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Abstract. We show the existence of semiorthogonal decompositions (SOD) of Pandharipande–
Thomas (PT) stable pair moduli spaces on Calabi–Yau 3-folds with irreducible curve classes, as-
suming relevant moduli spaces are non-singular. The above result is motivated by categorifications
of the wall-crossing formula for PT invariants in the derived category, and also by a d-critical ana-
logue of Bondal–Orlov’s and Kawamata’s D/K equivalence conjecture.

We also give SOD of stable pair moduli spaces on K3 surfaces, which categorifies Kawai–
Yoshioka’s formula proving Katz–Klemm–Vafa’s formula for PT invariants on K3 surfaces with
irreducible curve classes.
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1. Introduction

The purpose of this paper is to give applications of d-critical birational geometry proposed
in [Tod] to the study of derived categories of coherent sheaves on moduli spaces of stable
objects on Calabi–Yau (CY for short) 3-folds. The main result is that Pandharipande–
Thomas (PT for short) stable pair moduli spaces [PT09] on CY 3-folds with irreducible
curve classes admit certain semiorthogonal decompositions (SOD for short), assuming
relevant moduli spaces are non-singular. Our results are motivated by categorifications of
the wall-crossing formula for Donaldson–Thomas invariants on CY 3-folds [JS12, KS] in
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the derived category, and also by a d-critical analogue of the D/K equivalence conjecture
of Bondal–Orlov and Kawamata [BO, Kaw02].

1.1. SOD of stable pair moduli spaces

LetX be a smooth projective CY 3-fold over C. By definition, a stable pair onX consists
of data [PT09]

(F, s), s : OX → F, (1.1)

where F is a pure one-dimensional coherent sheaf onX and s is surjective in dimension 1.
For β ∈ H2(X,Z) and n ∈ Z, we denote by

Pn(X, β) (1.2)

the moduli space of stable pairs (1.1) such that [F ] = β and χ(F ) = n, where [F ]
is the homology class of the fundamental one-cycle of F . The moduli space (1.2) is a
projective scheme with a symmetric perfect obstruction theory. The integration of its zero-
dimensional virtual class defines the PT invariant

Pn,β :=

∫
[Pn(X,β)]vir

1 ∈ Z.

The study of PT invariants is one of the central topics in curve counting on CY 3-folds
(see [PT14]).

Suppose that n ≥ 0 and β is an irreducible curve class, i.e. β cannot be written as
β1 + β2 for effective curve classes βi . Then we have the following diagram:

Pn(X, β)

π+ &&

P−n(X, β)

π−xx
Un(X, β)

(1.3)

Here Un(X, β) is the moduli space of one-dimensional Gieseker stable sheaves F on X
with [F ] = β and χ(F ) = n. The maps π± are defined by

π+(F, s) := F, π−(F ′, s′) := Ext2X(F
′,OX).

For a variety Y , we denote by Db(Y ) the bounded derived category of coherent sheaves
on Y . The following is the main result in this paper:

Theorem 1.1 (Theorem 5.7). Suppose that Un(X, β) is fine and non-singular. Then
P±n(X, β) are also non-singular, and we have the following:

(i) The Fourier–Mukai functor

8P : D
b(P−n(X, β))→ Db(Pn(X, β))

with kernel the structure sheaf of the fiber product of (1.3) is fully faithful.
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(ii) There is a π+-ample line bundle OP (1) on Pn(X, β) such that if n ≥ 1 then the
functor

ϒ iP : D
b(Un(X, β))→ Db(Pn(X, β))

defined by Lπ+∗(−)⊗OP (i) is fully faithful.
(iii) We have the SOD

Db(Pn(X, β)) = 〈Imϒ−n+1
P , . . . , Imϒ0

P , Im8P 〉. (1.4)

Here Un(X, β) is called fine if it admits a universal sheaf on X × Un(X, β), which is
guaranteed if (D · β, n) is coprime for some divisor D. The result of Theorem 1.1 will
also be applied to some non-compact CY 3-folds. We apply Theorem 1.1 in the case of

X = TotS(KS), H i(OS) = 0, i = 1, 2,

where S is a smooth projective surface. The assumption of Theorem 1.1 is satisfied when
−KS · β > 0, and we obtain the SOD of derived categories of relative Hilbert schemes of
points on the universal curve over a complete linear system on S (see Corollary 5.10).

We also apply Theorem 1.1 in the case of

X = TotC(L1 ⊕ L2), Li ∈ Pic(C), L1 ⊗ L2 ∼= ωC,

where C is a smooth projective curve. For a generic choice of Li , the diagram (1.3)
is a classical diagram of symmetric products of C and their Abel–Jacobi maps. Then
Theorem 1.1 implies the SOD of derived categories of coherent sheaves on symmetric
products of C (see Corollary 5.12):

Db(C[n+g−1]) = 〈

n︷ ︸︸ ︷
Db(JC), . . . ,D

b(JC),D
b(C[−n+g−1])〉.

Here n ∈ Z≥0, C[k] is the k-th symmetric product of C, g is the genus of C, and JC is the
Jacobian of C. The above SOD seems to give a new result on the properties of symmetric
products of curves and the associated Abel–Jacobi maps.

1.2. Motivations behind Theorem 1.1

We have two motivations behind the result of Theorem 1.1. The first one is to give a
categorification of the formula (see [PT10, Tod12a])

Pn,β − P−n,β = (−1)n−1nNn,β . (1.5)

HereNn,β ∈ Z is obtained by the integration of the virtual class onUn(X, β). The identity
(1.5) is the key ingredient to show the rationality of the generating series of PT invariants

Pβ(X) =
∑
n∈Z

Pn,βq
n
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when β is irreducible (see [PT10]). As observed in [Tod12a], the diagram (1.3) is a wall-
crossing diagram in Db(X), and (1.5) is the associated wall-crossing formula. Under the
assumption of Theorem 5.7, the invariants in (1.5) are given by

P±n,β = (−1)n+d−1e(P±n(X, β)), Nn,β = (−1)de(Un(X, β))

where d is the dimension ofUn(X, β). Therefore the SOD in (1.4) categorifies the formula
(1.5), as it recovers the formula (1.5) by taking the Euler characteristics of the Hochschild
homology of both sides of (1.4).

The second motivation is to give an evidence for a d-critical analogue of Bondal–
Orlov’s and Kawamata’s D/K equivalence conjecture [BO, Kaw02]. The original D/K
equivalence conjecture asserts that for a flip of smooth varieties Y+ 99K Y− there exists
a fully faithful functor

Db(Y−) ↪→ Db(Y+).

On the other hand, the diagram (1.3) is an example of a d-critical flip introduced in [Tod].
Therefore Theorem 1.1(i) gives evidence for a d-critical analogue of the D/K equivalence
conjecture. We will come back to this point of view in Subsection 1.4.

1.3. Categorification of Kawai–Yoshioka’s formula

We will apply the argument as in the proof of Theorem 1.1 to show the existence of SOD
on relative Hilbert schemes of points associated with linear systems on K3 surfaces. Let S
be a smooth projective K3 surface such that Pic(S) is generated by OS(H) for an ample
divisor H with H 2

= 2g − 2. Let

π : C → |H | = Pg (1.6)

be the universal curve. Below we fix n > 0, and define

C[n+g−1]
→ Pg (1.7)

to be the π -relative Hilbert scheme of n+ g− 1 points. The moduli space (1.7) is known
to be isomorphic to the moduli space of PT stable pairs Pn(S, [H ]) on S.

For each k ≥ 0, let Uk be the moduli space ofH -Gieseker stable sheaves E on S such
that

v(E) = (k,H, k + n) ∈ H 2∗(S,Z)

where v(−) is the Mukai vector. The moduli space Uk is an irreducible holomorphic
symplectic manifold. We assume that Uk is a fine moduli space for all k ≥ 0, e.g. it is
satisfied if (2g − 2, n) is coprime. Let N ≥ 0 be defined to be the largest k ≥ 0 such that
Uk 6= ∅. In this situation, we have the following:
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Theorem 1.2 (Corollary 6.3). We have the following SOD:

Db(C[n+g−1]) = 〈A0,A1, . . . ,AN 〉

where each Ak has SOD

Ak = 〈A(1)
k ,A

(2)
k , . . . ,A

(n+2k)
k 〉

such that each A(i)
k is equivalent to Db(Uk).

Theorem 1.2 is proved by using the zigzag diagram

C[n+g−1]
= P0

%%

P1

~~   

· · ·

~~   

PN+1 = ∅

zz
U0 U1 UN

constructed by Kawai–Yoshioka [KY00]. We show that each step of the above diagram is
described in terms of a d-critical simple flip, by investigating wall-crossing diagrams on
a CY 3-fold X = S ×C for an elliptic curve C. Then Theorem 1.2 is proved by applying
the argument used for Theorem 1.1 to each step of the diagram.

The SOD in Theorem 1.2 is interpreted as a categorification of Kawai–Yoshioka’s
formula [KY00] for PT invariants on K3 surfaces with irreducible curve classes, defined
by Pn,g := (−1)n−1e(C[n+g−1]). Indeed, the following formula is proved in [KY00]:

e(C[n+g−1]) =

N∑
k=0

(n+ 2k)e(Uk). (1.8)

The SOD in Theorem 1.2 recovers the formula (1.8) by taking the Euler characteristics
of Hochschild homologies of both sides of (1.2). In [KY00], the formula (1.8) led to the
Katz–Klemm–Vafa (KKV) formula for PT invariants with irreducible curve classes (see
Remark 6.4).

1.4. D-critical analogue of the D/K equivalence conjecture

Here we explain the notion of d-critical flips for Joyce’s d-critical loci [Joy15], and an
analogue of the D/K equivalence conjecture mentioned earlier. By definition, a d-critical
locus consists of data

(M, s), s ∈ 0(M,S0
M),

whereM is a C-scheme or an analytic space and S0
M is a certain sheaf of C-vector spaces

on M . The section s is called a d-critical structure of M . Roughly speaking, if M admits
a d-critical structure s, this means that M is locally written as a critical locus of some
function on a smooth space, and the section s remembers how M is locally written as a
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critical locus. If M is a truncation of a derived scheme with a (−1)-shifted symplectic
structure [PT+13], then it has a canonical d-critical structure [BB+15].

Let (M±, s±) be two d-critical loci and consider a diagram of morphisms of schemes
or analytic spaces

M+

!!

M−

}}
U

(1.9)

The above diagram is called a d-critical flip if for any p ∈ U , there is a commutative
diagram

Y+

  
w+

��

φ // Y−

~~
w−

��

Z

w

��
C

(1.10)

where φ : Y+ 99K Y− is a flip of smooth varieties (or complex manifolds) such that
locally near p ∈ U there exist isomorphisms of M± and {dw± = 0} as d-critical loci
(see [Tod14b, Definition 3.7] for details). A d-critical flip is called simple if φ : Y+ 99KY−

is a simple toric flip [Rei92].
We expect that an analogue of the D/K equivalence conjecture may hold for d-critical

loci. Namely for a d-critical locus (M, s) 1 there may exist a certain triangulated category
D(M, s) such that if the diagram (1.9) is a d-critical flip, we have a fully faithful functor

D(M−, s−) ↪→ D(M+, s+). (1.11)

The category D(M−, s−) may be constructed as a gluing of Z/2Z-periodic triangulated
categories of matrix factorizations defined locally on each d-critical chart, though its con-
struction seems to be a hard problem at this moment (see [Joy, (J)], [Toë14, Section 6.1]).

For a flip Y+ 99K Y− in the diagram (1.10), suppose that the D/K equivalence con-
jecture holds, i.e. we have a fully faithful functor

Db(Y−) ↪→ Db(Y+).

Then it induces the fully faithful functor (see Theorem 2.1)

D(Y−, w−) ↪→ D(Y+, w+) (1.12)

where D(Y±, w±) are the derived factorization categories associated with pairs
(Y±, w±). If the desired categories D(M±, s±) are gluings ofD(Y±, w±) defined locally

1 Probably we need to assume that (M, s) is induced by a (−1)-shifted symplectic derived
scheme, equipped with some additional data (orientation data, or something more).
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onU , then we may try to globalize the functor (1.12) to give a fully faithful functor (1.11).
If this is possible, then the numerical realization of a semiorthogonal complement of the
embedding (1.11) may recover the wall-crossing formula for DT invariants [JS12, KS].2

For a d-critical flip (1.9), suppose thatM± are smooth, so in particular s± = 0. In this
case, we can use usual derived categories of coherent sheaves to ask an analogue of the
above question. Namely for a d-critical flip (1.9) with M± smooth, we can ask whether
we have a fully faithful functor

Db(M−) ↪→ Db(M+).

The results of Theorems 1.1 and 1.2 are proved by establishing such a result in the case
of d-critical simple flips (see Theorem 4.5).

1.5. Relation to other works

There exist some recent works studying wall-crossing behavior of derived categories of
moduli spaces of stable objects on algebraic surfaces. In [Bal17], Ballard showed the exis-
tence of SOD under wall-crossing of Gieseker moduli spaces of stable sheaves on rational
surfaces. Also Halpern-Leistner [HL] announces that, under wall-crossing of Bridgeland
moduli spaces of stable objects on K3 surfaces, their derived categories are equivalent.
The results in our paper can be regarded as a CY 3-fold version of these works. One
of the crucial differences is that, although the moduli spaces considered in [Bal17, HL]
are birational under wall-crossing, the moduli spaces in our paper are not necessarily bira-
tional under wall-crossing. For example the moduli spaces P±n(X, β) in the diagram (1.3)
have different dimensions if n > 0. Instead, the fact that they are birational in d-critical
birational geometry plays an important role for the existence of SOD in Theorems 1.1
and 1.2.

