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Abstract. We establish a smoothed asymptotic formula for the third moment of quadratic Dirich-
let L-functions at the central value. In addition to the main term, which is known, we prove the
existence of a secondary term of size x3/4. The error term in the asymptotic formula is on the order
of O(x2/3+δ) for every δ > 0.
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1. Introduction

Statement of the main results. The object of this sequel of [6] is to study the analytic
continuation of the Dirichlet generating series

Z0(s) =
∑
∗

d

L(1/2, χ2d)
3d−s (1)

where the star indicates that the sum is over all square-free odd positive integers, associ-
ated to the central values of quadratic Dirichlet L-functions. The series (1) is absolutely
convergent for complex s with sufficiently large real part—in fact, by a well-known result
of Heath-Brown [10], for <(s) > 1.

Our main result is the following

Theorem 1.1. The function Z0(s) has meromorphic continuation to the half-plane <(s)
> 2/3. It is analytic in this region, except for a pole of order seven at s = 1, and a simple
pole at s = 3/4 with residue

Res
s=3/4

Z0(s) =
9

256π 21/4(−181+ 128
√

2)0(1/4)4ζ(1/2)7 ·
∏

p 6=2 prime

P(p−1/2) ≈ −.0034
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where P(p−1/2) = (1−p−1/2)5(1+p−1/2)(1+4p−1/2
+11p−1

+10p−3/2
−11p−2

+

11p−3
− 4p−7/2

− p−4).

Moreover, for every small δ > 0 and s ∈ C with 2/3 < <(s) < 1+ δ and |=(s)| > 1,
we have the estimate

Z0(s)�δ |s|
5(1−<(s))+6δ.

Meromorphic continuation of Z0(s) beyond <(s) = 1 and analysis of the principal part
at s = 1 have already been given in [12], [7], and [15]. Our focus here is on the pole
at s = 3/4 and further meromorphic continuation to <(s) > 2/3. As a consequence,
we have the following smoothed asymptotic formula for the cubic moment of quadratic
Dirichlet L-functions.

Theorem 1.2. Let W : (0,∞) → [0, 1] be a smooth function with compact support
contained in [1/2, 1], and satisfying

|W (j)(u)| ≤ 1 for 0 ≤ j ≤ 3 and u ∈ R. (2)

Letting Ŵ denote the Mellin transform of W , for every x ≥ 1 and small δ > 0, we have∑
∗

d

L(1/2, χ2d)
3W(d/x) = xQW (log x)+ Res

s=3/4
Z0(s) · Ŵ (3/4)x3/4

+Oδ(x
2/3+δ)

where QW (u) is a computable degree six polynomial.

The polynomialQW (u) can be easily computed from the principal part of Z0(s) at s = 1.
We note that the restriction to positive fundamental discriminants divisible by 8 (see

also [12] and [15]) is solely made for simplicity.

Relation to previous work. Moments in families of L-functions are a topic of great
interest in analytic number theory because of connections to the generalized Lindelöf
hypothesis, various nonvanishing conjectures, etc. The third moment of quadratic L-
functions has been studied by Soundararajan [12] and by the first author with Goldfeld
and Hoffstein [7]. The best prior estimate is due to Young [15], who obtains a smoothed
asymptotic formula with error O(x3/4+ε). The secondary term of size x3/4 was con-
jectured in [7], and verified by Zhang [16] under certain meromorphicity and polynomial
growth assumptions, which we shall remove; Alderson and Rubinstein [1] have also given
computational evidence for a secondary term.

The existence of this term raises many interesting questions. No analogous term exists
in the asymptotics of the first two moments, and its existence does not seem to be pre-
dicted by random matrix-type models. Secondary terms of this type have yet to be fully
incorporated into the framework of moment conjectures. Yet, work of both authors on
Kac–Moody multiple Dirichlet series [8], [13], [14] predicts that many similar secondary
terms will appear in higher moments of quadratic L-functions. One problem of inter-
est to the authors is the fourth moment of quadratic Dirichlet L-functions in the rational
function field case, summed over monic square-free polynomials [9]. Here the underlying
group of symmetries is infinite, and the p-part Zp(s1, s2, s3, s4, s5) is more challenging to
understand, but we again expect a secondary term of size x3/4 to exist. In fact, we expect
infinitely many secondary terms of sizes between x3/4 and x1/2.
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The multiple Dirichlet series approach of [7], [16], and the present work explains the
presence of secondary terms as follows. The series Z0(s) is a specialization of a four-
variable Dirichlet series∑

∗

d

L(s1, χ2d)L(s2, χ2d)L(s3, χ2d)d
−s4 .

To take full advantage of symmetry, it is helpful to work with modifications of this object,
denoted Z(s1, s2, s3, s4), where the sum is over all positive integers d.When d has square
factors, the L-functions appearing in the sum are altered at finitely many primes. The
resulting object satisfies a group of functional equations isomorphic to the Weyl group
of the root system D4. These functional equations imply meromorphic continuation to
all of C4 via an application of Bochner’s principle. Furthermore, they fully determine
the polar divisors of Z(s1, s2, s3, s4), which are in one-to-one correspondence with the
positive roots of D4. It follows that Z(1/2, 1/2, 1/2, s) has a simple pole at s = 3/4.

We establish that this pole remains when the sum is restricted to fundamental discrimi-
nants—it is not merely an artifact of the modifications in the multiple Dirichlet series con-
struction. The series Z0(s) can be obtained from quadratic twists of Z(1/2, 1/2, 1/2, s)
(see Section 3). Under the hypothesis that the series1 Z0(s) has meromorphic continua-
tion and polynomial growth in a half-plane containing 3/4, Zhang [16] computes the sec-
ondary term. Although our calculation of the residue at s = 3/4 of Z0(s) is quite different
from Zhang’s calculation, we reach, essentially, the same answer; the only differences2

occur in the constants related to the places 2 and∞. In particular, our calculation of the
residue confirms the fairly complicated product over odd primes found by Zhang.

Overview of the argument. In the present work, we omit all discussion of the principal
part of Z0(s) at s = 1. As already noted, this can be computed as in [7, Section 3.2], or
as in [15]. The proof of Theorem 1.1 proceeds as follows. Section 2 defines the multiple
Dirichlet series Z(c)(s1, s2, s3, s4;χa2c2 , χa1c1), which has roughly the form

Z(c)(s1, s2, s3, s4;χa2c2 , χa1c1)

=

∑
d>0

gcd(d,2c)=1

L(2c)(s1, χa1c1χd)L
(2c)(s2, χa1c1χd)L

(2c)(s3, χa1c1χd)χa2c2(d)d
−s4

for an odd square-free positive integer c and quadratic characters χa1c1 , χa2c2 of conduc-
tors dividing 8c. The Euler factors of L-functions appearing in this sum are modified at
primes p such that p2

| d.We list the known properties of Z(c)(s1, s2, s3, s4;χa2c2 , χa1c1),
including meromorphic continuation, functional equations, and a convexity bound for
its size at s1 = s2 = s3 = 1/2. Finally, we compute the residue of this series at
s1 = s2 = s3 = 1/2, s4 = 3/4.

