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Abstract. We establish partition regularity of the generalised Pythagorean equation in five or more
variables. Furthermore, we show how Rado’s characterisation of a partition regular equation re-
mains valid over the set of positive kth powers provided the equation has at least (1+ o(1))k log k
variables. We thus completely describe which diagonal forms are partition regular and which are
not, given sufficiently many variables. In addition, we prove a supersaturated version of Rado’s
theorem for a linear equation restricted either to squares minus one or to logarithmically-smooth
numbers.
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1. Introduction

Schur’s theorem [Sch1916] is a foundational result in Ramsey theory, asserting that in
any finite colouring of the positive integers there exists a monochromatic solution to the
equation x + y = z (a solution in which each variable receives the same colour). A noto-
rious question of Erdős and Graham asks if the same is true for the Pythagorean equation
x2
+ y2

= z2, offering $250 for an answer [Grah07, Grah08]. The computer-aided ver-
ification [HKM16] of the two-colour case of this problem is reported to be the largest
mathematical proof in existence, consuming 200 terabytes [Lam16]. We provide an affir-
mative answer to the analogue of the Erdős–Graham question for generalised Pythagorean
equations in five or more variables.

Theorem 1.1 (Schur-type theorem in the squares). In any finite colouring of the positive
integers there exists a monochromatic solution to the equation

x2
1 + x

2
2 + x

2
3 + x

2
4 = x

2
5 . (1.1)

This is a consequence of a more general phenomenon. Given enough variables, we com-
pletely describe which diagonal forms have the above property and which do not.

Definition 1.2 (Partition regular). Given a polynomial P ∈ Z[x1, . . . , xs] and a set S
call the equation P(x) = 0 partition regular over S if, in any finite colouring of S,
there exists a solution x ∈ Ss whose coordinates all receive the same colour. We say
that the equation is non-trivially partition regular if every finite colouring of S has a
monochromatic solution in which each variable is distinct.

Rado [Rad33] established an elegant algebraic characterisation of partition regular homo-
geneous linear equations.

Rado’s criterion for one equation. Let c1, . . . , cs ∈ Z \ {0}, where s ≥ 3. Then the
equation

∑s
i=1 cixi = 0 is (non-trivially) partition regular over the positive integers if

and only if there exists a non-empty set I ⊂ [s] such that
∑
i∈I ci = 0.
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A number of authors [Ber96, Ber16, Grah08, DNL18] have sought algebraic character-
isations of partition regularity within families of non-linear Diophantine equations. The
example of the Fermat equation xk + yk = zk shows that one cannot hope for something
as simple as Rado’s criterion for diagonal forms. Nevertheless, provided that the number
of variables s is sufficiently large in terms of the degree k, we establish that the same
criterion characterises partition regularity for equations in kth powers.

Theorem 1.3 (Rado over kth powers). There exists s0(k) ∈ N such that for s ≥ s0(k)
and c1, . . . , cs ∈ Z \ {0} the following holds. The equation

s∑
i=1

cix
k
i = 0 (1.2)

is (non-trivially) partition regular over the positive integers if and only if there exists
a non-empty set I ⊂ [s] such that

∑
i∈I ci = 0. Moreover, we may take s0(2) = 5,

s0(3) = 8 and

s0(k) = k(log k + log log k + 2+O(log log k/log k)). (1.3)

Notice that Rado’s criterion for a linear equation shows that the condition
∑
i∈I ci = 0

is necessary for (1.2) to be partition regular. The content of Theorem 1.3 is that this
condition is also sufficient.

For higher-degree equations one cannot avoid the assumption of some lower bound on
the number of variables, as the example of the Fermat equation demonstrates. Given cur-
rent knowledge on the solubility of diagonal Diophantine equations [Woo92], the bound
(1.3) is at the cutting edge of present technology. Indeed, it is unlikely that one could
improve this condition without making an analogous breakthrough in Waring’s problem,
since partition regularity implies the existence of a non-trivial integer solution to (1.2).

We remark that one could use the methods of this paper to establish the weaker but
explicit bound

s0(k) ≤ k
2
+ 1.

This follows by utilising the work of Bourgain–Demeter–Guth [BDG16] on Vinogradov’s
mean value theorem, eschewing smooth numbers, as in [Cho18].

We are also able to establish the sufficiency of Rado’s criterion for other sparse arith-
metic sets of interest, such as logarithmically-smooth numbers and shifted squares. For
these sets we avoid certain local issues which must be surmounted for perfect powers, and
thereby prove stronger quantitative variants of partition regularity, analogous to work of
Frankl, Graham and Rödl [FGR88] counting monochromatic solutions to a linear equa-
tion.

Theorem 1.4 (Supersaturation1 in squares minus one). Let c1, . . . , cs ∈ Z \ {0} with
s ≥ 5 and suppose that

∑
i∈I ci = 0 for some non-empty I . Define the set of shifted

1 The term ‘supersaturation’, from extremal combinatorics, describes when we wish to “deter-
mine the minimum number of copies of a particular substructure in a combinatorial object of pre-
scribed size” [NSS18]. For us, the substructure is defined by a Diophantine equation.
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squares by
S := {x2

− 1 : x ∈ Z}.

For any r ∈ N there exist c0 > 0 and N0 ∈ N such that for any N ≥ N0 if we have an
r-colouring of S then

#
{
x ∈ (S ∩ [N ])s :

∑
i

cixi = 0 and x is monochromatic
}
≥ c0|S ∩ [N ]|

sN−1. (1.4)

Remark 1.5. For the set of squares minus one, the upper bound

#
{
x ∈ (S ∩ [N ])s :

∑
i

cixi = 0
}
� |S ∩ [N ]|sN−1

follows from an application of the Hardy–Littlewood circle method [Vau97]. Hence, the
number of monochromatic solutions is within a constant (depending only on the number
of colours) of the maximum possible.

We prove Theorem 1.4 in Part 3 together with an analogous result for logarithmically-
smooth numbers.

Definition 1.6 (R-smooth numbers). A number is R-smooth if all of its prime factors
are at most R. Denote the set of R-smooths in [N ] by

S(N;R) := {x ∈ [N ] : p | x ⇒ p ≤ R}.

When R is logarithmic in N , of the form R = logK N , then

|S(N; logK N)| ∼ N1−K−1
+o(1) (N →∞),

so logarithmically-smooth numbers constitute a polynomially sparse arithmetic set
[Gran08].

A recent breakthrough of Harper [Har16] gives a count of the number of solutions to
an additive equation in logarithmically-smooth numbers. We are able to extend this count
to finite colourings as follows.

Theorem 1.7 (Supersaturation in the smooths). Let c1, . . . , cs ∈ Z \ {0}, and suppose
that

∑
i∈I ci = 0 for some non-empty I . Then for any r ∈ N there exist c0 > 0 and

C,N0 ∈ N such that if N ≥ N0, R ≥ logC N and S(N;R) is r-coloured then

#
{
x ∈ S(N;R)s :

∑
i

cixi = 0 and x is monochromatic
}
≥ c0|S(N;R)|

sN−1. (1.5)

As for shifted squares, we emphasise that the corresponding upper bound in (1.5) follows
(when s ≥ 3) from the methods of Harper [Har16].
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1.1. Non-triviality

It may be that (1.2) possesses a wealth of monochromatic solutions for ‘trivial’ reasons.
For instance, if c1 + · · · + cs = 0 then taking x1 = · · · = xs yields many uninteresting
solutions. We have delineated between partition regularity and non-trivial partition regu-
larity to ensure that Rado’s criterion still has content in such a situation. However, since
Rado’s criterion is necessary for ‘trivial’ partition regularity, the two notions are in fact
equivalent.

1.2. Previous work

To the knowledge of the authors, work on non-linear partition regularity begins with pa-
pers of Furstenberg and Sárközy [Fur77, Sár78], independently resolving a conjecture
of Lovász—a line of investigation which culminates in the polynomial Szemerédi theo-
rem of Bergelson–Leibman [BL96], proved using ergodic methods. Such methods have
also established colouring results for which no density analogue exists, such as partition
regularity of the equation x − y = z2 [Ber96, p. 53]. Interestingly, the story is more
complicated for the superficially similar equation x + y = z2 studied in [KS06, CGS12,
GL16, Pac18].

A recent breakthrough of Moreira [Mor17] resolves a longstanding conjecture of
Hindman [Hin79], proving partition regularity of the equation x + y2

= yz. More in-
tuitively: in any finite colouring of the positive integers there exists a monochromatic
configuration of the form {a, a + b, ab}. This result is a consequence of a general theo-
rem which also yields partition regularity of equations of the form x0 = c1x

2
1+· · ·+csx

2
s ,

subject to the condition that c1 + · · · + cs = 0.
Notice that all of the above results involve an equation with at least one linear term.

There are fewer results in the literature concerning genuinely non-linear equations such
as (1.2). Certain diagonal quadrics are dealt with in Lefmann [Lef91, Fact 2.8], using
Rado’s theorem to locate a long monochromatic progression whose common difference
possesses a (well-chosen) multiple of the same colour. This results in the following suffi-
cient condition for partition regularity.

Lefmann’s criterion. Let c1, . . . , cs ∈ Z \ {0}, and suppose that
∑
i∈I ci = 0 with

I 6= ∅. Moreover, suppose that the auxiliary system(∑
i /∈I

ci

)
x2

0 +
∑
i∈I

cix
2
i = 0,∑

i∈I

cixi = 0
(1.6)

possesses a rational solution with x0 6= 0. Then the equation

c1x
2
1 + · · · + csx

2
s = 0 (1.7)

is partition regular.
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This result reduces the combinatorial problem of establishing partition regularity of (1.7)
to a task in number theory: find a rational point of a certain form on a variety determined
by a diagonal quadric and linear equation. In Appendix F we derive general algebraic
criteria guaranteeing such a rational point using the Hardy–Littlewood circle method.

Theorem 1.8 (Lefmann + Hardy–Littlewood circle method). Let c1, . . . , cs ∈ Z \ {0},
and suppose that

∑
i∈I ci = 0 with I 6= ∅. Suppose in addition that |I | ≥ 6 and at least

two ci are positive and at least two are negative. Then

c1x
2
1 + · · · + csx

2
s = 0 (1.8)

is partition regular.

This result does not encompass all equations amenable to Lefmann’s criterion: fewer
variables may suffice, for instance

x2
+ 9y2

= 2z2
+ 8w2 or 4x2

+ y2
= 2z2

+ 2w2.

We emphasise that Lefmann’s criterion cannot hope to be a necessary condition for par-
tition regularity, as there are partition regular equations for which the auxiliary Lefmann
system (1.6) has no rational point of the required form. Such equations include the gen-
eralised Pythagorean equation (1.1), as well as the ‘convex’ equation

x2
1 + x

2
2 + x

2
3 + x

2
4 = 4x2

5 (1.9)

addressed in [BP17].
In the same article, Lefmann [Lef91, Theorem 2.6] established Rado’s criterion for

reciprocals.

Theorem 1.9 (Lefmann). Let c1, . . . , cs ∈ Z \ {0}. Then

s∑
i=1

cix
−1
i = 0

is partition regular over N if and only if
∑
i∈I ci = 0 for some non-empty I ⊂ [s].

This demonstrates the partition regularity of

1
x
+

1
y
=

1
z
,

answering a question of Erdős and Graham.
If one is prepared to relax the definition of partition regularity, so that certain vari-

ables are not constrained to receive the same colour as the remainder, then specific homo-
geneous equations of arbitrary degree are dealt with in Frantzikinakis–Host [FH14]. For
instance, one consequence of their methods is that in any finite colouring of the positive
integers there exist distinct x, y of the same colour, along with λ (possibly of a different
colour) such that

9x2
+ 16y2

= λ2. (1.10)
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However, for these techniques to succeed, not only must one variable of (1.10) be free to
take on any colour, but it is also necessary for the solution set to possess a well-factorable
parametrisation, allowing for the theory of multiplicative functions to come into play.

When the coefficients of (1.2) sum to zero, partition regularity follows easily, since
any element of the diagonal constitutes a monochromatic solution. However, there are re-
sults in the literature which also guarantee non-trivial partition regularity in this situation
provided that s ≥ k2

+1. This was first established for quadrics in [BP17] and for general
k in [Cho18]. In fact in [Cho18] it is established that, under these assumptions, dense
subsets of the primes contain many solutions to (1.2). Density results were obtained for
non-diagonal quadratic forms in at least nine variables by Zhao [Zha17], subject to the
condition that the corresponding matrix has columns which sum to zero.

We believe that when the solution set of a given equation contains the diagonal it
is more robust with respect to certain local issues—indeed one expects dense sets (such
as congruence classes) to contain solutions under this assumption. As a consequence,
the local issues for such equations are easier to handle using elementary devices, such
as passing to a well-chosen subprogression. The novelty in our methods is that for gen-
eral equations, instead of tackling the somewhat thorny local problem head on, we show
how we may assume our colouring possesses a certain homogeneous structure, and this
structure allows the same devices available in the dense regime to come into play.

We remark that it appears to be a challenging problem to decrease s0(k) substan-
tially below k2

+ 1 for the density analogue of Theorem 1.3. In order to show that
s0(k) = (1 + o(1))k log k is admissible in our partition result we make heavy use of
the fact that a colouring of the positive integers induces a colouring of the smooth pos-
itive integers, and we obtain a monochromatic solution to our equation in the smooths.
Sets of positive density, however, may not contain any smooth numbers. We are therefore
in the curious situation where we can prove that relatively dense sets of smooth numbers
possess solutions to certain diagonal equations, but cannot say the same for dense sets of
integers.

It is interesting to compare our results with partition regularity results over the primes.
Here congruence obstructions mean that one cannot hope to establish a Rado-type cri-
terion. For example, a parity obstruction prohibits Schur’s equation from being partition
regular over the primes. The situation is markedly different if one considers modifications
of the primes with no local obstructions, such as the set of primes minus one. Partition
regularity of the Schur equation over this set was established by Li–Pan [LP12], then
generalised to the full Rado criterion for systems of linear equations by Lê [Lê12]. This
last result utilised the full strength of Green and Tao’s asymptotic for linear equations in
primes [GT10a], together with a characterisation of so called ‘large’ sets due to Deuber
[Deu73]. Neither of these tools are available, or reasonable to expect, for kth powers.

The argument of Li–Pan for Schur’s theorem in primes minus one is a direct applica-
tion of the Fourier-analytic transference principle pioneered by Green [Gre05], elucidated
by the same author in the context of partition regularity in a comment2 on MathOverflow.
This approach cannot hope to succeed for perfect powers, at least when the coefficients

2 https://goo.gl/Yjookp.

https://goo.gl/Yjookp
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of the equation do not sum to zero, since one can no longer pass to the same (affine)
subprogression in all of the variables. The introduction of homogeneous sets (Definition
2.2) allows us to circumvent these difficulties. However, for squares minus one, or smooth
numbers, one need only pass to projective subprogressions when enacting the transference
principle. The methods of Part 3 therefore use a direct form of the transference principle
analogous to Li–Pan. We include the argument to illustrate the subtleties which must be
overcome for perfect powers.

1.3. Notation

We adopt the convention that ε denotes an arbitrarily small positive real number, so its
value may differ between instances. We shall use Vinogradov and Bachmann–Landau
notation: for functions f and positive-valued functions g, write f � g or f = O(g) if
there exists a constant C such that |f (x)| ≤ Cg(x) for all x. Dependence of the implicit
constant on other parameters is indicated using subscripts. This dependence is indicated
in the statement of all results, but often suppressed in proofs for notational simplicity. At
times we opt for a more explicit approach, using C to denote a large absolute constant
(whose value may change from line to line), and c to denote a small positive absolute
constant. The notation f � g is the same as f � g � f . For Y ≥ 1, let [Y ] =
{1, . . . , bY c}. We write T for the torus R/Z. For x ∈ R and q ∈ N, put e(x) = e2πix and
eq(x) = e

2πix/q . If S is a set, we denote its cardinality by |S| or #S.
Throughout we use counting measure on Zd and Haar probability measure on the dual

Td := Rd/Zd . So if f, g : Zd → C have finite support then

‖f ‖p :=

{
(
∑
x |f (x)|

p)1/p if p <∞,
maxx |f (x)| if p = ∞.

Define the Fourier transform of f by

f̂ (α) :=
∑
x

f (x)e(α · x).

We endow Td with the metric (α, β) 7→ ‖α − β‖, where

‖α‖ :=

d∑
i=1

min
n∈Z
|αi − n|.

2. Methods

All of the essential ideas required for Theorem 1.3 are contained in the proof of the
following finitary analogue of Theorem 1.1, whose deduction is the focus of this section.

Theorem 2.1 (Finitary Schur-type theorem in the squares). For any r ∈ N there exists
N0 = N0(r) such that for any N ≥ N0 the following is true. Given an r-colouring of [N ]
there exists a monochromatic solution to the equation x2

1 − x
2
2 = x

2
3 + x

2
4 + x

2
5 .
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Inspired by work of Cwalina–Schoen [CS17] and Green–Sanders [GS16], we derive The-
orem 2.1 in §4 by an induction on the number of colours, in combination with a density
result concerning what we have termed homogeneous sets.

Definition 2.2 (Homogeneous set). Call a set B of positive integers M-homogeneous if
for any q ∈ N we have

B ∩ q · [M] 6= ∅. (2.1)

Given a set S ⊂ N, we say that B is M-homogeneous in S if (2.1) holds for all homo-
geneous progressions q · [M] contained in S. Notice that the latter does not require that
B ⊂ S.

Chapman [Cha20] has observed that this is a quantitative variant of what it means to be
multiplicatively syndetic (see Bergelson–Glasscock [BG16]), and that such sets appear to
have a number of interesting properties in regard to the partition regularity of homoge-
neous systems of polynomial equations.

We leave it as an exercise for the reader to verify that if B is an M-homogeneous
set then |B ∩ [N ]| �M N for N sufficiently large in terms of M , so homogeneous sets
are dense (see Lemma 4.2). In fact they are dense on all sufficiently long homogeneous
arithmetic progressions.

We demonstrate the utility of this definition by giving a proof of Schur’s theorem. The
argument is prototypical for that employed in the proof of Theorem 2.1.

Proof of Schur’s theorem. We induct on the number of colours r to show that there exists
Nr ∈ N such that however [Nr ] is r-coloured there exist x1, x2, x3 ∈ [Nr ] all of the same
colour with x1 + x2 = x3.

The base case of 1-colourings follows on taking N1 = 2, so we may assume that
r ≥ 2. Let N be a large positive integer, whose size (depending on r) is to be determined,
and fix an r-colouring

[N ] = C1 ∪ · · · ∪ Cr .

Set M := Nr−1 and consider two possibilities.

The inhomogeneous case: Some colour class Ci is notM-homogeneous in [N ]. From
the definition of homogeneity it follows that there exists a positive integer q such that
q · [M] ⊂ [N ] and q · [M] ∩ Ci = ∅. On setting C′j := {x ∈ [M] : qx ∈ Cj } we induce
an (r − 1)-colouring

[M] =
⋃
j 6=i

C′j .

SinceM = Nr−1 it follows from our induction hypothesis that there exist x′1, x
′

2, x
′

3 ∈ C
′

j

such that x′1 + x
′

2 = x′3. Schur’s theorem follows in this case on setting xt := qx′t for
t = 1, 2, 3.

The homogeneous case: All colour classes are M-homogeneous in [N ]. In this case it
turns out that every colour class contains a solution to the Schur equation provided that
N is sufficiently large in terms of r . To prove this we invoke the following.
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Claim. For any δ > 0 andM ∈ N there existsN0 = N0(δ,M) such that for anyN ≥ N0
if A ⊂ [N ] has |A| ≥ δN and B ⊂ [N ] is M-homogeneous in [N ] then there exist
x, x′ ∈ A and y ∈ B such that x − x′ = y.

The claim settles the homogeneous case of Schur’s theorem on taking A = B to be any
colour class, since M-homogeneous sets have density at least M−2

+ o(1) in [N ] (see
Lemma 4.2; one could have alternatively taken the largest colour class).

To prove the claim we invoke Szemerédi’s theorem!3 This yields N0 = N0(δ,M)

such that for any N ≥ N0 if A ⊂ [N ] with |A| ≥ δN then A contains an arithmetic
progression of length M + 1, so that there exist x and q > 0 for which

x, x + q, x + 2q, . . . , x +Mq ∈ A.