1.6. Outline of the paper

The outline of this paper is as follows. In Section 2, we review basics on derived factor-
ization categories which we will use in later sections. In Section 3, we show the existence
of SOD of gauged LG models on simple flips over a complete local base, and describe
the relevant kernel objects. In Section 4, we globalize the result in Section 3 and show
the SOD for formal d-critical simple flips. In Section 5, we use the result in Section 4 to
show Theorem 1.1. In Section 6, we prove Theorem 1.2.

1.7. Notation and conventions

In this paper, all the varieties and schemes are defined over C. For C-schemes U , S, T
and a morphism f : S → T , we set

SU := S × U, fU := f × idU : SU → TU .

2 See [Efi17] for the relation between cyclic homology of the categories of matrix factorizations
and hypercohomology of perverse sheaves of vanishing cycles.
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For a variety Y , we denote by Db(Y ) the bounded derived category of coherent
sheaves on Y . If an algebraic group G acts on Y , we also denote by DbG(Y ) the bounded
derived category ofG-equivariant coherent sheaves on Y . For smooth varieties Y1, Y2 with
projective morphisms Yi → T , and an object P ∈ Db(Y1 × Y2) supported on Y1 ×T Y2,
we denote by 8P the Fourier–Mukai functor

8P (−) := Rp2∗(p
∗

1(−)
L
⊗ P) : Db(Y1)→ Db(Y2).

Here pi : Y1 × Y2 → Yi are the projections. The object P is called the kernel of the
functor 8P .

Recall that a semiorthogonal decomposition of a triangulated category D is a collec-
tion C1, . . . , Cn of full triangulated subcategories such that Hom(Ci, Cj ) = 0 for all i > j

and the smallest triangulated subcategory of D containing C1, . . . , Cn coincides with D. In
this case, we write D = 〈C1, . . . , Cn〉. If each Ci is equivalent toDb(Mi) for a varietyMi ,
we also write D = 〈Db(M1), . . . ,D

b(Mn)〉 for simplicity.

2. Review of derived factorization categories

In this section, we recall the notion of gauged Landau–Ginzburg (LG) models, and the
associated derived factorization categories introduced by Positselski. We refer to the arti-
cles [EP15] for basics on these notions.

2.1. Definitions of derived factorization categories

Let us consider data (called gauged LG model)

(Y,G, χ,w) (2.1)

where Y is a C-scheme,G is a reductive algebraic group which acts on Y , χ : G→ C∗ is
a character and w ∈ 0(OY ) satisfies g∗w = χ(g)w for any g ∈ G. Given data as above,
the derived factorization category

DG(Y, χ,w) (2.2)

is defined as a triangulated category whose objects consist of factorizations of w, i.e.
sequences of G-equivariant morphisms of G-equivariant coherent sheaves F0, F1 on Y

F0
α
→ F1

β
→ F0(χ) (2.3)

satisfying

α ◦ β = ·w, β ◦ α = ·w.

The category (2.2) is defined to be the localization of the homotopy category of the fac-
torizations (2.3) by its subcategory of acyclic factorizations. When Y is a smooth affine
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scheme and G = {1}, the category (2.2) is equivalent to the triangulated category of ma-
trix factorizations of w (see [Orl09]). In the case of G = C∗ and χ = id, we simply
write

DC∗(Y,w) := DC∗(Y, χ = id, w).

For a character χ : G→ C∗, let χ̃ be defined by

χ̃ : G× C∗→ C∗, (g, t) 7→ χ(g)t.

We have the functor

4 : DbG(Y )→ DG×C∗(Y, χ̃, w = 0) (2.4)

where C∗ acts on Y trivially, sending (F•, d) ∈ DbG(Y ) to(⊕
i∈Z

F2i(−iχ̃)
)

d
→

(⊕
i∈Z

F2i+1(−iχ̃)
)

d
→

(⊕
i∈Z

F2i(−iχ̃)
)
(χ̃).

When G = {1}, the functor (2.4) gives the equivalence (see [Isi13, Shi12, Hir17b])

4 : Db(Y )
∼
→ DC∗(Y, 0). (2.5)

2.2. Derived functors between derived factorization categories

Let (Y,G, χ,w) be a gauged LG model (2.1), and W be another variety with a G-action.
For aG-equivariant projective morphism f : W → Y , we have another gauged LG model

(W,G, χ, f ∗w).

Similarly to the usual derived functors between derived categories, if Y is smooth we have
the derived functors

Rf∗ : DG(W, χ, f ∗w)→ DG(Y, χ,w),

Lf ∗ : DG(Y, χ,w)→ DG(W, χ, f
∗w).

Also for another object P ∈ DG(Y, χ,w′), we have the derived tensor product

L
⊗ P : DG(Y, χ,w)→ DG(Y, χ,w + w

′).

Below we omit the subscripts R, L when the relevant functors are exact functors of co-
herent sheaves, e.g. write Lf ∗ as f ∗ when f is flat.

Let Y1, Y2 be regular C-schemes withG-actions. Let T be a C-scheme with aG-action
and consider G-equivariant projective morphisms Yi → T . Let us take w ∈ 0(OT ) and
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a character χ : G → C∗ satisfying g∗w = χ(g)w for any g ∈ G. We consider the
commutative diagram

Y1

  
w1

��

Y2

~~
w2

��

T

w

��
A1

Let pi : Y1 × Y2 → Yi be the projections, and suppose G acts on Y1 × Y2 diagonally. For
any object

P ∈ DG(Y1 × Y2, χ,−p
∗

1w1 + p
∗

2w2)

we have the Fourier–Mukai type functor

9P
:= Rp2∗(p

∗

1(−)
L
⊗ P) : DG(Y1, χ,w1)→ DG(Y2, χ,w2).

Let i : Y1 ×T Y2 ↪→ Y1 × Y2 be the closed embedding. We have the diagram

DbG(Y1 ×T Y2)

forgG

��

4 // DG×C∗(Y1 ×T Y2, χ̃ , 0)

forgG

��

forgC
∗

// DG(Y1 ×T Y2, χ, 0)

i∗

��
Db(Y1 ×T Y2)

4 // DC∗(Y1 ×T Y2, 0) DG(Y1 × Y2, χ,−p
∗

1w1 + p
∗

2w2)

Here 4 is given in (2.4) and forgG, forgC
∗

are forgetting the G-action and the C∗-action
respectively. For P ∈ Db(Y1 ×T Y2) and 4(P) ∈ DC∗(Y1 ×T Y2, 0), the following
diagram commutes:

Db(Y1)
4

∼ //

8P

��

DC∗(Y1, 0)

94(P)

��
Db(Y2)

4

∼ // DC∗(Y2, 0)

(2.6)

Moreover we have the following:

Theorem 2.1 ([BP10, Hir17b]). For Q ∈ DbG(Y1 ×T Y2), suppose that the functor

8forgG(Q)
: Db(Y1)→ Db(Y2)

is fully faithful (resp. an equivalence). Then for the object

Q̃ := i∗ ◦ forgC
∗

◦4(Q) ∈ DG(Y1 × Y2, χ,−p
∗

1w1 + p
∗

2w2)

the functor

9Q̃
: DG(Y1, χ,w1)→ DG(Y2, χ,w2)

is fully faithful (resp. an equivalence).
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2.3. Knörrer periodicity

Let E → Y be an algebraic vector bundle on a regular C-scheme Y , and s : Y → E be a
regular section of it, i.e. its zero locus

Z := (s = 0) ⊂ Y

has codimension equal to the rank of E . The section s naturally defines a morphism
Qs : E∨ → A1 sending (y, v) for y ∈ Y and v ∈ E |∨y to 〈s(y), v〉. We have the dia-
gram

E |∨Z
� � i //

p

��

E∨ Qs //

��

A1

Z �
� // Y

Note that Qs = 0 on i(E |∨Z) ⊂ E∨. Let C∗ act on Z trivially, and on E∨ with weight 1 on
the fibers of the projection E∨ → Y . The following is the version of Knörrer periodicity
used in this paper:

Theorem 2.2 ([Isi13, Shi12, Hir17a]). The functor

i∗ ◦ p
∗
: DC∗(Z, 0)→ DC∗(E∨,Qs)

is an equivalence of triangulated categories. By composing it with the equivalence (2.5),
we obtain the equivalence

i∗ ◦ p
∗
◦4 : Db(Z)

∼
→ DC∗(E∨,Qs).

3. SOD via simple flips

Let Û be the formal completion of an affine space at the origin. In this section, we show
that for a simple d-critical flip

M̂+→ Û ← M̂−

for smooth schemes M̂± satisfying some conditions, we have the SOD

Db(M̂+) = 〈

n︷ ︸︸ ︷
Db(Û), . . . ,Db(Û),Db(M̂−)〉. (3.1)

The result is proved by combining derived factorization analogue of Bondal–Orlov’s SOD
associated with simple flips [BO] (see Theorem 3.3) with the Knörrer periodicity of de-
rived factorization categories (see Theorem 2.2).

The main ingredient in this section is to show that the kernel object of the fully faith-
ful functor Db(M̂−) ↪→ Db(M̂+) is given by the structure sheaf of the fiber product
M̂+ ×Û M̂

−. This explicit description of the kernel will be important in the next section
to globalize the result of this section.
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3.1. Simple toric flips

Let V +, V − be C-vector spaces of dimensions a, b respectively. We assume that a ≥ b,
and set n := a − b ≥ 0. Let C∗ act on V +, V − with weight 1, −1 respectively. We fix
bases of V ± and denote the coordinates of V +, V − by

Ex = (x1, . . . , xa), Ey = (y1, . . . , yb)

respectively. Let V ±∗ := V ± \ {0}, and define

Y+ := [((V +∗)× V −)/C∗] = TotP(V+)(OP(V+)(−1)⊗ V −),

Y− := [(V + × (V −∗))/C∗] = TotP(V−)(OP(V−)(−1)⊗ V +), (3.2)

Z := (V + × V −)//C∗ = SpecC[xiyj : 1 ≤ i ≤ a, 1 ≤ j ≤ b].

We have a toric flip diagram, called a simple flip (see [Rei]):

Y+
φ //

f+   

Y−

f−~~
Z

We also have the projections and closed embeddings

pr± : Y±→ P(V ±), i± : P(V ±) ↪→ Y± (3.3)

where i± are the zero sections of pr±.
By setting W := Y+ ×Z Y−, we have the diagram

W
p+

}}

p−

!!
Y+ Y−

(3.4)

where p± are the projections. Note that p± are the blow-ups of Y± at the smooth loci
i±(P(V ±)). The fiber product W is also described as

W = TotP(V+)×P(V−)(OP(V+)×P(V−)(−1,−1)) = [((V +∗)× (V −∗)× C)/(C∗)2].
(3.5)

Here (s1, s2) ∈ (C∗)2 acts on V + × V − × C by

(s1, s2) · (Ex, Ey, t) = (s1Ex, s
−1
2 Ey, s

−1
1 s2t).

Under the description of W in (3.5), the projections p± : W → Y± are induced by the
maps

V + × V − × C→ V + × V −, (C∗)2 → C∗
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defined by

p+ : (Ex, Ey, t) 7→ (Ex, t Ey), (s1, s2) 7→ s1,

p− : (Ex, Ey, t) 7→ (t Ex, Ey), (s1, s2) 7→ s2,

respectively. Let s ∈ C∗ act on Y+, Y−, W by

s · (Ex, Ey) = (Ex, s Ey), s · (Ex, Ey) = (s Ex, Ey), s · (Ex, Ey, t) = (Ex, Ey, st) (3.6)

respectively. Then the diagram (3.4) is equivariant with respect to the above C∗-actions.

3.2. Critical loci

Let Û be a smooth C-scheme of dimension g, given by

Û := SpecC[[u1, . . . , ug]].

Let us take an element w ∈ 0(OZÛ
) written as

w =

a∑
i=1

b∑
j=1

xiyjwij (Eu) (3.7)

for some wij (Eu) ∈ 0(OÛ ). We consider the following commutative diagram:

WÛ
p+
Û

~~

p−
Û

  
Y+
Û

f+
Û   

w+

%%

φÛ // Y−
Û

f−
Û~~

w−

zz

ZÛ

w

��
A1

(3.8)

Then the composition

w̃ := p+∗
Û
w+ = p−∗

Û
w− : WÛ → A1

can be written as

w̃ = t
∑
i,j

xiyjwij (Eu) (3.9)

in the description of W by (3.5). We define M̂± to be

M̂± := {dw± = 0} ⊂ Y±
Û
.
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Lemma 3.1. Suppose that M̂± are smooth and irreducible of dimension

dim M̂+ = n+ g − 1, dim M̂− = −n+ g − 1 (3.10)

respectively. Then M̂± are contained in the images of i±
Û
: P(V ±)Û ↪→ Y±

Û
, where i± are

given in (3.3). Moreover,

M̂+ =
{
(Ex, Eu) ∈ P(V +)Û :

a∑
i=1

xiwij (Eu) = 0 for all 1 ≤ j ≤ b
}
,

M̂− =
{
(Ey, Eu) ∈ P(V −)Û :

b∑
j=1

yjwij (Eu) = 0 for all 1 ≤ i ≤ a
}
.

(3.11)

Proof. Let N+ be the scheme defined by the RHS of (3.11). Note that we obviously have
the closed embedding

N+ ↪→ M̂+, (Ex, Eu) 7→ (Ex, Ey = 0, Eu). (3.12)

SinceN+ is defined by b equations on the smooth scheme P(V +)Û of dimension a+g−1,
we have

dimN+ ≥ a + g − 1− b = n+ g − 1.

Therefore the assumption on M̂+ implies that the embedding (3.12) is an isomorphism.
The claim for M̂− is proved similarly. ut

Remark 3.2. The assumption of Lemma 3.1 is satisfied if g = ab and wij (Eu) = uij
where {uij }1≤i≤a,1≤j≤b is a coordinate system of Û . If the assumption of Lemma 3.1 is
satisfied, then the projections M̂± → Û are well-presented families of projective spaces
defined in [Kem73, Section 3].