Section 3 uses a simple sieve to express Z0(s) in terms of Z(c)(s1, s2, s3, s4;
χa2c2 , χa1c1). The main problem is to establish enough analytic continuation for

1 More precisely, the corresponding series obtained by summing over all fundamental discrimi-
nants.

2 After all our average is different from that studied in [16].
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the sieving formula. The crucial ingredient is an improvement in the bound for
Z(c)(s1, s2, s3, s4;χa2c2 , χa1c1) at s1 = s2 = s3 = 1/2, with s4 = s fixed. If c = c1c2c3,
the convexity bound is not enough in c3 aspect to imply that the sieving formula continues
beyond <(s) = 3/4. However, the recursive refinement in Proposition 3.2 provides sub-
stantial improvement of the exponent of c3, allowing us to establish the desired analytic
continuation.

Section 4 completes the proofs of our main theorems. After multiplying by a poly-
nomial to remove the poles at s = 1 and s = 3/4, we show that the sieving formula
converges absolutely for <(s) > 2/3. The residue of Z0(s) at s = 3/4 is then computed.
Theorem 1.2 is deduced via a contour integration.

The recursive refinement argument of Proposition 3.2 is a new technique which has
not appeared elsewhere in the multiple Dirichlet series literature. This technique is now
available because of the extent to which local factors, or p-parts, of multiple Dirichlet
series are understood. The p-part ofZ, denotedZp(s1, s2, s3, s4), is a power series in p−si
which serves as a generating function for the modified Euler factors appearing in the mul-
tiple Dirichlet series. There is an extensive literature on such p-parts, which are of interest
for their connection to local representations of metaplectic groups—see, for example,
[3, 5, 11]. In other articles, the authors have proposed an axiomatic characterization of the
p-parts which is designed to extend to infinite-dimensional groups [8, 13]. Of central im-
portance is a dominance axiom, which bounds the coefficients ofZp(s1, s2, s3, s4) by pow-
ers of p. One consequence is that, aside from fixed constant and linear terms, the expres-
sionsZp(s1, s2, s3, s4) have decay in p for<(si) > 1/2. The recursive refinement method
here plays convexity bounds forZ(c)(s1, s2, s3, s4;χa2c2 , χa1c1) against explicit bounds for
its p-parts. The axiomatic approach is not strictly necessary, because in this case we have
Zp(s1, s2, s3, s4) as an explicit rational function, but it certainly informs the technique.

Remark. The D4 Weyl group multiple Dirichlet series Z(c)(s1, s2, s3, s4;χa2c2 , χa1c1)

can be generalized to arbitrary number fields—see, for instance, [4]. They possess similar
analytic properties (e.g., meromorphic continuation to C4, polynomial growth), and can
be used to establish asymptotics for the cubic moment of quadratic L-series over number
fields. It is worth noticing the presence of the central value ζK(1/2)7 of the Dedekind
zeta-function of a number field K in the constant of the x3/4-term in the corresponding
asymptotic formula for the cubic moment over K. This phenomenon and its potential
relevance remain to be further investigated.

We designate this article as a sequel to [6] to emphasize the similarity between the func-
tion field and number field cases. The structure of the rational function field proof given
in [6] is parallel to that of the present work. We intend the two articles together to serve
as a model for transferring multiple Dirichlet series arguments from the geometric to the
arithmetic setting.

2. Properties of multiple Dirichlet series

Definitions. For d ∈ Z nonzero and square-free, let χd(m) be the quadratic character
defined by
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χd(m) =

{(
d
m

)
if d ≡ 1 (mod 4),( 4d

m

)
if d ≡ 2, 3 (mod 4).

Fix an odd, positive, square-free integer c. Let a1, a2 ∈ {±1,±2}, and let c1, c2 divide c.
We will study the multiple Dirichlet series

Z(c)(s1, s2, s3, s4;χa2c2 , χa1c1)

=

∑
m1,m2,m3,d≥1

gcd(m1m2m3d,2c)=1

H(m1, m2, m3, d)χa1c1(m1m2m3)χa2c2(d)m
−s1
1 m

−s2
2 m

−s3
3 d−s4 .

The functionH(m1, m2, m3, d) on quadruples of odd integers is defined as follows. First,
H satisfies a twisted multiplicativity property: for gcd(m1m2m3d,m

′

1m
′

2m
′

3d
′) = 1, we

have3

H(m1m
′

1, m2m
′

2, m3m
′

3, dd
′)

= H(m1, m2, m3, d)H(m
′

1, m
′

2, m
′

3, d
′)

(
d

m′1m
′

2m
′

3

)(
d ′

m1m2m3

)
.

Given this property, it suffices to define H(pk1 , pk2 , pk3 , pl) for p prime. These coeffi-
cients are given by an explicit generating function

Zp(s1, s2, s3, s4) =
∑

k1,k2,k3,l≥0

H(pk1 , pk2 , pk3 , pl)p−k1s1−k2s2−k3s3−ls4

known as the p-part of the series. More precisely,

Zp(s1, s2, s3, s4) = f (p
−s1 , p−s2 , p−s3 , p−s4;p)

where f (z1, z2, z3, z4;p) is the rational function given in [6, Appendix B, Equation 32].4

From the generating series Zp, we see that H(pk1 , pk2 , pk3 , pl) = 1 when
min(k1 + k2 + k3, l) = 0 and H(pk1 , pk2 , pk3 , pl) = 0 when min(k1 + k2 + k3, l) = 1.
Therefore, H(m1, m2, m3, d) =

(
d

m1m2m3

)
whenever either d or m1m2m3 is square-free.

Furthermore, H(pk1 , pk2 , pk3 , pl) = 0 when k1 + k2 + k3 and l are both odd. We can
compare Z(c)(s1, s2, s3, s4;χa2c2 , χa1c1) to an Euler product of Zp factors to show that it
converges absolutely for <(s1), . . . ,<(s4) > 1.

We will rewrite the function Z(c)(s1, s2, s3, s4;χa2c2 , χa1c1) in two different ways
which allow us to verify its meromorphic continuation to C4 and the group of functional

3 In the conventions of [4], which are largely followed here, the Kronecker symbols would be
flipped. However, this convention is more convenient for working with the family L(s, χd ).

4 [6] uses the notation A(pk1 , pk2 , pk3 , pl) or a(k1, k2, k3, l;p) for H(pk1 , pk2 , pk3 , pl).
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equations. Fix a positive integer d, coprime to 2c, which factors as d0d
2
1 with d0 square-

free. Then we have∑
m1,m2,m3≥1

gcd(m1m2m3,2c)=1

H(m1, m2, m3, d)χa1c1(m1m2m3)m
−s1
1 m

−s2
2 m

−s3
3

= L(2c)(s1, χa1c1d0)L
(2c)(s2, χa1c1d0)L

(2c)(s3, χa1c1d0)

·

∏
pl‖d
l≥2

∑
k1,k2,k3≥0H(p

k1 , pk2 , pk3 , pl)χa1c1(p)
k1+k2+k3

( dp−l
p

)k1+k2+k3p−k1s1−k2s2−k3s3

Lp(s1, χa1c1d0)Lp(s2, χa1c1d0)Lp(s3, χa1c1d0)
.

