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Abstract. We present Voevodsky’s construction of a model of univalent type theory in the category
of simplicial sets.

To this end, we first give a general technique for constructing categorical models of dependent
type theory, using universes to obtain coherence. We then construct a (weakly) universal Kan fibra-
tion, and use it to exhibit a model in simplicial sets. Lastly, we introduce the Univalence Axiom, in
several equivalent formulations, and show that it holds in our model.

As a corollary, we conclude that Martin-Löf type theory with one univalent universe (formu-
lated in terms of contextual categories) is at least as consistent as ZFC with two inaccessible cardi-
nals.
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Introduction

The Univalent Foundations programme is a new proposed approach to foundations of
mathematics, originally suggested by Vladimir Voevodsky [Voe06], building on the sys-
tems of dependent type theory developed by Martin-Löf and others.

A major motivation for earlier work with such logical systems has been their well-
suitedness to computer implementation. One notable example is the Coq proof assistant,
based on the Calculus of Inductive Constructions (a closely related dependent type the-
ory), which has shown itself feasible for large-scale formal verification of mathematics,
with developments including formal proofs of the Four-Colour Theorem [Gon08] and the
Feit–Thompson (Odd Order) Theorem [GAA+13].

One feature of dependent type theory which has previously remained comparatively
unexploited, however, is its richer treatment of equality. In traditional foundations, equal-
ity carries no information beyond its truth-value: if two things are equal, they are equal
in at most one way. This is fine for equality between elements of discrete sets; but it is
unnatural for objects of categories (or higher-dimensional categories), or points of spaces.
In particular, it is at odds with the informal mathematical practice of treating isomorphic
(and sometimes more weakly equivalent) objects as equal; which is why this usage must
be so often disclaimed as an abuse of language, and kept rigorously away from formal
statements, even though it is so appealing.

In dependent type theory, equalities can carry information: two things may be equal in
multiple ways. So the basic objects—the types—may behave not just like discrete sets, but
more generally like higher groupoids (with equalities being morphisms in the groupoid),
or spaces (with equalities being paths in the space). And, crucially, this is the only equality
one can talk about within the logical system: one cannot ask whether elements of a type
are “equal on the nose”, in the classical sense.1 The logical language only allows one to
talk about properties and constructions which respect its equality.

The Univalence Axiom, introduced by Voevodsky, strengthens this characteristic. In
classical foundations one has sets of sets, or classes of sets, and uses these to quantify
over classes of structures. Similarly, in type theory, types of types—universes—are a key
feature of the language. The Univalence Axiom states that equality between types, as
elements of a universe, is the same as equivalence between them, as types. It formalises
the practice of treating equivalent structures as completely interchangeable; it ensures that
one can only talk about properties of types, or more general structures, that respect such
equivalence. In sum, it helps solidify the idea of types as some kind of spaces, in the
homotopy-theoretic sense; and more practically—its original motivation—it provides for
free many theorems (transfer along equivalences, naturality with respect to these, and so
on) which must otherwise be re-proved by hand for each new construction.

The main goal of this paper is to justify the intuition outlined above, of types as spaces.
To this end, we focus on the Quillen model category sSet of simplicial sets, a well-studied
model for topological spaces in homotopy theory; we construct a model of type theory in

1 There is a strict equality, called judgemental or definitional, but there is no type/proposition in
the system expressing it, just as with e.g. literal syntactic equality traditional foundations.
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sSet, and show that it satisfies the Univalence Axiom. The fibrations of this model struc-
ture, called Kan fibrations, will serve as an interpretation of type dependency. In particular
the closed types will be interpreted as Kan complexes, which also serve as a model for
∞-groupoids, for instance in Joyal and Lurie’s approach to higher category theory.

It follows from this model that Martin-Löf type theory plus the Univalence Axiom
(presented in terms of contextual categories) is consistent, provided that the classical
foundations we use are—precisely, ZFC together with the existence of two strongly inac-
cessible cardinals, or equivalently two Grothendieck universes.

As hinted above, there is one important technical caveat regarding our treatment of
type theory: we state the model and consistency results in terms of contextual categories,
not syntax, so as to avoid reliance on initiality results.

This paper therefore includes a mixture of logical and homotopy-theoretic ingredi-
ents; however, we have aimed to separate the two wherever possible. Good background
references for the logical parts include [NPS90], a general introduction to the type the-
ory; [Hof97], for the categorical semantics; and [ML84], the locus classicus for the logical
rules. For the homotopy-theoretic aspects, [GJ09] and [Hov99] are both excellent and suf-
ficient references. Finally, for the category-theoretic language used throughout, [ML98]
is canonical.

Organisation. In Section 1 we consider general techniques for constructing models of
type theory. After setting out (in Section 1.1) the specific type theory that we will con-
sider, we review (Section 1.2) some fundamental facts about its intended semantics in
contextual categories, following [Str91]. In Section 1.3, we use universes to construct
contextual categories, representing the structural core of type theory; and in Section 1.4,
we use categorical constructions on the universe to model the logical constructions of
type theory. Together, these present a new solution to the coherence problem for mod-
elling type theory (cf. [Hof95b]).

In Section 2, we turn towards constructing a model in the category of simplicial sets.
Sections 2.1 and 2.2 are dedicated to the construction and investigation of a (weakly) uni-
versal Kan fibration (a “universe of Kan complexes”); in Section 2.3 we use this universe
to apply the techniques of Section 1, giving a model of the full type theory in simpli-
cial sets.

Section 3 is devoted to the Univalence Axiom. We formulate univalence first in type
theory (Section 3.1), then directly in homotopy-theoretic terms (Section 3.2), and show
that these definitions correspond under the simplicial model (Section 3.3). In Section 3.4,
we show that the universal Kan fibration is univalent, and hence that the Univalence
Axiom holds in the simplicial model. Finally, in Section 3.5 we discuss an alternative for-
mulation of univalence, shedding further light on the universal property of the universe.

We also include two appendices, setting out in full the type theory under considera-
tion: first a conventional syntactic presentation in Appendix A, and then in Appendix B
its translation into algebraic structure on contextual categories.

History of the paper. This paper started life as notes by the current authors based on
Vladimir Voevodsky’s lectures at the 2011 Oberwolfach workshop [AGM+11] along with
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his associated manuscript [Voe12]. It was subsequently expanded with Voevodsky’s col-
laboration into the present full exposition of the simplicial model, and appeared as a
preprint in 2012 with Voevodsky included as co-author.

In 2016, due to his dissatisfaction with the existing literature on type theory, which
this paper took as background, Voevodsky asked us to remove him as co-author and delay
publication until he had finished developing his own treatment of semantics of type theory
(cf. [Voe14] and sequels) and presentation of the simplicial model in that framework.

Tragically, Voevodsky passed away in September 2017, before completing that
project. This paper therefore remains the only account of Voevodsky’s construction of the
simplicial model, so with the support of Daniel Grayson, Voevodsky’s academic executor,
we have prepared it again for publication. We have made several changes to accommo-
date Voevodsky’s reservations regarding the treatment of semantics; most importantly, we
present the initiality of syntax as a conjecture rather than a theorem (Conjecture 1.2.9),
and give all main results in terms of contextual categories rather than syntax. Otherwise,
the paper remains substantially unchanged from the original 2012 version.

The main results of the paper are due to Voevodsky, including Theorems 1.4.15, 2.3.4,
3.4.2 and 3.5.3. Mathematical contributions of Kapulkin and Lumsdaine include all of
Section 3.3, along with streamlining various parts of the main constructions and complet-
ing portions omitted in [Voe12].

Out of respect for Voevodsky’s stated wishes, and following discussion with his ex-
ecutor, he remains absent as an author of the final version of this paper. However, we wish
to leave no doubt regarding the share of the credit that is his due. We mourn the loss of an
exceptional mathematician and mentor, and dedicate this paper to his memory.

Related work. While the present paper discusses just models of type theory with the
univalence axiom, the major motivation for this is the actual development of mathematics
within these foundations. Introductions to various aspects of this are given in [Gra18],
[Voe15b], [PW14], and [Uni13], while large computer-formalised developments include
the UniMath2 and HoTT3 libraries, presented in [VAG+] and [BGL+17].

Earlier work on homotopy-theoretic models of type theory can be found in [HS98],
[AW09], [War11]. Other current and recent work on such models includes [GvdB11],
[AK11], and [Shu15]. Other general coherence theorems, for comparison with the re-
sults of Section 1, can be found in [Hof95b] and [LW15]. Univalence in homotopy-
theoretic settings is also considered in [GK17]. (These references are, of course, far from
exhaustive.)

1. Models from universes

In this section, we set up the machinery which we will use, in later sections, to model
type theory in simplicial sets. The type theory we consider, and some of the technical

2 https://www.github.com/UniMath/UniMath.
3 https://www.github.com/HoTT/HoTT.

https://www.github.com/UniMath/UniMath
https://www.github.com/HoTT/HoTT
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machinery we use, are standard; the main original contribution is a new technique for
solving the so-called coherence problem, using universes.

1.1. The type theory under consideration

Formally, the type theory we will consider is a slight variant of Martin-Löf’s Intensional
Type Theory, as presented in e.g. [ML84]. The rules of this theory are given in full in
Appendix A; briefly, it is a dependent type theory, taking as basic constructors Π-, Σ-,
Id-, and W-types, 0, 1, +, and one universe à la Tarski closed under these constructors.

A related theory of particular interest is the Calculus of Inductive Constructions, on
which the Coq proof assistant is based [Wer94]. CIC differs from Martin-Löf type theory
most notably in its very general scheme for inductive definitions, and in its treatment of
universes. We do not pursue the question of how our model might be adapted to CIC,
but for some discussion and comparison of the two systems, see [PM96], [Bar12], and
[Voe12, 6.2].

One abuse of notation that we should mention: we will sometimes write e.g. A(x) or
t (x, y) to indicate free variables on which a term or type may depend, so that we can later
write A(g(z)) to denote the substitution [g(z)/x]A more readably. Note however that the
variables explicitly shown need not actually appear; and there may also always be other
free variables in the term, not explicitly displayed.

1.2. Contextual categories

Rather than working formally with the syntax of this type theory, we work instead in terms
of contextual categories, a class of algebraic objects abstracting the key structure given
by the syntax.4 The plain definition of a contextual category corresponds to the structural
core of the syntax; further syntactic rules (logical constructors, etc.) correspond to extra
algebraic structure that contextual categories may carry. Essentially, contextual categories
are intended to provide a completely equivalent alternative to the syntactic presentation
of type theory.

Why do we make this bait-and-switch? The trouble with the syntax is that it is very
tricky to handle rigorously. Any full presentation must account for (among other compli-
cations) variable binding, capture-free substitution, and the possibility of multiple deriva-
tions of a judgement; and so any careful construction of an interpretation must deal with
all of these, at the same time as tackling the details of the particular model in question.
Contextual categories, by contrast, are a purely algebraic notion, with no such subtleties.
The idea is therefore that given any contextual category C with structure corresponding
to the logical rules of some syntactic type theory T, one should obtain an interpretation
of the syntax of T in C; and in proving this, one deals with the subtleties and bureaucracy
of T once and for all, giving a clear framework for subsequently constructing models of T.

4 Contextual categories are not the only option; the closely related notions of categories with
attributes [Car78, Mog91, Pit00], categories with families [Dyb96, Hof97], and comprehension
categories [Jac93] would all also serve our purposes.
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Such an “initiality theorem” (cf. Conjecture 1.2.9 below) has been proven for some
specific rather small type theories, e.g. by Streicher in the Correctness Theorem of [Str91,
Ch. III, p. 181]. For larger type theories such as the present one, however, its status is
debatable, and at best unsatisfactory. The traditional view is that for suitable type theo-
ries, a straightforward extension of Streicher’s and other standard methods suffices, and
therefore the theorem can be regarded as established. However, Voevodsky has argued
persuasively that this is an unacceptably unrigorous attitude. No precise definition has
been given of what “suitable type theories” the methods apply to; nor (to our knowledge)
has the proof been even sketched in detail for any type theory beyond small toy examples;
and while a “straightforward” extension of standard methods may indeed suffice for a type
theory such as the present one, that sufficiency is far from obvious.

For the present paper, therefore, we work formally entirely in terms of contextual
categories, and avoid relying on initiality theorems in any form.

Conversely, then, why bring up syntax at all, other than as motivation? The trouble
on this side is that working with higher-order logical structure in contextual categories
quickly becomes unreadable: compare, for instance, the statements of functional exten-
sionality in Sections A.4 and B.3.

We therefore make free use of the syntax of type theory, as a notation for working
in contextual categories. The situation is rather comparable to that of string diagrams,
as used in monoidal and more elaborately structured categories [Sel11], or indeed of the
traditional notations for differentiation and integration. In each case, one has a powerful,
flexible, and intuitive notation, whose rigorous definition and validity requires quite non-
trivial work to establish; but in lieu of such a general justification, one may still fruitfully
make use of the notation, trusting the reader to translate it into the unproblematic algebraic
form as required.

Definition 1.2.1 (Cartmell [Car78, Sec. 2.2], Streicher [Str91, Def. 1.2]). A contextual
category C consists of the following data:
(1) a category C;
(2) a grading of objects as ObC =

∐
n:N Obn C;

(3) an object 1 ∈ Ob0 C;
(4) maps ftn : Obn+1 C→ Obn C (whose subscripts we usually suppress);
(5) for each X ∈ Obn+1 C, a map pX : X→ ftX (the canonical projection from X);
(6) for each X ∈ Obn+1 C and f : Y → ftX, an object f ∗(X) together with a map

q(f,X) : f ∗(X)→ X,
such that:
(7) 1 is the unique object in Ob0(C);
(8) 1 is a terminal object in C;
(9) for each n > 0, X ∈ Obn C, and f : Y → ftX, we have ft(f ∗X) = Y , and the

square
f ∗X

pf ∗X

��

q(f,X) // X

px

��
Y

f // ftX



The simplicial model of Univalent Foundations (after Voevodsky) 2077

is a pullback (the canonical pullback of X along f );
(10) these canonical pullbacks are strictly functorial: for X ∈ Obn+1 C, 1∗ftXX = X and

q(1ftX, X) = 1X; and for X ∈ Obn+1 C, f : Y → ftX and g : Z → Y , we have
(fg)∗(X) = g∗(f ∗(X)) and q(fg,X) = q(f,X)q(g, f ∗X).