Notice that q·[M] ⊂ [N ], soM-homogeneity ofB implies that there exists y ∈ q·[M]∩B.
Taking x′ = x+ y establishes the claim and completes our proof of Schur’s theorem. ut
It may seem excessive to employ a density result in the proof of a colouring result, since
(typically) density results lie deeper and require more work to prove.4 We have described
this approach to motivate our proof of Theorem 1.1, which uses an analogous non-linear
density result. We also believe the proof offers an alternative reason for why Schur’s
theorem is true: there is always a long homogeneous arithmetic progression on which one
of the colour classes is multiplicatively syndetic. This exemplifies a well-used philosophy
in Ramsey theory that underlying every partition result there is some notion of largeness.

To prove partition regularity of the generalised Pythagorean equation we induct on the
number of colours as in our proof of Schur’s theorem. The inhomogeneous case follows
with minimal change to the argument. In the remaining case we may assume that all
colour classes are homogeneous. In this situation we are able to show that every colour
class contains many solutions to our non-linear equation by employing the following
density result.

Theorem 2.3 (Non-linear homogeneous Sárközy). For any δ > 0 and M ∈ N there
exist N0 and c0 > 0 such that for any N ≥ N0 the following holds. Let A ⊂ [N ] have
density at least δ in [N ], and let B be an M-homogeneous subset of the positive integers.
Then

#{(x, y) ∈ A2
× B3

: x2
1 − x

2
2 = y

2
1 + y

2
2 + y

2
3} ≥ c0N

3.

Using Green’s Fourier-analytic transference principle [Gre05], as elucidated for squares
in [BP17, Pre17a], the deduction of Theorem 2.3 is reduced (in §§5–6) to a linear ana-
logue in which the squares have been removed from the dense variables. This can be
thought of as a generalisation of the Furstenberg–Sárközy theorem [Fur77, Sár78], ex-
tended to homogeneous sets.

3 The claim itself is not deep, for instance it is readily obtained from [CRS07, Theorem 4].
Our proof is designed to set the stage for the general setting of Part 2, when we will invoke the
multidimensional polynomial Szemerédi theorem of Bergelson and Leibman [BL96].

4 One can give an alternative argument for Schur’s theorem based on these ideas, replacing Sze-
merédi’s theorem with van der Waerden’s. However, this approach does not seem to generalise to
the non-linear situation.
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Theorem 2.4 (Supersaturated homogeneous Sárközy). For any δ > 0 and M ∈ N there
exist N0, c0 > 0 such that for any N ≥ N0 the following holds. Let A ⊂ [N ] have density
at least δ in [N ] and let B be an M-homogeneous subset of the positive integers. Then
there are at least c0N

5/2 tuples (x, y) ∈ A2
× B3 satisfying the equation

x1 − x2 = y
2
1 + y

2
2 + y

2
3 . (2.2)

Our ability to remove the squares from the dense variables is intrinsically linked to the
fact that the coefficients corresponding to these variables sum to zero. One consequence
of this is that we may restrict all of the dense variables to lie in the same congruence class,
without destroying solutions to the equation in the process.

Theorem 2.4 is ultimately derived (in §8) from the following result, which is both
more general and at the same time slightly weaker than Theorem 2.4. It is weaker in that
it yields only one solution to (2.2), yet it applies to the more general context of multidi-
mensional sets of integers. The increase in dimension allows us to deduce a supersatura-
tion result for (2.2) by bootstrapping the existence of a single solution to the existence of
many solutions, using an averaging argument first implemented by Varnavides [Var59].

Theorem 2.5 (Multidimensional homogeneous Sárközy). For any δ > 0 and d,M ∈ N
there exists N0 such that for any N ≥ N0 the following holds. If A ⊂ [N ]d is at least
δ-dense in [N ]d and B1, . . . , Bd are M-homogeneous sets of positive integers, then there
exist x, x′ ∈ A and y1 ∈ B1, . . . , yd ∈ Bd such that

x − x′ = (y2
1 , . . . , y

2
d). (2.3)

In §7 this theorem is proved using the Fourier-analytic density increment strategy pio-
neered by Roth [Rot53], a proof which yields quantitative bounds on N0. One can deduce
the qualitative statement in a few lines from the multidimensional polynomial Szemerédi
theorem of Bergelson and Leibman [BL96] (see Corollary 9.1). The general Rado crite-
rion of Theorem 1.3 requires a more complicated density result for which Fourier analysis
does not appear sufficient and which therefore necessitates the invocation of this deep re-
sult.

3. Open problems

3.1. The supersaturation result

Frankl, Graham and Rödl [FGR88] establish that for any r-colouring of [N ], a linear
equation

∑s
i=1 cixi = 0 satisfying Rado’s criterion has�r N

s−1 monochromatic solu-
tions. Our methods do not yield the analogous supersaturation result for equation (1.2).
We instead find that if N is sufficiently large in terms of M then [N ] contains a homoge-
neous arithmetic progression of length M which possesses at least�r M

s−k monochro-
matic solutions to (1.2). This deficiency is an artefact of our method where, to avoid
tackling certain local issues, we iteratively pass to a well-chosen homogeneous subpro-
gression.
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It may be possible to establish a supersaturation result if one is prepared to replace the
homogeneous arithmetic progressions appearing in this paper with quadratic Bohr sets.
Informally, let us call a set quadratic Bohr homogeneous if it has large intersection with
all quadratic Bohr sets (centred at zero). Then our methods reduce to showing that if A
is a dense subset of a quadratic Bohr set and if B is quadratic Bohr homogeneous, then
there are many solutions to the equation

x2
1 − x

2
2 = y

2
1 + y

2
2 + y

2
3

with xi ∈ A and yi ∈ B. A promising strategy for obtaining such a result proceeds by
decomposing 1A according to a variant of the arithmetic regularity lemma developed by
Green and Tao [GT10b]. It is in fact this strategy which informs the simpler approach
developed in this paper.

3.2. Quantitative bounds

Define the Rado number (see [GRS90, p. 103]) of the equation (1.2) to be the smallest
positive integerRc,k(r) such that any r-colouring of the interval {1, . . . , Rc,k(r)} results in
at least one monochromatic tuple (x1, . . . , xs) satisfying (1.2) with all xi distinct. For lin-
ear equations, this quantity has been extensively studied by Cwalina and Schoen [CS17],
with near optimal bounds extracted for certain choices of coefficients. In [BP17] it is
shown that if k = 2, c1+· · ·+ cs = 0 and s ≥ 5 then there exists a constant Cc such that

Rc,2(r) ≤ exp exp exp(Ccr). (3.1)

It is feasible that the methods of this paper lead to quantitative bounds for the Rado
number of the equation (1.2) provided that there exist coefficients with ci = −cj . In
this situation, all of the results we employ in our argument can be proved using Fourier-
analytic methods, where the quantitative machinery is well-developed. However, these
bounds are sure to be of worse quality than (3.1) due to our induction on the number of
colours, a feature of the argument not present in [BP17].

If there are no coefficients satisfying ci = −cj , then any hope of extracting quantita-
tive bounds on Rc,k(r) is diminished, since the methods of this paper invoke the multidi-
mensional (polynomial) Szemerédi theorem, a result for which there are no quantitative
bounds presently known. It would be interesting if one could avoid calling on such a deep
result.

3.3. Systems of equations

Rado [Rad33] characterised when systems of linear equations are partition regular. This
criterion says that a system Ax = 0 is partition regular if and only if the integer matrix
A satisfies the so-called columns condition (see [GRS90, p. 73]). We conjecture that the
columns condition is sufficient for systems of equations in kth powers provided that the
number of variables is sufficiently large in terms of the degree and the number of equa-
tions, and that the matrix of coefficients is sufficiently generic. For instance, in analogy
with results of Cook [Coo71] we posit the following.
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Conjecture 3.1. Let a1, . . . , as, b1, . . . , bs ∈ Z \ {0}. Then the system of equations

a1x
2
1 + · · · + asx

2
s = 0,

b1x
2
1 + · · · + bsx

2
s = 0

is non-trivially partition regular provided that

(i) s ≥ 9;
(ii) the matrix A :=

( a1 ... as
b1 ... bs

)
satisfies the columns condition;

(iii) for any real numbers λ,µ that are not both zero, the vector (λ, µ)A has at least five
non-zero entries, not all of which have the same sign.

Condition (ii) is certainly necessary for partition regularity, by Rado’s criterion. Weak-
ening conditions (i) and (iii) would presumably require improvements in circle method
technology.

3.4. Roth with logarithmically-smooth common difference

Using the arguments of §9 one can prove the following (see Remark 9.3).

Theorem 3.2. IfA ⊂ [N ] lacks a three-term arithmetic progression with R-smooth com-
mon difference, where 10 ≤ R ≤ N , then

|A| � N
(log logR)4

logR
. (3.2)

When R = logK N for some fixed absolute constant K , the set of R-smooth numbers
in [N ] has cardinality N1−K−1

+o(1). Common differences arising from such a set are
therefore polynomially sparse, and Theorem 3.2 results in a density bound of the form
(log logN)−1+o(1).

The argument for Theorem 3.2 really only uses the fact that the R-smooths contain
the interval [R], and that A must be dense on a translate of this set, so we are in fact
locating a ‘short’ arithmetic progression. Since smooth arithmetic progressions are much
more abundant than short arithmetic progressions, it would be interesting if one could
obtain a better density bound by exploiting this.

The only other bound known for Roth’s theorem with common difference arising from
a polynomially sparse arithmetic set can be found in [Pre17b], which deals with perfect
kth powers. This also results in a double logarithmic bound, of the form (log logN)−ck for
some small ck > 0. Breaking the double logarithmic barrier for the smooth Roth problem
may be a tractable intermediate step towards improving bounds in the polynomial Roth
theorem.

Part 1. The generalised Pythagorean equation

In this part we establish partition regularity of the 5-variable Pythagorean equation
x2

1 + x
2
2 + x

2
3 + x

2
4 = x

2
5 . The proof contains all of the essential ideas required for Theo-

rem 1.3 but is more transparent, avoiding notational complexities and the need for smooth
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number technology. Unlike the general case, we show that all requisite steps can be estab-
lished using Fourier analysis, avoiding recourse to deeper results involving higher-order
uniformity and the multidimensional Szemerédi theorem. This may be of use to those
interested in quantitative bounds and supersaturation.

Throughout this part we assume familiarity with the high-level schematic outlined
in §2.

4. Induction on colours

We first derive Theorem 2.1 from Theorem 2.3 by induction on the number of colours.
We deduce Theorem 2.3 from Theorem 2.4 in §§5–6, and prove Theorem 2.4 in §§7–8.

4.1. The inductive base: one colour

Definition 4.1 (T counting operator). Given functions f1, . . . , fs : Z → C with finite
support, define the counting operator

T (f1, . . . , f5) :=
∑

x2
1−x

2
2=x

2
3+x

2
4+x

2
5

f1(x1)f2(x2)f3(x3)f4(x4)f5(x5).

We write T (f ) for T (f, . . . , f ).

By Theorem B.1 of Appendix B, there exist N1 ∈ N and c1 > 0 such that for N ≥ N1 we
have

T (1[N ]) ≥ c1N
3.

Since the latter quantity is positive, Theorem 2.1 follows for 1-colourings (the base case
of our induction).

4.2. The inductive step

Let [N ] = C1 ∪ · · · ∪ Cr be an r-colouring. We split our proof into two cases depending
on the homogeneity of the Ci .

4.2.1. The inhomogeneous case. Let M := N0(r − 1) be the quantity whose exis-
tence is guaranteed by our inductive hypothesis. We first suppose that some Ci is not
M-homogeneous in [N ] (see Definition 2.2). Consequently, there exists q ∈ N such that

q · [M] ⊂ [N ] and Ci ∩ q · [M] = ∅. (4.1)

For j 6= i let us define
C′j := {x ∈ [M] : qx ∈ Cj }.

Then it follows from (4.1) that
⋃
j 6=i C

′

j = [M]. By the induction hypothesis, there exist
yk ∈ C

′

j for some j 6= i such that y2
1 − y

2
2 = y

2
3 + y

2
4 + y

2
5 . Setting xk := qyk we obtain

elements of Cj which solve the generalised Pythagorean equation.



Rado’s criterion over squares and higher powers 1939

4.2.2. The homogeneous case. In this case every colour class isM-homogeneous in [N ].
We claim that Theorem 2.3 then implies that eachCi contains a solution to the generalised
Pythagorean equation. First we observe that each colour class is dense.

Lemma 4.2 (Homogeneous sets are dense). If B ⊂ [N ] is M-homogeneous in [N ] then

|B| ≥
1
M

⌊
N

M

⌋
.

Proof. We proceed by a variant of Varnavides averaging [Var59]. For each q ≤ N/M the
definition of homogeneity gives B ∩ q · [M] 6= ∅. Summing over q then yields∑

q≤N/M

|B ∩ q · [M]| ≥ bN/Mc.

Interchanging the order of summation, we see that∑
x∈B

#{(q,m) ∈ [N/M] × [M] : x = qm} ≥ bN/Mc.

The result follows on noting that #{(q,m) ∈ [N/M] × [M] : x = qm} ≤ M. ut

Setting A = B = Ci in Theorem 2.3 we deduce that if N ≥ N0(M) then

T (1Cr ) ≥ c0(M)N
s−k.

Since the latter quantity is positive the induction step follows, completing the proof of
Theorem 2.1. Note that a quantity dependent on M = N0(r − 1) is ultimately dependent
only on r .

5. A pseudorandom Furstenberg–Sárközy theorem

In §4 we reduced partition regularity of the generalised Pythagorean equation (1.1) to
Theorem 2.3. In §6 we deduce the latter result from Theorem 2.4. To prepare the ground
for this deduction, we first modify Theorem 2.4 to accommodate sets which are relatively
dense in a suitably pseudorandom set. The goal is to find the weakest possible pseudoran-
domness conditions required for such a result to hold. Our primary quantity of interest is
the following.

Definition 5.1 (T1 counting operator). Given functions f1, f2 : Z→ C with finite sup-
port and B ⊂ Z, define

T1(f1, f2;B) :=
∑

x1−x2=y
2
1+y

2
2+y

2
3

f1(x1)f2(x2)1B(y1)1B(y2)1B(y3).

We write T1(f ;B) for T1(f, f ;B) and T1(A;B) for T1(1A;B).

We begin by showing how Theorem 2.4 implies a result in which the indicator function
1A can be replaced by a function f : [N ] → [0, 1] with sufficiently large average.

Lemma 5.2 (Functional Sárközy). For any δ > 0 and M ∈ N there exist N0 ∈ N and
c0 > 0 such that for any N ≥ N0 the following holds. Let f : [N ] → [0, 1] with
‖f ‖1 ≥ δN and let B be an M-homogeneous subset of the positive integers. Then

T1(f ;B) ≥ c0N
5/2.
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Proof. Let A = {x ∈ [N ] : f (x) ≥ δ/2}. As ‖f ‖1 ≥ δN and f ≤ 1, we have |A| ≥
δN/2. Since f ≥ δ1A/2, we deduce that

T1(f ;B) ≥ (δ/2)2T1(A;B),

and an application of Theorem 2.4 completes the proof. ut

Our next step is to weaken the assumptions of Theorem 2.4 even further, replacing
bounded functions with unbounded functions which are sufficiently pseudorandom. The
pseudorandomness we enforce posits the existence of a ‘random-like’ majorising function
ν, whose properties are given in the following two definitions.

Definition 5.3 (Fourier decay). We say that ν : [N ] → [0,∞) has Fourier decay of
level θ (with respect to 1[N ]) if∥∥∥∥ ν̂

‖ν‖1
−

1̂[N ]
‖1[N ]‖1

∥∥∥∥
∞

≤ θ.

Definition 5.4 (p-restriction). We say that ν : [N ] → [0,∞) satisfies a p-restriction
estimate with constant K if

sup
|φ|≤ν

∫
T
|φ̂(α)|p dα ≤ K‖ν‖p1N

−1.

Theorem 5.5 (Pseudorandom Sárközy). For any δ > 0 and K,M ∈ N there exist
N0, c0, θ > 0 such that for anyN ≥ N0 the following holds. LetB be anM-homogeneous
set of positive integers. Let ν : [N ] → [0,∞) satisfy a 4.995-restriction estimate with
constant K , and have Fourier decay of level θ . Then for any f : [N ] → [0,∞) with
f ≤ ν and ‖f ‖1 ≥ δ‖ν‖1 we have

T1(f ;B) ≥ c0‖ν‖
2
1N

1/2.

Proof. Since ν has Fourier decay of level θ , we may apply the dense model lemma
recorded in [Pre17a, Theorem 5.1], rescaling as appropriate, to conclude the existence
of g : Z→ C satisfying 0 ≤ g ≤ 1[N ] and∥∥∥∥ f̂

‖ν‖1
−
ĝ

N

∥∥∥∥
∞

� log(θ−1)−3/2. (5.1)

Provided that θ ≤ exp(−Cδ−1) with C a large positive constant, we can compare Fourier
coefficients at 0 to deduce that ‖g‖1 � δN . Applying Lemma 5.2 then gives

T1(g;B)�δ,M N5/2. (5.2)

Let h denote the indicator function of the set {x2
: x ∈ B∩[

√
N ]}. Then for functions

h1, h2 : [N ] → C we have

T1(h1, h2;B) =
∑

x1−x2=x3+x4+x5

h1(x1)h2(x2)h(x3)h(x4)h(x5). (5.3)
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The function h is majorised by the indicator function of the set {x2
: x ∈ [

√
N ]}, which,

by Lemma B.3, satisfies a 4.995-restriction estimate with constant O(1).
The function g is majorised by 1[N ], which satisfies a 4.995-restriction estimate with

constant O(1). Employing the generalised von Neumann lemma (Lemma C.3), together
with (5.1) and (5.3), we deduce that

|‖ν‖−2
1 T1(f ;B)−N

−2T1(g;B)| � KN1/2 log(θ−1)−3/400.

Combining this with (5.2) and choosing θ ≤ θ0(δ,M,K) completes the proof. ut

6. The W -trick for squares: a simplified treatment

In this section we deduce our non-linear density result (Theorem 2.3) from its pseudoran-
dom analogue (Theorem 5.5). The heart of the matter is massaging the set of squares to
appear suitably pseudorandom. This is accomplished using a version of the W -trick for
squares, simplified from that developed in Browning–Prendiville [BP17].

It is useful to have a non-linear version of the operator T1 introduced in §5.

Definition 6.1 (T2 counting operator). Given functions f1, f2 : Z→ C with finite sup-
port and B ⊂ Z, define

T2(f1, f2;B) :=
∑

x2
1−x

2
2=y

2
1+y

2
2+y

2
3

f1(x1)f2(x2)1B(y1)1B(y2)1B(y3).

We write T2(f ;B) for T2(f, f ;B) and T2(A;B) for T2(1A;B).

Assuming the notation and premises of Theorem 2.3, our objective is to obtain a lower
bound for T2(A;B) by relating it to an estimate for T1(f ;B), where f is a function
bounded above by a pseudorandom majorant ν, as in Theorem 5.5.

Let
W = 2

∏
p≤w

p2, (6.1)

where w = w(δ,M) is a constant to be determined, and the product is over primes. By
Lemma A.4, applied with S = [N ], there exists a w-smooth positive integer ζ �δ,w 1,
and ξ ∈ [W ] with (ξ,W) = 1, such that

|{x ∈ Z : ζ(ξ +Wx) ∈ A}| ≥ 1
2δ|{x ∈ Z : ζ(ξ +Wx) ∈ [N ]}|.

Set
A1 :=

{ 1
2Wx

2
+ ξx : ζ(ξ +Wx) ∈ A

}
\ {0}

and, noting that (2W)1/2 is a positive integer, set

B1 := {y ∈ N : ζ(2W)1/2y ∈ B}.
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One may check that B1 is M-homogeneous, and that there exists an absolute constant C
such that if N ≥ C(δζW)−1 then

|A1| ≥
δN

8ζW
. (6.2)

By the binomial theorem,
T2(A;B) ≥ T1(A1;B1). (6.3)

We note that although the squares are not equidistributed in arithmetic progressions
with small modulus, the same cannot be said of the set{ 1

2Wx
2
+ ξx : x ∈ N

}
. (6.4)

This is the reason for our passage from A to A1; the latter is a subset of the more pseu-
dorandom set (6.4). Unfortunately, the (truncated) Fourier transform of (6.4) still does
not behave sufficiently like that of an interval: they decay differently around the zero
frequency, reflecting the growing gaps between consecutive elements of (6.4). To com-
pensate for this, we must work with a weighted indicator function of A1 that counteracts
this increasing sparsity.

We first observe that A1 is contained in the interval [X], where

X :=
1

2W
·

(
N

ζ

)2

.