Here L(2c)(si, χa1c1d0) denotes the quadratic Dirichlet L-function with Euler factors at
primes p dividing 2c removed; Lp(si, χa1c1d0) denotes the Euler factor at p. The latter
product is a Dirichlet polynomial we denote as Pd(s1, s2, s3;χa1c1d0).

The local coefficients H are such that this modified product of L-functions satisfies
uniform functional equations. For i = 1, 2, 3, and for a = 0 if χa1c1(−1) = 1, and a = 1
if χa1c1(−1) = −1, the function(

π

d2
1 condχa1c1d0

)−(si+a)/2
0

(
si + a

2

)
L(2c)(si, χa1c1d0)

·

(∏
p|2c

Lp(si, χa1c1d0)
)
Pd(s1, s2, s3;χa1c1d0)

is symmetric under si 7→ 1− si , for all d.
In the domain of absolute convergence, we have

Z(c)(s1, s2, s3, s4;χa2c2 , χa1c1) =
∑
d≥1

gcd(d,2c)=1

χa2c2(d)L
(2c)(s1, χa1c1d0)L

(2c)(s2, χa1c1d0)

· L(2c)(s3, χa1c1d0)Pd(s1, s2, s3;χa1c1d0)d
−s4 (3)

where each d is factored into d0d
2
1 , as above. The polynomials Pd(s1, s2, s3;χa1c1d0)

have polynomial growth in d1. It follows that the sum converges absolutely for every
s1, s2, s3 6= 1 as long as <(s4) is sufficiently large.

The second expression forZ(c)(s1, s2, s3, s4;χa2c2 , χa1c1) evaluates the d andm1, m2,

m3 sums in the opposite order. We will use the notation χ̃m(d) for the character defined
by the Kronecker symbol

(
d
m

)
. Fix positive integers m1, m2, m3 coprime to 2c, and let

m0 denote the square-free part of the product m1m2m3. We have∑
d≥1

gcd(d,2c)=1

H(m1, m2, m3, d)χa2c2(d)d
−s4 = L(2c)(s4, χa2c2 χ̃m0)

·

∏
pk1‖m1, p

k2‖m2, p
k3‖m3

k1+k2+k3≥2

∑
l≥0H(p

k1 , pk2 , pk3 , pl)χa2c2(p)
l
( p

m1m2m3p
−k1−k2−k3

)l
p−ls4

Lp(s4, χa2c2 χ̃m0)
.
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The latter product is a Dirichlet polynomial denoted Qm1,m2,m3(s4;χa2c2 χ̃m0). This
modified L-function also satisfies a uniform functional equation. Let a = 0 if
χa2c2(−1)χ̃m0(−1) = 1, and a = 1 if χa2c2(−1)χ̃m0(−1) = −1. Then the function

(
π

m1m2m3 condχa2c2

)−(s4+a)/2
0

(
s4 + a

2

)
L(2c)(s4, χa2c2 χ̃m0)

·

(∏
p|2c

Lp(s4, χa2c2 χ̃m0)
)
Qm1,m2,m3(s4;χa2c2 χ̃m0)

is symmetric under s4 7→ 1− s4, even when m1m2m3 is not square-free.
Thus we can write

Z(c)(s1, s2, s3, s4;χa2c2 , χa1c1)

=

∑
m1,m2,m3≥1

gcd(m1m2m3,2c)=1

χa1c1(m1m2m3)L
(2c)(s4, χa2c2 χ̃m0)Qm1,m2,m3(s4;χa2c2 χ̃m0)

m
s1
1 m

s2
2 m

s3
3

. (4)

As before, for any s4 6= 1, the sum converges absolutely for<(si) (i = 1, 2, 3) sufficiently
large.

Functional equations and analytic continuation. As shown in [7], the family of multi-
ple Dirichlet series defined at the beginning of this section satisfies a group of functional
equations. However, for the computation of the residue we are interested in, it is more
convenient to write the functional equations as follows.

For an arbitrary (primitive) quadratic Dirichlet character χ , let

3c(s;χ) =

(
π

gcd(condχ, 8c)

)−(s+a)/2
0

(
s + a

2

)∏
p|2c

Lp(s, χ)

where a is 0 if χ(−1) = 1 and 1 if χ(−1) = −1.
Let ω(c) denote the number of distinct prime factors of c. For D ∈ Z coprime to 2c,

the linear combination

2−ω(c)−2
∑

a2∈{±1,±2}
c2|c

χa2c2(D)Z
(c)(s1, s2, s3, s4;χa2c2 , χa1c1) (5)

isolates the summands of d in Z(c)(s1, s2, s3, s4;χa2c2 , χa1c1) with dD congruent to a
square modulo 8c. We take D square-free and ranging over a complete set of representa-
tives for (Z/8cZ)∗/(Z/8cZ)∗2. If the expression (5) is written in the form of (3), it can
be seen to satisfy a functional equation: for i = 1, 2, 3, the function

3c(si;χa1c1D)2
−ω(c)−2

∑
a2∈{±1,±2}

c2|c

χa2c2(D)Z
(c)(s1, s2, s3, s4;χa2c2 , χa1c1) (6)
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is symmetric under the transformation σi which takes si to 1− si , s4 to s4+ si − 1/2, and
fixes the other variables.

Similarly, we may use the expression (4) to deduce an additional functional equation.
For M ∈ Z coprime to 2c, the function

3c(s4;χa2c2 χ̃M)2
−ω(c)−2

∑
a1∈{±1,±2}

c1|c

χa1c1(M)Z
(c)(s1, s2, s3, s4;χa2c2 , χa1c1) (7)

is symmetric under the transformation σ4(s1, s2, s3, s4) = (s1 + s4 − 1/2, s2 + s4 − 1/2,
s3 + s4 − 1/2, 1− s4).

These symmetries may be considered as vector functional equations for the collection
of all Z(c)(s1, s2, s3, s4;χa2c2 , χa1c1)when c is fixed but a1, a2, c1, c2 are allowed to vary.
The underlying transformations σi generate a symmetry group isomorphic to the Weyl
group of root system D4. Applying these symmetries to the initial region of meromor-
phicity for Z(c)(s1, s2, s3, s4;χa2c2 , χa1c1) produces a collection of overlapping regions,
the complement of a bounded set in C4. Bochner’s principle [2] then yields meromorphic
continuation to all of C4

; this argument is carried out in detail in [7].
We remark that it actually suffices to work with smaller sums than those appear-

ing in equations (6) and (7). Since 3c(si;χa1c1D) does not contain Euler factors at
primes p dividing c1, it suffices to sum over c2 dividing c/c1 in (6); this isolates sum-
mands of (3) with the same functional equations. Similarly, it suffices to sum over c1
dividing c/c2 in (7). In this way one may always work with multiple Dirichlet series
Z(c)(s1, s2, s3, s4;χa2c2 , χa1c1) for which c1, c2 are relatively prime. This is the conven-
tion of [7] and is used in the proof of Proposition 2.1 (their Proposition 4.12). However,
we find it convenient to work with the larger sums in computing the residue in Proposi-
tion 2.3 below.