Contextual categories have also been studied under the name C-systems ([Voe14]
et seq.)

Remark 1.2.2. Note that these may be seen as models of a multi-sorted essentially alge-
braic theory [AR94, 3.34], with sorts indexed by N+ N× N.

This definition is best understood in terms of its prototypical example:

Example 1.2.3 (Cartmell [Car78, p. 2.6]; cf. also [Voe14], [Voe16b]). Let T be the de-
pendent type theory given by the structural rules of Section A.1, plus any selection of the
subsequent logical rules.5 Then there is a contextual category C(T), described as follows:

• Obn C(T) consists of the contexts [x1:A1, . . . , xn:An] of length n, up to definitional
equality and renaming of free variables;
• maps of C(T) are context morphisms, or substitutions, considered up to definitional

equality and renaming of free variables. That is, a map

f : [x1:A1, . . . , xn:An] → [y1:B1, . . . , ym:Bm(y1, . . . , ym−1)]

is an equivalence class of sequences of terms f1, . . . , fm such that

x1:A1, . . . , xn:An ` f1 : B1

...

x1:A1, . . . , xn:An ` fm : Bm(f1, . . . , fm−1),

and two such maps [fi], [gi] are equal exactly if for each i,

x1:A1, . . . , xn:An ` fi = gi : Bi(f1, . . . , fi−1);

• composition is given by substitution, and the identity 0 → 0 by the variables of 0,
considered as terms;
• 1 is the empty context [ ];
• ft[x1:A1, . . . , xn+1:An+1] = [x1:A1, . . . , xn:An];
• for 0 = [x1:A1, . . . , xn+1:An+1], the map p0 : 0 → ft0 is the dependent projection

context morphism

(x1, . . . , xn) : [x1:A1, . . . , xn+1:An+1] → [x1:A1, . . . , xn:An],

simply forgetting the last variable of 0;

5 Heuristically, T may be “any type theory” here; but there is no established definition of what
this means!
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• for contexts

0 = [x1:A1, . . . , xn+1:An+1(x1, . . . , xn)],

0′ = [y1:B1, . . . , ym:Bm(y1, . . . , ym−1)],

and a map f = [fi(Ey)]i≤n : 0′→ ft0, the pullback f ∗0 is the context

[y1:B1, . . . , ym:Bm(y1, . . . , ym−1), ym+1:An+1(f1(Ey), . . . , fn(Ey))],

(for some fresh ym+1) and q(0, f ) : f ∗0→ 0 is the map

[f1, . . . , fn, ym+1].

Note that typed terms 0 ` t :A of T may be recovered from C(T), up to definitional
equality, as sections of the projection p[0, x:A] : [0, x:A] → 0. For this reason, when
working with contextual categories, we will often write just “sections” to refer to sections
of dependent projections.

We will also use several other notations deserving of particular comment. For a fixed
contextual category C and an object 0 ∈ Obn C, we write (0,A) to denote an arbitrary
object in Obn+1 C with ft(0,A) = 0, and pA for the dependent projection p(0,A). Sim-
ilarly, we write (0,A,B) for an arbitrary object in Obn+2 C with ft(0,A,B) = (0,A),
and so on.

Given a morphism f : 1 → 0 and an object (0,A), we write (1, f ∗A) for the
canonical pullback f ∗(0,A) and similarly (1, f ∗A, f ∗B) for f ∗(0,A,B). We also ex-
tend the notation f ∗ to apply not only to the canonical pullbacks of appropriate objects,
but also to the pullbacks of maps between them.

As mentioned above, Definition 1.2.1 alone corresponds precisely to the basic judge-
ments and structural rules of dependent type theory. Similarly, each logical rule or type-
or term-constructor should correspond to certain extra structure on a contextual category.
We state this intended correspondence precisely in Conjecture 1.2.9 below, once we have
set up the appropriate definitions.

Definition 1.2.4 (cf. [Voe16a, Sec. 4]). A Π-type structure on a contextual category C

consists of:

(1) for each (0,A,B) ∈ Obn+2 C, an object (0,Π(A,B)) ∈ Obn+1 C;
(2) for each such (0,A,B) and a section b : (0,A) → (0,A,B) (of the dependent

projection pB), a section λ(b) : 0→ (0,Π(A,B)) (of pΠ(A,B));
(3) for each (0,A,B) and pair of sections k : 0 → (0,Π(A,B)) and a : 0 → (0,A),

a section app(k, a) : 0→ (0,A,B) such that the following diagram commutes:

(0,A,B)

pB

��
(0,A)

pA

��
0

app(k,a)

>>

a
::

0
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and such that:

(4) for all such (0,A,B), a : 0 → (0,A), and b : (0,A) → (0,A,B), we have
app(λ(b), a) = b · a;

(5) all the above operations are stable under substitution: for any morphism f : 1→ 0,
and suitable (0,A,B), a, b, k, we have

(1, f ∗Π(A,B)) = (1,Π(f ∗A, f ∗B)),

λ(f ∗b) = f ∗λ(b), app(f ∗k, f ∗a) = f ∗(app(k, a)).

These are direct translations of the rules for Π-types given in Section A.2.6 Similarly,
all the other logical rules of Appendix A may be routinely translated into structure on a
contextual category; see Appendix B and [Hof97, 3.3] for more details and discussion.

Example 1.2.5. If T is a type theory with Π-types, then C(T) carries an evident Π-type
structure; similarly for Σ-types and the other constructors of Sections A.2 and A.3. ut

Remark 1.2.6. Note that all of these structures, like the definition of contextual cate-
gories themselves, are essentially algebraic in nature.

Definition 1.2.7. A map F : C → D of contextual categories, or contextual functor,
consists of a functor C → D between underlying categories, respecting the gradings,
and preserving (on the nose) all the structure of a contextual category.

Similarly, a map of contextual categories with Π-type structure, Σ-type structure, etc.,
is a contextual functor preserving the additional structure.

Remark 1.2.8. These are exactly the maps given by considering contextual categories as
essentially algebraic structures.

We are now equipped to state precisely the sense in which the structures defined above
are expected to correspond to the appropriate syntactic rules:

Conjecture 1.2.9. Let T be the type theory given by the structural rules of Section A.1,
plus any combination of the logical rules of Sections A.2 and A.3. Then C(T) is initial
among contextual categories with the correspondingly-named extra structure.

In other words, if C is a contextual category with structure corresponding to the logical
rules of a type theory T, then there should be a unique homomorphism C(T)→ C, inter-
preting the syntax of T in C. As discussed at the beginning of this section, the Correctness
Theorem of [Str91, Ch. III, p. 181] gives an analogous fact for a rather smaller type the-
ory, while the status of the present conjecture is debated, accepted by some but not all in
the field as a straightforward extension of that theorem.

Bearing this intended correspondence in mind, therefore, but avoiding relying on it,
we take for the present paper the following definitions:

6 A partial exception is the stability axiom, which corresponds not to any explicitly given rule of
the syntax, but rather to clauses for Π, λ, and app in the inductive definition of substitution.
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Definition 1.2.10. By Martin-Löf Type Theory plus the Univalence Axiom (MLTT+UA
for short), we mean dependent type theory with Π-, Σ-, Id-, W-, unit, zero, and sum types,
along with one universe closed under all these type formers and satisfying the Univalence
Axiom, as set out in Appendix A.

By a model of MLTT + UA, or more generally of dependent type theory with any
selection of the logical rules of Appendix A, we mean a contextual category equipped with
the corresponding structure from Appendix B. By the contextual-category presentation of
such a type theory, we mean the essentially algebraic theory of such structures.

Note that by definition as an essentially algebraic theory, it is immediate that any such
type theory has an initial model.

Definition 1.2.11. A dependent type theory of the form considered in Definition 1.2.10
and including the empty type 0 is inconsistent just if in the initial model, the map p01 :

(1, 01)→ 1 admits a section, and is consistent if it is not inconsistent.

Assuming initiality, this corresponds to the usual type-theoretic sense of inconsistency: a
closed term inhabiting the empty type. Readers who accept the initiality conjecture as true
may therefore read Theorem 3.4.2 as providing an interpretation of the usual syntactic
presentation of MLTT + UA, and Theorem 3.4.3 as its consistency in the usual type-
theoretic sense.

1.3. Contextual categories from universes

The major difficulty in constructing models of type theories is the so-called coherence
problem: the requirement for pullback to be strictly functorial, and for the logical structure
to commute strictly with it. In most natural categorical situations, operations on objects
commute with pullback only up to isomorphism, or even more weakly; and for construc-
tors with weak universal properties, operations on maps (corresponding for example to
the Id-ELIM rule) may also fail to commute with pullback. Hofmann [Hof95b] gives a
construction which solves the issue for Π- and Σ-types, but Id-types in particular remain
problematic with this method. Other methods exist for certain specific categories ([HS98],
[War08]), but are not applicable to the present case.

In order to obtain coherence for our model, we thus use a construction based on uni-
verses (not necessarily the same as universes in the type-theoretic sense, though the two
may sometimes coincide), studied in more detail in [Voe15a].

Definition 1.3.1 ([Voe15a, Def. 2.1]). Let C be a category. A universe in C is an objectU
together with a morphism p : Ũ → U , and for each map f : X→ U a choice of pullback
square

(X; f )
Q(f ) //

P(X,f )

��

Ũ

p

��
X

f // U
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The intuition here is that the map p represents the generic family of types over the uni-
verse U .

By abuse of notation, we often refer to the universe simply as U , with p and the
chosen pullbacks understood.

Given a map q : Y → X, we will often write pqq (or pYq, if q is understood) for a
map X→ U such that q ∼= P(X,pqq) in C/X. Also, for a sequence of maps f1 : X→ U ,
f2 : (X; f1)→ U , etc., we write (X; f1, . . . , fn) for ((. . . (X; f1); . . .); fn). (In particu-
lar, with n = 0, (X; ) = X.)

Definition 1.3.2 ([Voe15a, Constr. 2.12]). Given a category C, together with a uni-
verse U and a terminal object 1, we define a contextual category CU as follows:

• Obn CU := {(f1, . . . , fn) ∈ (MorC)n | fi : (1; f1, . . . , fi−1)→ U (1 ≤ i ≤ n)};
• CU ((f1, . . . , fn), (g1, . . . , gm)) := C((1; f1, . . . , fn), (1; g1, . . . , gn));

• 1CU := (), the empty sequence;
• ft(f1, . . . , fn+1) := (f1, . . . , fn);
• the projection p(f1,...,fn+1) is the map P(X,fn+1) provided by the universe structure onU ;
• given (f1, . . . , fn+1) and a map α : (g1, . . . , gm)→ (f1, . . . , fn) in CU , the canonical

pullback α∗(f1, . . . , fn+1) in CU is given by (g1, . . . , gm, fn+1 · α), with projection
induced by Q(fn+1 · α):

(1; g1, . . . , gm, fn+1 · α)

Q(fn+1·α)

,,//

��

(1; f1, . . . , fn+1)

��

Q(fn+1)
// Ũ

p

��
(1; g1, . . . , gm)

α // (1; f1, . . . , fn)
fn+1 // U

Proposition 1.3.3 ([Voe15a, Constr. 2.12, Ex. 4.9]).

(1) These data define a contextual category CU .
(2) This contextual category is well-defined up to canonical isomorphism given just C

and p : Ũ → U , independently of the choice of pullbacks and terminal object.

Proof. Routine computation. ut

Justified by the second part of this proposition, we will not explicitly consider the choices
of pullbacks and terminal object when we construct the universe in the category sSet of
simplicial sets.

As an aside, let us note that every small contextual category arises in this way:

Proposition 1.3.4 ([Voe15a, Constr. 5.2]). Let C be a small contextual category. Con-
sider the universe U in the presheaf category [Cop, Set] given by

U(X) = {Y | ftY = X}, Ũ (X) = {(Y, s) | ftY = X, s a section of pY },

with the evident projection map, and any choice of pullbacks. Then [Cop, Set]U is isomor-
phic, as a contextual category, to C.

Proof. Straightforward, with liberal use of the Yoneda lemma. ut
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1.4. Logical structure on universes

Given a universe U in a category C, we want to know how to equip CU with various kinds
of logical structure—Π-types, Σ-types, and so on. For general C, this is rather fiddly; but
when C is locally cartesian closed (as in our case of interest), it is more straightforward,
since local cartesian closedness allows us to construct and manipulate “objects of U -
contexts”, and hence to construct objects representing the premises of each rule.

In working with locally cartesian closed categories (LCCC’s), we will follow topos-
theoretic convention and write Σf and Πf respectively for the left and right adjoints to
the pullback functor f ∗ along a map f : A→ B:

C/A

Σf

&&

Πf

88

⊥

⊥

C/Bf ∗oo

Also, the intended map A → B is often clearly determined by the objects A and B, as
some sort of associated projection; in such a case, we will write ΣA→B , ΠA→B for the
functors arising from this map.

An alternative notation for locally cartesian closed categories is their internal logic,
extensional dependent type theory [See84], [Hof95b]. While this language is convenient
and powerful, we avoid it due to the difficulties of working clearly with two logical lan-
guages in parallel.

Returning to the question at hand, first consider Π-types.7 We know that dependent
products exist in C; so informally, we need only to ensure thatU (considered as a universe
of types) is closed under such products. Specifically, given a type A in U over some base
X (that is, a map pAq : X → U ), and a dependent family of types B over A, again in
U (i.e. a map pBq : A := (X; pAq) → U ), the product ΠA→XB of this family in the
slice C/X should again “live in U”; that is, there should be a map p5(A,B)q : X → U

such that (X; p5(A,B)q) ∼= ΠA→XB. Moreover, we need this construction to be strictly
natural in X.

Due to the strict naturality requirement, we cannot simply provide this structure for
eachX and A,B individually. Instead, we construct an object UΠ representing such pairs
(A,B), and a generic such pair (Agen, Bgen) based on UΠ. It is sufficient to define 5 in
this generic case X = UΠ; the construction then extends to other X by precomposition,
and as such, is automatically strictly natural in X.

