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Abstract. Kuznetsov’s homological projective duality (HPD) theory [K4] is one of the most active
and powerful recent developments in the homological study of algebraic geometry. The fundamen-
tal theorem of HPD systematically compares derived categories of dual linear sections of a pair of
HP-dual varieties (X,X\). In this paper we generalize the fundamental theorem of HPD beyond lin-
ear sections. More precisely, we show that for any two pairs of HP-duals (X,X\) and (T , T \)which
intersect properly, there exist semiorthogonal decompositions of the derived categories D(X ∩ T )
andD(X\∩T \) into primitive and ambient parts, and that there is an equivalence of primitive parts
primD(X ∩ T ) ' D(X\ ∩ T \)prim.
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1. Introduction

Homological projective duality (HPD), as a homological generalization of classical pro-
jective duality, is one of the most powerful theories in the homological study of algebraic
geometry. Since its introduction by Kuznetsov [K4], HPD theory has become the pri-
mary method to produce semiorthogonal decompositions of derived categories of coher-
ent sheaves on smooth projective varieties, as well as relate derived categories of different
varieties [K1, K3, K6, K8, IK, ABB, K10, ADS, T2, HT17, CT, BBF, HT16].

HPD theory is very closely related to equivalences and dualities in physical theo-
ries of gauged linear sigma models [HHP, HT, DSh, CDH+, S, Hor, HK]. Mathematically,
this is related to the mathematical formulation of Landau–Ginzburg models [Is, Shi, ADS]
and the theory of derived categories of geometric invariant theory (GIT) quotients [Kaw,
Vd, Se, DS, HW, BFK, HL]. This thread of ideas has provided a powerful approach to
construct examples of HPD as well as to find applications of HPD, see [BDF+, ADS,
ST18, Re, RS].
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The fundamental theorem of HPD of Kuznetsov [K4, Thm. 6.3] is as follows. Suppose
that (X → Pn, X\ → P̌n) is a pair of homological projective dual (HP-dual) varieties
(which are by definition smooth and projective) with semiorthogonal decompositions (of
Lefschetz and dual Lefschetz types, see §2.3)

D(X) = 〈A0,A1(1), . . . ,Ai−1(i − 1)〉, D(X\) = 〈A1(1− n), . . . ,An−1(−1),An
〉,

where the building blocks A• and A• are “complementary” to each other, illustrated in the
first diagram of Fig. 1 (§3.1; see also §2.4). Then first, there are primitive decompositions
of the derived categories of all complete linear sections X ×Pn L and X\ ×P̌n L

⊥, where
L ⊂ Pn is a linear subspace of codimension `, and L⊥ ⊂ P̌n is the orthogonal (also called
the dual linear subspace) of L. More precisely, we have a semiorthogonal decomposition

D(X ×Pn L) = 〈
primD(X ×Pn L

⊥),A`−1(`− 1), . . . ,Ai−1(i − 1)〉,

where primD(X ×Pn L) is the (left) primitive part, also called the “interesting” or “non-
trivial” part of D(X ×Pn L), and the remaining Ak(k)-terms are ambient or “trivial”
pieces coming from the ambient space. There is also a similar primitive decomposition of
D(X\ ×P̌n L

⊥). Second, the primitive parts of the two categories are equivalent:

primD(X ×Pn L) ' D(X
\
×P̌n L

⊥)prim

(see Thm. 2.18 for details). As the dual linear space L⊥ is also the HP-dual of L (see
Ex. 2.17), it is natural to ask: can we generalize the fundamental theorem of HPD beyond
linear sections, by replacing (L,L⊥) by other nonlinear HP-dual spaces (T , T \)?

Our main result answers this affirmatively: we can replace (L,L⊥) by any other pair
of HP-dual spaces (T , T \), provided they intersect properly. Denote the (Lefschetz and
dual Lefschetz) decompositions for the other HP-dual pair (T , T \) by

D(T ) = 〈C1(1− n), . . . , Cn−1(−1), Cn〉, D(T \) = 〈C0, C1(1), . . . , C`−1(`− 1)〉,

Main Theorem 1.1 (Thm. 3.1). Assume that the pairs (X,X\) and (T , T \) intersect
properly (i.e. they are admissible, see Def. 3.9). Then there are primitive decompositions
of the derived categories of their fiber products into primitive and ambient parts:

D(X ×Pn T ) =
〈primD(X ×Pn T ), 〈(Ak � Ck)⊗ O(k)〉k∈Z

〉
,

D(X\ ×P̌n T
\) =

〈
〈(Ak � Ck)⊗ O(1− `+ k)〉k∈Z,D(X\ ×P̌n T

\)prim〉.
Moreover, there is an equivalence of the primitive components:

primD(X ×Pn T ) ' D(X
\
×P̌n T

\)prim.

The categorical primitive decompositions of this main theorem can be visualized as in
Fig. 1 (§3.1), and regarded as obeying a simple “Poincaré pairing rule” (Rmk. 3.4). The
theorem shows that categorical primitive decompositions hold for intersections in great
generality, a phenomenon which does not seem to occur at the level of classical cohomol-
ogy (except for the Plücker formula for the Euler characteristic, to be discussed below).
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The theorem also provides a systematic way of giving exciting and subtle relationships
between different varieties that may not be easily seen from the classical perspective.
Since the release of the preprint of this paper, our theorem has been used by Ottem–
Rennemo [OR] and Borisov–Căldăraru–Perry [BCP] to provide counterexamples to the
Birational Torelli Conjecture for Calabi–Yau threefolds, and by Manivel [M] to provide
examples of the same phenomenon for Calabi–Yau manifolds of dimension 5.

If we take (T , T \) = (L,L⊥), then the theorem reduces to the fundamental theorem
of HPD. In fact, our approach generalizes Richard Thomas’ methods [T2], and solves
the problem posed by Kuznetsov [K4, p. 182] (see Rmk. 3.2) in a very general form,
providing a “more direct proof” of the original fundamental theorem of HPD.

1.1. Plücker formula

As Kuznetsov’s HPD theory is the homological counterpart of the classical Lefschetz
theory for cohomology of linear sections of projective varieties, our investigation is mo-
tivated by the topological Plücker formula. The Plücker formula of the second named
author [L1] is a higher-dimensional generalization of the classical Plücker formula for
dual curves in P2. It states that for any two subvarieties X, T ⊂ Pn which intersect trans-
versely, and whose projective duals X∨, T ∨ ⊂ P̌n also intersect transversely, one has

χ(X ∩ T )−
χ̃(X) · χ̃(T )

n+ 1
= ±

(
χ(X∨ ∩ T ∨)−

χ̃(X∨) · χ̃(T ∨)

n+ 1

)
(1.1)

(see [L1, CL]; the sign is determined by ± = (−1)∗, ∗ = dimX + dim T + dimX∨ +

dim T ∨). Here χ(−) is the usual Euler characteristic and χ̃(X) = χ(X,Eu[X]) is
the weighted Euler characteristic for a (possibly singular) scheme X with respect to
MacPherson’s local Euler obstruction function Eu(X) [Be]. If X is smooth, then χ̃(X) =
(−1)dimXχ(X).

On the other hand, if we “de-categorify” twice (i.e. take the Hochschild homology
and then the Euler characteristic of) our main theorem, we obtain

Corollary 1.2 (Cor. 3.5). Assume X ×Pn T and X\ ×P̌n T
\ are smooth. Then

χ(X ×Pn T )−
χ(X) · χ(T )

n+ 1
= χ(X\ ×P̌n T

\)−
χ(X\) · χ(T \)

n+ 1
.

This has the same form as the topological Plücker formula, with the classical projec-
tive duals X∨, T ∨ replaced by the HP-duals X\, T \. Therefore our main theorem can
be viewed as a “2-level categorification” of the Plücker formula. The Plücker formula is
closely related to the theory of Lagrangian intersections inside hyperkähler manifolds un-
der Mukai flops [L1, L2]. It would be very interesting to further explore the relationships
between our main theorem and the categorification of Lagrangian intersections.

1.2. The “chess game” approach and strategy of proof

The “chess game” method, introduced by Richard Thomas [T2] and Kuznetsov, and fur-
ther developed in this paper, is a systematic method of comparing two subcategories D1
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and D2, through analyzing them on a two-dimensional diagram called “chessboard” (see
Fig. 2–4).

Our strategy of proving the main theorem is as follows. First, we use base change
of categories to put D(X ×Pn T ) and D(X\ ×P̌n T

\) into a common ambient category
D(HX,T \) = D(HT \,X) (see §3.2). Then we can play the “chess game” to compare these
two categories. The “chess game” can be further divided into two steps: the proof of fully-
faithfulness and of generation. The “fully faithful” part of the main theorem follows from
analyzing the patterns of mutation functors on the chessboard (see §3.4). The most subtle
part is the proof of generation, which is done through a specific “zig-zag” scheme in §3.5.

This “chess game” approach has the benefits that it is independent of the original
linear fundamental theorem of HPD, and provides a more direct proof of it; the Fourier–
Mukai functor for the equivalence of primitive parts is very explicit (see Thm. 3.1 or
Thm. 3.12); the primitive decompositions obey a simple “Poincaré pairing rule” (see
Rmk. 3.4). Moreover, our general result on the chess game, Thm. 3.12, can be applied to
many other situations, including various situations of flops [JL2, JLX]. The chess game
method can also be applied to study autoequivalences and is closely related to spherical
functors [ST01].

Related work. While preparing this paper, we learned that Alexander Kuznetsov and Alex
Perry also claimed similar results using very different methods [KP19].

Conventions. Our argument in this paper can be applied to noncommutative settings as
well (as we did in the arXiv version of this paper). For simplicity and concreteness, we
will stick to commutative world of algebraic varieties, explicitly present the Fourier–
Mukai kernels involved, and verify the Tor-independent conditions in detail (§3.2).

All schemes are assumed to be embeddable k-varieties, i.e. k-varieties admitting finite
surjections onto smooth k-varieties, where k is an algebraically closed field of character-
istic zero. All categories are assumed to be k-linear. We use D(X) := Db(coh(X)) to
denote the bounded derived category of coherent sheaves on an algebraic variety X. For
a morphism f : X → Y we denote by f∗ : D(X) → D(Y) and f ∗ : D(Y) → D(X)

the derived pushforward and derived pullback functors. We use ⊗ for the derived tensor
product. For a k-linear category C, we denote by HomC the k-linear hom spaces inside
the category, and by RHomC the derived Hom functor. When X is a variety, we de-
note by HomX the k-linear hom spaces inside D(X), by HomX the local sheaf hom
functor, and by RHomX, resp. RHomX the corresponding derived functors. For ob-
jects A,B ∈ C, we denote by 0 ∈ Hom(A,B) the zero element of the k-vector space
Hom(A,B). We also use 0 ∈ C to denote the zero object of the k-linear category C. The
notation Pn = Proj k[x0, . . . , xn] stands for the projective space of dimension n over k,
and P̌n denotes the dual projective space of Pn, i.e. P̌n parametrizes hyperplanesH of Pn.
For a variety with a morphism X → Pn, we use X∨ ⊂ P̌n to denote the (classical)
projective dual, and X\ for the HP-dual of X (see §2.4 for the definitions). We will use
the “homological convention” Ak for Lefschetz decompositions and the “cohomological
convention” Bj for dual Lefschetz ones (see §2.3).
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2. Preliminaries

The bounded derived category of coherent sheaves, D(X) = Db(cohX), on an algebraic
variety X was introduced by Verdier [Ve] in the 1950’s. Through the works of Beilinson
[Bei], Mukai [Mu], Bondal [B], Orlov [BO], Kapranov [BK, Kap] and others from the
1980’s, D(X) has become a central object of investigation. The derived categories of
coherent sheaves also play important roles in Kontsevich’s homological mirror symmetry
conjecture [Kon] and its applications (see for example [AAE+, FLTZ, CPU, CHL, SS]),
Bridgeland’s stability conditions [Br2] and Donaldson–Thomas theory [T]. See [BO, H,
Ca1] for more aboutD(X). In the following we focus on semiorthogonal decompositions.

2.1. Semiorthogonal decompositions and mutations

References for this section are [B, BK, H, K4, K7]. A semiorthogonal decomposition of
a triangulated category T , written as

T = 〈A1, . . . ,An〉, (2.1)

is formed by a sequence of full triangulated subcategories A1, . . . ,An of T such that

(1) HomT (ak, a`) = 0 for all ak ∈ Ak and a` ∈ A`, if k > `,
(2) for any object a ∈ T , there is a sequence of objects tk and morphisms

0 = tn→ tn−1 → · · · → t1 → t0 = a

such that each cone ak = cone(tk → tk−1) ∈ Ak , k = 1, . . . , n.