Convexity bound. The function Z(c)(1/2, 1/2, 1/2, s;χa2c2 , χa1c1) also satisfies a con-
vexity bound, which we shall recall briefly. For details, we refer to [7, Proposition 4.12].

Proposition 2.1. Suppose that c = c1c2c3 is square-free. Then for every δ > 0 and
a1, a2 ∈ {±1,±2}, we have the estimate

(s − 1)7(s − 3/4)
(s + 1)8

· Z(c)(1/2, 1/2, 1/2, s;χa2c2 , χa1c1)

�δ (1+ |s|)5(1−<(s))+δA
ω(c)
0 S(c, δ)(c1c3)

3(1−<(s))c
5
2 (1−<(s))
2 cδ (8)

for all s with 0 ≤ <(s) ≤ 1. Here A0 is some computable positive constant, and

S(c, δ) =
∑

a=±1,±2

∑
b|c

∑
(d0,2)=1
d0 sq. free

∣∣L(2)(1/2, χabd0)
∣∣3d−1−δ/30

0 .

Note that the characters χabd0(n) :=
(
abd0
n

)
, for odd positive n, appearing in S(c, δ) may

be imprimitive.
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Proof of Proposition 2.1. First, by [6, Proposition B.1] (taking also into account the local
parts at 3), one finds that

|Pd(1/2, 1/2, 1/2;χa1c1d0)| ≤

(
10084

1− 3−2η

)ω(d1)

d
1/2+η
1

for every small positive η. Choosing η = 1/5, and letting <(s) > 1, we have

|Z(c)(1/2, 1/2, 1/2, s;χa2c2 , χa1c1)|

≤

∑
(d,2c)=1
d=d0d

2
1

|L(2c2c3)(1/2, χa1c1d0)|
3
|Pd(1/2, 1/2, 1/2;χa1c1d0)|

d<(s)

< 8ω(c2c3) ·

∑
(d0,2c)=1

|L(2)(1/2, χa1c1d0)|
3

d
<(s)
0

∑
d1≥1

(28358)ω(d1)

d
13/10
1

� 8ω(c2c3) ·

∑
(d0,2)=1

|L(2)(1/2, χa1c1d0)|
3

d
<(s)
0

where d0 is taken square-free. The last series is easily seen to be convergent by applying
the Cauchy–Schwarz inequality and a well-known result of Heath-Brown [10]. Applying
the functional equations and the Phragmén–Lindelöf principle, we obtain the result.5 ut

As in [6], one of the main ingredients in the proof of Theorem 1.1 is an improvement of
(8) in the c3-aspect. This will be established in Proposition 3.2.

Poles of multiple Dirichlet series and their residues. This section computes two
residues ofZ(c)(s1, . . . , s4;χa2c2 , χa1c1). It follows from the functional equations that this
expression has 12 possible polar hyperplanes corresponding to the positive roots of D4:
s1, s2, s3 = 1, s4 = 1, s1+s4, s2+s4, s3+s4 = 3/2, s1+s2+s4, s1+s3+s4, s2+s3+s4 = 2,
s1 + s2 + s3 + s4 = 5/2, s1 + s2 + s3 + 2s4 = 3 [7]. We will be specializing at
s1 = s2 = s3 = 1/2 and examining poles in s4. The first three poles listed are irrel-
evant; the next eight specialize to poles at s4 = 1; the last one specializes to a pole at
s4 = 3/4, which is our particular focus. We will compute the residue at s4 = 1 directly,
and then find the residue at s1 + s2 + s3 + 2s4 = 3 utilizing functional equations.

Proposition 2.2. The function Z(c)(s1, s2, s3, s4;χa2c2 , χa1c1) is holomorphic at s4 = 1
if χa2c2 is a nontrivial character. If χa2c2 is trivial then it has a simple pole at s4 = 1 with
residue

R(c)(s1, s2, s3) := Res
s4=1

Z(c)(s1, s2, s3, s4; 1, χa1c1) = ζ
(2c)(2s1)ζ (2c)(2s2)ζ (2c)(2s3)

· ζ (2c)(s1 + s2)ζ
(2c)(s1 + s3)ζ

(2c)(s2 + s3)ζ
(2c)(2s1 + 2s2 + 2s3 − 1)

∏
p|2c

(1− p−1).

5 In [7, Proposition 4.12], the exponent of c2 in the convexity bound was chosen just for unifor-
mity to be 3(1−<(s)). The better exponent with 3 replaced by 5/2 (which did not help improving
the main results in loc. cit.) can be explained as follows. In the proof of [7, Proposition 4.12]
(and in the notation therein), the power of any prime factor of d1 = l2 dividing the expression

(d1d2)(d2d3)(d3d4) · · · l
−3
4 d4 simply cannot exceed 5.
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Proof. We utilize (4). In this expression, the polynomials Qm1,m2,m3(s4;χa2c2 χ̃m0) do
not contribute poles at s4 = 1. Poles arise only when the quadratic L-function
L(2c)(s4, χa2c2 χ̃m0) is actually a zeta function—that is, when a2 = c2 = 1 and m0 = 1,
or, equivalently, m1m2m3 is a perfect square. In this case, ζ (2c)(s4) has a simple pole at
s4 = 1, with residue

∏
p|2c(1 − p

−1). Thus Z(c)(s1, s2, s3, s4;χa2c2 , χa1c1) is holomor-
phic at s4 = 1 if χa2c2 is a nontrivial character; if χa2c2 is trivial then it has a simple pole
at s4 = 1 with residue

R(c)(s1, s2, s3) =
∏
p|2c

(1− p−1) ·
∑

m1,m2,m3≥1
gcd(m1m2m3,2c)=1
m1m2m3−square

m
−s1
1 m

−s2
2 m

−s3
3 Qm1,m2,m3(1; 1).

This expression is independent of a1 and c1.

Recall thatQm1,m2,m3(s4;χa2c2 χ̃m0) was defined as a product over primes p such that
pk1 ‖m1, pk2 ‖m2, pk3 ‖m3, and k1+k2+k3 ≥ 2. It follows that the residue has an Euler
product expression; the factor at p for p - 2c is

1 +
∑

k1+k2+k3≥2 even

Qpk1 ,pk2 ,pk3 (1; 1)p
−k1s1−k2s2−k3s3 .

This can be evaluated directly from the explicit generating function Zp(s1, s2, s3, s4) as

(1− p−2s1)−1(1− p−2s2)−1(1− p−2s3)−1

· (1− p−s1−s2)−1(1− p−s1−s3)−1(1− p−s2−s3)−1(1− p1−2s1−2s2−2s3)−1

from which the theorem follows. ut

To simplify the computation of the second residue, we restrict to the situation of particular
interest to us: fix s1 = s2 = s3 = 1/2, s4 = s. We also assume that gcd(c1, c2) = 1,
a1 = 2, and a2 = (−1)(c2−1)/2 (so that χa2c2 = χ̃c2 ).