Define a weight function ν : [X] → [0,∞) by

ν(n) =

{
Wx + ξ if n = 1

2Wx
2
+ ξx for some x ∈ [N/ζ ],

0 otherwise.
(6.5)

Since the results we are about to invoke are independent of the normalisation of ν, we note
that we could replace the weightWx+ ξ in the above definition by x, or even by

√
n. We

have chosen to incorporate the more complicated weight in order to make calculations a
little cleaner. The weight ν(·) has average value 1, since∑

n∈[X]

ν(n) =
∑
x≤ N

ζW

Wx +O(N/ζ) = X +O(W 1/2X1/2). (6.6)

Lemma 6.2 (Density transfer). For N large in terms of w and δ we have∑
n∈A1

ν(n) ≥
δ2

256
‖ν‖1.

Proof. ForN sufficiently large in terms of δ andw the estimate (6.2) holds so, withZ > 0
a parameter, we have ∑

1
2Wx

2
+ξx∈A1
x>Z

1 ≥ |A1| − Z ≥
δN

8ζW
− Z.
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Therefore∑
n∈A1

ν(n) ≥
∑

1
2Wx

2+ξx∈A1

Wx ≥ WZ

(
δN

8ζW
− Z

)
=
δZN

8ζ
−WZ2.

Choosing Z = δN
16ζW gives ∑

n∈A1

ν(n) ≥
δ2N2

256ζ 2W
=

δ2

128
X.

An application of (6.6) completes the proof. ut

The following two ingredients are established in Appendices D and E.

Lemma 6.3 (Fourier decay). We have

‖ν̂ − 1̂[X]‖∞ � Xw−1/2.

Lemma 6.4 (Restriction estimate). For any real number p > 4 we have

sup
|φ|≤ν

∫
T
|φ̂(α)|p dα �p Xp−1.

Proof of Theorem 2.3. Let K denote the absolute constant implicit in Lemma 6.4 when
p = 4.995. Let N0 and θ denote the parameters occurring in Theorem 5.5 with respect
to a density of δ2/256, restriction constant K and homogeneity of level M . Employing
Lemma 6.3, we may choose w = w(δ,M) sufficiently large to ensure that ν has Fourier
decay of level θ with respect to 1[X]. Setting f = ν1A1 in Theorem 5.5 yields

T1(ν1A1;B1)�δ,M X5/2.

Hence by (6.3) we obtain

T2(A;B) ≥ ‖ν‖
−2
∞ T1(ν1A1;B1)�δ,M ‖ν‖

−2
∞ X

5/2.

This inequality completes the proof of Theorem 2.3 on noting that X �δ,M N2 and
‖ν‖∞ � N . ut

7. Multidimensional homogeneous Furstenberg–Sárközy

It remains to establish Theorem 2.4. In §8 we derive this supersaturated counting re-
sult from a multidimensional ‘existence’ result, Theorem 2.5, whose proof is the aim of
this section. One can prove Theorem 2.5 succinctly using the multidimensional polyno-
mial Szemerédi theorem of Bergelson–Leibman [BL96]; see Corollary 9.1 for such an
argument. One may regard such an approach as overkill, and of little utility if one is
interested in quantitative bounds. In this section we opt for a more circuitous approach
which demonstrates how Fourier analysis suffices for Theorem 2.5. More precisely, we
adapt the Fourier-analytic density increment strategy originating with Roth [Rot53] and
Sárközy [Sár78], and show how it may accommodate the presence of homogeneous sets.
The structure of our argument is based on Green [Gre02].
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Lemma 7.1 (Density increment lemma). Let Bi be M-homogeneous sets of positive in-
tegers, and let A ⊂ [N ]d have size at least δNd . Suppose that A × A lacks (x, x′)
satisfying

x − x′ = (y2
1 , . . . , y

2
d) (7.1)

with (y1, . . . , yd) ∈ B1 × · · · × Bd . Then either

N ≤ Cd(δ
−1Md)C, (7.2)

or there exist

(i) M-homogeneous sets B ′i ⊂ N;
(ii) a positive integer N1 ≥ N

c, where c > 0 is an absolute constant;
(iii) a multidimensional set A1 ⊂ [N1]

d such that

(iiia) A1 × A1 lacks tuples satisfying (7.1) with (y1, . . . , yd) ∈ B
′

1 × · · · × B
′

d ;
(iiib) |A1| ≥ (δ + cd(δM

−d)6)Nd
1 .

Proof of Theorem 2.5 given Lemma 7.1. Let us assume that A ⊂ [N ]d has size at
least δNd and lacks solutions to (7.1) with yi ∈ Bi , where the Bi are M-homogeneous
sets. Setting A0 := A, we iteratively apply Lemma 7.1 to obtain a sequence of sets
A0, A1, A2, . . . , each contained in an ambient grid [Nn]d with

Nn ≥ N
cn , |An| ≥

(
δ + ncd(δM

−d)6
)
Nd
n .

If this iteration continues until n is sufficiently large in terms of d, δ,M , we obtain a den-
sity exceeding 1, which would be impossible. Hence for some n�d,δ,M 1 the inequality
(7.2) is satisfied with Nn in place of N therein. Therefore

N ≤ NCn

n ≤ (Cd(δ
−1Md)C)C

n

�d,δ,M 1. ut

We henceforth proceed with the proof of Lemma 7.1. Put

B := B1 × · · · × Bd ,

let A ⊂ [N ]d with |A| = δNd , and suppose A × A lacks tuples (x, x′) satisfying (7.1)
with (y1, . . . , yd) ∈ B.

For f, g : [N ]d → C, define the counting operator

TB(f, g) :=
∑

x−x′=(y2
1 ,...,y

2
d )

f (x)g(x′)1B(y1, . . . , yd).

Write TB(f ) for TB(f, f ). With this notation, our assumption is that

TB(1A) = 0.

Let f = 1A − δ1[N ]d denote the balanced function of A in [N ]d . Then by bilinearity,

TB(1A) = TB(1A, f )+ TB(f, δ1[N ]d )+ δ
2TB(1[N ]d ).
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Hence there exists g : [N ] → [0, 1] with ‖g‖2 ≤
√
δN and such that

|TB(g, f )| ≥
1
2δ

2TB(1[N ]d ) or |TB(f, g)| ≥ 1
2δ

2TB(1[N ]d ). (7.3)

Since the balanced function f has average value 0, one can regard (7.3) as exhibiting the
fact that f displays some form of non-uniformity. In order to demonstrate this formally
we require the following lemmas.

Lemma 7.2 (Homogeneous counting lemma). Let B = B1 × · · · × Bd be a product of
M-homogeneous sets. Then for N ≥ 64M2 we have

TB(1[N ]d ) ≥
(
N3/2

8M2

)d
.

Proof. It suffices to prove the result for d = 1, since

TB(1[N ]d ) =
d∏
i=1

TBi (1[N ]).

If y ∈
[√
N/2

]
then y2

∈ [N/2], so for y in this interval we have∑
x−x′=y2

1[N ](x)1[N ](x′) = #{y2
+ x : 1 ≤ x ≤ N − y2

} ≥ N/2.

Summing over y lying in the intersection of this interval with a homogeneous set B, we
apply Lemma 4.2 to deduce that

TB(1[N ]) ≥
∑

y∈B∩[
√
N/2]

∑
x−x′=y2

1[N ](x)1[N ](x′) ≥
1
M

⌊
b
√
N/2c
M

⌋
N

2
.

The result follows provided that N is sufficiently large. ut

Lemma 7.3 (Generalised von Neumann theorem). Let f1, f2 : [N ]
d
→ [−1, 1]. Then

for i = 1, 2 we have

|TB(f1, f2)| �d N
3d/2(‖f̂i‖L∞(Td )/N

d)1/3.

Proof. We prove the result for i = 1, the other case being similar. For α = (α1, . . . , αd)

∈ Td , define
SB(α) :=

∑
y∈B∩[

√
N ]d

e(α1y
2
1 + · · · + αdy

2
d).

By orthogonality and Hölder’s inequality, we have

|TB(f1, f2)| =

∣∣∣∣∫
Td
SB(α)f̂1(−α)f̂2(α) dα

∣∣∣∣
≤ ‖SB‖L6(Td )‖f̂1‖

1/3
L∞(Td )‖f̂1‖

2/3
L2(Td )‖f̂2‖L2(Td ).
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The result now follows on incorporating Parseval’s identity

‖f̂i‖L2(Td ) = ‖fi‖L2(Zd ) ≤ N
d/2

together with the estimate ∫
Td
|SB(α)|

6 dα �d N
2d .

The estimate follows from orthogonality and Theorem B.1 (with η := 1). ut

When taken in conjunction with (7.3), Lemmas 7.2 and 7.3 imply that for N ≥ 64M2

there exists α ∈ Td for which

|f̂ (α)| �d (δM
−d)6Nd . (7.4)

Lemma 7.4 (Fragmentation into level sets). If α ∈ Td , Q ≥ 1 and P ∈ N then there
exist positive integers qi ≤ Q and a partition of Zd into sets R of the form

d∏
i=1

(ai + q
2
i · (−P, P ]) (7.5)

such that for any g : Zd → [−1, 1] with finite L1 norm we have the estimate

|ĝ(α)| ≤
∑
R

∣∣∣∑
x∈R

g(x)

∣∣∣+Od(‖g‖1PQ−1/3). (7.6)

Proof. By a weak form of a result of Heilbronn [Hei48], there are q1, . . . , qd ≤ Q such
that

‖αiq
2
i ‖ � Q−1/3 (1 ≤ i ≤ d). (7.7)

We partition Zd into congruence classes of the form∏
i

(ai + q
2
i · Z),

then partition each copy of Z appearing in this product into a union of intervals of the form
2nP + (−P, P ] with n ∈ Z. This yields a partition of Zd into sets R of the form (7.5).

If x, x′ lie in the same R then x − x′ = (q2
1y1, . . . , q

2
dyd) for some y ∈ (−P, P ]d ,

and so

|e(α · x)− e(α · x′)| �

d∑
i=1

P ‖q2
i αi‖ �d PQ

−1/3.

It then follows from the triangle inequality that

|ĝ(α)| ≤
∑
R

∣∣∣∑
x∈R

g(x)e(α · x)

∣∣∣ =∑
R

∣∣∣∑
x∈R

g(x)

∣∣∣+Od(∑
R

∑
x∈R

|g(x)|PQ−1/3
)
. ut
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Let P := bN1/9
c and Q := N3/8. Then, provided that (7.2) fails to hold, we have

PQ−1/3
≤ cd(δM

−d)6, PQ2N−1
≤ cd(δM

−d)6. (7.8)

With these bounds in hand, we claim that we may apply Lemma 7.4 to (7.4) and conclude
that there exists a set R contained in [N ]d and of the form (7.5) for which∑

x∈R

f (x)�d (δM
−d)6|R|. (7.9)

Let us presently set about showing this.
The first bound in (7.8), together with (7.6), implies that∑

R

∣∣∣∑
x∈R

f (x)

∣∣∣�d (δM
−d)6Nd .

By definition, the balanced function has average value
∑
x f (x) = 0, so adding this

quantity to either side of the inequality gives∑
R

max
{

0,
∑
x∈R

f (x)
}
�d (δM

−d)6Nd .

Inspection of the proof of Lemma 7.4 reveals that the number of R which intersect [N ]d

is at most (
N

2P
+Q2

)d
. (7.10)

Similarly, the number of R contained in [N ]d is at least(
N

2P
−Q2

)d
.

Therefore ∑
R⊂[N ]d

max
{

0,
∑
x∈R

f (x)
}
≥
(
cd(δM

−d)6 − CdQ
2PN−1)Nd .

The second inequality in (7.8) now implies that∑
R⊂[N ]d

max
{

0,
∑
x∈R

f (x)
}
�d (δM

−d)6Nd .

By (7.8) and (7.10), the number of R contained in [N ]d is Od((N/P )d). An application
of the pigeonhole principle finally confirms (7.9).

The estimate (7.9) completes our proof of Lemma 7.1, for if R takes the form (7.5)
with P = bN1/9

c then we may take N1 := 2P , B ′i := {y ∈ N : qiy ∈ Bi} and

A1 := {x ∈ [N1]
d
: (a1, . . . , ad)+ (q

2
1 (x1 − P), . . . , q

2
d (xd − P)) ∈ A}.
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8. Varnavides averaging for supersaturation

We complete the proof of Theorem 2.1 by deducing the counting result, Theorem 2.4,
from the multidimensional existence result, Theorem 2.5. The deduction proceeds by
collecting a single configuration from many subprogressions, then establishing that these
configurations do not coincide too often. This random sampling argument originates with
Varnavides [Var59].

Proposition 8.1 (Varnavides argument). For any δ > 0 and d,M ∈ N there exist
N0 ∈ N and c0 > 0 such that for any N ≥ N0 the following holds. If A ⊂ [N ]d is
at least δ-dense in [N ]d and B1, . . . , Bd are M-homogeneous sets of natural numbers,
then there are at least c0N

3d/2 tuples (x, x′, y) ∈ A2
× B1 × · · · × Bd satisfying (2.3).

Proof. For q, n ∈ Zd write q⊗2
⊗n for the tuple (q2

1n1, . . . , q
2
dnd) and write q⊗2

⊗[N ]d

for the set
{q⊗2

⊗ n : n ∈ [N ]d}.

LetN0 = N0(δ/21+d , d,M) be the quantity given by Theorem 2.5. Suppose thatN ≥ N0
and write Q := b

√
N/N0c. Averaging, we have∑
z∈Zd

∑
q∈[Q]d

|A ∩ (z+ q⊗2
⊗ [N0]

d)| ≥ δ(NQN0)
d .

By the definition of Q, there are at most (2N)d choices for z for which there exists
q ∈ [Q]d such that

|A ∩ (z+ q⊗2
⊗ [N0]

d)| 6= 0.

Hence there are at least 1
2δ(NQ)

d choices for (z, q) ∈ Zd × Nd for which

|A ∩ (z+ q⊗2
⊗ [N0]

d)| ≥ 2−1−dδNd
0 . (8.1)

Call each such choice of (z, q) a good tuple. Define

Az,q := {y ∈ [N0]
d
: z+ q⊗2

⊗ y ∈ A}.

If (z, q) is good then |Az,q | ≥ 2−1−dδNd
0 . Applying Theorem 2.5 we see that there exist

x, x′ ∈ Az,q satisfying (2.3) with the yi restricted to the M-homogeneous sets

{yi : qiyi ∈ Bi}.

Translating and dilating, we deduce that each set A∩ (z+ q⊗2
⊗ [N0]

d)) satisfying (8.1)
contains a solution to (2.3) with yi ∈ Bi .

For fixed (x, y) ∈ Zd × Nd define R(x, y) to be the quantity

#{(z, q) ∈ Zd × [Q]d : {x, x + y⊗2
} ⊂ (z+ q⊗2

⊗ [N0]
d)}.

Claim. R(x, y) ≤ N2d
0 .
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To see this, observe that if {x, x + y⊗2
} ⊂ z + q⊗2

⊗ [N0]
d then for each i there exists

mi ∈ [N0] such that y2
i = q

2
i mi . As there are at most N0 choices formi for fixed yi , there

are at most Nd
0 choices for q. Once one has fixed this choice of q we have

z ∈ x − q⊗2
⊗ [N0]

d ,

so there are at most Nd
0 choices of z for fixed x. This establishes the claim.

Invoking the claim gives

N2d
0 #{(x, y) ∈ Zd × B1 × · · · × Bd : {x, x + y

⊗2
} ⊂ A} ≥

∑
x∈Zn, y∈B1×···×Bd

x,x+y⊗2
∈A

R(x, y).

Next we interchange the order of summation to find that∑
x∈Zd , y∈B1×···×Bd

x,x+y⊗2
∈A

R(x, y) ≥
∑
z∈Zd

∑
q∈[Q]d

#{(x, y) : {x, x+y⊗2
} ⊂ A∩(z+q⊗2

⊗[N0]
d)}

≥ #{(z, q) ∈ Zd×[Q]d : (z, q) is good} ≥ 1
2δ(NQ)

d .

It follows that

#{(x, y) ∈ Zd × B1 × · · · × Bd : {x, x + y
⊗2
} ⊂ A} ≥ 1

2δN
−2d
0 Nd

b
√
N/N0c

d .

The result follows since N0 �δ,d,M 1. ut

Proof that Proposition 8.1 implies Theorem 2.4. We prove a more general result for sums
of d squares. First note that, by translation, Proposition 8.1 remains valid for dense subsets
of [−N,N]d . Given A ⊂ [N ] of density at least δ, define

A′ := {x ∈ [−N,N]d : x1 + · · · + xd ∈ A}.

For every element n of [−N,N] there are at least N pairs (n1, n2) ∈ [−N,N]
2 such that

n = n1 + n2. An induction then shows that for each n ∈ [−N,N] we have

#{(n1, . . . , nd) ∈ [−N,N]
d
: n = n1 + · · · + nd} ≥ N

d−1.

Consequently,
|A′| ≥ δNd

�d δ|[−N,N]
d
|.

Applying Proposition 8.1 with Bi := B for all i, we deduce that there are at least c0N
3d/2

tuples (x, y) ∈ A′ × Bd such that x + (y2
1 , . . . , y

2
d) ∈ A

′. For each such tuple the sum
x = x1+ · · ·+ xd is an element of the one-dimensional set A, as is x+ y2

1 + · · ·+ y
2
d . As

each element of A has at most (2N + 1)d−1 representations of the form x1 + · · · + xd , it
follows that the number of solutions to

x − x′ = y2
1 + · · · + y

2
d

is at least c0N
3d/2−(d−1)

= c0N
1+d/2, as required. ut
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Part 2. Rado’s criterion over squares and higher powers

In this part we prove Theorem 1.3. Let η = ηk > 0 be a fixed constant, where η2 = 1, and
ηk is sufficiently small when k ≥ 3. In other words, we will work with smooth numbers
when k ≥ 3, but not when k = 2. This choice will improve our mean value estimate in
the former situation, and our minor arc estimate in the latter.

9. The smooth homogeneous Bergelson–Leibman theorem

We begin our investigation of Rado’s criterion in kth powers by generalising Theorem
2.4, which asserts that dense multidimensional sets contain configurations of the form

(x1, . . . , xd), (x1 + y
2
1 , . . . , xd + y

2
d)

with the yi lying in a homogeneous set. We require a version of this result which concerns
affine configurations determined by kth powers, similar in flavour to the following spe-
cial case of the multidimensional polynomial Szemerédi theorem of Bergelson–Leibman
[BL96].

Bergelson–Leibman. Let k ∈ N, δ > 0 and let F ⊂ Zd be a finite set. There exists
N0 = N0(k, δ, F ) such that for any N ≥ N0, if A ⊂ [N ]d has size |A| ≥ δNd then there
exist x ∈ Zd and y ∈ N such that

x + yk · F ⊂ A.

We require a version of this result in which the kth power comes from a homogeneous set.
Fortunately, this strengthening can be deduced from the original. It is convenient to set up
the following notation.

Notation. Given q, y, k ∈ Nd define

q ⊗ y := (q1y1, . . . , qdyd), y⊗k := (y
k1
1 , . . . , y

kd
d ).

For F ⊂ Zd , write q ⊗ F for the set {q ⊗ y : y ∈ F }.

Here is our version of the Bergelson–Leibman theorem with common difference arising
from a homogeneous set.

Corollary 9.1 (Homogeneous Bergelson–Leibman). Let k ∈ Nd , M ∈ N, δ > 0 and
let F ⊂ Zd be a finite set. There exists N0 such that for any N ≥ N0, if A ⊂ [N ]d has
size |A| ≥ δNd and B1, . . . , Bd ⊂ N are M-homogeneous, then there exist x ∈ Zd and
y1 ∈ B1, . . . , yd ∈ Bd such that

x + y⊗k ⊗ F ⊂ A. (9.1)
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Proof. Let K :=
∏
i ki and consider the finite set

F ′ := [MK
]
d
⊗ F.

By the Bergelson–Leibman theorem, provided that N �M,K,F,δ 1, there exist x ∈ Zd
and t ∈ N such that

x + tK · F ′ ⊂ A.

The result follows if the progression tK · [MK
] contains an element of the form y

ki
i for

some yi ∈ Bi .
Let zi := tK/ki . Then

{z
ki
i , (2zi)

ki , . . . , (Mzi)
ki } = tK · {1ki , 2ki , . . . ,Mki } ⊂ tK · [MK

].

Since each Bi is M-homogeneous, it intersects the set zi · [M]. ut

Next we require a counting analogue of this result. In fact, we need to count the number
of configurations arising from a smooth common difference. Before stating the theorem,
we remind the reader of what it means for a set to beM-homogeneous in theNη-smooths
(see Definitions 1.6 and 2.2).