The subcategories Ak are called the components of T with respect to (2.1). The first con-
dition implies the objects tk ∈ T and ak ∈ Ak are uniquely determined by (and functorial
in) a [K7, Lem. 2.4]. The functors T → Ak , a 7→ ak , are called the projection func-
tors, and ak is called the component of a in Ak with respect to the decomposition (2.1).
A sequence A1, . . . ,An satisfying (1) is called semiorthogonal, and in this case for any
subset {j1, . . . , jm} ⊂ {1, . . . , n}, we denote by 〈Aj1 , . . . ,Ajm〉 the smallest triangulated
subcategory of T generated by Ajk ’s for k = 1, . . . , m. The semiorthogonal sequence
A1, . . . ,An satisfies (2) if and only if T = 〈A1, . . . ,An〉, justifying the notation (2.1).

Example 2.1. For a projective space P`−1 with ` ≥ 1, we have Beilinson’s decomposi-
tion [Bei]

D(P`−1) = 〈OP`−1 ,OP`−1(1), . . . ,OP`−1(`− 1)〉, (2.2)

by which we mean 〈OP`−1(k)〉 ' D(Vectk) (where Vectk is the abelian category of finite-
dimensional k-vector spaces) for k = 0, 1, . . . , ` − 1 and the sequence of subcategories
〈OP`−1〉, . . . , 〈OP`−1(`− 1)〉 gives rise to a semiorthogonal decomposition of D(P`−1).

Suppose A is a full triangulated subcategory of a triangulated category T . Then denote
by

A⊥ := {T ∈ T | Hom(A, T ) = 0}, ⊥A := {T ∈ T | Hom(T ,A) = 0}
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the right and respectively left orthogonal of A inside T . The subcategory A is called a
left (resp. right) admissible subcategory of T if the inclusion functor i = iA : A ↪→ T
has a left adjoint i∗ : T → A (resp. right adjoint i! : T → A). A is called admissible if it
is both left and right admissible. If A ⊂ T is admissible, then A⊥ is left admissible and
⊥A is right admissible, and we have the semiorthogonal decompositions T = 〈A⊥,A〉 =
〈A,⊥A〉.

For simplicity we will only consider semiorthogonal decompositions (2.1) with ad-
missible components. This condition is automatically satisfied for any semiorthogonal
decompositions (2.1) if T = D(X) and X is a smooth projective variety; in other cases
we will give the arguments why the components considered are admissible.

Lemma 2.2. Assume T admits a semiorthogonal decomposition (2.1), and let A be a
triangulated subcategory of T . Let a ∈ T , and ak be its component in Ak . If a ∈ A⊥
(resp. a ∈ ⊥A), and ak ∈ A⊥ (resp. ak ∈ ⊥A) for all k 6= `, then a` ∈ A⊥ (resp.
a` ∈

⊥A).
Proof. The lemma follows directly from the fact that A⊥ (resp. ⊥A) is a triangulated
subcategory, i.e. is closed under shifts and taking cones. ut

Starting with a semiorthogonal decomposition, one can obtain a whole collection of new
decompositions by mutations. Let A be an admissible subcategory of a triangulated cat-
egory T . Then the functor LA := iA⊥ i

∗

A⊥ : A → A (resp. RA := i⊥Ai
!
⊥A : A → A)

is called the left (resp. right) mutation through A. For simplicity we will mainly focus
on left mutation functors in this paper, and the statements on right mutations are exactly
similar. The following results are standard [B, BK, K4].

Lemma 2.3. Let A and A1, . . . ,An be admissible subcategories of a triangulated cate-
gory T where n ≥ 2. Let k be an integer, 2 ≤ k ≤ n.

(1) For any b ∈ T , there are distinguished triangles

iAi
!

A(b)→ b→ LA b
[1]
−→ , RA b→ b→ iAi

∗

A(b)
[1]
−→ .

(2) (LA)|A = 0 and (RA)|A = 0 are the zero functors, and (LA)|A⊥ = IdA⊥ :
A⊥ → A⊥, (RA)|⊥A = Id⊥A :

⊥A → ⊥A are the identity functors. Further-
more (LA)|⊥A :

⊥A → A⊥ and (RA)|A⊥ : A⊥ → ⊥A are mutually inverse
equivalences.

(3) If A1, . . . ,An is a semiorthogonal sequence, then

L〈A1,...,An〉
= LA1 ◦ · · · ◦ LAn

.

(4) If A1, . . . ,Ak−1,Ak,Ak+1, . . . ,An is a semiorthogonal sequence inside T , then

A1, . . . ,Ak−2,LAk−1(Ak),Ak−1,Ak+1, . . . ,An

is also a semiorthogonal sequence, and it generates the same subcategory:

〈A1, . . . ,Ak−1,Ak,Ak+1, . . . ,An〉

= 〈A1, . . . ,Ak−2,LAk−1(Ak),Ak−1,Ak+1, . . . ,An〉.

(5) Let F : T → T be any autoequivalence. Then F ◦ LA ' LF(A) ◦ F .
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For a triangulated category T , a Serre functor is a (covariant) autoequivalence S : T → T
such that for any two objects F,G ∈ T , there is a bi-functorial isomorphism

Hom(F,G) = Hom(G, S(F ))∨,

where (−)∨ denotes the dual vector space over k. If a Serre functor exists, then it is unique
up to canonical isomorphisms. If X is a smooth projective variety of dimension n, then
D(X) has a Serre functor given by SX(−) = −⊗ ωX[n], where ωX is the dualizing sheaf
on X. For example, when X = P`−1 is the projective space, then SX = ⊗O(−`)[`− 1].
The Serre functor ST commutes with any k-linear autoequivalence of T .

Lemma 2.4 ([B, BK]). Let T be a triangulated subcategory with a Serre functor S, and
A ⊂ T be an admissible subcategory. Then

(1) S(⊥A) = A⊥ and S−1(A⊥) = ⊥A. In particular, if T = 〈A,B〉, then B = ⊥A ,
A = B⊥, and T = 〈A,B〉 = 〈S(B),A〉 = 〈B, S−1(A)〉.

(2) A also admits a Serre functor given by SA = i!A ◦ S ◦ iA.

Let X, Y be smooth varieties. A Fourier–Mukai functor is a functor of the form

8P (−) := πY∗(π
∗

X (−)⊗ P) : D(X)→ D(Y)

for some P ∈ D(X × Y ), where πX : X × Y → X and πY : X × Y → Y are the natural
projections. The object P is called the kernel of the functor. The readers are referred to
[H, BKR, Br1] for properties and applications of Fourier–Mukai functors.

2.2. Derived categories over a base

References for this section are [K2, K4, K9]. Assume S is a smooth k-scheme, and let
f : X → S be a map between smooth varieties. An admissible subcategory A ⊂ D(X)
is called S-linear if for any a ∈ A and F ∈ D(S), we have a ⊗ f ∗F ∈ A. We may
regard an S-linear triangulated subcategory as a family of categories over S. Under certain
conditions we can pull back the family through base change φ : T → S to get a family
of categories over T with desired properties.

Definition 2.5. A base change φ : T → S is called faithful with respect to a morphism
f : X→ S if the cartesian square

XT X

T S

fT

φT

f

φ

(2.3)

is exact cartesian, i.e., the natural transformation f ∗ ◦ φ∗ → φT ∗ ◦ f
∗

T : D(T )→ D(X)

is an isomorphism. A base change φ : T → S is called faithful with respect to a pair
(X, Y ) if φ is faithful with respect to morphisms f : X → S, g : Y → S, and f ×S g :
X ×S Y → S.

A base change φ : T → S for X → S is faithful if and only if the square (2.3)
is Tor-independent, i.e. for all t ∈ T , x ∈ X, and s ∈ S with φ(t) = s = f (x),
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TorOS, si (OT , t ,OX, x) = 0 for all i > 0 (see [LM, Thm. 3.10.3], [K2]). The following are
certain typical situations when this condition is satisfied.

Lemma 2.6 ([K2, Cor. 2.23, 2.27], [K4, Lem. 2.31, 2.35] ). Let f : X → S be a mor-
phism and φ : T → S be a base change.

(1) If φ is flat, then it is faithful.
(2) If T and X are smooth and XT has expected dimension dimXT = dimX+ dim T −

dim S, then φ : T → S is faithful with respect to the morphism f : X→ S.
(3) If φ : T → S is a closed embedding and T ⊂ S is a locally complete intersec-

tion, and both S and X are Cohen–Macaulay, and XT has expected dimension, i.e.
dimXT = dimX + dim T − dim S, then φ : T → S is faithful with respect to the
morphism f : X→ S.

The following will be useful later:

Lemma 2.7 ([K2, Lem. 2.25]). Consider the following commutative diagram of carte-
sian squares of varieties:

X′′ X′ X

S′′ S′ S

If the right square is exact cartesian, then the ambient square is exact cartesian if and
only if the left square is.

The power of faithful base change is that it preserves S-linear fully faithful Fourier–Mukai
transforms and semiorthogonal decompositions.

Proposition 2.8 ([K4, Prop. 2.38]). Suppose φ : T → S is a faithful base change for
a pair (X, Y ) where f : X → S and g : Y → S, the varieties X and Y are projective
over P and smooth, and K ∈ D(X ×S Y ) is a kernel such that 8K : D(X) → D(Y)

is fully faithful. Then φKT : D(XT )→ D(YT ) is fully faithful, where the Fourier–Mukai
kernel is KT := φ∗TK .1

Proposition 2.9 ([K9, Thm. 5.6]). Suppose f : X → S is a map between smooth va-
rieties, and D(X) = 〈A1, . . . ,An〉 is a semiorthogonal decomposition by admissible
S-linear subcategories. Let φ : T → S be a faithful base change for f . Then we have a
T -linear semiorthogonal decomposition

D(XT ) = 〈A1T , . . . ,AnT 〉

where AkT is the base change category of Ak to T , which depends only on Ak , i.e. is
independent of the embedding Ak ⊂ D(X), and satisfies φ∗T (a) ∈ AkT for any a ∈ Ak ,
and φT ∗(b) ∈ Ak for b ∈ Ak with proper support over X.

1 KT a priori only belongs to the bounded above derived category D−(XT ×T YT ) of quasi-
coherent complexes with coherent cohomology. [K2, Lem. 2.4] guarantees that 8KT preserves
boundedness.
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Suppose X, Y are smooth varieties with semiorthogonal decompositions

D(X) = 〈A1, . . . ,Am〉 and D(Y) = 〈B1, . . . ,Bn〉.

For i = 1, . . . , m, define the exterior product Ai �D(Y) ⊂ D(X× Y ) to be the base
change category AiY ⊂ D(X × Y ) of Ai ⊂ D(X) from Prop. 2.9 applied to the base
change Y → Spec k. We define D(X) � Bj similarly. Then the results of [K9, §5.6] can
be summarized:

Proposition-Definition 2.10. In the above situation, there are Y -linear and resp. X-
linear semiorthogonal decompositions

D(X × Y ) = 〈Ai �D(Y)〉1≤i≤m and D(X × Y ) = 〈D(X) � Bj 〉1≤j≤n.

Furthermore,
D(X × Y ) = 〈Ai � Bj 〉1≤i≤m,1≤j≤n,

where the exterior product Ai � Bj is defined by

Ai � Bj := Ai �D(Y) ∩D(X) � Bj ⊂ D(X × Y ).

Then D(X) �D(Y) = D(X × Y ), and we have semiorthogonal decompositions

Ai �D(Y) = 〈Ai � B1, . . . ,Ai � Bn〉 and D(X) � Bj = 〈A1 � Bj , . . . ,Am � Bj 〉.

By the proof of [K9, Thm. 5.8], the exterior product could also be characterized by

Ai � Bj = 〈π∗XAi ⊗ π
∗

YBj 〉 ⊂ D(X × Y ),

by which we mean Ai�Bj is the minimal triangulated subcategory ofD(X×Y ) which is
closed under taking summands and contains all objects of the form π∗Xa⊗π

∗

Y b for a ∈ Ai

and b ∈ Bj , where πX, πY are the natural projections from X × Y to X and Y .

2.3. Lefschetz decompositions

Lefschetz decomposition, introduced by Kuznetsov [K4], is a type of semiorthogonal
decomposition behaving well with respect to the autoequivalence ⊗O(1) for a line
bundle O(1).

Definition 2.11. Let X be a variety and O(1) be a line bundle on X. A (right) Lefschetz
decomposition of D(X) is a semiorthogonal decomposition of the form

D(X) = 〈A0,A1(1), . . . ,Ai−1(i − 1)〉 (2.4)

with A0 ⊃ A1 ⊃ · · · ⊃ Ai−1 ⊃ 0 a descending sequence of admissible subcategories,
where A(k) denotes the image of A ⊂ D(X) under the autoequivalence ⊗O(k).
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The number i = min{k | Ak = 0} ∈ Z≥0 is called the length of the Lefschetz decomposi-
tion. The Lefschetz decomposition (2.4) is called rectangular if A0 = A1 = · · · = Ai−1.
A Lefschetz decomposition is determined by its first component A0: all other Ak’s can
be reconstructed from A0 via Ak =

⊥A0(−k) ∩Ak−1 [K5, Lem. 2.18].
Following Kuznetsov [K4], we denote by ak the right orthogonal of Ak+1 inside Ak

for 0 ≤ k ≤ i − 1. Then there are semiorthogonal decompositions

Ak = 〈ak, ak+1, . . . , ai−1〉.

