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Abstract. Let π be a fixed Hecke–Maass cusp form for SL(3,Z) and χ be a primitive Dirichlet
character moduloM , which we assume to be a prime. Let L(s, π⊗χ) be the L-function associated
to π ⊗ χ . For any given ε > 0, we establish a subconvex bound L(1/2 + it, π ⊗ χ) �π,ε
(M(|t | + 1))3/4−1/36+ε , uniformly in both the M- and t-aspects.
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1. Introduction and statement of results

The subconvexity problem, which asks for an estimate of an automorphic L-function on
the critical line s = 1/2 + it that is better by a power saving than the bound implied
by the functional equation and the Phragmén–Lindelöf principle, is one of the central
problems in analytic number theory. Many cases have been treated in the past; see [21]
for results with full generality on GL(1) and GL(2). It has only been recently that people
have started making progress on GL(3) with the introduction of new techniques.

In this paper, we are interested in certain degree 3 L-functions. Let π be a fixed
Hecke–Maass cusp form of type (ν1, ν2) for SL(3,Z) with normalized Fourier coeffi-
cients (λ(m, n))m,n≥0. Let χ be a primitive Dirichlet character modulo M . Let

L(s, π) =

∞∑
n=1

λ(1, n)
ns

and L(s, π ⊗ χ) =

∞∑
n=1

λ(1, n)χ(n)
ns

be the L-series associated with π and π ⊗ χ ; these series can be analytically continued
to entire functions of s ∈ C with functional equations. The Phragmén–Lindelöf principle
implies the convexity bound L(1/2+ it, π⊗χ)�π,ε (M(|t |+1))3/4+ε, which one aims
to improve upon.

For the L-functions L(s, π), the first breakthrough was made by Li [17] who re-
solved the subconvexity problem in the t-aspect for fixed self-dual cusp forms π .
Using a first moment method, partially inspired by the approach in [6], Li showed that
L(1/2+ it, π)�π (|t | + 1)3/4−δ+ε with δ = 1/16. Li’s approach also implies a subcon-
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vexity bound in the GL(2) spectral aspect for certain GL(3) × GL(2) L-functions. The
method depends on the nonnegativity of central values of certain L-functions, which re-
quires the self-duality assumption on the cusp forms π . Li’s exponent of saving δ = 1/16
was later improved to δ = 1/12 by Mckee, Sun, and Ye [20], and to δ = 1/8 by
Nunes [32].

For the case where M , the conductor of the Dirichlet characters χ , is varying, in
the special case that the π ’s are self-dual and χ ’s are quadratic, a subconvex bound was
obtained by Blomer [2]. He showed that L(1/2, π ⊗ χ) �π M5/8+ε by using a first
moment method as in Li’s work, where M is assumed to be prime. Later Huang [9], with
input from [41], managed to extend the results of Li and Blomer to the hybrid setting
L(1/2+ it, π ⊗ χ) �π (M(|t | + 1))3/4−δ , for some δ > 0, under the same self-duality
assumptions on π and χ .

From a theorem of Miller [22], self-dual cusp forms fj on SL(3,Z)\h3 are sparse in
the sense that

lim
T→∞

#{λj ≤ T | 1fj = λjfj , fj self-dual}
#{λj ≤ T }

= 0.

It is therefore desirable to remove the self-duality assumptions in the previous works.
In a series of papers [26–30], Munshi proposed a new approach to the subconvexity

problem. This method does not need the nonnegativity of central values of certain L-
functions, which enabled Munshi to deal with more general cusp forms than just the
self-dual subclass.

In the t-aspect setting, by adopting Kloosterman’s refinement of the circle method
and enhanced by a “conductor lowering” mechanism, Munshi [28] obtained the bound
L(1/2+ it, π)�π (|t | + 1)3/4−1/16+ε, thus extending Li’s result [17] to arbitrary fixed
cusp forms π .

In the Dirichlet character twist case, by using a variant of the δ-symbol method of
Duke, Friedlander, and Iwaniec [7], a GL(2) Petersson δ-symbol method, Munshi estab-
lished L (1/2, π ⊗ χ) �π M

3/4−1/1612+ε [29], under the Ramanujan conjecture for π .
In a follow-up preprint [30], with a much cleaner treatment, he removed that assumption
and improved the exponent of saving to δ = 1/308. Again, this approach does not require
nonnegativity of central values of certain L-functions, thereby removing the self-duality
assumptions on the cusp forms π and characters χ in Blomer’s work [2].

More recently Holowinsky and Nelson [8] discovered that there is a hidden identity
within the proof of [30], which allowed them to produce a method that removes the use of
the Petersson δ-symbol method and also improves the exponent of saving. They obtained
a stronger subconvex exponent, L (1/2, π ⊗ χ)�π M

3/4−1/36+ε.
It is then desirable to ask, “Can one prove a subconvex bound for the L-functions

L (s, π ⊗ χ), simultaneously in both the M- and t-aspects, for general SL(3,Z) Hecke–
Maass cusp forms and primitive Dirichlet characters?” Our main result answers this affir-
matively.

Theorem 1.1. Let π be a Hecke–Maass cusp form for SL(3,Z) and χ be a primitive
Dirichlet character modulo M , which we assume to be prime. Given any ε > 0, we have

L(1/2+ it, π ⊗ χ)�π,ε(M(|t | + 1))3/4−1/36+ε. (1)
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Remark 1.2. Below we will carry out the proof under the assumption |t | > Mε for any
ε > 0. We make such an assumption so as to effectively control the error terms coming
from the stationary phase analysis in our approach. For the case where |t | < Mε, the
bound (1) would follow from the work [8], since there the bound L(1/2 + it, π ⊗ χ)
�t,π M

3/4−1/36+ε is of polynomial dependence in t .

For subconvexity bounds on GL(3) in other aspects or over more general number fields,
see [3, 4, 13, 34, 35, 39, 40].

Recently, Schumacher [36] has been able to provide another interpretation of the
methods that we follow, at least in the t-aspect case, from the perspective of integral
representations under the framework of Michel–Venkatesh [21], and he produces the
same bound (1). Aggarwal [1], who revisited Munshi’s work in [28] by removing the
“conductor lowering” trick, was able to improve the exponent of saving in the t-aspect
case to 3/40. The exponent of saving in the M-aspect was recently improved to 1/32 by
Sharma [37]. Following Li’s work in [17], there have been recent developments in the
subconvexity problem on GL(3) × GL(2) in different aspects, and the reader is referred
to [15, 16, 18, 19, 31, 35, 37, 38].

Our approach is a variant of the methods introduced in the works [30] and [8]. In
Section 2, we will give a brief outline of our approach to guide the readers through.

Notation

We use e(x) to denote exp(2πix). We denote by ε an arbitrary small positive constant,
which might change from line to line. In this paper the notation A � B (sometimes even
A ≈ B) means that B/(M|t |)ε � |A| � B(M|t |)ε. We reserve the letters p and ` to
denote primes. The notations p ∼ P and ` ∼ L denote primes in the dyadic segments
[P, 2P ] and [L, 2L] respectively.

2. An outline of the proof

Our approach is inspired by the work [30] and makes use of an observation due to
Holowinsky and Nelson [8]. We now give a brief introduction to the approach in [30].