Theorem 9.2 (Varnavides averaging). Let k1, . . . , kd ,M ∈ N, η, δ ∈ (0, 1], and let
F ⊂ Zd be a finite set. There exist N0 ∈ N and c0 > 0 such that for any N ≥ N0, if
A ⊂ [N ]d has |A| ≥ δNd and B ⊂ N is M-homogeneous in the Nη-smooths, then the
number of tuples (x, y) ∈ Zd × Bd for which (9.1) holds is at least

c0N
d+1/k1+···+1/kd .

Proof. Increasing the size of F if necessary, we may assume that F contains two elements
which differ in the ith coordinate for each i ∈ [d]. Let N0 be the quantity given by
Corollary 9.1 with respect to the density δ/2d+1. Suppose that

N ≥ N
1/η
0 , (9.2)

and define the following sets of smooths:

Si := S(b
ki
√
N/N0c;N

η).

Interchanging the order of summation, we have∑
z∈Zd

∑
q1∈S1

· · ·

∑
qd∈Sd

|A ∩ (z+ q⊗k ⊗ [N0]
d)| ≥ δ|S1| · · · |Sd |(NN0)

d .

Notice that there are at most (2N)d choices for z for which there exists q ∈ S1×· · ·×Sd
such that

|A ∩ (z+ q⊗k ⊗ [N0]
d)| 6= 0.

Hence there are at least 1
2δN

d
|S1| · · · |Sd | choices for (z, q) ∈ Zd ×

∏
i Si for which

|A ∩ (z+ q⊗k ⊗ [N0]
d)| ≥ 2−d−1δNd

0 . (9.3)

Call such a choice of (z, q) a good tuple.
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Claim 1. For each good tuple (z, q) the setA∩(z+q⊗k⊗[N0]
d) contains a configuration

of the form x + y⊗k ⊗ F for some x ∈ Zd and some y ∈ Bd .

To see this, define
Az,q := {x ∈ [N0]

d
: z+ q⊗k ⊗ x ∈ A}.

Then |Az,q | ≥ 2−d−1δNd
0 . Let

Bi = {yi ∈ [N0] : qiyi ∈ B} ∪ (N0,∞).

Using the fact that B is Nη-smoothly M-homogeneous, together with (9.2), one can
check that eachBi isM-homogeneous (not just smoothly homogeneous). Invoking Corol-
lary 9.1, we see that there exist x ∈ Zd and y ∈ B1 × · · · × Bd such that

x + y⊗k ⊗ F ⊂ Az,q .

Translating and dilating, we deduce that A ∩ (z+ q⊗k ⊗ [N0]
d) contains a configuration

of the form x′+ (q⊗y)⊗k⊗F . By definition of the Bi and the fact that F is non-constant
in each coordinate, we see that y ∈ [N0]

d and thus each coordinate of q ⊗ y lies in B.
This establishes Claim 1.

For fixed (x, y) ∈ Zd ×Nd letG(x, y) denote the number of tuples (z, q) ∈ Zd ×Nd
satisfying

x + y⊗k ⊗ F ⊂ z+ q⊗k ⊗ [N0]
d . (9.4)

Define
A := {(x, y) ∈ Zd × Bd : x + y⊗k ⊗ F ⊂ A}. (9.5)

Then interchanging the order of summation shows that the sum
∑
(x,y)∈AG(x, y) is at

least∑
z∈Zd

∑
q1∈S1

· · ·

∑
qd∈Sd

|{(x, y) ∈ Zd × Bd : x + y⊗k ⊗ F ⊂ A ∩ (z+ q⊗k ⊗ [N0]
d)}|

≥

∣∣∣{(z, q) ∈ Zd ×
∏
i

Si : (z, q) is good
}∣∣∣ ≥ 1

2δN
d
|S1| · · · |Sd |.

Applying Lemma A.2 (for N sufficiently large) we deduce that∑
(x,y)∈A

G(x, y)�k,δ,η,N0 Nd+1/k1+···+1/kd .

Since the theorem asserts a lower bound on the size of A, the result is proved provided
we have the following upper bound on G(x, y).

Claim 2. Suppose that F contains two elements which differ in the ith coordinate for
each i ∈ [d]. Then G(x, y) ≤ N2d

0 .

To see this, first note that if x + y⊗k ⊗ F ⊂ z+ q⊗k ⊗ [N0]
d then, since F contains two

elements differing in their ith coordinate, there exist integers fi < f ′i such that

xi + y
ki
i fi, xi + y

ki
i f
′

i ∈ zi + q
ki
i · [N0].
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Subtracting these elements, we deduce that there exists ni ∈ [N0] for which

q
ki
i =

y
ki
i (f

′

i − fi)

ni
.

As there are at most N0 choices for ni , and yi is fixed, there are at most Nd
0 choices for q.

Once one has fixed this choice of q, for any f ∈ F we have

z ∈ x + y⊗k ⊗ f − q⊗k ⊗ [N0]
d ,

so there are at most Nd
0 choices for z. In summary G(x, y) ≤ N2d

0 , which establishes
Claim 2. ut

Remark 9.3 (Roth’s theorem with logarithmically-smooth common difference). The
above argument remains valid for much stronger levels of smoothness. For instance, one
can use it to establish that if A ⊂ [N ] lacks a three-term progression with common dif-
ference equal to an R-smooth number then

|A| �
r3(R)

R
N. (9.6)

Here r3(N) denotes the size of a largest subset of [N ] lacking a non-trivial three-term
arithmetic progression.

10. A supersaturated generalisation of both Roth and Sárközy’s theorems

In this section we deduce a one-dimensional counting result analogous to Theorem 2.4 by
projecting down the multidimensional Theorem 9.2. Again we remind the reader of what
it means to be M-homogeneous in S(N1/k

;Nη) (see Definition 2.2).

Theorem 10.1 (Supersaturated smooth homogeneous Roth–Sárközy). Let λ1, . . . , λs,

µ1, . . . , µt ∈ Z \ {0} with λ1 + · · · + λs = 0. For any η, δ > 0 and M ∈ N there
exist N0 ∈ N and c0 > 0 such that for any N ≥ N0 the following holds. If A is at
least δ-dense in [N ] and B is M-homogeneous in S(N1/k

;Nη), then there are at least
c0N

s+t/k−1 tuples (x, y) ∈ As × B t solving the equation

λ1x1 + · · · + λsxs = µ1y
k
1 + · · · + µty

k
t . (10.1)

Notice that Theorem 10.1 is a common generalisation of both the Furstenberg–Sárközy
theorem (take s = 2 and t = 1) and Roth’s theorem (take λ = (1,−2, 1) and t = 0).

Proof of Theorem 10.1. Given A ⊂ [N ] of density at least δ, let us define

Ã :=
{
x ∈ [N ]s+t−2

:

∑
i

xi ∈ A
}

A stars and bars argument shows that for n ∈ [N ] we have

#{(n1, . . . , nd) ∈ [N ]
d
: n = n1 + · · · + nd} =

(
n− 1
d − 1

)
.
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Since there are at most 1
2 |A| elements x of A satisfying x ≤ 1

2 |A|, it follows that for
N ≥ Cs,tδ

−1 we have

|Ã| =
∑
n∈A

(
n− 1

s + t − 3

)
�s,t δ

s+t−2N s+t−2. (10.2)

In the statement of Theorem 10.1, at least one of the coefficients λi must be positive.
Relabelling indices, we may assume that λs > 0. For a technical reason, it will be useful
in a later part of the argument if we can ensure that

Ã− Ã ⊂ [−N/λs, N/λs]
s+t−2. (10.3)

This follows on partitioning the hypercube [N ]s+t−2 into subhypercubes of sufficiently
small side length and applying the pigeonhole principle to ensure that Ã has large density
on one such part (worsening the density (10.2) by a factor of Os,t,λs (1) in the process).

Define F ⊂ Zs+t−2 to be the set consisting of the zero vector together with the rows
of the matrix 

−λs
−λs

. . .

−λs
λ1 λ2 . . . λs−2 λ

k−1
s µ1 . . . λ

k−1
s µt

 . (10.4)

Consider the set
B̃ := {y ∈ N : λsy ∈ B} ∪ (N1/kλ−1

s ,∞).

Provided that Nη
≥ max{λs,M} (as we may assume), we see that B̃ is M-homo-

geneous in the Nη-smooths. Applying Theorem 9.2, we find that there are at least
c0N

s+t−2+s−2+t/k tuples (x, y, z) ∈ Zs+t−2
× B̃s−2

× B̃ t such that Ã contains the con-
figuration

x + (y1, . . . , ys−2, z
k
1, . . . , z

k
t )⊗ F.

By (10.3) and (10.4) we have λksµiz
k
i ∈ [−N,N], hence by definition of B̃ we deduce that

λszi ∈ B. Projecting down to one dimension and taking into account the multiplicities of
representations, we obtain� N s+t/k−1 tuples (x, y, z) ∈ Z× Ns−2

× Nt with λszi ∈ B
and such that A contains the configuration

x, x − λsy1, . . . , x − λsys−2, x +

s−2∑
i=1

λiyi + λ
k−1
s

t∑
j=1

µjz
k
j .

Let us set xi := x − λsyi for i = 1, . . . , s − 2, along with xs−1 = x and

xs := x +

s−2∑
i=1

λiyi + λ
k−1
s

t∑
j=1

µjz
k
j .

One can then check that the tuple (x1, . . . , xs, λsz1, . . . , λszt ) is an element of As × B t

satisfying (10.1). By construction there are� N s+t/k−1 such tuples. ut
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11. Pseudorandom Roth–Sárközy

In this section we develop a pseudorandom variant of Theorem 10.1. As in Part 1, we be-
gin by relaxing Theorem 10.1 to encompass general bounded functions. In order to count
solutions to our equation weighted by general functions, we use the following notation.

Definition 11.1 (T` counting operator). Fix λ1, . . . , λs, µ1, . . . , µt ∈ Z \ {0} with λ1 +

· · · + λs = 0. Given functions f1, . . . , fs : Z→ C and B ⊂ Z, write (when defined)

T`(f1, . . . , fs;B) :=
∑

λ1x
`
1+···+λsx

`
s=

µ1y
k
1+···+µty

k
t

f1(x1) · · · fs(xs)1B(y1) · · · 1B(yt ).

We write T`(f ;B) for T`(f, . . . , f ;B) and T`(A;B) for T`(1A;B).

Remark 11.2 (Dependence on constants). In what follows we regard the coefficients λi
and µj as fixed, and suppress their dependence in any implied constants. Similarly for the
degree k and the number of variables s + t . We also fix η = ηk globally: recall that this
is 1 if k = 2, and a small positive constant if k ≥ 3. We opt to keep any dependence on
the following explicit: the level of homogeneity M , and the density δ.

Lemma 11.3 (Functional Roth–Sárközy). For any δ > 0 andM ∈ N there existN0 ∈ N
and c0 > 0 such that for any N ≥ N0 the following holds. Let f : [N ] → [0, 1] with
‖f ‖1 ≥ δN , and let B be M-homogeneous in S(N1/k

;Nη). Then

T1(f ;B) ≥ c0N
s+t/k−1.

Proof. Let A = {x ∈ [N ] : f (x) ≥ δ/2}. As ‖f ‖1 ≥ δN , we must necessarily have
|A| ≥ δN/2. Since f ≥ δ1A/2, we deduce that

T1(f ;B) ≥ (δ/2)sT1(A;B),

and an application of Theorem 10.1 completes the proof. ut

Our next step is to weaken the assumptions of Theorem 10.1 even further, replacing
bounded functions with unbounded functions which are sufficiently pseudorandom, in
that they possess a majorant with good Fourier decay (Definition 5.3) and p-restriction
(Definition 5.4).

Theorem 11.4 (Pseudorandom Roth–Sárközy). There exists s0(k) such that for s + t ≥
s0(k), δ > 0 and K,M ∈ N there exist N0 ∈ N and c0, θ > 0 such that for N ≥ N0 the
following holds.

• Let ν : [N ] → [0,∞) satisfy an (s + t − 10−8)-restriction estimate with constant K ,
and have Fourier decay of level θ ;
• let B be M-homogeneous in S(N1/k

;Nη);
• let f : [N ] → [0,∞) with f ≤ ν and ‖f ‖1 ≥ δ‖ν‖1.
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Then

T1(f ;B) ≥ c0‖ν‖
s
1N

t/k−1. (11.1)

Moreover, we may take s0(2) = 5, s0(3) = 8, and s0(k) satisfying (1.3).

Proof. By replacing B with B ∩ S(N1/k
;Nη), we may freely suppose that B ⊂

S(N1/k
;Nη). Deploying the dense model lemma [Pre17a, Theorem 5.1], we can find

g : Z→ C satisfying 0 ≤ g ≤ 1[N ] and∥∥∥∥ f̂

‖ν‖1
−
ĝ

N

∥∥∥∥
∞

� log(θ−1)−3/2. (11.2)

Provided that θ ≤ exp(−Cδ−1) with C a large positive constant, we can compare Fourier
coefficients at 0 to deduce that ‖g‖1 � δN . Lemma 11.3 then gives

T1(g;B)�δ,M N s+t/k−1. (11.3)

Let h denote the indicator function of the set {xk : x ∈ B}. Then for functions
h1, . . . , hs : [N ] → [0,∞) we have

T1(h1, . . . , hs;B) =
∑

λ·x=µ·y

h1(x1) · · ·hs(xs)h(y1) · · ·h(yt ). (11.4)

The function h is majorised by the indicator function of the set

{xk : x ∈ S(N1/k
;Nη)},

which, by Lemma B.3, satisfies an (s+t−10−8)-restriction estimate with constantOη(1).
Observe that g is majorised by 1[N ], which also satisfies an (s + t − 10−8)-restriction

estimate with constant O(1). The generalised von Neumann theorem (Lemma C.3), to-
gether with (11.2) and (11.4), yields∣∣∣∣T1(f ;B)

‖ν‖s1
−
T1(g;B)

N s

∣∣∣∣� K|S(N1/k
;Nη)|t

N
log(θ−1)1.5×10−8

≤ KN t/k−1 log(θ−1)1.5×10−8
.

Pairing this with (11.3), and choosing θ ≤ θ0(δ,M,K), completes the proof. ut

12. The W -trick for smooth powers and a non-linear Roth–Sárközy theorem

Our objective in this section is to use Theorem 11.4 to deduce the following non-linear
density result. Recall that η = ηk is 1 if k = 2, and a small positive constant if k ≥ 3.
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Theorem 12.1 (Non-linear Roth–Sárközy). There exists s0(k) such that the following
holds. Let λ1, . . . , λs, µ1, . . . , µt ∈ Z \ {0} with s + t ≥ s0(k) and λ1 + · · · + λs = 0.
For any δ > 0 and M ∈ N there exist N0 ∈ N and c0 > 0 such that for any N ≥ N0 the
following holds. Let A have density at least δ in S(N;Nη) and let B be M-homogeneous
in S(N;Nη). Then

#
{
(x, y) ∈ As × B t :

s∑
i=1

λix
k
i =

t∑
j=1

µjy
k
j

}
≥ c0N

s+t−k.

Moreover, we may take s0(2) = 5, s0(3) = 8, and s0(k) satisfying (1.3).

This deduction proceeds by developing a W -trick for smooth kth powers, analogous to
that developed for prime powers in [Cho18]. Let

W = kk−1
∏
p≤w

pk, (12.1)

where w = w(η, δ,M) is a constant to be determined, and the product is over primes. We
apply Lemma A.4 with S = S(N;Nη), using Lemma A.2 in the process. This allows us
to conclude that there exists a w-smooth positive integer ζ �η,δ,w 1 and ξ ∈ [W ] with
(ξ,W) = 1 such that

#{x ∈ Z : ζ(ξ +Wx) ∈ A} ≥ 1
2δ#{x ∈ Z : ζ(ξ +Wx) ∈ S(N;Nη)}. (12.2)

Define

P :=
N

ζ
, X :=

P k

kW
(12.3)

and set

A1 :=

{
(Wx + ξ)k − ξ k

kW
: ζ(Wx + ξ) ∈ A and Wx + ξ ∈ S(P ;P η)

}
\ {0}. (12.4)

Then A1 ⊂ [X]. Combining (12.2) and Lemma A.5, we have the lower bound

|A1| ≥
1
2δ#{x ∈ S(P ;P

η) : x ≡ ξ mod W } −Oη,δ,w(N(logN)−1). (12.5)

Noting that (kW)1/k is a positive integer, let

B1 := {y ∈ N : ζ(kW)1/ky ∈ B}. (12.6)

Provided that N ≥ max{k,w, ζ }1/η, one may check that B1 is M-homogeneous in
S(X1/k

;Xη). Recalling that
∑s
i=1 λi = 0, we have

Tk(A;B) ≥ T1(A1;B1). (12.7)

Define ν : [X] → [0,∞) by

ν(n) =

{
xk−1 if n = xk−ξ k

kW
for some x ∈ S(P ;P η) with x ≡ ξ mod W,

0 otherwise.
(12.8)

First we check our L1 normalisation. Let ρ(·) denote the Dickman–de Bruijn ρ-function
(see [Gran08]).
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Lemma 12.2. We have∑
n

ν(n) = ρ(1/η)X +Oη,w(P k/logP). (12.9)

Proof. Throughout the following argument, all implied constants in our asymptotic nota-
tion are permitted to depend on k, η,w. Bear in mind that η ≤ ηk is small.

From the definition ∑
n

ν(n) =
∑

x∈S(P ;P η)
x≡ξ modW

xk−1
+O(1).

We obtain from the start of the proof of [Vau89, Lemma 5.4] the fact that if m ≤ P then

∑
x∈S(m;P η)
x≡ξ modW

1 =
1
W

∑
x∈S(m;P η)

1+O
(

P

logP

)
. (12.10)

Now partial summation and Lemma A.2 yield

∑
n

ν(n) = W−1P kρ(1/η)−
∫ P

P 1/2

k − 1
W

tk−1ρ

(
log t
η logP

)
dt

+O

(
P k

logP

)
so, by the mean value theorem and the boundedness of ρ′, it remains to show that∫ P

P 1/2
ktk−1ρ

(
log t
η logP

)
dt = P kρ(1/η)+O

(
P k

logP

)
.

Integration by parts gives∫ P

P 1/2
ktk−1ρ

(
log t
η logP

)
dt = P kρ(1/η)− P k/2ρ(1/(2η))

−

∫ P

P 1/2

tk−1

η logP
ρ′
(

log t
η logP

)
dt,

and the estimate now follows from the boundedness of ρ, ρ′. ut

Lemma 12.3 (Density transfer). For N large in terms of k, η, w and δ we have∑
n∈A1

ν(n)�η,k δ
k
∑
n

ν(n). (12.11)
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Proof. We employ (12.5) in conjunction with (12.10) to conclude that

#
{
x ∈ S(P ;P η) : x ≡ ξ mod W,

xk − ξ k

kW
∈ A1, x > Z

}
≥ |A1| − ZW

−1
− 1

≥
1
2δ#{x ∈ S(P ;P

η) : x ≡ ξ mod W } − ZW−1
−Oη,δ,w(N(logN)−1)

≥
δ

2W
|S(P ;P η)| − ZW−1

−Oη,δ,w(N(logN)−1).

Choosing Z = 1
4δ|S(P ;P

η)| furnishes∑
n∈A1

ν(n) ≥
(δ/4)k

W
|S(P ;P η)|k −Oη,δ,w(N

k(logN)−1).

Using Lemma A.2 and recalling (12.3) we obtain∑
n∈A1

ν(n) ≥ W−1(δPρ(1/η)/4)k −Oη,δ,w(Nk(logN)−1)

≥ (k(ρ(1/η)/4)k) · δkX −Oη,δ,w(Nk(logN)−1).

Taking N sufficiently large, an application of (12.9) completes the proof. ut

The following two ingredients are established in Appendices D and E.

Lemma 12.4 (Fourier decay). We have∥∥∥∥ ν̂

‖ν‖1
−

1̂[X]
X

∥∥∥∥
∞

�η w
−1/k. (12.12)

Lemma 12.5 (Restriction estimate). There exists s0(k) such if s ≥ s0(k) then

sup
|φ|≤ν

∫
T
|φ̂(α)|s−10−8

dα �η,k ‖ν‖
s−10−8

1 X−1.

Moreover, we may take s0(2) = 5, s0(3) = 8 and s0(k) satisfying (1.3).

Proof of Theorem 12.1. We employ Theorem 11.4 with majorant ν given by (12.8), ho-
mogeneous setB1 ⊂ S(X

1/k
;Xη) given by (12.6), and function f = ν1A1 (recall (12.4)).

