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Abstract. We study the asymptotic behavior of eigenvalues and eigenmodes of the Witten Lapla-
cian on a smooth compact Riemannian manifold without boundary. We show that they converge to
the Pollicott–Ruelle spectral data of the corresponding gradient flow acting on appropriate aniso-
tropic Sobolev spaces. As an application of our methods, we also construct a natural family of
quasimodes satisfying the Witten–Helffer–Sjöstrand tunneling formulas and the Fukaya conjecture
on Witten deformation of the wedge product.
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1. Introduction

Let M be a smooth (C∞), compact, oriented, boundaryless manifold of dimension n ≥ 1.
Let f : M → R be a smooth Morse function whose set of critical points is denoted
by Crit(f ). In [60], Witten introduced the following semiclassical deformation of the de
Rham coboundary operator:

∀h > 0, df,h := e
−f/hdef/h = d +

df

h
∧ : �•(M)→ �•+1(M)

where �•(M) denotes the smooth differential forms on M . Then, fixing a smooth Rie-
mannian metric g on M , he considered the adjoint of this operator with respect to the
induced scalar product on the space L2(M,3(T ∗M)) of L2 forms:

∀h > 0, d∗f,h = d
∗
+
ιVf

h
: �•(M)→ �•−1(M),
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where Vf is the gradient vector field associated with the pair (f, g), i.e. the unique vector
field satisfying

∀x ∈ M, df (x) = gx(Vf (x), ·).

The operator df,h+ d∗f,h is the analog of a Dirac operator and its square is usually defined
to be the Witten Laplacian [60]. In the present paper, we take a different convention and
we choose to rescale it by a factor h/2. Hence, the Witten Laplacian will be defined as

Wf,h :=
h

2
(df,hd

∗

f,h + d
∗

f,hdf,h) = e
−f/h(LVf + h1g/2)e

f/h ,

where LVf is the Lie derivative along the gradient vector field. This defines a self-
adjoint, elliptic operator whose principal symbol coincides with the principal symbol of
the Hodge–de Rham Laplace operator acting on forms. It has a discrete spectrum on
L2(M,3k(T ∗M)) that we denote, for every 0 ≤ k ≤ n, by

0 ≤ λ(k)1 (h) ≤ λ
(k)
2 (h) ≤ · · · ≤ λ

(k)
j (h)→+∞ as j →+∞.

It follows from the works of Witten [60] and Helffer–Sjöstrand [43] that there exists a
constant ε0 > 0 such that, for every 0 ≤ k ≤ n and for every h > 0 small enough, there
are exactly ck(f ) eigenvalues inside the interval [0, ε0], where ck(f ) is the number of
critical points of index k—see e.g. the recent proof of Michel and Zworski [49, Prop. 1].
Building on the strategy initiated by Witten, Helffer and Sjöstrand also showed that one
can associate to these low energy eigenmodes an orientation complex whose Betti num-
bers are the same as the Betti numbers of the manifold [43, Th. 0.1]. Another approach to
this question was developed by Bismut and Zhang in their works on the Reidemeister tor-
sion [5, 6, 62]: following Laudenbach [47], they interpreted the Morse complex in terms
of currents.

The aim of our article is to describe the convergence of all the spectral data (meaning
both eigenvalues and eigenmodes) of the Witten Laplacian. This will be achieved by using
microlocal techniques that were developed in the context of dynamical systems [17, 18].
Note that part of these results could probably be obtained by more classical methods in
the spirit of the works of Simon [55] and Helffer–Sjöstrand [43] on harmonic oscillators.
We refer the reader to the book of Helffer and Nier [42] for a detailed account of the
state of the art on these aspects. Regarding the convergence of the spectrum, Frenkel,
Losev and Nekrasov [29] did very explicit computations of Witten’s spectrum for the
case of the height function on the sphere, and they implicitly connect this spectrum to a
dynamical spectrum as we shall do here. They also give a strategy to derive asymptotic
expansions for dynamical correlators of holomorphic gradient flows acting on compact
Kähler manifolds. Yet, unlike [29], we attack the problem from the dynamical viewpoint
rather than from the semiclassical perspective. Also, we work in the C∞ case instead of
the compact Kähler case and we make use of tools from microlocal analysis to replace
tools from complex geometry.

The main purpose of the present work is to propose an approach to these problems
having a more dynamical flavour than these references. We stress that our study of the
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limit operator is self-contained and that it does not make use of the tools developed in
the above references. It is more inspired by the study of the so-called transfer operators
in dynamical systems [37, 2, 65], and this dynamical perspective allows us to make some
explicit connection between the spectrum of the Witten Laplacian and the dynamical
results from [17, 19].

Conventions. All along the article, we denote by �k(M) the set of C∞ differential forms
of degree k, i.e. smooth sections M → 3k(T ∗M). The topological dual of �n−k(M) is
the set of currents of degree k and it will be denoted by D′k(M), meaning differential
k-forms with coefficients in the set of distributions [54].

2. Main results

2.1. Semiclassical versus dynamical convergence and a question by Harvey–Lawson

In order to illustrate our results, we let ϕtf be the flow induced by the gradient vector
field Vf , and, given any critical point a of f of index k, we introduce its unstable manifold

Wu(a) :=
{
x ∈ M : lim

t→−∞
ϕtf (x) = a

}
.

Recall from the works of Smale [56] that this defines a smooth embedded submanifold
ofM whose dimension is equal to n−k and whose closure is a union of unstable manifolds
under the so-called Smale transversality assumption. Then, among other results, we shall
prove the following theorem:

Theorem 2.1 (Semiclassical versus dynamical convergence). Let f be a smooth Morse
function and g be a smooth Riemannian metric such that Vf is C1-linearizable near every
critical point and such that Vf satisfies the Smale transversality assumption. Let 0 ≤
k ≤ n. Then, for every a ∈ Crit(f ) of index k, there exists (Ua, Sa) in D′k(M)×D′n−k(M)
such that the support of Ua is equal to Wu(a) and

LVf (Ua) = 0.

Moreover, there exists ε0 > 0 small enough such that, for every (ψ1, ψ2) ∈ �
k(M) ×

�n−k(M) and every 0 < ε < ε0,

lim
t→+∞

∫
M

ϕ−t∗f (ψ1) ∧ ψ2 = lim
h→0+

∫
M

1[0,ε](W
(k)
f,h )(e

−f/hψ1) ∧ (e
f/hψ2)

=

∑
a: dimWu(a)=n−k

∫
M

ψ1 ∧ Sa

∫
M

Ua ∧ ψ2, (1)

where 1[0,ε](W
(k)
f,h ) is the spectral projector on [0, ε] for the self-adjoint elliptic opera-

tor W (k)
f,h .
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Remark 2.2. The Smale transversality assumption means that the stable and unstable
manifolds satisfy some transversality conditions [56]—see §3.1.1 for a brief reminder.
Recall that, given a Morse function f , this property is satisfied by a dense open set of Rie-
mannian metrics thanks to the Kupka–Smale Theorem [46, 57]. The hypothesis of being
C1-linearizable near every critical point means that, near every a in Crit(f ), one can find
a C1-chart such that the vector field can be written locally as Vf (x) = Lf (a)x∂x, where
Lf (a) is the unique (symmetric) matrix satisfying d2f (a) = ga(Lf (a) ·, ·). By fixing
a finite number of nonresonance conditions on the eigenvalues of Lf (a), the Sternberg–
Chen Theorem [51] ensures that, for a given f , one can find an open and dense subset of
Riemannian metrics satisfying this property.

Let us now comment on the several statements contained in this theorem. First, as we
shall see in Lemma 5.10, the current Ua coincides with the current of integration [Wu(a)]

when restricted to the open set M \ ∂Wu(a) with ∂Wu(a) = Wu(a) \Wu(a). Hence, the
first part of the theorem shows how one can extend [Wu(a)] to a globally defined current
which still satisfies the transport equation LVf (Ua) = 0. This extension was produced by
Laudenbach in the case of locally flat metrics in [47] by carefully analyzing the structure
of the boundary ∂Wu(a). Here, we make this extension for more general metrics via a
spectral method and the analysis of the structure of the boundary is in some sense hidden
in the construction of our spectral framework [17, 18]. We emphasize that Laudenbach’s
construction shows that these extensions are currents of finite mass while our method
does not say a priori anything about that aspect.

The second part of the theorem shows that several quantities that appeared in previous
analytical works on Morse theory coincide. In the case of a locally flat metric, the fact that
the first and the third quantity in (1) are equal was shown by Harvey and Lawson [41].
In [17], we showed how to prove this equality when the flow satisfies some (smooth)
linearization properties more general than the ones appearing in [47, 41]. Here, we will
extend the argument from [17] to show that this equality remains true under the rather
weak assumptions of Theorem 2.1. The last equality tells us that the low eigenmodes of
the Witten Laplacian converge in a weak sense to the same quantities. In particular, it
recovers the fact that the number of small eigenvalues in degree k is equal to the number
of critical points of index k.

In a nutshell, our theorem identifies a certain semiclassical limit of scalar product of
quasimodes for the Witten Laplacian with a large time limit of some dynamical correla-
tion for the gradient flow which converges to equilibrium:

lim
h→0+

〈1[0,ε](W
(k)
f,h )(e

−f/hψ1), e
f/hψ2〉L2︸ ︷︷ ︸

quantum object

= lim
t→+∞

〈ϕ−t∗f (ψ1), ψ2〉L2︸ ︷︷ ︸
dynamical object

for every (ψ1, ψ2) ∈ �
k(M)2. From this point of view, this theorem gives some insight

on a question raised by Harvey and Lawson in [40, Intro.] who asked about the connection
between their approach to Morse theory and Witten’s approach.
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Remark 2.3. In order to get another intuition on the content of this theorem, let us write
formally that

lim
t→+∞

ϕ−t∗f = lim
t→+∞

e
−tLVf = lim

t→+∞
lim
h→0+

e
−t (LVf +h1g/2)

= lim
t→+∞

lim
h→0+

ef/he−tWf,he−f/h.

It is then tempting to exchange the two limits, and Theorem 2.1 shows that intertwining
these two limits requires taking into account the small eigenvalues of the Witten Lapla-
cian.

Proving the second part of this theorem amounts to determining the limit of the spec-
tral projectors of the Witten Laplacian (after conjugation by ef/h) viewed as operators
from �k(M) to D′k(M). Recall that Helffer–Sjöstrand [43, §1] and Bismut–Zhang [6,
Def. 6.6] constructed explicit bases for the bottom of the spectrum of the Witten Lapla-
cian. Using the approach of these references, we would have to verify that these quasi-
modes (after renormalization by ef/h) converge to the currents constructed by Lauden-
bach [47]—see [13, Ch. 9] for a related discussion. As far as we know, this question has
not been addressed explicitly in the literature. This convergence will come out naturally
of our spectral analysis. We will in fact show the convergence of all the spectral projectors
(not only at the bottom of the spectrum) and identify their limits in terms of dynamical
quantities—see Theorem 2.4 below.

2.2. Asymptotics of Witten spectral data

Before stating our results on the convergence of the spectral data of the Witten Laplacian,
we need to describe a dynamical question which was studied in great detail in [17] in the
case of Morse–Smale gradient flows—see also [3, 22] for earlier related results. Recall
that a classical question in dynamical systems is to study the asymptotic behavior of the
correlation function

∀0 ≤ k ≤ n, ∀(ψ1, ψ2) ∈ �
k(M)×�n−k(M), Cψ1,ψ2(t) :=

∫
M

ϕ−t∗f (ψ1) ∧ ψ2,

which already appeared in the statement of Theorem 2.1. Following [52, 53], it will in fact
be simpler to consider the Laplace transform of t 7→ ϕ−t∗f , i.e. for Re(z) large enough,

R̂k(z) = (z+ L(k)Vf )
−1
:=

∫
+∞

0
e−tzϕ−t∗f dt : �k(M)→ D′k(M).

One of the consequences of our results from [17, 18] is that this Laplace transform admits
a meromorphic extension from Re(z) > C0 (with C0 > 0 large enough) to C under the
assumptions of Theorem 2.1. In [17, 19], we also gave an explicit description of the poles
and residues of this function under C∞-linearization properties of the vector field Vf .
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These assumptions were for instance satisfied when infinitely many nonresonance as-
sumptions are satisfied. We shall explain in Theorem 5.1 how to recover this result under
the weaker assumptions of Theorem 2.1.

Proving such a meromorphic extension is part of the study of Pollicott–Ruelle reso-
nances in the theory of hyperbolic dynamical systems. We refer for instance to the book
of Baladi [2] or to the survey article of Gouëzel [37] for detailed accounts and references
related to these dynamical questions. More specifically, we used a microlocal approach to
deal with these spectral problems. We also refer to the survey of Zworski [65] for the rela-
tion of these questions to scattering theory from the microlocal viewpoint. Coming back
to dynamical systems, the Pollicott–Ruelle resonances are interpreted as the spectrum of
−LVf on appropriate Banach spaces of currents. In the following, we shall denote by

Rk the poles of the meromorphic continuation of R̂k(z), and by π (k)z0 the residue at each
z0 ∈ C. These poles are the so-called Pollicott–Ruelle resonances, while the range of
the residues are the resonant states. They correspond to the spectral data of −LVf on
appropriate anisotropic Sobolev spaces of currents and they describe in some sense the
structure of the long time dynamics of the gradient flow. Our main spectral result shows
that the spectral data of the Witten Laplacian converges to this Pollicott–Ruelle spectrum.
More precisely, one has

Theorem 2.4 (Convergence of Witten spectral data). Suppose that the assumptions of
Theorem 2.1 are satisfied. Let 0 ≤ k ≤ n. Then

(1) for every j ≥ 1, −λ(k)j (h) converges as h→ 0+ to some z0 ∈ Rk ,

(2) conversely, any z0 ∈ Rk is the limit of a sequence (−λ(k)j (h))h→0+ .

Moreover, for any z0 ∈ R, there exists ε0 > 0 small enough such that, for every (ψ1, ψ2)

∈ �k(M)×�n−k(M),

∀0<ε≤ ε0, lim
h→0+

∫
M

1[z0−ε,z0+ε](−W
(k)
f,h )(e

−f/hψ1)∧(e
f/hψ2)=

∫
M

π (k)z0
(ψ1)∧ψ2.

Following Theorem 5.1 below, this result shows that the Witten eigenvalues converge, as
h→ 0, to integer combinations of Lyapunov exponents. Small eigenvalues are known to
be exponentially small in terms of h [43, 42, 49] but our proof does not say a priori any-
thing about this aspect of the Witten–Helffer–Sjöstrand result. The convergence of Witten
eigenvalues could be recovered from the techniques of [43, 55] but the convergence of
spectral projectors would be more subtle to prove with these kind of semiclassical meth-
ods as one would first need to identify the limit. In fact, this theorem also tells us that,
up to renormalization by ef/h, the spectral projectors of the Witten Laplacian converge
to the residues of the dynamical correlation function. In Section 5, we will describe more
precisely the properties of these limiting spectral projectors.

2.3. Witten–Helffer–Sjöstrand’s instanton formulas

Following [20], we can verify that ((Ua)a∈Crit(f ), d) generate a finite-dimensional com-
plex which is nothing other than the Thom–Smale–Witten complex [60, Eq. (2.2)]. In
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Section 6, we will explain how to prove some topological statement which complements
what was proved in [20]:

Theorem 2.5 (Witten’s instanton formula). Suppose that the assumptions of Theo-
rem 2.1 are satisfied. Then, for every pair of critical points (a, b)with ind(b) = ind(a)+1,
there exists1 nab ∈ Z such that

∀a ∈ Crit(f ), dUa =
∑

b: ind(b)=ind(a)+1

nabUb (2)

where nab counts algebraically the number of instantons connecting a and b. In partic-
ular, the complex ((Ua)a∈Crit(f ), d) can be defined over Z and realizes in the space of
currents the Morse homology over Z.

In the case of locally flat metrics, this relation between the formula for the boundary of
unstable currents and Witten’s instanton formula follows for instance from the work of
Laudenbach [47], and his proof could probably be revisited to deal with more general
metrics. Yet, the proof we will give of this result is of completely different nature and it
will be based on our spectral approach to the problem. The main difference with [17, 20]
is that, in these references, we were able to prove that the complex ((Ua)a∈Crit(f ), d)

forms a subcomplex of the de Rham complex of currents which was quasi-isomorphic to
the de Rham complex (�•(M), d) but we worked in the (co)homology with coefficients
in R. The instanton formula (2) allows us to actually consider ((Ua)a∈Crit(f ), d) as a Z-
module and directly relate it to the famous Morse complex defined over Z appearing in
the literature whose integral homology groups contain more information than those with
real coefficients [35, p. 620].

Coming back to the bottom of the spectrum of the Witten Laplacian, we can define an
analogue of Theorem 2.5 at the semiclassical level. For that purpose, we need to introduce
analogues of Helffer–Sjöstrand WKB states for the Witten Laplacian [43, 42]. We fix
ε0 > 0 small enough so that the range of 1[0,ε0)(W

(k)
f,h ) in every degree k is equal to

the number of critical points of index k. Then, for h > 0 small enough, we define the
following WKB states:

Ua(h) := 1[0,ε0)(W
(k)
f,h )(e

f (a)−f
h Ua) ∈ �

k(M), (3)

where k is the index of the point a. We will show in Proposition 7.5 that, for every critical
point a, the sequence (e

f−f (a)
h Ua(h))h→0+ converges to Ua in D′(M). As a corollary of

Theorem 2.5, these WKB states also satisfy the following exact tunneling formulas:

Corollary 2.6 (Witten–Helffer–Sjöstrand tunneling formula). Suppose that the assump-
tions of Theorem 2.1 are satisfied. Then, for every critical point a of f and for every
h > 0 small enough,

df,hUa(h) =
∑

b: ind(b)=ind(a)+1

nabe
f (a)−f (b)

h Ub(h),

1 An explicit expression is given in §6.1.
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where nab is as in Theorem 2.5.

The formula we obtain may seem slightly different from the one appearing in [43,
Eq. (3.27)]—see also2 [6, Th. 6.12] when f is a Morse function satisfying f (a) = ind(a)
for every critical point a. This is mostly due to the choice of normalization, and we will
compare our quasimodes more precisely with the ones of Helffer–Sjöstrand in Section 8.

2.4. A conjecture by Fukaya

As a last application of our analysis, we would like to show that our family (U(h))h→0+

of WKB states also satisfies Fukaya’s asymptotic formula for Witten’s deformation of
the wedge product [32, Conj. 4.1]. This approach could probably be adapted to treat
the case of higher order products. Yet, this would be at the expense of a more delicate
combinatorial work that would be beyond the scope of the present article and we shall
discuss this elsewhere. Recall that this conjecture was recently solved by Chan–Leung–
Ma [12] via WKB approximation methods [43] which are different from our approach.

Let us now precisely describe the framework of Fukaya’s conjecture for products of
order 2 which corresponds to the classical wedge product ∧—see also §7.6 for more
details. Consider three smooth real valued functions (f1, f2, f3) onM , and consider their
differences:

f12 = f2 − f1, f23 = f3 − f2, f31 = f1 − f3.

We assume that the functions (f12, f23, f31) are Morse. To every such pair (ij), we asso-
ciate a Riemannian metric gij , and we make the assumption that the corresponding gradi-
ent vector fields Vfij satisfy the Morse–Smale property3 and that they are C1-linearizable.
In particular, they are amenable to the above spectral analysis, and, for any critical point
aij of fij and for every 0 < h ≤ 1, we can consider a WKB state Uaij (h). From elliptic
regularity, these are smooth differential forms onM and Fukaya predicted that the integral∫

M

Ua12(h) ∧ Ua23(h) ∧ Ua31(h)

has a nice asymptotic formula whenever the intersection Wu(a12) ∩W
u(a23) ∩W

u(a31)

consists of finitely many points. Note that, for this integral to make sense, we implicitly
suppose that

dimWu(a12)+ dimWu(a23)+ dimWu(a31) = 2n. (4)

Let us explain the difficulty behind this question. After renormalization, a way to solve
this conjecture amounts first to proving the convergence of the family of smooth differ-
ential forms

Ũaij (h) := e
fij−fij (aij )

h Uaij (h)

in the space of currents as h → 0+. As already said, we are not aware of a place in the
literature where this convergence of (renormalized) Witten quasimodes is handled, as this

2 Note that the proof from this reference makes use of Laudenbach’s construction [47] while the
one from [43] is self-contained.