Hence we could also extend the definition of Ak to all k ∈ Z by setting Ak = A0 if k ≤ 0
and Ak = 0 if k ≥ i.

If X is a smooth projective variety, then ak’s are admissible subcategories of Ak . Let
α0 : A0 ↪→ D(X) be the inclusion functor and α∗0 : D(X)→ A0 be its left adjoint.

Lemma 2.12. In the above situation, let k∈{1, . . . , i}. Then α∗0(a0(1)), . . . , α∗0(ak−1(k))

is a semiorthogonal sequence, and if we denote Ai = 0, then

〈α∗0(a0(1)), . . . , α∗0(ak−1(k)),A1(1), . . . ,Ak(k)〉 = 〈A0(1), . . . ,Ak−1(k)〉.

In particular, if k = i, then A0 = 〈α
∗

0(a0(1)), α∗0(a1(2)), . . . , α∗0(ai−1(i))〉. This gives
another semiorthogonal decomposition of A0.

Proof. See [K4, Lem. 4.3]. We give another proof based on properties of mutations with-
out using Serre functors. By properties (3) and (4) of Lem. 2.3, we have

〈A0(1), . . . ,Ak−1(k)〉 = 〈a0(1),A1(1), a1(2),A2(2), . . . , ak−1(k),Ak(k)〉

= 〈a0(1),LA1(1)a1(2),A1(1),A2(2), a2(3), . . . , ak−1(k),Ak(k)〉

= 〈a0(1),LA1(1)a1(2),L〈A1(1),A2(2)〉a2(3),A1(1),A2(2),A3(3) . . . , ak−1(k),Ak(k)〉

= 〈a0(1),LA1(1)a1(2), . . . ,L〈A1(2),...,Ak−1(k−1)〉ak−1(k),A1(1),A2(2), . . . ,Ak(k)〉.

Since α∗0 = L〈A1(1),...,Ai−1(i−1)〉, and we have the semiorthogonal decomposition

D(X) = D(X)(1) = 〈a0(1),A1(1), a1(2),A2(2), . . . , ai−1(i)〉,

it follows that we have a0(1) = α∗0(a0(1)), LA1(1)a1(2) = α∗0(a1(2)), . . . , and
L〈A1(2),...,Ak−1(k−1)〉ak−1(k) = α

∗

0(ak−1(k)). Hence the lemma follows. ut

From this lemma, the new decomposition of A0 can be used to build another series of
ascending subcategories

Ak
:= 〈α∗0(a0(1)), . . . , α∗0(ak−1(k))〉 ⊂ A0 for k = 1, . . . , n. (2.5)

Then 0 = A0
⊂ A1

⊂ · · · ⊂ Ai
= Ai+1

= · · · = An
= A0. Notice the components

of Ak are each equivalent to a0, a1, . . . , ak−1, hence one could intuitively regard Ak as
the “complement” of Ak inside A0. The new Ak’s will be the building blocks of another
space, the HP-dual X\ of X, to be defined in the next section.
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One can similarly define the concept of dual (or left) Lefschetz decomposition, which
is by definition a semiorthogonal decomposition of the form

D(X) = 〈B0,B1(1), . . . ,Bj−1(j − 1)〉, (2.6)

with 0 6= B0
⊂ B1

⊂ · · · ⊂ Bj−1 an ascending sequence of admissible subcategories.
A dual Lefschetz decomposition is determined by its last component Bj−1. The num-

ber j is called the length of the dual Lefschetz decomposition. Given a Lefschetz decom-
position (2.4), there is a unique dual Lefschetz decomposition of the same length j = i
with Bj−1

= A0, and vice versa [K5, Lem. 2.19]. It is also common to twist (2.6) by the
autoequivalence ⊗O(1− j) = (O(1)∨)⊗j−1, and write equivalently

D(X) = 〈B0(1− j),B1(2− j), . . . ,Bj−1
〉.

2.4. Homological projective duality

LetX be a smooth projective variety, with a morphism f : X→ Pn, and supposeX has a
Lefschetz decomposition of the form (2.4) with respect to OX(1) := f ∗OPn(1). Follow-
ing Kuznetsov [K4], we make the following assumption throughout all considerations of
HPD theory in this paper:

Assumption (†). X is a smooth projective variety with a map f : X → Pn and a
Lefschetz decomposition (2.4) of length less than n+ 1.

Definition 2.13. The universal hyperplane section HX is defined to be the subscheme
X×PnQ ⊂ X× P̌n, whereQ ⊂ Pn× P̌n is the incidence quadricQ = {(x,H) | x ∈ H }.

It is easy to see that HX ⊂ X × P̌n is a divisor of the line bundle O(1, 1), and HX is a
projective bundle with fiber Pn−1 overX, hence a smooth projective variety of dimension
dimX + n− 1.

A map f : X → Pn is called non-degenerate if the image f (X) is not contained in
any proper linear subspace of Pn. This is equivalent to the natural map H 0(Pn,O(1))→
H 0(X,OX(1)) being an injection. The following observation will be useful:

Lemma 2.14. Suppose X is integral and f : X → Pn is non-degenerate. Then the
universal hyperplane section HX is flat over the dual projective space P̌n.

Proof. Note that HX ⊂ X× P̌n is an effective Cartier divisor, and X× P̌n is flat over P̌n.
The non-degeneracy condition for f exactly says that for any s ∈ P̌n, the corresponding
section s ∈ 0(X,OX(1)) is non-zero. Since X is integral, this implies that the divisor
HX ⊂ X × P̌n is cut out locally at any point x ∈ HX ×P̌n {s} of the fiber Xs := X × {s}
by a non-zerodivisor sx ∈ OXs ,x = O

X×P̌n⊗OP̌n,s
k(s). By [Ko, Def.-Prop. 1.11] or [FAG,

Lem. 9.3.4], HX is a relative effective Cartier divisor over P̌n, i.e. it is flat over P̌n. ut

From Prop. 2.10, we have a P̌n-linear semiorthogonal decomposition for X × P̌n:

D(X × P̌n) = 〈A0 �D(P̌n),A1(1) �D(P̌n), . . . ,Ai−1(i − 1) �D(P̌n)〉.

Denote by iHX
: HX ↪→ X × P̌n the inclusion, and by i∗HX

the derived pullback functor.
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Lemma-Definition 2.15. The functor i∗HX
is fully faithful on the subcategories A1(1) �

D(P̌n), . . ., Ai−1(i−1)�D(P̌n), and induces a P̌n-linear semiorthogonal decomposition

D(HX) = 〈C , (A1(1) �D(P̌n))|H, . . . , (Ai−1(i − 1) �D(P̌n))|H〉. (2.7)

The P̌n-linear subcategory C ⊂ D(HX) defined by the above formula is called the HP-
dual category of X→ Pn with respect to (2.4).

Here the subscript (−)|H denotes the image of a category under i∗HX
, and we will some-

times omit it if no confusion can arise. Notice that as HX is a smooth projective variety,
all components of (2.7), including the HP-dual category C , are admissible subcategories.

Proof. This is [K4, Lem. 5.3]. The result follows directly from computing RHomHX
in

terms of RHom
X×P̌n ; see the more general cone lemma 3.13 if we take T \ = P̌n. ut

Definition 2.16. A projective variety X\ with a morphism X\ → P̌n is called homo-
logical projective dual (HP-dual) to X → Pn with respect to the Lefschetz decompo-
sition (2.4) if there is a Fourier–Mukai functor 8EX : D(X

\) → D(HX) with kernel
EX ∈ D(HX ×P̌n X

\) which induces an equivalence of categories D(X\) ' C , where C
is the HP-dual category in (2.7).

Example 2.17 (Linear duality). Let L ⊂ Pn be a projective linear subspace. Then the
dual linear subspace L⊥ := {s ∈ P̌n | s(x) = 0, ∀x ∈ L} is HP-dual to L with respect
to Beilinson decomposition (2.2) of L. See [K4, Thm. 8.2] or [T2, Prop. 3.6].

There exists a dual Lefschetz decomposition for D(X\):

D(X\) = 〈A1(1− n), . . . ,An−1(−1),An
〉, A1

⊂ · · · ⊂ An, (2.8)

where Ak is the complementary block of Ak inside A0 defined by (2.5) (see [K4, Thm.
6.3]). Notice that by [K5, Lem. 2.19] there is also a unique Lefschetz decomposition for
D(X\) determined by (2.8). The relations between Ak and Ak are illustrated in Figure 1.
The HP-dual variety X\ is always smooth. The classical projective dual variety

X∨ := {H ∈ P̌n | X ∩H non-transversely} ⊂ P̌n

to X→ Pn can be reconstructed from the HP-dual X\ by using the fact that X∨ is the set
of critical values of the morphism X\→ P̌n [K4, Thm.7.9].

HP-duality is a duality relation: (X\)\ ' X. More precisely, if X\ is HP-dual to X as
above, then X is also HP-dual to X\ [K4, Thm. 7.3]. Therefore one can say X and X\ are
HP-dual to each other, or (X,X\) is a pair of HP-duals.

The fundamental result of HPD theory is the following: SupposeX\→ P̌n is HP-dual
to X → Pn with respect to the Lefschetz decomposition (2.4) as before. Further assume
the morphism X→ Pn is non-degenerate. Then we have
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Theorem 2.18 (Fundamental theorem of HPD, Kuznetsov [K4, Thm. 6.3]). For any pro-
jective linear subspace L ⊂ Pn of codimension `, 0 ≤ ` ≤ n, and L⊥ ⊂ P̌n the dual
linear space, if the fiber products X ×Pn L and X\ ×P̌n L

⊥ are of expected dimensions:

dimX ×Pn L = dimX − `, dimX\ ×P̌n L
⊥
= dimX\ + `− n− 1,

then there are semiorthogonal decompositions (i.e. primitive decompositions)

D(X ×Pn L) = 〈
primD(X ×Pn L),A`(`), . . . ,Ai−1(i − 1)〉,

D(X\ ×P̌n L
⊥) = 〈A1(2− `), . . . ,A`−2(−1),A`−1,D(X\ ×P̌n L

⊥)prim
〉,

and an equivalence of categories

primD(X ×Pn L) ' D(X
\
×P̌n L

⊥)prim.

The theorem produces interesting semiorthogonal decompositions of all (complete) linear
sections of algebraic varieties. Almost all known examples of semiorthogonal decompo-
sitions of algebraic varieties fit into the framework of HP-duality or its variants (see [K10]
for a survey). Secondly it gives striking relations between derived categories of different
varieties. For various applications of the fundamental theorem of HPD, the readers are re-
ferred to [K1, K3, K6, K8, IK, ABB, K10, ADS, T2, HT17, CT, BBF, HT16] and [BDF+,
HL, ADS, ST18, Re, RS].

Convention. Note we use X\ instead of Y for the HP-dual of X, and Ak instead of Bk
for the building blocks of X\, to reduce the burden of notations. Our “cohomological”
convention Ak and Kuznetsov’s “homological” convention Bk in [K4] are related by

Ak
= Bn−k.

Note that the starting few terms of the ascending chain A• may be zero. In fact, if we set
m := max{k | Ak = A0}, which is an integer between 0 and i − 1, then A0

= A1
=

· · · = Am
= 0, and the non-zero terms of the chain A• are 0 6= Am+1

⊂ Am+2
⊂ · · · ⊂

Ai
= · · · = An

= A0, of length n−m.

Notations for HP-duals. For the HP-dual pair (X,X\), we will always use the same no-
tations as in this subsection and the preceding one (§2.3, 2.4). In the next section we will
consider another HP-dual pair (T → Pn, T \→ P̌n), and the notations are given similarly
as follows. We assume the defining decomposition (2.7) for (T , T \) is given by

D(HT \) = 〈8E
T \
(D(T )), (D(Pn) � C1(1))|H

T \
, . . . , (D(Pn) � C`−1(`− 1))|H

T \
〉,

(2.9)

where 8E
T \
: D(T ) ↪→ D(HT \) is the Fourier–Mukai functor in Definition 2.16 of

HP-dual, and the (dual) Lefschetz decompositions are denoted by

D(T ) = 〈C1(1− n), . . . , Cn−1(−1), Cn〉, D(T \) = 〈C0, C1(1), . . . , C`−1(`− 1)〉
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with C0 ⊃ C1 ⊃ · · · ⊃ C`−1 (1 ≤ ` ≤ n+ 1). Define ck to be the right orthogonal of Ck+1
inside Ck for k = 0, 1, . . . , `− 1; then the Ck’s are defined as in (2.5) by

Ck = 〈γ ∗0 (c0(1)), . . . , γ ∗0 (ck−1(k))〉 ⊂ C0 for k = 1, 2, . . . , (2.10)

where γ0 : C0 ↪→ D(T \) denotes the inclusion functor and γ ∗0 : D(T
\) → C0 is its

left adjoint. These notations for (X,X\) and (T \, T ) are illustrated in Figure 1. We also
extend the definition of Ck to all k ∈ Z by setting Ck = 0 if k ≤ 0.