Let p be a prime number, and let k ≡ 3 mod 4 be a positive integer. Let ψ be a charac-
ter of F×p satisfying ψ(−1) = −1 = (−1)k . One can view ψ as a character modulo pM .
Let Hk(pM,ψ) be an orthogonal Hecke basis of the space Sk(pM,ψ) of cusp forms of
level pM , nebentypus ψ and weight k. For f ∈ Hk(pM,ψ), let (λf (n))n≥1 denote its
Fourier coefficients. Denote P ? =

∑
P<p<2P

∑
ψ modp(1 − ψ(−1)). Then we have the

following averaged version of the Petersson formula:

δ(r, n) =
1
P ?

∑
p∼P

∑
ψ modp

(1− ψ(−1))
∑

f∈Hk(pM,ψ)

ω−1
f λf (r)λf (n)

−
2πi
P ?

∑
p∼P

∑
ψ modp

(1− ψ(−1))
∞∑
c=1

Sψ (r, n; cpM)

cpM
Jk−1

(
4π
√
rn

cpM

)
, (2)
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where δ(r, n) denotes the Kronecker symbol, ω−1
f =

0(k−1)
(4π)k−1‖f ‖2

is the spectral weight,

and Sψ (r, n; c) =
∑
∗

αmod c ψ(α)e
(
rα+nᾱ
c

)
is the generalized Kloosterman sum.

Let L be the set of primes in the interval [L, 2L] and let L? = |L| denote the cardi-
nality of L. By writing his main sum of interest

∑∑
∞

m,n=1 λ(m, n)χ(n)W
(
nm2

N

)
V
(
n
N

)
as

1
L?

∑
`∈L

χ̄(`)

∞∑∑
m,n=1

λ(m, n)W

(
nm2

N

) ∞∑
r=1

χ(r)V

(
r

N`

)
δ(r, n`),

and then substituting the formula (2) for δ(r, n`) inside, Munshi breaks the main sum
into two pieces, F?

+ O?, with F? and O? appropriately defined. Here the introduction
of the extra summation over ` serves the role of an amplification technique. Successfully
bounding F? and O? simultaneously with suitable choices of P and L to balance the
contribution enables Munshi to get his main result L(1/2, π ⊗ χ)�π M

3/4−1/308+ε.
Now we turn to our case. From Lemma 3.3, it suffices to improve the trivial bound

O(N) for the smooth sum

S(N) :=
∑
n≥1

λ(1, n)χ(n)n−itw(n/N)

for (Mt)3/2−δ < N < (Mt)3/2+ε, where w(x) is some smooth function with compact
support contained in R>0 satisfying w(j)(x)�j 1 for all j ≥ 0.

Let P and L be two large parameters to be specified later. In our case, instead of using
the Petersson δ-symbol method (2), we use a “key identity” (13),

χ(n)n−itVA

(
n

N

)
=

(
2π
Mt

)it
e

(
t

2π

)
M2t3/2`

Npgχ̄

∞∑
r=1

χ(r`p̄)

(
r`

p

)−it
e

(
−
npM̄

`r

)
V

(
r

Np/M`t

)

−

(
2π
N

)it
e

(
t

2π

)
t1/2

gχ̄

∑
r 6=0

Sχ̄ (n, rp ¯̀;M)Jit (n, rp/`;M)+O(t1/2−A),

where gχ denotes the Gauss sum associated with χ and

Jit (n, rp/`;M) =
∫
R
V (x)x−ite

(
−
nt

Nx

)
e

(
−
rNpx

M2`t

)
dx.

Here V (x) is a smooth compactly supported function satisfying V (j)(x) �j 1 for all
j ≥ 0.

Thus we can write, for an arbitrarily large A ≥ 1, that

S(N) � |F | + |O| +O(Nt−A),

where

F =
M3/2t3/2

NP 2

×

∑
p∼P

∑
`∼L

∑
r∼NP/(MLt)

χ(r`p̄)

(
r`

p

)−it ∞∑
n=1

λ(1, n)e
(
−
npM̄

`r

)
w

(
n

N

)
, (3)
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and

O =
t1/2

PLM1/2

∞∑
n=1

λ(1, n)w
(
n

N

)∑
p∼P

∑
`∼L

∑
0 6=|r|�M2t2L

NP

Sχ̄ (n, rp ¯̀;M)Jit (n, rp/`;M).

Now our task is to beat the boundO(N) for F and O simultaneously. We estimate the
term O first. The integral Jit (n, rp/`;M) restricts the length of the r-sum to 0 6= |r| �
M2t2L
NP

. For this sketch we pretend that r ∼ M2t2L
NP

.
From the second derivative test we have Jit (n, rp/`;M) � t−1/2. Using this, along

with the Weil bound for Kloosterman sums, and estimating directly, we find that

O �
t1/2

PLM1/2NPL
M2t2L

NP
M1/2t−1/2

� N
M2t2L

NP
.

So we need to save more than M2t2L
NP

for O.
We apply the Cauchy–Schwarz inequality to reduce the task to saving the same

amount from

N1/2t1/2

PLM1/2

(∑
n∼N

∣∣∣∑
p∼P

∑
`∼L

∑
r∼M

2t2L
NP

Sχ̄ (n, rp ¯̀;M)Jit (n, rp/`;M)
∣∣∣2)1/2

,

or equivalently, saving M4t4L2

N2P 2 from the sum

∑
n∼N

∣∣∣∑
p∼P

∑
`∼L

∑
r∼M

2t2L
NP

Sχ̄ (n, rp ¯̀;M)Jit (n, rp/`;M)
∣∣∣2.

For the diagonal term (p1, `1, r1) = (p2, `2, r2), we save PLM
2t2L
NP
=

M2t2L2

N
, which

is satisfactory as long as M2t2L2

N
> M4t4L2

N2P 2 , i.e., P � Mt

N1/2 .
Opening the square above and applying Poisson summation to the n-sum, only the

zero frequency contributes. For the off-diagonal (p1, `1, r1) 6= (p2, `2, r2), applying
Poisson summation in the n-sum we save M from evaluating∑

a (M)

Sχ̄ (a, r1p1 ¯̀1;M)Sχ̄ (a, r2p2 ¯̀2;M),

and save t from estimating the integral

J =

∫
R
Jit (Ny, r1p1/`1;M)Jit (Ny, r2p2/`2;M)w(y) dy

upon using the first derivative test for oscillatory integral (which is the content of Lemma
5.1). So the estimates for the off-diagonal are satisfactory as long as Mt � M4t4L2

N2P 2 , i.e.,

P > M3/2t3/2L
N

. Hence O is fine for our purpose if P > max
{
Mt

N1/2 ,
M3/2t3/2L

N

}
.
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Next, we try to bound the F term in (3). Estimating trivially, we see that

F �
M3/2t3/2

NP 2 PL
NP

MLt
N � N(Mt)1/2.

So our job is to save more than (Mt)1/2.
We apply Voronoi summation (Lemma 3.5) to the n-sum to get

F �
M3/2t3/2N1/2

NP 2

×

∣∣∣∣∑
p∼P

∑
`∼L

∑
r∼NP/(MLt)

χ(r`p̄)

(
r`

p

)−it ∑
n∼(`r)3/N

λ(n, 1)
√
n

S(p̄M, n; r`)
√
r`

∣∣∣∣.
Using the Weil bound and estimating directly we get F � (NP )3/2/(Mt). We save
M3/2t3/2

N1/2P 3/2 from this process, compared to the original trivial bound O(N(Mt)1/2), and we

still need to save a little more than N1/2P 3/2

Mt
from the new sum. Pulling the r, n-sums

outside, and applying the Cauchy–Schwarz inequality, our job is to save NP 3

M2t2
from the

sum ∑
r∼ NP

MLt

∑
n∼N

2P3

M3t3

∣∣∣∑
p∼P

∑
`∼L

χ(`p̄)(`/p)−itS(p̄M, n; r`)

∣∣∣2.
We can save PL from the diagonal, which is satisfactory if PL > NP 3

M2t2
, that is,L > NP 2

M2t2
.