It is first necessary to check that these choices satisfy the hypotheses of Theorem 11.4.
By Lemma 12.5, the function ν satisfies an (s + t − 10−8)-restriction estimate with

constantK = Oη,k(1). Let cη,k denote the implied constant in (12.11) and set δ̃ := cη,kδk .
Theorem 11.4 guarantees the existence of a positive constant

θ = θ(η, δ̃,M,K) (12.13)

such that provided ν has Fourier decay of level θ and ‖f ‖1 ≥ δ̃‖ν‖1 we may conclude
that (11.1) holds. Taking

w = Cηθ
k
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guarantees sufficient Fourier decay, by Lemma 12.4. We note that this choice ofw satisfies
w �η,δ,M 1, as can be checked by unravelling the dependencies in (12.13). We obtain
‖f ‖1 ≥ δ̃‖ν‖1 via Lemma 12.3. This requires us to take N sufficiently large in terms of
k, η,w and δ. By our choice of w, this is ensured if N is sufficiently large in terms of η, δ
and M (as we may assume).

Applying Theorem 11.4 and (12.9) yields

T1(ν1A1;B1)�η,δ,M ‖ν‖
s
1X

t/k−1
�η,δ,M Xs+t/k−1.

By (12.7) and the bound ‖ν‖∞ �η,δ,M Nk−1, we finally have

Tk(A;B) ≥ T1(A1;B1) ≥ ‖ν‖
−s
∞ T1(ν1A1;B1)�η,δ,M N s+t−k. ut

13. Deducing partition regularity

In this final section of this part of the paper we prove a finitary version of Theorem 1.3.

Theorem 13.1 (Smooth finitary colouring result). Define s0(k) as in Theorem 1.3, and
let s ≥ s0(k). Let c1, . . . , cs ∈ Z \ {0} and suppose that

∑
i∈I ci = 0 for some non-

empty I . Then, for any r ∈ N, there exists N0 ∈ N such that the following holds: for any
N ≥ N0, if we have a finite colouring of the Nη-smooth numbers in [N ],

S(N;Nη) = C1 ∪ · · · ∪ Cr ,

then there exists a colour i ∈ [r] and distinct x1, . . . , xs ∈ Ci solving (1.2).

13.1. The inductive base: one colour

As in §4, given functions f1, . . . , fs : Z → C with finite support, define the counting
operator

T (f1, . . . , fs) :=
∑

c1x
k
1+···+csx

k
s=0

f1(x1)f2(x2) · · · fs(xs)

and write T (f ) for T (f, . . . , f ).
It follows from Theorem B.1 that there exist η = η(k) > 0, N1 = N1(η, k, c) ∈ N

and c1 = c1(η, k, c) > 0 such that for N ≥ N1 we have

T (1S(N;Nη)) ≥ c1N
s−k.

By Lemma B.4, the number of trivial solutions in S(N;Nη) is o(N s−k), so there must
be at least one non-trivial solution (x1, . . . , xs) ∈ S(N;N

η)s to (1.2) for N sufficiently
large in terms of η, k, s and c. The base case follows.

13.2. The inductive step

Let S(N;Nη) = C1∪· · ·∪Cr . Re-labelling indices, we may assume that Cr is the largest
colour class, so that

|Cr | ≥ |S(N;N
η)|/r. (13.1)

We split our proof into two cases depending on the properties of Cr .
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13.2.1. The inhomogeneous case. Let M := N0(r − 1) be the quantity whose existence
is guaranteed by our inductive hypothesis. We may assume that N ≥ M1/η, so every
element of [M] is Nη-smooth. First let us suppose that Cr is not M-homogeneous in
S(N;Nη). Consequently, there exists q ∈ S(N/M;Nη) such that

Cr ∩ q · [M] = ∅. (13.2)

For i = 1, . . . , r − 1 let us define

C′i := {x ∈ S(M;M
η) : qx ∈ Ci}.

Then it follows from (13.2) that C′1 ∪ · · · ∪ C
′

r−1 = S(M;Mη). By the induction hy-
pothesis, there exist distinct elements of some C′i which solve (1.2). Since this equation is
homogeneous, we obtain a non-trivial solution in Ci by multiplying the equation through
by qk .

13.2.2. The homogeneous case. We now assume that Cr is M-homogeneous in
S(N;Nη). We apply Theorem 12.1, taking A = B = Cr . By (13.1) the density of A in
S(N;Nη) is at least 1/r . Theorem 12.1 then implies that, provided N ≥ N0(η, 1/r,M)
we have

T (1Cr ) ≥ c0(η, 1/r,M)N s−k.

By Lemma B.4, the number of solutions in S(N;Nη) with two or more coordinates equal
is o(N s−k), hence takingN sufficiently large yields at least one non-trivial solution in Cr .
We note that a quantity dependent on the tuple (η, 1/r,M) is ultimately dependent only
on η and r , by the definition of M . The induction step thereby follows, completing the
proof of Theorem 13.1.

Part 3. Supersmooths and shifted squares

In this part we establish Rado’s criterion for a linear equation in logarithmically-smooth
numbers (Theorem 1.7). Furthermore, we show how a direct application of the transfer-
ence principle yields a supersaturated version of this result, and analogously for a linear
equation in the set of squares minus one (Theorem 1.4). Both of these results are es-
tablished without recourse to properties of homogeneous sets. This reflects the fact that
supersmooths and shifted squares possess subsets which can be projectively transformed
to obtain equidistribution in congruence classes to small moduli, ruling out possible lo-
cal obstructions to partition regularity—obstructions which must be surmounted when
working with perfect squares and higher powers. This phenomenon manifests itself when
massaging the perfect powers to obtain equidistribution; this can be done, but requires an
affine transformation, as opposed to a projective one. Unfortunately, a typical equation
satisfying Rado’s criterion is only projectively invariant, so the methods of this part do
not succeed in establishing partition regularity for equations in perfect powers.
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14. Modelling a pseudorandom partition with a colouring

As described above, the proofs of Theorems 1.4 and 1.7 proceed by first passing to a
subset of the sparse arithmetic set of interest (supersmooths or shifted squares). We then
projectively transform this subset to obtain a set which is well distributed in arithmetic
progressions to small moduli. We can then define a weight ν : [N ] → ∞ supported on
our equidistributed set which has nice pseudorandomness properties.

Given a finite colouring of our original arithmetic set, the above procedure induces a
finite partition of our pseudorandom weight function into non-negative functions fi , so
that

ν =
∑
i

fi .

Deducing supersaturation then amounts to showing that the count of solutions to our
equation weighted by some fi is within a constant factor of the maximum possible.

The main tool in deriving this lower bound is to model the fi with functions gi whose
sum dominates the indicator function of the interval 1[N ]. It is a short step to show that,
in essence, we may assume that the gi correspond to indicator functions of a colouring
of [N ]. For such colourings there is already a supersaturation result in the literature due
to Frankl, Graham and Rödl [FGR88, Theorem 1]. Employing this theorem and then
(quantitatively) retracing our steps yields Theorems 1.4 and 1.7.

In this section we establish the modelling part of the above procedure: non-negative
functions fi with pseudorandom sum

∑
i fi have approximants gi whose sum domi-

nates the constant function 1[N ]. This ‘transference principle’5 for colourings is based
on Green’s transference principle for dense sets [Gre05], as exposed in [Pre17a]. We re-
call the concepts of Fourier decay and p-restriction given in Definitions 5.3 and 5.4.

Proposition 14.1 (Modelling lemma). Suppose that ν : [N ] → [0,∞) satisfies a p-
restriction estimate with constant K , and has Fourier decay of level 1/M with M ≥
M0(p,K) . Then for any fi : [N ] → [0,∞) with f1 + · · · + fr = ν there exists
gi : [N ] → [0,∞) such that g1 + · · · + gr = (1+ 1/

√
M)1[N ] and∥∥∥∥ f̂i

‖ν‖1
−
ĝi

N

∥∥∥∥
∞

�r,p,K (logM)−
1

p+2 (1 ≤ i ≤ r).

Let κ, ε > 0 be parameters, to be determined later. In proving this result we utilise the
large spectrum of fi , which we take as

Si := {α ∈ T : |f̂i(α)| ≥ κ‖ν‖1}. (14.1)

Define the Bohr set with frequencies S := S1 ∪ · · · ∪ Sr−1 and width ε ≤ 1/2 by

B(S, ε) := {n ∈ [−εN, εN] : ‖nα‖ ≤ ε (∀α ∈ S)}.

5 This is also referred to as a ‘dense model’ or ‘bounded approximation’ lemma in the literature.
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Next define

gi :=
Nfi ∗ 1B ∗ 1B
‖ν‖1|B|2

(1 ≤ i ≤ r − 1),

where, for finitely supported fi , we set

f1 ∗ f2(n) :=
∑

m1+m2=n

f1(m1)f2(m2).

We first estimate
∣∣ f̂i
‖ν‖1
−

ĝi
N

∣∣ with i = 1, . . . , r − 1. The key identity is

f̂1 ∗ f2 = f̂1f̂2.

If α ∈ T \ S then by the definition (14.1) of the large spectrum we have∣∣∣∣ f̂i(α)‖ν‖1
−
ĝi(α)

N

∣∣∣∣ = ∣∣∣∣ f̂i(α)‖ν‖1

∣∣∣∣ ∣∣∣∣1− 1̂B(α)2

|B|2

∣∣∣∣ ≤ 2κ.

If α ∈ S, then for each n ∈ B we have e(αn) = 1+O(ε). Hence

1̂B(α) = |B| +O(ε|B|),

and consequently∣∣∣∣ f̂i(α)‖ν‖1
−
ĝi(α)

N

∣∣∣∣ = ∣∣∣∣ f̂i(α)‖ν‖1

∣∣∣∣ ∣∣∣∣1+ 1̂B(α)
|B|

∣∣∣∣ ∣∣∣∣1− 1̂B(α)
|B|

∣∣∣∣� ε.

Combining both cases gives ∥∥∥∥ f̂i

‖ν‖1
−
ĝi

N

∥∥∥∥
∞

� ε + κ.

From this it is apparent we should choose κ = ε, which we do.
We will show that, for any n, the sum

∑
i≤r−1 gi(n) is almost bounded above by 1.

By positivity and orthogonality, we have

r−1∑
i=1

gi(n) = N‖ν‖
−1
1 |B|

−2
∑

x+y+z=n

r−1∑
i=1

fi(x)1B(y)1B(z)

≤ N‖ν‖−1
1 |B|

−2
∑

x+y+z=n

ν(x)1B(y)1B(z)

= N‖ν‖−1
1 |B|

−2
∫
T
ν̂(α)1̂B(α)2e(−αn) dα.
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Inserting our Fourier decay assumption, and using Parseval, yields

∫
T

ν̂(α)

‖ν‖1
1̂B(α)2e(−αn) dα ≤

∫
T

1̂[N ](α)
N

1̂B(α)2e(−αn) dα +M−1
∫
T
|1̂B(α)|2 dα

= N−1
∑

x+y+z=n

1[N ](x)1B(y)1B(z)+M−1
|B|

≤ N−1
|B|2 +M−1

|B|.

Following the proof of [Pre17a, Lemmas A.1 and A.2], the restriction estimate yields
a constant C = C(p,K) > 1 such that |B| ≥ exp(−Cε−p−2)N. Taking ε =

(2C/logM)1/(p+2) with M large, we deduce that

r−1∑
i=1

gi(n) ≤ 1+ 1/
√
M, (14.2)

and that ∥∥∥∥ f̂i

‖ν‖1
−
ĝi

N

∥∥∥∥
∞

� ε �p,K (logM)−
1

p+2 (1 ≤ i ≤ r − 1).

Having found suitable bounded approximants gi for i = 1, . . . , r − 1, we define

gr := (1+ 1/
√
M)1[N ] − (g1 + · · · + gr−1).

This is non-negative, by (14.2). Finally, we calculate how well gr approximates fr =
ν − (f1 + · · · + fr−1). The triangle inequality gives

∥∥∥∥ f̂r

‖ν‖1
−
ĝr

N

∥∥∥∥
∞

≤
1
√
M
+

∥∥∥∥ ν̂

‖ν‖1
−

1̂[N ]
N

∥∥∥∥
∞

+

r−1∑
i=1

∥∥∥∥ f̂i

‖ν‖1
−
ĝi

N

∥∥∥∥
∞

�r,p,K 1/(logM)
1

p+2 .

15. A pseudorandom Rado theorem

Frankl, Graham and Rödl [FGR88, Theorem 1] proved that if c1, . . . , cs ∈ Z \ {0} are
such that

∑
i∈I ci = 0 for some non-empty I ⊂ [s], then for any r there exists c0 =

c0(r, c) > 0 such that in any r-colouring of [N ] there are at least c0N
s−1 monochromatic

solutions x to the equation

c1x1 + · · · + csxs = 0.

The purpose of this section is to generalise this result from colourings to partitions of
pseudorandom functions.
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Proposition 15.1 (Pseudorandom FGR). Let c1, . . . , cs ∈ Z \ {0} with
∑
i∈I ci = 0 for

some non-empty I ⊂ [s]. For any r,K ∈ N there exist N0,M ∈ N and c0 > 0 such that
for N ≥ N0 the following holds. Let ν : [N ] → [0,∞) satisfy an (s − 0.005)-restriction
estimate with constant K , and have Fourier decay of level 1/M . Then for any partition
ν =

∑
i≤r fi with fi non-negative we have

r∑
i=1

∑
c·x=0

fi(x1) · · · fi(xs) ≥ c0‖ν‖
s
1N
−1. (15.1)

We begin the proof of this theorem by generalising [FGR88] from colourings to bounded
weights.

Lemma 15.2 (Functional FGR). Let c1, . . . , cs ∈ Z \ {0} with
∑
i∈I ci = 0 for some

non-empty I ⊂ [s]. For any r there exists N0 ∈ N and c0 > 0 such that for N ≥ N0 and
g1, . . . , gr : [N ] → [0,∞) with

∑
i gi ≥ 1[N ] we have

r∑
i=1

∑
c·x=0

gi(x1) · · · gi(xs) ≥ c0N
s−1.

Proof. By the pigeonhole principle, for each x ∈ [N ] there exists i ∈ [r] such that
gi(x) ≥ 1/r . Let i be minimal with this property, and assign x the colour i. By the result
of Frankl, Graham and Rödl, for some such choice of i there are at least c′0N

s−1 tuples x
where each coordinate receives the colour i and such that c · x = 0. It follows that∑

c·x=0

gi(x1) · · · gi(xs) ≥ r
−sc′0N

s−1. ut

With this in hand, we proceed to prove Proposition 15.1. Since ν satisfies an (s − 0.005)-
restriction estimate with constant K , and has Fourier decay of level 1/M , we may apply
the modelling lemma (Proposition 14.1, provided M ≥ M0(s,K) as we may assume) to
conclude the existence of gi : [N ] → [0,∞) with

∑
i gi = (1+ 1/

√
M)1[N ] and∥∥∥∥ f̂i

‖ν‖1
−
ĝi

N

∥∥∥∥
∞

�r,s,K (logM)−
1

p+2 (1 ≤ i ≤ r),

where p = s − 0.005. This also implies that∥∥∥∥ f̂i

‖ν‖1
−

ĝi

(1+M−1/2)N

∥∥∥∥
∞

�r,s,K (logM)−
1

p+2 (1 ≤ i ≤ r).

Applying Lemma 15.2 (provided that N ≥ N0(r, c), as we may assume) furnishes a
colour class i for which ∑

c·x=0

gi(x1) · · · gi(xs)�r,c N
s−1.

Our assumption that
∑
i∈I ci = 0 ensures that s ≥ |I | ≥ 2. We may in fact assume

that s ≥ 3, for if s = |I | = 2 then Proposition 15.1 is trivial. Hence (1 +M−1/2)1[N ]
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satisfies an (s − 0.005)-restriction estimate with constant 1, and majorises each gi . Em-
ploying the generalised von Neumann lemma (Lemma C.3), with i as in the previous
paragraph, we deduce that

N

‖ν‖s1

∑
c·x=0

fi(x1) · · · fi(xs) ≥ c0(r, c)−Or,c,K(
(
logM

)− 1
400s ).

Assuming that M ≥ M0(r, c,K) completes the proof of Proposition 15.1.

16. Supersaturation for shifted squares

In this section we relate a colouring of the shifted squares to a partition of a pseudorandom
majorant ν satisfying the hypotheses of Proposition 15.1, and thereby prove Theorem 1.4.
As in §6, we accomplish this through the W -trick for squares.

Define W by (6.1), where w = w(c, r) is a constant to be determined. Let

S′ :=
{ 1

2Wx
2
+ x : x ∈ N, (Wx + 1)2 ≤ N

}
,

so that S′ ⊂ [N ′], where N ′ := N/(2W). If c is an r-colouring of the squares minus one,
we induce an r-colouring of S′ via

c′
( 1

2Wx
2
+ x

)
:= c

(
(Wx + 1)2 − 1

)
.

Let S′1, . . . , S
′
r denote the induced colour classes. From the definition of S′ and the ho-

mogeneity of the equation, we see that the left-hand side of (1.4) is at least as large as

r∑
i=1

∑
c·x=0

1S′i (x1) · · · 1S′i (xs). (16.1)

As in (6.5), define a weight function ν : [N ′] → [0,∞) supported on S′ by

ν(n) =

{
Wx + 1 if n = 1

2Wx
2
+ x ∈ S′ for some x ∈ N,

0 otherwise.
(16.2)

We reassure the reader that neither the constant term 1 nor the factor W appearing above
are necessary, but their presence is consistent with (6.5) and (12.8). A calculation similar
to (6.6) gives

‖ν‖1 � ‖ν‖∞|S
′
| �w ‖ν‖∞|S ∩ [N ]|,

where S is the set of shifted squares as defined in the theorem.
We recall that W ultimately depends only on w = w(c, r). Therefore, to show that

(16.1) is of order |S ∩ [N ]|sN−1, and hence to prove Theorem 1.4, it suffices to establish
that for fi = ν1S′i we have

r∑
i=1

∑
c·x=0

fi(x1) · · · fi(xs)�r,c ‖ν‖
s
1(N
′)−1. (16.3)

Appendices D and E yield the following.
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Lemma 16.1 (Fourier decay). We have∥∥∥∥ ν̂

‖ν‖1
−

1̂[N ′]
N ′

∥∥∥∥
∞

� w−1/2.

Lemma 16.2 (Restriction estimate). We have

sup
|φ|≤ν

∫
T
|φ̂(α)|4.995 dα � ‖ν‖4.995

1 (N ′)−1.

Let K denote the absolute constant occurring in Lemma 16.2, and let N0,M denote the
parameters occurring in Proposition 15.1. By Lemma 16.1, provided that we take w =
w(r, c) sufficiently large, we may apply Proposition 15.1 with fi = ν1S′i to conclude that
(16.3) holds. This completes the proof of Theorem 1.4.

17. Supersaturation for logarithmically-smooth numbers

The proof of Theorem 1.7 follows in analogy with the argument of the prior section. The
situation is somewhat simpler in this context, as there is no need to massage the set of
smooths to exhibit sufficient pseudorandomness—at least in the regime in which the level
of smoothness R = logC N has C = C(r) sufficiently large in terms of the number of
colours. When R is a fixed power of logN , one cannot expect Fourier decay, since there
are more smooths in [1, N/2] than in [N/2, N], and there are more even smooths than
odd.6 As remarked in the introduction to [Har16], one may be able toW -trick the smooths
to exhibit Fourier decay even if R is a fixed (large) power of logN ; and this would then
lead to a version of Theorem 1.7 with C independent of r .

Define the indicator function ν : [N ] → [0,∞) of the R-smooth numbers in [N ] by

ν(x) :=

{
1 if p | x ⇒ p ≤ R,

0 otherwise.

The relevant pseudorandomness properties follow from work of Harper [Har16].

Lemma 17.1 ([Har16, Theorem 2]). There exists an absolute constant C > 0 such that
for R ≥ logC N we have

sup
|φ|≤ν

∫
T
|φ̂(α)|2.995 dα � ‖ν‖2.995

1 N−1.

Lemma 17.2 ([Har16, §5]). We have the Fourier decay estimate∥∥∥∥ ν̂

‖ν‖1
−

1̂[N ]
N

∥∥∥∥
∞

�
log logN

logR
.

6 We thank an anonymous referee for pointing this out.
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Proof of Theorem 1.7. We are assuming that
∑
i∈I ci = 0 for some I 6= ∅, and this

forces s ≥ 2. If s = 2 then we are counting monochromatic solutions to x1 − x2 = 0, for
which we have the lower bound |S(N;R)| ≥ |S(N;R)|2N−1.