Under the assumption of Lemma 3.1, we have f±
Û
(M̂±) ⊂ {0} × Û . Therefore π± :=

(f±
Û
)|M̂± induces the diagram

M̂+

π+   

M̂−

π−~~
Û

(3.13)

Moreover for each c ∈ Z, we have the line bundles

OM̂±(c) := OP(V±)Û (c)|M̂± ∈ Pic(M̂±).

3.3. SOD of derived factorization categories under simple flips

Let us consider the diagram (3.8). Since w+, w− and w̃ are of weight 1 with respect to
the C∗-actions (3.6), we have the associated derived factorization categories

DC∗(Y
+

Û
, w+), DC∗(Y

−

Û
, w−), DC∗(WÛ , w̃)
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respectively. Since the diagram (3.4) is C∗-equivariant, we have the functors

Lp−∗
Û
: DC∗(Y

−

Û
, w−)→ DC∗(WÛ , w̃), Rp+

Û∗
: DC∗(WÛ , w̃)→ DC∗(Y

+

Û
, w+).

By composing them, we obtain the functor

9Y := Rp+
Û∗
◦ Lp−∗

Û
: DC∗(Y

−

Û
, w−)→ DC∗(Y

+

Û
, w+). (3.14)

Let

g : P(V +)Û → Û , i+
Û
: P(V +)Û ↪→ Y+

Û

be the projection and the inclusion into the zero section (3.3) respectively. We also have
the functor

ϒY := i
+

Û∗
◦ g∗ : DC∗(Û , 0)→ DC∗(Y

+

Û
, w+). (3.15)

Here C∗ acts on Û , P(V +)Û trivially. The following result should be well-known, but we
include a proof here as we cannot find a reference.

Theorem 3.3. (i) The functor 9Y in (3.14) is fully faithful.
(ii) If n ≥ 1, the functor ϒY in (3.15) is fully faithful.

(iii) By setting ϒ iY := ⊗OY+
Û

(i) ◦ ϒY , we have the SOD

DC∗(Y
+

Û
, w+) = 〈Imϒ−nY , . . . , Imϒ−1

Y , Im9Y 〉.

Here OY+
Û

(i) is the pull-back of OP(V+)(i) under the projection Y+
Û
→ P(V +).

Proof. (i) The functor9Y is written as9ÕW in the notation of Theorem 2.1. On the other
hand, the functor

8OW : Db(Y−
Û
)→ Db(Y+

Û
) (3.16)

is fully faithful by [BO]. Therefore (i) follows from Theorem 2.1. The proof of (ii) is
similar.

We prove (iii). Let us recall that we have a similar SOD using windows [HL15,
BFK19]. Let Tj = C∗ for j = 1, 2 act on V + × V − × Û with weight (1,−1, 0) for
j = 1, and (1, 0, 0) for j = 2. Then the open immersions

η± : Y±
Û
↪→ [(V + × V −)Û/T1] (3.17)

are C∗-equivariant, where the C∗-action on the LHS is given by (3.6) and that on the RHS
is given by the above T2-action. Let O•(i) be the T1-equivariant line bundle on SpecC,
given by a one-dimensional T1-representation with weight i. We denote by O(V+×V−)Û

(i)

the pull-back of O•(i) under the structure morphism

(V + × V −)Û → SpecC.
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Let χ : T1× T2 → C∗ be the second projection, and take w ∈ 0(O(V+×V−)Û
) as in (3.7).

For a subset I ⊂ R, the window subcategory

WI ⊂ DT1×T2((V
+
× V −)Û , χ,w) (3.18)

is defined to be the thick triangulated subcategory generated by the factorizations (2.3)
where F0, F1 are of the form

Fj =
⊕
−i∈I∩Z

O(V+×V−)Û
(i)⊕li,j , j = 0, 1, li,j ∈ Z≥0,

as T1-equivariant sheaves. Here we regard the (T1 × T2)-equivariant sheaves Fj as T1-
equivariant sheaves by the inclusion T1 ↪→ T1 × T2, t1 7→ (t1, 1). By [BFK19, Theo-
rem 3.5.2], there exists a fully faithful functor

9 ′Y : DC∗(Y
−

Û
, w−)→ DC∗(Y

+

Û
, w+)

which fits into the commutative diagram

W(−b,0]
η−∗

∼
//

��

DC∗(Y
−

Û
, w−)

9 ′Y
��

W(−b,a−b]
η+∗

∼ // DC∗(Y
+

Û
, w+)

(3.19)

Here the horizontal arrows are equivalences of triangulated categories, defined by pull-
backs via open immersions (3.17) restricted to WI , and the left vertical arrow is a natural
inclusion. Moreover by loc. cit., we have the SOD

DC∗(Y
+

Û
, w+) = 〈Imϒ−nY , . . . , Imϒ−1

Y , Im9 ′Y 〉.

It is enough to show that Im9Y = Im9 ′Y . Note that

η−∗(O(V+×V−)Û
(i)) = OY−

Û

(−i), η+∗(O(V+×V−)Û
(i)) = OY+

Û

(i).

By the diagram (3.19), it follows that Im9 ′Y is generated by factorizations (2.3) such that
F0, F1 are of the form

Fj =
⊕

0≤i≤b−1

OY+
Û

(−i)⊕li,j , j = 0, 1, li,j ∈ Z≥0.

On the other hand, an easy calculation shows that

8OW (OY−
Û

(i)) = OY+
Û

(−i), 0 ≤ i ≤ b − 1, (3.20)

where 8OW is the functor (3.16). Together with the equivalence of the top horizontal
arrow of (3.19), it follows that Im9Y is also generated by the objects of the form (3.20).
Therefore Im9Y = Im9 ′Y . ut



Semiorthogonal decompositions 1691

3.4. SOD in the complete local setting

We return to the situation of Subsection 3.2. Under the assumption of Lemma 3.1, we
have the diagram

A±

q±

��

� � j± //

�

Y±
Û

w± //

pr±
Û
��

A1

M̂± �
� // P(V ±)Û

Here A± are defined by the above Cartesian square. By Theorem 2.2, the above diagram
induces the equivalence

j±∗ ◦ q
±∗
: DC∗(M̂

±, 0)
∼
→ DC∗(Y

±

Û
, w±). (3.21)

Here C∗ acts on M± trivially, and on Y±
Û

with weight 1 on fibers of pr±
Û

. Set

B :=
{
(Ex, Ey, Eu) ∈ (P(V +)× P(V −))Û :

∑
i,j

xiyjwij (Eu) = 0
}
.

Similarly, we have the diagram

E

q̃

��

� � j̃ //

�

WÛ

w̃ //

prÛ
��

A1

B �
� // (P(V +)× P(V −))Û

where the right vertical arrow is the projection and E is defined by the above Cartesian
square. Again by Theorem 2.2 and the description of w̃ in (3.9), the above diagram in-
duces the equivalence

j̃∗ ◦ q̃
∗
: DC∗(B, 0)

∼
→ DC∗(WÛ , w̃). (3.22)

Here C∗ acts on B trivially, and on WÛ with weight 1 on fibers of prÛ . Set

F+ :=
{
(Ex, Ey, Eu) ∈ (P(V +)× P(V −))Û :

a∑
i=1

xiwij (Eu) = 0 for all 1 ≤ j ≤ b
}
,

F− :=
{
(Ex, Ey, Eu) ∈ (P(V +)× P(V −))Û :

b∑
j=1

yjwij (Eu) = 0 for all 1 ≤ i ≤ a
}
.

Note that F± ⊂ B. Also the projections (P(V +)×P(V −))Û → P(V ±)Û restricted to F±

give morphisms F±→ M̂±, which are trivial P(V∓)-bundles. So we have the diagram

F± �
� k± //

r±

��

B

M̂±
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Let 2± be the functor defined by

2± := k±∗ ◦ r
±∗
: DC∗(M̂

±, 0)→ DC∗(B, 0).

Lemma 3.4. The following diagram is commutative:

DC∗(M̂±, 0) 2± //

j±∗ ◦q
±∗

��

DC∗(B, 0)

j̃∗◦q̃
∗

��
DC∗(Y

±

Û
, w±)

Lp±∗
Û // DC∗(WÛ , w̃)

(3.23)

Here the vertical arrows are the equivalences (3.21), (3.22).

Proof. Let F̃± ⊂ WÛ be defined by the Cartesian square

F̃± �
� ĩ± //

��
�

WÛ

prÛ
��

F± �
� // (P(V +)× P(V −))Û

Here the right vertical arrow is the projection. We have two diagrams

F̃± �
� ĩ± //

�
��

q̃±

��

WÛ

p±
Û

��
A± �
� j± //

q±

��
�

Y±
Û

pr±
Û
��

M̂± �
� // P(V ±)Û

F̃±

q̃±

��

ĩ±

((
� � //

��
�

E �
� j̃ //

q̃

��
�

WÛ

prÛ
��

F± �
� k± //

r±

��
�

B �
� // (P(V +)× P(V −)Û

��
M̂± �

� // P(V ±)Û

Since all Cartesians in the above diagrams are derived Cartesians, the base change shows
that

Lp±∗
Û
◦ j±∗ ◦ q

±∗ ∼= ĩ
±
∗ ◦ q̃

±∗ ∼= j̃∗ ◦ q̃
∗
◦2±.

Therefore the lemma holds. ut

Lemma 3.5. The following diagram is commutative:

DC∗(M̂±, 0)

j±∗ ◦q
±∗

��

DC∗(B, 0)
2±Roo

j̃∗◦q̃
∗

��
DC∗(Y

±

Û
, w±) DC∗(WÛ , w̃)

Rp±
Û∗oo

(3.24)
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Here 2±R are the right adjoint functors of 2, i.e.

2±R := Rr±∗ ◦ (k
±)!,

where (k±)! are the right adjoint functors of k±∗ . They are written as

(k+)! = ⊗OF+(b − 1,−1) ◦ Lk+∗[1− b], (3.25)

(k−)! = ⊗OF−(−1, a − 1) ◦ Lk−∗[1− a].

Here OF±(c, d) := O(P(V+)×P(V−))Û (c, d)|F± .

Proof. The commutativity of (3.24) follows from that of (3.23) together with the fact that
Rp±

Û∗
,2±R are the right adjoint functors of Lp±∗

Û
,2± respectively. As for the formula for

(k±)!, note that

(k±)!(−) = ⊗ detNF±/B ◦ Lk±∗(−) ◦ [dimF± − dimB].

By the exact sequences

0→ NF±/B → NF±/(P(V+)×P(V−))Û → NB/(P(V+)×P(V−))Û → 0

we have

detNF+/B = OF+(b − 1,−1), detNF−/B = OF−(a − 1,−1).

Together with the dimension computations

dimF+ = g + a − 2, dimF− = g + b − 2, dimB = g + a + b − 3 (3.26)

we obtain (3.25). ut

Proposition 3.6. Suppose that

dim(M̂+ ×Û M̂
−) ≤ g − 1. (3.27)

Then the following diagram is commutative:

DC∗(M̂−, 0)
2M̂ //

j−∗ ◦q
−∗

��

DC∗(M̂+, 0)

j+∗ ◦q
+∗

��
DC∗(Y

−

Û
, w±)

9Y // DC∗(Y
+

Û
, w̃)

Here the vertical arrows are the equivalences (3.21), 9Y is given by (3.14) and 2M̂ is
defined by

2M̂ := ⊗OM̂+(b − 1) ◦9
4(OM̂+×

Û
M̂− )
◦ ⊗OM̂−(−1)[1− b]

where 4 is the equivalence in (2.5):

4 : Db(M̂+ ×Û M̂
−)
∼
→ DC∗(M̂

+
×Û M̂

−, 0).
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Proof. By Lemmas 3.4 and 3.5, it is enough to check that2+R ◦2
− is isomorphic to2M̂ .

By setting OB(c, d) := O(P(V+)×P(V−))Û (c, d)|B , and using (3.25), we have

2+R ◦2
−(−) = Rr+∗

(
Lk+∗k−∗ r

−∗(−)⊗OF+(b − 1,−1)
)
[1− b]

= Rr+∗ Lk+∗
(
k−∗ r
−∗(−)⊗OB(0,−1)

)
⊗OM̂+(b − 1)[1− b]

= Rr+∗ Lk+∗k−∗ r
−∗(−⊗OM̂−(−1))⊗OM̂+(b − 1)[1− b].

Let us consider the composition Lk+∗ ◦ k−∗ in the above formula. We have the Cartesian
diagram

F+ ∩ F− �
� θ+ //

� _

θ−

��
�

F+� _

k+

��
F− �
� k− // B

(3.28)

By the definition of F±, we have

F+ ∩ F− = M̂+ ×Û M̂
−. (3.29)

Since F+ ⊂ B is of codimension b − 1 and F− ⊂ B is of codimension a − 1, we have

dim(F+ ∩ F−) ≥ dimB − (b − 1)− (a − 1) = g − 1.

Then the assumption (3.27) on the dimension of the fiber product implies dim(F+ ∩F−)
= g − 1 and (3.28) is a derived Cartesian diagram. Therefore by base change,

Lk+∗ ◦ k−∗ ∼= θ
+
∗ ◦ Lθ−∗.

By substituting into the above formula for 2+R ◦2
−, and again noting (3.29), we have

2+R ◦2
−(−) = Rr+∗ θ

+
∗ Lθ−∗r−∗(−⊗OM̂−(−1))⊗OM̂+(b − 1)[1− b]

= 9
4(OM̂+×

Û
M̂− )(−⊗OM̂−(−1))⊗OM̂+(b − 1)[1− b] = 2M̂(−).