Now we introduce further notations:

LCk := SD(T \)(Ck)⊗ OT \(`) for k = 1, . . . , `− 1,

where SD(T \) is the Serre functor. Then LCk ' Ck and LC0 ⊃
LC1 ⊃ · · · ⊃

LC`−1. Notice
that if the decomposition for D(T \) is rectangular, i.e. C0 = C1 = · · · = C`−1, then
LCk = Ck (see for example [T2, Rmk. 4.10]).

The LCk’s allow us to extend the decomposition (2.9) to negative degrees:

D(HT \) = 〈(D(Pn) � LCk+1(k + 2− `))|H
T \
, . . . , (D(Pn) � LC`−1)|H

T \
,

8E
T \
(D(T )) , (D(Pn) � C1(1))|H

T \
, . . . , (D(Pn) � Ck(k))|H

T \
〉 (2.11)

for all k = 0, 1, . . . , ` − 1.2 In fact, since ωH
T \
= (ωPn � ωT \)(1, 1)|H

T \
, if we apply

the Serre functor SD(H
T \
) = ⊗ωH

T \
[dimHT \ ] to (2.9), we obtain (2.11) by Lemma 2.4.

Remark 2.19. Notice that we use the dual convention for the pair (T , T \), and the rea-
sons are (i) we treat X and T \ symmetrically, and this point of view allows us to apply
base change in §3.2 to compare the derived categories of intersections and of the intersec-
tions of the dual; (ii) the “homological convention” of Ak’s for X and the “cohomologi-
cal convention” of Ck’s for T allow us to express Thms. 2.18 and 3.1 in nice forms (see
“Poincaré pairing rule”, Rmk. 3.4).

3. Categorical Plücker formula

3.1. Main results

Our main result is the generalization of the fundament theorem of HPD beyond linear
sections. Assume (X→ Pn, X\→ P̌n) and (T → Pn, T \→ P̌n) are two HP-dual pairs,
with HP-dual relations given by Fourier–Mukai functors 8EX : D(X

\) → D(HX) and
8E

T \
: D(T )→ D(HT \) as in Def. 2.16 and respectively (2.9), and with Lefschetz and

dual Lefschetz decompositions

D(X) = 〈A0,A1(1), . . . ,Ai−1(i − 1)〉, D(X\) = 〈A1(1− n), . . . ,An−1(−1),An
〉,

D(T ) = 〈C1(1− n), . . . , Cn−1(−1), Cn〉, D(T \) = 〈C0, C1(1), . . . , C`−1(`− 1)〉,

2 If k = 0 (resp. k = `− 1), then it is understood that there are no terms on the right (resp. left)
of 8E

T \
(D(T )) in the above decomposition.
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where A0 ⊃ A1 ⊃ · · · ⊃ Ai−1 and C0 ⊃ C1 ⊃ · · · ⊃ C`−1, 1 ≤ i, ` ≤ n+ 1, are chains
of admissible subcategories, and Ak (resp. Ck) is the “complement” of Ak (resp. Ck)
inside A0 (resp. C0) defined by formula (2.5) (resp. 2.10). The relations are illustrated in
Figure 1.

Theorem 3.1 (Categorical Plücker formula). If the two HP-dual pairs (X,X\) and
(T , T \) are admissible (Def. 3.9), then there are primitive decompositions3

D(X ×Pn T ) =
〈primD(X ×Pn T ), 〈(Ak � Ck)⊗ O(k)〉k∈Z

〉
,

D(X\ ×P̌n T
\) =

〈
〈(Ak � Ck)⊗ O(1− `+ k)〉k∈Z,D(X\ ×P̌n T

\)prim〉,
and an equivalence of the primitive parts

primD(X ×Pn T ) ' D(X
\
×P̌n T

\)prim.

The above equivalence is given by restriction of the functor

(8EX |T \)
∗
◦8E

T \
|X : D(X ×Pn T )→ D(X\ ×P̌n T

\),

where 8EX |T \ (resp. 8E
T \
|X) is the base change of 8EX (resp. 8E

T \
) along T \ → P̌n

(resp. X→ Pn), and (8EX |T \)
∗ is a left adjoint functor of 8EX |T \ .

4

The admissibility condition to be defined in §3.2 is a technical way to say the two pairs
intersect properly, and holds for almost all known examples of HP-duals (for example,
linear sections of HPD varieties of expected dimensions, quadric sections of HPD vari-
eties of expected dimensions, intersections of quadrics, intersections of Grassmannians,
etc). Symmetrically, we also have primD(X\ ×P̌n T

\) ' D(X ×Pn T )prim.
The proof of this main theorem will be given in the remaining sections, and examples

are given at the end of this section.

Remark 3.2. In the degenerate case5 (T , T \) = (∅, P̌n), our argument can be used
to imply that if D(X) has Lefschetz decomposition (2.4), then its HP-dual category
C = D(X\) has dual Lefschetz decomposition (2.8). Thus our approach solves the prob-
lem posed by Kuznetsov [K4, p. 182] of “finding a more direct proof” of the decomposi-
tion (2.8) for the HP-dual category.

If we apply the main theorem to the case of dual linear sections (T , T \) = (L,L⊥),
then the admissibility condition of the main theorem is equivalent to the expected di-
mension conditions of Thm. 2.18, and the theorem implies Thm. 2.18. Hence our ap-
proach also provides a “more direct proof” of the fundamental theorem of HPD of
Kuznetsov [K4].

3 Notice there are only finitely many components Ak � Ck and Ak � Ck indexed by k ∈ Z, since
Ak = 0 and Ck = 0 for k � 0 and Ck = Ak = 0 for k < 0.

4 The existence of the left adjoint functor is established in Prop. 3.11.
5 Although the case (T , T \) does not satisfy the conventional definition of HP-dual pairs, it is

easy to see that our argument, especially Thm. 3.12, still works.
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Remark 3.3. Notice that in the main theorem we do not require the fiber products to
be smooth. If we consider Orlov’s singularity categories Dsg(Z) := D(Z)/Perf(Z) for
schemes and Asg for an admissible subcategory A in [O], then from the fact that A =
〈A1, . . . ,An〉 impliesAsg=〈(A1)sg, . . . , (An)sg〉 ([O]), our theorem yieldsDsg(X×PnT )
' Dsg(X

\
×P̌n T

\). In particular, X ×Pn T is smooth if and only if X\ ×P̌n T
\ is.

Remark 3.4 (“Poincaré pairing rule”). If we regard the Lefschetz decomposition of
D(X) as

∑
Ak , and the dual Lefschetz decomposition of D(T ) similarly but in a co-

homological convention as
∑

Cj , then our theorem implies that the ambient component
ofD(X×Pn T ) follows a “Poicaré pairing” rule: the ambient part is given by

∑
k Ak�Ck ,

the summations of all “pairings” between {Aa} and {Cb}with the same indices a = b = k.
Similarly for D(X\ ×P̌n T

\). This can be visualized as in Fig. 1.

Fig. 1. Lefschetz and dual Lefschetz decompositions for HP-dual pairs (X,X\) and (T , T \).
The vertical lines indicate the “pairing rule” for the ambient component of D(X ×Pn T ) and
D(X\ ×P̌n T

\) in our main theorem.

If we “de-categorify” twice (i.e. take the Hochschild homology and then the Euler
characteristic of) our main theorem, we obtain:

Corollary 3.5 (Plücker formula for HP-duals). In the same situation as in Thm. 3.1,
further assume that X ×Pn T and X\ ×P̌n T

\ are smooth. Then

χ(X ×Pn T )−
χ(X) · χ(T )

n+ 1
= χ(X\ ×P̌n T

\)−
χ(X\) · χ(T \)

n+ 1
,

where χ(−) is the ordinary topological Euler characteristic for topological spaces.

Note that the above formula for HP-duals has the same form as the topological Plücker
formula (1.1). Therefore our main theorem can be viewed as a 2-level categorification
of the Plücker formula. To obtain the corollary from the main theorem, we now briefly
review the theory of Hochschild homology for admissible subcategories.
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Recall that the Hochschild homology of a smooth projective variety X can be de-
fined to be HH•(X) := Ext•X×X(1∗OX,1∗ωX), where 1 : X→ X ×X is the diagonal
embedding, and ωX is the dualizing complex [Ke1, Ke2, Ca2]. For an admissible subcate-
gory A ⊂ D(X), the Hochschild homology HH∗(A) can be defined using Fourier–Mukai
kernels inD(X×X), and this definition agrees with the definition using dg-enhancements
[K7]. Suppose thatD(X) = 〈A1, . . . ,An〉 is a semiorthogonal decomposition into admis-
sible subcategories. Then HH•(X) = HH•(A1)⊕· · ·⊕HH•(An) [K7, Thm. 7.3]. Notice
that the Künneth formula HH•(A � B) = HH•(A)⊗ HH•(B) holds (see Lem. A.1).

For an admissible subcategory A ⊂ D(X), we define its homological Euler charac-
teristic to be χH (A) :=

∑
k(−1)k rank HHk(A) ∈ Z. Notice that for a smooth projec-

tive varietyX, from the Hochschild–Kostant–Rosenberg (HKR) isomorphism (see [Ca2])
HHi(X) =

⊕
p−q=i H

q(X,�p), we have χH (X) = χ(X), where χ(X) is the topo-
logical Euler characteristic. From the above properties of HH∗, we infer that the homo-
logical Euler characteristic is additive for semiorthogonal decompositions, i.e. χ(X) =∑
k χ

H (Ak) if D(X) = 〈A0, . . . ,An〉. Moreover the homological Euler characteristic is
multiplicative for exterior products, i.e. χH (A � B) = χH (A) · χH (B), by the Künneth
formula.

Proof of Corollary 3.5. By applying the above properties of χH to our main theorem, we
obtain

χ(X ×Pn T )−
i−1∑
k=1

χH (Ak) · χ
H (Ck) = χ(X\ ×P̌n T

\)−

`−1∑
k=1

χH (Ak) · χH (Ck).

Adding the term 1
n+1χ(X) · χ(T

\)−
∑min{i−1,`−1}
k=1 χH (Ak) · χ

H (Ck) on both sides, and
using the equalities

χ(X)+ χ(X\) = (n+ 1) · χH (A0), χ(T )+ χ(T \) = (n+ 1) · χH (C0)

(which follow from the semiorthogonal decompositions of A•, A•, C•, C• into ak’s and
ck’s and additivity of χH (−); cf. also Figure 1), we obtain the desired formula. ut

Example 3.6 (Intersections of quadrics). Consider two odd-dimensional nondegenerate
quadrics Q1,Q2 ⊂ P2m, m ≥ 2, which intersect transversely, with Kapranov’s decom-
position [Kap]. Our theorem implies that there is a primitive decomposition

D(Q1 ∩Q2) = 〈
primD(Q1 ∩Q2),O(1), . . . ,O(2m− 3)〉.

According to [K6, Cor. 5.7], primD(Q1 ∩Q2) ' D(C), where C is an orbifold P1 with
Z/2Z-stack structure over 2m + 1 points. The HP-dual Q\

j is a 2m-dimensional quadric

with a ramified double covering map onto the dual projective space P̌2m, ramified over the
dual quadric Q̌i ⊂ P̌2m of Qi , i = 1, 2. Then Q\

1 ×P̌2m Q
\
2 is a smooth 2m-dimensional

manifold which admits a degree 4 finite surjection onto P̌2m. Then the second decompo-
sition of our theorem implies there is a decomposition

D(Q
\
1×P̌2m Q

\
2) = 〈〈S2,O〉(2− 2m),O(1− 2m), . . . ,O(−2),O(−1), 〈S1,O〉,D(C)〉,

where Si = (SQ\i
�O

Q
\
i±1
)|
Q
\
1×P̌2mQ

\
2
, and S

Q
\
i

is one of the spinor bundles onQ\
i , i = 1, 2.
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If Qi ⊂ P2m+1, m ≥ 1, i = 1, 2, are two even-dimensional quadrics which intersect
transversely, and Q\

i = Q
∨

i ⊂ P̌2m are the dual quadrics, then our theorem implies

D(Q1 ∩Q2) = 〈
primD(Q1 ∩Q2),O(1), . . . ,O(2m− 2)〉,

and a similar decomposition for Q∨1 ∩ Q
∨

2 . By Bondal–Orlov [BO] we know that
primD(Q1 ∩ Q2) ' D(C) and D(Q∨1 ∩ Q

∨

2 )
prim
' D(C′), where C,C′ are two hy-

perelliptic curves. Our theorem then further implies that D(C) ' D(C′), hence C ' C′

(see [H]); but this is not surprising since one can show directly Q1 ∩ Q2 ' Q∨1 ∩ Q
∨

2
using [R].