Let us therefore assume that s ≥ 3. Provided that R ≥ logC N we find that ν satisfies
a p = 2.995 restriction estimate with constant K = O(1). Applying Proposition 15.1
with these parameters, there exist N0,M, c0 > 0 such that (1.5) holds provided that ν
has Fourier decay of level M−1. This can be guaranteed on employing Lemma 17.2 and
ensuring that

R ≥ logC N,

where C = C(r, c) is sufficiently large. ut

Part 4. Appendices

Appendix A. Results on smooth numbers

Definition A.1 (R-smooth numbers). We say that a positive integer is R-smooth if all of
its prime divisors are at most R. We denote the set of such numbers in the interval [N ] by

S(N;R) := {n ∈ [N ] : p | n⇒ p ≤ R}.

The following estimate was proved by de Bruijn; see [Gran08, Eq. (1.8)]. Here ρ :
[0,∞) → (0, 1] denotes the Dickman–de Bruijn ρ-function. Note that ρ is decreasing
and has bounded derivative.

Lemma A.2. We have

|S(N;Nη)| = ρ(1/η)N +Oη(N/logN).

In particular, there exists N0 = N0(η) such that for N ≥ N0 we have

|S(N;Nη)| �η N.

Lemma A.3. There are at most 10wNM−1/2 elements of [N ] divisible by a w-smooth
number greater than M .

Proof. It follows from Rankin’s trick that the number of integers in [N ] divisible by a
w-smooth number exceeding M is at most∑

m>M
m is w-smooth

N

m
≤

∑
m is w-smooth

N

m

(
m

M

)1/2

= NM−1/2
∏
p≤w

(
1+

1
p1/2 − 1

)
.

The result follows on noting that 1+ 1
p1/2−1 ≤ 10. ut

Notice that if W is a w-smooth positive integer divisible by the primorial
∏
p≤w p, then

every positive integer can be written in the form ζ(ξ + Wy) for a unique choice of a
w-smooth positive integer ζ and a unique ξ ∈ [W ] with (ξ,W) = 1.
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Lemma A.4. Let W be a w-smooth positive integer divisible by the primorial
∏
p≤w p.

For any sets A ⊂ S ⊂ [N ] with |A| ≥ δ|S| and |S| ≥ ηN , there exist a w-smooth number
ζ �δ,η,w 1, and ξ ∈ [W ] with (ξ,W) = 1, such that

#{x ∈ Z : ζ(ξ +Wx) ∈ A} ≥ 1
2δ#{x ∈ Z : ζ(ξ +Wx) ∈ S}.

Proof. For ζ, ξ ∈ N and T ⊆ Z, write

Tζ,ξ,W := {x ∈ T : x = ζ(ξ +Wy) for some y ∈ Z}.

Let M = 4(δη)−2102w, so that N10wM−1/2
=

δ
2ηN ≤

δ
2 |S|. By the remarks preceding

this lemma, together with Lemma A.3, we have

δ|S| ≤ |A| ≤
∑
ζ≤M

ζ is w-smooth

∑
ξ∈[W ]
(ξ,W)=1

|Aζ,ξ,W | +N10wM−1/2

≤

∑
ζ≤M

ζ is w-smooth

∑
ξ∈[W ]
(ξ,W)=1

|Aζ,ξ,W | +
δ

2
|S|.

Therefore

δ
∑
ζ≤M

ζ is w-smooth

∑
ξ∈[W ]
(ξ,W)=1

|Sζ,ξ,W | ≤ δ|S| ≤ 2
∑
ζ≤M

ζ is w-smooth

∑
ξ∈[W ]
(ξ,W)=1

|Aζ,ξ,W |,

and the pigeonhole principle completes the proof. ut

Lemma A.5. For any K ≥ 1 we have

S(N;KNη)− S(N;Nη)�K,η

N

logN
.

Proof. By Lemma A.2, we have

S(N;KNη)− S(N;Nη)

N
= ρ

(
logN

η logN + logK

)
− ρ(1/η)+O(1/logN).

The estimate now follows from the mean value theorem, since ρ′ is bounded and

logN
η logN + logK

−
1
η
�

1
logN

. ut

Appendix B. The unrestricted count and mean values estimates

Recall that η is 1 if k = 2 and a small positive constant if k ≥ 3. The following is a
consequence of the current state of knowledge in Waring’s problem.
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Theorem B.1. Let c1, . . . , cs ∈ Z \ {0} with
∑
i∈I ci = 0 for some non-empty subset I

of [s]. Then, for k ≥ 2, there exists s0(k) ∈ N such that if s ≥ s0(k) and N ≥ N0 then

#
{

x ∈ S(N;Nη)s :

s∑
i=1

cix
k
i = 0

}
�c,η,k N

s−k.

Moreover, one can take s0(2) = 5, s0(3) = 8, and s0(k) satisfying (1.3).

The k = 2 case was known to Hardy and Littlewood. In an influential paper, Kloosterman
[Klo27] opens with a discussion of this, then adapts the Hardy–Littlewood method to
address the quaternary problem. Details of a proof may be found in [Dav2005, Ch. 8].

As we cannot find the precise statement that we require for k ≥ 3 in the literature,
we outline a proof below. The conclusion largely follows from the earlier techniques of
Vaughan and of Wooley [Vau89, VW91, Woo92], but we find it convenient to also draw
material from other sources. Indeed, the aforementioned articles on Waring’s problem
involve a combination of smooth and full-range variables, so for our lower bound the
results cannot be imported directly. Theorem B.1 is an indefinite version of a special case
of [DS16, Theorem 2.4]; the latter is more profound, as it tackles a more challenging
smoothness regime. One approach would be simply to imitate the proof of that theorem,
until needing to treat the local factors—this is approximately what we do below.

Proof. Let k ≥ 3, and let η = ηk be a small positive constant. By orthogonality, our count
is ∫ 1

0
g1(α) · · · gs(α) dα,

where
g(α) =

∑
x∈S(N;Nη)

e(αxk), gi(α) = g(ciα) (1 ≤ i ≤ s).

Let A ≥ A0(k), and put Q = (logN)A. Now perform a Hardy–Littlewood dissection
[Vau97]: define major arcs

M =
⋃

0≤a<q≤Q
(a,q)=1

M(q, a), M(q, a) = {α ∈ [0, 1] : |qα − a| ≤ QN−k},

and minor arcs m = [0, 1] \M. It follows from [DS16, Lemma 8.6], by slightly adjusting
the parameters therein to allow for constant multiples, that∫

m
|gi(α)|

s dα = c−1
i

∫
cim
|g(β)|s dβ � N s−kQ−c

for some c = c(k) > 0. Therefore∫ 1

0
g1(α) · · · gs(α) dα =

∫
M
g1(α) · · · gs(α) dα + o(N s−k).
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First we prune our major arcs down to a lower height. Set Q1 =
√

logN . Let

N =
⋃

0≤a<q≤Q1
(a,q)=1

N(q, a), N(q, a) = {α ∈ [0, 1] : |qα − a| ≤ Q1N
−k
},

and put n = [0, 1] \N. Let α ∈ M(q, a) with 0 ≤ a < q ≤ Q and (a, q) = 1 and, by
Dirichlet’s approximation theorem [Vau97, Lemma 2.1], choose relatively prime r ∈ N
and b ∈ Z such that r ≤ 2Q and |rcsα − b| ≤ (2Q)−1. The triangle inequality gives∣∣∣∣aq − b

rcs

∣∣∣∣ ≤ Q

qNk
+

1
2rcsQ

<
1
qrcs

,

so a
q
=

b
rcs

. As (a, q) = 1 and (rcs, b)� 1, we have q � r , |rcsα − b| � |qα − a|, and
it now follows from [VW91, Lemma 8.5] that

gs(α)�ε q
εN(q +Nk

|qα − a|)−1/k
+N exp(−c

√
logN)(1+Nk

|α − a/q|),

where c = c(A, η) is a small positive constant. In particular, if α ∈M \N then

gs(α)� NQ
ε−1/k
1 .

Furthermore, the sharp mean value estimate [DS16, Theorem 2.3] implies∫ 1

0
|gi(α)|

s−0.1 dα � N s−0.1−k (1 ≤ i ≤ s). (B.1)

Using Hölder’s inequality, we now obtain∫
M\N

|g1(α) · · · gs(α)| dα = o(N s−k),

and so ∫ 1

0
g1(α) · · · gs(α) dα =

∫
N
g1(α) · · · gs(α) dα + o(N s−k). (B.2)

For q ∈ N, a ∈ Z and β ∈ R, define

S(q, a) =
∑
x≤q

eq(ax
k), w(β) =

∑
Nηk<m≤Nk

1
k
m1/k−1ρ

(
logm
ηk logN

)
e(βm)

and
W(α, q, a) = q−1S(q, a)w(α − a/q),

where as before ρ denotes the Dickman–de Bruijn ρ-function. Next, we apply [Vau89,
Lemma 5.4] to ciα for 1 ≤ i ≤ s and α ∈ N(q, a) ⊂ N, where 0 ≤ a < q ≤ Q1 and
|qα − a| ≤ Q1N

−k . With c′i = ci/(ci, q) and qi = q/(ci, q), this gives

gi(α) = W(ciα, qi, c
′

ia)+O((logN)−1/2),
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and furthermore

W(ciα, q, cia) = W(ciα, qi, c
′

ia)� q−1/k min(N, |α − a/q|−1/k). (B.3)

By (B.1) and (B.2), together with Hölder, we now have∫ 1

0
g1(α) · · · gs(α) dα

=

∑
q≤
√

logN

q−s
∑
a≤q

(a,q)=1

∫
|β|≤

√
logN
qNk

(∏
i≤s

S(q, cia)w(ciβ)
)

dβ + o(N s−k).

The bound (B.3) enables us to extend the integral to [−1/2, 1/2]s and then the outer sum
to infinity with o(N s−k) error, as is usual for a major arc analysis [Dav2005, Vau97]. We
thus obtain ∫ 1

0
g1(α) · · · gs(α) dα = SJ + o(N s−k),

where

S =
∞∑
q=1

∑
a≤q

(a,q)=1

q−sS(q, c1a) · · · S(q, csa), J =

∫
[−1/2,1/2]s

w(c1β) · · ·w(csβ) dβ.

As discussed in [Dav2005, Ch. 8], the singular series is a product of p-adic densities,

S =
∏
p

χp,

and is strictly positive if and only if χp > 0 for all p. The positivity of the p-adic densities
χp follows from the assumption that

∑
i∈I ci = 0 for some non-empty I ⊆ [s]: one takes

a non-trivial solution in {0, 1}s , and this is a non-singular p-adic zero.
Our final task is to show that J � N s−k . By orthogonality

J = k−s
∑

m∈(Nηk,Nk]s
c·m=0

∏
i≤s

m
1/k−1
i ρ

(
logmi
ηk logN

)
.

With c > 0 small, we have the crude lower bound

J � N s(1−k)
∑

m∈(cNk,Nk]s
c·m=0

1� N s(1−k)(Nk)s−1
= N s−k,

since the ci are not all of the same sign. We also have the complementary upper bound

J � N s(1−k)
∑

m∈[1,Nk]s
c·m=0

1� N s−k. ut

Remark B.2. By working harder, we could have obtained a main term λN s−k , for some
positive constant λ = λ(c), similarly to Drappeau–Shao [DS16].

We also need the following bounded restriction inequalities.
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Lemma B.3. Let
f : [N ] → {z ∈ C : |z| ≤ 1}.

If p > 4 then ∫
T

∣∣∣ ∑
x∈S(N;Nη)

f (x)e(αx2)

∣∣∣p dα �p Np−2.

For k ≥ 3, there exists s0(k) such that if s ≥ s0(k) then∫
T

∣∣∣ ∑
x∈S(N;Nη)

f (x)e(αxk)

∣∣∣s−10−8

dα � N s−10−8
−k.

Moreover, one may take s0(3) = 8, and s0(k) satisfying (1.3).

Proof. The quadratic statement is a direct consequence of [Bou89, Eq. (4.1)]. Assuming
for the time being that k ≥ 4, write 2t for the smallest even integer greater than or equal
to the integer s0(k) appearing in Theorem B.1. Note that modifying s0(k) by adding a
constant does not affect the veracity of (1.3), and so we will prove the statement for
s ≥ 2t in this case.

By orthogonality, the triangle inequality and Theorem B.1, we have∫
T

∣∣∣ ∑
x∈S(N;Nη)

f (x)e(αxk)

∣∣∣2t dα

≤ #
{
(x, y) ∈ S(N;Nη)t × S(N;Nη)t :

∑
i≤t

xki =
∑
i≤t

yki

}
�t,η N

2t−k.

The trivial estimate |
∑
x∈S(N;Nη) f (x)e(αx

k)| ≤ N completes the proof when k ≥ 4.
For k = 3 we require a more elaborate argument to prove that the precise value of

s0(3) = 8 is admissible. In particular, our approach relies on a ‘subconvex’ mean value
estimate of Wooley [Woo95]. Define φ : Z → C by φ(n) = f (x) if n = x3 for some
x ∈ S(N;Nη), and zero otherwise. Our objective is to show that∫

T
|φ̂(α)|8−10−8

dα � N5−10−8
.

In the present appendix, we let δ denote a parameter in the range

0 < δ < 1,

and consider the large spectra

Rδ = {α ∈ T : |φ̂(α)| > δN}.

By the dyadic pigeonholing argument in [BP17, §6], it suffices to prove that

meas(Rδ)�
1

δ8−10−7
N3
.

By orthogonality, Wooley’s estimate [Woo95, Theorem 1.2] implies that∫
T
|φ̂(α)|6 dα � N3.25−10−4

.
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Thus, we may assume without loss of generality that

N10−5
−1/8 < δ < 1. (B.4)

Indeed, if δ ≤ N10−5
−1/8 then

meas(Rδ) ≤ (δN)
−6
∫
Rδ

|φ̂(α)|6 dα � (δN)−6N3.25−10−4
≤

1

δ8−10−7
N3
.

Let θ1, . . . , θR be N−3-separated points in Rδ . As 8− 10−7
≥ 6.3 it suffices to show

that
R � δ−6.3. (B.5)

Let µ(n) = 1 if n = x3 for some x ∈ [N ], and zero otherwise. For some an ∈ C with
|an| ≤ 1, we then have φ(n) = anµ(n); this ‘throws away’ smoothness. With γ = 3.1,
the calculation in [BP17, §6] yields

δ2γNγR2
�

∑
r,r ′≤R

|µ̂(θr − θr ′)|
γ . (B.6)

Consider the value of θ = θr − θr ′ in the right-hand side of (B.6). Define a set of
‘minor arcs’

n = {α ∈ T : |µ̂(α)| ≤ N10−8
+3/4
}.

In light of (B.4), the contribution from θ ∈ n to the right-hand side of (B.6) is
o(δ2γNγR2), and so

δ2γNγR2
�

∑
r,r ′≤R:
θ /∈n

|µ̂(θr − θr ′)|
γ . (B.7)

Next, suppose θ ∈ T \ n, and fix a small ε > 0. By [Cho16, Lemma 2.3], there exist
relatively prime q ∈ N and a ∈ Z such that

q ≤ N3/4, |qθ − a| ≤ N−9/4

and
µ̂(θ)� qε−1/3N(1+N3

|θ − a/q|)−1/3.

WithC a large positive constant, putQ = C+δ−9. The contribution to the right-hand side
of (B.7) from denominators q > Q isO(R2NγQγ (ε−1/3)), which is negligible compared
to the left-hand side.

Hence
δ2γR2

�

∑
1≤r,r ′≤R

G(θr − θr ′), (B.8)

where

G(θ) =
∑
q≤Q

q−1∑
a=0

qγ (ε−1/3)

(1+N3|sin(θ − a/q)|)γ /3
.

The inequality (B.8) is a cubic version of [Bou89, Eq. (4.16)]. As γ (ε − 1/3) > 1,
Bourgain’s argument carries through, and yields (B.5). ut

Finally, we need an upper bound on the number of trivial solutions.
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Lemma B.4. Let k ≥ 2, and let c1, . . . , cs be non-zero integers summing to zero. Then
there exists s0(k) such that if s ≥ s0(k) then

#
{

x ∈ S(N;Nη)s :

s∑
i=1

cix
k
i = 0 and xi = xj for some i 6= j

}
= o(N s−k).

Moreover, one can take s0(2) = 5, s0(3) = 8, and s0(k) satisfying (1.3).

Proof. Let s0(k) be as in Lemma B.3. By the union bound, it suffices to prove an estimate
of the required shape for the number of solutions with xs−1 = xs . In this case we are
estimating

#
{
x ∈ S(N;Nη)s−1

:

s−2∑
i=1

cix
k
i + (cs−1 + cs)x

k
s−1 = 0

}
.

It may be that cs−1 + cs = 0, so we estimate the contribution from the xs−1 variable
trivially. Using orthogonality and Hölder’s inequality, it therefore suffices to prove that∫

T

∣∣∣ ∑
x∈S(N;Nη)

e(αxk)

∣∣∣s−2
dα = o(N s−1−k). (B.9)

Let p = s0(k)− 10−8. When s − 2 ≥ p, the estimate (B.9) follows from Lemma B.3
and the trivial estimate |

∑
x∈S(N;Nη) e(αx

k)| ≤ N . When s − 2 < p, we apply Hölder’s
inequality and Lemma B.3 to obtain∫

T

∣∣∣ ∑
x∈S(N;Nη)

e(αxk)

∣∣∣s−2
dα ≤

(∫
T

∣∣∣ ∑
x∈S(N;Nη)

e(αxk)

∣∣∣p dα
)(s−2)/p

� N s−2−k(s−2)/p.

It remains to check that s−2−k(s − 2)/p < s−1−k, or equivalently 2+p(1−1/k) < s.

Since s > p, this follows if p/k ≥ 2, which we can certainly ensure without affecting
the bound (1.3). ut

Appendix C. A generalised von Neumann lemma

Recall the notion of p-restriction introduced in Definition 5.4.

Lemma C.1. Let ν1, ν2 : [N ] → [0,∞). If both ν1 and ν2 satisfy a p-restriction estimate
with constant K , then so does ν1 + ν2.

Proof. Let |φ| ≤ ν1+ν2. Then φ = ψ×θ , whereψ : [N ] → [0,∞) satisfiesψ ≤ ν1+ν2
and θ : [N ] → C satisfies |θ | ≤ 1. Put ψ1 := min{ψ, ν1} and ψ2 := ψ − ψ1. On setting
φi := ψiθ , we have φ = φ1 + φ2 with |φi | ≤ νi . Applying the triangle inequality and
restriction estimates for each νi gives

‖φ̂‖p ≤ ‖φ̂1‖p + ‖φ̂2‖p ≤ (K/N)
1/p(‖ν1‖1 + ‖ν2‖1).

Positivity gives ‖ν1‖1 + ‖ν2‖1 = ‖ν1 + ν2‖1, and the result then follows on taking pth
powers. ut
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Lemma C.2. Let c1, . . . , cs ∈ Z\{0}, δ ∈ (0, 1) and suppose ν1, . . . , νs : [N ] → [0,∞)
each satisfy an (s − δ)-restriction estimate with constant K . Then for any |fi | ≤ νi we
have ∣∣∣∣∑

c·x=0

f1(x1)

‖ν1‖1
· · ·

fs(xs)

‖νs‖1

∣∣∣∣ ≤ KN min
i

∥∥∥∥ f̂i

‖νi‖1

∥∥∥∥δ
∞

. (C.1)

Proof. We prove the upper bound with i = 1, the remaining cases following by re-
labelling indices. Let p = s − δ. By orthogonality and Hölder’s inequality, we have∣∣∣∑

c·x=0

f1(x1) · · · fs(xs)

∣∣∣ = ∣∣∣∣∫
T
f̂1(c1α) · · · f̂s(csα) dα

∣∣∣∣ ≤ ∫
T
|f̂1(c1α) · · · f̂s(csα)| dα

≤ ‖f̂1‖
δ
∞‖f̂1‖

1−δ
p ‖f̂2‖p · · · ‖f̂s‖p.

Inequality (C.1) then follows from our p-restriction assumption. ut

Lemma C.3 (Generalised von Neumann). Let c1, . . . , cs ∈ Z \ {0}, δ ∈ (0, 1) and sup-
pose νi, µi : [N ] → [0,∞) each satisfy an (s − δ)-restriction estimate with constant K .
Then for any |fi | ≤ νi and |gi | ≤ µi we have∣∣∣∣∑

c·x=0

(
f1(x1)

‖ν1‖1
· · ·

fs(xs)

‖νs‖1
−
g1(x1)

‖µ1‖1
· · ·

gs(xs)

‖µs‖1

)∣∣∣∣ ≤ sKN max
i

∥∥∥∥ f̂i

‖νi‖1
−

ĝi

‖µi‖1

∥∥∥∥δ
∞

.

Proof. Let p = s − δ. By Lemma C.1, the weight

νi

‖νi‖1
+

µi

‖µi‖1

satisfies a p-restriction estimate with constant K and majorises the difference

fi

‖νi‖1
−

gi

‖µi‖1
.