3 This means that the Vfij satisfy the Smale transversality assumptions.
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is not the approach followed in [43, 6, 12] to prove tunneling formulae. Our construction
shows that these smooth forms indeed converge to Uaij in the space of currents. The
additional difficulty one has to treat in order to answer Fukaya’s question is the following.
Even if the currents limh→0+ Ũaij (h) exist and even if the wedge product of their limits
makes sense, it is not clear that we can interchange the limits as follows:∫
M

lim
h→0+

Ũa12(h)∧ lim
h→0+

Ũa23(h)∧ lim
h→0+

Ũa31(h) = lim
h→0+

∫
M

Ũa12(h)∧Ũa23(h)∧Ũa31(h).

In order to justify this, the second difficulty of Fukaya’s question is to show that con-
vergence holds in the appropriate topology involving control of the wavefront set of the
currents.

Without additional assumptions, there is no reason why all this would be true. Fukaya
thus requires that the triple (f12, g12), (f23, g23) and (f31, g31) satisfy the generalized
Morse–Smale property [45, §6.8]. That is, for every

(a12, a23, a31) ∈ Crit(f12)× Crit(f23)× Crit(f31),

one has, for every x ∈ Wu(a12) ∩W
u(a23) ∩W

u(a31),

TxM = (TxW
u(a12) ∩ TxW

u(a23))+ TxW
u(a31), (5)

and similarly for any permutation of (12, 23, 31). Note that, to every Morse function, we
associate a priori a different metric. As for the Morse–Smale property, the Kupka–Smale
method [46, 57] applies: the generalized Morse–Smale property is satisfied in an open and
dense subset of smooth functions (f1, f2, f3) and of smooth metrics (g12, g23, g31). Our
last result shows that the WKB states we have constructed satisfy Fukaya’s conjecture
under this geometric assumption:

Theorem 2.7 (Fukaya’s instanton formula). In the above notation, let (Vf12 , Vf23 , Vf31)

be a family of Morse–Smale gradient vector fields which are C1-linearizable, and which
have the generalized Morse–Smale property. Then, for every

(a12, a23, a31) ∈ Crit(f12)× Crit(f23)× Crit(f31)

such that dimWu(a12)+ dimWu(a23)+ dimWu(a31) = 2n,

Ua12 ∧ Ua23 ∧ Ua31

defines an element of D′n(M) satisfying
∫
M
Ua12 ∧ Ua23 ∧ Ua31 ∈ Z, and

lim
h→0+

e−
f12(a12)+f23(a23)+f31(a31)

h

∫
M

Ua12(h)∧Ua23(h)∧Ua31(h) =

∫
M

Ua12 ∧Ua23 ∧Ua31 .

Recall that the integers
∫
M
Ua12 ∧ Ua23 ∧ Ua31 defined by triple intersections of unstable

currents have a deep geometrical meaning. On the one hand, these integers actually count
the number of Y-shaped gradient flow trees [30, p. 8] as described in §7.5. On the other
hand, they give a representation of the cup-product in Morse cohomology at the cochain
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level—see §7.6 for a brief reminder. Hence, the second part of this theorem shows that
if we define an analogue of the cup-product at the semiclassical level, then it converges,
up to some renormalization factors, to the usual cup-product in Morse cohomology. We
emphasize that the main new property in this theorem is really the asymptotic formula
as h → 0+. Up to some normalization factors, this is exactly the asymptotic formula
conjectured by Fukaya for the WKB states of Helffer–Sjöstrand [43]. Here, our states are
constructed in a slightly different manner. Yet, they belong to the same eigenspaces as the
ones from [43]—see Section 8 for a comparison. Finally, we note that, going through the
details of the proof, we would find that the rate of convergence is in fact of order O(h).
However, for simplicity of exposition, we do not keep track of this aspect in our argument.

2.5. Lagrangian intersections

We would like to recall the nice symplectic interpretation of the exponential prefactors ap-
pearing in Theorems 2.6 and 2.7. Let us start with the case of Theorem 2.6 where we only
consider a pair (f, 0) of functions where f − 0 = f is Morse. We can consider the pair
of exact Lagrangian submanifolds 3f := {(x; dxf ) : x ∈ M} ⊂ T ∗M and 0 ⊂ T ∗M .4

Given (a, b) in Crit(f )2, we can define a diskD whose boundary ∂D ⊂ 3f ∪0 is a 2-gon
made up of the union of two smooth curves e1 and e2 joining a and b, contained in the
Lagrangian submanifolds3f and 0 respectively. Denote by θ the Liouville one-form and
by ω = dθ the canonical symplectic form on T ∗M . Then by the Stokes formula,∫

D

ω =

∫
∂D

θ =

∫
e1

df = f (a)− f (b),

where we choose e1 to be oriented from b to a. Hence, the exponents in the asymptotic
formula of Theorem 2.6 can be interpreted as the symplectic area of the disk D defined
by 3f and the zero section of T ∗M .5 In the semiclassical terminology of [42, §15], this
quantity is controlled by the Agmon distance associated with the potential ‖dxf ‖2g∗(x).
Yet, it does not seem to have an interpretation as the action along some Hamiltonian
trajectory.

A similar geometric interpretation holds in the case of Theorem 2.7. We consider a
triangle (3-gon) T inside T ∗M with vertices (v12, v23, v31) ∈ (T

∗M)3 whose projections
on M are (a12, a23, a31). The edges (e1, e2, e3) are contained in the three Lagrangian
submanifolds 3f1 , 3f2 and 3f3 . To go from v23 to v12, we follow some smooth curve e2
in 3f2 , from v31 to v23 we follow some line e3 in 3f3 and from v12 to v31, we follow
some line e1 in 3f1 . These three lines define the triangle T and we can compute∫

T

θ =

3∑
j=1

∫
ej

dfj = −f1(a12)+ f1(a31)− f2(a23)+ f2(a12)− f3(a31)+ f3(a23),

which is (up to sign) the term appearing in the exponential factor of Theorem 2.7. Note
that the triangle T does not necessarily bound a disk.

4 3f is the graph of df , whereas the zero section is the graph of 0.
5 Hence the name disk instantons.
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2.6. Convergence of the Witten Laplacian to the gradient vector field

The key observation used to prove several of our results is the following exact relation [29,
Eq. (3.6)]:

ef/hWf,he
−f/h

= LVf + h1g/2, (6)

where LVf is the Lie derivative along the gradient vector field and 1g = dd∗ + d∗d ≥ 0
is the Laplace–Beltrami operator. Indeed, one has [29, Eqs. (3.4), (3.5)]

ef/hWf,he
−f/h

=
h

2
ef/h(df,h + d

∗

f,h)
2e−f/h =

h

2
(d + d∗2f,h)

2
=
h

2
(dd∗2f,h + d

∗

2f,hd),

which yields (6) thanks to the Cartan formula. Hence, the rough idea is to prove that
the spectrum of the Witten Laplacian converges to the spectrum of the Lie derivative,
provided that it makes sense. This kind of strategy was used by Frenkel, Losev and
Nekrasov [29] to compute the spectrum of LVf in the case of the height function on
the canonical 2-sphere. However, their strategy is completely different from ours. They
compute explicitly the spectrum of the Witten Laplacian and show how to take the limit
as h → 0+. Here, we will instead compute the spectrum of the limit operator explic-
itly and show without explicit computations why the spectrum of the Witten Laplacian
should converge to the limit spectrum. In particular, our proof makes no explicit use of
the classical results of Helffer and Sjöstrand on the Witten Laplacian [43].

Our first step will be to define an appropriate functional framework where one can
study the spectrum of LVf +h1g/2 for 0 ≤ h ≤ h0. Recall that, following the microlocal
strategy of Faure and Sjöstrand [28] for the study of the analytical properties of hyperbolic
dynamical systems, we constructed in [17] some families of anisotropic Sobolev spaces
Hm3(M) indexed by a parameter 3 > 0 and such that

−LVf : H
m3(M)→ Hm3(M)

has discrete spectrum on the half-plane {Re(z) > −3}. This spectrum is intrinsic and it
turns out to be the correlation spectrum appearing in Theorem 5.1. For an Anosov vector
field V , Dyatlov and Zworski proved that the correlation spectrum is in fact the limit of
the spectrum of an operator of the form LV + h1g/2 [25]—see also [7, 27, 64, 21] for
related questions. We will thus show how to adapt the strategy of Dyatlov and Zworski to
our framework. It means that we will prove that the family of operators

(Ĥh := −LVf − h1g/2)h∈[0,+∞)

has nice spectral properties on the anisotropic Sobolev spaces Hm3(M) constructed
in [17]. This will be the object of Section 3. Once these properties are established, we
will verify in which sense the spectrum of Ĥh converges to the spectrum of Ĥ0 in the
semiclassical limit h → 0+—see Section 4 for details. In [17], we computed explicitly
the spectrum of Ĥ0 on these anisotropic Sobolev spaces. Under some (generic) smooth
linearization properties, we obtained an explicit description of the eigenvalues and a fairly
explicit description of the generalized eigenmodes. Here, we generalize the results of [17]
by relaxing these smoothness assumptions and by computing the spectrum under the more
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general assumptions of Theorem 2.1. For that purpose, we will make crucial use of some
earlier results of Baladi and Tsujii [3] on hyperbolic diffeomorphisms in order to com-
pute the eigenvalues. Compared to [17, 19], we will however get a somewhat less precise
description of the corresponding eigenmodes. This will be achieved in Section 5. Then,
in Section 6, we combine these results to prove Theorems 2.1 to 2.6. In Section 7, we
describe the wavefront set of the generalized eigenmodes and we show how to use this in-
formation to prove Theorem 2.7. Finally, in Section 8, we briefly compare our quasimodes
with the ones appearing in [43].

The article ends with two appendices. Appendix A shows how to prove the holo-
morphic extension of the dynamical Ruelle determinant in our framework. Appendix B
contains the proof of a technical lemma needed for our analysis of wavefront sets.

2.7. Conventions

In all this article, ϕtf is a Morse–Smale gradient flow which is C1-linearizable acting on a
smooth, compact, oriented and boundaryless manifold of dimension n ≥ 1.

3. Anisotropic Sobolev spaces and Pollicott–Ruelle spectrum

In [17, 18], we have shown how one can build a proper spectral theory for the opera-
tor −LVf . In other words, we constructed some anisotropic Sobolev spaces of currents
on which we could prove that the spectrum of −LVf is discrete in a certain half-plane
Re(z) > −C0. The corresponding discrete eigenvalues are intrinsic and are the so-called
Pollicott–Ruelle resonances. Our construction was based on a microlocal approach that
was initiated by Faure and Sjöstrand [28] in the framework of Anosov flows and further
developed by Dyatlov and Zworski [23]. As already explained in §2.6, we will try to
relate the spectrum of the Witten Laplacian to the spectrum of −LVf by the use of the
relation (6). Hence, our first step will be to show that our construction from [17] can be
adapted to fit (in a uniform manner) the operator

Ĥh := −LVf − h1g/2.

Note that we changed the sign so that ϕ−t∗f will correspond to the propagator in positive
times of Ĥ0. In the case of Anosov flows, this perturbation argument was introduced by
Dyatlov and Zworski [25]. As their spectral construction is slightly different from the one
of Faure and Sjöstrand [28] and as our proof of the meromorphic extension of Ĉψ1,ψ2

in [17] is closer to [28] than to [25], we need to slightly revisit some of the arguments
given in [28, 17] to fit the framework of [25]. This is the purpose of this section where we
will recall the definition of anisotropic Sobolev spaces and of the corresponding Pollicott–
Ruelle resonances. More precisely, among other useful things, we will prove

Proposition 3.1. There exists some constant C0 > 0 such that, for every 0 ≤ h ≤ 1,
the Schwartz kernel of (Ĥh − z)−1 is holomorphic on Re(z) > C0. Moreover, it has
a meromorphic extension from Re(z) > C0 to C whose poles coincide with the Witten
eigenvalues for h > 0.



Pollicott–Ruelle spectrum and Witten Laplacians 1809

The poles of this meromorphic extension are called the resonances of the operator Ĥh
and, for h = 0, they are called Pollicott–Ruelle resonances.

3.1. Anisotropic Sobolev spaces

In [17, 18], one of the key difficulties is the construction of an order function adapted
to the Morse–Smale dynamics induced by the flow ϕtf . Before defining our anisotropic
Sobolev spaces, we recall some of the properties proved in that reference and we also
recall along the way some properties of Morse–Smale gradient flows. We refer to [59] for
a detailed introduction to that topic.

3.1.1. Stable and unstable manifolds. Similarly to the unstable manifold Wu(a), we can
define, for every a ∈ Crit(f ),

W s(a) :=
{
x ∈ M : lim

t→+∞
ϕtf (x) = a

}
.

A remarkable property of gradient flows is that, given any x in M , there exists a unique
(a, b) in Crit(f )2 such that f (a) ≤ f (b) and

x ∈ Wu(a) ∩W s(b).

Equivalently, the unstable manifolds form a partition of M . It is known from the work
of Smale [56] that these submanifolds are embedded in M [59, p. 134] and that their
dimension is n − r(a) where r(a) is the Morse index of a. The Smale transversality
assumption is the requirement that, given any x in M , one has

TxM = TxW
u(a)+ TxW

s(b).

Equivalently, it says that the intersection of

0+ = 0+(Vf ) :=
⋃

a∈Crit(f )

N∗(W s(a)) and 0− = 0−(Vf ) :=
⋃

a∈Crit(f )

N∗(Wu(a))

is empty, where N∗(W) ⊂ T ∗M \ 0 denotes the conormal of the manifold W . In the
proofs of Section 3, an important role is played by the Hamiltonian vector field generated
by

Hf (x; ξ) := ξ(Vf (x)).

Recall that the corresponding Hamiltonian flow can be written

8tf (x; ξ) :=
(
ϕtf (x), (dϕ

t (x)T )−1ξ
)
,

and that it induces a flow on the unit cotangent bundle S∗M by setting

8̃tf (x; ξ) :=

(
ϕtf (x),

(dϕt (x)T )−1ξ

‖(dϕt (x)T )−1ξ‖g∗◦ϕt (x)

)
.

The corresponding vector fields are denoted by XHf and X̃Hf .
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3.1.2. Escape function. In all this subsection, Vf satisfies the assumption of Theo-
rem 2.1. We recall the following result [28, Lemma 2.1]:

Lemma 3.2. Let V u and V s be small open neighborhoods of 0+ ∩ S∗M and 0− ∩ S∗M
respectively, and let ε > 0. Then there exist Wu

⊂ V u and Ws
⊂ V s , m̃ in

C∞(S∗M, [0, 1]) and η > 0 such that X̃Hf .m̃ ≥ 0 on S∗M , X̃Hf .m̃ ≥ η > 0 on
S∗M − (Wu

∪Ws), m̃(x; ξ) > 1− ε for (x; ξ) ∈Ws and m̃(x; ξ) < ε for (x; ξ) ∈Wu.

This lemma was proved by Faure and Sjöstrand [28] in the case of Anosov flows and
its extension to gradient flows requires some results on the Hamiltonian dynamics that
were obtained in [17, Sect. 3]—see also [18, Sect. 4] in the more general framework of
Morse–Smale flows.

As we have a function m̃(x; ξ) defined on S∗M , we introduce a smooth function m
defined on T ∗M which satisfies

m(x; ξ) = N1m̃(x, ξ/‖ξ‖x)−N0(1− m̃(x, ξ/‖ξ‖x)) for ‖ξ‖x ≥ 1,

and

m(x; ξ) = 0 for ‖ξ‖x ≤ 1/2.

We set the order function of our escape function to be

mN0,N1(x; ξ) = −f (x)+m(x; ξ).

It was shown in [17, Lemma 4.1] that it has the following properties (for V u, V s and
ε > 0 small enough6):

Lemma 3.3 (Escape function). Let s ∈ R and N0, N1 > 4(‖f ‖C0 + |s|). Then there
exists c0 > 0 (depending on (M, g) but not on s, N0 or N1) such that mN0,N1(x; ξ)+ s

• takes values in [−2N0, 2N1],
• is 0-homogeneous for ‖ξ‖x ≥ 1,
• is ≤ −N0/2 on a conic neighborhood of 0− ( for ‖ξ‖x ≥ 1),
• is ≥ N1/2 on a conic neighborhood of 0+ ( for ‖ξ‖x ≥ 1),

and such that there exists R0 > 0 for which the escape function

GsN0,N1
(x; ξ) := (mN0,N1(x; ξ)+ s) log(1+ ‖ξ‖2x)

satisfies, for every (x; ξ) in T ∗M with ‖ξ‖x ≥ R0,

XHf .(G
s
N0,N1

)(x; ξ) ≤ −CN := −c0 min{N0, N1}.

6 In particular, V u ∩ V s = ∅.
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3.1.3. The order function. We can now define our anisotropic Sobolev space in the ter-
minology of [27, 28]. First of all, such spaces require the existence of an order function
mN0,N1(x; ξ) in C∞(T ∗M) with bounded derivatives which is adapted to the dynamics
of ϕtf . Once we are given an escape function by Lemma 3.3, we set

AN0,N1(x; ξ) := expG0
N0,N1

(x; ξ),

where G0
N0,N1

(x; ξ) := mN0,N1(x; ξ) log(1 + ‖ξ‖2x) belongs to the class of symbols
Sε(T ∗M) for every ε > 0. We shall denote this property by writingG0

N0,N1
∈ S+0(T ∗M).

We emphasize that the construction below will require dealing with symbols of variable
order mN0,N1 whose pseudodifferential calculus was described in [27, Appendix].

3.1.4. Anisotropic Sobolev currents. Let us now define the spaces we shall work with.
Let 0 ≤ k ≤ n. We consider the vector bundle 3k(T ∗M) → M of exterior k-forms.
We define A(k)N0,N1

(x; ξ) := AN0,N1(x; ξ)Id ⊂ 0(T ∗M,End(3k(T ∗M))), which is the
product of the weight AN0,N1 ∈ C

∞(T ∗M) with the canonical identity section Id of the
endomorphism bundle End(3k(T ∗M))→ M . We fix the canonical inner product 〈·, ·〉(k)g∗
on 3k(T ∗M) induced by the metric g on M . This allows us to define the Hilbert space
L2(M,3k(T ∗M)) and to introduce an anisotropic Sobolev space of currents by setting

H
mN0,N1
k (M) = Op(A(k)N0,N1

)−1L2(M,3k(T ∗M)),

where Op(A(k)N0,N1
) is a formally self-adjoint pseudodifferential operator with principal

symbol A(k)m . We refer to [23, App. C.1] for a brief reminder on pseudodifferential oper-
ators with values in vector bundles—see also [4]. In particular, adapting the proof of [27,
Cor. 4] to the vector bundle valued framework, one can verify that A(k)N0,N1

is an ellip-
tic symbol, and thus Op(A(k)N0,N1

) can be chosen to be invertible. More precisely, up to

adding a smoothing operator, Op(A(k)N0,N1
)−1 is equal to Op((A(k)N0,N1

)−1(1 + q)), where
q ∈ S−1+0(T ∗M,3k(T ∗M)). Mimicking the proofs of [27], we can deduce some prop-
erties of these spaces of currents. First of all, they are endowed with a Hilbert structure
inherited from the L2-structure on M . The space

H
mN0,N1
k (M)′ = Op(A(k)N0,N1

)L2(M,3k(T ∗M))

is the topological dual of H
mN0,N1
k (M). We also note that H

mN0,N1
k (M) can be identified

with H
mN0,N1
0 (M)⊗C∞(M) �k(M). Finally,

�k(M) ⊂ H
mN0,N1
k (M) ⊂ D′,k(M),

where the injections are continuous.
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3.1.5. Hodge star and duality for anisotropic Sobolev currents. Recall now that the
Hodge star operator [4, Part I.4] is the unique isomorphism ?k : 3

k(T ∗M) →

3n−k(T ∗M) such that, for every ψ1 in �k(M) and ψ2 in �n−k(M),∫
M

ψ1 ∧ ψ2 =

∫
M

〈ψ1, ?
−1
k ψ2〉

(k)
g∗(x)ωg(x),

where 〈·, ·〉(k)g∗(x) is the induced Riemannian metric on 3k(T ∗M) and where ωg is the

Riemannian volume form. In particular, ?k induces an isomorphism from H
mN0,N1
k (M)′ to

H
−mN0,N1
n−k (M), whose Hilbert structure is given by the scalar product

H
−mN0,N1
n−k (M)2 3 (ψ1, ψ2) 7→ 〈?