Therefore the proposition holds. ut

Lemma 3.7. The following diagram is commutative:

DC∗(Û , 0)
ϒ
i+b

M̂
[−b]
// DC∗(M̂+, 0)

j+∗ ◦q
+∗

��
DC∗(Û , 0)

ϒ iY // DC∗(Y
+

Û
, w+)

(3.30)

Here ϒ iY is defined in Theorem 3.3(iii), and ϒ iM̂ is defined by

ϒ
i

M̂ := ⊗OM̂+(i) ◦ Lπ+∗ : DC∗(Û , 0)→ DC∗(M̂
+, 0). (3.31)
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Proof. The inverse of the equivalence of the right vertical arrow in (3.30) is given by
Rq+∗ ◦ j+!. Therefore it is enough to check that

Rq+∗ ◦ j
+!
◦ ⊗OY+

Û

(i) ◦ i+
Û∗
◦ g∗ ∼= ϒ

i+b

M̂ [−b]. (3.32)

We use the commutative diagram

M̂+

π+

||

� _

j̃+

��

� � ĩ+ //

�

id

((
A+� _

j+

��

q+ //

�

M̂+� _

j̃+

��
Û P(V +)Ûg
oo � �

i+
Û

// Y+
Û pr+

Û

// P(V +)Û

Since the left Cartesian diagram above is a derived Cartesian, by base change we have
Lj+∗ ◦ i+

Û∗
∼= ĩ+∗ ◦ Lj̃+∗. Together with OY+

Û

(1)|A+ = q+∗OM̂+(1), we have

Rq+∗ ◦ j
+!
◦ ⊗OY+

Û

(i) ◦ i+
Û∗
◦ g∗

∼= Rq+∗ ◦ ⊗OY+
Û

(b)|A+ ◦ Lj+∗ ◦ ⊗OY+
Û

(i) ◦ i+
Û∗
◦ g∗[−b]

∼= ⊗OM̂+(b + i) ◦ Rq+∗ ◦ Lj+∗ ◦ i+
Û∗
◦ g∗[−b]

∼= ⊗OM̂+(b + i) ◦ Rq+∗ ◦ ĩ
+
∗ ◦ Lj̃+∗ ◦ g∗[−b] ∼= ⊗OM̂+(b + i) ◦ Lπ+∗[−b]

as expected. ut

By putting all the arguments in this subsection together, we have the following:

Proposition 3.8. In the setting of Subsection 3.2, suppose that the assumptions of Lem-
ma 3.1 and the dimension condition (3.27) hold. Then we have the following:

(i) The functor

8M̂ := 8
OM̂−×

Û
M̂+
: Db(M̂−)→ Db(M̂+)

is fully faithful.
(ii) If n ≥ 1, the functor

ϒ i
M̂
:= ⊗OM̂+(i) ◦ Lπ+∗ : Db(Û)→ Db(M̂+)

is fully faithful.
(iii) We have the SOD

Db(M̂+) = 〈Imϒ−n+1
M̂

, . . . , Imϒ0
M̂
, Im8M̂ 〉.

Proof. By Theorem 3.3(i) and Proposition 3.6, the functor

9
4(OM̂−×

Û
M̂+ )
: DC∗(M̂

−, 0)→ DC∗(M̂
+, 0)
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is fully faithful. Therefore (i) follows by the commutative diagram (2.6). Similarly, (ii)
follows from Theorem 3.3(ii), Lemma 3.7 and the commutative diagram (2.6). As for
(iii), by Theorem 3.3(iii), Proposition 3.6 and Lemma 3.7 we have the SOD

Db(M̂+) = 〈Imϒb−n
M̂

, . . . , Imϒb−1
M̂

,⊗OM̂+(b − 1) ◦ Im8M̂ 〉.

By tensoring with OM̂+(1− b), we obtain the desired SOD. ut

4. SOD via d-critical simple flips

In this section, we show that for a d-critical simple flipM+→ U ← M− satisfying some
conditions, we have an associated SOD of Db(M+). The SOD in this section is obtained
by globalizing the SOD in Proposition 3.8.

4.1. D-critical simple flips

Let U be a smooth variety with g := dimU . Let (M±, s±) be two d-critical loci, and
suppose that we have projective morphisms

M+

π+ !!

M−

π−}}
U

(4.1)

For each p ∈ U , we set

Ûp := Spec ÔU,p, M̂±p := M
±
×U Ûp. (4.2)

Definition 4.1. A diagram (4.1) is called a formal d-critical simple flip if for any p ∈ U ,
there exist finite-dimensional vector spaces V ± with dimV + ≥ dimV − such that,
with Y±, Z defined as in (3.2), and

ẐU := Spec ÔZU ,(0,p), Ŷ±U := Y
±

U ×ZU ẐU , (4.3)

there exist ŵ ∈ OẐU
and a commutative diagram

M̂±p

π±

��

� � ι± // Ŷ±U

f̂±U
��

ŵ±

��
Ûp
� � j // ẐU

ŵ // A1

(4.4)

where the horizontal arrows are closed immersions, ŵ± are defined by the above commu-
tative diagram, j sends p to (0, p) and ι± induce the isomorphisms of d-critical loci

ι± : M̂±p
∼=
→ {dŵ± = 0} ⊂ Ŷ±U . (4.5)
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For a formal d-critical simple flip (4.1) and p ∈ U , let V ± be vector spaces as in Defi-
nition 4.1. Below we use the notation in Subsection 3.1, e.g. a = dimV +, b = dimV −,
n := a − b ≥ 0, the coordinates Ex, Ey of V +, V −, etc. Note that (a, b) may depend on the
choice of p ∈ U . We assume the following on the diagram (4.1):

Assumption 4.2. (i) The diagram (4.1) is a formal d-critical simple flip.
(ii) For any p ∈ U , the formal function ŵ in (4.4) is of the form

ŵ =
∑
i,j

xiyjw
(1)
ij (Eu)+

∑
i,i′,j,j ′

xixi′yjyj ′w
(2)
ii′jj ′

(Eu)+ · · · (4.6)

for some w(k)∗ (Eu) ∈ ÔU,p, and w(1)ij (Eu) is written as

w
(1)
ij (Eu) =

g∑
k=1

aijkuk + (higher order terms in Eu) (4.7)

for some aijk ∈ C. Moreover the bilinear map

ψ : Ca ⊗ Cb → Cg, ψ(Eα, Eβ) =
(∑
i,j

aijkαiβj

)
1≤k≤g

, (4.8)

is injective on each factor, i.e. for any non-zero Eα ∈ Ca and Eβ ∈ Cb, the maps
ψ(Eα,−), ψ(−, Eβ) are injective maps Cb → Cg , Ca → Cg .

(iii) There exists a π+-ample line bundle OM+(1) on M+ such that under the isomor-
phism (4.5), we have an isomorphism of line bundles

(ι+)∗OŶ+U
(1) ∼= OM+(1)|M̂+p . (4.9)

Lemma 4.3. Suppose that a diagram (4.1) satisfies Assumption 4.2(i, ii). Then for any
p ∈ U , the critical loci {dŵ± = 0} ⊂ Ŷ±U in the diagram (4.4) are written as

{dŵ+ = 0} =
{
(Ex, Eu) ∈ P(V +)Ûp :

a∑
i=1

xiw
(1)
ij (Eu) = 0 for all 1 ≤ j ≤ b

}
,

{dŵ− = 0} =
{
(Ey, Eu) ∈ P(V −)Ûp :

b∑
j=1

yjw
(1)
ij (Eu) = 0 for all 1 ≤ i ≤ a

}
.

(4.10)

Moreover n = a − b ≥ 0 is independent of p ∈ U , M± are smooth and

dimM± = ±n+ g − 1.

Proof. For p ∈ U , let us consider the diagram (4.4). The subscheme {dŵ+ = 0} ⊂ Ŷ+U
is contained in the closed subscheme of Ŷ+U defined by the equations

∂ŵ+(Eu)

∂uk
=

∑
i,j

xiyj
∂w

(1)
ij (Eu)

∂uk
+

∑
i,i′,j,j ′

xixi′yjyj ′
∂w

(2)
ii′jj ′

(Eu)

∂uk
+ · · · = 0 (4.11)
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for all 1 ≤ k ≤ g. Note that

∂w
(1)
ij (Eu)

∂uk
= aijk +O(Eu).

Then by the assumption on the map (4.8), the subscheme{∑
i,j

xiyj
∂w

(1)
ij (Eu)

∂uk
= 0 : 1 ≤ k ≤ g

}
⊂ (V +∗ × V −)Ûp

coincides with V +∗×{0}×Ûp. Since the higher order terms in (4.11) have degrees greater
than or equal to 2 in Ey, by the Nakayama lemma the zero locus defined by (4.11) equals
Ey = 0 on Ŷ+U , i.e. the zero section P(V +)Ûp ⊂ Ŷ+U . Therefore {dŵ+ = 0} ⊂ Ŷ+U is as
in (4.10).

Let gj for 1 ≤ j ≤ b be the defining equations in the RHS of (4.10). Again the
property of the map (4.8) implies that the Jacobian matrix(

∂gj

∂xi
,
∂gj

∂uk

)
1≤i≤a,1≤j≤b,1≤k≤g

is of maximal rank b at any point in the RHS of (4.10). Therefore {dŵ+ = 0} is smooth
of dimension a − 1 + g − b = n + g − 1. By the isomorphism (4.5), M̂+p is smooth of
dimension of n+ g− 1 for any p ∈ U , henceM+ is smooth of dimension n+ g− 1. The
claim for M− is similarly proved. ut

Lemma 4.4. In the situation of Lemma 4.3, we have

dim(M− ×U M+) ≤ g − 1. (4.12)

Proof. Let us take p ∈ U , and vector spaces V ± as in Definition 4.1 with a = dimV +,
b = dimV − as before. For each k ≥ 0, let U (k) be the locally closed subset U defined by

U (k) := {x ∈ U : dim (π−)−1(x) = k − 1}.

Then p ∈ U (b) as (π−)−1(p) = P(V −), and the descriptions of {dŵ± = 0} in (4.10) and
the isomorphisms (4.5) show that

U (b) ∩ Ûp = Spec
(
ÔU,p/(w

(1)
ij (Eu) : 1 ≤ i ≤ a, 1 ≤ j ≤ b)

)
.

It follows from the description of w(1)ij (Eu) in (4.7) that the tangent space of U (b) at p is

T U (b)|p =
{
(u1, . . . , ug) ∈ Cg :

g∑
k=1

aijkuk = 0, 1 ≤ i ≤ a, 1 ≤ j ≤ b
}
.

Therefore the dimension of T U (b)|p is the dimension of the cokernel of ψ in (4.8). By
the assumption on the map (4.8), the Hopf lemma (see [Gin, Lemma 2]) implies that
dim Cok(ψ) ≤ g − a − b + 1. Therefore

dimU (b) ≤ g − a − b + 1.
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It follows that

dim
(
(π+)−1(U (b))×U (b) (π

−)−1(U (b))
)

≤ (a − 1)+ (b − 1)+ (g − a − b + 1) = g − 1.

By applying the above argument for all p ∈ U , we see that for any k ≥ 0 we have

dim
(
(π+)−1(U (k))×U (k) (π

−)−1(U (k))
)
≤ g − 1.

Since U is a disjoint union of strata U (k), the condition (4.12) holds. ut

4.2. SOD under d-critical simple flips

The following is the main result in this section.

Theorem 4.5. Suppose that the diagram (4.1) satisfies Assumption 4.2, so that M± are
smooth of dimension ±n+ g − 1 for some n ∈ Z≥0 by Lemma 4.3. Then:

(i) The functor

8M := 8
OM−×UM

+
: Db(M−)→ Db(M+)

is fully faithful.
(ii) If n ≥ 1, the functor

ϒ iM := ⊗OM+(i) ◦ Lπ+∗ : Db(U)→ Db(M+)

is fully faithful.
(iii) We have the SOD

Db(M+) = 〈Imϒ−n+1
M , . . . , Imϒ0

M , Im8M 〉. (4.13)

The proof of Theorem 4.5 is in three steps.

Step 1. For each p ∈ U , we may assume that the formal function (4.6) satisfies w(k)∗ (Eu)
= 0 for k ≥ 2.

Proof. In the notation of Assumption 4.2(ii), let w ∈ OZ ⊗ ÔU,p be defined by

w =
∑
i,j

xiyjw
(1)
ij (Eu).

We set w± : Y±
Ûp
→ A1 as in the diagram (3.8) for Û = Ûp. Then the argument used for

Lemma 4.3 shows that {dw± = 0} ⊂ Y±
Ûp

are described as in the RHS of (4.10) and the

isomorphisms (4.5) give
ι± : M̂p

∼=
→ {dw± = 0} ⊂ Y±

Ûp
.

Therefore we may replace ŵ with w and assume that w(k)∗ (Eu) = 0 for k ≥ 2. ut
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Step 2. Item (i) and (ii) of Theorem 4.5 hold.

Proof. Let 8M,R be the right adjoint functor of 8M , and let P ∈ Db(M− ×M−) be the
kernel object for the composition functor

8M,R ◦8M : D
b(M−)→ Db(M+)→ Db(M−).

Then there is a canonical morphism

O1M−
→ P (4.14)

corresponding to the adjunction idM− → 8M,R ◦8M . Let Q be the cone of the morphism
(4.14). In order to show that8M is fully faithful, it is enough to show that Q = 0. Indeed,
if this is the case, then the adjunction idM− → 8M,R ◦8M is an isomorphism hence8M
is fully faithful.

Note that Q is supported on the fiber product M− ×U M− by construction. Since
Ûp → U is faithfully-flat, the vanishing Q = 0 is equivalent to

Q⊗OM−×M−
OM̂−p ×M̂

−
p
= 0 (4.15)

for all p ∈ U .
Now by Step 1 and Lemmas 4.3 and 4.4, the diagram

M̂+p → Ûp ← M̂−p

satisfies the assumptions in Proposition 3.8. Then Proposition 3.8(i) shows that the mor-
phism (4.14) is an isomorphism after pulling it back by M̂−p × M̂

−
p → M− × M−.