Precisely:

Definition 1.4.1. Given a universe U in an lccc C, define

UΠ
:= Σ

U→1ΠŨ→U (π2 : U × Ũ → Ũ ).

(This definition can be expressed in several ways, according to one’s preferred notation. In
the internal language of C as an LCCC, it can be written as [[A:U, B:[ŨA, U ]]], showing

7 The following construction is studied in considerable detail in [Voe17].
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it more explicitly as an internalisation of the premises of the Π-FORM rule. Using a more
traditional internal-hom notation, it could alternatively be written as HomU (Ũ , U ×U).)

Pulling back Ũ along the projection UΠ
→ U induces an object Agen = Ũ ×U U

Π,
along with a projection map αgen : Agen → UΠ. Similarly, pulling back Ũ along the
counit (the evaluation map of the internal hom)

Agen = Ũ ×U ΠŨ→U (U × Ũ )→ U × Ũ → U

induces an object (Bgen, βgen) over Agen:

UΠ U

ŨAgen U

ŨBgen

Moreover, the universal properties of the LCCC structure ensure that for any sequence
B → A → 0 with maps 0 → U , A → U , A → Ũ , B → Ũ exhibiting A → 0 and
B → A as pullbacks of Ũ → U , there is a unique map p(A,B)q : 0 → UΠ which
induces the given sequence via precomposition and pullback:

0

A

B

UΠ U

ŨAgen U

ŨBgen

p(A,B)q

So Bgen → Agen → UΠ is generic among such sequences, and UΠ represents the inputs
for a Π operation (that is, the premises of the Π-FORM rule) on CU .

Definition 1.4.2 (cf. [Voe17, Def. 4.1]). A 5-structure on a universe U in a lccc C con-
sists of a map

5 : UΠ
→ U

whose realisation is a dependent product for the generic dependent family of types; that
is, it is equipped with an isomorphism 5∗Ũ ∼= ΠαgenBgen over UΠ, or equivalently with
a map 5̃ : ΣUΠ→1ΠαgenBgen → Ũ making the square

ΣUΠ→1ΠαgenBgen
5̃ //

��

Ũ

��
UΠ 5 // U

a pullback.



2084 Krzysztof Kapulkin, Peter LeFanu Lumsdaine

The approach used here gives a template which we follow for all the other constructors,
with extra subtleties entering the picture just in the cases of Id-types and (type-theoretic)
universes, since these structures are not characterised by strict category-theoretic univer-
sal properties.

Definition 1.4.3. Take UΣ to be the object representing the premises of the Σ-FORM
rule:

UΣ
:= Σ

U→1ΠŨ→U (U × Ũ ).

Since these are the same as the premises of the Π-FORM rule, we find in this case that
UΣ
= UΠ; and we have again the generic family of types Bgen → Agen → UΣ, as

over UΠ.

Definition 1.4.4. A 6-structure on a universe U in a lccc C consists of a map

6 : UΣ
→ U

whose realisation is a dependent sum for the generic dependent family of types; that is, it
is equipped with an isomorphism 6∗Ũ ∼= ΣαgenBgen over UΣ (or again equivalently with
a map 6̃ : ΣUΣ→1ΣαgenBgen → Ũ making the appropriate square a pullback).

Id-structure requires a few auxiliary definitions.8 Recall first the classical notion of weak
orthogonality of maps:

Definition 1.4.5. For maps i : A → B, f : Y → X in a category C, say i is (weakly)
orthogonal to f if any commutative square from i to f has some diagonal filler:

A //

i

��

Y

f

��
B //

??

X

or, in other words, if the function

Hom(B, Y )→ Hom(A, Y )×Hom(A,X) Hom(B,X), g 7→ (g · i, f · g),

has a section.
Say i is moreover stably orthogonal to f if for every objectC of C,C×i is orthogonal

to f .

In a cartesian closed category, this notion has an internal analogue:

Definition 1.4.6. Given maps i : A → B, f : Y → X in a cartesian closed category C,
an internal lifting operation for i against f is a section of the evident map YB →
YA ×XA X

B .

8 We should thank here Michael Warren and Steve Awodey, who both strongly influenced the
current presentation of the definition.
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The following proposition connects the classical and internal notions:

Proposition 1.4.7. Given i, f as above, there exists an internal lifting operation for i
against f if and only if i is stably orthogonal to f .

Proof. If i is stably orthogonal to f , then an internal lifting operation may be obtained as
(the exponential transpose of) a filler for the canonical square

A× (YA ×XA X
B)

evA,Y ·(A×π1) //

i×YA×
XA
XB

��

Y

f

��
B × (YA ×XA X

B)
evB,X ·(B×π2) // X

Conversely, any square from C × i to f induces a map C → YA ×XA X
B ; composing

this with an internal lifting operation provides a map C → YB , whose transpose is a filler
for the square. ut

As shown in [AW09] and [GG08], the rules for Id-types can be understood roughly as
follows. In a model where dependent types are interpreted as fibrations, the identity type
over a type A (in any slice C/0) is a factorisation of the diagonal1A : A→ A×0 A as a
stable trivial cofibration, followed by a fibration. (Here, by a stable trivial cofibration, we
mean a map which is stably orthogonal to fibrations, in C/0.) Additionally, choices of all
data (including liftings) must be given which commute with pullbacks in the base 0.

In our case, the “fibrations” are just the pullbacks of p; so it suffices to consider
orthogonality between the first map of the factorisation and p itself. Moreover, as for 5-
and 6-structure above, we demand the structure just in the universal case where A is Ũ ,
in the slice C/U . Finally, an internal lifting operation turns out to be exactly the structure
required to give chosen lifts commuting with pullbacks. We therefore define:

Definition 1.4.8. An Id-structure on a universe consists of maps

Id : U Id
:= Ũ ×U Ũ → U, r : Ũ → Id∗Ũ

such that the triangle

Ũ
r //

1
Ũ ��

Id∗Ũ

Id∗p��
Ũ ×U Ũ

commutes, together with an internal lifting operation J for r against p × U in C/U .

Remark 1.4.9. By virtue of Proposition 1.4.7, we could instead simply stipulate that r
be stably orthogonal to p × U . We choose the current version since it provides exactly
the structure required for Theorem 1.4.15, without requiring any arbitrary choices.

Another alternative is described in [Voe15c, Sec. 2.3].
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Definition 1.4.10. A W-structure on a universe consists of a map

W : UW
:= Σ

U→1ΠŨ→U (U × Ũ )→ U

such that W∗Ũ is an initial algebra for the polynomial endofunctor of C/UW specified by
βgen : Bgen → Agen, i.e. the endofunctor

C/UW
β∗genα

∗
gen

−−−−→ C/Bgen
Πβgen
−−−→ C/Agen

Σαgen
−−−→ C/UW.

(For details on polynomial endofunctors in logical settings, see [MP00], [GH04]. Intu-
itively, their initial algebras may be seen as types of well-founded trees, or of syntax over
algebraic signatures.)

Definition 1.4.11. A 0-structure on U consists of a map 0 : 1→ U such that 0∗Ũ ∼= 0.
(By analogy with the preceding definitions, one might write 0 : U0

→ U instead and
similarly in the next two definitions. However, since U0 is a terminal object, we choose
not to do so simply for the sake of readability.)

Definition 1.4.12. A 1-structure on U consists of a map 1 : 1→ U such that 1∗Ũ ∼= 1.

Definition 1.4.13. A+-structure on U consists of a map+: U ×U → U , together with
an isomorphism +∗Ũ ∼= π∗1 Ũ + π

∗

2 Ũ in C/(U × U).

Finally, we consider the structure on U needed to give a universe (in the type-theoretic
sense) in CU . Here, for the first time, we need to consider a nested pair of universes, since
the internal universe of CU must be some smaller universe U0 in C.

Definition 1.4.14. An internal universe (U0, i) in U consists of arrows

u0 : 1→ U, i : U0 := u
∗

0Ũ → U.

Given these, i induces by pullback a universe structure (p0, Ũ0, . . .) on U0. We say
that U0 is closed under Π-types in U if U0 carries a 5-structure 50, commuting with i in
the sense that the square

UΠ
0

iΠ //

50

��

UΠ

5

��
U0

i // U

commutes (where the top map is induced by the evident functoriality of UΠ in U ).
Similarly, we say that U0 is closed under Σ-types (resp. Id-types, etc.) if it carries a

6-structure 60 (resp. an Id-structure (Id0, r0), etc.) commuting with i.

With these structures defined, we can now prove that they are fit for purpose:

Theorem 1.4.15 (cf. [Voe17, Constr. 4.3], [Voe15c, Sec. 2.4]). A 5-structure (resp. 6-
structure, etc.) on a universe U induces Π-type structure (resp. Σ-type structure, etc.)
on CU . Moreover, an internal universe (U0, i) in U closed under any combination of
Π-types, Σ-types, etc., induces a universe à la Tarski in CU closed under the correspond-
ing constructors.
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Proof. This proof is esentially a routine verification; we give the case of Π-types in full,
and leave the rest mostly to the reader.

In a nutshell, the constructor Π is induced by the map 5; and the constructors λ and
app are induced by the corresponding lccc structure in C.

Precisely, we treat the rules of Π-types (corresponding to the components of the de-
sired Π-type structure) one at a time.

(Π-FORM): The premises

0 ` A type 0, x:A ` B type

in CU correspond to data in C of the form

A //

��

Ũ

��
0

pAq // U

B //

��

Ũ

��
A

pBq // U

and hence to a map
(pAq, pBq) : 0→ UΠ.

Then the composite 5 · (pAq, pBq) gives a type 0 → U which we take as Π(A,B). By
construction, this is stable under substitution along any map f : 1 → 0, since substitu-
tion in CU is again just composition in C.

(Π-INTRO): Besides 0, A, B as before, we have an additional premise

0, x:A ` t : B(x).

This is by definition a map 1A → B in C/A, corresponding by adjunction to a map
t̂ : 10 → ΠA→0B in C/0. But

ΠA→0B ∼= (pAq, pBq)
∗ΠAgen→UΠBgen ∼= (pAq, pBq)

∗5∗Ũ ∼= (5 · (pAq, pBq))∗Ũ

so t̂ corresponds to a section of Π(A,B) over 0, which we take as λ(t).
Stability under substitution follows by the uniqueness in the universal property of

ΠA→0B.
We could alternatively have defined λ more analogously to Π, by representing the

premises as a single map (pAq, pBq, t) : 0→ Uλ (where Uλ := ΣUΠ→1ΠAgen→UΠBgen

represents the inputs of λ, i.e. the premises of Π-INTRO); then taking the transpose of the
generic term tgen over Uλ; and then pulling this back along (pAq, pBq, t). In fact, thanks
to the uniqueness in the universal property of ΠAgen→UΠBgen, that would give the same
result as the present, more straightforward, definition. However, the alternative definition
has the advantage that its stability under substitution follows simply from properties of
pullbacks; this becomes important for Id-types, whose universal property lacks a unique-
ness condition.

(Π-APP): The premises now are

0 ` A type 0, x:A ` B type 0 ` f : Π(A,B) 0 ` a:A
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corresponding to 0, A, B as before, plus sections

A

��

Π(A,B) ∼= ΠA→0B

uu
0

a

VV
f

77

Together, these give a section over 0 of ΠA→0B ×0 A; so composing this with the
evaluation map evA,B of ΠA→0B gives a map 0 → B lifting a, which we take to be
app(f, a).

(Π-COMP): Here, we have premises 0,A,B, t as in Π-INTRO, and a as in Π-APP;
and we have formed app(λ(t), a) as prescribed above. So, unwinding the isomorphism
Π(A,B) ∼= ΠA→0B used in each case, we get

app(λ(t), a) = evA,B ·(t̂ , a) = t · a

as desired, by the usual rules of LCCCs.
This completes the proof for 5-structures.
As indicated above, the remaining constructors are for the most part entirely anal-

ogous; the only subtlety is in the case of the Id-ELIM rule. In this case, there are two
ways that one could define the appropriate structure: one can either pull back to each
specific context and then choose liftings, or choose a lifting in the universal context and
then pull it back (as discussed following the Π-INTRO case above). The second of these is
the correct choice: the first is not automatically stable under substitution. (For other con-
structors, this distinction does not arise, since their strict categorical universal properties
canonically determine the maps involved.) And, in fact, the “universal lifting” required is
precisely the internal lifting operation provided by the Id-structure on U . ut

2. The simplicial model

In this section, we will apply the techniques of Section 1 to construct a model of type
theory in the category sSet. As mentioned in the Introduction, type dependency is inter-
preted using Kan fibrations and in particular the closed type will be Kan complexes. To
this end, we construct (for any regular cardinal α) a Kan fibration pα : Ũα → Uα , weakly
universal among Kan fibrations with α-small fibers, and investigate the key properties of
Uα and pα . We then show that Uα is a Kan complex, and (when α is inaccessible) carries
the various logical structures defined in Section 1.4. Together, these yield our first main
goal: a model of type theory in sSet, with an internal universe.

2.1. A universe of Kan complexes

In constructing a universe Uα intended to represent α-small Kan fibrations, one might
expect (by the Yoneda lemma) to simply define (Uα)n as the set of α-small fibrations over
1[n]. This definition has two problems: firstly, it gives not sets, but proper classes; and
secondly, it is not strictly functorial, since pullback is functorial only up to isomorphism.
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Some extra technical device is therefore needed to resolve these issues. Several pos-
sible solutions exist;9 we take the approach of passing to isomorphism classes, having
first added well-orderings to the mix so that fibrations have no non-trivial automorphisms
(without which the crucial Lemmas 2.1.4 and 2.1.5 would fail). We emphasise, however,
that this is the sole reason for introducing the well-orderings: they are of no intrinsic
interest or significance.

Definition 2.1.1. A well-ordered morphism of simplicial sets consists of an ordinary map
of simplicial sets f : Y → X, together with a function assigning to each simplex x ∈ Xn
a well-ordering on the fiber Yx := f−1(x) ⊆ Yn.