−1
k ψ1, ?

−1
k ψ2〉Hm

k (M)
′ .

Thus, the topological dual of H
mN0,N1
k (M) can be identified with H

−mN0,N1
n−k (M), where,

for every ψ1 in �k(M) and ψ2 in �n−k(M), one has the following duality relation:

〈ψ1, ψ2〉Hm
k ×H

−m
n−k
=

∫
M

ψ1 ∧ ψ2 = 〈Op(A(k)N0,N1
)ψ1,Op(A(k)N0,N1

)−1 ?−1
k ψ2〉L2

= 〈ψ1, ?
−1
k ψ2〉Hm

k ×(H
m
k )
′ .

3.2. Pollicott–Ruelle resonances

Now that we have defined the appropriate spaces, we have to explain the spectral prop-
erties of Ĥh := −LVf − h1g/2 acting on H

mN0,N1
k (M). Following Faure and Sjöstrand

[28], we introduce the following conjugation of the operator iĤh:

P̂h = ÂN ĤhÂ
−1
N , (7)

where we write ÂN instead of Op(A(k)N0,N1
) for simplicity. Similarly, we often write G0

N

instead of G0
N0,N1

, etc. For similar reasons, we also omit the dependence on k.

In any case, the spectral properties of Ĥh acting on the anisotropic Sobolev space
H
mN0,N1
k (M) are the same as those of the operator P̂h acting on the simpler Hilbert space

L2(M,3k(T ∗M)). We will now apply the strategy of Faure and Sjöstrand in order to de-
rive some spectral properties of the above operators. Along the way, we keep track of the
dependence on h which is needed to apply the arguments from Dyatlov and Zworski [25]
on the convergence of the spectrum. In all this section, we follow closely the proofs
from [28, Sect. 3] and we emphasize the differences.

3.2.1. The conjugation argument. The first step in Faure–Sjöstrand’s proof consists in
computing the symbol of the operator P̂h. Starting from this operator, we decompose it
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into two terms

P̂h = −ÂNLVf Â
−1
N︸ ︷︷ ︸

:=Q̂1, hyperbolic part

−hÂN
1g

2
Â−1
N︸ ︷︷ ︸

:=hQ̂2, elliptic perturbation

which we will treat separately for the sake of simplicity. The key ingredient of [28] is the
following lemma:

Lemma 3.4 ([28, Lemma 3.2]). The operator Q̂1+LVf is a pseudodifferential operator
in 9+0(M,3k(T ∗M)) whose symbol in any given system of coordinates is of the form7

(XHf .G
0
N )(x; ξ)Id+O(S0)+Om(S

−1+0),

where XHf is the Hamiltonian vector field generating the characteristic flow of LVf in
T ∗M whose definition is recalled in §3.1.1. The operator Q̂2 is a pseudodifferential op-
erator in 92(M,3k(T ∗M)) whose symbol in any given system of coordinates is of the
form

−
‖ξ‖2g∗(x)

2
Id+Om(S

1+0).

Note that, compared to [28], we study Ĥh rather than iĤh. In this lemma, the notation O(·)
means that the remainder is independent of the order functionmN0,N1 , while Om(·)means
that it depends onmN0,N1 . As all the principal symbols are proportional to Id3k(T ∗M), the
proof of [28] can be adapted almost verbatim to encompass the case of a general vector
bundle and of the term corresponding to the Laplace–Beltrami operator. Hence, we shall
omit it and refer to [28] for a detailed proof. Recall that more general symbols with values
in3k(T ∗M) do not commute and the composition formula does not work as in the scalar
case for more general symbols.

In particular, the lemma says that Q̂1 is an element in 91(M,3k(T ∗M)). We can
consider that it acts on the domain �k(M) which is dense in L2(M,3k(T ∗M)). In par-
ticular, according to [28, Lemma A.1], it has a unique closed extension as an unbounded
operator on L2(M,3k(T ∗M)). For Q̂2, this property comes from the fact that the symbol
is elliptic [61, Ch. 13, p. 125]. In other words, for h > 0, the domain of P̂h is the domain
of Q̂2 (namely H 2(M,3kT ∗M)), while it is given by the domain of Q̂1 for h = 0. The
same properties also hold for the adjoint operator.

3.2.2. The adjoint part of the operator and its symbol. We now verify that this operator
has a discrete spectrum in a certain half-plane in C. Following [28], this will be done by
arguments from analytic Fredholm theory. Compared to that reference, one aspect of our
proof is simpler beause, in the Anosov case, the escape function does not decay in the
flow direction and one has to use the ellipticity of the symbol in that direction. Here, the
escape function decays everywhere. Hence this extra difficulty does not appear. Recall

7 Observe that the O(S0) term comes from the subprincipal symbol of −LVf .
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that the strategy from [28] consists in studying the properties of the adjoint part of the
operator

P̂Re(h) :=
1
2 (P̂
∗

h + P̂h) =
1
2 (Q̂

∗

1 + Q̂1)+
h

2
(Q̂∗2 + Q̂2), (8)

whose symbol (for every h > 0) is, according to Lemma 3.4, given in any given system
of coordinates by

PRe(x; ξ) = XHf .G
0
N (x; ξ)Id+O(S0)+Om(S

−1+0)− h(‖ξ‖2x/2+Om(S
1+0)),

where the first three terms correspond to the contribution of Q̂1 and the last two terms
to the contribution of Q̂2. Here the remainder O(S0) comes from Lemma 3.4 and more
precisely from the subprincipal symbol of−LVf in our choice of quantization. We already
note that, according to Lemma 3.3, there exists some constant C > 0 independent of
mN0,N1 such that, in the sense of quadratic forms,

XHf .G
0
N (x; ξ)Id ≤ (−CN + C)Id+Om(S

−1+0), (9)

where CN is the constant defined in Lemma 3.3.
We can now follow the proof of [28]. First of all, arguing as in [28, Lemma 3.3], we

can show that P̂h has empty spectrum for Re(z) > C0, where C0 is some positive constant
that may depend on m but which can be made uniform in h ∈ [0, 1). In other words, the
resolvent

(P̂h − z)
−1
: L2(M,3k(T ∗M))→ L2(M,3k(T ∗M))

defines a bounded operator for Im(z) > C0. In particular, this shows the first part of
Proposition 3.1. Now, we will show how to extend it meromorphically to some half-plane

{z : Re(z) ≥ (C − CN )/2},

for any choice of N0, N1 large enough.

3.2.3. From resolvent to semigroup. Before doing that, we already note that the proof
of [28, Lemma 3.3] implicitly shows that, for every z in C satisfying Re(z) > C0,

‖(P̂0 − z)
−1
‖L2(M,3k(T ∗M))→L2(M,3k(T ∗M)) ≤

1
Re(z)− C0

, (10)

which will allow us to relate the spectrum of the generator to the spectrum of the corre-
sponding semigroup ϕ−t∗f . In particular, combining this observation with [26, Cor. 3.6,
p. 76], we know that, for t ≥ 0,

ϕ−t∗f : H
mN0,N1
k (M)→ H

mN0,N1
k (M)

generates a strongly continuous semigroup whose norm satisfies

∀t ≥ 0, ‖ϕ−t∗f ‖H
mN0,N1
k (M)→H

mN0,N1
k (M)

≤ etC0 . (11)
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3.2.4. Resolvent construction and meromorphic continuation. We fix some large integer
L > dim(M)/2 to ensure that the operator (1 + 1g)−L is trace class. As a first step
towards our proof of meromorphic continuation, we show the following lemma:

Lemma 3.5. There exists some R > 0 such that if we set

χ̂R := −R(1+1g)−L,

then
(P̂h + χ̂R − z)

−1
: L2(M,3k(T ∗M))→ L2(M,3k(T ∗M))

defines a bounded operator for Re(z) > (C − CN )/2 and

‖(P̂h + χ̂R − z)
−1
‖L2→L2 ≤

1
Re(z)− (C − CN )/2

.

At this point of our argument, the fact that the operators are trace class is not that impor-
tant but it will be useful later on when we will consider determinants.

Proof of Lemma 3.5. For every u in C∞(M) and for every 0 ≤ h ≤ 1, we combine (8)
and (9) with the sharp Gårding inequality. This yields

Re 〈P̂hu, u〉 ≤ (C − CN )‖u‖2L2 + Cm‖u‖
2
H−1/4 −

h

2
‖u‖2

H 1 + Cm‖u‖
2
H 3/4 .

Hence,

Re 〈(P̂h + CN − C)u, u〉 ≤ −h/2‖u‖2H 1 + Cm(‖u‖H−1/4 + h‖u‖
2
H 3/4).

Now, observe that, for every ε > 0, there exists some constant Cε > 0 such that

‖u‖2
H−1/4 ≤ ε‖u‖

2
L2 + Cε‖u‖

2
H−2L and ‖u‖2

H 3/4 ≤ ε‖u‖
2
H 1 + Cε‖u‖

2
H−2L .

Taking 0 < Cmε < min{1/2, (CN − C)/2}, one obtains

Re
〈(
P̂h +

CN − C

2

)
u, u

〉
≤ CmCε‖u‖H−2L .

For R = CmCε , we now set

χ̂R := −R(1+1g)−L,

and we find

Re
〈(
P̂h +

CN − C

2

)
u, u

〉
≤ −Re 〈χ̂Ru, u〉. (12)

We can now argue as in [28, Lemma 3.3] to conclude that P̂h + χ̂R − z is invertible for
Re(z) > (C − CN )/2. In fact, set δ = Re(z)− (C − CN )/2 in order to get

Re 〈(P̂h + χ̂R − z)u, u〉 ≤ −δ‖u‖2.
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Applying the Cauchy–Schwarz inequality, we find that

‖(P̂h + χ̂R − z)u‖ ‖u‖ ≥ |Re 〈(P̂h + χ̂R − z)u, u〉| ≥ δ‖u‖2.

This implies that P̂h+ χ̂R − z is injective. We can argue similarly for the adjoint operator
to obtain

‖(P̂ ∗h + χ̂R − z)u‖ ‖u‖ ≥ δ‖u‖
2,

from which we can infer that P̂h + χ̂R − z is surjective [10, Th. II.19]. Hence,

(P̂h + χ̂R − z)
−1
: L2(M,3k(T ∗M))→ L2(M,3k(T ∗M))

defines a bounded operator for Re(z) > (C − CN )/2 and its operator norm satisfies

‖(P̂h + χ̂R − z)
−1
‖L2→L2 ≤

1
Re(z)− (C − CN )/2

. ut

We can now write that

Re(z) >
C − CN

2
=⇒ P̂h − z =

(
Id− χ̂R(Ph + χ̂R − z)−1)(P̂h + χ̂R − z). (13)

Note that χ̂R ∈ 9−2L(M) is by definition a trace class operator for L large enough (at
least > dim(M)/2 [65, Prop. B.20]). This implies that the operator

χ̂R(P̂h + χ̂R − z)
−1

is trace class for every h ≥ 0 as the composition of a trace class operator and a bounded
one. Moreover, it depends holomorphically on z in the domain {Re(z) > −(CN − C)/2},
implying that P̂h − z is a holomorphic family of Fredholm operators for z in that do-
main. Finally, we can apply arguments from analytic Fredholm theory to P̂h − z [63,
Th. D.4, p. 418], which yields the analytic continuation of (P̂h − z)−1 as a meromor-
phic family of Fredholm operators for z ∈ {Re(z) > (C − CN )/3}. Arguing as in [28,
Lemma 3.5], we can conclude that P̂h has discrete spectrum with finite multiplicity on
Re(z) > (C − CN )/2. To summarize, one has

Lemma 3.6. The operator

(P̂h − z)
−1
: L2(M,3k(T ∗M))→ L2(M,3k(T ∗M))

has a meromorphic continuation from Re(z) > C0 to Re(z) > (C − CN )/2.

Since P̂h is conjugate to Ĥh, the above discussion implies that Ĥh has a discrete spectrum
with finite multiplicity on Re(z) > (C − CN )/2 as an operator acting on H

mN0,N1
k (M). In

particular, this shows the meromorphic continuation of the Schwartz kernel (in the sense
of distributions in D′(M×M)) of (Ĥh−z)−1 from Re(z) > C0 to Re(z) > (C − CN )/2—
see [28, Sect. 4] for more details. In the case h > 0, the poles of this meromorphic
continuation are exactly the Witten eigenvalues. In particular, they are of the form

0 ≥ −λ(k)1 (h) ≥ −λ
(k)
2 (h) ≥ · · · ≥ −λ

(k)
j (h)→−∞ as j →+∞.

Our next step will be to show that this Witten spectrum indeed converges to the Pollicott–
Ruelle spectrum.
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3.2.5. Convention. In the following, we shall denote this intrinsic discrete spectrum
by Rk(h). Its elements correspond to the eigenvalues of Ĥh acting on an appropriate
Sobolev space of currents of degree k. When h > 0, these are the Witten eigenvalues (up
to a factor −1), while for h = 0 they represent the correlation spectrum of the gradient
flow, which is often referred to as the Pollicott–Ruelle spectrum. Given z0 in Rk(0), we
will denote by π (k)z0 the spectral projector associated with the eigenvalue z0, which can be
viewed as a finite rank linear map from �k(M) to D′k(M). Recall from [28, Sect. 4] that
this operator is intrinsic.

3.2.6. Boundedness on standard Sobolev spaces. Denote byH s(M,3k(T ∗M)) the stan-
dard Sobolev space of index s > 0, i.e.

H s(M,3k(T ∗M)) := (1+1(k)g )
−s/2L2(M,3k(T ∗M)).

The above construction shows that

(P̂h + χ̂R − z)
−1
: L2(M,3k(T ∗M))→ L2(M,3k(T ∗M))

defines a bounded operator for Re(z) > (C − CN )/2 which depends holomorphically
on z. We will in fact need something slightly stronger:

Lemma 3.7. Let s0 > 0 and N0, N1 > 4(‖f ‖C0 + s0). Then there exists R > 0 such
that, for Re(z) > −(CN − C)/2 and for every s ∈ [−s0, s0], the resolvent

(Ph + χ̂R − z)
−1 (14)

exists as a holomorphic function from {Re(z) > −(CN − C)/2} to bounded operators
H 2s(M,3k(T ∗M))→ H 2s(M,3k(T ∗M)). Moreover, for every 0 ≤ h ≤ 1,

‖(P̂h + χ̂R − z)
−1
‖H 2s→H 2s ≤

1
Re(z)+ (CN − C)/2

.

The argument is the same as before except that the order function has to be replaced by
mN0,N1 + s, and a direct inspection of the proof shows that all the constants can be made
uniform for s in some fixed interval [−s0, s0].

3.3. Pollicott–Ruelle resonances as zeros of a Fredholm determinant

From expression (13), we know that, for Re(z) > (C − CN )/3, z belongs to the spectrum
of P̂h if and only if the operator Id + χ̂R(Ph − χ̂R − z)−1 is not invertible. As we have
shown that

χ̂R(P̂h + χ̂R − z)
−1

is a trace class operator on L2(M,3k(T ∗M)), this is equivalent to saying that z is a zero
of the Fredholm determinant [24, Prop. B.25]

DmN0,N1
(h, z) := detL2

(
Id− χ̂R(P̂h + χ̂R − z)−1).

Moreover, the multiplicity of z as an eigenvalue of P̂h coincides with the multiplicity of z
as a zero of Dm(h, z) [24, Prop. B.29].
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4. From the Witten spectrum to the Pollicott–Ruelle spectrum

Now that we have recalled the precise notion of resonance spectrum for the limit operator
−LVf , we would like to explain how the Witten spectrum converges to the resonance
spectrum of the Lie derivative. This will be achieved by an argument due to Dyatlov and
Zworski [25] in the context of Anosov flows—see also [64]. In this section, we briefly
recall their proof adapted to our framework.

Remark 4.1. In [25], Dyatlov and Zworski prove something slightly stronger as they
obtain smoothness in h. Here, we are aiming at something simpler and we shall not prove
smoothness which would require more work, beyond the scope of the present article—
see [25] for details in the Anosov case.

4.1. Convergence of the eigenvalues

We fix N0, N1, s0 > 2 and R as in the statement of Lemma 3.7. Using the conventions of
Section 3, we start by studying the regularity of the operator

[0, 1] 3 h 7→ Km(h) := χ̂R(P̂h + χ̂R − z)
−1.

Recall that Km(h) is a holomorphic map on {Re(z) > (C − CN )/3} with values in the
space of trace class operators on L2. For h, h′ ∈ [0, 1], we now write

(P̂h + χ̂R − z)− (P̂h′ + χ̂R − z) = (h− h
′)Q̂2 : H

2
→ L2

where we recall that
Q̂2 = −ÂN

1g

2
Â−1
N .

Applying Lemma 3.7 with s0 > 2, we can compose Q̂2 with the two resolvents to get

(P̂h + χ̂R − z)
−1
− (P̂h′ + χ̂R − z)

−1

h− h′
= −(P̂h+χ̂R−z)

−1Q̂2(P̂h′+χ̂R−z)
−1. (15)

Still from Lemma 3.7 with s0 > 2, we find that (15) is bounded for Re(z) > (C − CN )/3
and uniformly for h ∈ [0, 1] as an operator from L2 toH−2. Hence, we have verified that

h 7→ (P̂h + χ̂R − z)
−1

defines a Lipschitz (thus continuous) map in h with values in the set Hol({Re(z) >
(C − CN )/3},B(L2, H−2)) of holomorphic functions in z valued in the Banach space
B(L2, H−2) of bounded operators from L2 to H−2. Recall now that

χ̂R = −R(1+1g)−L

is trace class from H−2 to L2 for L large enough (more precisely,8 L > dim(M)/2+ 1).
Denote by L1(H−2(M), L2(M)) ⊂ B(H−2(M), L2(M)) the set of trace class oper-
ators acting on these spaces [24, Sect. B.4]. By continuity of the composition map

8 This follows from Weyl’s law.
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L1(H−2, L2) × B(L2, H−2) 3 (A,B) 7→ AB ∈ L1(L2, L2) [24, Eq. (B.4.6)], the
operator

Km(h) = χ̂R︸︷︷︸
trace class

(P̂h + χ̂R − z)
−1︸ ︷︷ ︸

Lipschitz in B(L2,H−2)

is the composition of a Lipschitz operator valued in the set Hol({Re(z) > (C − CN )/3},
B(L2, H−2)) with the fixed trace class operator χ̂R ∈ L1. Therefore Km must be a Lip-
schitz map in h ∈ [0, 1] valued in Hol({Re(z) > (C − CN )/3},L1(L2, L2)). We have
thus shown the following Lemma:

Lemma 4.2. Let N0, N1 > 4(‖f ‖C0 + 2) and let R > 0 be as in the statement of
Lemma 3.7 with s0 = 2. Then the map h 7→ Km(h) is Lipschitz (hence continuous)
from [0, 1] to the space of holomorphic functions on {Re(z) > (C − CN )/3} with values
in the space of trace class operators on L2.