Therefore (4.15) holds for any p ∈ U , and Theorem 4.5(i) is proved. The proof of (ii) is
similar. ut

Step 3. Theorem 4.5(iii) holds.

Proof. We first show the semiorthogonality of the RHS of (4.13), i.e. the vanishings

Hom(Im8M , Imϒ iM) = 0, Hom(Imϒ iM , Imϒ
j
M) = 0,

for i < j . It is enough to check that

8M,R ◦ ϒ
i
M = 0, ϒ iM,R ◦ ϒ

j
M = 0

where 8M,R , ϒ iM,R are the right adjoint functors of 8M , ϒ iM respectively. Again it is
enough to check these vanishings formally locally at every p ∈ U , and Proposition 3.8(iii)
implies that they indeed hold.

Let E ∈ Db(M+) be an object in the right orthogonal complement of the RHS
of (4.13). Then Proposition 3.8(iii) implies that E = 0 on M̂+p for any p ∈ U . Therefore
E = 0, and the RHS of (4.13) generates the LHS. ut
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5. SOD for stable pair moduli spaces

In this section, we apply Theorem 4.5 to prove Theorem 1.1, i.e. the existence of certain
SOD on moduli spaces of Pandharipande–Thomas stable pairs on CY 3-folds.

5.1. Stable pairs and stable sheaves

Let X be a smooth quasi-projective variety. By definition, a stable pair in the sense of
Pandharipande–Thomas [PT09] consists of data

(F, s), s : OX → F,

where F is a pure one-dimensional coherent sheaf on X with compact support, and s is
surjective in dimension 1. For β ∈ H2(X,Z) and n ∈ Z, the moduli space of stable pairs
(F, s) satisfying the condition

[F ] = β, χ(F ) = n (5.1)

is denoted by Pn(X, β). Here [F ] is the homology class of the fundamental one-cycle
associated with F . The moduli space Pn(X, β) is a quasi-projective scheme (see [PT09]).
We define the open subscheme

P ◦n (X, β) ⊂ Pn(X, β)

to consist of stable pairs (F, s) such that the fundamental one-cycle associated with F is
irreducible.

We denote by Un(X, β) the moduli space of compactly supported one-dimensional
Gieseker stable sheaves F on X with respect to a fixed polarization, satisfying the con-
dition (5.1). The moduli space Un(X, β) is a quasi-projective scheme (see [HL97]). We
define the open subscheme

U◦n (X, β) ⊂ Un(X, β)

consisting of one-dimensional stable sheaves whose fundamental one-cycles are irre-
ducible. Note that U◦n (X, β) is the moduli space of pure one-dimensional sheaves F with
irreducible fundamental one-cycles satisfying (5.1). In particular, U◦n (X, β) is indepen-
dent of the choice of a polarization. Below we always assume that U◦n (X, β) is a fine
moduli space, i.e. it admits a universal sheaf

F ∈ Coh(X × U◦n (X, β)). (5.2)

Remark 5.1. Alternatively, U◦n (X, β) parametrizes pairs (C, F ) where C ⊂ X is an
irreducible projective curve with [F ] = β, and F ∈ Coh(C) is a rank-one torsion free
sheaf satisfying χ(F ) = n.

Remark 5.2. The existence of the universal sheaf (5.2) is guaranteed if (D · β, n) is
coprime for some divisor D on X. See [HL97, Corollary 4.6.6].
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5.2. Wall-crossing diagram of stable pair moduli spaces

Suppose that X is a smooth projective CY 3-fold, i.e.

dimX = 3, KX = 0.

Let us take β ∈ H2(X,Z) and n ∈ Z≥0. Then as in [PT10], we have the diagram

P ◦n (X, β)

π+ &&

P ◦−n(X, β)

π−xx
U◦n (X, β)

(5.3)

Here π± are defined by

π+(F, s) = F, π−(F ′, s′) = Ext2X(F
′,OX).

If furthermore H 1(OX) = 0, then the diagram (5.3) gives an example of an analytic (in
particular formal) d-critical simple flip (see [Tod, Theorem 6.18]). Here we recall some
more details.

Let us take a point p ∈ U◦n (X, β) corresponding to a pure one-dimensional sheaf F
on X. We write

Ûn(X, β)p := Spec ÔUn(X,β),p, P̂n(X, β)p := P
◦
n (X, β)×U◦n (X,β) Ûn(X, β)p.

We take a collection of objects in Db(X)

E• = (E1, E2), E1 = OX, E2 = F [−1]. (5.4)

We define vector spaces V +, V − and U as follows:

V + := Ext1X(E1, E2) = H
0(F ),

V − := Ext1X(E2, E1) = H
1(F )∨, (5.5)

U := Ext1X(E2, E2) = Ext1X(F, F ).

Below we use the notation and conventions of Subsections 3.1 and 3.2, e.g. C∗-actions
on V ±, the GIT quotients Y±, Z, coordinates Ex, Ey, Eu on V ±, U , a = dimV +, b =
dimV −, g = dimU , etc. We also take the formal completion ẐU of ZU at (0, 0), and
define f̂±U : Ŷ

±

U → ẐU as in (4.3). The following result is obtained in [Tod]:

Theorem 5.3 ([Tod, Theorem 6.18]). In the above situation, there exist an element
ŵ ∈ ÔZU ,(0,0) and the commutative diagram

P̂n(X, β)p
∼=

ι±
//

π+

��

{dŵ± = 0} �
� //

��

Ŷ±U

f̂±U
��

ŵ±

��
Ûn(X, β)p

∼= // {dw(0) = 0} �
� j // ẐU

ŵ // A1

(5.6)



Semiorthogonal decompositions 1703

Here ŵ± are defined by the above commutative diagram, the bottom left arrow sends p
to (0, 0), and the map j is the composition of the inclusion {dw(0) = 0} ⊂ Û with the
inclusion Û ↪→ ẐU given by u 7→ (0, u).

Remark 5.4. In [Tod14b, Theorem 6.18], it is stated that we can take ŵ as an analytic
function on an analytic open neighborhood of 0 ∈ ZU , and the diagram (5.6) can be
extended to analytic neighborhoods of 0 ∈ ZU and p ∈ U◦n (X, β). The formal version in
Theorem 5.3 is weaker than the analytic version in [Tod14b, Theorem 6.18], but enough
for the purpose of this paper.

Let us write the formal function ŵ in Theorem 5.3 as

ŵ = w(0)(Eu)+
∑
i,j

xiyjw
(1)
ij (Eu)+

∑
i,i′,j,j ′

xixi′yjyj ′w
(2)
ii′jj ′

(Eu)+ · · · (5.7)

for w(k)∗ (Eu) ∈ ÔU,0. The function (5.7) is constructed using the minimal cyclic A∞-struc-
ture on the subcategory ofDb(X) generated by E1 and E2 (see [Tod, Subsection 5.1]). In
particular, the linear term of w(1)ij (Eu) is given as follows. Let us consider the triple product

Ext1X(E2, E2)⊗ Ext1X(E1, E2)⊗ Ext1X(E2, E1)→ Ext3X(E2, E2) ∼= C (5.8)

given by composition, where the last isomorphism is given by the Serre duality. For
1 ≤ i ≤ a, 1 ≤ j ≤ b and 1 ≤ k ≤ g, let

x∨i ∈ Ext1X(E1, E2), y∨j ∈ Ext1X(E2, E1), u∨k ∈ Ext1X(E2, E2)

be the dual basis of xi , yj , uk respectively. Then using the triple product (5.8), we have

w
(1)
ij (Eu) =

1
2

g∑
k=1

(x∨i · y
∨

j · u
∨

k )uk + (higher order terms in Eu). (5.9)

We show that w(1)ij (Eu) satisfies Assumption 4.2(ii):

Lemma 5.5. The map

Ext1X(E1, E2)⊗ Ext1X(E2, E1)→ Ext2X(E2, E2) (5.10)

given by composition is injective on each factor.

Proof. Recall that E1, E2 are as in (5.4), i.e. E1 = OX and E2 = F [−1] for a pure one-
dimensional sheaf F on X with irreducible fundamental one-cycle. So F can be written
as j∗E where j : C ↪→ X is an irreducible Cohen–Macaulay curve and E is a rank-one
torsion free sheaf on C. Therefore the map (5.10) is

H 0(C,E)⊗ Ext2X(j∗E,OX)→ Ext2X(j∗E, j∗E). (5.11)

Note that

Ext2X(j∗E,OX) = Ext2C(E, j
!OX) = Hom(E, ωC)
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where ωC is the dualizing sheaf on C. Also H 1(C, End(E)) ⊂ Ext1X(j∗E, j∗E), and the
Serre duality gives the surjection

Ext2X(j∗E, j∗E)� Hom(End(E), ωC).

By composing it with (5.11) we obtain the map

H 0(C,E)⊗ Hom(E, ωC)→ Hom(End(E), ωC). (5.12)

The above bilinear map is given by the natural composition map. SinceE and End(E) are
torsion free on C, and ωC is also torsion free on C as C is Cohen–Macaulay, the bilinear
map (5.12) is injective on each factor. Therefore the lemma holds. ut

We also have the following lemma:

Lemma 5.6. There is a π+-ample line bundle OP (1) on P ◦n (X, β) such that for any
p ∈ U◦n (X, β), the isomorphism ι+ in the diagram (5.3) satisfies

(ι+)∗(OŶ+U
(1)|{dŵ+=0})

∼= OP (1)|P̂n(X,β)p .

Proof. Let H be a sufficiently ample divisor on X such that for any [F ] ∈ U◦n (X, β),
the sheaf F(H) := F ⊗OX(H) satisfies H 1(X, F (H)) = 0, and the natural map F →
F(H) defined by taking the tensor product with OX ⊂ OX(H) is injective. Such an
ample divisor H exists as U◦n (X, β) is of finite type. By setting d = H · β, we have the
commutative diagram

P ◦n (X, β)
� � //

π+

��

P ◦n+d(X, β)

π+

��
U◦n (X, β)

∼= // U◦n+d(X, β)

(5.13)

Here the top arrow is given by

(OX → F) 7→ (OX → F ↪→ F(H))

and the bottom arrow sends a stable sheaf F to F(H). By the condition H 1(X, F (H))

= 0, the right arrow is a projective bundle with fiber P(H 0(X, F (H))). Indeed, using the
universal sheaf (5.2), we have an isomorphism over U◦n (X, β)

P ◦n+d(X, β)
∼= P(pU∗(F ⊗ p∗XOX(H))).

Here pX, pU are the projections from X × U◦n (X, β) to X, U◦n (X, β) respectively. By
restricting the tautological line bundle on P ◦n+d(X, β) to P ◦n (X, β) by the top arrow of
(5.13), we obtain the desired OP (1). ut

5.3. SOD for stable pair moduli spaces

We keep the situation of the previous subsections. For the diagram (5.3), let W◦ be the
fiber product

W◦ := P ◦n (X, β)×U◦n (X,β) P
◦
−n(X, β).
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The following is the main result in this section:

Theorem 5.7. For n ≥ 0 and β ∈ H2(X,Z), suppose that U◦n (X, β) is fine and non-
singular of dimension g. Then P ◦±n(X, β) are also non-singular of dimension±n+g−1,
and we have the following:

(i) The functor

8P := 8
OW◦ : Db(P ◦−n(X, β))→ Db(P ◦n (X, β))

is fully faithful.
(ii) There is a π+-ample line bundle OP (1) on P ◦n (X, β) such that if n ≥ 1, the functor

ϒ iP : D
b(U◦n (X, β))→ Db(P ◦n (X, β))

defined by Lπ+∗(−)⊗OP (i) is fully faithful.
(iii) We have the semiorthogonal decomposition

Db(P ◦n (X, β)) = 〈Imϒ−n+1
P , . . . , Imϒ0

P , Im8P 〉.

Proof. We show that the diagram (5.3) satisfies Assumption 4.2. Let us take p ∈
U◦n (X, β) corresponding to a pure one-dimensional sheaf F . The assumption that
U◦n (X, β) is smooth and the bottom left isomorphism in the diagram (5.6) indicate that,
for the formal function ŵ written as in (5.7), we may assume that w(0)(Eu) = 0. Then
(i) of Assumption 4.2 follows from Theorem 5.3, (ii) follows from Lemma 5.5, and (iii)
follows from Lemma 5.6. Therefore the theorem follows from Theorem 4.5. ut

Remark 5.8. When X is a non-compact CY 3-fold, suppose that X has a smooth com-
pactification X such that H i(OX) = 0 for i = 1, 2. Then the result of Theorem 5.7 also
holds without any modification with X replaced by X. This is because for E1 = OX and
E2 = F [−1] where the support of F is contained in X, we have the perfect pairing

Ext1X(Ei, Ej )⊗ Ext2X(Ej , Ei)→ C

by the CY3 condition for X and since H i(OX) = 0 for i = 1, 2.

5.4. Stable pairs on local surfaces

We apply Theorem 5.7 to some local surfaces. Let S be a smooth projective surface satis-
fying H i(OS) = 0 for i = 1, 2. We consider the non-compact CY 3-fold

X = TotS(KS).

We will apply Theorem 5.7 to show the existence of SOD of relative Hilbert schemes of
points on the universal curve over a complete linear system.

Let us take β ∈ H2(S,Z) = H 2(S,Z) such that −KS · β > 0. By the assumption
H i(OS) = 0 for i = 1, 2, there is a unique L ∈ Pic(S) such that c1(L) = β. Let
|L|◦ ⊂ |L| be the open subset consisting of irreducible curves and

π : C → |L|◦
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the universal curve. Note that any member C ∈ |L|◦ has arithmetic genus

g = 1+ 1
2 (β

2
+KS · β).