Our final step involves opening the square and applying Poisson summation to the n-
sum to gain saving for the off-diagonal terms (p1, `1) 6= (p2, `2). The zero frequency
(which vanishes unless `1 = `2) makes a contribution that is dominated by the diagonal
(p1, `1) = (p2, `2) contribution. The original n-sum can be estimated by∑

n∼N
2P 3

M3t3

S(p̄1M,n; r`1)S(p̄2M,n; r`2)�
N2P 3

M3t3

√
r`1 · r`2.

After applying Poisson summation in the n-sum, we gain square-root cancellation for the
character sum ∑

a(r`1`2)

S(p̄1M,a; r`1)S(p̄2M,a; r`2)e

(
an

r`1`2

)
in “generic” cases, so that the dualized n-sum is dominated by r3/2`1`2. We save
N3/2P 5/2

M5/2t5/2L1/2 , which is more than NP 3

M2t2
if N/(Mt) > PL. Hence F is fine if NP 2

M2t2
< L

< N
PMt

.
Now it turns out that we can optimally choose P = (Mt)5/18 and L = (Mt)1/9 to

simultaneously beat the bound O(N) for F and O, which in turn implies a nontrivial
bound for S(N), for (Mt)3/2−1/18 < N < (Mt)3/2+ε. This yields a subconvexity bound
L(1/2+ it, π ⊗ χ)�π (M(|t | + 1))3/4−1/36+ε.
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3. Some lemmas

In this section, we collect some lemmas that we may use in our proof.
Let (λ(m, n))m,n 6=0 be the Fourier–Whittaker coefficients of the SL(3,Z) Hecke–

Maass cusp form π .
First we have the following Rankin–Selberg estimate (see for example [25]).

Lemma 3.1. One has ∑∑
m2n≤X

|λ(m, n)|2 �π X.

From the lemma, we readily have the similar estimate∑
n≤X

|λ(1, n)| �π X, (4)

by the Cauchy–Schwarz inequality.
Following [41] and [14], we make the following definition.

Definition 3.2. We say a smooth function f (x1, . . . , xn) on Rn is inert if

x
j1
1 · · · x

jn
n f

(j1,...,jn)(x1, . . . , xn)�j1,...,jn 1, (5)

for all nonnegative integers j1, . . . , jn. Here the superscript denotes partial differentiation.

For any N ≥ 1, let
S(N) =

∑
n≥1

λ(1, n)χ(n)n−it$(n/N), (6)

where $(x) is an inert function on R with compact support contained in R>0.
By symmetry, we assume t > 2 from now on. Using a standard approximate func-

tional equation argument [11, Theorem 5.3] and the estimate (4), one can derive the fol-
lowing.

Lemma 3.3. For any δ > 0 and ε > 0, we have

L(1/2+ it, π ⊗ χ)� (Mt)ε sup
N

|S(N)|
√
N
+ (Mt)3/4−δ/2+ε,

where the supremum is taken over N in the range (Mt)3/2−δ < N < (Mt)3/2+ε.

From Lemma 3.3, it suffices to beat the convexity bound O(N) for S(N) for N in the
range (Mt)3/2−δ < N < (Mt)3/2+ε, which we henceforth assume. Here 0 < δ < 1/2 is
a small constant to be optimized later. We observe for later convenience that

(Mt)1+ε < N. (7)

Let α = (α1, α2, α3) be the Langlands parameters associated to the Maass cusp
form π , with

α1 + α2 + α3 = 0 and |<αi | ≤ θ.
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We recall the Ramanujan–Selberg conjecture predicts θ = 0, while from a result [12] of
Jacquet and Shalika one at least knows that |<αi | < 1/2.

Let

Gδ(s) :=

{
2(2π)−s0(s) cos(πs/2) if δ = 0,
2i(2π)−s0(s) sin(πs/2) if δ = 1,

and let

G(α,δ)(s) =

3∏
j=1

Gδj (s + αj ), where δ = (δ1, δ2, δ3).

Define

j(α,δ)(x) =
1

2πi

∫
C
G(α,δ)(s)x

−s ds, x > 0,

where C is a curved contour such that all the singularities of G(α,δ)(s) are to the left of C,
defined as in [33, Definition 3.2].

Let
Jπ,±(x) := J(α,δ)(±x) =

1
2

(
j(α,δ)(x)± j(α,δ+e)(x)

)
,

where e = (1, 1, 1), and δ + e is taken modulo 2. The Bessel function Jπ,±(x) satisfies
the following properties.

Lemma 3.4. (1) Let ρ > max{−<α1,−<α2,−<α3}. For x � 1, we have

xjJ
(j)
π,±(x)�α1,α2,α3,ρ,j x

−ρ .

(2) Let K ≥ 0 be a fixed nonnegative integer. For x > 0, we may write

Jπ,±(x
3) =

e(±3x)
x

W±π (x)+ E
±
π (x),

where W±π (x) and E±π (x) are real-analytic functions on (0,∞) satisfying

W±π (x) =

K−1∑
m=0

B±m (π)x
−m
+OK,α1,α2,α3(x

−K)

and

E±,(j)π (x)�α1,α2,α3,j
exp(−3

√
3πx)

x
,

for x �α1,α2,α3 1, where B±m (π) are constants depending on α1, α2 and α3.

Proof. See [33, Theorem 14.1]; note that our Jπ,±(x) is the J(λ,δ)(x) in the notation
of [33]. ut

Now we recall the Voronoi formula for GL(3), in which the Bessel function Jπ,±(x)
appears naturally.
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Lemma 3.5 ( [24]). For (a, c) = 1, āa ≡ 1 (mod c), we have

∞∑
n=1

λ(m, n)e

(
−
na

c

)
w(n)

= c
∑
±

∑
m′|mc

∞∑
n=1

λ(n,m′)

m′n
S(ām,±n;mc/m′)

m′2n

mc3 W
±

(
m′2n

mc3

)
, (8)

where

W±(x) =

∫
∞

0
w(y)Jπ,∓(xy) dy.

In particular, replacing w(n) by w(n/N) gives

∞∑
n=1

λ(m, n)e

(
−
na

c

)
w

(
n

N

)

= c
∑
±

∑
m′|mc

∞∑
n=1

λ(n,m′)

m′n
S(ām,±n;mc/m′)

Nm′2n

mc3 W±
(
Nm′2n

mc3

)
.

If w(j)(y) � 1, then from the oscillation of Jπ,±(x) when |x| > Nε, W±
(
Nm′2n
mc3

)
is

negligibly small as long as m′2n is such that Nm
′2n

mc3 � Nε.
If we write

U±(x) = xW±(x),

then (8) becomes

∞∑
n=1

λ(m, n)e

(
−
na

c

)
w(n)

= c
∑
±

∑
m′|mc

∞∑
n=1

λ(n,m′)

m′n
S(ām,±n;mc/m′)U±

(
m′2n

mc3

)
, (9)

which is the usual version of Voronoi’s formula given in [24] and in other works.

Remark 3.6. Here the normalization of (8) is different from the usual version (9). With
this normalization, the weight function on the right is the Hankel transform of the original
Schwartz class function, matching the rank one and rank two cases. We thank Zhi Qi for
making us aware of this.