Proposition 2.3. Suppose that c = c1c2c3. Then Z(c)(1/2, 1/2, 1/2, s; χ̃c2 , χ2c1) has a
simple pole at s = 3/4, with residue

Res
s=3/4

Z(c)(1/2, 1/2, 1/2, s; χ̃c2 , χ2c1)

=
9

256π
21/4(−181+ 128

√
2)0(1/4)4ζ(1/2)7

(
2c1

c2

)
· c
−1/4
1

∏
p|c1

(1− p−1/2)8(1+ p−1/2)2(1+ 6p−1/2
+ p−1)

· c
−1/2
2

∏
p|c2

(1− p−1/2)8(1+ p−1/2)(3+ 7p−1/2
+ 3p−1)

·

∏
p|c3

(1− p−1/2)8(1+ p−1/2)(1+ 7p−1/2
+ 13p−1

+ 7p−3/2
+ p−2). (9)
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Proof. Apply the functional equations σ1σ2σ3σ4:

Z(c)(s1, s2, s3, s4;χa2c2 , χa1c1)

= 2−2ω(c)−4
∑

D,M∈
(Z/8cZ)∗
(Z/8cZ)∗2

χa1c1(M)χa2c2(D)
∑

a′1,a
′

2∈{±1,±2}
c′1,c
′

2|c

χa′1c
′

1
(M)χa′2c

′

2
(D)

·

3c(3/2− s1 − s4;χa′1c′1χD)3c(3/2− s2 − s4;χa′1c′1χD)

3c(s1 + s4 − 1/2;χa′1c′1χD)3c(s2 + s4 − 1/2;χa′1c′1χD)

·

3c(3/2− s3 − s4;χa′1c′1χD)3c(1− s4;χa2c2 χ̃M)

3c(s3 + s4 − 1/2;χa′1c′1χD)3c(s4;χa2c2 χ̃M)

·Z(c)(3/2− s1 − s4, 3/2− s2 − s4, 3/2− s3 − s4, s1 + s2 + s3 + 2s4 − 2;χa′2c′2 , χa′1c′1).

The simple pole at s1 + s2 + s3 + 2s4 = 3 arises from summands of

Z(c)(3/2− s1 − s4, 3/2− s2 − s4, 3/2− s3 − s4, 2s4 + s1 + s2 + s3 − 2;χa′2c′2 , χa′1c′1)

in this expression with a′2 = c
′

2 = 1. The full residue is

Res
s1+s2+s3+2s4=3

Z(c)(s1, s2, s3, s4;χa2c2 , χa1c1)

= R(c)(3/2− s1 − s4, 3/2− s2 − s4, 3/2− s3 − s4)

· 2−2ω(c)−4
∑

D,M∈
(Z/8cZ)∗
(Z/8cZ)∗2

χa1c1(M)χa2c2(D)
∑

a′1∈{±1,±2}
c′1|c

χa′1c
′

1
(M)

·

3c(3/2− s1 − s4;χa′1c′1χD)3c(3/2− s2 − s4;χa′1c′1χD)

3c(s1 + s4 − 1/2;χa′1c′1χD)3c(s2 + s4 − 1/2;χa′1c′1χD)

·

3c(3/2− s3 − s4;χa′1c′1χD)3c(1− s4;χa2c2 χ̃M)

3c(s3 + s4 − 1/2;χa′1c′1χD)3c(s4;χa2c2 χ̃M)
.

To proceed, we adopt the hypotheses of the proposition. We must also divide by a factor
of 2 to translate the residue at 2s = 3/2 to the residue at s = 3/4. The result is

Res
s=3/4

Z(c)(1/2, 1/2, 1/2, s; χ̃c2 , χ2c1) = R
(c)(1/4, 1/4, 1/4)2−2ω(c)−5

·

∑
D,M∈

(Z/8cZ)∗
(Z/8cZ)∗2

χ2c1(M)χ̃c2(D)
∑

a′1∈{±1,±2}
c′1|c

χa′1c
′

1
(M)

3c(1/4;χa′1c′1χD)
33c(1/4; χ̃c2 χ̃M)

3c(3/4;χa′1c′1χD)
33c(3/4; χ̃c2 χ̃M)

.
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We may apply the following evaluations:

3c(1/4;χa′1c′1χD)
3

3c(3/4;χa′1c′1χD)
3 =

(
π

gcd(condχa′1c′1χD, 8c)

)3/4

·

∏
p|2c

p-condχa′1c
′
1
χD

(1+ χa′1c′1(p)χD(p)p
−1/4
+ p−1/2)3 ·


0(1/8)3

0(3/8)3 if a′1 > 0,
0(5/8)3

0(7/8)3 if a′1 < 0,

3c(1/4; χ̃c2 χ̃M)

3c(3/4; χ̃c2 χ̃M)
=

(
π

c2

)1/4 ∏
p|(2c/c2)

(1+ χ̃c2(p)χ̃M(p)p
−1/4
+ p−1/2)

·

{
0(1/8)
0(3/8) if c2M ≡ 1 (mod 4),
0(5/8)
0(7/8) if c2M ≡ 3 (mod 4).

After expansion of χa2c2(D)
3c(1/4;χa′1c

′
1
χD)

3

3c(3/4;χa′1c
′
1
χD)

3 and summation over D, each term will van-

ish, unless its total character of D is trivial. This is only possible for c′1 coprime to c2.

Similarly, after expansion of χ2c1(M)χa′1c
′

1
(M)

3c(1/4;χ̃c2 χ̃M )
3c(3/4;χ̃c2 χ̃M )

and summation in M , each
term will vanish, unless its total character of M is trivial. The residue after both these
summations is as follows:

R(c)(1/4, 1/4, 1/4)
(

8c1

c2

)
·

1
2

∑
a′1∈{±1,±2}
c′1|(c/c2)

(c′1)
−3/4

(
c1c
′

1
gcd(c1, c

′

1)
2

)−1/4

c
−1/2
2

∏
p|c2

(3+ 7p−1/2
+ 3p−1)

·

∏
p|(c gcd(c1,c

′

1)
2/c1c

′

1c2)

(1+ p−1/2)
∏

p|(c/c′1c2)

(1+ 6p−1/2
+ 6p−1

+ p−3/2)

· π

(
0(1/8)
0(3/8)

+ χa′1
(−1)

0(5/8)
0(7/8)

)
·


0(1/8)3

0(3/8)3 if χa′1(−1) = 1,
0(5/8)3

0(7/8)3 if χa′1(−1) = −1,

·

{
2−1/4

+ 7 · 2−11/4 if 2 - a′1,
2−13/4

+ 2−15/4 if 2 | a′1.