We have the diagram

C[n]

π [n] !!

Jn

πJ~~
|L|◦

Here π [n] is the π -relative Hilbert scheme of n points, and πJ is the π -relative rank-one
torsion free sheaf on the fibers of π with Euler characteristic n. Let i : S ↪→ X be the zero
section. We have the following lemma:

Lemma 5.9. (i) We have isomorphisms

C[n+g−1] ∼=
→ P ◦n (S, β)

∼=
→ P ◦n (X, i∗β)

and they are non-singular.
(ii) We have isomorphisms

Jn
∼=
→ U◦n (S, β)

∼=
→ U◦n (X, i∗β)

and they are non-singular.

Proof. As for (i), the isomorphism C[n+g−1] ∼=
→ P ◦n (S, β) and the smoothness of

P ◦n (S, β) follow by applying the arguments used for [PT10, Propositions B.8, C.2]. The
assumption −KS · β > 0 implies that any compactly supported irreducible curve on X
with homology class i∗β must lie on the zero section S ⊂ X. Therefore we have the set-
theoretic bijection P ◦n (S, β) → P ◦n (X, i∗β), and these schemes have the same scheme
structures by [KT14, Proposition 3.4].

As for (ii), the smoothness of U◦n (S, β) follows from

Ext2S(F, F ) = Hom(F, F ⊗OS(KS))
∨
= 0

for a sheaf F corresponding to a point in Un(X, β), by the Serre duality and the assump-

tion−KS ·β > 0. The isomorphism Jn
∼=
→ U◦n (S, β) follows from the argument in [MT18,

Subsection 5.3], and U◦n (S, β)
∼=
→ U◦n (X, i∗β) follows similarly to (i). ut

By Lemma 5.9, the diagram (5.3) in this case is

C[n+g−1]

π+ ##

C[−n+g−1]

π−zz
Jn

(5.14)
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Again we assume that n ≥ 0 andU◦n (S, β) is fine, which is guaranteed if gcd(β ·D, n) = 1
for some divisor D on S (see Remark 5.2). Applying Theorem 5.7 to X = TotS(KS) and
noting Remark 5.8, we have the following:

Corollary 5.10. In the above situation, we have the SOD

Db(C[n+g−1]) = 〈

n︷ ︸︸ ︷
Db(Jn), . . . ,D

b(Jn),D
b(C[−n+g−1])〉.

5.5. SOD of symmetric product of curves

Let C be a smooth projective curve over C of genus g. Its k-fold symmetric product C[k]

is defined by

C[k] :=

k︷ ︸︸ ︷
(C × · · · × C) /Sk

where the action of the symmetric group Sk is by permutation. The variety C[k] is
a smooth projective variety of dimension k, and identified with the Hilbert scheme of
k-points on C.

Let Pick(C) be the moduli space of degree k line bundles on C, which is a g-
dimensional complex torus. Once we fix a point c ∈ C, we have the isomorphism

Pick(C)
∼=
→ JC := Pic0(C) (5.15)

which sends [L] ∈ Pick(C) to [L(−kc)] ∈ JC . Below we fix the above isomorphisms for
each k ∈ Z. We also have the Abel–Jacobi map

AJ : C[k]→ Pick(C) (5.16)

which sends a length k subscheme Z ⊂ C to the line bundle OC(Z).

Remark 5.11. For k > 2g−2, the map (5.16) is a projective bundle. In general, the map
(5.16) is a stratified projective bundle, where strata on Pick(C) are given by Brill–Noether
loci. The geometry of Brill–Noether loci is complicated and depends on the complex
structure of C, whose study is a classical subject in the study of symmetric products of
curves (see [Fla, Section 5], [Kas13, Examples 1.0.7–1.0.10]).

For n ≥ 0, we consider the diagram

C[n+g−1]

AJ ''

C[−n+g−1]

AJ∨ww
Picn+g−1(C)

(5.17)

Here AJ∨ sends Z ⊂ C to ωC(−Z). Applying Theorem 5.7 and using the isomorphism
(5.15), we obtain the following corollary:
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Corollary 5.12. For each n ≥ 0, we have the SOD

Db(C[n+g−1]) = 〈

n︷ ︸︸ ︷
Db(JC), . . . ,D

b(JC),D
b(C[−n+g−1])〉.

Proof. Let X be the non-compact CY 3-fold

X = TotC(L1 ⊕ L2)

where L1, L2 are general line bundles of degree g−1 satisfying L1⊗L2 ∼= ωC . Then the
diagram (5.3) in this case coincides with the diagram (5.17). As mentioned in [Tod, Exam-
ple 9.22, Remark 9.23], Theorem 5.3 applies to the non-compact CY 3-fold X. Therefore
the result follows by the same argument as for Theorem 5.7 and isomorphisms (5.15). ut

For n = 0, the images of AJ and AJ∨ coincide with the theta divisor

2 := {[L] ∈ Picg−1(C) : h0(L) 6= 0} ⊂ Picg−1(C),

which is singular in general, but has only rational singularities [Kem73]. So we have the
diagram

C[g−1]

AJ ""

// C[g−1]

AJ∨||
2

which gives a (possibly non-isomorphic) resolutions of 2. Let W be the fiber product of
the above diagram. Applying Theorem 5.7 as in the proof of Corollary 5.12 for n = 0,
we have the following:

Corollary 5.13. We have the autoequivalence

8OW : Db(C[g−1])
∼
→ Db(C[g−1]). (5.18)

Below we give some examples related to Corollaries 5.12 and 5.13.

Example 5.14. Suppose that n > g − 1. Then C[−n+g−1]
= ∅ and

AJ : C[n+g−1]
→ Picn+g−1(C)

is a projective bundle whose fibers are Pn−1. Then the SOD in Theorem 5.12 is

Db(C[n+g−1]) = 〈

n︷ ︸︸ ︷
Db(JC), . . . ,D

b(JC)〉,

which is nothing other than Orlov’s SOD for projective bundles [Orl92].
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Example 5.15. Suppose that n = g − 1. Then C[−n+g−1]
= SpecC and

AJ : C[2g−2]
→ Pic2g−2(C)

is a projective bundle outside the point [ωC] ∈ Pic2g−2(C). For the fiber F =
AJ−1([ωC]), its structure sheaf OF is exceptional, and the SOD in Theorem 5.12 is

Db(C[2g−2]) = 〈

g−1︷ ︸︸ ︷
Db(JC), . . . ,D

b(JC),OF 〉.

Example 5.16. Suppose that n = g − 2. Then C[−n+g−1]
= C and

AJ : C[2g−3]
→ Pic2g−3(C)

is a projective bundle outside AJ∨(C) ⊂ Pic2g−3(C). In this case, the SOD in Theo-
rem 5.12 is

Db(C[2g−3]) = 〈

g−2︷ ︸︸ ︷
Db(JC), . . . ,D

b(JC),D
b(C)〉.

Example 5.17. Suppose that g = 3 and n = 0. Then the birational map

AJ : C[2]→ 2

is not an isomorphism if and only if C is a hyperelliptic curve (see [Kas13, Ex-
ample 1.0.9]). In this case, the above map contracts a (−2)-curve on C[2] to a rational
double point in 2. The equivalence (5.18) is the spherical twist along with the (−2)-
curve.

Example 5.18. Suppose that g = 4 and n = 1. Then the birational map

AJ : C[4]→ Pic4(C)

contracts a divisor E ⊂ C[4] to the surface AJ∨(C[2]) ⊂ Pic4(C) (see [Kas13, Ex-
ample 1.0.10]). If C is not hyperelliptic, then E is a P1-bundle over AJ∨(C[2]) ∼= C[2].
The SOD in Theorem 5.12 becomes

Db(C[4]) = 〈Db(JC),D
b(C[2])〉.

If C is not hyperelliptic, the above SOD seems to be the blow-up formula of derived
categories obtained in [Orl92].

Example 5.19. Suppose that g = 4 and n = 0. Then the birational map

AJ : C[3]→ 2

is a crepant resolution of 2 which is a divisorial contraction if C is hyperelliptic, and a
small resolution which contracts one or two smooth rational curves if C is not hyperellip-
tic (see [Kas13, Example 1.0.10]). In the latter case, the equivalence (5.18) seems to be
the derived equivalence under flops [BO01, Bri02].
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6. Categorification of Kawai–Yoshioka’s formula

In this section, we prove Theorem 1.2 as another application of Theorem 4.5. We use
Kawai–Yoshioka’s diagram [KY00] relating moduli spaces of stable pairs on K3 surfaces
to moduli spaces of stable sheaves on them. The key ingredient, which was essentially ob-
served in [Tod12b], is to interpret Kawai–Yoshioka’s diagram in terms of a wall-crossing
diagram in a CY 3-fold defined by the product of the K3 surface and an elliptic curve.

6.1. SOD of relative Hilbert schemes of points

Let S be a smooth projective K3 surface such that

Pic(S) = Z[OS(H)]

for an ample divisorH on S. Let g ∈ Z be defined byH 2
= 2g−2. We have the complete

linear system |H | and the universal curve

π : C → |H | = Pg.

In what follows, we fix n > 0. Let

C[n+g−1]
→ Pg (6.1)

be the π -relative Hilbert scheme of n+g−1 points on C. As in Lemma 5.9, the π -relative
Hilbert scheme (6.1) is isomorphic to the moduli space of Pandharipande–Thomas stable
pair moduli space Pn(S, [H ]) on S.

Let 0S be the Mukai lattice of S,

0S := H
0(S,Z)⊕ Z[H ] ⊕H 4(S,Z).

For E ∈ Db(S) its Mukai vector is defined by

v(E) := ch(E) ·
√

tdS ∈ 0S .

For elements (ri, βi, mi) ∈ 0S with i = 1, 2, the Mukai pairing is defined by

((r1, β1, m1), (r2, β2, m2)) := β1β2 − r2m1 − r1m2.

For each k ∈ Z≥0, we define Uk to be the moduli space of H -Gieseker stable sheaves E
on S satisfying

v(E) = vk := (k, [H ], k + n).

Here we refer to [HL97] for basics on moduli spaces of stable sheaves and their properties.
The moduli space Uk is known to be a projective irreducible holomorphic symplectic
manifold with

dimUk = 2+ (vk, vk) = 2(g − k2
− kn). (6.2)

Below we assume that Uk is a fine moduli space, i.e. there is a universal sheaf on S×Uk .
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Remark 6.1. By [HL97, Corollary 4.6.7], the moduli spaceUk is fine if (k, 2g−2, 2k+n)
is coprime. In particular if (2g − 2, n) is coprime, then Uk is fine for any k ∈ Z≥0.

Let Pk be the moduli space of pairs

(E, s), s : OS → E,

where [E] ∈ Uk and s is a non-zero morphism. By [KY00, Lemma 5.117], the moduli
space Pk is a smooth projective variety with

dimPk = 1+ 〈vk−1, vk〉 = 2(g − k2
− kn)+ 2k + n− 1. (6.3)

We have the diagram (see [KY00, Lemma 5.113])

Pk

π+k   

Pk+1

π−k||
Uk

(6.4)

where π±k are defined by

π+k (E, s) := E, π−k (E
′, s′) := Cok(s′).

As an application of Theorem 4.5, we have the following result whose proof will be given
in Subsection 6.5:

Theorem 6.2. For k ≥ 0, we have the following SOD:

Db(Pk) = 〈

n+2k︷ ︸︸ ︷
Db(Uk), . . . ,D

b(Uk),D
b(Pk+1)〉.

Let

N := max{k ≥ 0 : g − k2
− kn ≥ 0}.

Applying the above theorem from k = 0 to k = N , and noting that

P0 = Pn(S, [H ]) ∼= C[n+g−1], PN+1 = ∅,

where the latter is due to (6.2), we have the following result:

Corollary 6.3. For n > 0, we have the SOD

Db(C[n+g−1]) = 〈A0,A1, . . . ,AN 〉 (6.5)

where each Ak has the SOD

Ak = 〈

n+2k︷ ︸︸ ︷
Db(Uk), . . . ,D

b(Uk)〉.
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Remark 6.4. As mentioned in Subsection 1.3, the SOD (6.5) recovers Kawai–Yoshioka’s
formula (1.8),

Pn,g = (−1)n−1
N∑
k=0

(n+ 2k)e(Uk).

In [KY00], the formula (1.8) is the key ingredient to prove the Katz–Klemm–Vafa (KKV)
formula for PT invariants with irreducible curve classes. Together with the identities

e(Uk) = e(Hilbg−k(k+n)(S)),
∑
k≥0

e(Hilbk(S)) =
∏
k≥1

(1− qk)−24

the formula (1.8) implies (see [KY00])∑
g≥0

∑
n∈Z

Pn,gz
nqg−1

=

(
√
z−

1
√
z

)−2 1
1(z, q)

. (6.6)

Here

1(z, q) := q
∏
n≥1

(1− qn)20(1− zqn)2(1− z−1qn)2.

The formula (6.6) is the KKV formula mentioned above.

6.2. Tilting on S × C

Let S be a K3 surface as in the previous subsection. We fix a smooth elliptic curve C and
consider a compact CY 3-fold X := S × C with projections pS , pC ,

X = S × C

pS

��

pC // C

S

In what follows, we will interpret the diagram (6.4) in terms of wall-crossing diagrams
in Db(X).

We define the triangulated subcategory

D0 ⊂ D
b(X)

consisting of objects whose cohomology is supported on fibers of pC . The triangulated
category D0 is the derived category of the abelian subcategory

Coh0(X) ⊂ Coh(X)

consisting of sheaves supported on fibers of pC . For c ∈ C, let

ic : S × {c} ↪→ S × C = X. (6.7)

The category Coh0(X) is the extension closure of objects of the form ic∗F for some c ∈ C
and F ∈ Coh(S).
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For F ∈ D0, we set v(F ) ∈ 0S to be

v(F ) := v(pS∗F) = (v0(F ), v1(F ), v2(F ))

for vi(F ) ∈ H 2i(S,Z). We define the following slope function on Coh0(X):

µ(F) :=
v1(F ) ·H

v0(F )
∈ Q ∪ {∞}.