Lemma 3.7 (Miller’s bound, [23]). Uniformly in α ∈ R, we have∑
n≤X

λ(1, n)e(αn)�π,ε X
3/4+ε. (10)
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Lemma 3.8 ( [8, Lemma 2]). Let s1 and s2 be natural numbers. Let t1, t2, and n be
integers. Set

C :=
∑

x([s1,s2])

S(t1x, 1; s1)S(t2x, 1; s2)e
(

nx

[s1, s2]

)
.

Write si = wi(s1, s2), i = 1, 2, and set 1 = w2
2t1 − w

2
1t2. Then

|C| ≤ 2O(ω([s1,s2]))(s1s2[s1, s2])1/2
(1, n, s1, s2)

(n, s1, s2)1/2
,

where ω(s) denotes the number of distinct prime factors of s, and the implied constant in
the O-symbol is absolute.

Lemma 3.9. Let V be a smooth function with compact support in R>0, satisfying V (j)(x)
�j 1 for all j ≥ 0. Assume (M, r) = 1 and n � N . For any integer A ≥ 1, there exists
an inert function VA(x) compactly supported in R>0 such that

∞∑
r=1

χ(r)r−ite

(
−
nM̄

r

)
V

(
r

N/(Mt)

)

=
N

M3/2t3/2
gχ̄
√
M

(
2π
Mt

)−it
e

(
−
t

2π

)
χ(n)n−itVA

(
2πn
N

)
+O

(
N

M3/2t1+A

)
+

1
M

(
N

Mt

)1−it∑
r̃ 6=0

Sχ̄ (n, r̃;M)

∫
R
x−ite

(
−
nt

Nx

)
V (x)e

(
−
r̃N

M2t
x

)
dx, (11)

where Sχ̄ (n, r̃;M) =
∑
a (M) χ̄(a)e

(
na+r̃ ā
M

)
is the generalized Kloosterman sum and

gχ =
∑
a (M) χ(a)e

(
a
M

)
denotes the Gauss sum.

Proof. Writing

e

(
−
nM̄

r

)
= e

(
nr̄

M

)
e

(
−
n

Mr

)
,

which follows from reciprocity, and applying Poisson summation, the r-sum becomes

∞∑
r=1

χ(r)e

(
nr̄

M

)
r−ite

(
−
n

Mr

)
V

(
r

N/(Mt)

)

=
N

M2t

∑
r̃∈Z

∑
a (M)

χ(a)e

(
nā

M

)
e

(
ar̃

M

)∫
R

(
N

Mt
x

)−it
e

(
−
nt

Nx

)
V (x)e

(
−
r̃N

M2t
x

)
dx.

In particular, the zero frequency r̃ = 0 contribution is

1
M

(
N

Mt

)1−it

gχ̄χ(n)

∫
R
x−ite

(
−
nt

Nx

)
V (x) dx.
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Considering the integral, by [14, Main Theorem], there is an inert function VA sup-
ported on x0 � 1 such that∫

R
x−ite

(
−
nt

Nx

)
V (x) dx =

∫
R
e

(
−
t log x

2π
−
nt

Nx

)
V (x) dx

=
e(f (x0))
√
t

VA(x0)+OA(t
−A),

where f (x) = − t log x
2π −

nt
Nx

, and x0 =
2πn
N

is the unique solution for f ′(x) = 0, and
A ≥ 1 is any arbitrarily large constant. Therefore,∫

R
x−ite

(
−
nt

Nx

)
V (x) dx =

(
2π
N

)−it
e(−t/(2π))
√
t

n−itVA

(
2πn
N

)
+O(t−A).

Hence
∞∑
r=1

χ(r)e

(
nr̄

M

)
r−ite

(
−
n

Mr

)
V

(
r

N/(Mt)

)

=
1
M

(
N

Mt

)1−it

gχ̄ χ(n)

(
2π
N

)−it
e(−t/(2π))
√
t

n−itVA

(
2πn
N

)
+O

(
N

M3/2t1+A

)
+

1
M

(
N

Mt

)1−it∑
r̃ 6=0

Sχ̄ (n, r̃;M)

∫
R
x−ite

(
−
nt

Nx

)
V (x)e

(
−
r̃N

M2t
x

)
dx,

and (11) follows. ut

Remark 3.10. The identity (11),

χ(n)n−itVA

(
n

N

)
=

(
2π
Mt

)it
e

(
t

2π

)
M2t3/2

Ngχ̄

∞∑
r=1

χ(r)e

(
nr̄

M

)
r−ite

(
−
n

Mr

)
V

(
r

N/(Mt)

)

−

(
2π
N

)it
e

(
t

2π

)
t1/2

gχ̄

∑
r̃ 6=0

Sχ̄ (n, r̃;M)

∫
R
V (x)x−ite

(
−
nt

Nx

)
e

(
−
r̃Nx

M2t

)
dx

+O(t1/2−A),

is a variant of the following key identity in [8, (3.6)]:

χ(n)V̂ (0) =
M

Rgχ̄

∑
r∈Z

χ(r)e

(
nr̄

M

)
V

(
r

R

)
−

1
gχ̄

∑
r̃ 6=0

Sχ̄ (n, r̃;M)V̂

(
r̃

M/R

)
,

where R > 0 is a parameter and V̂ denotes the Fourier transform of the Schwartz
function V , which is compactly supported in R>0. Inserting the identity, with an am-
plification technique, one can express the smoothed sum

∑
n≥1 λ(1, n)χ(n)w(n/N) as

F + O. Balancing the contribution of F and O properly, the authors of [8] obtained
L(1/2, π ⊗ χ)� M3/4−1/36+ε.
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From Lemma 3.9, assuming (M, `r) = 1 and n � N , one has

∞∑
r=1

χ(r)r−ite

(
−
npM̄

`r

)
V

(
r

Np/(M`t)

)

=
Np

M3/2t3/2`

gχ̄
√
M

(
2πp
M`t

)−it
e

(
−
t

2π

)
χ(p ¯̀)χ(n)n−itVA

(
2πn
N

)
+

1
M

(
Np

M`t

)1−it

χ(p ¯̀)
∑
r̃ 6=0

Sχ̄ (n, r̃p ¯̀;M)Jit (n, r̃p/`;M)+O
(

Np

M3/2`t1+A

)
,

(12)

or, in another form,

χ(n)n−itVA

(
2πn
N

)
=

(
2π
Mt

)it
e

(
t

2π

)
M2t3/2`

Npgχ̄

∞∑
r=1

χ(r`p̄)

(
r`

p

)−it
e

(
−
npM̄

`r

)
V

(
r

Np/(M`t)

)

−

(
2π
N

)it
e

(
t

2π

)
t1/2

gχ̄

∑
r̃ 6=0

Sχ̄ (n, r̃p ¯̀;M)Jit (n, r̃p/`;M)+O(t1/2−A), (13)

where

Jit (n, r̃p/`;M) :=
∫
R
x−ite

(
−
nt

Nx

)
V (x)e

(
−
r̃Np

M2`t
x

)
dx. (14)

We shall use (12) as a “key identity” in our proof; see Section 4.

Lemma 3.11. For any ε > 0, one has∑
p1∼P

∑
p2∼P

∑
`1∼L

∑
`2∼L

∑
r1∼R

∑
r2∼R

`1r2p2 6=`2r1p1

1
|`1r2p2 − `2r1p1|

� (LPR)1+ε

and ∑
p1∼P

∑
p2∼P

∑
`1∼L

∑
`2∼L

∑
r1∼R

∑
r2∼R

`1r2p2 6=`2r1p1
`1r2p2≡`2r1p1 (M)

1
|r1p1`2 − r2p2`1|

�
(LPR)1+ε

M
.