The sum over c′1 in the first two lines can be expressed as a product over primes p divid-
ing c. For each prime there are two cases depending on whether it divides c′1. An Euler
factor in this sum has the form

p−1/4(1+ p−1/2)(1+ 6p−1/2
+ p−1) if p | c1,

p−1/2(3+ 7p−1/2
+ 3p−1) if p | c2,

(1+ 7p−1/2
+ 13p−1

+ 7p−3/2
+ p−2) if p | c3.
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The sum of the final line over the four possible values of a′1 yields a constant representing
the contribution of the prime 2 and the archimedean place. After simplification this con-
stant is 9

8 21/4(6+5
√

2)0(1/4)4/π. Combining these two computations with the result of
the previous proposition yields the desired formula. ut

We remark that the selection of a1 = 2, a2 = (−1)(c2−1)/2 is made in order to isolate
fundamental discriminants d which are positive and divisible by 8. Analogous computa-
tions could be made with other choices of a1, a2 to isolate other types of fundamental
discriminants.

3. The sieve

Construction of the sieve. For any square-free odd positive integer h and a1, a2 ∈

{±1,±2}, define

Z(s1, s2, s3, s4, χa2 , χa1;h)

=

∑
m1,m2,m3,d≥1 odd

h2
|d

H(m1, m2, m3, d)χa1(m1m2m3)χa2(d)m
−s1
1 m

−s2
2 m

−s3
3 d−s4

and

Z0(s1, s2, s3, s4, χa2 , χa1)

=

∑
d0>0

d0 odd & sq. free

L(2)(s1, χa1d0)L
(2)(s2, χa1d0)L

(2)(s3, χa1d0)χa2(d0)d
−s4
0 .

As in [6, Lemma 5.1], we can write

Z0(s1, s2, s3, s4, χa2 , χa1) =
∑

(h,2)=1

µ(h)Z(s1, s2, s3, s4, χa2 , χa1;h). (10)

The function Z(s1, s2, s3, s4, χa2 , χa1;h) can, in turn, be expressed in terms of the mul-
tiple Dirichlet series we have discussed in the previous sections. To state the relation of
these functions, let us first define

F(z1, z2, z3, z4;p) :=
∑

k1,k2,k3,k≥0

H(pk1 , pk2 , pk3 , p2k+3)z
k1
1 z

k2
2 z

k3
3 z

2k
4

and, for a ∈ {0, 1},

G(a)(z1, z2, z3, z4;p) :=
∑

k1,k2,k3,k≥0
k1+k2+k3≡a (mod 2)

H(pk1 , pk2 , pk3 , p2k+2)z
k1
1 z

k2
2 z

k3
3 z

2k
4 .

These are rational functions which can be computed explicitly from the p-part
Zp(s1, s2, s3, s4). Then, as in [6, Section 5], one shows that6

6 The variables c, c′, and c′ε in [6, Section 5] correspond to c1, c2c3, and c2 here.
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Z(s1, s2, s3, s4, χa2 , χa1;h)

= h−2s4
∑

h=c1c2c3

χa2(c1)χa1(c2)

(
c1

c2

)
Z(h)(s1, s2, s3, s4;χa2 χ̃c2 , χa1c1)

·

∏
p|c1

F(p−s1 , p−s2 , p−s3 , p−s4;p)p−s4

·

∏
p|c2

G(1)(p−s1 , p−s2 , p−s3 , p−s4;p)
∏
p|c3

G(0)(p−s1 , p−s2 , p−s3 , p−s4;p); (11)

the right-hand side yields the meromorphic continuation of Z(s1, s2, s3, s4, χa2 , χa1;h).

Recursive refinement of estimates. For complex z1, z2, z3, z4 and prime p ≥ 3, let

fodd(z1, z2, z3, z4;p) :=
∑

k1,k2,k3,k≥0

H(pk1 , pk2 , pk3 , p2k+1)z
k1
1 z

k2
2 z

k3
3 z

2k+1
4 ,

f±even(z1, z2, z3, z4;p) :=
∑

k1,k2,k3,k≥0
(−1)k1+k2+k3=±1

H(pk1 , pk2 , pk3 , p2k)z
k1
1 z

k2
2 z

k3
3 z

2k
4 .

We begin with the following lemma (see also [6, Lemma 6.2]).

Lemma 3.1. For every prime p > 2 and |z| ≤ p−1/2, we have

|fodd(p
−1/2, p−1/2, p−1/2, z;p)| < 107|z|,

|f−even(p
−1/2, p−1/2, p−1/2, z;p)

∣∣ < 564p−1/2,

1
|f+even(p−1/2, p−1/2, p−1/2, z;p)|

< 25.

Proof. By [6], we have

fodd(p
−1/2, p−1/2, p−1/2, z;p) =

z(1+ 7z2
+ 7z4

+ z6)

(1− z2)7(1− pz4)
,

f−even(p
−1/2, p−1/2, p−1/2, z;p)

=
3+ p−1

+ (10− 17p−1
+ 3p−2)z2

+ (3− 17p−1
+ 10p−2)z4

+ (p−1
+ 3p−2)z6

√
p(1− p−1)3(1− z2)6(1− pz4)

and

1/f+even(p
−1/2, p−1/2, p−1/2, z;p)

=
(1− p−1)3(1− z2)7(1− pz4)

1+ 3p−1
+ (7− 15p−1

+ p−2
− p−3)z2

+ (7− 35p−1
+ 35p−2

− 7p−3)z4

+ (1− p−1
+ 15p−2

− 7p−3)z6
− (3p−2

+ p−3)z8

.
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It follows that

|fodd(p
−1/2, p−1/2, p−1/2, z;p)| ≤

1+ 7|z|2 + 7|z|4 + |z|6

(1− |z|2)7(1− p|z|4)
· |z|

≤
1+ 7p−1

+ 7p−2
+ p−3

(1− p−1)8
· |z|.

The expression
1+ 7p−1

+ 7p−2
+ p−3

(1− p−1)8
(for p ≥ 3)

is increasing as a function of p−1, and its value when p = 3 is 106.312 . . . < 107.
Similarly

|f−even(p
−1/2, p−1/2, p−1/2, z;p)| ≤

3+11p−1
+20p−2

+20p−3
+11p−4

+3p−5

(1− p−1)10 · p−1/2

< 564p−1/2

as we had asserted.
The numerator of 1/|f+even(p

−1/2, p−1/2, p−1/2, z;p)| is

(1− p−1)3|1− z2
|
7
|1− pz4

| < (1+ p−1)8 ≤ (4/3)8.

To obtain a lower bound for the denominator, we first assume that p ≥ 11. In this case
we have

|1+3p−1
+(7−15p−1

+p−2
−p−3)z2

+(7−35p−1
+35p−2

−7p−3)z4

+(1−p−1
+15p−2

−7p−3)z6
−(3p−2

+p−3)z8
|

≥ 1+3p−1
−|(7−15p−1

+p−2
−p−3)z2

+(7−35p−1
+35p−2

−7p−3)z4

+(1−p−1
+15p−2

−7p−3)z6
−(3p−2

+p−3)z8
|

≥ 1−4p−1
−22p−2

−37p−3
−37p−4

−22p−5
−10p−6

−p−7 > 2
5 .