Remark 4.3. Note that, for simplicity, we have omitted the dependence on the degree k
in that statement.

Let us now draw some consequences from this lemma. From [24, Sect. B.5, p. 426], the
determinant map

DmN0,N1
(h, ·) :

{
Im(z) >

C − CN

3

}
3 z 7→ detL2

(
Id− χ̂R(P̂h + χ̂R − z)−1)

is holomorphic. Moreover, one knows from [24, Prop. B.26] that

|DmN0,N1
(h, z)−DmN0,N1

(h′, z)| ≤ ‖Km(h, z)−Km(h
′, z)‖Tre

1+‖Km(h,z)‖Tr+‖Km(h
′,z)‖Tr ,

which, combined with Lemma 4.2, implies that h 7→ DmN0,N1
(h, ·) is a continuous map

from [0, 1] to the space of holomorphic functions on {Re(z) > (C − CN )/3}.
Fix now an eigenvalue z0 of P̂0 lying in the half-plane {Re(z) > (C − CN )/3} and

having algebraic multiplicity mz0 . This corresponds to a zero of multiplicity mz0 of the
determinant map DmN0,N1

(0, ·) evaluated at h = 0. As the spectrum of P̂0 is discrete
with finite multiplicity on this half-plane, we can find a small enough r0 > 0 such that
the closed disk centered at z0 of radius r0 contains only the eigenvalue z0. The map
h 7→ DmN0,N1

(h, ·) ∈ Hol({Re(z) > (C − CN )/3}) being continuous, we know that,
for all 0 < r1 ≤ r0, for h ≥ 0 small enough (which depends on z0 and on r1) and for
|z− z0| = r1,

|DmN0,N1
(h, z)−DmN0,N1

(0, z)| < min
z′: |z′−λ0|=r0

|DmN0,N1
(0, z′)| ≤ |DmN0,N1

(0, z)|.

Hence, from the Rouché Theorem and for h ≥ 0 small enough, the number of zeros
counted with multiplicity of DmN0,N1

(h) lying in the disk {z : |z − z0| ≤ r1} equals mz0 .
Since, for h > 0, the Witten eigenvalues lie on the real axis, we have shown the following
theorem:
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Theorem 4.4. Let 0 ≤ k ≤ n. Then the set Rk = Rk(0) of Pollicott–Ruelle resonances
of −L(k)Vf is contained inside (−∞, 0]. Moreover, given any z0 in (−∞, 0], there exists
r0 > 0 such that, for every 0 < r1 ≤ r0, for h > 0 small enough (depending on z0
and r1), the number of elements (counted with algebraic multiplicity) inside

Rk(h) ∩ {z : |z− z0| ≤ r1}

is constant and equal to the algebraic multiplicity of z0 as an eigenvalue of −L(k)Vf .

As expected, this theorem shows that the Witten eigenvalues converge to the Pollicott–
Ruelle resonances of −LVf . Yet, for the moment, it does not say anything on the precise
values of Pollicott–Ruelle resonances and we shall come back to this question in Sec-
tion 5.

4.2. Convergence of spectral projectors

Now we can prove the convergence of the spectral projectors of the Witten Laplacian to
the operators π (k)z0 that were defined in §3.2.5 as the spectral projectors of −LVf :

Theorem 4.5. Let 0 ≤ k ≤ n and z0 ∈ R.9 Then there exists r0 > 0 such that, for every
(ψ1, ψ2) ∈ �

k(M)×�n−k(M),

∀0 < r1 ≤ r0, lim
h→0+

∫
M

1[z0−r1,z0+r1](−W
(k)
f,h )(e

−f/hψ1) ∧ (e
f/hψ2)

=

∫
M

π (k)z0
(ψ1) ∧ ψ2.

In fact, the result also holds for any (ψ1, ψ2) in H
mN0,N1
k (M)×H

−mN0,N1
n−k (M).

Together with Theorem 4.4, this theorem shows that all the spectral data of the Witten
Laplacian converge to the ones of −LVf . In particular, this concludes the proof of Theo-
rem 2.4.

Proof of Theorem 4.5. Using Theorem 4.4, it is enough to show the existence of r0 and
to prove convergence for r1 = r0. As before, it is also enough to prove this result for the
conjugated operators

P̂h = −ÂNLVf Â
−1
N − hÂN

1g

2
Â−1
N

acting on the standard Hilbert space L2(M,3k(T ∗M)). Fix z0 in R and N0, N1 large
enough to ensure that Re(z0) > (C − CN )/3. The spectral projector10 associated with z0
can be written as [24, Th. C.6]

5(k)z0
:=

1
2iπ

∫
C(z0,r0)

(z− P̂0)
−1dz

9 For z0 /∈ Rk , one has π (k)z0 = 0.
10 Note that this is eventually 0 if z0 6∈ Rk .
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where C(z0, r0) is a small circle of radius r0 centered at z0 such that z0 is the only eigen-
value of P̂0 inside the closed disk surrounded by C(z0, r0). When z0 is not an eigenvalue,
we choose the disk small enough to ensure that there are no eigenvalues inside it. If we
denote by mz0 the algebraic multiplicity of z0 (which can be 0 if z0 6∈ Rk), then, for h
small enough, the spectral projector associated to P̂h,

5(k)z0
(h) :=

1
2iπ

∫
C(z0,r0)

(z− P̂h)
−1 dz,

has rank mz0 from Theorem 4.4. We can now argue as in [25, Prop. 5.3] to show that, for
every ψ1 in �k(M) and every ψ2 in �n−k(M),

lim
h→0+

∫
M

5(k)z0
(h)(ψ1) ∧ ψ2 =

∫
M

5(k)z0
(ψ1) ∧ ψ2. (16)

Once this equality is proved, we will be able to conclude the proof by recalling that the
generalized eigenmodes are independent of the choice of the order function mN0,N1 used
to define ÂN and by observing that

π (k)z0
= −Â−1

N 5(k)z0
ÂN

and
ef/h1[z0−r0,z0+r0](−W

(k)
f,h )e

−f/h
= −Â−1

N 5(k)z0
(h)ÂN .

Hence, it remains to prove (16). For that purpose, we use the conventions of Lemma 3.7
and write

(P̂h − z)
−1
= (P̂h + χ̂R − z)

−1
+ (P̂h − z)

−1χ̂R(P̂h + χ̂R − z)
−1.

By construction of the compact operator χ̂R , the family (P̂h + χ̂R − z)−1 is holomorphic
and has no poles in some neighborhood of z0 as z0 > (C − CN )/3. Therefore, only the
term (P̂h−z)

−1χ̂R(P̂h+χ̂R−z)
−1 contributes to the contour integral defining the spectral

projector 5(k)λ0
(h):

5(k)z0
(h) =

−1
2iπ

∫
C(z0,r0)

(P̂h − z)
−1χ̂R(P̂h + χ̂R − z)

−1 dz.

From Theorem 4.4, we know that, for |z− z0| = r0 and for h small enough, the operator
(P̂h−z)

−1 is uniformly bounded as an operator in B(L2(M), L2(M)). Moreover, we have
seen that the map

[0, 1] 3 h 7→
(
z 7→ χ̂R(P̂h + χ̂R − z)

−1)
is continuous (in fact Lipschitz) with values in the set Hol({Re(z) > (C − CN )/3},L1)

of holomorphic functions with values in trace class operators on L2. This implies that, for
every ψ1 in L2(M,3k(T ∗M)),

5(k)z0
(h)(ψ1) =

−1
2iπ

∫
C(z0,r0)

(P̂h − z)
−1χ̂R(P̂0 + χ̂R − z)

−1(ψ1) dz+ o(1),
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as h→ 0+. Then, we write

(P̂h − z)
−1χ̂R = (P̂0 − z)

−1χ̂R + h (P̂h − z)
−1Q̂2(P̂0 − z)

−1χ̂R︸ ︷︷ ︸ .
The underbraced term being uniformly bounded as an operator from L2 to L2 for
|z− z0| = r0 (as h→ 0), we finally find that, for every ψ1 in L2(M,3k(T ∗M)),

lim
h→0+

‖(5(k)z0
(h)−5(k)z0

)(ψ1)‖L2 = 0,

which concludes the proof of (16). ut

4.3. Properties of the semigroup

We would now like to relate the spectral properties of −LVf to the properties of the

propagator ϕ−t∗f = e
−tLVf . To that end, the classical approach is to prove some resolvent

estimate and to use some contour integral to write the inverse Laplace transform. Here, we
proceed slightly differently (due to the specific nature of our problem) and we rather study
the spectral properties of the time-one11 map ϕ−1∗ acting on the anisotropic Sobolev
spaces that we have defined. More precisely, using the conventions of Section 3, one has:

Proposition 4.6. Let 0 ≤ k ≤ n. The operator

ϕ−1∗
f : H

mN0,N1
k → H

mN0,N1
k

is a bounded operator whose essential spectral radius is ≤ e(C−CN )/2. The eigenvalues λ
of ϕ−1∗

f with |λ| > e(C−CN )/2 are given by

{ez0 : z0 ∈ Rk = Rk(0) and Re(z0) > (C − CN )/2}.

Moreover, the spectral projector of λ = ez0 is given by the projector π (k)z0 defined in
§3.2.5.

Recall that π (k)z0 corresponds to the spectral projector of −L(k)Vf associated with the eigen-
value z0 and that it is intrinsic (i.e. independent of the choice of the order functionmN0,N1 )
as its Schwartz kernel corresponds to the residue at z0 of the meromorphic continuation
of the Schwartz kernel of (−LVf − z)−1—see also [28, Th. 1.5].

Proof of Proposition 4.6. Rather than studying the time-one map of the flow, we will
study the spectral properties of the hyperbolic diffeomorphism ϕq := ϕ

−1/q
f for every

fixed q ≥ 1. The reason is that we aim at relating the spectral data of ϕ−1∗
f to the ones of

the generator −LVf —see below.
In the rest of the proof, we verify that ϕ∗q has discrete spectrum, with arguments similar

to those used for the generator. More precisely, we follow the arguments of [27, Th. 1]

11 The choice of time 1 is rather arbitrary and this is the only thing that will be needed in our
analysis.
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applied to the hyperbolic diffeomorphism ϕq . Precisely, following this reference, we can
verify that the order function mN0,N1 from Lemma 3.2 satisfies the assumptions of [27,
Lemma 2]. Then, following [27, Section 3.2] almost verbatim, we can deduce that the
transfer operator

ϕ∗q : ψ ∈ H
mN0,N1
k (M)→ ϕ

(−1/q)∗
f ψ ∈ H

mN0,N1
k (M)

defines a bounded operator on the anisotropic space H
mN0,N1
k (M) which can be decom-

posed as
ϕ∗q = r̂m,q + ĉm,q , (17)

where ĉm,q is a compact operator and the remainder r̂m,q has small operator norm: ‖r̂m,q‖
≤ e(C−CN /q)/2 (for some uniform C that may be slightly larger than before). Taking
q = 1, this shows the first part of the proposition.

Note that, for every q ∈ N, we can make ‖r̂m,q‖ arbitrarily small by choosing N large
enough. Again, we can verify that the discrete spectrum is intrinsic, i.e. independent of
the choice of the order function. This is because the eigenvalues and associated spectral
projectors correspond to the poles and residues of a discrete resolvent defined as an oper-
ator from �k(M) to D′,k(M) as follows. Consider the series

∑
+∞

l=0 e
−lzϕl∗q . Then, by the

direct bound∥∥∥+∞∑
l=0

e−lzϕl∗q ψ

∥∥∥
H
mN0,N1
k (M)

≤

+∞∑
l=0

e−l Re(z)
‖ϕ∗q‖

l
‖ψ‖

H
mN0,N1
k (M)

,

we deduce that, for Re(z) large enough, the series
∑
+∞

l=0 e
−lzϕl∗q ψ converges absolutely

in H
mN0,N1
k (M) for every test form ψ ∈ �k(M). Hence, by the continuous injections

�k(M) ↪→ H
mN0,N1
k (M) ↪→ D′,k(M), the identity

(Id− e−zϕ∗q )
−1
=

+∞∑
l=0

e−lzϕl∗q : �
k(M)→ D′,k(M)

holds true for Re(z) large enough. A consequence of the decomposition (17) is that the
resolvent of ϕ∗q ,

(λ− ϕ∗q )
−1
: �k(M)→ D′,k(M),

has a meromorphic extension from |λ| > eC0 to λ ∈ C with poles of finite multiplicity
which correspond to the eigenvalues of the operator ϕ∗q [27, Corollary 1]. In other words,
(Id − e−zϕ∗q )

−1
: �k(M) → D′,k(M) has a meromorphic extension from Re(z) > C0

(with C0 > 0 large enough) to z ∈ C with poles of finite multiplicity. Denote by π̃ (k)λ,q the
spectral projector of ϕ∗q associated to the eigenvalue λ which is obtained from the contour
integral formula

π̃
(k)
λ,q =

1
2iπ

∫
γ

(µ− ϕ∗q )
−1 dµ,
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where γ is a small circle around λ. This corresponds to the residues of the discrete resol-
vent at ez = λ.

We will now verify the second part of the proposition, that the spectral data of the
diffeomorphism coincide with the ones of the generator. As ϕ∗q commutes with −L(k)Vf ,

we can deduce that the range of π̃ (k)λ,q is preserved by −L(k)Vf . In particular, any eigenvalue

z0 of −L(k)Vf on that space must satisfy ez0/q = λ. As we know that the Pollicott–Ruelle

spectrum of −L(k)Vf is real, we can deduce that the poles of (Id − e−z/qϕ∗q )
−1 belong to

Rk ⊂ R modulo 2iπZ. In particular, taking q = 1, this shows that the eigenvalues of
ϕ−1∗
f are exactly given by the expected set. Take now z0 in Rk; it remains to show that

π̃
(k)

ez0 ,1 = π
(k)
z0
, (18)

i.e. the spectral projectors are the same for both problems. It is here that we will crucially
use the fact that q is arbitrary. Note that, as ϕqq = ϕ1, one has π̃ (k)λ,q = π̃

(k)
λq ,1 for every

q ≥ 1. Recall also that the eigenvalues were shown to be real for every q ≥ 1. Hence,
π̃
(k)

ez0/q ,q
= π̃

(k)

ez0 ,1. We now decompose the resolvent (z+ L(k)Vf )
−1 as follows:

(z+ L(k)Vf )
−1
=

+∞∑
l=0

e−z/qϕ∗q

∫ 1/q

0
e−ztϕ−t∗f dt = (Id− e−z/qϕ∗q )

−1
∫ 1/q

0
e−ztϕ−t∗f dt.

For Re(z) large enough, this expression makes sense viewed as an operator from �k(M)

to D′,k(M). We have seen that it can be meromorphically continued to C by using the
fact that we have built a proper spectral framework and that we may pick N0 and N1
arbitrarily large. Consider now a small contour γ around z0 containing no other elements
of Rk . Integrating over this contour tells us that, for every q ≥ 1,

π (k)z0
= π̃

(k)

ez0/q ,q
q

∫ 1/q

0
e−z0tϕ−t∗f dt = π̃

(k)

ez0 ,1

∫ 1

0
e−tz0/qϕ

(−t/q)∗
f dt.

As an operator on �k(M), we can observe that
∫ 1

0 e
−tz0/qϕ

(−t/q)∗
f dt converges to the

identity as q →+∞. Hence, π (k)z0 = π̃
(k)

ez0 ,1 as expected. ut

As a direct corollary of Proposition 4.6, we get the following result on the asymptotics of
the correlation function of the time-one map ϕ−1∗

f :

Corollary 4.7. Let 0 ≤ k ≤ n. Then for any z0 ∈ Rk = Rk(0), there is an integer
d
(k)
z0 ≥ 1 such that for any 3 > 0, there exist N0, N1 large enough such that for every
(ψ1, ψ2) ∈ �

k(M)×�n−k(M) and for every integer p ≥ 0,

∫
M

ϕ
−p∗
f (ψ1) ∧ ψ2 =

∑
z0∈Rk : z0≥−3

epz0

d
(k)
z0 −1∑
l=0

pl

l!

∫
M

(L(k)Vf + z0)
l(π (k)z0

(ψ1)) ∧ ψ2

+O(e−3p‖ψ1‖H
mN0,N1
k

‖ψ2‖H
−mN0,N1
n−k

),
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where π (k)z0 : �
k(M)→ D′k(M) is a finite rank continuous linear map defined in §3.2.5.

In fact, the result also holds for any ψ1 in H
mN0,N1
k (M).

Note that together with (11), this expansion could be applied to more general times t
which are not necessarily in Z+.

5. Computation of the Pollicott–Ruelle resonances

In [17], we gave a full description of the Pollicott–Ruelle spectrum of a Morse–Smale
gradient flow under certain nonresonance assumptions. Our proof was based on an explicit
construction of the generalized eigenmodes and we shall now give a slightly different
proof based on the works of Baladi and Tsujii on Axiom A diffeomorphisms [3, 2]. In
order to state the result, we define the dynamical Ruelle determinant [2, pp. 65–68], for
every 0 ≤ k ≤ n, as

ζ
(k)
R (z) := exp

(
−

+∞∑
l=1

e−lz

l

∑
a∈Crit(f )

Tr(3k(dϕ−lf (a)))

|det(Id− dϕ−lf (a))|

)
.

This quantity is related to the notion of distributional determinants [39, p. 313]. This func-
tion is well defined for Re(z) large enough, and, from Appendix A, it has a holomorphic
extension to C. The zeros of this holomorphic extension can be explicitly described in
terms of the Lyapunov exponents of the flow ϕtf at the critical points of f :

∀a ∈ Crit(f ), χ1(a) ≤ · · · ≤ χr(a) < 0 < χr+1(a) ≤ · · · ≤ χn(a),

where (χj (a))nj=1 are the eigenvalues of Lf (a), the unique (symmetric) matrix satisfying
d2f (a) = ga(Lf (a)·, ·). Using the conventions of Section 2, one has

Theorem 5.1. Suppose that the assumptions of Theorem 2.1 are satisfied. Then, for every
0 ≤ k ≤ n, the set of Pollicott–Ruelle resonances is given by

Rk = {z0 ∈ R : ζ (k)R (z0) = 0}.

Moreover, for every z0 ∈ R, the rank of the spectral projector

π (k)z0
: �k(M)→ D′k(M)

is equal to the multiplicity12 of z0 as a zero of ζ (k)R (z).

Among other things, this result shows that the correlation spectrum depends only on the
Lyapunov exponents of the flow. In other words, the global correlation spectrum of a
gradient flow depends only on the 0-jet of the metric at the critical points. Thus, this result
gives in some sense some insights into Bowen’s first problem in [9] from the perspective
of the global dynamics of the flow instead of the local one. Note that if we were interested

12 When z0 /∈ Rk , one has π (k)z0 = 0.
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in the local dynamics near critical points, this could be recovered from the results of
Baladi and Tsujii [3]. Still regarding Bowen’s question, we will also verify below that
the range of the residues are generated by families of currents carried by the unstable
manifolds of the gradient flows. Besides this support property, we do not say much on the
structure of these residues except in the case z0 = 0—see Lemma 5.10.

Regarding Section 3, the only thing left to prove is that the eigenvalues and their
algebraic multiplicities are given by the zeros of the Ruelle dynamical determinant. As
already mentioned, this result was already proved in [17, 19] under stronger linearization
assumptions. Our new proof will only make use of the assumptions that the gradient flow
is C1-linearizable, which is necessary to construct our anisotropic Sobolev space but not
for the results from [3]. Yet, in some sense, it will be less self-contained as we shall use the
results of [3] as a “black-box”, while in the proof of [17] we determined the spectrum by
hand even if under more restrictive assumptions. Another advantage of the proof from [17]
was that it gave an explicit local form of the eigenmodes and some criteria under which we
do not have Jordan blocks—see also [19] for slightly more precise results. The key idea
compared with [17, 19] is to use the localized results of Baladi–Tsujii to guess the global
resonance spectrum from the one near each critical point. To go from local to global, we
will use the geometry of the stratification by unstable manifolds to glue together, in some
sense, these local spectra and make them into a global spectrum.