Example 3.7 (Intersections of Grassmannians). Following [OR, BCP], consider X =
Gr(2, 5) ⊂ P9 via the Plücker embedding and T = g · Gr(2, 5) ⊂ P9 for a generic
g ∈ PGL(10,C). Then according to Kuznetsov [K2, §6.1], the HP-dualsX\ = X∨ ⊂ P9∗

and T \ = (T )∨ ⊂ P9∗ coincide with their projective duals with natural Lefschetz de-
compositions. Since the Lefschetz decompositions are rectangular in this case, it follows
directly that the ambient parts for the two decompositions vanish. Therefore our theorem
implies (see [OR, BCP])

D(X ∩ T ) ' D(X\ ∩ T \).

For a generic g, the intersections X ∩ T and X\ ∩ T \ are smooth Calabi–Yau 3-folds that
are deformation equivalent. By a result of Addington–Căldăraru (see [ADM, footnote p.
857], also [OR, Prop. 2.1]) the above derived equivalence implies thatX∩T andX\∩T \

have the same polarized Hodge structure. Moreover, it is shown independently by [OR,
BCP] thatX∩T andX\∩T \ are non-birational for generic g, and therefore this example
provides a counterexample to the birational Torelli conjecture for Calabi–Yau threefolds.

Example 3.8 (Intersection of spinor varieties). Following [M], let X = S ⊂ P(1) be
the spinor variety for Spin10(C), and T = g · S ⊂ P(1) the translation by a generic
g ∈ PGL(1), where 1 is one of the half-spin representations of Spin10(C). Then X\ =
S∨ ⊂ P(1)∗ and T \ = (T )∨ ⊂ P(1)∗, i.e. the HP-duals agree with the projective duals
of X and T (see [K2, §6.2]). Our theorem implies that (see [M])

D(X ∩ T ) ' D(X\ ∩ T \).

HereX∩T andX\∩T \ are Calabi–Yau 5-folds that are deformation-equivalent. Similarly,
the derived equivalence implies the two Calabi–Yau manifolds have the same polarized
Hodge structure. Furthermore [M] proved that X ∩ T and X\ ∩ T \ are non-birational for
generic g, therefore this provides a counterexample to the birational Torelli conjecture for
Calabi–Yau manifolds of dimension 5.

3.2. Base change and admissibility

In order to compare the derived categories of X ×Pn T and X\ ×P̌n T
\, notice that from

(2.9) and Def. 2.16 we have fully faithful embeddings D(T ) ↪→ D(HT \) and D(X\) ↪→
D(HX), so if we perform faithful base change of the two embeddings alongX→ Pn and
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respectively T \ → P̌n, we will have embeddings D(X ×Pn T ) ↪→ D(X ×Pn HT \) and
D(X\ ×P̌n T

\) ↪→ D(HX ×P̌n T
\). Notice that

HX ×P̌n T
\
= X ×Pn HT \ =: H,

which is nothing but the universal quadric ofX×T \, i.e. defined by the incidence relation
H = {(x, s) | s(x) = 0} ⊂ X × T \. Thus we will put the two categories of interest
into a common ambient category D(H). The condition allowing the above base change
procedures to work is called admissibility. More precisely, we introduce

Definition 3.9. Two pairs (X → Pn, X\ → P̌n) and (T → Pn, T \ → P̌n) are called
admissible if the morphisms X → Pn and T \ → P̌n considered as base changes are
faithful (see Def. 2.5) with respect to (HT \ , T ) and respectively (HX, T

\).

The admissibility condition is a technical way to say the two pairs intersect properly,
and this condition automatically holds if we are in the proper context of dg-categories
or stable-∞ categories of derived intersections. For commutative varieties, this condition
holds for intersections of varieties in “generic position”, and holds for almost all known
examples of HP-duals. The criterion will be given below.

Note that if the above two pairs are admissible, then H ( X× T \ is a Cartier divisor.
In fact, consider the following commutative diagram of cartesian squares of varieties:

H X × T \ T \

HX X × P̌n P̌n

The right product square is always exact cartesian. Admissibility implies the ambient
square is exact cartesian, hence from Lem. 2.7, the left square is exact cartesian. Notice
HX ( X × P̌n is a proper divisor, so H ( X × T is a divisor.

To give a criterion for admissibility, we introduce the following notations. For two
morphisms X→ Pn and S → P̌n, we denote the incidence quadric by

Q(X, S) := X ×Pn Q×P̌n S ⊂ X × S,

where Q ⊂ Pn × P̌n is the universal quadric. More informally, Q(X, S) = {(x, s) |
〈x, s〉 = 0} ⊂ X × S, where 〈−,−〉 is the pairing between Pn and P̌n. Note Q(X, S) ⊂
X× S is cut out by a natural section of the line bundle O(1, 1) := OX(1)�OS(1), hence
it is a divisor of X×S if and only if the section is non-zero on each component of X×S.

Lemma 3.10 (Criterion for admissibility). Let (f : X → Pn, g : X\ → P̌n) and (p :
T → Pn, q : T \→ P̌n) be two pairs of morphisms. Assume one of the following holds:

(1) Both f : X→ Pn and q : T \→ P̌n are non-degenerate.
(2) f : X→ Pn is non-degenerate, and either

(i) Q(T , T \) = T × T \ (e.g. (T , T \) = (L,L⊥) dual linear subspaces), or
(ii) Q(T , T \) 6= T × T \, and Q(X ×Pn T , T \) is a divisor inside X ×Pn T × T \.
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(3) q : T \→ P̌n is non-degenerate, and either

(i) Q(X,X\) = X ×X\, or
(ii) Q(X,X\) 6= X×X\, and Q(X\ ×P̌n T

\, X) is a divisor inside X\ ×P̌n T
\
×X.

(4) Both f : X → Pn and q : T \ → P̌n are degenerate, Q(X, T \) 6= X × T \, one of
(2i), (2ii) holds and one of (3i), (3ii) holds.

Then the two pairs are admissible if X×Pn T and X\×P̌n T
\ are of expected dimensions:

dimX ×Pn T = dimX + dim T − n, dimX\ ×P̌n T
\
= dimX\ + dim T \ − n.

Proof. The key is to check that six squares are exact cartesian. The first three squares are

X ×Pn T T

X Pnf

H HT \

X Pnf

Q(X ×Pn T , T \) Q(T , T \)

X Pnf

The first square is exact cartesian ifX×PnT is of expected dimension by Lem. 2.6(2). The
second is exact cartesian if H ≡ Q(X, T \) 6= X×T \. For the last square, ifQ(T, T \) =
T × T \, then Q(X ×Pn T , T \) = X ×Pn T × T \, and the square is exact cartesian if
X ×Pn T are of expected dimension. If q : T \ → P̌n is non-degenerate, then HT \ → Pn
is a flat family, and so is Q(T, T \)→ T . Since we have

Q(X ×Pn T , T \) X ×Pn T X

Q(T , T \) T Pn
fQ fT f

the ambient square is exact cartesian by Lem. 2.7. If Q(T, T \) is a divisor, then consider
the squares

Q(X ×Pn T , T \) X ×Q(T, T \) Q(T , T \)

X X × Pn Pn
0f

where 0f is the graph embedding of X. The right square is exact cartesian since the pro-
jectionX×Pn→ Pn is a smooth map. For the left square, the conditionQ(X×Pn T , T \)
is a divisor guarantees it is of expected dimension, and since 0f is a locally complete
intersection embedding, X × Q(T, T \) is Cohen–Macaulay, the left square is also ex-
act cartesian by Lem. 2.6(3). From Lem. 2.7, the ambient square is exact cartesian. The
argument is the same for the other three squares:

X\ ×P̌n T
\ Y

T \ P̌nq

H HX

T \ P̌nq

Q(X,X\ ×P̌n T
\) Q(X,X\)

T \ P̌nq

Hence the lemma follows. ut
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Proposition 3.11. If the two HP-dual pairs (X,X\) and (T , T \) are admissible, then

8E
T \
|X : D(X×Pn T )→ D(H) and the compositionsD(X)�Cr(r) ↪→ D(X×T \)

i∗H
−→

D(H) and D(X)� LCr(r) ↪→ D(X× T \)
i∗H
−→ D(H), where 1 ≤ r ≤ `− 1, are all fully

faithful, and for any k = 0, 1, . . . , `− 1 there is a semiorthogonal decomposition

D(H) = 〈D(X) � LCk+1(k + 2− `)|H, . . . , D(X) � LC`−1|H,

D1 ,D(X) � C1(1)|H, . . . , D(X) � Ck(k)|H〉. (3.1)

where D1 ' D(X ×Pn T ) denotes the fully faithful image of 8E
T \
|X. Similarly, the func-

tors 8EX |T \ : D(X
\
×P̌n T

\)→ D(H) and Ar(r) �D(T
\) ↪→ D(X × T \)

i∗H
−→ D(H)

(1 ≤ r ≤ i − 1) are all fully faithful, and give rise to a semiorthogonal decomposition

D(H) = 〈D2,A1(1) �D(T \)|H, . . . ,Ai−1(i − 1) �D(T \)|H〉.

where D2 ' D(X
\
×P̌n T

\) denotes the fully faithful image of8EX |T \ . All components of
the above semiorthogonal decompositions are admissible subcategories of D(H).

Here 8EX |T \ (resp. 8E
T \
|X) is the base change of 8EX (resp. 8E

T \
) along T \ → P̌n

(resp. X→ Pn), and by Prop. 2.8 the Fourier–Mukai kernels are given by restrictions.

Proof. Consider the P̌n-linear decomposition (2.7). Since the base change T \ → P̌n is
faithful for HX → P̌n, by Prop. 2.9 it induces a T \-linear semiorthogonal decomposition
of D(HX ×P̌n T

\) = D(H). It is clear that under base change the fully faithful P̌n-linear

functor Ar(r) � D(P̌n) ⊂ D(X × P̌n)
i∗HX
−−→ D(HX) induces a fully faithful T \-linear

functor Ar(r) � D(T \) ⊂ D(X × T \)
i∗H
−→ D(H), where 1 ≤ r ≤ i − 1, and the

images of these coincide with the components obtained from base change in Prop. 2.9, i.e.
[i∗HX

(Ar(r)�D(P̌n))]T \ = i∗H(Ar(r)�D(T
\)). For the first component, since T \→ P̌n

is faithful for the pair (HX, T
\), the fully faithful embedding 8EX : D(X

\) → D(HX)

induces a fully faithful embedding 8EX |T \ : D(X
\
×P̌n T

\) → D(H) by Prop. 2.8,
where the Fourier–Mukai kernel is given by EX|T \ := φ∗EX, where φ is the natural map
X\×P̌n T

\
×T \H→ X\×P̌nHX. It is not hard to see that the image of the Fourier–Mukai

transform coincides with the first component of the induced decomposition from (2.7)
[K9, Thm. 6.4]. Similarly, the other case follows from the same argument applied to the
Pn-linear decomposition (2.11). Since an admissible subcategory remains admissible after
applying a faithful quasi-projective base change [K9, Cor. 5.7], all the above components
are admissible. ut

3.3. Chess game

If two HP-dual pairs (X → Pn, X\ → P̌n) and (T → Pn, T \ → P̌n) are admissible,
then in the preceding subsection we have put D(X ×Pn T ) and D(X\ ×P̌n T

\) into a
common category D(H), with images D1 ' D(X ×Pn T ) and D2 ' D(X\ ×P̌n T

\).
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Then we are in a situation of the following chess game. For simplicity of notations, we
introduce

E(α, β) := (Aα(α) � Cβ(β))|H ⊂ D(H), α ∈ [0, i − 1], β ∈ [0, `− 1],
LE(α, β) := (Aα(α) �

LCβ+`−1(β))|H ⊂ D(H), α ∈ [0, i − 1], β ∈ [2− `, 0].

Note that in general E(α, β) are all of different sizes and E(α, β) ⊗ O(−1,−1) ⊂
E(α − 1, β − 1) will be strict inclusion for α, β ≥ 1. But if the decompositions for
D(X) and D(T \) are rectangular, then all E(α, β) are of the same size, and E(α, β) =
E(0, 0)⊗ O(α, β) for all β ≥ 0 and α; and LE(α, β) = E(0, 0)⊗ O(α, β) for all β ≤ 0
and α, therefore all E(−,−)’s and LE(−,−)’s are twistings of the same box E(0, 0) by a
line bundle.

We further introduce

E(∗, β) := 〈E(k, β) | k ∈ [0, i − 1]〉, E(α, ∗) := 〈E(α, k) | k ∈ [0, `− 1]〉,
LE(∗, β) := 〈LE(k, β) | k ∈ [0, i − 1]〉, LE(α, ∗) := 〈LE(α, k) | k ∈ [2− `, 0]〉.

For further simplicity of notations, we will sometimes omit the symbol (−)|H for fully
faithful images of subcategories of D(X × T \) in D(H). Notice that

E(α, ∗) = LE(α, ∗) = Aα(α) �D(T
\), α ∈ [0, i − 1],

E(∗, β) = D(X) � Cβ(β), β ∈ [0, `− 1],
LE(∗, β) = D(X) � LCβ(β), β ∈ [2− `, 0].