If f : Y → X, f ′ : Y ′ → X are well-ordered morphisms into a common base X, an
isomorphism of well-ordered morphisms from f to f ′ is an isomorphism Y ∼= Y ′ over X
preserving the well-orderings on the fibers.

Proposition 2.1.2. Given two well-ordered sets, there is at most one isomorphism be-
tween them. Given two well-ordered morphisms over a common base, there is at most one
isomorphism between them.

Proof. The first statement is classical (and immediate by induction); the second follows
from the first, applied in each fiber. ut

Definition 2.1.3. Fix (for the remainder of this and the following section) a regular car-
dinal α. Say a map of simplicial sets f : Y → X is α-small if each of its fibers Yx has
cardinality < α.

Given a simplicial set X, define Wα(X) to be the set of isomorphism classes10 of α-
small well-ordered morphisms Y → X; together with the pullback action Wα(f ) :=

f ∗ : Wα(X) → Wα(X
′), for f : X′ → X, this gives a contravariant functor

Wα : sSetop
→ Set.

Lemma 2.1.4. Wα preserves all limits: Wα(colimi Xi) ∼= limi Wα(Xi).

Proof. Suppose F : I → sSet is some diagram, and X = colimI F is its colimit,
with injections νi : F(i) → X. We need to show that the canonical map Wα(X) →

limI Wα(F (i)) is an isomorphism.
To see that it is surjective, suppose we are given [fi : Yi → F(i)] ∈ limI Wα(F (i)).

For each x ∈ Xn, choose some i and x̄ ∈ F(i) with ν(x̄) = x, and set Yx := (Yi)x̄ . By
Proposition 2.1.2, this is well-defined up to canonical isomorphism, independent of the
choices of representatives i, x̄, Yi , fi . The total space of these fibers then defines a well-
ordered morphism f : Y → X, with fibers of size < α, and with pullbacks isomorphic
to fi as required.

9 Other possible approaches include ones based on the general results of [Hof95b] and [LW15],
or taking Uαn as [(

∫
1[n])op, Set<α] as in [HS99].

10 We use isomorphism classes in the sense of “Scott’s trick” [Sco55] for constructing proper class
quotients. The class of all well-ordered morphisms isomorphic to a given one is a proper class, so
one instead uses the subclass of such morphisms of minimal rank, which is a set.
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For injectivity, suppose f, f ′ are well-ordered morphisms over X, and ν∗i f ∼= ν
∗

i f
′

for each i. By Proposition 2.1.2, these isomorphisms must agree on each fiber, so together
give an isomorphism f ∼= f ′. ut

Define the simplicial set Wα by

Wα :=Wα · yop
: 1op

→ Set,

where y denotes the Yoneda embedding 1→ sSet.

Lemma 2.1.5. The functor Wα is representable, represented by Wα .

Proof. The functors Wα and Hom(−,Wα) agree up to isomorphism on the standard sim-
plices (by the Yoneda lemma), and send colimits in sSet to limits; but every simplicial set
is canonically a colimit of standard simplices. ut

Notation 2.1.6. Given an α-small well-ordered map f : Y → X, the corresponding map
X→Wα will be denoted by pf q.

Applying the natural isomorphism above to the identity map Wα →Wα yields a universal
α-small well-ordered simplicial set W̃α →Wα . Explicitly, n-simplices of W̃α are classes
of pairs

(f : Y → 1[n], s ∈ f−1(1[n]))

i.e. the fiber of W̃α over an n-simplex pf q ∈ Wα is exactly (an isomorphic copy of) the
main fiber of f . So, by construction:

Proposition 2.1.7. The canonical projection W̃α →Wα is strictly universal for α-small
well-ordered morphisms; that is, any such morphism can be expressed uniquely as a pull-
back of this projection. ut

Corollary 2.1.8. The canonical projection W̃α → Wα is weakly universal for α-small
morphisms of simplicial sets: any such morphism can be given, not necessarily uniquely,
as a pullback of this projection.

Proof. By the well-ordering principle and the axiom of choice, one can well-order the
fibers, and then use the universal property of Wα . ut

Definition 2.1.9. Let Uα ⊆ Wα (respectively, Uα ⊆ Wα) be the subobject consisting of
(isomorphism classes of) α-small well-ordered fibrations;11 and define pα : Ũα → Uα as
the pullback

Ũα //

pα

��

W̃α

��
Uα
� � // Wα

Lemma 2.1.10. The map pα : Ũα → Uα is a fibration.

11 Here and throughout, by “fibration” we always mean “Kan fibration”.
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Proof. Consider a horn to be filled

3k[n] //
� _

��

Ũα

pα

��
1[n]

pxq // Uα

for some 0 ≤ k ≤ n. It factors through the pullback

3k[n] //
� _

��

• //

x

��

Ũα

pα

��
1[n] 1[n]

pxq // Uα

where by the definition of Uα and Ũα , x is a fibration. Thus the left square admits a
diagonal filler, and hence so does the outer rectangle. ut

Lemma 2.1.11. An α-small well-ordered morphism f : Y → X ∈ Wα(X) is a fibration
if and only if pf q : X→Wα factors through Uα .

Proof. For “⇒”, assume that f : Y → X is a fibration. Then the pullback of f to any
representable is certainly a fibration:

• //

x∗f

��

Y

f

��
1[n]

x // X

so pf q(x) = px∗f q ∈ Uα , and hence pf q factors through Uα .
Conversely, suppose pf q factors through Uα . Then we obtain

Y //

f

��

Ũα //

pα

��

W̃α

��
X // Uα

� � // Wα

where the lower composite is pf q, and the outer rectangle and the right square are by
construction pullbacks. Hence so is the left square; so by Lemma 2.1.10, f is a fibration.

ut

Corollary 2.1.12. The functor Uα is representable, represented by Uα; so pα : Ũα → Uα
is strictly universal for α-small well-ordered fibrations, and weakly universal for α-small
fibrations. ut

In Section 3.5, we will strengthen this universal property, showing that while the repre-
sentation of a fibration as a pullback of pα may not be strictly unique, it is unique up to
homotopy: precisely, the space of such representations is contractible.
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2.2. Kan fibrancy of the universe

The previous section provides the main ingredients needed to use Uα as a universe in the
sense of Section 1, and hence to give a model of the core type theory. However, to give
additionally a type-theoretic universe within that model, we need to show that each Uα
itself can be seen as a type of the model; in other words, that it is Kan. The main goal of
this section is therefore to prove the following theorem:

Theorem 2.2.1. The simplicial set Uα is a Kan complex.

Before proceeding with the proof we will gather four useful lemmas. The first two concern
minimal fibrations, which for the present purposes are a technical device whose details,
beyond these two lemmas, are unimportant.

Lemma 2.2.2 (Quillen’s Lemma, [Qui68]). Any fibration f : Y → X may be factored
as f = pg, where p is a minimal fibration and g is a trivial fibration.

Lemma 2.2.3 ([BGM59, III.5.6]; see also [May67, Cor. 11.7]). Suppose X is con-
tractible, with x0 ∈ X, and p : Y → X is a minimal fibration with fiber F := Yx0 .
Then there is an isomorphism over X:

Y
g //

p
��

F ×X

π2��
X

For Lemma 2.2.5 below, the proof we give is due to André Joyal; we include details
here since the original [Joy11] is not currently publicly available. For this, and again for
Theorem 3.4.1 below, we make crucial use of exponentiation along cofibrations; so we
pause first to establish some facts about this.

Lemma 2.2.4 (cf. [Joy11, Lemma 0.2]). For any map i : A→ B,

(1) Πi : sSet/A→ sSet/B preserves trivial fibrations;

and if moreover i is a cofibration, then:

(2) the counit i∗Πi → 1sSet/A is an isomorphism;
(3) if p : E→ A is α-small, then so is Πip.

Proof. (1) By adjunction, since i∗ preserves cofibrations.
(2) Since i is mono, i∗Σi ∼= 1sSet/A; so by adjointness, i∗Πi ∼= 1sSet/A.
(3) For any n-simplex x : 1[n] → B, we have (Πip)x ∼= HomsSet/B(x,Πip) ∼=

HomsSet/B(i
∗x, p). As a subobject of 1[n], i∗x has only finitely many non-degenerate

simplices, so (Πip)x injects into a finite product of fibers of p and is thus of size< α. ut
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Lemma 2.2.5 ([Joy11, Lemma 0.2]). Trivial fibrations extend along cofibrations. That
is, if t : Y → X is a trivial fibration and j : X → X′ is a cofibration, then there exists a
trivial fibration t ′ : Y ′→ X′ and a pullback square of the form

Y //

t

��

Y ′

t ′

��
X
� � j // X′

Moreover, if t is α-small, then t ′ may be chosen to also be.

Proof. Take t ′ := Πj t . By part 1 of Lemma 2.2.4, this is a trivial fibration; by part (2),
j∗Y ′ ∼= Y ; and by part (3), it is α-small. ut

We are now ready to prove that Uα is a Kan complex.

Proof of Theorem 2.2.1. We need to show that we can extend any horn in Uα to a simplex:

3k[n] //
� _

��

Uα

1[n]

<<

By Corollary 2.1.12, any such horn pqq corresponds to an α-small well-ordered fibration
q : Y → 3k[n]. To extend pqq to a simplex, we just need to construct an α-small fibration
Y ′ over 1[n] which restricts on the horn to Y :

Y //

q

��

Y ′

q ′

��
3k[n]

� � // 1[n]

By the axiom of choice one can then extend the well-ordering of q to q ′, so the map
pq ′q : 1[n] → Uα gives the desired simplex.

By Quillen’s Lemma, we can factor q as

Y
qt
−→ Y0

qm
−→ 3k[n],

where qt is a trivial fibration and qm is a minimal fibration. Both are still α-small: each
fiber of qt is a subset of a fiber of q, and since a trivial fibration is onto, each fiber of qm
is a quotient of a fiber of q.

By Lemma 2.2.3, we have an isomorphism Y0 ∼= F × 3k[n], and hence a pullback
diagram

Y0
� � //

��

F ×1[n]

��
3k[n]

� � // 1[n]
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By Lemma 2.2.5, we can then complete the upper square in the following diagram, with
both right-hand vertical maps α-small fibrations:

Y

qt

��

// Y ′

��
Y0
� � //

qm
��

F ×1[n]

��
3k[n]

� � // 1[n]

Since α is regular, the composite of the right-hand side is again α-small; so we are done.
ut

2.3. Modelling type theory in simplicial sets

To prove that Uα carries the structure to model type theory, we will need a couple of
further lemmas; firstly, that taking dependent products preserves fibrations:

Lemma 2.3.1. Suppose Z
q
−→ Y

p
−→ X are fibrations. Then the dependent product Πpq

is a fibration over X.
Proof. The pullback functor p∗ : sSet/X → sSet/Y preserves trivial cofibrations (since
sSet is right proper and cofibrations are monomorphisms); so its right adjoint Πp pre-
serves fibrant objects. ut

Secondly, to model Id-types, we will require well-behaved fibered path objects. The con-
struction below may be found in [War08, Thm. 2.25]; we recall it in more elementary
terms, which will be useful to us later.

Definition 2.3.2. Given a fibration p : E → B, define the fibered path object PB(E) as
the pullback

PB(E) //

��

E1[1]

p1[1]

��
B

c // B1[1]

the object of paths in E that are constant in B.
The “constant path” map c : E→ E1[1] factors through PB(E); call the resulting map

rp : E→ PB(E). There are also evident source and target maps sp, tp : PB(E)→ E. (On
all of these maps, we will omit the subscripts when they are clear from context.)

Proposition 2.3.3. For any fibration p : E→ B, the maps

E
r
−→ PB(E)

(s,t)
−−→ E ×B E

give a factorisation of the diagonal map 1p : E→ E ×B E over B as a (trivial cofibra-
tion, fibration); and this is stable over B in that the pullback along any B ′ → B is again
such a factorisation.
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Proof. It is clear that these maps give a factorisation of 1p over B. To see that they
are a trivial cofibration and a fibration respectively, consider the pullback construction of
PB(E) via two intermediate stages:

PB(E)

(s,t)

��

// E1[1]

(s,p1[1],t)

��
E ×B E

π1

��

// E ×B B1[1] ×B E

(π1,π2)

��
E

����

// E ×B B1[1]

��
B

c // B1[1]

Now (s, t) is certainly a fibration, since it is a pullback of the map E1[1] → E ×B
B1[1] ×B E ∼= E

1+1
×B1+1 B1[1], which is a fibration by the monoidal model category

axioms [Hov99, Lemma 4.2.2(3)], applied to the cofibration 1 + 1 → 1[1] and the
fibration p.

Similarly, the source map s : PB(E) → E is a trivial fibration, since it is a pullback
of E1[1] → E1

×B1 B1[1], which is one by the monoidal model category axioms. But s
is a retraction of r , so r is a weak equivalence (by 2-out-of-3) and a monomorphism, so
is a trivial cofibration as desired.

Finally, stability of these properties under pullback follows immediately from the sta-
bility (up to isomorphism) of the construction itself: for any f : B ′ → B, there is a
canonical isomorphism PB ′(f ∗E) ∼= f ∗PB(E), commuting with the maps r, s, t . ut

We are now fully equipped for the main result of the present section:

Theorem 2.3.4. Let α be an inaccessible cardinal.12 Then Uα carries5-,6-, Id-, W-, 1-,
0-, and +-structures. Moreover, if β < α is also inaccessible, then Uβ gives an internal
universe in Uα closed under all these constructors.

Proof. (5-structure): Given a pair of α-small fibrations Z
q
−→ Y

p
−→ X, the dependent

productΠpq in sSet/X is again a fibration, by Lemma 2.3.1; it is also α-small, since α is
inaccessible.

Hence by Corollary 2.1.12, the universal dependent product over UαΠ-FORM is repre-
sentable as the pullback of Ũα along some map 5 : UαΠ-FORM

→ Uα , giving the desired
5-structure.

(6-structure): Similarly, given α-small fibrations Z
q
−→ Y

p
−→ X, the composite p · q

is again an α-small fibration. So the universal dependent sum over UαΣ-FORM is repre-
sentable by some map 6 : UαΣ-FORM

→ Uα .