Here F ∈ Coh0(X) and we set µ(F) = ∞ if v0(F ) = 0. The slope function defines µ-
stability on Coh0(X) in the usual way: a non-zero object F ∈ Coh0(X) is µ-(semi)stable
if for any non-zero subsheaf F ′ ( F ,

µ(F ′) < (≤) µ(F/F ′).

Let T ,F be the subcategories of Coh0(X) defined by

T := 〈F ∈ Coh0(X) : F is µ-semistable with µ(F) > 0〉ex,

F := 〈F ∈ Coh0(X) : F is µ-semistable with µ(F) ≤ 0〉ex.

Here 〈−〉ex means extension closure. The pair of subcategories (T ,F) is a torsion pair
on Coh0(X). We have the associated tilting

B := 〈F , T [−1]〉ex ⊂ D0.

For t ∈ R>0, let

Zt : K(D0)→ C (6.8)

be the group homomorphism defined by

Zt (F ) :=

∫
S

e−tH
√
−1v(F ) = v2(F )+ (1− g)t2v0(F )− (tH · v1(F ))

√
−1.

Then the pair

(Zt ,B), t ∈ R>0,

is a Bridgeland stability condition on D0 (see [Tod12b, Lemma 3.3]). In particular it
defines Zt -(semi)stable objects: a non-zero object E ∈ B is Zt -(semi)stable if for any
non-zero subobject 0 6= E′ ( E in B, we have the inequality in (0, π]:

argZt (E′) < (≤) argZt (E).

We have the following lemma:

Lemma 6.5. An object E ∈ B with v1(E) = −[H ], v0(E) ≤ 0 is Zt -stable if and only if
E ∼= ic∗F [−1] for some c ∈ C and some H -Gieseker stable sheaf F ∈ Coh(S).
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Proof. The lemma is well-known (for example see [Bay18, proof of Lemma 6.1]). Let
C ⊂ B be the subcategory defined by

C := {F ∈ B : =Zt (F ) = 0}
= 〈U,Ox[−1] : U ∈ Coh0(X) is µ-stable with µ(U) = 0, x ∈ X〉ex.

Suppose that E ∈ B satisfies v1(E) = −[H ] and v0(E) ≤ 0. Since −v1(−) · H is non-
negative on B, and −v1(E) ·H = H

2 is the smallest positive value of −v1(−) ·H on B,
the object E is Zt -stable if and only if Hom(C, E) = 0.

First suppose that E is Zt -stable, so Hom(C, E) = 0. Then H0(E) = 0, and H1(E)

is either a µ-stable two-dimensional sheaf or a one-dimensionalH -Gieseker stable sheaf.
It follows that E ∼= ic∗F [−1] for some c ∈ C, where F is a µ-stable sheaf on S or an
H -Gieseker stable one-dimensional sheaf on S. In the former case, since the Mukai vector
of F is primitive, its µ-stability is equivalent to its H -Gieseker stability. Conversely, if
E ∼= ic∗F [−1] as in the statement, then it is obvious that Hom(C, E) = 0. Therefore the
lemma is proved. ut

We define the following subcategory of Db(X):

A := 〈p∗CPic(C),B〉ex. (6.9)

The category A is the heart of a bounded t-structure on the triangulated subcategory of
Db(X) generated by p∗CPic(C) and objects in D0 (see [Tod12b, Proposition 2.9]). In
particular, A is an abelian category. Note that E ∈ A satisfies rank(E) = 0 if and only if
E ∈ B. We will use the following property of A:

Lemma 6.6. For any object E ∈ A, there is an exact sequence in A

0→ E′→ E→ E′′→ 0 (6.10)

such that E′ ∈ B and E′′ ∈ 〈p∗CPic(C)〉ex.

Proof. This is proved in [Tod12b, Lemma 7.5] in the case of S × P1, and the same ar-
gument works here. For simplicity, we prove the lemma when E fits into a non-split
extension in A

0→ p∗CL→ E→ ic∗F [−1] → 0 (6.11)

for L ∈ Pic(C), [F ] ∈ Uk , and c ∈ C. The full details are in [Tod12b, Lemma 7.5].
Let ξ be the extension class of (6.11). Then since i!cp

∗

CL = OS[−1], we have

ξ ∈ Ext2X(ic∗F, p
∗

CL) = Ext1S(F,OS).

Therefore ξ gives rise to the non-trivial extension of sheaves on S

0→ OS → F ′→ F → 0.
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It is easy to see that F ′ is H -Gieseker stable so [F ′] ∈ Uk+1. We have the commutative
diagram

E

��

p∗CL(c)

��
ic∗F

′
[−1] // ic∗F [−1] //

ξ

��

ic∗OS

��
p∗CL[1]

id // p∗CL[1]

Here horizontal and vertical sequences are distinguished triangles. By the above diagram,
we obtain the exact sequence in A

0→ ic∗F
′
[−1] → E→ p∗CL(c)→ 0.

The above exact sequence is the desired sequence (6.10). ut

6.3. Weak stability conditions on A

Let A be the abelian category given in (6.9). For t ∈ R>0 and E ∈ A, we define µ?t (E) ∈
R ∪ {∞} by

µ?t (E) :=

{
0, rank(E) 6= 0,
−
<Zt (E)
=Zt (E)

, rank(E) = 0.

Here if rank(E) = 0, then E ∈ B and Zt (E) ∈ C is given in (6.8). The following stability
condition on A appeared in [Tod12b] in the framework of weak stability conditions:

Definition 6.7. A non-zero object E ∈ A is µ?t -(semi)stable if for any exact sequence
0→ E′→ E→ E′′→ 0 in A with non-zero E′, E′′, we have

µ?t (E
′) < (≤) µ?t (E

′′).

Below we fix n ∈ Z>0 and characterize µ?t -semistable objects E ∈ A satisfying

ch(E) = (1, 0,−ic∗[H ],−n) ∈ H 0(X)⊕H 2(X)⊕H 4(X)⊕H 6(X). (6.12)

Proposition 6.8. For k ∈ Z>0, suppose that t ∈ R>0 satisfies

tk < t < tk−1, tk :=

√
n+ k

(g − 1)k
, t0 := ∞. (6.13)

Then an object E ∈ A satisfying (6.12) is µ?t -semistable if and only if E is isomorphic to
a two-term complex

E ∼= (p
∗

CL
s
→ ic∗F) (6.14)

for some c ∈ C, [F ] ∈ Uk , L ∈ Pick(C) and s is a non-zero morphism. Here Pick(C) ⊂
Pic(C) is the subset of degree k line bundles, and p∗CL is located in degree zero. Moreover
in this case, E is µ?t -stable.
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Proof.

Step 1. The ‘only if’ direction. Let us take t ∈ (tk, tk−1) and a µ?t -semistable object
E ∈ A satisfying (6.12). By [Tod12b, Lemma 7.5], there is an exact sequence in A

0→ A→ E→ p∗CL→ 0 (6.15)

for some A ∈ B, L ∈ Picr(C) for some r ∈ Z. The condition (6.12) imply v(A) = −vr .
The above exact sequence and the µ?t -semistability of E yield

<Zt (A) = −r − n+ r(g − 1)t2 ≥ 0.

As t < tk−1 and n > 0, the above inequality yields r ≥ k > 0.
The µ?t -semistability of E implies that Hom(C, E) = 0, where C ⊂ B is defined in

the proof of Lemma 6.5. By the exact sequence (6.15) we have Hom(C, A) = 0, and
Lemma 6.5 shows that A ∼= ic∗F [−1] for some c ∈ C and [F ] ∈ Ur . Therefore E is
isomorphic to a two-term complex

E = (p∗CL
s′

→ ic∗F)

where s′ must be non-zero due to the µ?t -semistability of E. Let us show that r = k. By
taking the cohomology of E, we obtain the exact sequence in A

0→ p∗CL(−c)→ E→ G[−1] → 0 (6.16)

where G is the cokernel of s′. Since v(G) = vr−1, the µ?t -semistability of E yields

<Zt (G[−1]) = −r + 1− n+ (r − 1)(g − 1)t2 ≤ 0. (6.17)

As t > tk , the above inequality implies that k ≥ r . As we already proved r ≥ k, it follows
that r = k. Therefore we have proved the ‘only if’ direction of the proposition.

Step 2. The ‘if’ direction. Conversely, let us take an object E ∈ A of the form (6.14).
We show that E is µ?t -stable if t ∈ (tk, tk−1). Let us take an exact sequence in A

0→ A→ E→ B → 0 (6.18)

such that A, B are non-zero. We will show that

µ?t (A) < µ?t (B). (6.19)

Since rank(E) = 1, we have (rank(A), rank(B)) = (0, 1) or (1, 0). We will show (6.19)
in each case.

First suppose that rank(A) = 0, i.e. A ∈ B. By the exact sequence in A

0→ ic∗F [−1] → E→ p∗CL→ 0 (6.20)

we have Hom(Coh0(X),E) = 0. Therefore H0(A) = 0 and A ∈ T [−1]. Then A is
given as an iterative extension of objects of the form ic∗T [−1] for some c ∈ C, where
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T ∈ Coh(S) is either torsion or µ-stable with µ(T ) > 0. By the Serre duality and the
µ-stability of T , we have

Hom(ic∗T [−1], p∗CL) = Hom(T ,OS) = 0.

Therefore Hom(A, p∗CL) = 0. By the exact sequences (6.18) and (6.20), we have an
injection A ↪→ ic∗F [−1] in B. By Lemma 6.5, the object ic∗F [−1] is Zt -stable in B.
Therefore

µ?t (A) ≤ µ
?
t (ic∗F [−1]) = µ?t (−vk) < 0 = µ?t (B)

where µ?t (−vk) < 0 is due to tk < t . Hence (6.19) holds.
Next suppose that rank(A) = 1, i.e. B ∈ B. Let T ⊂ H0(B) be the HN factor of

H0(B) in µ-stability such that µ(−) is maximal. Note that µ(T ) ≤ 0 by the definition
of B. If µ(T ) = 0, then µ?t (T ) = ∞ and we have

µ?t (B) ≥ µ
?
t (B/T ).

Therefore after replacing B by B/T , we may assume that µ(T ) < 0. This implies

Hom(p∗CPic(C), B) = 0. (6.21)

Similarly to (6.16), we have the exact sequence in A

0→ p∗CL(−c)→ E→ G[−1] → 0 (6.22)

where G is the cokernel of s in (6.14). By the exact sequences (6.18), (6.22), and the
vanishing (6.21), there is a surjection G[−1] � B in B. By Lemma 6.5, the object
G[−1] ∈ B is Zt -stable. Therefore

µ?t (B) ≥ µ
?
t (G[−1]) = µ?t (−vk−1) > 0 = µ?t (A)

where µ?t (−vk−1) > 0 due to t < tk−1. Hence (6.19) holds. ut

When t lies on a wall, the µ?t -semistable objects are characterized by the following
lemma.

Lemma 6.9. An object E ∈ A satisfying (6.12) is µ?tk -semistable if and only if E is
S-equivalent to a µ?tk -polystable object of the form

E1 ⊕ E2, E1 = p
∗

CL, E2 = ic∗F [−1], (6.23)

for some c ∈ C, [F ] ∈ Uk and L ∈ Pick(C).

Proof. The ‘if’ direction is obvious as both E1, E2 are µ?tk -semistable with µ?tk (E1) =

µ?tk (E2) = 0. The ‘only if’ direction is proved similarly to Step 1 in the proof of Proposi-
tion 6.8. If we apply the proof above for t = tk , the only point to notice is that, just after
(6.17) we only have k ≥ r − 1 as we take t = tk . Therefore either r = k or r = k + 1. In
the latter case, the exact sequence (6.16) shows that E is S-equivalent to an object of the
form (6.23). ut
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6.4. Moduli stacks of semistable objects

Let M be the 2-functor

M : Sch/C→ Groupoid

sending a C-scheme S to the groupoid of relatively perfect objects E ∈ Db(X × S) such
that for each point s ∈ S, the object Es := Li∗s E for the inclusion is : X × {s} ↪→ X × S

satisfies Ext<0(Es, Es) = 0. The stack M is known to be an Artin stack locally of finite
type [Lie06]. For a fixed n ∈ Z≥0 and t ∈ R>0, we define the substack

M?
t ⊂M (6.24)

to be the stack whose S-valued points consist of E ∈ M(S) such that for each s ∈ S,
the object Es is a µ?t -semistable object in A satisfying (6.12). Using Proposition 6.8 and
Lemma 6.9, we show the following:

Proposition 6.10. The stack M?
t is an Artin stack of finite type such that (6.24) is an

open immersion. Moreover if t ∈ (tk, tk−1), the stack M?
t is smooth.

Proof. By [Tod12b, Lemma 4.13(ii)], M?
t ⊂M is constructible. Therefore for the first

statement, it is enough to show that M?
t ⊂M is open in the analytic topology.

By Lemma 6.9, for t = tk an object corresponding to a C-valued point of M?
t is a

small deformation of an object of the form (6.23). Set

V + = Ext1X(E1, E2), V − = Ext1X(E2, E1), U = Ext1X(E1, E1)⊕ Ext1X(E2, E2).