Therefore the main result Prop. 3.11 of the preceding subsection now becomes

D(H) = 〈D1, E(∗, 1), . . . , E(∗, `− 1)〉 = 〈D2, E(1, ∗), . . . , E(i − 1, ∗)〉, (3.2)

Furthermore, (3.1) allows us to extend the decompositions to negative values of β:

D(H) = 〈LE(∗, k + 1− `), . . . , LE(∗, 0),D1, E(∗, 1), . . . , E(∗, k − 1)〉 (3.3)

for all k = 1, . . . , `− 1, `. One may remember this suggestively as6

D(H) = 〈LE(∗, I≤0),D1, E(∗, I>0)〉,

for all open interval I ⊂ [1−`, `] of length |I | = `, where I≤0 = I∩Z≤0, I>0 = I∩Z>0.
Then the way how D1 ' D(X ×Pn T ) and D2 ' D(X

\
×P̌n T

\) sit inside D(H) can
be illustrated via a diagram known as a chessboard as in Figs. 2–4. Each category E(α, β)
or LE(α, β) corresponds to a box in these figures, located by the values of α and β.
The boxes E(−,−) and LE(−,−) correspond to the “linear” part of the decompositions
of D(H).

Denote the inclusion functors by Ij : Dj ↪→ D(H), j = 1, 2, and the left (resp. right)
adjoint functors of Ij by I ∗j (resp. I !j ). Then our main Theorem 3.1 is equivalent to the
following:

6 Similarly one extends to negative values of α, D(H) = 〈LE(I≤0, ∗),D2, E(I>0, ∗)〉, which
will not be used.
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Fig. 2. The chessboard describing the decompositions D(H) = 〈D1,
⊥D1〉 = 〈D2,

⊥D2〉 =
〈D⊥1 ,D1〉, where D1 ' D(X ×Pn T ) and D2 ' D(X\ ×P̌n T

\). The horizontal (resp. vertical)
direction corresponds to the OT \(β)- (resp. OX(α)-) direction.

Theorem 3.12. (1) I ∗j : D(H) → Dj , j = 1, 2, are fully faithful on the subcategories
Ak � Ck respectively Ak � LCk , k ∈ Z, and induce semiorthogonal decompositions

D1 = 〈
primD1, I

∗

1 i
∗

H(A1(1) � C1), . . . , I ∗1 i
∗

H(Ai−1(i − 1) � Ci−1)〉,

D2 = 〈I
∗

2 i
∗

H(A
1 � LC1(2− `)), . . . , I ∗2 i

∗

H(A
`−1 � LC`−1),D

prim
2 〉.

(2) The functor I ∗2 I1 induces an equivalence of categories primD1 ' D
prim
2 .

We will prove this by playing the “chess game” on the “chessboard” of Fig. 2–4 in the
following two subsections. Notice iH∗ fits into an exact triangle of functors7

⊗OX×T \(−1,−1)→ Id→ iH∗ i
∗

H
[1]
−→ .

This enables us to compute the Hom space of the “linear” part E(∗, ∗) or LE(∗, ∗) of
D(H) in terms of the Hom space on the product space X × T \.

Lemma 3.13 (Cone lemma). For any F1, F2 ∈ D(X), G1,G2 ∈ D(T
\), we have

RHomH((F1 � G1)|H, (F2 � G2)|H) = cone
(
RHomX(F1, F2(−1))

⊗ RHomT \(G1,G2(−1))→ RHomX(F1, F2)⊗ RHomT \(G1,G2)
)
. (3.4)

Proof. Since iH∗i∗H = cone(O(−1,−1)→ Id), letting E1 = F1 �G1, E2 = F2 �G2,
we find that RHomH(i

∗

H(E1), i
∗

H(E2)) = RHomX×T \(E1, iH∗ i
∗

H(E2)) is the cone of

RHomX×T \(E1, E2(−1,−1))→ RHomX×T \(E1, E2).

Now by the Künneth formula, we are done. ut

7 Or equivalently, the cotwist functor of i∗H is isomorphic to OX×T \(−1,−1). The sequence can
be regarded as an exact triangle in the categories of Fourier–Mukai functors on D(X × T ) [CW].
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Remark 3.14. From the lemma, suppose we want to show the vanishing

RHomH(E(α1, β1), E(α2, β2)) = 0. (3.5)

This is equivalent to showing that for all Fj ∈ Aαj (αj ), Gj ∈ Cβj (βj ), j = 1, 2,

RHomH(F1 �G1, F2 �G2) = 0.

Then from equality (3.4) it suffices to show that both the following terms inside the cone
are zero:

• the twisted term RHomX(F1, F2(−1))⊗ RHomT \(G1,G2(−1)), and
• the untwisted term RHomX(F1, F2)⊗ RHomT \(G1,G2).

We will refer to the vanishing of the terms caused by the vanishing of the RHomX-factor
(resp. the RHomT \ -factor) as caused by α-vanishing (resp. β-vanishing). Then both the
twisted and untwisted terms are zero, hence (3.5) holds if

• (α-vanishing) both RHomX-factors are zero, e.g. i − 1 ≥ α1 > α2 ≥ 1, or
• (β-vanishing) both RHomT \ -factors are zero, e.g. `− 1 ≥ β1 > β2 ≥ 1, or
• (mixed type) one RHomX-factor is zero, the other RHomT \ -factor is zero, e.g.
α1 = α2 ≥ 1, β1 > β2 = 0 or α1 > α2 = 0, β1 = β2 ≥ 1.

One also has a similar criterion for vanishing on the LE(α, β)-part.

3.4. Fully-faithfulness

We first prove the statements about fully-faithfulness. The strategy is as follows: for j ∈
{1, 2}, suppose we want to show that I ∗j : D(H)→ Dj is fully faithful when restricted to
a certain subcategory C ⊂ D(H), i.e. to show that for a, b ∈ C,

RHomH(a, b) = RHomDj (I
∗

j a, I
∗

j b) = RHomH(a, Ij I
∗

j b).

Then it is equivalent to showing RHomH(a, cone(b → Ij I
∗

j (b)) = 0, where b →
Ij I
∗

j (b) is the natural unit map by the adjunction I ∗j a Ij . Since I ∗j are mutation functors
passing through a certain region of type E(−,−) or LE(−,−), we can analyze cone(b→
Ij I
∗

j (b)) on the chessboard of Figs. 3 and 4, and show it belongs to a region receiving
no (non-zero) Homs from C. For simplicity of notations, we will write b for Ijb for an
element b ∈ Dj ⊂ D(H).

Lemma 3.15. Let b ∈ (Ak(k) � Ck)|H ⊂ E(k, 0), k = 1, . . . , i − 1. If k ∈ [1, `], then
cone(b→ I ∗1 (b)) belongs to the subcategory8

<E(k − 1, 1), E(k − 1, 2), . . . , E(k − 1, k − 2), E(k − 1, k − 1)
E(k − 2, 1), E(k − 2, 2), . . . , E(k − 2, k − 2)
...

E(1, 1) >.
8 The order of the semiorthogonal sequence is from bottom to top, and from left to right.
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If k ∈ [`, i − 1], then Ck = C0, and cone(b→ I ∗1 (b)) belongs to the subcategory

<E(k − 1, 1), E(k − 1, 2), . . . , E(k − 1, `− 2), E(k − 1, `− 1)
E(k − 2, 1), E(k − 2, 2), . . . , E(k − 2, `− 2)

...

E(k − `+ 1, 1) >.
The result is illustrated in Figure 3. Similar patterns also appear in [K4, Lem. 5.6] and
[T2, proof of Thm. 4.7].

From this lemma, the image of S = 〈(A1(1) � C1)|H, . . . , (Ai−1(i − 1) � Ci−1)|H〉
under I ∗1 is contained in the subcategory generated by S itself and

E(α, β) for β ∈ [1, `− 1], α ∈ [β, i − 2],

thus in particular contained in ⊥D2 = 〈E(1, ∗), . . . , E(i−1, ∗)〉. This will be useful later.

Fig. 3. The chessboard indicating blocks E(−,−) and LE(−,−) in the case i ≥ `. The shaded
region indicates the ambient components Ak(k) � Ck ⊂ E(k, 0) to be embedded into D1. For b in
such a component (e.g. the circled ones), Lem. 3.15 implies cone(b→ I∗1 b) belongs to the pointed
staircase region marked with “∗”.

Proof of Lemma 3.15. We show the case 1 ≤ k ≤ `; the argument for k ≥ ` is similar.
Note I ∗1 is the left mutation functor passing through the semiorthogonal sequence

〈E(∗, 1), . . . , E(∗, k − 1), E(∗, k) . . . , E(∗, `− 1)〉.

We first observe that the subcategories E(∗, k) . . . , E(∗, ` − 1) have no (non-zero de-
rived) Homs to b. This is from what we call “β-vanishings” in Rmk. 3.14. In fact, let
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β ∈ [k, `− 1]. To show RHom(E(α, β),Ak(k) � Ck) = 0, as in Rmk. 3.14 observe that
the untwisted term is zero by RHomT \(Cβ(β), Ck) = 0 since Ck ⊂ C0, and the twisted
term is zero since

RHomT \(Cβ(β), Ck(−1)) = RHomT \(Cβ(β + 1), Ck)
= RHomC0((γ

∗

0 (Cβ(β + 1)), Ck) = RHomC0(γ
∗

0 (cβ(β + 1)), Ck) = 0

exactly by the way we define Ck ⊂ C0 in (2.10) and Lem. 2.12, where γ0 : C0 → D(T \)

denotes the inclusion. Therefore by Lem. 2.3, the left mutations passing through the last
`− k terms are the identity functors on b, and we have

I ∗1 b = LE(∗,1) ◦ · · · ◦ LE(∗,k−1) b.

Let b(0) = b and b(γ ) = LE(∗,k−γ ) b(γ−1) for γ = 1, . . . , k − 1. Then b(k−1)
= I ∗1 (b).

Notice that if k = 1, then I ∗1 (b) = b, hence we are already done; therefore we may
assume k ≥ 2.

To prove the lemma, we show by induction on γ that, for each step, cone(b→ b(γ ))

belongs to a similar staircase subregion (of size γ , on the top right inside the desired
region), and then the case γ = k − 1 implies the lemma. More precisely, we show that
for every γ = 1, . . . , k − 1, cone(b→ b(γ )) belongs to the subcategory generated by

E(α, β) = Aα(α) � Cβ(β) for β ∈ [k − γ, k − 1], α ∈ [β, k − 1]. (3.6)

Base case. For γ = 1, to compute b(1) = LE(∗,k−1) b, where E(∗, k − 1) = D(X) �

Ck−1(k − 1), we use the decomposition9

D(X) = 〈Ak−1(k − 1),⊥(Ak−1(k − 1))〉.

Note that of all components of E(∗, k − 1) = D(X) � Ck−1(k − 1) induced by the above
decomposition, only E(k−1, k−1) = Ak−1(k−1)�Ck−1(k−1) has Homs to b. This is
a vanishing of “mixed type”: in fact, to compute such Homs using cone lemma 3.13 and
Rmk. 3.14, the untwisted term vanishes since it has factor RHomS(Ck−1(k−1), Ck) = 0,
by k ≥ 2, and the twisted term vanishes since it has the RHomX-factor

RHomX(
⊥(Ak−1(k − 1))(1),Ak(k)) = RHomX(

⊥(Ak−1(k − 1)),Ak(k − 1)) = 0

because Ak(k − 1) ⊂ Ak−1(k − 1). Thus cone(b→ b(1)) ∈ E(k − 1, k − 1) as claimed.

Induction step. Next, suppose the claim holds for γ , i.e. cone(b → b(γ )) belongs to the
region (3.6). Then b(γ ) belongs the subcategory generated by Ak(k) � Ck and (3.6). To
analyze b(γ+1)

= LE(∗,k−γ−1) b
(γ ), we use the decomposition

D(X) = 〈Ak−γ−1(k−γ−1), . . . ,Ak−1(k−1),⊥〈Ak−γ−1(k−γ−1), . . . ,Ak−1(k−1)〉〉.

9 We know explicitly that the second component is

⊥(Ak−1(k − 1)) = Ak(k), . . . ,Ai−1(i − 1), S−1
X
(A0), . . . , S

−1
X
(Ak−1(k − 1))

but this will be irrelevant for our computation.
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We claim that of all components of E(∗, k−γ −1) = D(X)� Ck−γ−1(k−γ −1) induced
by the above decomposition, only the first γ + 1 terms

E(k − γ − 1, k − γ − 1), . . . , E(k − 1, k − γ − 1) (3.7)

have Homs to b(γ ). To prove the claim, first notice that the remainder of the above inside
E(∗, k − γ − 1),

⊥
〈Ak−γ−1(k − γ − 1), . . . ,Ak−1(k − 1)〉 � Ck−γ−1(k − γ − 1), (3.8)

has no Homs to Ak(k) � Ck . The reason is similar to the base case: the untwisted term
is zero by β-vanishing, and the twisted term is zero by α-vanishing since Ak(k − 1) ⊂
Ak−1(k − 1). It remains to show there are no Homs from (3.8) to (3.6), and this now
follows from α-vanishing: since the Aα(α)-factor which appears in (3.6) has range
k − γ ≤ α ≤ k − 1, it follows that Aα(α) and Aα(α − 1) are both contained in
〈Ak−γ−1(k − γ − 1), . . . ,Ak−1(k − 1)〉, therefore the RHomX-factors of both twisted
and untwisted terms are zero from the decomposition of D(X). Therefore the claim is
proved.