Before starting our proof, let us recall the following classical result of Smale which
will be useful to organize our induction arguments [56]—see [18] for a brief reminder on
Smale’s work:

Theorem 5.2 (Smale partial order relation). Suppose that ϕtf is a Morse–Smale gradient
flow. Then, for every a in Crit(f ), the closure of the unstable manifold Wu(a) is the
union of unstable manifolds Wu(b) for some critical points in Crit(f ). Moreover, we
write b � a (resp. b ≺ a) if Wu(b) is contained in the closure of Wu(a) (resp. Wu(b) ⊂

Wu(a),Wu(b) 6= Wu(a)). Then� is a partial order relation on Crit(f ). Finally if b ≺ a,
then dimWu(b) < dimWu(a).

In this section, we use the results of Baladi and Tsujii [3]. For that purpose, we treat near
every critical point the time-1 map ϕ1 := ϕ

−1
f of the flow ϕtf as a hyperbolic diffeomor-

phism with only one fixed point. Recall that ϕtf is a Morse–Smale gradient flow which is
C1-linearizable, hence amenable to the analysis of the previous sections.

5.1. Local spectra from the work of Baladi–Tsujii

We start by recalling the results of [3]. Fix 0 ≤ k ≤ n, the degree of the differential
forms we are going to consider and a critical point a of f . Note that the reference [3]
mostly deals with 0-forms, i.e. functions on M , which corresponds to k = 0. General re-
sults for transfer operators acting on vector bundles are given in [3, Section 2] and [2,
§6.4]. In this subsection, we consider the transfer operator acting on sections of the
bundle 3kT ∗M → M of k-forms on M by pullback: 0(M,3kT ∗M) 3 h 7→ ϕ∗0u ∈

0(M,3kT ∗M). For any open subset U ⊂ M , we will denote by �•c(U) the differential
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forms with compact support in U . Then one can find a small enough open neighborhood
Va of a in M such that, for every (ψ1, ψ2) ∈ �

k
c(Va)×�

n−k
c (Va), the map

ĉψ1,ψ2,a : z 7→

+∞∑
l=1

e−lz
∫
M

ϕl∗1 (ψ1) ∧ ψ2

has a meromorphic extension to C. This is a straightforward consequence of13 [3, Th. 2.1]
and [2, Th. 6.12, p. 178], once we note that smooth differential forms are contained in
the Banach spaces of distributional sections of 3kT ∗M used in these references. The
result of [3] is in fact much more general as it holds for any Axiom A diffeomorphism
provided that the observables are supported in the neighborhood of a basic set (which is
here reduced to the critical point a). Note that this result could also be deduced from the
analysis in [38]. Moreover in [3, Th. 2.2] (see also [2, Th. 6.13, p. 179]), Baladi and Tsujii
proved the stronger result that the poles of ĉψ1,ψ2,a where ψ1, ψ2 run over �kc(Va) ×
�n−kc (Va) are exactly equal (with multiplicities) to the real zeros of some dynamical
Ruelle determinant [2, p. 179]:

ζ
(k)
R,a(z) := exp

(
−

+∞∑
l=1

e−lz

l

Tr(3k(dϕl1(a)))

|det(Id− dϕl1(a))|

)
.

Recall that we show in Appendix A that these functions are holomorphic in C and that we
can compute their zeros. Actually, it has been proved in the literature [48, 36, 23, 22] for
various classes of dynamical systems that the poles of dynamical correlations correspond
to the zeros of the dynamical Ruelle determinant. Moreover, for any such pole z0, one can
find a continuous linear map

π (k)a,z0
: �kc(Va)→ D′k(Va),

which is of finite rank equal to the multiplicity of z0 as a zero of ζ (k)R,a and such that the
residue of ĉψ1,ψ2,a(z) at z = z0 is equal to∫

M

π (k)a,z0
(ψ1) ∧ ψ2.

Again, π (k)a,z0 corresponds to the spectral projector of ϕ∗1 acting on a certain anisotropic
Banach space of currents in D′k(Va). Now the key observation is that the spectral pro-
jector π (k)a,z0 : �

k
c(Va)→ D′k(Va), whose existence follows from [3], is just the localized

version of the global spectral projector π (k)z0 defined in §3.2.5. Indeed, using Corollary 4.7,
we find that, for ψ1 ∈ �

k
c(Va),

∀ψ1 ∈ �
k
c(Va), π (k)z0

(ψ1) = π
(k)
a,z0
(ψ1), (19)

13 In that reference, the authors allow diffeomorphisms with low regularity. Here, everything is
smooth and we can make the essential spectral radius arbitrarly small by letting r → +∞ in that
reference.
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where equality holds in the sense of currents in D′k(Va). To see this, one sums over p ≥ 1
in Corollary 4.7 in order to recover the local correlation function ĉψ1,ψ2,a and to identify
its residues at z = z0.

The above means that every element of {z0 ∈ R : ζ (k)R,a(z0) = 0} contributes to the
set Rk of Pollicott–Ruelle resonances of the transfer operator acting on k-forms. The
objective is to show that there are no other contributions to Rk . More precisely, we shall
prove that Rk exactly equals the union over Crit(f ) of local spectra:

Rk =

⋃
a∈Crit(f )

{z0 : ζ
(k)
R,a(z0) = 0},

where the zeros are counted with multiplicity.

5.2. Gluing local spectra

The main purpose of this section is to prove the following statement from which Theo-
rem 5.1 follows:

Proposition 5.3. Let 0 ≤ k ≤ n and let z0 ∈ R. Then

Rk(π (k)z0
) =

∑
a∈Crit(f )

Rk(π (k)a,z0
).

In particular, as already explained, one can deduce from [3, 2] that Rk(π (k)z0 ) is equal to
the multiplicity of z0 as a zero of ζ (k)R =

∏
a∈Crit(f ) ζ

(k)
R,a . Note that this may be 0 if z0

does not belong to the set Rk of resonances.

5.2.1. Construction of a “good” basis of Pollicott–Ruelle resonant states. Let z0 ∈ Rk .
We fix a basis (Uj )

mz0
j=1 of the range of π (k)z0 . These are generalized eigenstates of eigen-

value z0 for −LVf acting on a suitable anisotropic Sobolev space of currents of degree k.
We aim at showing that we can choose this family in such a way that supp(Uj ) ⊂ Wu(a)

for some critical point a of f (depending on j ). Intuitively, we are looking for a “good”
basis of generalized eigencurrents with minimal possible support which by some propa-
gation argument should be at least the closure of an unstable manifold.

We also warn the reader that the notion of linear independence we need for our basis
is a bit subtle and depends on the open subset in which we consider our current. Indeed,
we may have some currents which are linearly independent as elements in D′,k(M) but
become dependent when we restrict them to smaller open subsets U ⊂ M . We define:

Definition 5.4 (Independent germs at a given point). A family (ui)i∈I of currents in
D′,k(M) consists of linearly independent germs at a ∈ M if for each open neighbor-
hood Va of a, (ui)i∈I are linearly independent as elements of D′,k(Va).

With this definition in mind, we want to prove
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Lemma 5.5. Let 0 ≤ k ≤ n and z0 ∈ Rk . For every a ∈ Crit(f ), there exists an integer
m
(k)
a (z0) ≥ 0 together with a corresponding basis of generalized eigencurrents

{Uj (b, z0) : b ∈ Crit(f ), 1 ≤ j ≤ m(k)b (z0)}

of the range of π (k)z0 such that

∀a ∈ Crit(f ),∀1 ≤ j ≤ m(k)a (z0), supp(Uj (a, z0)) ⊂ Wu(a),

and, for all a ∈ Crit(f ), the family (Uj (a, z0))
m
(k)
a (z0)

j=1 consists of independent germs at a.

We denote by
{Sj (a, z0) : a ∈ Crit(f ), 1 ≤ j ≤ m(k)a (z0)}

the dual basis for the adjoint operator −L(n−k)Vf
acting on H

−mN0,N1
n−k (M). In particular, the

spectral projector π (k)z0 can be written as follows:

∀ψ1 ∈ �
k(M), π (k)z0

(ψ1) =
∑

a∈Crit(f )

m
(k)
a (z0)∑
j=1

(∫
M

ψ1 ∧ Sj (a, z0)

)
Uj (a, z0). (20)

The currents (Sj (a, z0))j,a,z0 are generalized eigenmodes for the dual operator (−L(k)Vf )
†

= −L(n−k)V−f
acting on the anisotropic Sobolev space H−mn−k(M). Also, from the definition

of the dual basis, one has, for any critical points (a, b), any indices (j, k) and every (z, z′)
in Rk ,

〈Uk(b, z
′), Sj (a, z)〉 =

∫
M

Uk(b, z
′) ∧ Sj (a, z) = δjkδzz′δab. (21)

The purpose of this section is now to prove Lemma 5.5. To that end, we begin with
the following preliminary

Lemma 5.6. Let U1 ∈ D′,k(M) be inside the range of π (k)z0 . Then, for every a ∈ Crit(f ),
there exists Ũ1(a) inside the range of π (k)z0 such that

U1 =
∑

a∈Crit(f )

Ũ1(a),

where each Ũ1(a) is supported in Wu(a).

Proof. By [19, Lemma 7.7], which is a propagation lemma aimed at controlling supports
of generalized eigencurrents, we know that if a current U1 is identically 0 on a certain
open set V then this vanishing property propagates along the flow and U1 vanishes iden-
tically on

⋃
t∈R ϕ

t
f (V ). We let Max(U1) be the set of critical points a of f such that

U1 ∈ Ran π (k)z0 is not identically zero near a and, for every b � a, U1 identically vanishes
near b. In particular, this means that, for every a in Max(U1), the current U1 is supported
byWu(a) in a neighborhood of a by [19, Lemma 7.8] which gives control on the support
of generalized eigencurrents near maximal elements of Crit(f ).
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Remark 5.7. We will implicitly use the fact that anisotropic Sobolev spaces of currents
are C∞(M)-modules, which can be seen as follows: u ∈ H

mN0,N1
k ⇔ ÂNu ∈ L

2(M).
Hence,

∀ψ ∈ C∞(M), ÂN (ψu) = ÂNψÂ
−1
N︸ ︷︷ ︸

∈90(M)

ÂNu︸︷︷︸
∈L2

∈ L2(M)

where we use the composition for pseudodifferential operators [27, Th. 8, p. 39] and
elements in 90(M) are bounded in L2.

Let us now decompose U1 into currents with minimal support. For every critical point a,
we set χa to be a smooth cut-off function which is identically 1 near a and χa vanishes
away from a. Then, for every a in Max(U1), we define

Ũ1(a) := π
(k)
z0
(χaU1),

and we want to verify that Ũ1(a) is supported in Wu(a) and that it is equal to U1 near a.
To that end, we apply Proposition 4.6 to the test current χaU1 (belonging to H

mN0,N1
k for

N0, N1 large enough) and to some test form ψ2 in �n−k(M):

∫
M

ϕ
−p∗
f (χaψ1) ∧ ψ2 =

∑
z0∈Rk : z0>−3

epz0

d
(k)
z0 −1∑
l=0

pl

l!

∫
M

(L(k)Vf + z0)
l(π (k)z0

(χaψ1)) ∧ ψ2

+O(e−3p‖χaψ1‖H
mN0,N1
k

‖ψ2‖H
−mN0,N1
n−k

).

On the other hand, if we choose ψ2 compactly supported in M − Wu(a), then we can
verify that

∀p ≥ 0,
∫
M

ϕ
−p∗
f (χaU1) ∧ ψ2 = 0.

In particular, we find that

∀ψ2 with supp(ψ2) ∩Wu(a) = ∅,

∫
M

π (k)z0
(χaU1) ∧ ψ2 = 0.

This implies that Ũ1(a) is supported by Wu(a). If we now choose ψ2 to be compactly
supported in the neighborhood of a where χa = 1, then∫

M

ϕ
−p∗
f (χaU1) ∧ ψ2 =

∫
M

ϕ
−p∗
f (U1) ∧ ψ2,

where we use the fact that U1 is supported byWu(a). Applying the asymptotic expansion
of Proposition 4.6 one more time to the left hand side of the above equality, we find that
Ũ1(a) = π

(k)
z0 (χaU1) is equal to U1 = π

(k)
z0 (U1) in a neighborhood of a. We can now

define
Ũ1 = U1 −

∑
a∈Max(U1)

Ũ1(a),
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which by construction still belongs to the range of π (k)z0 and which is now identically 0 in
a neighborhood of each b satisfying b � a for every a in Max(U1). Then either Ũ1 = 0,
in which case U1 =

∑
a Ũ1(a) is decomposed with this minimal support property and we

are done; otherwise, we repeat the above argument with Ũ1 instead of U1 and deal with
critical points which are smaller with respect to Smale’s partial order relation. As there
are only a finite number of critical points to exhaust, this procedure will end after a finite
number of steps and we will find that

U1 =
∑

a∈Crit(f )

Ũ1(a),

where the support of Ũ1(a) is contained in Wu(a) and some of the Ũ1(a) may be taken
equal to 0. ut

We can now turn to the proof of Lemma 5.5. Thanks to Lemma 5.6, we obtain
m
(k)
a (z0) ∈ N, a ∈ Crit(f ) and some family (Uj,a(z0))a∈Crit(f ),1≤j≤m(k)a (z0)

of nontriv-

ial currents which spans the image of π (k)z0 and each Uj,a(z0) is supported inWu(a). Note
that our family of currents may not be linearly independent and we can extract a subfam-
ily to make it into a basis of Ran(π (k)z0 ). However, we recall that we are aiming at some
stronger linear independence property than linear independence in D′k(M). To fix this

problem, we start from a critical point a such that (Uj (a, z0))
m
(k)
a (z0)

j=1 are not independent

germs at a and, for every b � a, (Uj (b, z0))
m
(k)
b (z0)

j=1 are linearly independent germs at b.
We next define a method to localize linear dependence near a as follows.

Definition 5.8 (Local rank of germs at some point). Consider the family of currents

(Uj (a, z0))
m
(k)
a (z0)

j=1 . Define a sequence Ba(l) of balls of radius 1/l around a. Consider

the sequence rl = Rk(Uj (a, z0)|Ba(l))
m
(k)
a (z0)

j=1 where each Uj (a, z0)|Ba(l) ∈ D′,k(Ba(l)) is
the restriction of Uj (a, z0) ∈ D′,k(M) to the ball Ba(l). We call liml→+∞ rl the rank of

the germs (Uj (a, z0))
m
(k)
a (z0)

j=1 at a.

If liml→+∞ rl < m
(k)
a (z0), then there exists an open neighborhood Va of a such that the

currents (Uj (a, z0)|Va )
m
(k)
a (z0)

j=1 are linearly dependent in D′,k(Va), and the open subset Va
is optimal as one cannot find a smaller open subset around a on which one could write

new linear relations among (Uj (a, z0))
m
(k)
a (z0)

j=1 . This means that one can find some j (say
j = 1) such that, on the open set Va ,

U1(a, z0) =

m
(k)
a (z0)∑
j=2

αjUj (a, z0).

Then we set

Ũ (z0) = U1(a, z0)−

m
(k)
a (z0)∑
j=2

αjUj (a, z0),
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which is 0 near a. Hence, by propagation [19, Lemma 7.7], Ũ (z0) is supported in-
side Wu(a) \ Wu(a). Thus, proceeding by induction on Smale’s partial order rela-
tion, we can without loss of generality suppose that, for every critical point a, the cur-

rents (Uj (a, z0))
m
(k)
a (z0)

j=1 are linearly independent germs at a and not only as elements
of D′,k(M). This concludes the proof of Lemma 5.5.

5.2.2. Support of the dual basis. We would like to show that the dual basis

{Sj (a, z0) : a ∈ Crit(f ), 1 ≤ j ≤ m(k)a (z0)}

defined above contains only currents with minimal support. In fact, we will prove

Lemma 5.9. For all z0 ∈ Rk , the above dual basis satisfies the condition

∀a ∈ Crit(f ), ∀1 ≤ j ≤ m(k)a (z0), supp(Sj (a, z0)) ⊂ W s(a).

The above bound on the support of the dual basis actually shows that

supp(Sj (a, z0)) ∩ supp(Uj (a, z0)) = {a}. (22)

Proof of Lemma 5.9. Let 0 ≤ k ≤ n and let z0 ∈ Rk . We shall argue by induction on
Smale’s partial order relation �. In that manner, it is sufficient to prove that, for every
a ∈ Crit(f ) such that the conclusion of the lemma holds for all14 b � a, one has

∀1 ≤ j ≤ m(k)a (z0), supp(Sj (a, z0)) ⊂ W s(a).

Fix such a critical point a and ψ1 compactly supported in M \ W s(a). Then we con-
sider a small enough neighborhood Va of a which does not interesect the support of ψ1
and we fix ψ2 in �kc(Va). From [18, Remark 4.5, p. 17], we know that if Va is chosen
small enough, then ϕ−tf (Va) remains inside the complement of supp(ψ1) for t ≥ 0. In
particular, for every t ≥ 0, ϕ−t∗f (ψ1) ∧ ψ2 = 0. Applying the asymptotic expansion of
Proposition 4.6, we then find that∫

M

π (k)z0
(ψ1) ∧ ψ2 = 0.

Hence, combining this with (20), we have proved that

∀ψ2 ∈ �
k
c(Va),

∑
b∈Crit(f )

m
(k)
b (z0)∑
j=1

(∫
M

ψ1 ∧ Sj (b, z0)

)(∫
M

Uj (b, z0) ∧ ψ2

)
= 0.

14 Note that a may be a minimum and, in that case, there is no such b.
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As Va is a small neighborhood of a and as Uj (b, z0) is carried by W s(b), we can apply
Smale’s Theorem 5.2 to verify that only the points b such that b � a contribute to the
above sum, i.e.

∀ψ2 ∈ �
k
c(Va),

∑
b∈Crit(f ): b�a

m
(k)
b (z0)∑
j=1

(∫
M

ψ1 ∧ Sj (b, z0)

)(∫
M

Uj (b, z0) ∧ ψ2

)
= 0.

We can now use our inductive assumption on a and the fact that W s(b) ⊂ W s(a) for
b � a to get

∀ψ2 ∈ �
k
c(Va),

m
(k)
a (z0)∑
j=1

(∫
M

ψ1 ∧ Sj (a, z0)

)(∫
M

Uj (a, z0) ∧ ψ2

)
= 0.

As the germs of currents are independent at a, we can deduce that
∫
M
ψ1 ∧ Sj (a, z0) = 0

for every 1 ≤ j ≤ m(k)a (z0), which concludes the proof. ut

5.3. Proof of Proposition 5.3

We can now conclude the proof of Proposition 5.3. With the above conventions, it is
sufficient to show that m(k)a (z0) = Rk(π (k)z0,a). Hence, we fix a critical point a and thanks
to (19), we can write, for every ψ1 in �kc(Va),

π (k)z0,a
(ψ1)|Va =

∑
b∈Crit(f )

m
(k)
b (z0)∑
j=1

(∫
M

ψ1 ∧ Sj (b, z0)

)
Uj (b, z0)|Va .