Proof. The first sum is bounded by∑
m1∼LPR

∑
m2∼LPR

m2 6=m1

τ3(m1)τ3(m2)

|m1 −m2|
≤ (LPR)ε

∑
m∼LPR

∑
1≤h�LPR

1
h
� (LPR)1+ε.

Hence the first inequality follows. Here τ3(m) :=
∑
abc=m 1.

The second inequality can be proven using a similar argument. ut
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4. Reducing S(N) to F1 and O

Our basic strategy is to introduce more “points” of summation to mimic the smoothed
sum S(N) in (6), which is our main object of study. Throughout the paper we assume that
|t | > Mε for any ε > 0.

Let P and L be two large parameters. We begin by introducing the following sum:

F1 =
M3/2t3/2

NP 2

∑
p∼P

χ̄(p)pit
∑
`∼L

χ(`)`−it
∞∑
r=1

χ(r)r−itV

(
r

Np/(M`t)

)

×

∞∑
n=1

λ(1, n)e
(
−
npM̄

`r

)
w

(
n

N

)
, (15)

where p ∼ P and ` ∼ L denote primes in the dyadic segments [P, 2P ] and [L, 2L],
respectively; w and V are smooth functions with compact supports in R>0 satisfying
w(j)(x), V (j)(x)�j 1 for all j ≥ 0.

We shall see that if one applies Poisson summation to the r-sum (which is the content
of Lemma 3.9), then the contribution of the zero frequency r̃ = 0 (r̃ the variable dual
to r) will give rise to the sum S(N) that we are initially interested in. In order to bound
S(N), it suffices to bound F1 and the sum arising from the nonzero frequencies r̃ 6= 0 of
the dual sum, which we denote by O. This observation is initially due to Holowinsky and
Nelson [8, B.4], in their work on the Dirichlet character twist case.

Plugging the identity (12) in, we get

F1 =

(
2π
Mt

)−it
e

(
−
t

2π

)
gχ̄

M1/2

×

∑
p∼P

p/P 2
∑
`∼L

`−1
∞∑
n=1

λ(1, n)χ(n)n−itw
(
n

N

)
VA

(
2πn
N

)

+

(
N

Mt

)−it
t1/2

P 2M1/2

∞∑
n=1

λ(1, n)w
(
n

N

)∑
p∼P

p
∑
`∼L

`−1

×

∑
r̃ 6=0

Sχ̄ (n, r̃p ¯̀;M)Jit (n, r̃p/`;M)+O(Nt1/2−A),

which implies

1
logP logL

∞∑
n=1

λ(1, n)χ(n)n−itw
(
n

N

)
VA

(
2πn
N

)
� |F1| +O(Nt

1/2−A)

+
t1/2

M1/2PL

∣∣∣∣ ∞∑
n=1

λ(1, n)w
(
n

N

)∑
p∼P

∑
`∼L

∑
r̃ 6=0

Sχ̄ (n, r̃p ¯̀;M)Jit (n, r̃p/`;M)
∣∣∣∣.

We have shown the following.



1912 Yongxiao Lin

Lemma 4.1. For any positive integer A ≥ 1, there exists an inert function VA(x) with
compact support in R>0 such that asymptotically, one has

1
logP logL

∞∑
n=1

λ(1, n)χ(n)n−itw
(
n

N

)
VA

(
2πn
N

)
� |F1|+|O|+O(Nt1/2−A) (16)

with

F1 =
M3/2t3/2

NP 2

∑
p∼P

χ̄(p)pit
∑
`∼L

χ(`)`−it
∞∑
r=1

χ(r)r−itV

(
r

Np/(M`t)

)

×

∞∑
n=1

λ(1, n)e
(
−
npM̄

`r

)
w

(
n

N

)
and

O =
t1/2

M1/2PL

∞∑
n=1

λ(1, n)w
(
n

N

)∑
p∼P

∑
`∼L

∑
r̃ 6=0

Sχ̄ (n, r̃p ¯̀;M)Jit (n, r̃p/`;M), (17)

where Jit (n, r̃p/`;M) is given by (14).

For any given ε > 0, we can make the error term O(Nt1/2−A) negligibly small by as-
suming |t | > Mε and taking A to be sufficiently large. It is easily seen that the function
$(x) := w(x)VA(2πx) is an inert function (under Definition 3.2); see for instance [14,
Example 4]. From the lemma, to bound

∞∑
n=1

λ(1, n)χ(n)n−itw
(
n

N

)
VA

(
2πn
N

)
=

∞∑
n=1

λ(1, n)χ(n)n−it$
(
n

N

)
,

which is our original object of study (6), it suffices to bound the terms F1 and O. Note
that a priori w(x)VA(2πx) need not be an arbitrary bump function, but this can be done
by adjusting the weight function w(x) in our initial definition of F1 in (15) appropriately
(e.g. replacing the original w(x) by w(x)/VA(2πx)).

5. Treatment of O

This section is devoted to giving a nontrivial bound for the sum

O =
t1/2

M1/2PL

∞∑
n=1

λ(1, n)w
(
n

N

)∑
p∼P

∑
`∼L

∑
r 6=0

Sχ̄ (n, rp ¯̀;M)Jit (n, rp/`;M),

introduced in (17). Here

Jit (n, rp/`;M) =
∫
R
V (x)x−ite

(
−
nt

Nx

)
e

(
−
rNpx

M2`t

)
dx,

defined in (14).
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Our goal is to improve the bound O = O(N).
For r 6= 0, integrating by parts implies that the integral Jit (n, rp/`;M) is negligibly

small, unless 0 6= |r| ≤ Nε M2t2L
NP

(by [5, Lemma 8.1]). Moreover, using the second
derivative test [10, Lemma 5.1.3] we find that Jit (n, rp/`;M)� t−1/2+ε.

To estimate O, by a dyadic subdivision, it suffices to bound the sum

O(R) :=
t1/2

M1/2PL

∞∑
n=1

λ(1, n)w
(
n

N

)∑
p∼P

∑
`∼L

∑
r∼R

Sχ̄ (n, rp ¯̀;M)Jit (n, rp/`;M)

for all R that satisfy

1� R � NεM
2t2L

NP
.

By the Cauchy–Schwarz inequality and Lemma 3.1,

O(R)�
N1/2+εt1/2

M1/2PL

( ∞∑
n=1

∣∣∣∑
p∼P

∑
`∼L

∑
r∼R

Sχ̄ (n, rp ¯̀;M)Jit (n, rp/`;M)
∣∣∣2w( n

N

))1/2

=
N1/2+εt1/2

M1/2PL

(∑
p1∼P

∑
p2∼P

∑
`1∼L

∑
`2∼L

∑
r1∼R

∑
r2∼R

∞∑
n=1

Sχ̄ (n, r1p1 ¯̀1;M)

× Sχ̄ (n, r2p2 ¯̀2;M)Jit (n, r1p1/`1;M)Jit (n, r2p2/`2;M)w

(
n

N

))1/2

. (18)

Next, we apply Poisson summation to the n-sum, yielding

∞∑
n=1

Sχ̄ (n, r1p1 ¯̀1;M)Sχ̄ (n, r2p2 ¯̀2;M)Jit (n, r1p1/`1;M)Jit (n, r2p2/`2;M)w

(
n

N

)
=
N

M

∑
n∈Z

∑
a (M)

Sχ̄ (a, r1p1 ¯̀1;M)Sχ̄ (a, r2p2 ¯̀2;M) e

(
an

M

)
×

∫
R
Jit (Ny, r1p1/`1;M)Jit (Ny, r2p2/`2;M)w(y)e

(
−
nN

M
y

)
dy.