12 That is, infinite, regular, and strong limit; strongly inaccessible in some literature.
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(Id-structure): Given any α-small fibration p : Y → X, consider the factorisation of

the diagonal 1p as Y
r
−→ PX(Y )

(s,t)
−−→ Y ×X Y . The fibration (s, t) is easily seen to be

α-small; and by Proposition 2.3.3, r is stably orthogonal to (s, t) over X.
Applying this construction to pα : Ũα → Uα itself yields, via Proposition 1.4.7, the

desired Id-structure on Uα .
(W-structure): Given α-small fibrations Z

q
−→ Y

p
−→ X, the initial algebra Wq → X

for the induced polynomial endofunctor on sSet/X may be obtained as a transfinite co-
limit of iterations of the endofunctor; it can be shown from this description that it is again
an α-small fibration (cf. [vdBM15, Thm. 3.4] and [vdBM18]).

(0-structure), (1-structure), (+-structure): straightforward.
(Internal universe): Since β < α, Uβ is itself α-small; and by Theorem 2.2.1, it is

Kan. So Uβ is representable as the pullback of Ũα along some uβ : 1 → Uα . Moreover,
there is a natural inclusion i : Uβ → Uα , with Ũα[β] ∼= i∗Ũα by construction. Together
these give the desired internal universe (uβ , i).

Finally, to see that (uβ , i) is closed under the appropriate constructors in i, note that
for each of 5, 6, and Id as constructed above, the image of the composite with i lies
again in Uβ , and hence factors through i; for instance, in the case of 5,

UβΠ-FORM iΠ-FORM
//

5

��

UαΠ-FORM

5

��
Uβ

i // Uα

(Note that while we do already have a5-structure (and so on) on Uβ as constructed in the
first parts of this theorem, those choices of the structure do not automatically commute
with i.) ut

Corollary 2.3.5. Let β < α be inaccessible cardinals. Then there is a model of dependent
type theory in sSetUα with all the logical constructors of Section A.2, and a universe
(given by Uβ) closed under these constructors. ut

Assuming initiality (Conjecture 1.2.9), this implies the existence of a morphism C(T)→
sSetUα , interpreting the syntax of Martin-Löf type theory in simplicial sets. Even without
assuming initiality, it gives us the operations with which to heuristically interpret indi-
vidual judgements of the syntax by hand. We therefore freely make notational use of the
interpretation, writing [[J]] for the interpretation of a judgement J.

In doing so, we will make several systematic abuses of notation. Firstly, referring
in the syntax to fibrations, we will write E rather than pEq, and so on, whenever some
choice of name pEq : B → Uα for the fibration is understood; and conversely, referring
to the interpretation of a type 0 ` T type, we use [[T ]] to refer to the fibration over [[0]]
given by pulling back Ũα along the literal interpretation [[0 ` T type]] : [[0]] → Uα .

As a first characteristic of the model, we note that both of the extra principles on
equality of functions hold.
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Proposition 2.3.6. The η-rule and functional extensionality rules of Section A.4 hold in
the simplicial model.

Proof. The η-rule follows immediately from our use of categorical exponentials to inter-
pret Π-types, by the uniqueness in the categorical universal property.

For functional extensionality, Garner [Gar09, Sec. 5] shows that it holds just if each
product of identity types,

f, g:Πx:AB(x) ` Πx:AIdB(x)(app(f, x), app(g, x)) type,

admits the structure given by the rules for the identity type on the corresponding product
types,

f, g:Πx:AB(x) ` IdΠx:AB(x)(f, g) type.

So it is enough to show that for any pair of (α-small, well-ordered) fibrations Z
q
−→

Y
p
−→ X, given by names

pYq : X→ Uα, pZq : Y → Uα,

the interpretation of the product of identity types,

[[Πx:Y IdZ(x)(app(f, x), app(g, x))]] ∼= Πp(PYZ),

gives a suitably stable path object for the interpretation of the product types,

[[IdΠx:YZ(x)(f, g)]]
∼= ΠpZ.

For this, it is clear that Πp(s, t) : Πp(PYZ) → Πp(Z ×Y Z) ∼= ΠpZ ×X ΠpZ

is a fibration, since Πp preserves fibrations (Lemma 2.3.1). Similarly, Πprq : ΠpZ →
Πp(PYZ) is a cofibration since Πp preserves monomorphisms; and it is a weak equiv-
alence, since Πp preserves trivial fibrations (Lemma 2.2.5), and so the retraction
Πpsq : Πp(PYZ) → ΠpZ is again a trivial fibration. Finally, by the Beck–Chevalley
condition in an LCCC, the entire construction is stable under pullback in X, as required.

ut

It now remains only to show that the Univalence Axiom holds in this model.

3. Univalence

In this section, we will introduce the Univalence Axiom, and show that it holds in the
simplicial model.

The proof of this involves both simplicial and type-theoretic components; we keep
these separate, as far as possible. First of all (Section 3.1), we define univalence type-
theoretically and state the Univalence Axiom; next, we define an analogous simplicial
concept of univalence (Section 3.2); we then show that via the simplicial model, the two
notions coincide (Section 3.3). Finally, in Section 3.4, we prove our main theorem: that
Uα is univalent (using the simplicial sense), and hence that the Univalence Axiom holds
in the simplicial model of type theory. Lastly, in Section 3.5, we discuss an alternative for-
mulation of simplicial univalence, and so obtain an up-to-homotopy uniqueness statement
for the weak universal property of Uα .
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Once again, we freely use the syntax of type theory as a notation; to avoid formal
dependence on Conjecture 1.2.9, the reader should translate each individual syntactic
expression used into the language of contextual categories.

3.1. Type-theoretic univalence

To state the univalence axiom, we first need to define a few basic notions in the type
theory.

Definition 3.1.1 (Joyal). Let f : A → B be a function in some context 0, i.e. 0 `
f : [A,B] (where the function type [A,B] is defined using Π, as described in Sec-
tion A.2).

• A left homotopy inverse for f is a function g : B → A, together with a homotopy
g · f ' 1A. Formally, we define the type LInv(f ) of left homotopy inverses to f :

0 ` LInv(f ) := 6g:[B,A]Πx:AIdA(g(f (x)), x) type

• Analogously, we define the type RInv(f ) of right homotopy inverses:

0 ` RInv(f ) := 6g:[B,A]Πy:B IdB(f (g(y)), y) type

• We say f : A→ B is a homotopy isomorphism (or more briefly, an h-isomorphism) if
it is equipped with both a left and a right inverse:

0 ` isHIso(f ) := LInv(f )× RInv(f ) type

• For any types A and B, we thus have the type of h-isomorphisms from A to B:

0 ` HIso(A,B) := 6f :[A,B]isHIso(f )

It may perhaps be surprising that we use homotopy isomorphisms rather than the more
familiar homotopy equivalences, with a single two-sided homotopy inverse. The rea-
son is that while a map carries either structure if and only if it carries the other, the
type, or object, of such structures on a map is different. In particular, the analogue of
Lemma 3.3.4 for homotopy equivalences does not hold; for further discussion of these
issues, see [Uni13, Ch. 4].

Example 3.1.2. For any type B, the identity function on B is canonically an h-isomor-
phism.

Suppose now that A is any type, and x : A ` B(x) type a family of types over A. By the
identity elimination rule, we can derive

x, y:A, u:IdA(x, y) ` wx,y,u : HIso(B(x), B(y)).

This can equivalently be seen as a map

x, y:A ` wx,y : [IdA(x, y),HIso(B(x), B(y))].
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Definition 3.1.3. We say the family B(x) is univalent if for each x, y, the map wx,y is
itself a homotopy isomorphism:

` isUnivalent(x:A.B(x)) := Πx,y:AisHIso(wx,y).

Axiom 3.1.4. The Univalence Axiom, for a given type-theoretic universe U , is the state-
ment that the canonical family El of types over U is univalent.

Informally, the Univalence Axiom says that just as elements of the universe correspond to
types, equalities in the universe correspond to equivalences between types. In particular,
since every statement or construction must respect propositional equality, the Univalence
Axiom stipulates that the language can never distinguish between equivalent types.

3.2. Simplicial univalence

To define a simplicial notion of univalence, we first need to construct the object of weak
equivalences between fibrations p1 : E1 → B and p2 : E2 → B over a common base. In
other words, we want an object representing the functor sending (X, f ) ∈ sSet/B to the
set EqX(f

∗E1, f
∗E2). As we did for Uα , we proceed in two steps, first exhibiting it as a

subfunctor of a functor more easily seen (or already known) to be representable.
For the remainder of the section, fix fibrations E1, E2 as above over a base B. Since

sSet is locally Cartesian closed, we can construct the exponential object between them:

Definition 3.2.1. Let HomB(E1, E2) → B denote the internal hom from E1 to E2 in
sSet/B.

Then for any X, a map X → HomB(E1, E2) corresponds to a map f : X → B,
together with a map u : f ∗E1 → f ∗E2 over X.

Together with the Yoneda lemma, this implies the explicit description: an n-simplex
of HomB(E1, E2) is a pair

(b : 1[n] → B, u : b∗E1 → b∗E2).

Lemma 3.2.2. HomB(E1, E2)→ B is a Kan fibration.

Proof. Follows immediately from Lemma 2.3.1, since the exponential is a special case of
dependent products. ut

Within HomB(E1, E2), we now want to construct the subobject of weak equivalences.

Lemma 3.2.3. Let f : E1→E2 be a weak equivalence over B, and suppose g : B ′→B.
Then the induced map between pullbacks g∗E1 → g∗E2 is a weak equivalence.

Proof. The pullback functor g∗ : sSet/B → sSet/B ′ preserves trivial fibrations; so by
Ken Brown’s Lemma [Hov99, Lemma 1.1.12], it preserves all weak equivalences between
fibrant objects. ut

Thus, weak equivalences from E1 to E2 form a subfunctor of the functor of maps from
E1 to E2. To show that this is representable, we just need to show:
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Lemma 3.2.4. Let f : E1→E2 be a morphism over B. If for each simplex b : 1[n]→B

the induced map fb : b∗E1 → b∗E2 is a weak equivalence, then f is a weak equivalence.

Proof. Without loss of generality, B is connected; otherwise, apply the result over each
connected component separately. Take some vertex b : 1[0] → B, and set Fi := b∗Ei .
Now for any vertex e : 1[0] → F1, and any n ≥ 1, by the long exact sequence for a
fibration we have

πn+1(B, b) //

1
��

πn(F1, e) //

πn(fb)

��

πn(E1, e) //

πn(f )

��

πn(B, b) //

1
��

πn−1(F1, e)

πn−1(fb)

��
πn+1(B, b) // πn(F2, f (e)) // πn(E2, f (e)) // πn(B, b) // πn−1(F2, f (e))

Each πn(fb) is an isomorphism, so by the Five Lemma, so is πn(f ), for n ≥ 1.
The case n = 0 is the same in spirit, but requires a little more work since the Five

Lemma is unavailable. We have a square

π0(F1)
π0(i1)// //

π0(fb)

��

π0(E1)

π0(f )

��
π0(F2)

π0(i2)// // π0(E2)

with both horizontal arrows surjections, and π0(fb) an isomorphism. To show that π0(f )

is an isomorphism, it therefore suffices to show that for each x ∈ π0(E1), the restriction
of fb to a map of fibers

π0(i1)
−1(x)→ π0(i2)

−1(π0(f )(x))

is again an isomorphism. But this follows from the continuation of the long exact se-
quence to an exact sequence of pointed sets:

π1(B, b)

1
��

// π0(F1, e)
π0(i1) // //

π0(fb)

��

π0(E1, x)

π0(f )

��
π1(B, b) // π0(F2, f (e))

π0(i2)// // π0(E2, f (e))

where e is any point of F1 such that [e] = x.
Thus πn(f ) is an isomorphism for each n ≥ 0 and basepoint e ∈ E1; so f is a weak

equivalence. ut

Definition 3.2.5. Take EqB(E1, E2) to be the subobject of HomB(E1, E2) consisting of
all n-simplices

(b : 1[n] → B, w : b∗E1 → b∗E2)

such that w is a weak equivalence. (By Lemma 3.2.3, this indeed defines a simplicial
subset.)
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From Lemma 3.2.4, we immediately have:

Corollary 3.2.6. Let (f, u) : X→ HomB(E1, E2). Then u is a weak equivalence if and
only if (f, u) factors through EqB(E1, E2). Thus, maps X → EqB(E1, E2) correspond
to pairs of maps

(f : X→ B, w : f ∗E1 → f ∗E2),

where w is a weak equivalence. ut

While Lemma 3.2.4 was stated just as required by representability, its proof actually gives
a slightly stronger statement:

Lemma 3.2.7. Let f : E1 → E2 be a morphism over B. If for some vertex b : 1[0] → B

in each connected component the map of fibers fb : b∗E1 → b∗E2 is a weak equivalence,
then f is a weak equivalence. ut

Corollary 3.2.8. The map EqB(E1, E2)→ B is a fibration.
Proof. Suppose we wish to fill a square:

3k[n] //
� _

i

��

EqB(E1, E2)

��
1[n]

88

b // B

By the universal property of EqB(E1, E2) this corresponds to showing that we can extend
a weak equivalencew : i∗b∗E1 → i∗b∗E2 over3k[n] to a weak equivalencew : b∗E1 →

b∗E2 over 1[n].
By Lemma 3.2.2, we can certainly find some mapw extendingw. But then since1[n]

is connected, Lemma 3.2.7 implies that w is a weak equivalence. ut

While on the subject, we collect a proposition which is not required for the definition of
univalence, but which will be useful later:

Proposition 3.2.9. Suppose that E1, E
′

1, E2, E
′

2 are fibrations over a common base B,
and w1 : E

′

1 → E1, w2 : E2 → E′2 are weak equivalences over B. Then the induced map
EqB(w1, w2) : EqB(E1, E2)→ EqB(E′1, E

′

2) is a weak equivalence.