Observing that this weight has L1 norm at most 2, the lemma follows on applying the
telescoping identity

a1 · · · as − b1 · · · bs =

s∑
i=1

(ai − bi)
∏
j<i

aj
∏
j>i

bj ,

together with Lemma C.2. ut

Appendix D. Pointwise exponential sum estimates

The primary objective of this section is to establish the Fourier decay estimates in Lemmas
6.3, 12.4 and 16.1. Of these, Lemma 12.4 concerns an exponential sum over smooth
numbers. As before, put R = P η, with η = 1 when k = 2 and η = ηk a small positive
number when k ≥ 3, and define P and X by (12.3). Our weight function ν is defined
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by (12.8), with k = 2 when dealing with Lemmas 6.3 and 16.1 as well as ξ = 1 in the
latter scenario. This is consistent with (6.5) and (16.2). We assume throughout that X is
sufficiently large in terms of w.

Our goal is to prove the inequality (12.12), using the Hardy–Littlewood circle method.
More explicitly, we wish to show that if α ∈ T then

ν̂(α)

‖ν‖1
=

1̂[X](α)
X

+Oη(w
−1/k). (D.1)

We treat the k ≥ 3 and k = 2 cases separately, as smooth numbers are used for the former.

D.1. Smooth Weyl sums

We first consider the case k ≥ 3, recalling that here we choose η = ηk sufficiently small.
The idea is to consider a rational approximation a/q to α; there will ultimately be four
regimes to consider, according to the size of q. We begin with a variant of [Vau89, Lemma
5.4], which is useful for low height major arcs. Let

Sq,a =
∑
r mod q

e

(
a

q
·
(Wr + ξ)k − ξ k

kW

)
, I (β) =

∫ X

0
e(βz) dz.

Lemma D.1 (First level). Suppose q ∈ N and a ∈ Z, with q ≤ R/W and ‖qα‖ =
|qα − a|. Then

ν̂(α) = ρ(1/η)q−1Sq,aI

(
α −

a

q

)
+Oη

(
P k

logP
(q + P k‖qα‖)

)
.

Proof. The start of the proof of [Vau89, Lemma 5.4] yields∑
x∈S(m;R)

x≡Wr+ξ modWq

1 =
1
Wq

∑
x∈S(m;R)

1+O
(

P

logP

)
,

valid for r ∈ [q] and m ≤ P . Therefore∑
x∈S(m;R)
x≡ξ modW

e

(
a

q
·
xk − ξ k

kW

)
=
Sq,a

Wq

∑
x∈S(m;R)

1+O
(
qP

logP

)
.

In particular, if α(x) equals e
(
a
q
·
xk−ξ k

kW

)
when x ≡ ξ modW isR-smooth and 0 otherwise,

then ∑
x≤m

(
α(x)−

Sq,a

Wq
ρ

(
logm
logR

))
�

qP

logP
.

By partial summation and the boundedness of ρ′, we also have∑
x≤m

ρ

(
log x
logR

)
= mρ

(
logm
logR

)
+O

(
P

logP

)
(1 ≤ m ≤ P),
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and so ∑
x≤m

(
α(x)−

Sq,a

Wq
ρ

(
log x
logR

))
�

qP

logP
.

Next, observe that with β = α − a/q we have |β| = q−1
‖qα‖ and

ν̂(α) =
∑

x∈S(P ;R)
x≡ξ modW

e

(
a

q
·
xk − ξ k

kW

)
φ(x) =

Sq,a

Wq

∑
x≤P

ρ

(
log x
logR

)
φ(x)+ E, (D.2)

where

φ(x) = xk−1e
(
β
xk − ξ k

kW

)
and

E =
∑
x≤P

(
α(x)−

Sq,a

Wq
ρ

(
log x
logR

))
φ(x).

Partial summation gives

E �
qP

logP
(‖φ‖L∞([1,P ]) + P ‖φ

′
‖L∞([1,P ]))�

qP k

logP
(1+ P k|β|),

and with the boundedness of ρ′ it also implies that

∑
x≤P

ρ

(
log x
logR

)
φ(x) = ρ(1/η)

∑
x≤P

φ(x)+O

(
P k

logP

)
.

Meanwhile, Euler–Maclaurin summation [Vau97, Eq. (4.8)] yields

∑
x≤P

φ(x) =

∫ P

1
φ(x) dx +O(P k−1(1+ P k|β|)) = WI(β)+O(P k−1(1+ P k|β|)).

Substituting these estimates into (D.2) concludes the proof. ut

We supplement this by bounding Sq,a and I (β).

Lemma D.2. If (q, a) = 1 then S1,0 = 1,

Sq,a = 0 (2 ≤ q ≤ w), (D.3)

Sq,a � q1−1/k. (D.4)

Proof. Plainly S1,0 = 1, so let q ≥ 2, and let a ∈ Z with (q, a) = 1. The binomial
expansion gives

Sq,a =
∑
r mod q

eq

(
a

k∑
`=1

(
k
`

)
W `−1

k
ξ k−`r`

)
,
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and we note that (
k
`)W

`−1

k
∈ Z (1 ≤ ` ≤ k). Write q = uv, where u is w-smooth and

(v,W) = 1. Since (u, v) = 1, a standard calculation reveals that

Sq,a = Su,a1Sv,a2 , (D.5)

where a1 = av
−1
∈ (Z/uZ)× and a2 = au

−1
∈ (Z/vZ)× (see [Vau97, Lemma 2.10]).

Put u = hu′, where h = (u,W/k). Representing r mod q as r = r1 + u′r2, where
0 ≤ r1 < u′ and 0 ≤ r2 < h, gives

S(u, a1) =
∑

0≤r1<u′
0≤r2<h

ehu′

(
a1

k∑
`=1

(
k
`

)
W `−1

k
ξ k−`(r1 + u

′r2)
`

)

=

u′−1∑
r1=0

ehu′

(
a1

k∑
`=1

(
k
`

)
W `−1

k
ξ k−`r`1

) h−1∑
r2=0

eh

(
a1

k∑
`=1

(
k
`

)
W `−1

k
ξ k−`(u′)`−1r`2

)
.

As h divides W/k, the inner sum is∑
r2 modh

eh(a1ξ
k−1r2),

which vanishes unless h | a1ξ
k−1. As (h, a1) = (h, ξ) = 1, and as

(u,W/k) = 1 ⇐⇒ (u,W) = 1 ⇐⇒ u = 1,

we conclude that

Su,a1 =

{
0 if u 6= 1,
1 if u = 1.

(D.6)

Moreover, note that if 2 ≤ q ≤ w then u = q and v = 1. Now (D.5) and (D.6) complete
the proof of (D.3).

Next we prove (D.4). By (D.5) and (D.6), we may assume u = 1. Consider

ekWv(a2ξ
k)Sv,a2 =

∑
r mod v

ev

(
a2
(Wr + ξ)k

kW

)
.

As (v,W) = 1, we can change variables by t = ξW−1
+ r ∈ Z/vZ, which gives

ekWv(a2ξ
k)Sv,a2 =

∑
t mod v

ev

(
a2
W k−1

k
tk
)
.

Since
(
v, a2

W k−1

k

)
= 1, we may apply [Vau97, Theorem 4.2], which gives

Sv,a2 � v1−1/k
= q1−1/k.

By (D.5) and (D.6), we now have Sq,a � q1−1/k . ut

A standard calculation provides the following bound.
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Lemma D.3. We have
I (β)� min{X, ‖β‖−1

}.

Before continuing in earnest, we briefly describe the plan. We can modify [Vau89, Theo-
rem 1.8] to handle a set of minor arcs. At that stage, our major and minor arcs fail to cover
the entire torus T, but we can bridge the gap using a classical circle method contraption
known as pruning (also used in Appendix B). Adapting [VW91, Lemma 7.2], we can
prune down to q ≤ (logP)A. Finally, by adapting [VW91, Lemma 8.5], we prune down
to q ≤ (logP)1/4.

In order to tailor the classical theory to suit our needs, we begin with the observation
that ∑

x∈S(m;R)
x≡ξ modW

e

(
α
xk − ξ k

kW

)

=
1
W

∑
t modW

e

(
−
α

kW
ξ k −

t

W
ξ

) ∑
x∈S(m;R)

e

(
α

kW
xk +

t

W
x

)
. (D.7)

The inner summation is a classical quantity with a linear twist.

Lemma D.4 (Minor arcs). Suppose 0 < δ < (2k)−1, and let m1 denote the set of real
numbers γ with the property that if a ∈ Z, q ∈ N, (a, q) = 1 and |qγ − a| ≤ P 1/2−k+δk

then q > P 1/2+δk . Put

ι(k) = max
λ∈Z≥2

1
4λ
(1− (k − 2)(1− 1/k)λ−2).

Then, assuming η ≤ η0(ε, k), we have

ν̂(α)� P k+ε(P−δ + P−ι(k)) (α ∈ kWm1).

Remark D.5. We will later apply this with ε = εk , so that the condition η ≤ η0(ε, k)

will be met.

Proof of Lemma D.4. Following the proof of [Vau89, Theorem 1.8], we find that if
α ∈ m1 and 1 ≤ m ≤ P then∑

x∈S(m;R)

e

(
α

kW
xk +

t

W
x

)
� P 1+ε(P−δ + P−ι(k)).

Indeed, already built into that proof are bounds uniform over linear twists; see [Vau89,
Eq. (10.9)]. The sum above is over x ∈ S(m;R), where 1 ≤ m ≤ P , rather than over
x ∈ S(P ;R), but we can assume that

√
P ≤ m ≤ P and then run Vaughan’s argument.

Now, by (D.7), we have∑
x∈S(m;R)
x≡ξ modW

e

(
α
xk − ξ k

kW

)
� P 1+ε(P−δ + P−ι(k)).
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From this, partial summation gives

ν̂(α) =
∑

x∈S(P ;R)
x≡ξ modW

xk−1e

(
α
xk − ξ k

kW

)
� P k+ε(P−δ + P−ι(k)). ut

Lemma D.6 (First pruning step). Suppose R ≤ M ≤ P , where R = P η as before.
Suppose a ∈ Z, q ∈ N with (a, q) = 1 and |qα − a| ≤ M/(P kR). Then for any ε > 0
we have

ν̂(α)�ε,k,W,η P
k(logP)3qε

·
(
(q + P k|qα − a|)−1/(2k)

+ (MR/P )1/2 + q1/2−1/(2k)(R/M)1/2
)
.

Proof. By partial summation and (D.7), it suffices to show that if
√
P ≤ m ≤ P then

∑
x∈S(m;R)

e

(
α

kW
xk +

t

W
x

)
� P(logP)3qε

(
(q + P k|qα − a|)−1/(2k)

+ (MR/P )1/2 + q1/2−1/2k(R/M)1/2
)
.

To show this, we work through the proof of [VW91, Lemma 7.2]; the inner sum of Eq.
(7.4) therein becomes

S =
∑
y∈I∩Z

e

(
α

kW
pk(uk2 − u

k
1)y

k
+

t

W
p(u2 − u1)y

)
,

where
I = (V/p,min{2V/p,m/(u1p),m/(u2p)}]

is an interval of length at most V/p and u1, u2, p are the outer summation variables in
[VW91, Eq. (7.4)]. With reference to that proof, we have

D = gcd(kWq, apk(uk2 − u
k
1), tqkp(u2 − u1))�k,W (q, pk(uk2 − u

k
1)),

S =
∑
y∈I∩Z

eq ′(a
′yk + b′y)e(βyk),

where

Dq ′ = kWq, Da′ = apk(uk1 − u
k
2), Db′ = tkqp(u2 − u1),

gcd(a′, b′, q ′) = 1, β =
pk(uk2 − u

k
1)

kW
(α − a/q).

Continuing to follow the proof of [VW91, Lemma 7.2], we now apply [Bak86,
Lemma 4.4] and [Vau97, Theorems 7.1 and 7.3] in lieu of the more specific [Vau97,
Lemma 2.8 and Theorems 4.1 and 4.2]. One can check that

|qβ| ≤ (2k2)−1(V/p)1−k.
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As |I | ≤ V/p, this condition enables us to apply [Bak86, Lemma 4.4], giving

S = (q ′)−1
∑
x≤q ′

eq ′(a
′xk + b′x)

∫
I

e(βzk) dz+O(q1−1/k+ε).

The error term RU2q1/2+ε in [VW91, Eq. (7.5)] is enlarged to RU2q1−1/k+ε, and the
effect of applying [Vau97, Theorems 7.1 and 7.3] is to increase the quantity S3 appearing
therein by a multiplicative factor of Oε,k,W (qε/8).

The remainder of the proof of [VW91, Lemma 7.2] carries through in the present
context, mutatis mutandis. The eventual outcome of the changes above is to increase the
term q1/4P(R/M)1/2 to q1/2−1/(2k)P(R/M)1/2, and we obtain the asserted bound. ut

Lemma D.7 (Second pruning step). Suppose R = P η with 0 < η < 1/2, and that
a, q ∈ Z with (a, q) = 1 and 1 ≤ q ≤ (logP)A. Then for some c = c(η,A) we have

ν̂(α)�ε,k,w,η,A,c P
k(q + P k|qα − a|)ε−1/k

+ P k · exp(−c
√

logP)(1+ P k|α − a/q|).

Proof. Again we apply partial summation and (D.7), leaving us to show that if P 0.99
≤

m ≤ P then

g(α) :=
∑

x∈S(m;R)

e

(
α

kW
xk +

t

W
x

)
� P(q + P k|qα − a|)ε−1/k

+ P · exp(−c
√

logP)(1+ P k|α − a/q|).

This time we follow the proof of [VW91, Lemma 8.5]. Writing β = α−a/q, this initially
formats our smooth Weyl sum as

g(α) =
∑
d | kWq

q/d∈S(m;R)

d∑
y=1

(y,d)=1

e((kWq/d)k−1yka/d + tkqy/d)

·9

(
md

kWq
,R; d, y,

β(kWq/d)k

kW

)
,

where
9(Q,R; d, y, γ ) =

∑
z∈S(Q;R)
z≡ymod d

e(γ zk).

The calculation by Vaughan and Wooley in the proof of [VW91, Lemma 8.5] ensures
that 9(Q,R; d, y, γ ) is, up to a small additive error, independent of y. As m ≤ P and
kW �k,W 1, the outcome of this calculation is unaffected, and we obtain

g(α)� P(1+ P k|β|)−1/k

·

(
exp(−c

√
logP)+

∑
d | kWq

d

qϕ(d)
|W(d, a(kWq/d)k−1, tkq)|

)
,
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where
W(Q,A,B) =

∑
ymodQ
(y,Q)=1

eQ(Ay
k
+ By).

Our final task is to show that if d | kWq then

W(d, a(kWq/d)k−1, tkq)�k,w,ε q
1−1/k+ε.

One may readily verify the usual multiplicativity property: if (Q1,Q2) = 1 then

W(Q1Q2, A,B) =W(Q1, AQ
k−1
2 , B) ·W(Q2, AQ

k−1
1 , B); (D.8)

see [Hua65, Lemma 8.1]. Next we analyse

W(pi, A, tkq),

when p is prime and pi ‖ d. If p > w then pi | tkq, so

W(pi, A, tkq) =W(pi, A, 0)� pi/2(pi, A)1/2,

using [VW91, Lemma 8.4]. Meanwhile, if p ≤ w then we use the identity

W(pi, A, tkq) = S(pi, A, tkq)− S(pi−1, Apk−1, tkq),

where
S(Q,A,B) =

∑
y≤Q

eQ(Ay
k
+ By).

Since p ≤ w, we have

gcd(pi, A, tkq), gcd(pi−1, Apk−1, tkq)�k,w (p
i, A),

so we may use [Vau97, Eq. (7.9)] to infer that

W(pi, A, tkq)�k,w (p
i, A)1/k(pi)1−1/k.

In both cases we have

|W(pi, A, tkq)| ≤ ck,w(p
i, A)1/k(pi)1−1/k,

and inputting this into (D.8) reveals that

W(d,A, tkq)� qε(d,A)1/kd1−1/k.

Apply this with A = a(kWq/d)k−1. With this choice of A, we have

(d,A) ≤ (d, a)(d, (kWq/d)k−1) ≤ (kWq, a)(d, (kWq/d)k−1)

≤ kW(d, (kWq/d)k−1).
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Letting pi ‖ d and pj ‖ kWq gives

(d,A)�k,w

∏
p

pmin{i,(k−1)(j−i)},

and so

W(d, a(kWq/d)k−1, tkq)� qε
∏
pi‖d

pj ‖kWq

pi(1−1/k)+k−1 min{i,(k−1)(j−i)}

� qε
∏

pj ‖kWq

(pj )1−1/k
� q1−1/k+ε. ut

To tie together what we have gleaned, we make a Hardy–Littlewood dissection. For q ∈ N
and a ∈ Z, let M(q, a) be the set of α ∈ T such that |α − a/q| ≤ (logP)1/4/P k . Let
M(q) be the union of the sets M(q, a) over integers a such that (a, q) = 1, and let M be
the union of the sets M(q) over q ≤ (logP)1/4. By identifying T with a unit interval, we
may write M(q) as a disjoint union

M(q) =

q−1⋃
a=0

(a,q)=1

M(q, a).

First we consider the minor arcs m := T \M.

Lemma D.8. If ε > 0 and α ∈ m then ν̂(α)�ε,W,η X(logX)ε−1/4k .

Proof. Let α ∈ m. If α/(kW) ∈ m1, where m1 is as in Lemma D.4 with δ = (4k)−1,
then Lemma D.4 applies and is more than sufficient (recall (12.3)). We may therefore
assume that α/(kW) /∈ m1, and then deduce the existence of relatively prime integers
q > 0 and a for which q + P k|qα − a| � P 3/4. If the ‘natural height’ q + P k|qα − a|
exceeds (logP)9k , then an application of Lemma D.6 with M � RP 3/4 suffices. So we
may suppose instead that q + P k|qα − a| ≤ (logP)9k . As α /∈M, we must also have

q + P k|qα − a| ≥ max{q, P k|α − a/q|} > (logP)1/4,

and now Lemma D.7 delivers the sought inequality. ut

We are ready to prove Lemma 12.4, in the case k ≥ 3. As discussed at the beginning of
this appendix, our task is to establish the estimate (D.1). It will be useful to have (12.3)
and (12.9) in mind. By a geometric series calculation, we have

1̂[X](α) =
∑
x≤X

e(αx)� ‖α‖−1. (D.9)

First suppose α ∈ m. By Dirichlet’s approximation theorem, we obtain relatively
prime integers q and a such that

1 ≤ q ≤ (logP)1/4, |qα − a| ≤ (logP)−1/4.
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As α /∈M, we must have

‖qα‖ = |qα − a| >
q(logP)1/4

kWX
,

so

1̂[X](α)� ‖α‖−1
�

q

‖qα‖
�

WX

(logP)1/4
.

By Lemma D.8, we now have (D.1).
Next we consider the case in which q = 1 and α ∈ M(q), in other words |α| ≤

(logP)1/4/P k . By Lemma D.1, we have

ν̂(α)− ρ(1/η)I (α)�
P k

logP
(1+ P k‖α‖)�

P k√
logP

. (D.10)

By Euler–Maclaurin summation [Vau97, Eq. (4.8)], we have

1̂[X](α)− I (α)� 1+X‖α‖ �
√

logP . (D.11)

Coupling (D.10) with (D.11) yields

ν̂(α)− ρ(1/η)1̂[X](α)�
P k√
logP

� Xw−1/k,

and now (12.9) confirms (D.1).
Finally, let α ∈M(q, a) with 2 ≤ q ≤ (logP)1/4 and (a, q) = 1, and put

β = α −
a

q
∈

[
−
(logP)1/4

P k
,
(logP)1/4

P k

]
.

Substituting

‖α‖ ≥ q−1
− |β| ≥ q−1

−
(logP)1/4

P k
≥

1
2q

into (D.9) gives

1̂[X](α)� q � (logP)1/4.

By Lemma D.1, we also have

ν̂(α)�
P k√
logP

+X|q−1Sq,a|,

and now Lemma D.2 yields (D.1).
We have established (D.1) for all α ∈ T, assuming k ≥ 3.
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D.2. Quadratic Weyl sums

The purpose of this subsection will be a proof of Lemmas 6.3 and 16.1, together with the
k = 2 case of Lemma 12.4. In all of these cases k = 2, so η = 1, and the weight function
is simpler, namely

ν(n) =

{
x if n = x2

−ξ2

2W for some x ∈ [P ] with x ≡ ξ mod W,
0 otherwise.