We will now verify that all the terms corresponding to b 6= a cancel. To that
end, we choose Va small enough around a such that Va ∩ Wu(b) = ∅ (resp.
Va ∩ W s(b) = ∅) unless b � a (resp. unless b � a). Then Sj (b, z0) ∧

ψ1 = 0 unless b � a because supp(Sj (b, z0)) ⊂ W s(b) does not meet Va
hence supp(ψ1). In the same manner, Uj (b, z0)|Va = 0 unless b � a since
supp(Uj (b, z0)) ⊂ Wu(b) does not meet Va unless b � a. Therefore, all

these cancellations imply that
∑
b∈Crit(f )

∑m
(k)
b (z0)

j=1 (
∫
M
ψ1 ∧ Sj (b, z0))Uj (b, z0)|Va =∑m

(k)
a (z0)

j=1 (
∫
M
ψ1 ∧ Sj (a, z0))Uj (a, z0)|Va , yielding

π (k)z0,a
(ψ1) =

m
(k)
a (z0)∑
j=1

(∫
M

ψ1 ∧ Sj (a, z0)

)
Uj (a, z0)|Va . (23)

Thanks to Lemma 5.5, we know that the currents Uj (a, z0)|Va are linearly independent
in D′k(Va). Using (22) and the fact that Sj (a, z0) is the dual basis of Uj (a, z0), we can
verify that the Sj (a, z0) are also independent germs at a. Hence, one can verify that the

range of π (k)z0,a is spanned by the currents (Uj (a, z0)|Va )
m
(k)
a (z0)

j=1 , which concludes the proof
of Proposition 5.3.
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5.4. No Jordan blocks for z0 = 0

Let 0 ≤ k ≤ n. Thanks to Remark A.1, we know that the multiplicity of 0 as a zero of
ζ
(k)
R (z) =

∏
a ζ

(k)
R,a(z) is equal to the number of critical points of index k. On the other

hand, given a critical point a of index l, if we use Baladi–Tsujii’s local result relating the
zeros of ζ (k)R,a(z) to the eigenvalues of ϕ−1∗ near a [3, Th. 2.2], we know that

m(k)a (0) =
{

1 if dimW s(a) = k = l,

0 otherwise.

Hence, if we use (23) combined with Proposition 5.3, we can deduce that, for z0 = 0, one
can find a basis of generalized eigencurrents for Ker(L(k)Vf )

N (for some large enough N ):

{Ua : dimW s(a) = k},

whose support is equal toWu(a). We would now like to verify that we can pickN = 1, or
equivalently that there is no Jordan blocks in the kernel. Suppose by way of contradiction
that we have a nontrivial Jordan block, i.e. there exist u0 6= 0 and u1 6= 0 such that

L(k)Vf u0 = 0 and L(k)Vf u1 = u0.

We fix a to be a critical point of index k such that u0 is not 0 near a. Such a point exists as
u0 is a linear combination of the (Ub)b: dimW s (b)=k . Recall from Smale’s theorem that, for
every b in Crit(f ), Wu(b) \Wu(b) is the union of unstable manifolds whose dimension
is < dimWu(b). Hence, as u1 is also a linear combination of the (Ub)b: dimW s (b)=k , it
follows that u1 is proportional to Ua near a. In a neighborhood of a, we then have u0 =

α0Ua (with α0 6= 0) and u1 = α1Ua . If we use the eigenvalue equation, we find that, in a
neighborhood of a,

α0L(k)Vf Ua = 0 and α1L(k)Vf Ua = α0Ua .

As Ua is not identically 0 near a, we find the expected contradiction.
We next prove the following lemma on the local structure of eigencurrents in

Ker(LVf ) near critical points:

Lemma 5.10. Let y0 be a point inside Wu(a). Then one can find a local system of coor-
dinates (x1, . . . , xn) such that Wu(a) is given locally near y0 by {x1 = · · · = xr = 0},
where r is the index of a and the current [Wu(a)] = δ0(x1, . . . , xr)dx1 ∧ · · · ∧ dxr
coincides with Ua near y0. Similarly, Sa = [W s(a)] near a.

Proof. Recall from [56, 59] that Wu(a) is an embedded submanifold inside M . Then
there is a local system of coordinates (x1, . . . , xn) such that Wu(a) is given locally near
y0 by {x1 = · · · = xr = 0}, where r is the index of a. The current of integration on
Wu(a), for the choice of orientation given by [dx1∧ · · ·∧dxr ] (see [16, Appendix D] for
a discussion of orientations for integration currents), reads in this system of coordinates
[Wu(a)] = δ0(x1, . . . , xr)dx1 ∧ · · · ∧ dxr by [16, Cor. D.4]. Moreover, for every test
form ω whose support does not meet the boundary ∂Wu(a) = Wu(a) \Wu(a), one has



Pollicott–Ruelle spectrum and Witten Laplacians 1835

for all t ∈ R the identity 〈ϕ−t∗f [W
u(a)], ω〉 =

∫
Wu(a)

ϕt∗f ω =
∫
ϕ−tf (Wu(a))=Wu(a)

ω =

〈[Wu(a)], ω〉 since ϕtf : M → M is an orientation preserving diffeomorphism which
leaves Wu(a) invariant. This implies that in the weak sense ϕ−t∗f [W

u(a)] = [Wu(a)]

for all t ∈ R, hence LVf ([Wu(a)]) = 0. Near a, [Wu(a)] belongs to the anisotropic

Sobolev space H
mN0,N1
r (M) for N0, N1 large enough. Hence, if we fix a smooth cutoff

function χa near a, we can verify, by a propagation argument similar to the ones used to
prove Lemma 5.5, that Ua can be chosen equal to π (r)0 (χa[W

u(a)]), and one has Ua =
[Wu(a)] near a. Similarly, Sa = [W s(a)] near a. ut

To end this section and as a consequence of (11), Corollary 4.7 and Lemma 5.10, let us
record the following improvement of the results from [41, 17]:

Theorem 5.11 (Vacuum states). Suppose that the assumptions of Theorem 2.1 are sat-
isfied and fix 0 ≤ k ≤ n. Then, for every

0 < 3 < min{|χj (a)| : 1 ≤ j ≤ n, a ∈ Crit(f )}

and every (ψ1, ψ2) ∈ �
k(M)×�n−k(M),∫

M

ϕ−t∗f (ψ1) ∧ ψ2 =
∑

a: dimWu(a)=n−k

∫
M

ψ1 ∧ Sa

∫
M

Ua ∧ ψ2 +Oψ1,ψ2(e
−3t ).

6. Proofs of Theorems 2.1 to 2.6

In this section, we make use of the information collected so far to prove the main state-
ments of the introduction except for Theorem 2.7 that will be proved in Section 7.

6.1. Proof of Theorem 2.5

Regarding the limit operator, it now remains to show Witten’s instanton formula of The-
orem 2.5. For that purpose, we first discuss some orientation issues for curves connecting
a pair (a, b) of critical points of f . Choosing some orientation of every unstable mani-
folds (Wu(a))a∈Crit(f ) defines a local germ of current [Wu(a)] near every critical point a
and some integration current in D′,•(M \ ∂Wu(a)). Both Theorem 5.11 and Lemma 5.10
show us that each germ [Wu(a)] extends to a globally well defined current Ua on M
which coincides with [Wu(a)] on M \ ∂Wu(a). As M is oriented, the orientation of
Wu(a) induces a canonical coorientation on W s(a) so that the intersection pairing at the
level of currents gives

∫
M
χ [Wu(a)] ∧ [W s(a)] = χ(a) for every a ∈ Crit(f ) and for

all smooth χ compactly supported near a. Given any two critical points (a, b) satisfying
ind(a) = ind(b) + 1, recall from [59, Prop. 3.6] that there exist finitely many flow lines
connecting a and b. These curves are called instantons and we shall denote them by γab.
Such a curve is naturally oriented by the gradient vector field Vf , hence defines a current
of integration of degree n− 1, [γab] ∈ D′,n−1(M).
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Definition 6.1. We define an orientation coefficient σ(γab) ∈ {±1} by

[γab] = σ(γab)[W
u(a)] ∧ [W s(b)] (24)

in the neighborhood of some x ∈ γab where x differs from both (a, b).

Let us verify that this definition makes sense. From the Smale transversality assump-
tion (see §3.1.1), one finds, for x ∈ γab \ {a, b}, that the intersection of the conormals
N∗(Wu(a)) and N∗(W s(b)) is empty. Hence, according to [44, p. 267] (see also [11] or
Section 7), it makes sense to consider the wedge product [Wu(a)] ∧ [W s(b)] near such a
point x. Moreover, it defines, near x, the germ of integration current along γab using the
next lemma:

Lemma 6.2. Let X, Y be two tranverse submanifolds of M whose intersection is a sub-
manifold denoted by Z. Then choosing an orientation of X, Y,M induces a canonical
orientation of Z such that near every point of Z, we have a local equation in the sense of
currents [Z] = [X] ∧ [Y ].

Proof. Thanks to the transversality assumption, we can use local coordinates (x, y, h)
where locally X = {x = 0}, Y = {y = 0} and Z = {x = 0, y = 0} Hence,

[X] ∧ [Y ] = δR
p

{0} (x)dx ∧ δ
Rq
{0}(y)dy = δ

Rp+q
{0} (x, y)dx ∧ dy = [Z]

by definition of integration currents. ut

Altogether, this shows that the coefficient σ(γab) is well defined. In fact, using the flow,
we see that the formula

[γab] = σ(γab)[W
u(a)] ∧ [W s(b)]

holds true on M \ {a, b}. We are now ready to prove Theorem 2.5 by setting

nab = (−1)n
∑
γab

σ(γab),

where the sum runs over instantons from a to b. In other words, the integer nab counts
with sign the number of instantons connecting a and b. We first recall that, as d commutes
with LVf and as the currents (Ua)a∈Crit(f ) are elements in15 Ker(LVf ), we already know
that dUa ∈ Ker(LVf ). Hence,

dUa =
∑

b: ind(b)=ind(a)+1

n′abUb,

where the coefficients n′ab are a priori real numbers. The goal is to prove that they are
indeed equal to the integer coefficients nab we have just defined. Let a be some critical
point of f of index k. Choose some arbitrary cutoff function χ such that χ = 1 in a small

15 Recall also that this spectrum is intrinsic, i.e. independent of the choice of the anisotropic
Sobolev space.
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neighborhood of a and χ = 0 outside some slightly bigger neighborhood of a. Then the
following identity holds true in the sense of currents:

d(χ [Wu(a)]) = d(χUa) = dχ ∧ Ua + χ ∧ dUa = dχ ∧ [W
u(a)],

where we use the fact that [Wu(a)] = Ua on the support of χ , Smale’s Theorem 5.2 and
the fact that χ ∧ dUa = 0 since dUa is a linear combination of the Ub with ind(b) =
ind(a)+ 1. In other words, we use the fact that the current dUa is supported by ∂Wu(a).

Choose now some critical point b such that ind(b) = ind(a) + 1. Then, for a small
open neighborhood O of {a} ∪ ∂Wu(a), we have the following identity in the sense of
currents in D′(M \O):

[Wu(a)] ∧ [W s(b)]|M\O =
∑
γab

σ(γab)[γab]|M\O , (25)

where the sum runs over instantons γab connecting a and b. Recall from the above that the
wedge product makes sense thanks to Smale’s transversality assumption. We choose O
in such a way that O does not meet the support of dχ . Then the following identity holds
true:

〈d(χ [Wu(a)]), [W s(b)]〉 =

∫
M

dχ ∧ [Wu(a)] ∧ [W s(b)]

= (−1)(n−1)
∑
γab

σ(γab)

∫
M

[γab] ∧ dχ

= (−1)n−1
∑
γab

σ(γab)

∫
γab

dχ

= (−1)n−1
∑
γab

σ(γab)(χ(b)− χ(a))︸ ︷︷ ︸
0−1

= nab.

We have just proved that, for any function χ such that χ = 1 near a and χ = 0 outside
some slightly bigger neighborhood of a, one has

〈d(χ [Wu(a)]), [W s(b)]〉 = nab.

Note that this equality remains true for any χ such that χ = 1 near a and χ = 0 in
some neighborhood of ∂Wu(a) = Wu(a)\Wu(a). In particular, it applies to the pullback
ϕ−t∗f (χ) for all t ≥ 0. Recall in fact that ϕ−t∗f [W

u(a)] = [Wu(a)] on the support of
ϕ−t∗f (χ) by Lemma 5.10. Still from this lemma, one knows that Sb = [W s(b)] on the
support of d(ϕ−t∗f (χ)). Therefore, one also has

∀t ≥ 0, 〈dϕ−t∗f (χ [Wu(a)]), Sb〉 = 〈dϕ
−t∗
f (χ [Wu(a)]), [W s(b)]〉 = nab.

Still from Lemma 5.10 and as χ is compactly supported near a, we know that, for an
appropriate choice of integers N0, N1, the current χ [Wu(a)] belongs to the anisotropic
Sobolev space H

mN0,N1
k (M) (where k = ind(a)) and the spectrum of −L(k)Vf is discrete on
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some half-plane Re(z) > −c0 with c0 > 0. Thanks to Proposition 4.6 and to the fact that
there are no Jordan blocks, we can conclude that, in the Sobolev space H

mN0,N1
k (M),

ϕ−t∗f (χ [Wu(a)])→
∑

a′∈Crit(f ): ind(a′)=ind(a)+1

(∫
M

(χ [Wu(a)])∧ Sa′

)
Ua′ as t →+∞.

For every smooth test (n− k)-form ψ2 compactly supported inM \Wu(a), we can verify
that

∀t ≥ 0, ϕ−t∗f (χ [Wu(a)]) ∧ ψ2 = 0,

which implies that the above reduces to

ϕ−t∗f (χ [Wu(a)])→

(∫
M

(χ [Wu(a)]) ∧ Sa

)
︸ ︷︷ ︸

=〈Ua ,Sa〉=1

Ua = Ua as t →+∞,

since χ(a) = 1, supp(Sa) ∩ supp(χ [Wu(a)]) = {a} by (22) and Sa = [W s(a)]

near a. Then it follows from the continuity of d : H
mN0,N1
k (M) → H

mN0,N1−1
k+1 (M) that

dϕ−t∗(χ [Wu(a)])→ dUa in H
mN0,N1−1
k+1 (M). Finally, by continuity of the duality pairing

H
mN0,N1−1
k+1 (M)×H

1−mN0,N1
n−(k+1) (M) 3 (u, v) 7→ 〈u, v〉, we deduce that

nab = lim
t→+∞

〈Sb, dϕ
−t∗(χ [Wu(a)])〉 = 〈Sb, dUa〉.

This shows that the complex (Ker(LVf ), d) generated by the currents (Ua)a∈Crit(f ) is
well defined as a Z-module. Then, we note that tensoring the above complex with R
yields a complex (Ker(LVf ), d)⊗ZR which is quasi-isomorphic to the de Rham complex
(�•(M), d) of smooth forms by [20, Th. 2.1] as a consequence of the chain homotopy
equation [20, §4.2]:

∃R : �•(M)→ D′,•−1(M), Id− π0 = d ◦ R + R ◦ d. (26)

This ends our proof of Theorem 2.5.

6.2. Proof of the results on the Witten Laplacian

First of all, we note that the result from Theorem 2.1,

lim
h→0+

∫
M

1[0,ε](W
(k)
f,h )(e

−f/hψ1) ∧ (e
f/hψ2) = lim

t→+∞

∫
M

ϕ−t∗f (ψ1) ∧ ψ2,

is a direct consequence of Theorem 2.4 which yields convergence of spectral projec-
tors, limh→0+

∫
M

1[0,ε](W
(k)
f,h )(e

−f/hψ1)∧ (e
f/hψ2) =

∫
M
π
(k)
0 (ψ1)∧ψ2 combined with

Theorem 5.11 where the limit term limt→+∞

∫
M
ϕ−t∗f (ψ1) ∧ ψ2 is identified with the

term
∫
M
π
(k)
z0 (ψ1) ∧ ψ2 coming from the spectral projector corresponding to the eigen-

value 0—see Section 5. Hence, it now remains to recall that Theorem 2.4, which claims
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that the spectral data of the Witten Laplacian converge to the spectral data of −LVf , fol-
lows straightforwardly from Theorems 4.4 and 4.5.

We now prove Corollary 2.6 about the Witten–Helffer–Sjöstrand tunneling formula
for our WKB states, which becomes a direct corollary of Theorem 2.5. Indeed, our WKB
states were defined by using the spectral projector on the small eigenvalues of the Witten
Laplacian, i.e.

Ua(h) = 1[0,ε0](W
(k)
f,h )(e

f (a)−f
h Ua),

where k is the index of the critical point. Thanks to Theorem 2.5, we already know

df,h(e
f (a)−f

h Ua) =
∑

b: ind(b)=ind(a)+1

na,be
−
f (b)−f (a)

h e
f (b)−f

h Ub. (27)

Recall now that df,~Wf,~ = Wf,~df,~ and the spectral projector has the following integral
expression:

1[0,ε0](W
(k)
f,h ) =

1
2iπ

∫
C(0,ε0)

(z−Wf,h)
−1 dz.

Hence, df,h commutes with 1[0,ε0](W
(•)
f,h). It is then sufficient to apply the spectral projec-

tor to both sides of (27) to conclude the proof.

Remark 6.3. Note that the family (Ua(h))a∈Crit(f ) is made up of linearly independent

currents for h > 0 small enough. Indeed, set Ũa(h) := e
f−f (a)

h Ua(h), which converges to
Ua in the anisotropic Sobolev space thanks to Theorem 4.5, and write, for every critical
point a of index k,

π
(k)
0 (Ũa(h)) =

∑
b: ind(b)=k

(∫
M

Ũa(h) ∧ Sb

)
Ub =

∑
b: ind(b)=k

(δab + o(1))Ub.

Hence, the (Ũa(h))a∈Crit(f ) are linearly independent for h > 0 small enough as
the (Ua)a∈Crit(f ) are. After multiplication by e−f/h, the same holds for the family
(Ua(h))a∈Crit(f ). Note that the linear independence would also follow from the arguments
of Section 8 below but our argument here is independent of the Helffer–Sjöstrand con-
struction of quasimodes. Finally, it seems to us that determining the limit of the Helffer–
Sjöstrand quasimodes would probably be a delicate task via the semiclassical methods
from [43]—see Remark 8.1 below.

7. Proof of Theorem 2.7

In this section, we give the proof of Theorem 2.7 which states that our WKB states satisfy
Fukaya’s instanton formula. Using the conventions of Theorem 2.7, we start with the
following observation:

Uaij (h) = 1[0,ε0](Wfij ,h)(e
fij (aij )−fij (x)

h Uaij )

= e
fij (aij )−fij (x)

h 1[0,ε0](LVfij + h1gij /2)(Uaij ),
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where ε0 > 0 is small enough and where ij belongs to {12, 23, 31}. Hence, we can deduce
that

Ua12(h) ∧ Ua23(h) ∧ Ua31(h) = e
f12(a12)+f23(a23)+f31(a31)

h Ũa12(h) ∧ Ũa23(h) ∧ Ũa31(h),

where, for every ij and for h > 0,

Ũaij (h) := 1[0,ε0](LVfij + h1gij /2)(Uaij ),

while Ũa(0) := Ua . Hence, the proof of Theorem 2.7 consists in showing that∫
M

Ũa12(h) ∧ Ũa23(h) ∧ Ũa31(h)

converges as h → 0+ to
∫
M
Ua12 ∧ Ua23 ∧ Ua31 , and that this limit is an integer. In

particular, we will have to justify that Ua12 ∧ Ua23 ∧ Ua31 is well defined. The proof will
be in two steps. First, we will show that (Ũaij (h))h→0+ defines a bounded sequence in
some space of currents D′0ij (M) with prescribed wavefront sets. Then, we will apply
theorems on the continuity of wedge products for currents with transverse wavefront sets.

7.1. Background on Fukaya’s conjecture

Before proving Fukaya’s conjecture on Witten Laplacians, we start with a brief overview
of the context in which they appear. These problems are related to symplectic topology
and Morse theory, and it goes without saying that the reader is strongly advised to consult
the original papers of Fukaya for further details [30, 31, 32]. In symplectic topology, one
would like to attach invariants to symplectic manifolds, in particular to Lagrangian sub-
manifolds since they play a central role in symplectic geometry. Motivated by Arnold’s
conjectures on Lagrangian intersections, Floer constructed an infinite-dimensional gener-
alization of Morse homology named Lagrangian Floer homology, which is the homology
of some chain complex (CF(L0, L1), ∂) associated to pairs of Lagrangians (L0, L1) and
generated by the intersection points of L0 and L1 [1, Def. 1.4, Th. 1.5]. Then, for sev-
eral Lagrangians satisfying precise geometric assumptions, it is possible to define some
product operations on the corresponding Floer complexes [1, Sect. 2], and the collection
of all these operations and the relations among them form a so called A∞ structure first
described by Fukaya. The important result is that the A∞ structure, up to some natural
equivalence relation, does not depend on the various choices that were made to define it,
in the same way as the Hodge–de Rham cohomology theory of a compact Riemannian
manifold does not depend on the choice of metric.