From the claim, cone(b(γ ) → b(γ+1)) belongs to the subcategory generated by (3.7).
Then from the distinguished triangle from the octahedral axiom of triangulated categories:

cone(b→ b(γ ))→ cone(b→ b(γ+1))→ cone(b(γ )→ b(γ+1))
[1]
−→,

cone(b→ b(γ+1)) belongs to the union of (3.6) and the “new column” (3.7), so it belongs
to the desired region of the form (3.6) with γ replaced by γ + 1. Then by induction we
are done. ut

From the above lemma, we can directly prove

Proposition-Definition 3.16. The functor I ∗1 : D(H) → D1 is fully faithful on the
subcategories (A1(1) � C1)|H, . . . , (Ai−1(i − 1) � Ci−1)|H ⊂ D(H), and induces a
semiorthogonal decomposition, called the (left) primitive decomposition of D1:

D1 = 〈
primD1, I

∗

1 (A1(1) � C1)|H, . . . , I
∗

1 (Ai−1(i − 1) � Ci−1)|H〉

where the left admissible subcategory primD1 is called the left primitive component of D1.

Proof. For any a ∈ i∗H(Am(m) � Cm) and b ∈ i∗H(Ak(k) � Ck) with 1 ≤ k ≤ m ≤ i − 1,
from Lem. 3.15, cone(b → I ∗1 b) belongs to the subcategory 〈E(1, ∗), . . . , E(k − 1, ∗),
but a ∈ E(m, ∗) and k − 1 < m ≤ i − 1, hence RHom(a, cone(b → I ∗1 b)) = 0.
Therefore

RHomD1(I
∗

1 (a), I
∗

1 (b)) = RHomH(a, I1I
∗

1 (b)) = RHomH(a, b),

which gives the “fully faithful” statements. Notice the subcategories I ∗1 (Ak(k)�Ck)|H '
Ak(k)�Ck are saturated in the sense of [B, BV], since they are equivalent to the admissible
subcategories Ak(k)�Ck ⊂ D(X×T ) for the smooth projective varietyX×T (see [BV]),
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therefore by [B] (see also [K4, Lem. 2.11]) they are also admissible subcategories of D1,
and thus primD1 is well-defined and left admissible by [K4, Lem. 2.4]. ut

By the same argument, we show that the functor I ∗2 : D(H) → D2 is fully faithful on
〈(A1 � C1(1))|H, . . . , (Al−1 � C`−1(`− 1))|H〉, and induces a primitive decomposition

D2 = 〈
primD2, I

∗

2 (A
1 � C1(1))|H, . . . , I ∗2 (A

`−1 � C`−1(`− 1))|H〉.

But this is not the decomposition we need: it will be the right primitive component D
prim
2

which compares nicely with primD1 under the functor I ∗2 I1 : D1 → D2.

Lemma 3.17. (1) Let b ∈ (Ak � LCk(k+ 1− `))|H ⊂ LE(0, k+ 1− `), k ∈ [1, `− 1].
If k ∈ [1, i], then cone(b→ I ∗2 (b)) belongs to

< LE(k − 1, k − `)
...

LE(2, 3− `), . . . , LE(2, k − `− 1), LE(2, k − `)
LE(1, 2− `), LE(1, 3− `), . . . , LE(1, k − `− 1), LE(1, k − `)>.

If k ∈ [i, `− 1], then Ak
= A0, and cone(b→ I ∗2 (b)) belongs to

< LE(i − 1, k − `)
...

LE(2, k − i + 3− `), . . . , LE(2, k − `)
LE(1, k − i + 2− `), LE(1, k − i + 3− `), . . . , LE(1, k − `) >.

Therefore the image of S ′ = 〈(A1 � LC1(2− `)))|H, . . . , (Al−1 � LCl−1))|H〉 under
I ∗2 is contained in the subcategory generated by S ′ and

LE(α, β) for α ∈ [1, i − 1], β ∈ [α − `+ 1,−1].

(2) Let b ∈ primD1. Then cone(b→ I ∗2 (b)) belongs to the subcategory generated by

LE(α, β) for α ∈ [1, i − 1], β ∈ [α − `+ 1, 0].

In particular, the images of both 〈i∗H(A
1�LC1(2−`)), . . . , i∗H(A

l−1�LCl−1)〉 and primD1

under I ∗2 are contained in D⊥1 = 〈
LE(∗, 2− `), . . . , LE(∗, 0)〉.

For statement (1), the ambient component (to be embedded into D2) corresponds to
the region “R2” in Figs. 3 and 4, and the readers are encouraged to mark the correspond-
ing region for cone(b → I ∗2 b) (a staircase-shape subregion on the bottom left inside the
region “R1”) as we did in Figure 3 for Lem. 3.15.

Proof of Lemma 3.17. The proof is similar to that of Lem. 3.15. For the proof of (1),
assume without loss of generality k ∈ [1, i]; the case k ∈ [i, l − 1] is similar. Note I ∗2 is
the left mutation through

LE(1, ∗), . . . , LE(k − 1, ∗), LE(k, ∗), . . . , LE(i − 1, ∗).

(Recall LE(α, ∗) = E(α, ∗) = Aα(α) � D(T \).) As before, b receives no Homs from
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LE(k, ∗), . . . , LE(i − 1, ∗) by α-vanishing, which is a consequence of the way we de-
fine Ak in (2.10). Therefore

I ∗2 b = LLE(1,∗) ◦ · · · ◦ LLE(k−1,∗)b.

Let
b(0) = b and b(γ ) = LLE(k−γ,∗)b

(γ−1) for γ = 1, . . . , k − 1.

Then b(k−1)
= I ∗2 b. Again we can show by induction that for each γ = 1, 2, . . . , k − 1,

cone(b → b(γ )) belongs to a similar subregion (on the top right, of size γ ) inside the
desired region, i.e. generated by

LE(α, β) for β ∈ [k − γ + 1− `, k − `], α ∈ [k − γ, β + `− 1].

Then the case γ = k − 1 gives the result of the lemma. For the induction step, to analyze
b(γ+1)

= LLE(k−γ−1,∗) b
(γ ), we consider the decomposition

D(T \)

=
〈
〈
LCk−γ−1(k−γ −`), . . . ,

LCk−1(k−`)〉,
⊥
〈
LCk−γ−1(k−γ −`), . . . ,

LCk−1(k−`)〉
〉
.

As before, for the decomposition of LE(k − γ − 1, ∗) = Ak−γ−1(k − γ − 1) � D(T \)
induced by the above decomposition of D(T \), only the “new row”

〈
LE(k − γ − 1, k − γ − `), . . . , LE(k − γ − 1, k − `)〉

has Homs to b(γ ), and this completes the induction step and the proof of (1).

The proof of (2) is similar; the only thing we need to check is the vanishing for
b ∈ primD1 which does not come from the cone lemma. Assume without loss of generality
` ≤ i. Again we set

b(0) = b and b(γ ) = LA`−γ (`−γ )�D(T
\) b

(γ−1) for γ = 1, . . . , `− 1.

and show by induction on γ ∈ [1, ` − 1] that each cone(b → b(γ )) belongs to a sim-
ilar subregion (of size γ on the top-right inside the desired region), i.e. the subcategory
generated by

LE(α, β) for β ∈ [1− γ, `− 1], α ∈ [`− γ, β + `− 1],

and the case γ = `− 1 implies the lemma.
For the induction step, as before, we only need to show that for the decomposition of

LE(`− γ − 1, ∗) = A`−γ−1(`− γ − 1) �D(T \) induced by the decomposition

D(T \) = 〈LC`−γ−1(−γ ),
LC`−γ (1− γ ), . . . , LCl−1, C0(1), . . . , C`−γ−2(`− γ − 1)〉,

only the first γ + 1 terms (i.e. the “new row”)

〈
LE(`− γ − 1,−γ ), . . . , LE(`− γ − 1, 0)〉
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have Homs to b(γ ); or equivalently b(γ ) receives no Homs from

A`−γ−1(`− γ − 1) � 〈C0(1), . . . , C`−γ−2(`− γ − 1)〉. (3.9)

As before, cone(b→ b(γ )) receives no Homs from the above by the induction hypothesis
and the cone lemma. The only thing to show is that b ∈ primD1 also receives no Homs
from (3.9). This can be shown as follows. Since b ∈ D1 is in the right orthogonal of all
E(−, k) for k ∈ [1, i − 1], it receives no Homs from

A`−γ−1(`− γ − 1) � 〈C1(1), . . . , C`−γ−1(`− γ − 1).

Also from the definition of primD1 in Prop.-Def. 3.16, b ∈ primD1 receives no Homs from

A`−γ−1(`− γ − 1) � C`−γ−1.

But recall C`−γ−1
= 〈γ ∗0 (c0(1)), . . . , γ ∗0 (c`−γ−2(` − γ − 1))〉, and from Lem. 2.12 for

D(T \) we have

〈C0(1), . . . , C`−γ−2(`− γ − 1)〉 = 〈C`−γ−1, C1(1), . . . , C`−γ−1(`− γ − 1)〉

for all γ = 0, 1, . . . , ` − 2. Hence the above two vanishings imply b itself receives no
Homs from (3.9). Hence we finish the induction step as before. ut

From this lemma, we directly have

Proposition-Definition 3.18. (1) The functor I ∗2 : D(H)→ D2 is fully faithful on (A1�
LC1(2− `))|H, . . . , (A`−1 � LC`−1)|H, and induces a primitive decomposition

D2 = 〈(A1 � LC1(2− `))|H, . . . , (Al−1 � LCl−1)|H,D
prim
2 〉;

the right admissible subcategory D
prim
2 is called the right primitive component of D2.

(2) The functor I ∗2 I1 is fully faithful on primD1, and induces primD1 ↪→ D
prim
2 .

Proof. To prove the proposition, we show

RHom(a, cone(b→ I ∗2 b)) = 0

for any a, b in one of the three cases:

(1) a ∈ (Am � LCm(m+ 1− `))|H, b ∈ (Ak � LCk(k+ 1− `))|H, 1 ≤ k ≤ m ≤ `− 1;
(2) a ∈ primD1, b ∈ (Ak � LCk(k + 1− `))|H, 1 ≤ k ≤ `− 1;
(3) a ∈ primD1, b ∈ primD1.

For cases (1) and (2), from Lem. 3.17, cone(b→ I ∗2 b) belongs to the subcategory gener-
ated by LE(∗, 2− `), . . . , LE(∗, k − `), hence receives no Homs from LE(∗, m+ 1− `)
for k ≤ m ≤ l−1 or primD1 ⊂ D1, by semiorthogonality of (3.3). For case (3), Lem. 3.17
and (3.3) imply that cone(b → I ∗2 b) belongs to D⊥1 , hence receives no Homs from
a ∈ primD1 ⊂ D1. ut
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3.5. Generation

Now we have finished the proof of the first part of Thm. 3.12, and also the part primD1 ↪→

D
prim
2 . To complete the proof of I ∗2 I1 :

primD1 ' D
prim
2 , hence our main Theorem 3.1, it

remains to show that the image of primD1 generates D
prim
2 . This is equivalent to showing

that the images of (A1 � LC1(2 − `))|H, . . . , (A`−1 � LC`−1))|H and primD1 under I ∗2
generate D2. But from the comment after Lem. 3.15, the (left) orthogonal of primD1 inside
D1 (i.e. the ambient part) is contained in ⊥D2, hence primD1 and D1 have the same image
under I ∗2 = L⊥D2

, since L⊥D2
|⊥D2
= 0 (see Lem. 2.3). Therefore we only need to prove

a slightly weaker statement: the images of

(A1 � LC1(2− `)))|H, . . . , (A`−1 � LC`−1))|H and D1

under I ∗2 generate D2. We will omit the subscript |H as before. Our strategy is to show
that the right orthogonal of these images inside D2 is zero, i.e. if b ∈ D2 is such that

RHomH(a, I2 b) = 0 ∀a ∈ D1, (3.10)

RHomH(a, I2 b) = 0 ∀a ∈ A1 � LC1(2− l), . . . ,Al−1 � LCl−1, (3.11)

then b = 0. Here we use the adjunction RHomH(a, I2 b) = RHomD2(I
∗

2 a, b). From
now on we will simply write b also for the image I2 b. Note that the first condition (3.10)
is equivalent to b ∈ D⊥1 = 〈

LE(α, β) | α ∈ [0, i − 1], β ∈ [2− `, 0]〉, therefore b is built
from the components

bαβ ∈
LE(α, β − `+ 1) = Aα(α) �

LCβ(β − `+ 1),

where α ∈ [0, i − 1], β ∈ [1, ` − 1]. We further put b0
β ∈

LE(0, β) into a distinguished
triangle bRβ → b0

β → bLβ using the decomposition A0 = 〈(Aβ)⊥,Aβ
〉, β ∈ [1, ` − 1],

with

bLβ ∈ ((A
β)⊥ � LCβ(β + 1− `))|H, bRβ ∈ (A

β � LCβ(β + 1− `))|H. (3.12)

Now it remains to show that the condition (3.11) and b ∈ D1 force all the above com-
ponents bαβ , bLβ , bRβ to be zero. This will be done by using a specific zig-zag induction
scheme. The region indicated by “R1,R2,R3” in Figs. 3 and 4 will be helpful to visual-
ize the proof.

