(h−1
f x0) dhf ·

∫
D
ξn0 (x0a, z).

By Theorem 5.2, the archimedian integral is equal to
1
2

∫
D
ξn0 (x0a, z) = ht∞(x0a) = −Bn,∞ det(v)−κ/2 ·W ′T ,∞(gτ , s0,8κ) · q

−T .

On the other hand, the quantity

vol(K, dhf )−1
∫
H(Af )

ϕ(h−1
f x0) dhf

is clearly independent of the choice of the product Haar measure dhf . We choose dhf =
dLh; then the local Siegel–Weil formula, Proposition 2.2, gives

vol(K, dhf )−1
∫
H(Af )

ϕ(h−1
f x0) dhf =

C(L)

vol(K, dLh)
WT ,f (1, 0, λ(ϕ)).

This implies the assertion. ut
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7.3. The arithmetic Siegel–Weil formula at a finite prime

Assume that n = m + 1. Let p 6= 2 be a prime number. Let L ⊂ V be a p-unimodular
lattice. Let H = SO(L) and put H̃ = GSpin(L). Let K = KpK

p be a compact open
subgroup of H(Af ) fixing L with

Kp = H(Zp) = {h ∈ H(Qp) | hLp = Lp}.

For convenience, we assume that there is a compact open subgroup K̃ ⊂ H̃ (Af ) which
contains Ẑ× and which maps onto K . Such a K̃ always exists if K is contained in the
discriminant kernel subgroup of some even lattice in V (see Remark 7.4). Under this
assumption, the Shimura variety XK associated to (H,K) is the same as the Shimura
variety associated to (H̃ , K̃). The associated complex spaces are both equal to

H̃ (Q)\D× H̃ (Af )/K̃ ∼= H(Q)\D×H(Af )/K.

Let e, f ∈ V be orthogonal vectors of negative length in Z×(p). Then δ = ef ∈ C(V ) with
δι = −δ and N(δ) = δδι ∈ Z×(p). This determines a symplectic form ψδ(x, y) = tr(xδyι)
on C(V ), for which the lattice C(L) is p-unimodular. We obtain an embedding

H̃ → GSp(C(V ))

and a morphism of Shimura varieties over Q from XK to the Siegel Shimura variety
determined by the symplectic space (C(V ), ψδ) and a suitable compact open subgroup.

The integral model of the Siegel Shimura variety induces then an integral model
X = XK of XK [Kis], [AGHM, Section 4]. Kisin showed that X is smooth over Z(p)
if the compact open subgroup Kp

⊂ H(Apf ) is sufficiently small.
By pulling back the universal abelian scheme, we obtain a polarized abelian scheme

(AKS, λKS, ηKS) with level structure over X , the Kuga–Satake abelian scheme. It is
equipped with a right C(L)-action.

Given a Z(p)-scheme S and an S-point α : S → X , we obtain a triple Aα =
(A, λ, η) = α∗(AKS, λKS, ηKS) by pulling back the Kuga–Satake scheme. In particular,
η is a K̃p-level structure

η : HApf
:=

⊗
l<∞
l 6=p

(H 1
l (A)⊗Zl Ql)

∼
−→ C(V )⊗Q Apf ,

sending VApf
(the étale realization of the motive associated to the representation of H̃

on V ) onto V ⊗Apf . Let V (Aα) ⊂ EndC(L)(A)(p) be the space of special endomorphisms
of Aα defined in [So, Definition 3.3].

Given T ∈ Symn(Q) with det T 6= 0, the special cycle Z(T )→ X is defined as the
stack over X with functor of points

Z(T )(S) = {(α, x) | α ∈ X (S), x = (x1, . . . , xn) ∈ V (Aα)n,

Q(x) = T , η ◦ xj ◦ η
−1
∈ L̂(p)},
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where L̂(p) =
∏
l 6=p Ll , and L̂ =

∏
l Ll . In this subsection we drop the Schwartz func-

tion ϕ from the notation of Z(T , ϕ), since we only consider it here for the characteristic
function of L̂n.