When p = 3 we have∣∣2− 2
27z

2(5z6
− 28z4

+ 14z2
− 28)

∣∣ ≥ 2− 2
27 |z|

2
|5z6
− 28z4

+ 14z2
− 28|

≥ 2− 2
81

(
28+ 14

3 +
28
9 +

5
27

)
> 2

5 .

When p = 5 we have∣∣ 8
5 −

8
125z

2(2z6
− 21z4

− 21z2
− 63)

∣∣ ≥ 8
5 −

8
125 |z|

2
|2z6
− 21z4

− 21z2
− 63|

≥
8
5 −

8
625

(
63+ 21

5 +
21
25 +

2
125

)
>

2
5
.

Similarly, when p = 7 we have∣∣ 10
7 −

2
343z

2(11z6
− 196z4

− 462z2
− 836)

∣∣ > 2
5 .

The last assertion follows from these inequalities. ut
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For ease of notation, we define

Z̃(c)(s;χa2c2 , χa1c1) =
(s − 1)7(s − 3/4)

(s + 1)8
· Z(c)(1/2, 1/2, 1/2, s;χa2c2 , χa1c1).

Proposition 3.2. Let c1, c2 and c3 be odd positive integers such that c = c1c2c3 is
square-free, and let ω(ci) denote the number of prime factors of ci , for 1 ≤ i ≤ 3.
Then, for every δ > 0 and a1, a2 ∈ {±1,±2}, we have the estimate

Z̃(c)(s;χa2c2 , χa1c1)�δ

(1+ |s|)5(1−<(s))+δAω(c1c2)
0 A

ω(c3)
1 S(c, δ)c

3(1−<(s))
1 c

5
2 (1−<(s))
2 c

max{3−4<(s),2−5<(s)/2}
3 cδ

(12)

with A1 = 25+ 16775A0 and

S(c, δ) =
∑

a=±1,±2

∑
b|c

∑
(d0,2)=1
d0-sq. free

|L(2)(1/2, χabd0)|
3d
−1−(δ/30)
0

for all s with 1/2 ≤ <(s) ≤ 4/5.

Proof. As in the proof of [6, Proposition 6.3], we proceed by induction on ω(c3). If
c3 = 1 then, for every δ > 0, c1, c2 odd positive integers such that c1c2 is square-free,
and s with 1/2 ≤ <(s) ≤ 4/5, we find from the bound (8) that

|Z̃(c1c2)(s;χa2c2 , χa1c1)|

≤ B(δ)(1+ |s|)5(1−<(s))+δAω(c1c2)
0 S(c1c2, δ)c

3(1−<(s))
1 c

5
2 (1−<(s))
2 (c1c2)

δ

for some B(δ) > 0.
Suppose that c is fixed and p is an odd prime with p - c. The sum defining

Z̃(c)(s;χa2c2 , χa1c1) can be split based on the parity of the factor of p in m1m2m3 and
in d. This yields a relation essential to the inductive step. The three parts correspond to
terms where p has even multiplicity in m1m2m3 and odd multiplicity in d , terms where
p has odd multiplicity in m1m2m3 and even multiplicity in d, and terms where p has
even multiplicity in both m1m2m3 and d; the terms where p has odd multiplicity in both
m1m2m3 and d all vanish. We have

Z̃(c)(s;χa2c2 , χa1c1) = χa2c2(p)Z̃
(cp)(s;χa2c2 , χa1c1p)fodd(p

−1/2, p−1/2, p−1/2, p−s;p)

+ χa1c1(p)Z̃
(cp)(s;χa2c2p∗ , χa1c1)f

−
even(p

−1/2, p−1/2, p−1/2, p−s;p)

+ Z̃(cp)(s;χa2c2 , χa1c1)f
+
even(p

−1/2, p−1/2, p−1/2, p−s;p)

where p∗ := (−1)(p−1)/2p. Rearranging and applying the inequalities in Lemma 3.1, it
follows that, for <(s) ≥ 1/2,

|Z̃(cp)(s;χa2c2 , χa1c1)| < 25|Z̃(c)(s;χa2c2 , χa1c1)|

+ 107 · 25|Z̃(cp)(s;χa2c2 , χa1c1p)|p
−<(s)

+ 564 · 25|Z̃(cp)(s;χa2c2p∗ , χa1c1)|p
−1/2.
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Let K(c1, c2, c3, s, δ) denote the right-hand side of (12), i.e.,

K(c1, c2, c3, s, δ) = B(δ)(1+ |s|)5(1−<(s))+δA
ω(c1c2)
0 A

ω(c3)
1 S(c, δ)

· c
3(1−<(s))
1 c

5
2 (1−<(s))
2 c

max{3−4<(s),2−5<(s)/2}
3 cδ.

Taking s such that 1/2 ≤ <(s) ≤ 4/5, we find by the induction hypothesis that

|Z̃(cp)(s;χa2c2 , χa1c1)| < K(c1, c2, c3, s, δ)

·

(
25+ 2675A0

S(cp, δ)

S(c, δ)
p3−4<(s)+δ

+ 14100A0
S(cp, δ)

S(c, δ)
p2−5<(s)/2+δ

)
.

Applying the definition of A1 and the fact that S(c, δ) ≤ S(cp, δ), we obtain

|Z̃(cp)(s;χa2c2 , χa1c1)| < K(c1, c2, c3, s, δ)A1
S(cp, δ)

S(c, δ)
pmax{3−4<(s),2−5<(s)/2}+δ

= K(c1, c2, c3p, s, δ),

and the proposition follows. ut

Using the last proposition, we can now estimate the function

Z̃(s, χa2 , χa1;h) :=
(s − 1)7(s − 3/4)

(s + 1)8
· Z(1/2, 1/2, 1/2, s, χa2 , χa1;h).

Theorem 3.3. For any square-free odd positive integer h, a1, a2 ∈ {±1,±2}, and every
δ > 0, we have

Z̃(s, χa2 , χa1;h)�δ (1+ |s|)5(1−<(s))+δS(h, δ)h2−9<(s)/2+2δ

on the strip 2/3 ≤ <(s) ≤ 4/5, and

h2sZ̃(s, χa2 , χa1;h)�δ (1+ |s|)5(1−<(s))+δS(h, δ/5)h2δ

on the strip 4/5 ≤ <(s) ≤ 1+ δ/5.

Proof. The proof is similar to that given in [6, Theorem 6.4]. By (11) we have

|Z̃(s, χa2 , χa1;h)|

≤ h−2<(s)
∑

h=c1c2c3

|Z̃(h)(s;χa2 χ̃c2 , χa1c1)|
∏
p|c1

|F(p−1/2, p−1/2, p−1/2, p−s;p)|p−<(s)

·

∏
p|c2

|G(1)(p−1/2, p−1/2, p−1/2, p−s;p)|
∏
p|c3

|G(0)(p−1/2, p−1/2, p−1/2, p−s;p)|.