Taking into account the oscillations of Jit (Ny, r1p1/`1;M) and Jit (Ny, r2p2/`2;M),
the integral is arbitrarily small for n 6= 0 (since N � (Mt)1+ε; see (7)). Hence only the
zero frequency contributes significantly to the dual sum:

∞∑
n=1

Sχ̄ (n, r1p1 ¯̀1;M)Sχ̄ (n, r2p2 ¯̀2;M)Jit (n, r1p1/`1;M)Jit (n, r2p2/`2;M)w

(
n

N

)
=
N

M
CJ+O(N−2018), (19)

where

C =
∑
a (M)

Sχ̄ (a, r1p1 ¯̀1;M)Sχ̄ (a, r2p2 ¯̀2;M) = M
∑?

β (M)

e

(
(r1p1 ¯̀1 − r2p2 ¯̀2)β

M

)
= M[Mδ`2r1p1≡`1r2p2 (M) − 1]
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and

J =

∫
R
Jit (Ny, r1p1/`1;M)Jit (Ny, r2p2/`2;M)w(y) dy. (20)

One readily sees that

C =

{
O(M2), `1r2p2 ≡ `2r1p1 (M),

O(M), otherwise.
(21)

For the integral J, if we use the previously mentioned second derivative bound
Jit (n, rp/`;M) � t−1/2+ε we get J � t−1+ε. However, there are more cancellations
beyond O(t−1+ε), as long as the parameters (ri, pi, `i) satisfy r1p1`2 6= r2p2`1. Indeed,
we have the following precise estimate in terms of (ri, pi, `i).

Lemma 5.1. For J defined as in (20), we have

J� tε(max {t, |X|})−1, where X :=
N(`2r1p1 − `1r2p2)

M2`1`2
.

This can be proven by using stationary phase expansion for each of the Jit (Ny, rp/`;M)
in the definition of J and then applying the first derivative test. The following simpler
proof was kindly suggested to us by the referee.

Proof. By definition (14) of Jit (Ny, rp/`;M), we express J as

J =

∫
V (u)V (v)w(y)e(f (u)− f (v)) dy dv du.

Observe that

f (u)− f (v) =
t

uv
(u− v)y +

(
−
t log u

2π
+
t log v

2π
+
Nr2p2

M2t`2
v −

Nr1p1

M2t`1
u

)
and the integral

∫
w(y)e(ty(u−v)/(uv)) dy is negligible if |u−v| � tε−1. Let q be a non-

negative smooth function supported on [−1, 1] which takes the value 1 on [−1/2, 1/2].
For an arbitrarily large constant A, set

Q(u− v) := q

(
u− v

tε−1

)(
1− q

(
u− v

t−A

))
,

supported in t−A � |u− v| � tε−1. Then

J =

∫
Q(u− v)V (u)V (v)w(y)e(f (u)− f (v)) dy dv du+OA,ε(t−A).

Integrating by parts shows that the integral is

1
2πi · t

∫
Q(u− v)

uV (u)vV (v)

u− v
w′(y)e(f (u)− f (v)) dy dv du. (22)
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If |X| � t1+2ε, then we are done, for the integral in (22) is trivially� log t . Otherwise,
the change of variable h = u− v transforms the integral to∫

Q(h)

h
w′(y)(v + h)vV (v + h)V (v)e(f (v + h)− f (v)) dv dh dy.

Now

f (v + h)− f (v) =
X

t
v −

t

2π
log
(

1+
h

v

)
+ th

y

v(v + h)
−
Nr1p1

M2t`1
h,

hence ∣∣∣∣ ddv (f (v + h)− f (v))
∣∣∣∣� |X|t −O(th)� |X|t −O(tε)� |X|t .

It follows by the first derivative test that the expression in (22) is� |X|−1 log t . ut

Remark 5.2. For `1r2p2 6= `2r1p1 and ri ∼ M2t2L
NP

, typically |X|−1
� t−2, so that

the second bound of the lemma shows that we save an extra t over the “trivial bound”
O(t−1+ε). The estimation of this lemma is an analytic analogue of the bound (21).

Now we return to the estimate of O(R) in (18). Plugging the n-sum (19) into O(R), up
to a negligible error, we have

O(R)�
N1/2+εt1/2

M1/2PL

(∑
p1∼P

∑
p2∼P

∑
`1∼L

∑
`2∼L

∑
r1∼R

∑
r2∼R

N

M
|C| |J|

)1/2

�
N1+εt1/2

MPL

(∑
p1∼P

∑
p2∼P

∑
`1∼L

∑
`2∼L

∑
r1∼R

∑
r2∼R

`1r2p2≡`2r1p1 (M)

M2
|J|

+

∑
p1∼P

∑
p2∼P

∑
`1∼L

∑
`2∼L

∑
r1∼R

∑
r2∼R

`1r2p2 6≡`2r1p1 (M)

M
M2`1`2

N |`1r2p2 − `2r1p1|

)1/2

, (23)

by using (21) and Lemma 5.1. We remind the reader that 1 ≤ R � Nε M2t2L
NP

.
Using Lemma 5.1 again, we see that the first term inside the parentheses is bounded

by

M2tε
∑
p1∼P

∑
p2∼P

∑
`1∼L

∑
`2∼L

∑
r1∼R

∑
r2∼R

`1r2p2=`2r1p1

t−1

+
M4L2tε

N

∑
p1∼P

∑
p2∼P

∑
`1∼L

∑
`2∼L

∑
r1∼R

∑
r2∼R

`1r2p2 6=`2r1p1
`1r2p2≡`2r1p1 (M)

1
|`1r2p2 − `2r1p1|

,
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which is further dominated by

� NεM2t−1PLR +NεM
4L2

N
·
LPR

M
� NεM

4tL2

N
+NεM

5t2L4

N2 ,

by using Lemma 3.11 and by noting that R � Nε M2t2L
NP

.
Similarly, the second term inside the parentheses of (23) is bounded by

M3L2

N

∑
p1∼P

∑
p2∼P

∑
`1∼L

∑
`2∼L

∑
r1∼R

∑
r2∼R

`1r2p2 6=`2r1p1

1
|`1r2p2 − `2r1p1|

� NεM
3L2

N
· PLR

� NεM
5t2L4

N2 ,

upon using Lemma 3.11.
Returning to the estimate of O(R), we have shown that

O(R)�
N1+εt1/2

MPL

(
M4tL2

N
+
M5t2L4

N2

)1/2

�
N1/2+εMt

P
+NεM

3/2t3/2L

P
,

which holds for any 1 ≤ R � Nε M2t2L
NP

,
We summarize the main result of this section.

Proposition 5.3. For any ε > 0, we have the bound

O �
N1/2+εMt

P
+NεM

3/2t3/2L

P
,

for O defined as in (17).

Remark 5.4. If we only use the “trivial” bound J � t−1+ε for the estimate of the inte-
gral J, then one will see that for the second term we get O(NεM3/2t2L/P ) instead. It is
thus crucial to use Lemma 5.1 to get an extra t1/2 saving in order to beat the convexity
bound for L(1/2+ it, π ⊗ χ) in the t-aspect.