E′1 E1 E2 E′2

B

p′1
p1 p2 p′2

w1 w2

Proof. As weak equivalences between fibrations, w1 and w2 are fibered homotopy equiv-
alences over B. Choosing fibered homotopy inverses v1, v2 for w1 and w2 respec-
tively gives a homotopy inverse HomB(v1, v2) for HomB(w1, w2) : HomB(E1, E2) →

HomB(E
′

1, E
′

2). But by Lemma 3.2.7, the image of a homotopy in Hom whose endpoints
lie in Eq must lie entirely in Eq; so the restriction EqB(v1, v2) gives a homotopy inverse
for EqB(w1, w2), as desired. ut

We are now ready to define univalence.
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Let p : E → B be a fibration. We then have two fibrations over B × B, given by
pulling back E along the projections. Call the object of weak equivalences between these
Eq(E) := EqB×B(π∗1E,π

∗

2E). Concretely, simplices of Eq(E) are triples

(b1, b2 ∈ Bn, w : b
∗

1E→ b∗2E).

By Corollary 3.2.6, a map f : X → Eq(E) corresponds to a pair of maps
f1, f2 : X → B together with a weak equivalence f ∗1 E → f ∗2 E over X. In particu-
lar, there is a “diagonal” map δE : B → Eq(E) corresponding to the triple (1B , 1B , 1E),
sending a simplex b ∈ Bn to the triple (b, b, 1Eb ).

There are also source and target maps s, t : Eq(E) → B, given by the composites
Eq(E) → B × B

πi
−→ B, sending (b1, b2, w) to b1 and b2 respectively. These are both

retractions of δ; and by Corollary 3.2.8, if B is fibrant then they are moreover fibrations.

Definition 3.2.10. A fibration p : E → B is univalent if the diagonal map δE : B →
Eq(E) is a weak equivalence.

Since δE is always a monomorphism (thanks to its retractions), this is equivalent to saying
that B → Eq(E)→ B×B is a (trivial cofibration, fibration) factorisation of the diagonal
1B : B → B × B, i.e. that Eq(E) is a path object for B.

We conclude this section with a few examples, and non-examples, of univalent fibra-
tions.

Examples 3.2.11. (1) The canonical map X→ 1 is univalent if and only if the space of
homotopy auto-equivalences of X is contractible.

(2) The identity map X→ X is univalent if and only if X is either empty or contractible.
In particular, the identity map 1+ 1→ 1+ 1 is not univalent: it has two fibers which
are equivalent, over points that are not connected by any path.

(3) Any fibration weakly equivalent to a univalent fibration is itself univalent (essentially,
by Proposition 3.2.9).

3.3. Equivalence of type-theoretic and simplicial univalence

Having defined the type-theoretic and simplicial notions of univalence, we now wish to
show that they coincide. As ever, we make essential use of representability; in particu-
lar, we work with the interpretations of type-theoretic notions entirely via their universal
properties. With this in view, we need to define what are represented by the interpretations
of LInv, isHIso, etc.

Definition 3.3.1. Let p1 : E1 → B, p2 : E2 → B be fibrations over a common base (as
in Definition 3.2.1).

Define HomLInvB(E1, E2) to be the set of maps with a left homotopy inverse fromE1
to E2, i.e. triples (f, g,H), where f : E1 → E2 and g : E2 → E1 are maps over B, and
H is a fibered homotopy from g · f to 1E1 , defined using the fibered path space PB(E1)

(as used for the Id-structure in the proof of Theorem 2.3.4).
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Similarly, define HomRInvB(E1, E2) to consist of triples (f, g,H), where f, g are as
before, and H is now a fibered homotopy from f · g to 1E2 , defined using PB(E2).

Finally, these both come with evident projections to HomB(E1, E2); define
HIsoB(E1, E2) as the pullback HomLInvB(E1, E2)×HomB (E1,E2) HomRInvB(E1, E2).

Lemma 3.3.2. Let B,E1, E2 be as above; additionally, suppose they are given by names
pBq : 1→ Uα , pEiq : B → Uα . Then for any f : X → B, there are horizontal isomor-
phisms as in the diagram below, making the diagram commute, and natural in (X, f ).

HomB(X, [[[E1, E2]]])

HomB(X, [[HomLInv(E1, E2)]])

HomB(X, [[HomRInv(E1, E2)]])

HomB(X, [[HIso(E1, E2)]])

HomX(f
∗E1, f

∗E2)

HomLInvX(f ∗E1, f
∗E2)

HomRInvX(f ∗E1, f
∗E2)

HIsoX(f ∗E1, f
∗E2)

∼=

∼=

∼=

∼=

(Here [[−]] denotes the interpretation of type theory, as described following Corol-
lary 2.3.5; and [−,−] is the ordinary function type, taken as a special case of 5-types.)

Proof. This is essentially a routine verification; we prove just the first case, that of
[[[E1, E2]]]. For this, we need to give a natural isomorphism HomB(X, [[[E1, E2]]]) ∼=

HomX(f
∗E1, f

∗E2); in other words, to show that [[[E1, E2]]] is the exponential between
E1 and E2 in sSet/B.

Recall that by definition, [[[E1, E2]]] is constructed as the pullback of Ũα along the
map 5 · p(E1, E2)q : B → Uα:

[[[E1, E2]]]

��

// ΠAgen→BgenBgen

��

// Ũα

��
B

p(E1,E2)q // UαΠ-FORM 5 // Uα

[[[E1, E2]]] is thus a pullback of the dependent product of the universal pair of fibrations
over UαΠ-FORM, and so by the Beck–Chevalley condition is a dependent product for the
pullbacks of these fibrations along p(E1, E2)q. But these pullbacks are isomorphic to E1,
E1 ×B E2, by the two pullbacks lemma and the construction of Agen, Bgen as pullbacks
of Ũα → Uα .

B

5E1(E
∗

1E2)

E1

E∗1E2

UαΠ-FORM

5AgenBgen

Agen

Bgen
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So [[[E1, E2]]] is the dependent product ofE1×BE2 → E1 alongE1 → B; but this is
exactly the usual construction of exponentials in slices from dependent products [Joh02,
A1.5.2]. ut

We also note, from the proof of the preceding lemma:

Corollary 3.3.3. There is a natural isomorphism over B:

[[[E1, E2]]] ∼= HomB(E1, E2). ut

Following this, we define HIsoB(E1, E2) := [[HIsoB(E1, E2)]], and HomLInv,
HomRInv similarly.

Lemma 3.3.4. The map HIsoB(E1, E2) → HomB(E1, E2) factors through the space
EqB(E1, E2); and the resulting map HIsoB(E1, E2) → EqB(E1, E2) is a trivial fibra-
tion.

Proof. The given map HIsoB(E1, E2) → [E1, E2] ∼= HomB(E1, E2) corresponds, un-
der the isomorphisms of Lemma 3.3.2, to the maps on hom-sets

HomB(X,HIsoB(E1, E2)) ∼= HIsoX(f ∗E1, f
∗E2)

→ HomX(f
∗E1, f

∗E2) ∼= HomB(X,HomB(E1, E2)) (1)

where the middle map just forgets the chosen homotopy inverses of an h-isomorphism.
But since any map admitting both homotopy inverses is a weak equivalence, the natural
map

HIsoX(f ∗E1, f
∗E2)→ HomX(f

∗E1, f
∗E2)

factors through EqX(f
∗E1, f

∗E2); so by Yoneda, HIsoB(E1, E2) → HomB(E1, E2)

factors through EqB(E1, E2).
Thus, we obtain the desired map HIsoB(E1, E2)→ EqB(E1, E2), corresponding to

the forgetful function HIsoX(f ∗E1, f
∗E2)→ EqX(f

∗E1, f
∗E2).

Combining this with the left-hand pullback square in Lemma 3.3.2, we can consider
HIsoB(E1, E2) as the pullback:

HomB(E1, E2)

HomLInvB(E1, E2)
HomRInvB(E1, E2)

EqB(E1, E2)

EqLInvB(E1, E2)
EqRInvB(E1, E2)

HIsoB(E1, E2)

where EqLInv, EqRInv are defined by the pullbacks above, and represent weak equiva-
lences equipped with a left (resp. right) homotopy inverse. To show that HIsoB(E1, E2)
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→ EqB(E1, E2) is a trivial fibration, it thus suffices to show that the maps

EqLInvB(E1, E2)→ EqB(E1, E2), EqRInvB(E1, E2)→ EqB(E1, E2)

are each trivial fibrations. We show this in the following two lemmas.

Lemma 3.3.5. For B, E1, E2 as above, the map

EqLInvB(E1, E2)→ EqB(E1, E2)

is a trivial fibration. Equivalently, left homotopy inverses to equivalences between fibrant
objects extend along cofibrations.

Proof. For EqLInvB(E1, E2)→ EqB(E1, E2), we need to find a filler for any diagram
of the form

Y //
� _

i

��

EqLInvB(E1, E2)

��
X //

55

EqB(E1, E2)

where i : Y ↪→ X is a cofibration.
Writing f for the induced map X→ B and Fi for f ∗Ei , this square corresponds (by

the universal properties of Eq and EqLInv) to a weak equivalence w̄ : F1 → F2, and a
fibered left homotopy inverse to w := i∗w̄; that is, l : i∗F2 → i∗F1, and a homotopy
H : l · w ' 1i∗F1 , all fibered over Y :

Y

i∗F1

i∗F2

w

l

X

F1

F2

w

A filler then corresponds to a fibered left homotopy inverse (l̄, H̄ ) to w̄, extending (l, H).
These data and desiderata may be summed up in a single commuting diagram:

F1i∗F1

i∗F1 ×1[1]i∗F1

i∗F2

ι1
ι0

w

i∗F1 F1

F1 ×1[1]F1

F2

w̄
ι0

F1 X

1

H

l

ι1

π1

l̄

H
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Replacing the subdiagrams on the left by their colimits, we see that we seek precisely
a diagonal filler for an associated square:

i∗F2 +i∗F1 (i
∗F1 ×1[1])+i∗F1 F1 //

��

F1

��
F2 +F1 (F1 ×1[1])

44

// X

So since F1 → X is a fibration, we just need to show that the left-hand map of pushouts,
induced by

F1i∗F1

i∗F1 ×1[1]i∗F1

i∗F2

ι1

ι0

w

F1 ×1[1]F1

F2

w̄

ι0

ι1

is a trivial cofibration. For convenience, call this map t .
To see that t is a weak equivalence, consider it in the square

(i∗F1 ×1[1])+i∗F1 F1 //

��

F1 ×1[1]

��
i∗F2 +i∗F1 ((i

∗F1 ×1[1])+i∗F1 F1)
t // F2 +F1 (F1 ×1[1])

The top map is a trivial cofibration by the pushout-product property; the vertical maps
are pushouts of w and w̄ along cofibrations, so are also weak equivalences; and so by
2-out-of-3, t is a weak equivalence.

On the other hand, to see that t is a cofibration, consider it as induced by maps t0, t1
as in

i∗F1 //

��

F1

t1

��
i∗F2 +i∗F1 (i

∗F1 ×1[1])
t0 // F2 +F1 (F1 ×1[1])

Here t0 is isomorphic to the inclusion

i∗(F2 +F1 (F1 ×1[1])) ↪→ F2 +F1 (F1 ×1[1])
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(since pulling back preserves products and pushouts), so is mono. Next, i0 and i1 have
disjoint images, so t1 is also mono. Finally, the intersection of the images of t0 and t1 is
exactly the image of i∗F1; so t , as the induced map from (i∗F2 +i∗F1 (i

∗F1 × 1[1]))
+i∗F1 F1, is mono as desired.

Thus t is a trivial cofibration, completing the proof of the lemma. ut

Lemma 3.3.6. For B, E1, E2 as above, the map

EqRInvB(E1, E2)→ EqB(E1, E2)

is a trivial fibration. Equivalently, right homotopy inverses to equivalences between fi-
brant objects extend along cofibrations.

Proof. We must provide lifts against any cofibration i : Y ↪→ X:

Y //
� _

i

��

EqRInvB(E1, E2)

��
X //

55

EqB(E1, E2)

Analogously to the previous lemma, and again writing f : X → B, Fi := f ∗E1, the
square corresponds to a weak equivalence w̄ : F1 → F2 over X together with a fibered
right homotopy inverse to w := i∗w̄, i.e. r : i∗F2 → i∗F1 and a homotopy H : w · r '
1i∗F2 over Y ;

Y

i∗F1

i∗F2

w

r

X

F1

F2

w

and a filler corresponds to a fibered right homotopy inverse (r̄, H̄ ) for w̄, extending
(r,H).

Again, putting these conditions together, we see that they correspond to filling another
square:

i∗F2
(r,H) //

��

i∗F1 ×i∗F2 PY (i∗F2) // F1 ×F2 PXF2

ev1 ·π1

��
F2

1 //

(r̄,H̄ )

22

F2

where the pullbacks are just the fibered mapping path spaces,

i∗F1 ×i∗F2 PY (i∗F2)

��

// PY (i∗F2)

ev0

��
i∗F1

w // i∗F2

F1 ×F2 PXF2

��

// PYF2

ev0

��
F1

w̄ // F2
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Now i∗F2 ↪→ F2 is certainly a cofibration; so to provide the filler, it suffices to show
that the right-hand map is a trivial fibration. As the target map from a mapping path space,
it is certainly a fibration. To see that it is a weak equivalence, consider the triangle

F1
x 7→ (x,cw̄x ) //

w̄

**

F1 ×F2 PXF2

ev0

��
F2

The top map is the inclusion of a deformation retraction, so it is a weak equivalence; so
by 2-out-of-3, the source map ev0 is a weak equivalence. But ev1 is homotopic to ev0,
hence also a weak equivalence, as required. ut

Putting these two lemmas together concludes the proof of Lemma 3.3.4: HIso is trivially
fibrant over Eq. ut

Theorem 3.3.7. Let B be a Kan complex, and p : E → B a fibration; choose some
names pBq : 1 → Uα , pEq : B → Uα for these. Then E is simplicially univalent if and
only if the type isUnivalent(E) is inhabited in the model.