Let us briefly motivate the notion of A∞ structure by discussing a simple example.
On a given smooth compact manifold M , consider the de Rham complex (�•(M), d)
with the corresponding de Rham cohomology H •(M) = Ker(d)/Ran(d). From classi-
cal results of differential topology, if N is another smooth manifold diffeomorphic to M ,
then we have a quasi-isomorphism between (�•(M), d) and (�•(N), d), which implies
that the corresponding cohomologies are isomorphic, H •(M) ' H •(N). This means
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that the space of cocycles is an invariant of our space. However, there are manifolds
which have the same cohomology groups, hence the same homology groups by Poincaré
duality, and which are not homeomorphic, hence (co)homology is not enough to spec-
ify the topology of a given manifold. One direction to get more invariants would be to
give some information on relations among (co)cycles. Recall that (�•(M), d,∧) is a dif-
ferential graded algebra where the algebra structure comes from the wedge product ∧,
and the fact that ∧ satisfies the Leibniz rule with respect to the differential d readily
implies that ∧ : �•(M) × �•(M) → �•(M) induces on cohomology a bilinear map
m2 : H

•(M)× H •(M)→ H •(M) called the cup-product. By Poincaré duality, this op-
eration on cohomology geometrically encodes intersection-theoretic information among
cycles and gives more information than the usual (co)homology groups. Algebras of A∞
type are a far reaching generalization of differential graded algebras where the wedge
product is replaced by a sequence of k-multilinear products for all k ≥ 2 with relations
among them generalizing the Leibniz rule [58].

In perfect analogy with symplectic topology, Fukaya introduced A∞ structures in
Morse theory [30, Chapter 1]. In that case, the role of Lagrangian pairs (L0, L1) is played
by a pair of smooth functions (f0, f1) such that f0 − f1 is Morse. Note that it is not
a priori possible to endow the Morse complex with the wedge product ∧ of currents
since currents carried by the same unstable manifold cannot be intersected because of the
lack of transversality. The idea is to perturb the Morse functions to create transversality.
Thus, we should deal with several pairs of smooth functions. In that context, Fukaya
formulated conjectures [32, Sect. 4.2] related to the A∞ structure associated with the
Witten Laplacian. He predicted that the WKB states of Helffer and Sjöstrand should verify
more general asymptotic formulas than the tunneling formulas associated with the action
of the twisted coboundary operator df,h [32, Conj. 4.1 and 4.2]. Indeed, after twisting the
de Rham coboundary operator d and getting tunneling formulas for df,h, the next natural
idea is to find some twisted version of Cartan’s exterior product ∧ and see if one can
find some analogue of the tunneling formulas for twisted products. At the semiclassical
limit h→ 0+, Fukaya conjectured that this twisted product should converge to the Morse-
theoretical analogue of the wedge product modulo some exponential corrections related to
disk instantons [33, 34]. Hence, as for the coboundary operator, the cup-product in Morse
cohomology would appear in the asymptotics of the Helffer–Sjöstrand WKB states. The
purpose of the next subsections is to show that our quasimodes also satisfy the asymptotic
formula conjectured by Fukaya for the wedge product.

7.2. Wavefront set of eigencurrents

In this subsection, we fix a smooth Morse–Smale gradient vector field Vf which is C1-
linearizable. Fix 0 ≤ k ≤ n and 3 > 0. Then, following Section 3, choose some large
enough integers N0, N1 to ensure that for every 0 ≤ h < h0, the operator

−LVf − h1g/2 : H
mN0,N1
k (M) ⊃ �k(M)→ H

mN0,N1
k (M)

has discrete spectrum with finite multiplicity on the domain Re(z) > −3. Recall from
[28, Th. 1.5] that the eigenmodes are intrinsic and that they do not depend on the choice
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of the order function. Recall also from Section 3 that, up to some uniform constants,
the parameter 3 has to be smaller than c0 min{N0, N1}, which is the quantity appear-
ing in Lemma 3.3. Hence, if we choose N ′1 ≥ N1, we do not change the spectrum on
Re(z) > −3. In particular, any generalized eigenmode U ∈ H

mN0,N1
k (M) associated with

an eigenvalue z0 belongs to any anisotropic Sobolev space H
mN0,N

′
1

k (M) with N ′1 ≥ N1.
We also note from the proof of Theorem 4.5 that, for every N ′1 ≥ N1,

‖Ũa(h)− Ua‖
H
m
N0,N

′
1

k (M)
→ 0 as h→ 0. (28)

Remark 7.1. Note that the proof in Section 4 shows that the convergence rate is of or-
der O(h) but we omit this information for simplicity of exposition.

We now have to recall a few facts on the topology of the space D′,k0−(Vf )(M) of currents
whose wavefront set is contained in the closed conic set 0−(Vf )=

⋃
a∈Crit(f )N

∗(Wu(a))

⊂ T ∗M \ 0 which is defined in §3.1.1. Note that we temporarily omit the dependence
on Vf as we only deal with one Morse function for the moment. Recall that on some
vector space E, given some family of seminorms P , we can define a topology on E
which makes it a locally convex topological vector space. A neighborhood basis of the
origin is defined by the subsets {x ∈ E : P(x) < A} with A > 0 and with P a seminorm.
In the particular case of currents, we will use the strong topology:

Definition 7.2 (Strong topology and bounded subsets). The strong topology of D′,k(M)
for M compact is defined by the following seminorms. Choose some bounded set B in
�n−k(M). Then we define a seminorm PB as PB(u) = supϕ∈B |〈u, ϕ〉|. A subset B
of currents is bounded iff it is weakly bounded, which means that for every test form
ϕ ∈ �n−k(M), supt∈B |〈t, ϕ〉| < +∞ [54, Ch. 3, p. 72]. This is equivalent to B being
bounded in some Sobolev space H s(M,3k(T ∗M)) of currents by an application of the
uniform boundedness principle [14, Sect. 5, Lemma 23].

We can now define the normal topology in the space of currents essentially following [11,
Sect. 3]:

Definition 7.3 (Normal topology on the space of currents). For every closed conic sub-
set 0 ⊂ T ∗M \ 0, the topology of D′,k0 (M) is defined as the weakest topology which
makes continuous the seminorms of the strong topology of D′,k(M) and the seminorms

‖u‖N,C,χ,α,U = ‖(1+ ‖ξ‖)NF(uαχ)(ξ)‖L∞(C), (29)

where χ is supported on some chart U where u =
∑
|α|=k uαdx

α; α is a multi-index;
F is the Fourier transform calculated in the local chart; and C is a closed cone such that
(supp χ×C)∩0 = ∅. A subset B ⊂ D′,k0 is called bounded in D′k0 if it is bounded in D′k
and if all seminorms ‖ · ‖N,C,χ,α,U are bounded on B.

We emphasize that this definition is given purely in terms of local charts without loss of
generality. The above topology is in fact intrinsic as a consequence of the continuity of
the pullback [11, Prop. 5.1, p. 211] as emphasized by Hörmander [44, p. 265]. Note that
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it is the same to consider currents or distributions when we define the relevant topologies
since currents are just elements of the form

∑
ui1,...,ikdx

i1∧· · ·∧dxik in local coordinates
(x1, . . . , xn) where the coefficients ui1,...,ik are distributions.

Note from (28) that (Ũa(h))0≤h<1 is a bounded family in the anisotropic Sobolev
space H

mN0,N1
k (M) and is thus bounded in H−s(M,3k(T ∗M)) for s large enough. In

particular, from Definition 7.2, it is a bounded family in D′,k(M). We would now like to
verify that it is a bounded family in D′,k0−(M) which converges in the normal topology
as h goes to 0 in order to apply the results from [11]. For that purpose, we can already
observe that, for some s large enough, ‖Ũa(h) − Ua‖H−s (M,3k(T ∗M)) → 0 as h→ 0. In
particular, it converges for the strong topology in D′,k(M). Hence, it remains to discuss
the boundedness and the convergence with respect to the seminorms ‖ · ‖N,C,χ,α,U . We
note that these seminorms involve the L∞ norm while the anisotropic spaces we deal with
so far are built from L2 norms. This problem is handled by the following lemma

Lemma 7.4 (L2 vs L∞). Let N , Ñ be some positive integers and let W0 be a closed
cone in Rn∗. Then, for every closed conic neighborhoodW ofW0, one can find a constant
C = C(N, Ñ,W) > 0 such that, for every u in C∞c (BRn(0, 1)),

sup
ξ∈W0

(1+ |ξ |)N |̂u(ξ)| ≤ C
(
‖(1+ |ξ |)N û(ξ)‖L2(W) + ‖u‖H−Ñ

)
.

We postpone the proof of this lemma to Appendix B and we show first how to use it
in our context. We consider the family (Ũa(h))0≤h<h0 of currents in D′,k(M) and we
would like to show that it is a bounded family in D′,k0−(M) and that Ũa(h) converges
to Ua in the normal topology we have just defined. Recall that this family is bounded and

that we have convergence in every anisotropic Sobolev space H
mN0,N

′
1

k (M) with N ′1 large
enough. Fix (x0, ξ0) /∈ 0−. Fix some N > 0. Note that, up to shrinking the neighborhood
used to define the order function in §3.1.2 and up to increasing N1, we can suppose that
mN0,N

′

1
(x; ξ) > N/2 for any N ′1 and for every (x, ξ) in a small conical neighborhood W

of (x0, ξ0).
Fix now a smooth test function χ supported near x0 and a closed cone W0 which

is strictly contained in the conical neighborhood W we have just defined. Thanks to
Lemma 7.4 and to the Plancherel equality, the norm we have to estimate is

‖(1+ ‖ξ‖)NF(χŨa(h))‖L∞(W0)

≤ C
(
‖χ1(ξ)(1+ ‖ξ‖)NF(χŨa(h))‖L2 + ‖Ũa(h)‖H−Ñ

)
≤ C

(
‖Op(χ1(ξ)(1+ ‖ξ‖)Nχ)Ũa(h)‖L2 + ‖Ũa(h)‖H−Ñ

)
,

where χ1 ∈ C∞ is identically 1 on the conical neighborhood W and equal to 0 outside
a slightly bigger neighborhood. For Ñ large enough, we can already observe that the
second term ‖Ũa(h)‖H−Ñ in the upper bound is uniformly bounded as Ũa(h) is uniformly
bounded in some fixed anisotropic Sobolev space. Hence, it remains to estimate

‖Op(χ1(ξ)(1+ ‖ξ‖)Nχ)Op(A(k)
N0,N

′

1
)−1 Op(A(k)

N0,N
′

1
)Ũa(h))‖L2(M).
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By composition of pseudodifferential operators and as we chose N ′1 large enough to en-
sure that the order function mN0,N1 is larger than N/2 on supp(χ1), we can deduce that
this quantity is bounded (up to some constant) by ‖Op(A(k)

N0,N
′

1
)Ũa(h)‖L2 , which is ex-

actly the norm on the anisotropic Sobolev space. To summarize, this argument shows

Proposition 7.5. Let Vf be a Morse–Smale gradient flow which is C1-linearizable. Then
there exists h0 > 0 such that, for every 0 ≤ k ≤ n and every a ∈ Crit(f ) of index k, the
family (Ũa(h))0≤h<h0 is bounded in D′,k0−(Vf )(M). Moreover, Ũa(h) converges to Ua for
the normal topology in D′,k0−(Vf )(M) as h→ 0+.

This proposition is the key ingredient we need in order to apply the theoretical results
from [11]. Before doing that, we can already observe that if we come back to the frame-
work of Theorem 2.7, then the generalized Morse–Smale assumptions ensure that the
wavefront sets of the three families of currents are transverse. In particular, we can de-
fine the wedge product even for16 h = 0, i.e. Ua12 ∧ Ua23 ∧ Ua31 defines an element in
D′,n(M)—see below.

7.3. Convergence of products

Given two closed conic sets (01, 02) which have empty intersection, the usual wedge
product of smooth forms

∧ : �k(M)×�l(M) 3 (ϕ1, ϕ2) 7→ ϕ1 ∧ ϕ2 ∈ �
k+l(M)

extends uniquely as a hypocontinuous map for the normal topology [11, Th. 6.1],

∧ : D′k01
(M)×D′l02

(M) 3 (ϕ1, ϕ2) 7→ ϕ1 ∧ ϕ2 ∈ D′k+ls(01,02)
(M),

with s(01, 02) = 01 ∪ 02 ∪ (01 + 02). The notion of hypocontinuity is a strong notion
of continuity adapted to bilinear maps E × F → G where E,F,G are locally convex
spaces [11, pp. 204–205]. It is weaker than joint continuity but implies that the bilinear
map is separately continuous in each factor uniformly in the other factor in a bounded
subset, which is enough for our purposes.17

Remark 7.6. The proof in [11] was given for product of distributions and it extends to
currents as D′,k0 (M) = D′0(M) ⊗C∞(M) �k(M). Recall that the fact that ∧ is hypocon-
tinuous means that, for every neighborhood W ⊂ D′,k+ls(01,02)

(M) of zero and for every

bounded set B2 ⊂ D′,l02(M)
, there is some open neighborhood U1 ⊂ D′,k01

of zero such
that ∧(U1 × B2) ⊂ W . The same holds true if we invert the roles of 1 and 2. We
note that hypocontinuity implies boundedness, in the sense that any bounded subset of
D′k01

(M) × D′l02
(M) is sent to a bounded subset of D′k+ls(01,02)

(M). This follows from the
observation that a set B is bounded iff for every open neighborhood U of 0, B can be
rescaled by multiplication by λ > 0 so that λB ⊂ U .

16 For h 6= 0, there is no problem as the eigenmodes are smooth by elliptic regularity.
17 The tensor product of distributions for the strong topology is hypocontinuous but not continu-

ous [11, p. 205].
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Let us now come back to the proof of Theorem 2.7. This is where we will crucially
use the generalized transversality assumptions (5) introduced before Theorem 2.7. We
start by considering two points a12 and a23. In order to make the wedge product of Ua12

and Ua23 , one needs to verify that 0−(Vf12) ∩ 0−(Vf23) = ∅. To see this, recall that
0−(Vf12) ∩ 0−(Vf23) is equal to⋃

(a,b)∈Crit(f12)×Crit(f23)

N∗Wu(a) ∩N∗Wu(b),

which is a subset of ⋃
(a,b,c)∈Crit(f12)×Crit(f23)×Crit(f31)

(TWu(a) ∩ TWu(c)+ TWu(b))⊥ = ∅,

where the last equality is the content of our generalized Morse–Smale transversality
assumption. Combining Proposition 7.5 with the hypocontinuity of the wedge product,
we find that (Ũa12(h) ∧ Ũa23(h))0≤h<h0 is a bounded family in D′,k+ls(0−(Vf12 ),0−(Vf23 ))

(M),
where k is the index of a12 and l is that of a23. Moreover, as h→ 0,

Ũa12(h) ∧ Ũa23(h)→ Ũa12(0) ∧ Ũa23(0) = Ua12 ∧ Ua23

for the normal topology of D′,k+ls(0−(Vf12 ),0−(Vf23 ))
(M). Recall that s(0−(Vf12), 0−(Vf23)) is

equal to 0−(Vf12) ∪ 0−(Vf23) ∪ 0−(Vf12)+ 0−(Vf23), which is equal to⋃
(a,b)∈Crit(f12)×Crit(f23)

(TWu(a) ∩ TWu(b))⊥ \ 0.

Then, as our three vector fields satisfy the generalized Morse–Smale assumptions (5),
we can repeat this argument with the spaces D′,n−(k+l)0−(Vf31 )

(M) and D′,k+ls(0−(Vf12 ),0−(Vf23 ))
(M).

Hence we get, as h→ 0,

Ũa12(h) ∧ Ũa23(h) ∧ Ũa31(h)→ Ua12 ∧ Ua23 ∧ U31

in D′,ss(s(0−(Vf12 ),0−(Vf23 )),0−(Vf31 ))
(M). Finally, testing against the smooth form 1 in

�0(M), we find that, as h→ 0,∫
M

Ũa12(h) ∧ Ũa23(h) ∧ Ũa31(h)→

∫
M

Ua12 ∧ Ua23 ∧ U31,

which concludes the proof of Theorem 2.7 up to the fact that we need to verify that∫
M
Ua12 ∧ Ua23 ∧ U31 is an integer.
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7.4. End of the proof

In order to conclude the proof of Theorem 2.7, we will show that Wu(a12), Wu(a23) and
Wu(a31) intersect transversally at finitely many points belonging toWu(a12)∩W

u(a23)∩

Wu(a31). Then
∫
M
Ua12 ∧ Ua23 ∧ U31 is an integer in view of Lemma 6.2.

Let us start by showing that any point in Wu(a12)∩Wu(a23)∩Wu(a31) must belong
toWu(a12)∩W

u(a23)∩W
u(a31). For contradiction, suppose that x belongs toWu(a12)∩

Wu(a23)∩Wu(a31) but not toWu(a12)∩W
u(a23)∩W

u(a31). From Smale’s Theorem 5.2,
there exist critical points b1, b2 and b3 such that x ∈ Wu(b1) ∩W

u(b2) ∩W
u(b3) with

Wu(bi) ⊂ Wu(aij ) and at least one i satisfies dim(Wu(bi)) < dim(Wu(aij )). This
implies that

dim(Wu(b1))+ dim(Wu(b2))+ dim(Wu(b3)) < 2n.

Then, on account of our transversality assumption, we have

dim(Wu(b1) ∩W
u(b2) ∩W

u(b3)) = dim(Wu(b1) ∩W
u(b2))+ dim(Wu(b3))− n.

Using transversality one more time, we get

dim(Wu(b1)∩W
u(b2)∩W

u(b3)) = dim(Wu(b1))+dim(Wu(b2))+dim(Wu(b3))−2n
< 0,

which contradicts Wu(b1) ∩W
u(b2) ∩W

u(b3) 6= ∅. Hence, we have already shown that

Wu(a12) ∩Wu(a23) ∩Wu(a31) = W
u(a12) ∩W

u(a23) ∩W
u(a31),

and it remains to show that this intersection consists of finitely many points. For that
purpose, observe that as the intersection Wu(a12) ∩W

u(a23) ∩W
u(a31) is transverse, it

defines a 0-dimensional submanifold of M . Thus, x belonging to Wu(a12) ∩W
u(a23) ∩

Wu(a31) is an isolated point insideWu(aij ) for the induced topology by the embedding of
Wu(aij ) in M , for every ij in {12, 23, 31}. Moreover, as this intersection coincides with
its closure, we can deduce there can only be finitely many points in it, and this concludes
the proof of Theorem 2.7.

7.5. Morse gradient trees

Now that we have shown that the limit in Theorem 2.7 is an integer, let us give its ge-
ometric interpretation in terms of counting gradient flow trees. From the above proof,
we count with orientation the number of points in Wu(a12) ∩ W

u(a23) ∩ W
u(a31). In

dynamical terms, such a point x0 corresponds to the intersection of three flow lines start-
ing from a12, a23 and a31 and passing through x0. This represents a one-dimensional
submanifold having the form of a Y-shaped tree whose edges are gradient lines. Hence,∫
M
Ua12 ∧Ua23 ∧Ua31 counts the number of such Y-shaped gradient trees given by a triple

of Morse–Smale gradient flows.
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7.6. Cup-products

These triple products can be interpreted in terms of the cup-products appearing in Morse
theory [30, 31]. Indeed, we can naturally define a bilinear map

m
(k,l)
2 : Ker(−L(k)Vf12

)× Ker(−L(l)Vf23
)→ Ker(−L(k+l)Vf13

),

where f13 = −f31. This can be done as follows. The coefficients of m(k,l)2 in the basis
(Ua12 , Ua23 , Ua13) are given by

∫
M
Ua12 ∧Ua23 ∧Ua31 ∈ Z. Note that, as f13 = −f31, one

has18 Ua31 = Sa13 . Hence, these coefficients can be written in a more standard way as∫
M

Ua12 ∧ Ua23 ∧ Sa13 ∈ Z.