Step 1. The components of b which are “above the staircase region R1” are zero, i.e.

bαβ = 0 for β ∈ [1, `− 1], α ∈ [β + 1, i − 1]. (3.13)

Proof. We show this by induction, with a zig-zag induction routine (see Fig. 4):

(bi−1
1 = 0) =⇒ (bi−2

1 = 0) =⇒ · · · =⇒ (b2
1 = 0) =⇒ (bi−1

2 = 0)

=⇒ · · · =⇒ (bi−2
i−1 = 0).
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Fig. 4. The chessboard indicating blocks E(−,−) and LE(−,−) in the case l ≥ i. The grey line
with arrows indicates the “zig-zag” induction routine (bi−1

1 → · · · → b2
1 → bi−1

2 → · · · → b3
2 →

· · · → bi−1
i−1) in Step 1 in the proof of generation, and the grey “b̃αβ” on the right indicates the key

block for detecting the vanishing of bαβ .

Assume we have proved (3.13) for those bαβ ’s in the region with smaller β or with the
same β but larger α.10 To show bαβ = 0, we look at Homs from

E(∗, β) = D(X) � Cβ(β) = D(X)(−1) � Cβ(β). (3.14)

Note that bαβ ∈
LE(∗, β + 1− `) and by (3.3) for k = β, there are no Homs from

〈
LE(∗, β + 2− `), . . . , LE(∗, 0),D1, E(∗, 1), . . . , E(∗, β − 1)〉.

If there are no Homs from E(∗, β) to bαβ , then by (3.3) again for k = β + 1, there are no
Homs from the whole H to bαβ . Hence this forces bαβ = 0 and we are done.

To show there are no Homs from (3.14) to bαβ , we first observe that the non-zero Homs
from (3.14) to bαβ can only come from the “key subcategory”

Aα(α − 1) � Cβ(β) ⊂ E(α − 1, β) (3.15)

(marked by gray “b̃αβ” in Fig. 4). The reason is that if we consider D(X) =
〈Aα(α),

⊥(Aα(α))〉,11 thenD(X)(−1)�Cβ(β) = 〈Aα(α−1),⊥(Aα(α))(−1)〉�Cβ(β).
The Hom from the latter component to bαβ ∈ Aα(α)�

LCβ(β+1− l) is a cone of the form
(3.4), where the untwisted term is zero by β-vanishing,12 and the twisted term is zero by

RHomX(
⊥(Aα(α))(−1),Aα(α)(−1)) = RHomX(

⊥(Aα(α)),Aα(α)) = 0.

10 For the base case (α, β) = (i − 1, 1), this assumption is empty.
11 Explicitly, ⊥(Aα(α)) = 〈Aα+1(α+1), . . . ,Ai−1(i−1), S−1

X
(A0), . . . , S

−1
X
(Aα−1(α−1))〉.

12 More precisely, HomS(Cβ−1(β),
LCβ (β + 1− l)) = 0 and Cβ (β) ⊂ Cβ−1(β).
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Now it remains to show the vanishing from the key box (3.15) to bαβ , and this is where
the “zig-zag” induction routine comes in. We show there are no Homs from (3.15) to
any other surviving component of b other than bαβ . This together with the vanishing for b
implies the desired vanishing for bαβ . These other surviving components fall into three
categories:

• The components with larger β, i.e. components bα
′

β ′
with β ′ > β; there are no Homs

from (3.15) to these simply by β-vanishing.
• The components with the same β but smaller α, i.e. the components in

〈A0,A1(1), . . .Aα−1(α − 1)〉 � LCβ(β + 1− l);

Homs from (3.15) to these are zero since the untwisted terms are zero by β-vanishing,
and the twisted terms contain zero factors

RHomX(Aα(α), 〈A0,A1(1), . . .Aα−1(α − 1)〉) = 0.

• The components with smaller β; by induction assumption, these are components of the
form bα

′

β ′
with 0 ≤ α′ ≤ β ′, β ′ < β. Since α′ ≤ β − 1 ≤ α − 2, Homs from (3.15) to

these components are zero by α-vanishing,

Note that b ∈ D2 itself receives no Homs from (3.15), so by Lem. 2.2, bαβ also receives no
Homs from (3.15), hence from (3.14). Hence bαβ = 0, and by induction we are done. ut

Step 2. The components of b which are “below the staircase region R2” are zero:

bLβ = 0 for β = 1, . . . , l − 1.

Proof. We show this by induction on β ∈ [1, ` − 1]. Assume it is true for components
with smaller β (for the base case β = 1 the assumption is empty). Then to show bLβ = 0
we again only need to look at Homs from E(∗, β) = D(X)�Cβ(β). This time we consider
the decomposition

D(X) = 〈a0,A1, a1(1),A2(1), . . . , ai−2(i − 2),Ai−1(i − 2), ai−1(i − 1)〉. (3.16)

First, there are no Homs from A1�Cβ(β),A2(1)�Cβ(β), . . . ,Ai−1(i−2)�Cβ(β) to bLβ ,
since using the cone lemma for these Homs, the untwisted terms are zero by β-vanishing,
and the twisted terms are zero by α-vanishing,

RHomX(〈A1, . . . ,Ai−1(i − 2)〉(1),A0) = 0.

Second, there are also no Homs from 〈a0, a1(1), . . . , aβ−1(β − 1)〉 � Cβ(β) to bLβ by the
definition of bLβ . More precisely, Homs from these all come from the twisted terms, which
are zero exactly by adjoint pairs (α∗0 , α0) and the defining equation (3.12) of bLβ :

RHomX(〈a0, a1(1), . . . , aβ−1(β − 1)〉(1), (Aβ)⊥) = RHomA0(A
β , (Aβ)⊥) = 0.

Hence it remains to show there are no Homs from the following subcategories to bLβ :

aβ(β) � Cβ(β), . . . , ai−1(i − 1) � Cβ(β). (3.17)
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Now the “staircase shape” of the region and the induction hypothesis come into play. We
show there are no Homs from (3.17) to all other non-zero components other than bLβ .
These components fall into three different categories:

• The components with larger β’s, i.e. ones in LE(∗, β + 2− `), . . . , LE(∗, 0); there are
no Homs from (3.17) to these simply by β-vanishing.
• The surviving components from the staircase region of Step 1 with the same β or

smaller β, i.e. the components bα
′

β ′
with 1 ≤ β ′ ≤ β, and 1 ≤ α′ ≤ β ′. Homs from

(3.17) to these components are zero by α-vanishing. More precisely, for components
with β ′ = β, the untwisted terms are zero by RHomX(〈aβ(β), . . . ai−1(i − 1)〉,A0)

= 0, and the twisted terms also have vanishing factors:

RHomX(〈aβ(β), . . . , ai−1(i − 1)〉,Aα′(α
′
− 1)) = 0

since Aα′(α
′
− 1) ⊂ Aα′−1(α

′
− 1) and 1 ≤ α′ ≤ β. For components with β ′ ≤ β − 1,

apart from the twisted terms being zero as above, we also have for the untwisted terms

RHomX(〈aβ(β), . . . , ai−1(i − 1)〉,Aα′(α
′)) = 0

since α′ ≤ β ′ ≤ β − 1.
• The surviving bR

β ′
with 1 ≤ β ′ ≤ β from our induction; for Homs from (3.17) to these

components, the untwisted terms are always zero since RHomX(aβ(β),Aβ ′) = 0
since β ≥ 1 and Aβ ′

⊂ A0. For the twisted terms,

RHomX(〈aβ(β), . . . , ai−1(i − 1)〉(1),Aβ ′)

= RHomA0(〈α
∗

0(aβ(β + 1)), . . . , α∗0(ai−1(i)),Aβ ′) = 0

by Aβ ′
⊂ Aβ for β ′ ≤ β, Lem. 2.12, and the definition (2.5) of Aβ .

Finally b itself receives no Homs from (3.17) where β ≥ 1 by Lem. 2.3, and by Lem. 2.2,
bLβ receives no Homs from (3.17). Altogether, RHom(E(∗, β), bLβ ) = 0, which again
forces bLβ = 0 as in Step 1. This completes the proof of Step 2 by induction. ut

Final step: “checkmate”. By the previous two steps, the only surviving components of
b belong to the subcategory generated by

E(α, β + 1− `) for α ∈ [1,min{β, i − 1}], β ∈ [1, `− 1],

and
A1 � LC1(2− `), . . . ,A`−1 � LC`−1.

See the region “R1 ∪R2 ∪R3” in Figs. 3 and 4. But b ∈ D2 together with (3.11) implies
b receives no Homs from these categories as well. Therefore RHomH(b, b) = 0, and
hence b = 0. This completes the proof of the generation part, and hence the proof of our
main theorem. ut
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Appendix. Künneth formula for exterior product

The following is known to experts; we include a detailed proof for the lack of direct
references.

Lemma A.1 (Künneth formula). For any admissible subcategories A ⊂ D(X) and
B ⊂ D(Y), where X and Y are smooth projective varieties, the following Künneth for-
mula holds:

HH•(A � B) = HH•(A)⊗ HH•(B),

where the right hand side is regarded as the tensor product of graded vector spaces.

Proof. By [K9, Thm. 7.1] there are kernels P ∈ D(X × X) and Q ∈ D(Y × Y ) such
that the projection functors i∗A = 8P : D(X) → A and i∗B = 8Q : D(Y) → B are the
corresponding Fourier–Mukai functors. Then the projection functorD(X× Y )→ A�B
is given by i∗A�B = 8P�Q for P �Q ∈ D(X×X× Y × Y ). (This follows from the fact
thatD(X×Y ) is split generated by elements of the form a�b ∈ D(X×Y ) for a ∈ D(X),
b ∈ D(Y), and 8P�Q(a � b) = (i∗Aa) � (i

∗

Bb) ∈ A � B satisfies 8P�Q(a � b) = a � b

for any a ∈ A, b ∈ B, and that cone(8P�Q(a � b) → (a � b)) ∈ ⊥(A � B) for any
a ∈ D(X), b ∈ D(Y); see [BK].)

(Proof via dg-categories). IfE and F are strong compact generators forD(X) andD(Y),
then by [K7, Lem. 4.3], EA = i

∗

AE and FB = i∗BF are the respective strong generators
for A and B, and A ' H 0(Perf(A)), B ' H 0(Perf(B)), where A = RHom(EA, EA),
B = RHom(FB, FB) are the dg-algebras, and Perf(A) and Perf(B) are the dg-categories
of perfect A- and resp. B-modules. By [BV, Lem. 3.4.1 & Thm. 3.1.4], E �F is a strong
generator forD(X×Y ), and by [K7, Lem. 4.3], EA�FB is a strong generator for A�B,
and A � B ' H 0(Perf(A ⊗ B)), since RHomX×Y (EA � FB, EA � FB) = A ⊗ B. By
definition of [K7], HH•(A) := HH•(Perf(A)) = HH•(A), and similarly for B and A�B.
Therefore the desired result follows from the fact that the composition of the natural maps
of Hochschild chains

C•(Perf(A))⊗ C•(Perf(B))→ C•(Perf(A)⊗ Perf(B))→ C•(Perf(A⊗ B))

is a quasi-isomorphism [Sh, Prop. 2.9, §2.4]. The formula HH•(A ⊗ B) = HH•(A) ⊗
HH•(B) is known as Künneth for dg-algebras (see [PV, Prop. 1.1.4] and [Sh, §2.4] for
more details).

(Proof via kernel functors). If we denote by P T ∈ D(X × X) and QT
∈ D(Y × Y ) the

transposes of the kernels, then (P �Q)T = P T �QT
∈ D(X×X×Y ×Y ). Therefore by
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[K7, Thm. 4.5]), HH•(A) = H •(X×X,P ⊗P T ) and HH•(B) = H •(Y × Y,Q⊗QT ),
hence

HH•(A � B) = H •(X ×X × Y × Y, (P ⊗ P T ) � (Q⊗QT ))

= H •(X ×X,P ⊗ P T )⊗H •(Y × Y,Q⊗QT )

= HH•(A)⊗ HH•(B). ut
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[CL] Cao, Y., Leung, N. C.: Mukai flops and Plücker type formulas for hyper-Kähler manifolds.
Proc. Amer. Math. Soc. 148, 4119–4135 (2020) Zbl 1448.14040 MR 4135283
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