For each a2 ∈ {±1,±2}, we can write χa2 χ̃c2 = χa′2c2
for some a′2 ∈ {±1,±2}. By

[6, Lemma 6.1], we have the estimates

F(p−1/2, p−1/2, p−1/2, p−s;p) = 14+ p1−2s
+O(p−2<(s)),

G(0)(p−1/2, p−1/2, p−1/2, p−s;p) = 14+ p1−2s
+O(p−1),

G(1)(p−1/2, p−1/2, p−1/2, p−s;p) = O(p−1/2),
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the implied constants in the O-symbols being independent of s, p. Applying Proposi-
tion 3.2, we see that, for every s in the strip 2/3 ≤ <(s) ≤ 4/5, and δ > 0, we have

Z̃(s, χa2 , χa1;h)�δ (1+ |s|)5(1−<(s))+δBω(h)S(h, δ)h2−9<(s)/2+δ
∑

h=c1c2c3

1

�δ (1+ |s|)5(1−<(s))+δ(3B)ω(h)S(h, δ)h2−9<(s)/2+δ

for some positive constant B. In particular, if <(s) = 4/5 we have

h2sZ̃(s, χa2 , χa1;h)�δ (1+ |s|)1+δ(3B)ω(h)S(h, δ)hδ.

On the other hand, if <(s) = 1+ δ/5 we trivially have (by (8))

h2sZ̃(s, χa2 , χa1;h)�δ B
ω(h)
1 S(h, δ5 )h

δ

for some computable positive constant B1, and the theorem follows by applying the
Phragmén–Lindelöf principle and the well-known estimate

ω(h)�
logh

log logh
. ut

4. Proofs of main theorems

Proof of Theorem 1.1. The function

Z̃0(s, χa2 , χa1) := (s + 1)−8(s − 1)7(s − 3/4)Z0(1/2, 1/2, 1/2, s, χa2 , χa1)

is holomorphic in the half-plane <(s) > 1, and in this region we have

Z̃0(s, χa2 , χa1) =
∑
h odd

µ(h)Z̃(s, χa2 , χa1;h). (13)

We show that the sum in the right-hand side converges absolutely and uniformly on every
compact subset of the strip 2/3 < <(s) < 1 + δ0, for small δ0 > 0. Indeed, take s such
that 2/3+ δ0 < <(s) < 4/5, for a small δ0 > 0, and let 0 < δ < 9δ0/4. By Theorem 3.3
and the definition of S(h, δ), we have∑
h odd & sq. free

|Z̃(s, χa2 , χa1;h)| �δ (1+ |s|)5(1−<(s))+δ/2
∑

h odd & sq. free

· h2−9<(s)/2+δ
∑

a=±1,±2

∑
b|h

∑
d0 odd & sq. free

|L(2)(1/2, χabd0)|
3d
−1−δ/60
0 .

We may interchange the h and b sums in the above and factor out a sum over m := h/b.
The series

∑
m2−9<(s)/2+δ is convergent by our choice of δ. Thus it suffices to give a

bound for the summation over a, b and d0. For a ∈ {±1,±2},∑
b,d0 odd & sq. free

|L(2)(1/2, χabd0)|
3b2−9<(s)/2+δd

−1−δ/60
0

<
∑

(n,2)=1

d(n)|L(2)(1/2, χan)|3n−1−δ/60
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where d(n) is the divisor function. An estimate due to Heath-Brown [10, Thm. 2] implies
that the sum ∑

n odd & sq. free

L(1/2, χan)4

n1+ε

is convergent for all ε > 0. A straightforward application of the Cauchy–Schwarz in-
equality shows that the statement remains true if the exponent of 4 is replaced by 3. The
divisor function, the removal of Euler factors at 2, and the presence of certain imprimi-
tive characters do not affect the convergence. Thus the right-hand side of (13) converges
absolutely and uniformly on every compact subset of the strip 2/3 < <(s) < 4/5.

In a completely analogous fashion, one shows that the right-hand side of (13) is con-
vergent absolutely and uniformly on every compact subset of a strip 4/5− δ0 < <(s) <

1+ δ0, for small positive δ0, which, by the Weierstrass Theorem, completes the analytic
continuation of the function Z̃0(s, χa2 , χa1) to the half-plane <(s) > 2/3.

We set a1 = 2 and a2 = 1, hence χa1χd0(n) =
( 8d0
n

)
for n odd. It only remains to

compute the residue of Z0(s) at s = 3/4. By (10), (11), and (9), this residue has the form

Res
s=3/4

Z0(s) =
9

256π 21/4(−181+ 128
√

2)0(1/4)4ζ(1/2)7

·

∑
h odd

h=c1c2c3

µ(h)h−3/2c
−1/4
1

∏
p|c1

(1− p−1/2)8(1+ p−1/2)2(1+ 6p−1/2
+ p−1)

· F(p−1/2, p−1/2, p−1/2, p−3/4
;p)p−3/4

· c
−1/2
2

∏
p|c2

(1− p−1/2)8(1+ p−1/2)(3+ 7p−1/2
+ 3p−1)

·G(1)(p−1/2, p−1/2, p−1/2, p−3/4
;p)

·

∏
p|c3

(1− p−1/2)8(1+ p−1/2)(1+ 7p−1/2
+ 13p−1

+ 7p−3/2
+ p−2)

·G(0)(p−1/2, p−1/2, p−1/2, p−3/4
;p).

The sum over h, c1, c2, c3 is Eulerian. The factor at an odd prime p can be computed as
the sum of four explicit rational functions, corresponding to the cases p -h, p | c1, p | c2,
and p | c3. After some cancellation, this factor is

(1−p−1/2)5(1+p−1/2)(1+4p−1/2
+11p−1

+10p−3/2
−11p−2

+11p−3
−4p−7/2

−p−4),

which we denote as P(p−1/2). This completes the proof.

Proof of Theorem 1.2. The argument is standard, and is included for the sake of com-
pleteness. The Mellin transform of W ,

Ŵ (s) =

∫
∞

0
W(u)us

du

u
,

is entire, and by using the bounds (2) and integration by parts we have the estimate

|Ŵ (s)| <
1

3+<(s)
·

1
|s| |s + 1| |s + 2|

(when <(s) > −3). (14)
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Applying the Mellin inversion formula, we can express∑
∗

(d,2)=1

L(1/2, χ2d)
3W

(
d

x

)
=

1
2πi

∫
(2)
Ŵ (s)Z0(s)x

s ds.

Since Z0(s)�δ max{1, (1+|s|)5(1−<(s))+δ}, it follows from the upper estimate (14) that
we can shift the line of integration to <(s) = 2/3+ δ. Thus∑

∗

(d,2)=1

L(1/2, χ2d)
3W

(
d

x

)
= x Res

s=1
(Ŵ (s)Z0(s)x

s−1)+ Res
s=3/4

Z0(s) · Ŵ (3/4)x3/4
+Oδ(x

2/3+δ),

and the theorem follows.
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