Then the analytic local deformation space of E1 ⊕ E2 is given by the critical locus of
some analytic function w defined in an analytic neighborhood of 0 ∈ V + × V − × U .
Similarly to the case of stable pairs in (5.7), the functionw is invariant under the conjugate
Aut(E1 ⊕ E2) = (C∗)2-action on V + × V − × U , so it is of the form

w = w(0)(Eu)+
∑
i,j

xiyjw
(1)
ij (Eu)+

∑
i,i′,j,j ′

xixi′yjyj ′w
(2)
ii′jj ′

(Eu)+ · · ·

where Ex, Ey and Eu are coordinates of V +, V − and U respectively. As in [Tod, Subsec-
tion 5.1], the function w is constructed using the minimal A∞-structure on Db(X). By
the construction in loc. cit., the function w(0)(Eu) can be written as

w(0)(Eu) = w
(0)
1 (Eu1)+ w

(0)
2 (Eu2), Eu = (Eu1, Eu2), Eui ∈ Ext1X(Ei, Ei),

such that the critical locus of w(0)i (Eui) in Ext1X(Ei, Ei) gives the local deformation space
of Ei . Since the deformation space of Ei is smooth, we may assume that w(0)(Eu) = 0.

Similarly to Subsection 5.2, the function w(1)ij (Eu) can be written as in (4.7) such that
the coefficients of the linear terms aijk are determined by the triple product

V + × V − × U → C
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given by composition and the Serre duality. Then by Lemma 6.11 below, the coefficients
aijk satisfy the condition in Assumption 4.2(ii). Therefore Lemma 4.3 shows that

{dw = 0} ∩ (V +∗ × V − × U) ⊂ (V +∗ × {0} × U),

{dw = 0} ∩ (V + × V −∗ × U) ⊂ ({0} × V −∗ × U).
(6.25)

This implies that any small deformation E′ of E1⊕E2 fits into one of the following exact
sequences in A:

0→ ic′∗F
′
[−1] → E′→ p∗CL

′
→ 0,

0→ p∗CL
′
→ E′→ ic∗F

′
[−1] → 0

(6.26)

where (F ′,L′, c′) is a small deformation of (F,L, c), so that [F ′] ∈ Uk and L′ ∈
Pick(C). Therefore E′ is µ?tk -semistable, and M?

tk
⊂M is open.

Suppose that t ∈ (tk, tk−1), and take an object E as in (6.14) which corresponds to a
C-valued point of M?

t . ThenE is isomorphic to a small deformation of the objectE1⊕E2
as above, which lies in the LHS of (6.25). Then any small deformation E′ of E fits into
a non-split sequence (6.26). Therefore E′ is again µ?t -semistable by Proposition 6.8, and
M?

t ⊂M is open. Moreover the argument used for Lemma 4.3 implies that the LHS of
(6.25) is smooth, hence M?

t is smooth. ut

We have used the following lemma, which is an analogue of Lemma 5.5.

Lemma 6.11. For the objects E1, E2 in (6.23), the composition map

Ext1X(E1, E2)⊗ Ext1X(E2, E1)→ Ext2X(E2, E2) (6.27)

is injective.

Proof. Note that

Ext1X(E1, E2) = H
0(S, F ), Ext1X(E2, E1) = Ext1S(F,OS).

We also have the surjection

Ext2X(E2, E2) = Ext2X(ic∗F, ic∗F)� Ext1S(F, F )

which is Serre dual to the natural map Ext1S(F, F ) → Ext1X(ic∗F, ic∗F). By composing
it with (6.11), we obtain the composition map

H 0(S, F )⊗ Ext1S(F,OS)→ Ext1S(F, F ). (6.28)

It is enough to show that the map (6.28) is injective. Let us take the universal extension
in Coh(S)

0→ Ext1S(F,OS)
∨
⊗OS → U → F → 0. (6.29)

Then it is well-known that U is a µ-stable sheaf (see [Yos99, Tod14a]). Applying
Hom(−, F ) to the above exact sequence, we obtain the exact sequence

0→ C→ Hom(U , F )→ H 0(S, F )⊗ Ext1S(F,OS)→ Ext1S(F, F ). (6.30)
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Since (6.29) is the universal extension, applying Hom(−,OS) to (6.29) we obtain
Ext1S(U ,OS) = 0. Then applying Hom(U ,−) to (6.29) and using the stability of U , we
get

Hom(U , F ) = Hom(U ,U) = C.

Therefore by the exact sequence (6.30), we see that (6.28) is injective. ut

For t ∈ R>0, let

M?
t → M?

t (6.31)

be the good moduli space for the stack M?
t , which exists by [AHLH]. The good moduli

space M?
t is an algebraic space of finite type which parametrizes µ?t -polystable objects

in A satisfying (6.12), i.e. direct sums of µ?t -stable objects with µ?t (−) = 0. By Proposi-
tion 6.8, the moduli space M?

t is constant if t ∈ (tk, tk−1) for some k. So we can write

M?
k := M

?
t , t ∈ (tk, tk−1).

By Proposition 6.8, M?
k consists of µ?t -stable objects for t ∈ (tk, tk−1) and is also smooth

by Proposition 6.10.
Recall that JC := Pic0(C) is defined to be the moduli space of degree zero line

bundles on C, which is isomorphic to C itself as C is an elliptic curve. In the k = 1 case,
we can describe M?

1 by the stable pair moduli space:

Lemma 6.12. For β = ic∗[H ], we have the isomorphism

P−n(X, β)× JC
∼=
→M?

1 (6.32)

given by

((OX → ic∗F
′), L) 7→ p∗CL⊗ D(OX → ic∗F

′). (6.33)

Here D := RHom(−,OX) is the derived dual.

Proof. First we need to show that the map (6.33) is well-defined, i.e. the object

p∗CL⊗ D(OX → ic∗F
′) ∈ A (6.34)

on the RHS of (6.33) corresponds to a point in M?
1. By [Tod, Remark 9.8], an object in

E ∈ A is of the form (6.34) if and only if E fits into an exact sequence in A

0→ p∗CL→ E→ ic∗F
′′
[−1] → 0 (6.35)

where F ′′ is a pure one-dimensional sheaf on S such that Hom(T [−1], E) = 0 for any
one-dimensional sheaf T on X. Moreover in this case we have ic∗F ′′=Ext2X(ic∗F

′,OX).
The proof of Lemma 6.6 shows that E fits into an exact sequence

0→ ic∗F
′′′
[−1] → E→ p∗CL(c)→ 0 (6.36)

for [F ′′′] ∈ U1. Therefore E is isomorphic to (p∗CL(c)
s
→ ic∗F

′′′) for a non-zero s, hence
gives a point in M?

1 by Proposition 6.8.
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Conversely, by Proposition 6.8, any object [E] ∈ M?
1 fits into an exact sequence

of the form (6.36). By taking the cohomology of E, it also fits into a non-split exact
sequence of the form (6.35). On the other hand, by the exact sequence (6.36) we see that
Hom(T [−1], E) = 0 for any one-dimensional sheaf T on X. Therefore E is of the form
(6.34), and the map (6.33) is bijective on closed points. Since both sides of (6.32) are
smooth, it is an isomorphism. ut

In general for k > 0, we can describe M?
k in terms of pair moduli spaces Pk on S:

Lemma 6.13. For k > 0, we have an isomorphism

Pk × (C × JC)
∼=
→M?

k (6.37)

given by

((OS → F), c, L) 7→ (p∗C(OC(k[c])⊗ L)→ ic∗F). (6.38)

Proof. The map (6.38) is a morphism of smooth algebraic spaces which is bijective on
closed points by Proposition 6.8. Hence it is an isomorphism. ut

We also set

U ?k := (M
?
tk
)red, k ∈ Z>0.

By the open immersions M?
tk+ε
⊂M?

tk
⊃M?

tk−ε
for 0 < ε � 1, and noting that M?

k is
smooth, we have the induced morphisms

M?
k

π?+k   

M?
k+1

π?−k}}
U ?k

(6.39)

Lemma 6.14. (i) We have an isomorphism

Uk × (C × JC)
∼=
→ U ?k . (6.40)

(ii) Under the isomorphisms (6.37), (6.40), the diagram (6.39) is identified with the dia-
gram (6.4)× idC×JC .

Proof. (i) By Lemma 6.9, a point in M?
tk

corresponds to a µ?tk -polystable object of the
form (6.23). Therefore we have the morphism

Uk × (C × JC)→ M?
tk

defined by

(F, c, L) 7→ p∗C(OC(k[c])⊗ L)⊕ ic∗F [−1]. (6.41)

The morphism (6.41) is a bijection on closed points. Moreover the proof of [Tod, Lem-
ma 9.21] shows that (6.41) is a closed immersion. Therefore we have the isomorphism
(6.40) by taking the reduced parts of (6.41).
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(ii) The statement π?+k = πk × idC×JC is obvious from the descriptions of the maps
(6.38), (6.41). As for π?−k , let us take a point

((OS
s′

→ F ′), c, L′) ∈ Pk+1 × (C × JC).

Under the map (6.37), it corresponds to a point in M?
k+1 of the form

E′ = (p∗CL
′
→ ic∗F

′) ∈ A, L′ = OC((k + 1)[c])⊗ L′ ∈ Pick+1(C).

By taking the cohomology of E′, we have an exact sequence in A

0→ p∗CL
′(−c)→ E′→ G[−1] → 0

where G is the cokernel of s′. Then the map π?−k is given by

π?−k (E′) = p∗CL
′(−c)⊕G[−1].

As L′(−c) = OC(k[c])⊗ L
′, it comes from (G, c, L′) ∈ Uk × (C × JC) under the map

(6.41). Therefore the identity π?−k = π
−

k × idC×JC also holds. ut

Proposition 6.15. The diagram (6.39) satisfies Assumption 4.2 by setting

M+ =M?
k, M− =M?

k+1, U = U ?k , π± = π?±k .

Proof. Note that the diagram (6.39) is a wall-crossing diagram in the CY 3-fold X. To-
gether with the fact that a point in U ?k corresponds to a µ?t -polystable object (6.23), it is
a d-critical simple flip by [Tod, Example 6.3] (see also [Tod, proof of Theorem 9.22]).
Therefore Assumption 4.2(i) holds. By Lemma 6.11 Assumption 4.2(ii) also holds, and
Assumption 4.2(iii) holds by the same argument as used for Lemma 5.6. ut

6.5. Proof of Theorem 6.2

We first prove Theorem 6.2 for k > 0. Let Wk be the fiber product of the diagram (6.39),
and OM?

k
(1) be a π?+k -ample line bundle on M?

k satisfying Assumption 4.2(iii) for the
diagram (6.39). By Theorem 4.5 and Proposition 6.15, we have the fully faithful functors

8OWk : Db(M?
k+1) ↪→ Db(M?

k), ϒ ik : D
b(U ?k ) ↪→ Db(M?

k).

Here ϒ ik is given by L(π?+k )∗(−)⊗OM?
k
(i). Moreover we have the SOD

Db(M?
k) = 〈Imϒ−2k−n+1

k , . . . , Imϒ0
k , Im8OWk 〉. (6.42)

Then by Lemma 6.14(ii), the functors (6.42) are linear over C × JC under the isomor-
phisms (6.37), (6.40), so Theorem 6.2 for k > 0 follows by restricting the SOD (6.42) to
Uk × {(0, 0)} ⊂ U ?k (see [Kuz11, Proposition 5.1, Theorem 6.4]).

Finally, we prove Theorem 6.2 for k = 0. By setting β = ic∗[H ] we define

M?
0 := Pn(X, β)× JC, U ?0 := Un(X, β)× JC .
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Then we have the diagram

M?
0

π?+0   

M?
1

π?−0~~
U ?0

(6.43)

by taking the product of the diagram (5.3) with JC via the isomorphism (6.32). The dia-
gram (6.43) satisfies Assumption 4.2 as in the proof of Theorem 5.7. On the other hand,
similarly to Lemma 6.13 and Lemma 6.14, we have isomorphisms

P0 × (C × JC)
∼=
→M?

0, ((OS
s
→ F), c, L)→ ((OX

s
→ ic∗F), L),

U0 × (C × JC)
∼=
→ U ?0 , (F, c, L) 7→ (ic∗F,L).

Under the above isomorphisms, the diagram (6.43) is identified with the diagram (6.4)×
idC×JC for k = 0. Therefore the argument for k > 0 also implies Theorem 6.2 for k = 0.

ut
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[PT+13] Pantev, T., Toën, B., Vaquie, M., Vezzosi, G.: Shifted symplectic structures. Publ.
Math. IHES 117, 271–328 (2013) Zbl 1328.14027 MR 3090262

[Rei] Reid, M.: Minimal models of canonical 3-folds. In: Algebraic Varieties and Analytic
Varieties, S. Iitaka (ed.), Adv. Stud. Pure Math. 1, Kinokuniya, Tokyo, and North-
Holland, Amsterdam, 131–180 (1983) Zbl 0558.14028 MR 0715649

[Rei92] Reid, M.: What is a flip. Colloquium talk, Univ. of Utah
[Shi12] Shipman, I.: A geometric approach to Orlov’s theorem. Compos. Math. 148, 1365–

1389 (2012) Zbl 1253.14019 MR 2982435
[Tod] Toda, Y.: Birational geometry for d-critical loci and wall-crossing in Calabi–Yau

3-folds. arXiv:1805.00182 (2018)
[Tod12a] Toda, Y.: Stability conditions and curve counting invariants on Calabi–Yau 3-folds.

Kyoto J. Math. 52, 1–50 (2012) Zbl 1244.14047 MR 2892766
[Tod12b] Toda, Y.: Stable pairs on local K3 surfaces. J. Differential. Geom. 92, 285–370 (2012)

Zbl 1260.14045 MR 2998674
[Tod14a] Toda, Y.: A note on Bogomolov–Gieseker type inequality for Calabi–Yau 3-folds.

Proc. Amer. Math. Soc. 142, 3387–3394 (2014) Zbl 1337.14019 MR 3238415
[Tod14b] Toda, Y.: Stability conditions and birational geometry of projective surfaces. Compos.

Math. 150, 1755–1788 (2014) Zbl 1329.14032 MR 3269467
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