6. Treatment of F1

The purpose of this section is to give a nontrivial bound for

F1 =
M3/2t3/2

NP 2

∑
p∼P

χ̄(p)pit
∑
`∼L

χ(`)`−it
∞∑
r=1

χ(r)r−itV

(
r

Np/(M`t)

)

×

∞∑
n=1

λ(1, n)e
(
−
npM̄

`r

)
w

(
n

N

)
,

defined in (15), where w and V are smooth compactly supported functions with bounded
derivatives.

Our goal is to improve the bound F1 = O(N).
Bounding the sum directly with Miller’s bound (10), we have F1 � N3/4+ε(Mt)1/2,

which is not satisfactory yet for our purpose.
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We shall apply the Voronoi summation to the n-sum. To this end, one may assume
(p, r) = 1 in F1, as the contribution from the terms (p, r) > 1 is negligible, compared
to the generic terms (p, r) = 1. We briefly justify this. Denote the terms with p | r in F1

by F]
1 . Then

F]
1 =

M3/2t3/2

NP 2

∑
p∼P

∑
`∼L

χ(`)`−it
∞∑
r=1

χ(r)r−itV

(
r

N/(M`t)

)

×

∞∑
n=1

λ(1, n)e
(
−
nM̄

`r

)
w

(
n

N

)
.

An application of Voronoi summation (9) takes the n-sum to the following dual sum:

`r
∑
±

∑
m|`r

∞∑
n=1

λ(n,m)

mn
S(M,±n; `r/m)U±

(
m2n

(`r)3/N

)
,

where the new length can be truncated at m2n < Nε(`r)3/N , at the cost of a negligible
error.

Hence we can estimate F]
1 as follows:

F]
1 �

M3/2t3/2

NP logP

∣∣∣∣∑
`∼L

χ(`)`−it
∞∑
r=1

χ(r)r−itV

(
r

N/(M`t)

)

× `r
∑
m|`r

∞∑
n=1

λ(m, n)

mn
S(M, n; `r/m)U+

(
m2n

(`r)3/N

)∣∣∣∣
� NεM

3/2t3/2

NP

∑
`∼L

∑
r∼N/(MLt)

`r
∑∑

m2n<(`r)3/N

|λ(m, n)|

mn

(
`r

m

)1/2

� Nε N
3/2

PMt
,

upon using Weil’s bound. This bound turns out to be satisfactory for our purpose.
From now on we assume that (p, `r) = 1. Then an application of Voronoi summation

(9) to the n-sum yields

∞∑
n=1

λ(1, n)e
(
−
npM̄

`r

)
w

(
n

N

)

= `r
∑
±

∑
m|`r

∞∑
n=1

λ(n,m)

mn
S(p̄M,±n; `r/m)U±

(
m2nN

(`r)3

)
.

Here the contribution from the terms withm2n� Nε(`r)3/N is negligibly small, and we
can truncate the (m, n)-sum at m2n� N2+εP 3/(M3t3), at the cost of a negligible error.
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For those m2n � N2+εP 3/(M3t3), the result |<αi | < 1/2 for the Langlands parameter
α = (α1, α2, α3) of Jacquet and Shalika gives us the bound

U±
(
m2nN

`3r3

)
�

√
m2nN

`3r3 ,

while in general we have yjU±,(j)(y)� √y.
After applying Voronoi summation, we have

F1 =
M3/2t3/2

NP 2

∑
±

∑
p∼P

χ̄(p)pit
∑
`∼L

χ(`)`−it
∞∑
r=1

χ(r)r−itV

(
r

Np/(M`t)

)

× `r
∑
m|`r

∑
n≥1

m2n�N2+εP 3/M3t3

λ(n,m)

mn
S(p̄M,±n; `r/m)U±

(
m2nN

`3r3

)
+O

(
N3/2+ε

PMt

)

:=

∑
±

F±1 +O
(
N3/2+ε

PMt

)
.

Consider for example one of the two sums, F+1 . Pulling the `-sum inside the (m, n)-sum
and applying the Cauchy–Schwarz inequality to F+1 , we obtain

F+1 �
(Mt)1/2

P

∣∣∣∣ ∞∑
r=1

χ(r)r−itV

(
r

NP/(MLt)

)
×

∑∑
m,n≥1

m2n�N2+εP 3/(M3t3)

λ(n,m)

mn

∑
`∼L
m|`r

χ(`)`−it
∑
p∼P

χ̄(p)pitS(p̄M, n; `r/m)U+
(
m2nN

`3r3

)∣∣∣∣
�

N1/2+ε

P 1/2L1/2 6
1/2,

where

6 :=
∑

r∼NP/(MLt)
(r,M)=1

∑∑
m,n≥1

m2n�N2P 3/(M3t3)

1
mn

×

∣∣∣∣∑
`∼L
m|`r

χ(`)`−it
∑
p∼P

χ̄(p)pitS(p̄M, n; `r/m)U+
(
m2nN

`3r3

)∣∣∣∣2, (24)

by noting that ∑∑
m,n≥1

m2n�N2P 3/(M3t3)

|λ(n,m)|2

mn
� Nε.
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Now it remains to treat the sum 6. Opening the square and interchanging the order of
summations, we find

6 ≤
∑

r∼NP/(MLt)

∑
m<NP 3/2/(M3/2t3/2)

1
m

∑
`1∼L
m|`1r

∑
`2∼L
m|`2r

∑
p1∼P

∑
p2∼P∣∣∣∣ ∑

n�N2P 3/(m2M3t3)

1
n
S(p̄1M,n; `1r/m)S(p̄2M,n; `2r/m)U+

(
m2nN

`3
1 r

3

)
U+
(
m2nN

`3
2 r

3

)∣∣∣∣,
where p̄1 and p̄2 denote the multiplicative inverses of p1 and p2 modulo `1r and `2r ,
respectively.

Our next step is to apply Poisson summation to the n-sum. To this end, by a smooth
dyadic partition of unity, one can insert into the n-sum a nonnegative smooth function
F(x) which is supported on, say [1/2, 3], and constantly 1 on [1, 2].

Now for any
1� Nm � N2P 3/(m2M3t3), (25)

an application of Poisson summation with modulus [`1r/m, `2r/m] gives

∑
n≥1

1
n
S(p̄1M,n; `1r/m)S(p̄2M,n; `2r/m)U+

(
m2nN

`3
1 r

3

)
U+
(
m2nN

`3
2 r

3

)
F

(
n

Nm

)
=

1
[`1, `2]r/m

∑
n∈Z

C`1,`2(n)T (n, `1, `2),

where

C`1,`2(n) =
∑

a([`1,`2]r/m)

S(p̄1M,a; `1r/m)S(p̄2M,a; `2r/m)e

(
an

[`1, `2]r/m

)
(26)

and

T (n, `1, `2) =

∫
R
F(x)U+

(
m2NmNx

`3
1 r

3

)
U+
(
m2NmNx

`3
2 r

3

)
e

(
−

nNm

[`1, `2]r/m
x

)
dx
x
.

By integrating by parts repeatedly, we see that the integral T (n, `1, `2) is negligibly
small if |n| ≥ Nε [`1,`2]r

mNm
. Therefore we can truncate the dual n-sum at Nε [`1,`2]r

mNm
, at the

cost of a negligible error. Meanwhile in the range |n| � Nε [`1,`2]r
mNm

, we use the bounds
yjU+,(j)(y)� √y to obtain

T (n, `1, `2)�
m2NmN

(`1`2)3/2r3 �
m2NmN

(NP/(Mt))3
. (27)

Let us also observe in particular that

T (n, `1, `2)� 1 and N1 � N2P 3/(M3t3)

for later convenience.