As we defined a map on all the generators of the Morse complex, this endows the whole
Morse complex with a product which is defined, for every (U1, U2) ∈ Ker(−L(k)Vf12

) ×

Ker(−L(l)Vf23
), as

m
(k,l)
2 (U1, U2) =

∑
a13∈Crit(f13)

(∫
M

U1 ∧ U2 ∧ Sa13

)
Ua13 .

Note that, compared with the classical theory where these maps are defined in an
algebraic manner [31], our formulation is purely analytical. Thanks to the remark in §7.5,
one can verify that these algebraic and analytical maps are exactly the same. It is already
known that the map m2 induces a cup-product on the cohomology. Let us re-prove this
fact using our analytic approach. Recall from [17, 20] that the Morse complex is quasi-
isomorphic to the de Rham complex (�(M), d) via the spectral projector associated with
the eigenvalue 0. Hence, it is sufficient to show that m2 induces a well defined map on
the cohomology of the Morse complex. To see this, we fix (U1, U2) in Ker(−L(k)Vf12

) ×

Ker(−L(l)Vf23
), and we write, using the Stokes formula,

A := m
(k+1,l)
2 (dU1, U2)+ (−1)km(k,l+1)

2 (U1, dU2)

= (−1)k+l+1
∑

a13∈Crit(f13)

(∫
M

U1 ∧ U2 ∧ dUa31

)
Ua13 .

Then, we recall that dUa31 is in Ker(−LVf31
). Thus, we can decompose it in the basis

(Ub31)b31: ind(b31)=ind(a31)+1:

dUa31 =

∑
b31: ind(b31)=ind(a31)+1

(∫
M

Sb31 ∧ dUa31

)
Ub31

= (−1)k+l+1
∑

b13: ind(b13)+1=ind(a13)

(∫
M

dUb13 ∧ Sa13

)
Ub31 ,

18 Stable manifolds of f are unstable manifolds of −f .
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where we use the Stokes formula one more time to write the second equality. Intertwining
the sums over a13 and b13 in the expression of A yields

A =
∑

b13∈Crit(f13)

(∫
M

U1 ∧ U2 ∧ Sb13

) ∑
a13: ind(b13)+1=ind(a13)

(∫
M

Sa13 ∧ dUb13

)
Ua13

=

∑
b13∈Crit(f13)

(∫
M

U1 ∧ U2 ∧ Sb13

)
dUb13 ,

where we use as above the fact that dUb13 ∈ Ker(−L(k+l+1)
Vf13

) to write the second equality.
This implies

m
(k+1,l)
2 (dU1, U2)+ (−1)km(k,l+1)

2 (U1, dU2) = d(m
(k,l)
2 (U1, U2)).

This relation shows that m2 is a cochain map for the Morse complexes (Ker(−LVfij ), d),
hence induces a cup-product in Morse cohomology. In other terms, the map m2 is a (spec-
tral) realization in terms of currents of the algebraic cup-product coming from Morse
theory [31].

Fukaya’s conjecture states that, up to some exponential factors involving the Liou-
ville period over certain triangles defined by Lagrangian submanifolds, this algebraic
cup-product can be recovered by computing triple products of Witten quasimodes [32,
Conj. 4.1]. To summarize this section, by giving this analytical interpretation of the Morse
cup-product, we have been able to obtain Fukaya’s instanton formula by considering the
limit h→ 0+ in appropriate Sobolev spaces where both −LVf and Wf,h have nice spec-
tral properties.

Remark 7.7. Note that m1 = d and m2 = ∧ are the first two operations of the Morse
A∞-category discovered by Fukaya [30, 31]. Our analysis shows that these algebraic
maps can be interpreted in terms of analysis as Witten deformations of the coboundary
operator and exterior products. An A∞-category is in fact endowed with graded maps
(mk)k≥1 of algebraic nature, and it is natural to think that all these algebraic maps can also
be given analytic interpretations by considering appropriate Witten deformations which
is the content of Fukaya’s general conjectures [32, Conj. 4.2]. However, this is at the
expense of a more subtle combinatorial work and we shall discuss this issue elsewhere.

Remark 7.8. Note that the approach we have developed here would also give the follow-
ing formulation of the Witten–Helffer–Sjöstrand tunneling formulas. For (a, b) in Crit(f )
such that ind(b) = ind(a)+ 1, write∫

M

df,h(Ua(h)) ∧ Sb(h) = e
f (b)−f (a)

h

∫
M

d(Ũa(h)) ∧ S̃b(h)

=

∑
b′: ind(b′)=ind(a)+1

nab′e
f (b)−f (a)

h

∫
M

Ũb′(h) ∧ Sb(h)

=

∑
b′: ind(b′)=ind(a)+1

nab′e
f (b)−f (a)

h δbb′(1+ o(1))

= nabe
f (b)−f (a)

h (1+ o(1)).
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Under this form, the formulation of the instanton formula for products of order 1 is closer
to [43, Eq. (3.27)]—see Section 8 below for a discussion on the difference between the
normalization factors. Note that going through our proof would yield a remainder of or-
der O(h).

8. Comparison with the Helffer–Sjöstrand quasimodes

In [43, Eq. (1.37)], Helffer and Sjöstrand also constructed a natural basis for the bottom
of the spectrum of the Witten Laplacian. For the sake of completeness,19 we will com-
pare our family of quasimodes with theirs and show that they are equal at leading order.
In order to apply the results of [43], we remark that the dynamical assumptions (H1)
and (H2) from that reference are automatically satisfied as soon as the gradient flow sat-
isfies the Smale transversality assumption. For (H1), this follows from Smale’s Theo-
rem 5.2, while (H2) was for instance proved in [59, Prop. 3.6].

We denote the Helffer–Sjöstrand’s quasimodes by (UHS
a (h))a∈Crit(f ). By construc-

tion, they belong to the same eigenspaces as our quasimodes (Ua(h))a∈Crit(f ). Fix a
critical point a of index k. These quasimodes do not form an orthonormal family. Yet,
if V (k)(h) is the matrix whose coefficients are given by 〈UHS

b (h), UHS
b′
(h)〉L2 , then one

knows from [43, Eq. (1.43)] that

V (k)(h) = Id+O�k(M)(e
−C0/h)

for some positive constant C0 > 0 depending only on (f, g). Hence, if we transform this
family into an orthonormal family (ŨHS

b′
(h))b′: ind(b′)=k , then we get

ŨHS
b′ (h) =

∑
b: ind(b)=k

(δbb′ +O�k(M)(e
−C0/h))UHS

b (h).

In particular, the spectral projector can be written as

1[0,ε](W
(k)
f,h )(x, y, dx, dy) =

∑
b′∈Crit(f ): ind(b′)=k

ŨHS
b′ (h)(x, dx)Ũ

HS
b′ (h)(y, dy).

Hence, from the definition of our WKB state Ua(h),

Ua(h) =
∑

b′∈Crit(f ): ind(b′)=k

∫
M

Ua ∧ ?k(e
−
f−f (a)

h ŨHS
b′ (h))Ũ

HS
b′ (h),

which can be expanded as follows:

Ua(h)

=

∑
b′∈Crit(f ): ind(b′)=k

∑
b: ind(b)=k

(∫
M

Ua ∧ ?k(δbb′ +O�k(M)(e
−C0/h))(e−

f−f (a)
h UHS

b (h))

)
× ŨHS

b′ (h).

19 We note that, except for this section, our results are self-contained and they do not rely on [43].
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Everything now boils down to the calculation of

αabb′(h) =

∫
M

Ua ∧ ?k(δbb′ +O�k(M)(e
−C0/h))(e−

f−f (a)
h UHS

b (h)).

More precisely, if we are able to prove that

αabb′(h) = δabδbb′αa(h)(1+O(h))+O(e−C0/h) (30)

for a certain αa(h) 6= 0 depending polynomially on h (which has to be determined), then,
after gathering all the equalities, we will find that

Ua(h) = αa(h)(1+O(h))UHS
a (h)+

∑
b 6=a∈Crit(f ): ind(b)=ind(a)

O(e−C0/h)UHS
b (h), (31)

showing that our quasimodes are at leading order equal to the ones of Helffer and
Sjöstrand (up to some normalization factor). Let us now prove (30) by making use of
the results from [43]. First of all, we write

αabb′(h) =

∫
M

Ua ∧ ?k(δbb′ +O�k(M)(e
−C0/h))(e−

f−f (a)
h UHS

b (h)).

According to [43, Eq. (1.38)], we know that

UHS
b (h) = 9b(h)+O�k(M)(e

−C0/h),

where 9b(h) is a certain “Gaussian state” centered at b defined by [43, Eq. (1.35)] and
C0 is some positive constant. Thus, as f (x) ≥ f (a) on the support of Ua , we have

αabb′(h) = δbb′

∫
M

Ua ∧ ?k(e
−
f−f (a)

h 9b(h))+O(e−C0/h)

with C0 > 0 which is slightly smaller than before. We now introduce a smooth cutoff
function χa which is equal to 1 in a neighborhood of a and we write

αabb′(h) = δbb′

∫
M

Ua ∧ ?k(χae
−
f−f (a)

h 9b(h))

+ δbb′

∫
M

Ua ∧ ?k((1− χa)e−
f−f (a)

h 9b(h))+O(e−C0/h).

Thanks to [43, Th. 1.4] and to the fact that the support of Ua is equal to Wu(a), we
know that the second term, which corresponds to the points which are far from a, is also
exponentially small. Hence

αabb′(h) = δbb′

∫
M

Ua ∧ ?k(e
−
f−f (a)

h χa9b(h))+O(e−C0/h).

Thanks to Lemma 5.10, this can be rewritten as

αabb′(h) = δbb′

∫
Wu(a)

?k(e
−
f−f (a)

h χa9b(h))+O(e−C0/h).
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Using [43, Th. 1.4], we find that, for a 6= b or a 6= b′, one has

αabb′(h) = O(e−C0/h).

It remains to treat the case a = b = b′. In that case, we can use [43, Ths. 1.4 and 2.5] to
show

αabb′(h) = αa(πh)
(n−2k)/4(1+O(h))

for a certain positive constant αa 6= 0 which depends only on the Lyapunov exponents at
the critical point a (and not on h). More precisely,

|αa| =

( ∏k
j=1 |χj (a)|∏n
j=k+1 |χj (a)|

)1/4

.

This shows that our eigenmodes are not a priori normalized in L2. To fix this, we would
need to set, for every critical point a of f ,

Ua(h) :=
1

|αa|(πh)(n−2k)/4Ua(h).

With this renormalization, the tunneling formula of Theorem 2.6 can be rewritten as

hdf,hUa(h) =
(
h

π

)1/2 ∑
b: ind(b)=ind(a)+1

nab

(
ef (a)/h

|αa|

)(
ef (b)/h

|αb|

)−1

Ub(h).

In this form, we now recognize exactly the tunneling formula of [43, Eq. (3.27)]—see
also [6, §6] in the case of a self-indexing Morse function. Concerning Fukaya’s instanton
formula, we observe that it can be rewritten as

lim
h→0+

|αa12αa23αa31 |(πh)
n/4

e(f12(a12)+f23(a23)+f31(a31))/h

∫
M

Ua12(h) ∧ Ua23(h) ∧ Ua31(h)

=

∫
M

Ua12 ∧ Ua23 ∧ Ua31 .

Remark 8.1. We proved that, for every a in Crit(f ), the currents Ũa(h) := e
f−f (a)

h Ua(h)

converge to Ua as h → 0+. We emphasize that the above argument does not allow one
to conclude that (e

f−f (a)
h UHS

a (h))h→0+ also converges to Ua . This does not seem obvious
and it would require going more precisely through the analysis performed in [43].
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Appendix A. Holomorphic continuation of the Ruelle determinant

In this appendix, we consider a Morse–Smale gradient flow ϕtf . We fix 0 ≤ k ≤ n and
a ∈ Crit(f ). We recall how to prove that the local Ruelle determinant

ζ
(k)
R,a(z) := exp

(
−

+∞∑
l=1

e−lz

l

Tr(3k(dϕ−lf (a)))

|det(Id− dϕ−lf (a))|

)
has a holomorphic extension to C, and we compute explicitly its zeros in terms of the
Lyapunov exponents (χj (a))1≤j≤n. Recall that the dynamical Ruelle determinant from
the introduction is given by

ζ
(k)
R (z) =

∏
a∈Crit(f )

ζ
(k)
R,a(z).

By definition of the Lyapunov exponents, we also recall that dϕ−1
f (a) = exp(−Lf (a))

where Lf (a) is a symmetric matrix whose eigenvalues are given by the (χj (a))1≤j≤n. If
a is of index r , we use the convention

χ1(a) ≤ · · · ≤ χr(a) < 0 < χr+1(a) ≤ · · · ≤ χn(a).

In order to show this holomorphic continuation, we start by observing that, in terms of
the Lyapunov exponents,

|det(Id− dϕ−lf (a))|−1
=

r∏
j=1

(e−lχj (a) − 1)−1
n∏

j=r+1

(1− e−lχj (a))−1

= e
l
∑r
j=1 χj (a)

n∏
j=1

(1− e−l|χj (a)|)−1
= e

l
∑r
j=1 χj (a)

∑
α∈Nn

e−lα.|χ(a)|,

where N = {0, 1, 2, . . .} and |χ(a)| = (|χj (a)|)1≤j≤n. We now compute the trace

Tr(3k(dϕ−lf (a))) =
∑

J⊂{1,...,n}: |J |=k

exp
(
−l
∑
j∈J

χj (a)
)
,

which implies that
Tr(3k(dϕ−lf (a)))

|det(Id− dϕ−lf (a))|

is equal to∑
J⊂{1,...,n}: |J |=k

∑
α∈Nn

exp
(
−l
( ∑
j∈J∩{r+1,...,n}

|χj (a)| +
∑

j∈J c∩{1,...,r}

|χj (a)| + α.|χ(a)|
))
.

Under this form, one can verify that ζ (k)R,a(z) has a holomorphic extension to C whose
zeros are given (modulo 2iπZ) by the set

Rk(a) :=
{
−

∑
j∈J∩{r+1,...,n}

|χj (a)|−
∑

j∈J c∩{1,...,r}

|χj (a)|−α.|χ(a)| : |J | = k and α ∈Nn
}
.
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Moreover, the multiplicity of z0 in Rk(a) is the number of couples (α, J ) such that

Re(z0) = −
( ∑
j∈J∩{r+1,...,n}

|χj (a)| +
∑

j∈J c∩{1,...,r}

|χj (a)| + α.|χ(a)|
)
.

Remark A.1. In particular, we note that z0 = 0 is a zero of ζ (k)R,a(z) if and only if the
index of a (meaning the dimension of W s(a)) is equal to k. In that case, the zero is of
multiplicity 1. This implies that the multiplicity of 0 as a zero of ζ (k)R (z) is equal to the
number of critical points of index k.

Appendix B. Proof of Lemma 7.4

In this appendix, we give the proof of Lemma 7.4. Up to minor modifications due to the
fact that we are dealing with L2 norms, we follow the lines of [15, p. 58]. We fix N , Ñ ,
W0 and W as in the statement of the lemma.

The cone W0 being given, we can choose W to be a thickening of W0, i.e.

W =

{
η ∈ Rn \ {0} : ∃ξ ∈ W0,

∣∣∣∣ ξ|ξ | − η

|η|

∣∣∣∣ ≤ δ}
for some fixed positive δ. This means that small angular perturbations of covectors in W0
will lie in the neighborhood W . Choose some smooth compactly supported function ϕ
which equals 1 on the support of u, hence we have the identity û = ûϕ. We compute the
Fourier transform of the product:

|ûϕ(ξ)| ≤

∫
Rn
|ϕ̂(ξ − η)̂u(η)| dη.

We decompose∫
Rn
|ϕ̂(ξ − η)̂u(η)| dη =

∫
|
ξ
|ξ |
−

η
|η|
|≤δ

|ϕ̂(ξ − η)̂u(η)| dη︸ ︷︷ ︸
I1(ξ)

+

∫
|
ξ
|ξ |
−

η
|η|
|≥δ

|ϕ̂(ξ − η)̂u(η)| dη︸ ︷︷ ︸
I2(ξ)

,

and we will estimate the two terms I1(ξ), I2(ξ) separately.
Start with I1(ξ). If ξ ∈ W0 then, by definition of W , η belongs to W . Hence, using

the Cauchy–Schwarz inequality, this yields the estimate

I1(ξ) =

∫
|
ξ
|ξ |
−

η
|η|
|≤δ

|ϕ̂(ξ − η)̂u(η)| dη

= (1+ |ξ |)−N

×

∫
|
ξ
|ξ |
−

η
|η|
|≤δ

∣∣ϕ̂(ξ − η)(1+ |ξ − η|)N û(η)(1+ |η|)N ∣∣ (1+ |ξ |)N

(1+ |η|)N (1+ |ξ − η|)N
dη

≤ (1+ |ξ |)−N sup
ξ,η

(1+ |ξ |)N

(1+ |η|)N (1+ |ξ − η|)N
‖ϕ‖HN ‖(1+ |ξ |)N û(ξ)‖L2(W)

≤ Cϕ,N (1+ |ξ |)−N‖(1+ |ξ |)N û(ξ)‖L2(W),
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where we use the triangle inequality |ξ | ≤ |ξ−η|+|η| in order to bound (1+|ξ |)N

(1+|η|)N (1+|ξ−η|)N

by some constant C uniformly in ξ and in η.
To estimate the second term I2(ξ), we shall use the fact that the integral is over η such

that
∣∣ ξ
|ξ |
−

η
|η|

∣∣ ≥ δ. This implies that the angle between ξ and η is bounded from below
by some α ∈ (0, π/2) which depends only on the aperture δ. We now observe that

a2
+ b2
− 2ab cos c = (a − b cos c)2 + b2 sin2 c ≥ b2 sin2 c,

and we apply this lower bound to a = |ξ |, b = |η| and c the angle between ξ and η. Thus,

∀(ξ, η) ∈ V ×c W, |(sinα)η| ≤ |ξ − η|, |(sinα)ξ | ≤ |ξ − η|.

Then, for such ξ and η, there exists some constant C (depending only on N , Ñ and δ)
such that

(1+|ξ −η|)−N−Ñ ≤ (1+|(sinα)η|)−Ñ (1+|(sinα)ξ |)−N ≤ C(1+|η|)−Ñ (1+|ξ |)−N .

Thus, up to increasing the value of C and by applying the Cauchy–Schwarz inequality,
we find∫
|
ξ
|ξ |
−

η
|η|
|≥δ

|ϕ̂(ξ−η)̂u(η)| dη ≤ C‖ϕ‖
HN+Ñ (1+|ξ |)

−N

(∫
Rn
(1+|η|)−2Ñ

|̂u(η)|2 dη

)1/2

.

Gathering the two estimates yields the final result.
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ing a specified wavefront set. Comm. Math. Phys. 332, 1345–1380 (2014) Zbl 1314.46052
MR 3262628

[15] Dang, N. V.: Renormalization of quantum field theory on curved space-times, a causal ap-
proach. PhD thesis, arXiv:1312.5674 (2013)

[16] Dang, N. V., Rivière, G.: Equidistribution of the conormal cycle of random nodal sets. J. Eur.
Math. Soc. 20, 3017–3071 (2018) Zbl 1407.58010

[17] Dang, N. V., Rivière, G.: Spectral analysis of Morse–Smale gradient flows. Ann. Sci. École
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plexe de Witten. Comm. Partial Differential Equations 10, 245–340 (1985) Zbl 0597.35024
MR 0780068
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