Soylu [So, Proposition 3.7] showed that the image of the forgetful map

Z(T )→ X

sends Z(T )(F̄p) into the supersingular locus Xss ⊂ X (F̄p). According to [HP, Proposi-
tion 7.2.3], there exists an α0 ∈ Xss such that the p-divisible group (X0, λ0) associated
to Aα0 is equal the p-divisible group (X0, λ0) considered in Section 6.1.

According to [HP, Theorem 7.2.4] or [She, Theorem 1.2], there is an isomorphism of
formal schemes

2 : H(Q)\RZ×H(Apf )/K
p ∼= H̃(Q)\RZ× H̃(Apf )/K̃

p ∼= (X̂W )/Xss , (7.4)

where (X̂W )/Xss is the completion of XW along the supersingular locus Xss , and RZ =
pZ\RZ. The above discussion implies that for every (α, x) ∈ Z(T )(F̄p) the space of
special endomorphisms satisfies

V (Aα)⊗Q ∼= V,

where V is the neighboring quadratic space over Q associated with C at p.

Proposition 7.2. Let L be a fixed lattice of V such that Lp is a dual vertex lattice in Vp of
type 2 as in Section 6.2 and L̂q ∼= L̂q for q 6= p. Let ϕL = char(L̂n). Let T ∈ Symn(Q)
and assume that it satisfies the conditions of Theorem 6.3 at the prime p. Then

|Z(T )(F̄p)| :=
∑

x∈Z(T )(F̄p)

1
|Aut(x)|

= 2
C(L)

vol(K, dLh)
WT ,f (1, 0, λ(ϕL)) <∞.

Here K = KpKp is the compact open subgroup of H(Af ) with Kp = SO(Lp) ⊂ H(Qp).
In particular, if Z(T )(F̄p) is not empty, then Diff(C, T ) = {p}.

Proof. Let π : Z(T )→ X be the forgetful map, and identify via (7.4)

Xss(F̄p) = H(Q)\RZ×H(Apf )/K
p,

where Xss(F̄p) denotes the supersingular locus of X (F̄p). By a result of Soylu [So, Propo-
sition 3.7] the image of Z(T )(F̄p) lies in Xss(F̄p). Notice that (A, x) ∈ Z(T )(F̄p) implies
that the p-divisible group X of A belongs to Z(J (x))(F̄p), where J (x) is the sublattice
of Vp generated by the p-adic components of x (recall that the stabilizer of x in H̃p is
trivial).

By Proposition 6.2, we have

Z(J (x))(F̄p) =
⊔
t3=2
x∈3n

S3(F̄p) =
⊔

hp∈H(Qp)/Kp
x∈hpLp

ShpLp (F̄p),
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where Z(J ) is the image of Z(J ) in RZ. Recall that |S3(F̄p)| = 2 for any dual vertex
lattice 3 ⊂ Vp of type 2. So we find∑

x∈Z(T )(F̄p)

1
|Aut(x)|

= 2
∑
x∈Vn
Q(x)=T

∑
h∈H(Q)\H(Af )/K

1
|0h|

ϕL(h
−1x)

=
2

vol(K, dLh)

∫
H(Af )

ϕL(h
−1x) dLh,

if there is an x ∈ Vn with Q(x) = T (otherwise, it is zero). Here dL is the Haar measure
on H(Af ) associated to the lattice L, and |0h| = h−1H(Q)h∩K . Now applying the local
Siegel–Weil formula, we obtain the proposition. ut

Recall that the arithmetic degree of Z(T ) at p is defined as

d̂egp(Z(T )) =
∑

x∈Z(T )(F̄p)

htp(x)
|Aut(x)|

· logp (7.5)

where htp(x) is the length of the étale local ring OZ(T ),x of Z(T ) at the point x. The
following result is a refinement of Theorem 1.2(3).