1920 Yongxiao Lin

We arrive at

F1 �
N1/2+ε

P 1/2L1/2 �
1/2
+
N3/2+ε

PMt
, (28)

where

� =
∑

r∼NP/(MLt)

∑
m<NP 3/2/(M3/2t3/2)

∑
`1∼L
m|`1r

∑
`2∼L
m|`2r

∑
p1∼P

∑
p2∼P

sup
Nm�

N2P 3

m2M3t3

∑
|n|<[`1,`2]r/(mNm)

1
[`1, `2]r

|C`1,`2(n)T (n, `1, `2)|.

We have essentially square-root cancellation for the character sum C`1,`2(n), defined
in (26). The details of this calculation were carried out in [8]. We have collected their
results relevant to our present setting in Lemma 3.8.

Bounding our sum (26) using Lemma 3.8, we get

|C`1,`2(n)| ≤ 2O(ω(r))
(
r

m

)3/2
`1`2

(`1, `2)1/2
(1, n, `1r/m, `2r/m)

(n, `1r/m, `2r/m)1/2
, (29)

where

1 :=
p̄1`

2
2 − p̄2`

2
1

(`1, `2)2
M,

and p̄1 and p̄2 denote the multiplicative inverses of p1 and p2 modulo `1r/m and `2r/m,
respectively, and ω(r) denotes the number of distinct prime factors of r .

We write
� = �0 +�1,

where �0 denotes the contribution from the terms n = 1 = 0, and �1 denotes the
complement.

Remark 6.1. In fact,�0 is the diagonal contribution (`1, p1) = (`2, p2) to the sum (24),
and �1 is the off-diagonal (`1, p1) 6= (`2, p2) contribution.

If 1 = 0, then p̄1`
2
2 − p̄2`

2
1 = 0. Necessarily, `1 = `2 := ` and p1 = p2 := p. Under

this condition,

|C`,`(n)| ≤ 2O(ω(r))
(
`r

m

)3/2(
n,
`r

m

)1/2

.

In particular, |C`,`(0)| ≤ 2O(ω(r))(`r/m)2. Therefore,

�0 �
∑

r∼NP/(MLt)

∑
`∼L

∑
m|`r

∑
p∼P

2ω(r)
1
`r

(
`r

m

)2

sup
Nm�

N2P3

m2M3t3

|T (0, `, `)| �
N2+εP 3

M2t2
.

(30)
Here we have used the fact that ω(r)� log r

log log r .
Meanwhile for �1, we further write

�1 = �1a +�1b,
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where �1a denotes the contribution coming from the n 6= 0 terms, and �1b denotes the
contribution of the zero frequency: n = 0, 1 6= 0. Plugging the bounds (27) and (29) in,
we see that

�1a �
∑

r∼NP/(MLt)

∑
`1∼L

∑
`2∼L

∑
m|(`1,`2)r

∑
p1∼P

∑
p2∼P

sup
Nm�

N2P3

m2M3t3

∑
0 6=|n|<[`1,`2]r/(mNm)

|C`1,`2(n)|

[`1, `2]r
|T (n, `1, `2)|

� Nε
∑

r∼NP/(MLt)

∑
`1∼L

∑
`2∼L

`1 6=`2

∑
m|r

∑
p1∼P

∑
p2∼P

sup
Nm�

N2P 3

m2M3t3

∑
0 6=|n|<`1`2r/(mNm)

r1/2

m3/2
(1, n, r/m)

(n, r/m)1/2
m2NmN

(NP/(Mt))3

� Nε NP

MLt
L2P 2 sup

N1�
N2P3

M3t3

NPL

N1Mt

(
NP

MLt

)1/2 N1N

(NP/(Mt))3
� Nε(NMt)1/2(PL)3/2.

Here in the second inequality above we have used the fact that the contribution from the
case `1 = `2 is comparably smaller.

Now we treat the case of �1b, which by our definition is

�1b =
∑

r∼NP/(MLt)

∑
m<NP 3/2/(M3/2t3/2)

∑
`1∼L
m|`1r

∑
`2∼L
m|`2r

∑
p1∼P

∑
p2∼P

11 6=0

[`1, `2]r
sup

Nm�
N2P 3

m2M3t3

|C`1,`2(0)T (0, `1, `2)|.

A direct evaluation of C`1,`2(0) from the definition (26) shows that it vanishes unless
`1 = `2 =: `. In the latter case we have

C`,`(0) =
`r

m

∑?

β(`r/m)

e

(
p2 − p1

`r/m
β

)
�
`r

m

∑
h|(`r/m,p1−p2)

h.

Recall for `1 = `2 = `, we have1 = (p̄1−p̄2)M , where p̄1 and p̄2 are the multiplicative
inverses of p1 and p2 modulo `r/m, respectively. As 1 6= 0, we have p1 6= p2.

We thus have

�1b � Nε
∑

r∼NP/(MLt)

∑
`∼L

∑
m|`r

∑
h|`r/m

h

m

∑∑
p1 6=p2∼P

p1≡p2 (h)

1�
N1+εP 3

Mt
.

This is dominated by the diagonal contribution �0 (30), since Mt < N .
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Hence we obtain the bound

� = �0 +�1a +�1b �
N2+εP 3

M2t2
+Nε(NMt)1/2(PL)3/2. (31)

Combining (28) and (31), we retrieve the bound on F1 in the following.

Proposition 6.2. For any given ε > 0,

F1 �
N3/2+εP

MtL1/2 +N
3/4+ε(MtPL)1/4.

Remark 6.3. We will assume L < P , so that the term O
(
N3/2+ε

PMt

)
in (28) is negligible.

7. The choices of the parameters P and L

Recall from Proposition 6.2 that

F1 �
N3/2+εP

MtL1/2 +N
3/4+ε(MtPL)1/4,

while Proposition 5.3 gives

O �
N1/2+εMt

P
+NεM

3/2t3/2L

P
.

Plugging these bounds into (16) yields

S(N)�
N3/2+εP

MtL1/2 +N
3/4+ε(MtPL)1/4 +

N1/2+εMt

P
+NεM

3/2t3/2L

P
.

Substituting this into Lemma 3.3 and noting that (Mt)3/2−δ < N < (Mt)3/2+ε, one gets

L(1/2+ it, π ⊗ χ)

�
(Mt)1/2+εP

L1/2 + (Mt)5/8+ε(PL)1/4 +
(Mt)1+ε

P
+
(Mt)3/4+δ/2+εL

P
+ (Mt)3/4−δ/2+ε

=
(Mt)5/8+εP 1/4

L1/2

(
P 3/4

(Mt)1/8
+ L3/4

)
+ (Mt)ε

(
Mt

P
+ (Mt)3/4−δ/2

)
,

upon assuming L < (Mt)1/4−δ/2.
Equate the first two terms by letting L = P(Mt)−1/6 to get

L(1/2+ it, π ⊗ χ)� (Mt)7/12+εP 1/2
+ (Mt)1+ε/P + (Mt)3/4−δ/2+ε.

Letting P = (Mt)5/18 gives

L(1/2+ it, π ⊗ χ)� (Mt)13/18+ε
+ (Mt)3/4−δ/2+ε. (32)
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Finally, by choosing δ = 1/18, (32) implies that

L(1/2+ it, π ⊗ χ)� (Mt)3/4−1/36+ε.

Note that with such choices, L = (Mt)1/9 satisfies the assumption L < (Mt)1/4−δ/2 =

(Mt)2/9. Theorem 1.1 follows.
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