Proof. By definition, p : E → B is type-theoretically univalent when there exists a sec-
tion of the type [[x1, x2:B ` isHIso(wx1,x2) type]] over B × B (where wx1,x2 is as in Def-
inition 3.1.3). By Lemma 3.3.2 this is equivalent to the map

wE := [[x1, x2:B, IdB(x1, x2) ` wx1,x2(p) : HIso(E(x1), E(x2))]]

admitting the structure of a homotopy isomorphism, or equivalently being a weak equiv-
alence

[[x1, x2:B,p:IdB(x1, x2)]]
wE //

))

[[x1, x2:B, f :HIso(E(x1), E(x2))]]

tt
B × B

By Lemma 3.3.2, we may fit wE into the diagram

B
rB //

1B

,,

P(B)
wE //

((

HIsoB×B(π∗1E,π
∗

2E)

��
EqB×B(π∗1E,π

∗

2E)

��
HomB×B(π

∗

1E,π
∗

2E)

��
B × B



The simplicial model of Univalent Foundations (after Voevodsky) 2109

Then by the Id-COMP rule applied to the definition of wx1,x2 , the overall composite map
B → HomB×B(π

∗

1E,π
∗

2E) is the interpretation of [[x:B ` λy:E(x). y : [E(x), E(x)]]],
which corresponds under the universal property of Hom to (1B , 1E). So the composite
map B → EqB×B(π∗1E,π

∗

2E) is exactly δE of Definition 3.2.10. But by definition, E
is univalent precisely if δE is a weak equivalence; and by 2-out-of-3 and Lemma 3.3.4,
δE is a weak equivalence if and only if wE is. So we are done. ut

3.4. Univalence of the simplicial universes

Theorem 3.4.1. The fibration pα : Ũα → Uα is univalent.
Proof. We will show that the target map t : Eq(Ũα)→ Uα is a trivial fibration. Since t is
a retraction of δŨα , this implies by 2-out-of-3 that δŨα is a weak equivalence.

So, we need to fill a square
A //
� _

i

��

Eq(Ũα)

t

��
B //

<<

Uα

where i : A ↪→ B is a cofibration.
By the universal properties of Uα and Eq(Ũα), these data correspond to a weak equiv-

alence w : E1 → E2 between α-small well-ordered fibrations over A, and an extension
E2 of E2 to an α-small, well-ordered fibration over B; and a filler corresponds to an
extension E1 of E1, together with a weak equivalence w extending w:

A

E1

E2

w

B

E1

E2

w

As usual, it is sufficient to construct this first without well-orderings on E1; these can
then always be chosen so as to extend those of E1.

Recalling Lemmas 2.2.4–2.2.5, we define E1 and w as the pullback

E1

w
��

// ΠiE1

Πiw

��
E2

η // ΠiE2

in sSet/B, where η is the unit of i∗ a Πi at E2. To see that this construction works, it
remains to show:
(a) i∗E1 ∼= E1 in sSet/A, and under this, i∗w corresponds to w;
(b) E1 is α-small over B;
(c) E1 is a fibration over B, and w is a weak equivalence.
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For (a), pull the defining diagram of E1 back to sSet/A; by Lemma 2.2.4(2), we get a
pullback square

i∗E1

i∗w

��

// E1

w

��
E2

1E2 // E2

in sSet/A, giving the desired isomorphism.
For (b), Lemma 2.2.4(3) shows that ΠiE1 is α-small over B, so E1 is a subobject of

a pullback of α-small maps.
For (c), note first that by factoring w, we may reduce to the cases where it is either a

trivial fibration or a trivial cofibration.
In the former case, by Lemma 2.2.4(1),Πiw is also a trivial fibration, and hence so is

w; so E1 is fibrant over E2, hence over B.
In the latter case, E1 is then a deformation retract of E2 over A; we will show that E1

is also a deformation retract of E2 over B. Let H : E2 × 1[1] → E2 be a deformation
retraction of E2 onto E1. We want some homotopy H : E2 × 1[1] → E2 extending H
on E2 ×1[1], 1E1

×1[1] on E1 ×1[1], and 1E2
on E2 × {0}. Since these three maps

agree on the intersections of their domains, this is exactly an instance of the homotopy
lifting extension property, i.e. a square-filler

(E2 ×1[1]) ∪ (E1 ×1[1]) ∪ (E2 × {0})� _

��

H∪1∪1 // E2

��
E2 ×1[1] //

H

33

B

which exists since the left-hand map is a trivial cofibration.
For H to be a deformation retraction, we need to see that H {1} : E2 → E2 factors

through E1. By the definition of E1, a map f : X→ E2 over b : X→ B factors through
E1 just if the pullback i∗f : i∗X → E2 factors through E1. In the case of H {1}, the
pullback is by construction i∗(H {1}) = (i∗H){1} = H{1} : E2 → E2, which factors
through E1 since H was a deformation retraction onto E1.

So w embeds E1 as a deformation retract of E2 over B; thus E1 is a fibration over B
and w a weak equivalence, as desired. ut

Putting this together with Corollary 2.3.5, we obtain our main theorem:

Theorem 3.4.2. Let β < α be inaccessible cardinals. Then there is a model of dependent
type theory in sSetUα with all the logical constructors of Section A.2, and a universe
(given by Uβ) closed under these constructors and satisfying the Univalence Axiom. ut

From this, we can immediately deduce

Theorem 3.4.3. Assuming the existence of two inaccessible cardinals, the contextual cat-
egory presentation of MLTT+ UA (as given in Definition 1.2.10) is consistent. ut
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In practice one often considers a type theory with a sequence of n orω univalent universes.
We expect that the techniques used in the proof of Theorem 3.4.3 can be adapted to yield a
consistency proof for such a theory, relative to set theory with suitably many inaccessible
cardinals; but we do not pursue that here.

Remark 3.4.4. One can prove, within the type theory, that the Univalence Axiom to-
gether with the Π-η rule implies functional extensionality; see [V+], [Uni13, Sec. 4.9].
So we could have omitted functional extensionality from Proposition 2.3.6, and instead
deduced it here as a corollary of univalence.

3.5. Univalence and pullback representations

We are now ready to give a uniqueness statement for the representation of an α-small
fibration as a pullback of pα : Ũα → Uα: we define the space of such representations,
and show that it is contractible.

In fact, we work a bit more generally. Given fibrations q, p, we define a space Pq,p of
representations of q as a pullback of p; and we show that a fibration p over a Kan base is
univalent exactly when for every q, Pq,p is either empty or contractible.

Let p : E→ B and q : Y → X be fibrations. We define a functor

Pq,p : sSetop
→ Set,

setting Pq,p(S) to be the set of pairs of a map f : S × X → B, and a weak equivalence
w : S × Y → f ∗E over S ×X; equivalently, the set of squares

S × Y
f ′ //

S×q

��

E

p

��
S ×X

f // B

such that the induced map S × Y → f ∗E is a weak equivalence. Lemma 3.2.3 ensures
that this is functorial in S, by pullback.

Lemma 3.5.1. The functor Pq,p is representable, represented by the object

Pq,p := ΠX→1Σπ1EqX×B(π
∗

1Y, π
∗

2E).

1

X B

Y EX × B

π∗1Y π∗2E

q

π1 π2

p
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Proof. For any S, we have

Hom(S,ΠX→1Σπ1 EqX×B(π
∗

1Y, π
∗

2E))

∼= HomX(X × S,Σπ1EqX×B(π
∗

1Y, π
∗

2E))

∼= {(f̂ , ŵ) | f̂ : X × S → X × B over X,
ŵ : X × S → EqX×B(π

∗

1Y, π
∗

2E) over X × B}
∼= {(f,w) | f : X × S → B, w : Y × S → f ∗E w.e. over X × S}
∼= Pq,p(S). ut

Remark 3.5.2. By Yoneda, we see from this that (Pq,p)n ∼= Pq,p(1[n]).

Theorem 3.5.3. Let p : E → B be a fibration, with B Kan. Then p is univalent if and
only if for every fibration q : Y → X, Pq,p is either empty or contractible.13

Proof. First, suppose that p is univalent. Take any q such that Pq,p is non-empty; then
we have some map 1→ Pq,p, corresponding to a square

X B

Y f ∗E E

f

q f ∗p p

w

We claim that Pq,p → 1 is a trivial fibration, and hence Pq,p is contractible.
Π -functors preserve trivial fibrations (since their left adjoints, pullback functors, preserve
cofibrations), so it is enough to show that

EqX×B(π
∗

1Y, π
∗

2E)→ X × B
π1
−→ X

is a trivial fibration.
For this, first note that w, as a weak equivalence between fibrations, is a homotopy

equivalence over X, so induces a homotopy equivalence

(w · −) : EqX×B(π
∗

1 (f
∗E), π∗2E)→ EqX×B(π

∗

1Y, π
∗

2E).

So it is enough to show that EqX×B(π∗1 (f
∗E), π∗2E) → X × B

π1
−→ X is a trivial

fibration; but this follows since it is the pullback along f of the “source” map Eq(E) =
EqB×B(π∗1E,π

∗

2E)→ B ×B
π1
−→ B, which is a trivial fibration since p is univalent and

B is Kan.
Conversely, suppose that for every fibration q, Pq,p is either empty or contractible;

now, we wish to show p univalent. For this, it is enough to show that the source map
s : Eq(E)→ B is a trivial fibration, which will hold if each of its fibers is contractible.

13 Constructively-minded readers might prefer to phrase this as: if Pq,p is inhabited, then it is
contractible. In the language of [Uni13], it is a mere proposition.
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So, take some f : 1→ B, and consider the fiber f ∗Eq(E). By the universal property
of Eq(E), this is isomorphic to Pf ∗p,p; and it is certainly non-empty, containing the pair
(f, 1f ∗E); so by assumption, it is contractible, as desired.

f ∗Eq(E) //

��

Eq(E)

s

��
1

f // B ut

Corollary 3.5.4. For any α-small fibration q, the simplicial set Pq,pα of representations
of q as a pullback of pα is contractible. ut

Appendix A. Syntax of Martin-Löf type theory

A full introduction to Martin-Löf type theory is beyond the scope of this paper. For the
reader new to type theory, we recommend [ML84] or [NPS90] as a general introduction,
and [Hof97] for a more detailed presentation of the syntax.

However, there are many variant presentations of the theory; in this appendix, we lay
out the one we have in mind for the present paper, and which is intended to correspond to
the contextual categories described in Appendix B.

We consider the syntax as constructed in two stages: first the raw or untyped syn-
tax of the theory—the set of expressions that are at least parseable, but not necessarily
meaningful—and then the derivable judgements, certain inductively-generated predicates
picking out the genuinely meaningful contexts, types, and terms.

The raw syntax may be constructed as certain strings of symbols, or alternatively,
certain labelled trees. On this, one then defines alpha-equivalence (i.e. syntactic identity
modulo renaming of bound variables), and the operation of (capture-free) substitution.
This step is well-standardised in the literature.

At the second stage, one defines on the raw syntax several multi-place relations, pick-
ing out the derivable judgements of the theory. For instance, “0 ` a : A” will be a relation
on triples (0, a,A) of a raw context, term, and type expression respectively, to be read as
“a is a term of type A, in context 0”. These relations are defined by mutual induction, as
the smallest family of relations closed under a bevy of specified closure conditions, the
inference rules of the theory.

Details of the judgements and inference rules used vary somewhat; we therefore set
our choice out here in full. For the structural rules, our presentation is based largely on
[Hof97]; our selection of logical rules, and in particular our treatment of the universe,
follows [ML84].

We take as basic four judgement forms:

0 ` A type 0 ` A = A′ type 0 ` a : A 0 ` a = a′ : A.

We take the context judgement as defined from these: that is, if 0 is a list (xi :Ai)i<n, with
xi distinct variables and Ai raw type expressions, then ` 0 cxt is an abbreviation for the
statement that for each i < n, (xj :Aj )j<i ` Ai type.
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Derivability, for these four basic judgements, is then defined as the smallest family
of relations closed under the closure conditions specified by the inference rules below.
These are given in “rule-notation”, so for instance

0 ` a : A 0 ` A = B type

0 ` a : B

expresses the closure condition “for all suitable raw expressions 0, a, A, B, if the judge-
ments 0 ` a : A and 0 ` A = B are derivable, then so is 0 ` a : B”.

The inference rules fall into two groups: the structural rules, which we assume are
always included, and the logical rules, which different type theories may include different
subsets of.

A.1. Structural rules

The structural rules of the type theory are (where J may be the conclusion of any of the
judgement forms):

` 0, x:A, 1 cxt

0, x:A, 1 ` x : A
VBLE

0 ` a : A 0, x:A, 1 ` J

0, 1[a/x] ` J[a/x]
SUBST

0 ` A type 0, 1 ` J

0, x:A, 1 ` J
WKG

Definitional equality (also known as syntactic or judgemental equality):

0 ` A type

0 ` A = A type

0 ` A = B type

0 ` B = A type

0 ` A = B type 0 ` B = C type

0 ` A = C type

0 ` a : A

0 ` a = a : A

0 ` a = b : A

0 ` b = a : A

0 ` a = b : A 0 ` b = c : A

0 ` a = c : A

0 ` a : A 0 ` A = B type

0 ` a : B

0 ` a = b : A 0 ` A = B type

0 ` a = b : B

A.2. Logical constructors

In this and subsequent sections, we present rules introducing various type- and term-
constructors. For each such constructor, we assume (besides the explicitly stated rules in-
troducing and governing it) a congruence rule stating that it preserves definitional equality
in each of its arguments; for instance, along with the Π-INTRO rule introducing the con-
structor λ, we assume the rule

0 ` A = A′ type
0, x:A ` B(x) = B ′(x) type 0, x:A ` b(x) = b′(x) : B(x)

0 ` λx:A.b(x) = λx:A′.b′(x) : Πx:AB(x)
λ-EQ

The rules fall naturally into groups according to the various logical constructors. Many
of the constructors considered (Σ-, Id-, W-, 0-, 1-, and +-types) follow a common pat-
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tern, as inductive types/families with constructors and an elimination principle; here, as
in [ML84], this pattern is purely heuristic, but in approaches such as the Calculus of In-
ductive Constructions [Wer94] they are unified formally as instances of a single scheme.