For the Fourier transform of this weight function, we can obtain a power saving on the
minor arcs, as in [BP17]. This will be used in the next appendix, in the proof of the
restriction estimate. We keep this brief, as the analysis is essentially the same as that of
[BP17].

As discussed at the beginning of this appendix, we seek to establish (D.1). The Fourier
transform is given by

ν̂(α) =
∑
x≤P

x≡ξ modW

xe

(
α
x2
− ξ2

2W

)
.

The following is a straightforward adaptation of [BP17, Lemma 5.1].

Lemma D.9 (Major arc asymptotic). Suppose that ‖qα‖ = |qα − a| for some q, a ∈ Z
with q > 0. Then

ν̂(α) = q−1Sq,aI (α − a/q)+Ow(
√
X(q +X‖qα‖)).

Lemmas D.2 and D.3 still hold when k = 2, with the same proof.
Following [BP17], put τ = 1

100 , and to each reduced fraction a/q with 0 ≤ a <

q ≤ Xτ associate a major arc

M2(q, a) = {α ∈ T : |α − a/q| ≤ Xτ−1
}.

Let M2 denote the union of all major arcs, and define the minor arcs by m2 = T \M2.
The following is a straightforward adaptation of [BP17, Eq. (5.3)].

Lemma D.10. If ε > 0 and α ∈ m2 then

ν̂(α)�ε X
1−τ/2+ε.

We proceed towards (D.1). Let α ∈ T. By (6.6), it suffices to prove that

ν̂(α)− 1̂[X](α)� Xw−1/2. (D.12)

First suppose α ∈ m2. As in the proof of [BP17, Lemma 5.5], we have 1̂[X](α)� X1−τ .
Pairing this with Lemma D.10 yields (D.12).

Next, suppose α ∈ M2(q, a) for some coprime q, a ∈ Z with 0 ≤ a < q

≤ N τ , where q ≥ 2. Lemmas D.2, D.3 and D.9 give ν̂(α) � Xw−1/2. Meanwhile
‖α‖ ≥ (2q)−1, so

1̂[X](α)� ‖α‖−1
� q � Xτ ,

and now the triangle inequality yields (D.12).
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Finally, when q = 1 and α ∈M2(1, 0), Lemma D.9 gives

ν̂(α)− I (α)�w X
1/2+2τ ,

and Euler–Maclaurin summation gives

1̂[X](α)− I (α)� X2τ .

The triangle inequality now furnishes (D.12).
We have examined all cases, thereby completing the proofs of Lemmas 6.3, 12.4

and 16.1.

Appendix E. Restriction estimates

In this section we prove the restriction estimates claimed in Lemmas 6.4, 12.5 and 16.2.
The core elements of our setup are the same as in Appendix D, but we repeat all of this for
clarity. Put R = P η, and define P and X by (12.3). In the cases of Lemmas 6.3 and 16.1
let η = 1 and k = 2, and ξ = 1 in the latter scenario. Our weight function ν is defined
by (12.8). When k ≥ 3, we choose η = ηk sufficiently small. We assume throughout that
X is sufficiently large in terms of w.

Let φ : Z → C with |φ| ≤ ν pointwise. For an appropriate restriction exponent p,
our task is to establish the restriction inequality∫

T
|φ̂(α)|p dα � Xp−1. (E.1)

The implied constant, in particular, will not depend on w. As

‖φ̂‖∞ ≤ ‖φ‖1 ≤ ‖ν‖1 � X, (E.2)

it suffices to show this when

p =


5− 1

200 if k = 2,
s0(k)+ 2− 1

200 if k ≥ 4,
8− 10−8 if k = 3,

(E.3)

where s0(k) ∈ N is as in Theorem 1.3. Fix this choice of p.
To summarise what is written above, we seek to establish the restriction inequality

(E.1) when the exponent p is given by (E.3). This will prove Lemmas 6.4, 12.5 and 16.2
at one fell swoop.

Even moments play a key role, owing to the presence of an underlying Diophantine
equation. In particular, they allow bounded weights to be freely removed. Let 2m be the
greatest even integer strictly less than p.

Lemma E.1. We have∫
T
|φ̂(α)|2m dα �k,ε


(WX)2m−1 if k ≥ 4,
X2m−1+ε if k = 2,
P 15.25−10−4

if k = 3.
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Remark E.2. The sixth moment estimate, for the case k = 3, has a slightly different
flavour; it is a consequence of Wooley’s ‘subconvex’ mean value estimate [Woo95]. It is
this that ultimately enables us to procure a p-restriction estimate with p < 8.

Proof of Lemma E.1. By orthogonality and the triangle inequality,∫
T
|φ̂(α)|2m dα � P 2m(k−1)N ,

where N is the number of solutions (x, y) ∈ S(P ;P η)m×S(P ;P η)m to the Diophantine
equation

xk1 + · · · + x
k
m = y

k
1 + · · · + y

k
m.

Note that adding a constant to s0(k) in the case k ≥ 4 does not cause it to violate (1.3),
and so we may assume that 2m ≥ s0(k) for the quantity s0(k) appearing in Theorem B.1.
For k ≥ 4 we therefore have, by Theorem B.1,∫

T
|φ̂(α)|2m dα � P 2m(k−1)P 2m−k

= P k(2m−1)
� (WX)2m−1.

The case k = 2 is similar, as the crude bound N �ε P
2+ε/2 is standard. When k = 3

the proof may be concluded using [Woo95, Theorem 1.2], which implies that N �

P 3.25−10−4
. ut

These estimates fall short of being sharp. By increasing the exponent, we are able to make
them sharp, using Bourgain’s epsilon-removal procedure [Bou89]. In the case k = 3, an
additional intermediate exponent is required.

E.1. Epsilon-removal

In this subsection we assume that k 6= 3. The case k = 3 is treated in the next subsection
by incorporating a small finesse. Denote by δ a parameter in the range

0 < δ � 1.

Define the large spectra
Rδ = {α ∈ T : |φ̂(α)| > δX},

and note from (E.2) that Rδ is empty unless δ � 1. By the dyadic pigeonholing argument
in [BP17, §6], it suffices to prove that

meas(Rδ)�
1

δp−10−8
X
. (E.4)

Moreover, Lemma E.1 ensures that

(δX)2m meas(Rδ) ≤

∫
T
|φ̂(α)|2m dα �k,ε

{
(WX)2m−1 if k ≥ 4,
X3+ε/2 if k = 2,
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so we may assume without loss that

δ >

{
W 2(1−2m) if k ≥ 4,
X−ε if k = 2,

(E.5)

for any ε > 0. Let θ1, . . . , θR be X−1-spaced points in Rδ . As

p − 10−8
≥ 2k + 0.3,

it suffices to show that
R � δ−2k−0.3. (E.6)

Put γ = k + 0.1. By the calculation in [BP17, §6], we have

δ2γXγR2
�

∑
1≤r,r ′≤R

|ν̂(θr − θr ′)|
γ . (E.7)

First suppose k ≥ 4. Consider θ = θr − θr ′ in the summand on the right-hand side of
(E.7). By Lemma D.8, the contribution from θ ∈ m is

O(R2(X(logX)−1/(8k))γ ),

and by (E.5) this is o(δ2γXγR2). Hence

δ2γXγR2
�

∑
1≤r,r ′≤R:

θ=θr−θr′∈M

|ν̂(θ)|γ . (E.8)

If θ ∈M(q, a) with (a, q) = 1 and q ≤ (logP)1/4 then, by Lemmas D.1–D.3,

ν̂(θ)� q−1/k min{X, ‖θ − a/q‖−1
} +

P k

logP
(q + P k‖qα‖)

�k q
−1/k X

1+X|θ − a/q|
+

WX√
logX

.

With C a large positive constant, the contribution to the right-hand side of (E.8) from
denominators q > Q1 := C + δ

−3k is therefore bounded, up to a constant, by

R2Xγ (Q
−γ /k

1 +W γ (logX)−γ /2),

which, by (E.5), is negligible compared to the left-hand side of (E.8). Therefore

δ2γR2
�

∑
1≤r,r ′≤R

G(θr − θr ′), (E.9)

where

G(α) =
∑
q≤Q1

q−1∑
a=0

q−γ /k

(1+X|sin(α − a/q)|)γ
.
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The inequality (E.9) is very similar to [Bou89, Eq. (4.16)], but with N2 replaced by X,
and with Q1 ∼ δ−3k rather than Q1 ∼ δ−5. The exponents differ but, since γ > k,
Bourgain’s argument carries through, and we obtain (E.6) in the case k ≥ 4.

Now suppose k = 2. Consider θ = θr − θr ′ in the summand on the right-hand side
of (E.7). By Lemma D.10, the contribution from θ ∈ m2 is

O(R2(X1−τ/2+τ 2
)γ ),

and by (E.5) this is o(δ2γXγR2). Hence

δ2γXγR2
�

∑
1≤r,r ′≤R:

θ=θr−θr′∈M

|ν̂(θ)|γ . (E.10)

If θ ∈ M2(q, a) with (a, q) = 1 and q ≤ Xτ then, by Lemmas D.2, D.3 and D.9, we
have

ν̂(θ)� q−1/2 min{X, ‖θ − a/q‖−1
} +Ow(X

1/2+2τ )�
Xq−1/2

1+X|θ − a/q|
.

We obtain (E.9), but with k = 2 in the definition of G(·), and Bourgain’s argument again
completes the proof.

E.2. An intermediate exponent

In this subsection let k = 3, and let η be a small positive constant as before. We proceed
in two steps, effectively ‘pruning’ the large spectrum. In the first step, we use a power-
saving minor arc estimate for an auxiliary majorant to come close to a sharp restriction
estimate. In the second step, we no longer require a power saving on the minor arcs, so
we are able to obtain a sharp restriction estimate by reverting to the majorant ν.

E.2.1. A close estimate. Here we concede a small loss. By slightly increasing the expo-
nent, we will recover it in the next subsection. Our goal for the time being is to establish
the following.

Lemma E.3. We have

sup
|φ|≤ν

∫
T
|φ̂(α)|8−10−6

dα � X−1(WX)8−10−6
.

Similarly to the k 6= 3 case, it suffices to prove that

meas(Rδ)�
1

δ8−10−5
X
,

where it is now convenient to redefine

Rδ = {α ∈ T : |φ̂(α)| > δWX}.
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Note that in this setting δ � W−1. Since Lemma E.1 implies that

(δWX)6 meas(Rδ) ≤

∫
T
|φ̂(α)|6 dα � P 15.25−10−4

,

we may assume without loss that

δ > P 10−5
−1/8. (E.11)

Let θ1, . . . , θR be X−1-spaced points in Rδ . It suffices to show that

R � δ−6.3. (E.12)

For some an ∈ C with |an| ≤ 1, we have φ(n) = anµ(n), wherein we employ the
majorant

µ(n) =

{
x2 if n = x3

−ξ3

3W for some x ≤ P with x ≡ ξ mod W,
0 otherwise.

With γ = 3.1, the calculation in [BP17, §6] implies

δ2γ (WX)γR2
�

∑
r,r ′≤R

|µ̂(θr − θr ′)|
γ . (E.13)

Consider θ = θr − θr ′ in the summand. We require a circle method analysis. The
majorant µ is very similar to the ‘auxiliary majorant’ from [Cho18, §5]. Therein, the
calculations are based on partial summation and Roger Baker’s estimates, as packaged
in [Cho16, §2]. The same approach yields the following major arc estimate, where the
corresponding set of minor arcs is

n := {α ∈ T : |µ̂(α)| ≤ P 2.75+10−6
}.

Lemma E.4. If α ∈ T \ n then there exist q, a ∈ Z such that 0 ≤ a ≤ q − 1 and

µ̂(α)� WXqε−1/3(1+X|α − a/q|)−1/3.

We continue the proof of Lemma E.3. In light of (E.11), the contribution from θ ∈ n to
the right-hand side of (E.13) is o(δ2γ (WX)γR2), and so

δ2γ (WX)γR2
�

∑
r,r ′≤R:
θ /∈n

|µ̂(θr − θr ′)|
γ .

With C a large positive constant and Q2 = C + δ
−9, we can use Lemma E.4 to obtain

δ2γR2
�

∑
1≤r,r ′≤R

G1(θr − θr ′),

where

G1(θ) =
∑
q≤Q2

q−1∑
a=0

qγ (ε−1/3)

(1+X|sin(θ − a/q)|)γ /3
.

As γ (ε − 1/3) > 1, the proof may be completed by Bourgain’s argument, as in the
previous subsection.
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E.2.2. A sharp estimate. We are ready to prove (E.1); recall that p = 8 − 10−8. This
time let

Rδ = {α ∈ T : |φ̂(α)| > δX},

where δ � 1. Following the same strategy, it suffices to prove that

meas(Rδ)�
1

δ8−10−7
X
.

From Lemma E.3 we have

(δX)8−10−6
meas(Rδ)� W 8X7−10−6

,

so we may assume without loss that

W−107
< δ � 1.

With θ1, . . . , θR being X−1-spaced points in Rδ , it again suffices to prove (E.12). This
time put φ(n) = anν(n), where an ∈ C with |an| ≤ 1. The calculation in [BP17, §6] then
gives (E.7), and by the method of Subsection E.1 (in the k ≥ 4 case) we obtain (E.9);
once again Bourgain’s argument carries through.

We have considered all cases, thereby completing the proof of Lemmas 6.4, 12.5
and 16.2.

Appendix F. Lefmann’s criterion

In this section we prove Theorem 1.8, which is a consequence of Lefmann’s lemma
[Lef91, Fact 2.8]. The theorem is a special case of Theorem 1.3, but can be established
more simply, and we presently provide a proof. By rearranging the variables, we may
suppose that for some t ∈ {6, 7, . . . , s} we have

c1 + · · · + ct = 0. (F.1)

Let
a := ct+1 + · · · + cs .

The case a = 0 was treated by Browning and Prendiville [BP17] so, for simplicity, we
assume henceforth that a 6= 0.

The following obscure fact was shown by Lefmann [Lef91, Fact 2.8].

Lemma F.1 (Lefmann). Let c1, . . . , cs be non-zero integers. Assume that there exists
t ∈ [s] for which we have (F.1). Assume further that there exist y ∈ Z \ {0} and
y1, . . . , yt ∈ Z such that

c1y1 + · · · + ctyt = 0 (F.2)
and

ay2
+ c1y

2
1 + · · · + cty

2
t = 0. (F.3)

Then (1.8) is partition regular over N.

To complete the proof of Theorem 1.8, it remains to prove that the system has a solution
(y, y) ∈ (Z \ {0})× Zt . The number of such solutions in [−P, P ]t+1 is N1 −N2, where
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N1 is the total number of integer solutions (y, y) ∈ [−P, P ]t+1 and N2 is the number of
integer solutions y ∈ [−P, P ]t to

c1y1 + · · · + ctyt = c1y
2
1 + · · · + cty

2
t = 0.

Here P is a large positive real number.

Lemma F.2. We have
N2 � P t−3 logP.

Proof. Rogovskaya [Rog86] showed that the system

x1 + x2 + x3 = y1 + y2 + y3,

x2
1 + x

2
2 + x

2
3 = y

2
1 + y

2
2 + y

2
3

has 18
π2P

3 logP +O(P 3) solutions (x, y) ∈ [P ]6. By orthogonality, one can deduce from
this that ∫

T2

∣∣∣ ∑
|x|≤P

e(α1x + α2x
2)

∣∣∣6 dα1 dα2 � P 3 logP.

As t ≥ 6, the lemma now follows from orthogonality, Hölder’s inequality, and the trivial
bound

∑
|x|≤P e(α1x + α2x

2)� P . ut

Lemma F.3. We have
N1 � P t−2.

Proof. Let

Q(y1, . . . , yt−1) = c
−1
t (c1y1 + · · · + ct−1yt−1)

2
+

∑
i≤t−1

ciy
2
i

=

∑
i≤t−1

(ci + c
2
i /ct )y

2
i + 2

∑
1≤i<j≤t−1

(cicj/ct )yiyj ,

and put
C = |c1| + · · · + |ct |.

Now N1 is greater than or equal to the number of integer solutions

(y, y1, . . . , yt−1) ∈ [−P/C, P/C]
t

to
ay2
+Q(y1, . . . , yt−1) = 0

with c1y1+ · · · + ct−1yt−1 ≡ 0 mod ct . By considering only multiples of ct , we find that
N1 is greater than or equal to the number of integer solutions x ∈ [−P/C2, P/C2

]
t to

Q1(x) := Q(x1, . . . , xt−1)+ ax
2
t = 0.

For the sake of brevity, we appeal to Birch’s very general theorem [Bir61, Theorem 1].
The Birch singular locus is the set S of x ∈ Ct at which the gradient of Q1 vanishes
identically. (In this instance, the Birch singular locus coincides with the usual singular
locus.) We compute that

1
2∂iQ(y1, . . . , yt−1) = (ci + c

2
i /ct )yi +

∑
j≤t−1
j 6=i

cicjyj/ct ,
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and so
ct

2ci
∂iQ = (ct + ci)yi +

∑
j≤t−1
j 6=i

cjyj = ct (yi − yt )+
∑
j≤t

cjyj = ct (yi − yt ),

where yt := −c−1
t (c1y1 + · · · + ct−1yt−1). Therefore

S = {(x, x, . . . , x, 0) ∈ Ct },

and in particular dimS = 1.
As t − dimS > 4, Birch’s theorem [Bir61, Theorem 1] gives

N1 = SJP t−2
+O(P t−2−δ) (F.4)

for some constant δ > 0, where S and J are respectively the singular series and singular
integral arising from the circle method analysis. Birch notes in [Bir61, §7] that S is
positive as long as Q1 has a non-singular p-adic zero for each prime p, and that J is
positive as long as Q1 has a real zero outside of S1. Note that Q has a zero x∗ ∈ Zt−1

with pairwise distinct coordinates; this follows from [Kei14, Theorem 1.1], or from a
circle method analysis. Now (x∗, 0) is a real zero of Q1 outside of S1, and is also a non-
singular p-adic zero for each p. Hence SJ > 0, and by (F.4) the proof is now complete.

ut

The previous two lemmas yield N1 > N2 for P sufficiently large, and this completes the
proof of Theorem 1.8.

Remark F.4. Lefmann’s lemma generalises straightforwardly to higher degrees. We do
not explore this avenue further, as any results thus obtained are likely subsumed by The-
orem 1.3.
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[FGR88] Frankl, P., Graham, R. L., Rödl, V.: Quantitative theorems for regular systems of equa-
tions. J. Combin. Theory Ser. A 47, 246–261 (1988) Zbl 0654.05002 MR 0930955

[FH14] Frantzikinakis, N., Host, B.: Higher order Fourier analysis of multiplicative func-
tions and applications. J. Amer. Math. Soc. 30, 67–157 (2017) Zbl 1355.11094
MR 3556289

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0846.05095&format=complete
http://www.ams.org/mathscinet-getitem?mr=1411215
https://bit.ly/2GNaL7d
https://arxiv.org/abs/1610.09771
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0870.11015&format=complete
http://www.ams.org/mathscinet-getitem?mr=1325795
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0103.03102&format=complete
http://www.ams.org/mathscinet-getitem?mr=0150129
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0692.43005&format=complete
http://www.ams.org/mathscinet-getitem?mr=1029904
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1408.11083&format=complete
http://www.ams.org/mathscinet-getitem?mr=3548534
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1405.11131&format=complete
http://www.ams.org/mathscinet-getitem?mr=3658196
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:07301078&format=complete
http://www.ams.org/mathscinet-getitem?mr=4146371
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1396.11058&format=complete
http://www.ams.org/mathscinet-getitem?mr=3430375
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1441.11022&format=complete
http://www.ams.org/mathscinet-getitem?mr=3801486
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0224.10021&format=complete
http://www.ams.org/mathscinet-getitem?mr=0289406
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1178.11011&format=complete
http://www.ams.org/mathscinet-getitem?mr=2337044
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1286.11026&format=complete
http://www.ams.org/mathscinet-getitem?mr=2965285
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1431.11024&format=complete
http://www.ams.org/mathscinet-getitem?mr=3742435
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1125.11018&format=complete
http://www.ams.org/mathscinet-getitem?mr=2152164
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0254.05011&format=complete
http://www.ams.org/mathscinet-getitem?mr=0325406
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1376.05159&format=complete
http://www.ams.org/mathscinet-getitem?mr=3733882
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1385.11052&format=complete
http://www.ams.org/mathscinet-getitem?mr=3580114
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0654.05002&format=complete
http://www.ams.org/mathscinet-getitem?mr=0930955
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1355.11094&format=complete
http://www.ams.org/mathscinet-getitem?mr=3556289


1996 Sam Chow et al.

[Fur77] Furstenberg, H., Ergodic behavior of diagonal measures and a theorem of Szemerédi
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