Theorem 7.3. Fix a prime number p 6= 2. Let L ⊂ V be a p-unimodular lattice. Let
T ∈ Symn(Q) be such that Tp satisfies the conditions in Theorem 6.3. Then the arithmetic
Siegel–Weil formula holds for T with

d̂egp(Z(T )) · qT = Cn,p · E′T (τ, 0, λ(ϕL)⊗8κ),

where

Cn,p = −Bn,∞
C(L)

vol(K, dLh)
.

In particular, Cn,p = Cn,∞.
Proof. By Theorem 6.9 and Propositions 7.2, 6.8, and 2.3 we have

d̂egp(Z(T )) =
∑

x∈Z(T )(F̄p)

1
|Aut(x)|

· htp(x) logp

=
2C(L)

vol(K, dLh)
WT ,f (1, 0, λ(ϕL)) · νp(T2) logp

=
2C(L)

vol(K, dLh)
vol(Kp, dLp )
C(Lp)

C(Lp)
vol(Kp, dLph)

WT ,p(1, 0, λ(ϕLp ))

·

( ∏
q-p∞

WT ,q(1, s, λ(ϕLq ))
)∣∣∣
s=0
·
W ′T ,p(1, 0, λ(ϕLp ))

W
T̃ ,p
(1, 0, λ(ϕLp ))

=
2C(L)

vol(K, dLh)
·
E′T (1, 0, λ(ϕL)⊗8κ)
WT ,∞(1, 0,8κ)

.

Here T̃ ∈ Symn(Zp) is any p-unimodular matrix. Remark 4.4 gives

−
1
2Bn,∞ ·WT ,∞(1, 0,8κ) = e−2π tr T (7.6)
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for any positive definite n× n matrix T . So

−
1
2Bn,∞ · (det v)−κ/2WT ,∞(gτ , 0,8κ) = qT .

Hence we obtain the claimed formula. ut

Remark 7.4. In this subsection we have assumed for convenience that ϕ is the character-
istic function of L̂, and that there is a compact open subgroup K̃ ⊂ H̃ (Af ) containing Ẑ×
and mapping onto K . Both can be relaxed. First, we can naturally modify the definition
Z(T ) in [So] to include Z(T , ϕ) for all ϕ = ϕpϕp ∈ S(V (Af )n)K with ϕp = char(Lnp).
The proof of Proposition 7.2 goes through without any change. As already mentioned,
the assumption on K is always fulfilled if there exists an even lattice M ⊂ V which is
stabilized by K and such that K acts trivially on M ′/M . In other words, every ‘suffi-
ciently small’ compact open subgroup K satisfies the condition. Finally, we indicate how
the results can be modified to hold for general K . Take a compact open subgroup K̃1 of
H̃ (Af ) containing Ẑ× such that its image K1 in H(Af ) is contained in K . Then there is
a natural projection XK1 → XK and an analogous projection of Rapoport–Zink spaces.
The p-adic uniformization identity (7.4) still holds according to [She, Theorem 1.2]. For
ϕ ∈ S(V (Af )n)K , the special cycle ZK1(T , ϕ) is K-invariant and descends to a special
cycle ZK(T , ϕ) on XK .

Remark 7.5. Assume that Diff(C, T ) = {p}. We observe the following variant of the
local arithmetic Siegel–Weil formula:

htp(x) logp=
W ′T ,p(1, 0, λ(ϕL))

W ′
T̃ ,p
(1, 0, λ(ϕL))

, p <∞, where T̃ is p-unimodular,

1
2

ht∞(x)=
W ′T ,∞(1, 0,8κ)

W ′
T̃ ,∞

(1, 0,8κ)
, p=∞, where T̃ is positive definite with tr T̃ = tr T .

Here the extra 1
2 makes sense as we take the integral over the whole symmetric domain D

instead of its connected component D+, while at a finite prime p, we did it at each indi-
vidual point (connected component). This reinterpretation is different from the previous
ones used in [KRY2], [KRap1], [KRap2], and [HY] among others.
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