Π-types (Dependent products; dependent function types)

0, x:A ` B(x) type

0 ` Πx:AB(x) type
Π-FORM

0, x:A ` B(x) type 0, x:A ` b(x) : B(x)

0 ` λx:A.b(x) : Πx:AB(x)
Π-INTRO

0 ` f :Πx:AB(x) 0 ` a : A

0 ` app(f, a) : B(a)
Π-APP

0, x:A ` B(x) type 0, x:A ` b(x) : B(x) 0 ` a : A

0 ` app(λx:A.b(x), a) = b(a) : B(a)
Π-COMP

As a special case of this, when B does not depend on x, we obtain the ordinary function
type [A,B] := Πx:AB.

Σ-types (Dependent sums; type-indexed disjoint sums)

0 ` A type 0, x:A ` B(x) type

0 ` Σx:AB(x) type
Σ-FORM

0 ` A type 0, x:A ` B(x) type

0, x:A, y:B(x) ` pair(x, y) : Σx:AB(x)
Σ-INTRO

0, z:Σx:AB(x) ` C(z) type 0, x:A, y:B(x) ` d(x, y) : C(pair(x, y))

0, z:Σx:AB(x) ` splitd(z) : C(z)
Σ-ELIM

0, z:Σx:AB(x) ` C(z) type 0, x:A, y:B(x) ` d(x, y) : C(pair(x, y))

0, x:A, y:B(x) ` splitd(pair(x, y)) = d(x, y) : C(pair(x, y))
Σ-COMP

Again, the special case where B does not depend on x is of particular interest: this gives
the cartesian product A× B := Σx:AB.

Id-types (Identity types, equality types)

0 ` A type

0, x, y:A ` IdA(x, y) type
Id-FORM

0 ` A type

0, x:A ` reflA(x) : IdA(x, x)
Id-INTRO

0, x, y:A, u:IdA(x, y) ` C(x, y, u) type 0, z:A ` d(z) : C(z, z, reflA(z))

0, x, y:A, u:IdA(x, y) ` Jz.d(x, y, u) : C(x, y, u)
Id-ELIM

0, x, y:A, u:IdA(x, y) ` C(x, y, u) type 0, z:A ` d(z) : C(z, z, r(z))

0, x:A ` Jz.d(x, x, reflA(x)) = d(x) : C(x, x, reflA(x))
Id-COMP
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W-types (Types of well-founded trees; free term algebras)

0, x:A ` B(x) type

0 `Wx:AB(x) type
W-FORM

0, x:A ` B(x) type

0, x:A, y:[B(x),Wu:AB(u)] ` sup(x, y) :Wu:AB(u)
W-INTRO

0, w:Wx:AB(x) ` C(w) type
0, x:A, y:[B(x),Wu:AB(u)], z:Πu:B(x)C(app(y, u))

` d(x, y, z) : C(sup(x, y))

0, w:Wx:AB(x) ` wrecd(w) : C(w)
W-ELIM

0, w:Wx:AB(x) ` C(w) type
0, x:A, y:[B(x),Wu:AB(u)], z:Πu:B(x)C(app(y, u))

` d(x, y, z) : C(sup(x, y))

0, x:A, y:[B(x),Wu:AB(u)] ` wrecd(sup(x, y))
= d(x, y, λu:B(x).wrecd(app(y, u))) : C(sup(x, y))

W-COMP

0 (Empty type)

` 0 cxt

0 ` 0 type
0-FORM

(No introduction rules)

0, x:0 ` C(x) type

0, x:0 ` case(x) : C(x)
0-ELIM

(No computation rules)

1 (Unit type, singleton type)

` 0 cxt

0 ` 1 type
1-FORM

` 0 cxt

0 ` ∗ : 1
1-INTRO

0, x:1 ` C(x) type 0 ` d : C(∗)

0, x:1 ` recd(x) : C(x)
1-ELIM

0, x:1 ` C(x) type 0 ` d : C(∗)

0 ` recd(∗) = d : C(∗)
1-COMP

+-types (Binary disjoint sums)

0 ` A type 0 ` B type

0 ` A+ B type
+-FORM

0 ` A type 0 ` B type

0, x:A ` inl(x) : A+ B
+-INTRO 1.

0 ` A type 0 ` B type

0, y:B ` inr(y) : A+ B
+-INTRO 2.

0, z:A+ B ` C(z) type
0, x:A ` dl(x) : C(inl(x)) 0, y:B ` dr(y) : C(inr(y))

0, z:A+ B ` casedl ,dr (z) : C(z)
+-ELIM
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0, z:A+ B ` C(z) type
0, x:A ` dl(x) : C(inl(x)) 0, y:B ` dr(y) : C(inr(y))

0, x:A ` casedl ,dr (inl(x)) = dl(x) : C(inl(x))
+-COMP 1.

0, z:A+ B ` C(z) type
0, x:A ` dl(x) : C(inl(x)) 0, y:B ` dr(y) : C(inr(y))

0, y:B ` casedl ,dr (inr(y)) = dr(y) : C(inr(y))
+-COMP 2.

A.3. Universes

A universe within the theory may be closed under some or all of the logical construc-
tors of the theory; we include below the rules corresponding to closure under all of the
constructors given above.

` U type x:U ` El(x) type

0 ` a : U 0, x:El(a) ` b(x) : U

0 ` π(a, x.b(x)) : U

0 ` a : U 0, x:El(a) ` b(x) : U

0 ` El(π(a, x.b(x)) = Πx:El(a)El(b(x)) type

0 ` a : U 0, x:El(a) ` b(x) : U

0 ` σ (a, x.b(x)) : U

0 ` a : U 0, x:El(a) ` b(x) : U

0 ` El(σ (a, x.b(x)) = Σx:El(a)El(b(x)) type

0 ` a : U 0 ` b, c : El(a)

0 ` idA(b, c) : U

0 ` a : U 0 ` b, c : El(a)

0 ` El(ida(b, c)) = IdEl(a)(b, c) type

` z : U ` El(z) = 0 type ` o : U ` El(o) = 1 type

0 ` a, b : U

0 ` a + b : U

0 ` a, b : U

0 ` El(a + b) = El(a)+ El(b) type

0 ` a : U 0, x:El(a) ` b(x) : U

0 ` w(a, x.b(x)) : U

0 ` a : U 0, x:El(a) ` b(x) : U

0 ` El(w(a, x.b(x)) =Wx:El(a)El(b(x)) type

A.4. Further rules

The rules above are somewhat weak in their implications for equality of functions. To this
end, some further rules are often adopted: the η-rule for Π-types, and the functional exten-
sionality rule(s). Our formulation of the latter is taken from [Gar09]; see also [Hof95a].

0 ` f : Πx:AB(x)

0 ` f = λx:A.app(f, x) : Πx:AB(x)
Π-η

0 ` f, g : Πx:AB(x) 0 ` h : Πx:AIdB(x)(app(f, x), app(g, x))

0 ` ext(f, g, h) : IdΠx:AB(x)(f, g)
Π-EXT

0, x:A ` b : B(x)

0 ` ext-comp(x.b) : IdΠx:AB(x)

(ext(λx:A.b, λx:A.b, λx:A.reflb), refl(λx:A.b))

Π-EXT-COMP-PROP
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Appendix B. Logical structure on contextual categories

We give here full translations of the various type-theoretic rules and axioms into the lan-
guage of contextual categories: the logical rules of Section A.2, the universe rules of Sec-
tion A.3, the extensionality and η-rules of Section A.4, and Axiom 3.1.4, the Univalence
Axiom.

B.1. Logical structure

Definition B.1.1. A Π-type structure on a contextual category C consists of:

(1) for each (0,A,B) ∈ Obn+2 C, an object (0,Π(A,B)) ∈ Obn+1 C;
(2) for each such (0,A,B) and section b : (0,A) → (0,A,B), a section λ(b) : 0 →

(0,Π(A,B));
(3) for each such (0,A,B) and pair of sections k : 0 → (0,Π(A,B)), a : 0 → (0,A),

a section app(k, a) : 0→ (0,A,B) with pB · app(k, a) = a,

such that:

(4) for each (0,A,B), a : 0 → (0,A) and b : (0,A) → (0,A,B), we have
app(λ(b), a) = b · a;

(5) for any f : 0′→ 0, and all appropriate arguments as above,

f ∗(0,Π(A,B)) = (0′,Π(f ∗A, f ∗B)),

f ∗λ(b) = λ(f ∗b), f ∗(app(k, a)) = app(f ∗k, f ∗a).

Given a Π-structure on C, and (0,A,B) as above, write appA,B for the morphism

q(q(pΠ(A,B) · pp∗Π(A,B)A
, A), B) ·

app(pΠ(A,B)·pp∗
Π(A,B)

A)
∗A, (pΠ(A,B)·pp∗

Π(A,B)
A)
∗B

(
(1, pp∗Π(A,B)A), (1, q(pΠ(A,B), A))

)
:

(0,Π(A,B), p∗Π(A,B)A)→ (0,A,B);

the general form appA,B(k, a) can be re-derived from these instances. Also, for objects
(0,A), (0, B) in C, write (0, [A,B]) for (0,Π(A, p∗AB)).

Definition B.1.2. A Σ-type structure on a contextual category C consists of:

(1) for each (0,A,B) ∈ Obn+2 C, an object (0,Σ(A,B)) ∈ Obn+1 C;
(2) for each such (0,A,B), a morphism pairA,B : (0,A,B)→ (0,Σ(A,B)) over 0;
(3) for each (0,A,B), object (0,Σ(A,B), C), and d : (0,A,B) → (0,Σ(A,B), C)

with pC · d = pairA,B , a section splitd : (0,Σ(A,B)) → (0,Σ(A,B), C) with
splitd · pairA,B = d ,

such that

(4) for f : 0′→ 0, and all appropriate arguments as above,

f ∗(0,Σ(A,B)) = (0′,Σ(f ∗A, f ∗B)),

f ∗pairA,B = pairf ∗A,f ∗B , f ∗splitd = splitf ∗d .
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Definition B.1.3. An Id-type structure on a contextual category C consists of:

(1) for each (0,A), an object (0,A, p∗AA, IdA);
(2) for each (0,A), a morphism reflA : (0,A) → (0,A, p∗AA, IdA) such that pIdA ·

reflA = (1A, 1A) : (0,A)→ (0,A, p∗AA);
(3) for each (0,A, p∗AA, IdA, C) and d : (0,A) → (0,A, p∗AA, IdA, C) with pC · d =

reflA, a section JC,d : (0,A, p
∗

AA, IdA)→ (0,A, p∗AA, IdA, C)with JC,d ·reflA = d ,

such that

(4) for f : 0′→ 0, and all appropriate arguments as above,

f ∗(0,A, p∗AA, IdA) = (0
′, f ∗A, (pf ∗A)

∗(f ∗A), Idf ∗A),

f ∗reflA = reflf ∗A, f ∗JC,d = Jf ∗C,f ∗d .

Definition B.1.4. Given a contextual category C equipped with a Π-type structure, a W-
type structure on C consists of:

(1) for each (0,A,B), an object (0,W(A,B));
(2) for each (0,A,B), a map over 0

supA,B : (0,A,Π(B, p∗Bp
∗

AW(A,B)))→ (0,W(A,B));

(3) for each (0,W(A,B), C) and map

d :
(
0,A, [B,p∗AW(A,B)],Π(p∗

[B,p∗AW(A,B)]B,

app(pp∗
[B,p∗

A
W(A,B)]

B , q(p[B,p∗AW(A,B)], B))
∗C)

)
→ (0,W(A,B), C)

such that

pC · d = supA,B · pΠ(p∗
[B,p∗

A
W(A,B)]

B,app(pp∗
[B,p∗

A
W(A,B)]

B ,q(p[B,p∗
A

W(A,B)],B))
∗C),

a section wrecC,d : (0,W(A,B))→ (0,W(A,B), C) with

wrecC,d · supA,B = d · λ(wrecC,d · app(pp∗
[B,p∗

A
W(A,B)]

B , q(p[B,p∗AW(A,B)], B))),

such that

(4) for f : 0′→ 0, and all appropriate arguments as above,

f ∗(0,W(A,B)) = (0′,W(f ∗A, f ∗B)),

f ∗supA,B = supf ∗A,f ∗B , f ∗wrecC,d = wrecf ∗C,f ∗d .

Definition B.1.5. A zero-type structure on a contextual category C consists of:

(1) for each 0, an object (0, 00);
(2) for any object (0, 00, C), a section caseC : (0, 00)→ (0, 00, C),
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such that

(3) for each f : 0′ → 0, f ∗(0, 00) = (0
′, 00′); and for each such f and (0, 00, C) as

above, f ∗(caseC) = casef ∗C .

Definition B.1.6. A unit-type structure on a contextual category C consists of:

(1) for each 0, an object (0, 10);
(2) a section ∗0 : (0)→ (0, 10);
(3) for each object (0, 10, C), and map d : 0 → (0, 10, C) with pC · d = ∗0 , a section

recC,d : (0, 10)→ (0, 10, C) satisfying recC,d · ∗0 = d ,

such that

(4) for f : 0′→ 0, and appropriate arguments as above,

f ∗(0, 10) = (0
′, 10′), f ∗∗0 = ∗0′ , f ∗recC,d = recf ∗C,f ∗d .

Definition B.1.7. A sum-type structure on a contextual category C consists of:

(1) for any objects (0,A) and (0, B), an object (0,A+ B);
(2) for each such (0,A), (0, B), maps inlA,B : (0,A)→ (0,A+B) and inrA,B : (0, B)
→ (0,A+ B), over 0;

(3) for each object (0,A+B,C), and maps dl : (0,A)→ (0,A+B,C), dr : (0, B)→
(0,A + B,C) with pC · dl = inlA,B and pC · dr = inrA,B , a section
caseC,dl ,dr : (0,A + B) → (0,A + B,C) satisfying caseC,dl ,dr · inlA,B = dl and
caseC,dl ,dr · inrA,B = dr ,

such that

(4) for f : 0′→ 0, and appropriate arguments as above,

f ∗(0,A+ B) = (0′, f ∗A+ f ∗B), f ∗(inlA,B) = inlf ∗A,f ∗B ,

f ∗(inrA,B) = inrf ∗A,f ∗B , f ∗(caseC,dl ,dr ) = casef ∗C,f ∗dl ,f ∗dr .

B.2. Universes

As in Section A.3, one may consider a universe closed under some or all of the logical
structures of the ambient contextual category; that is, carrying operations reflecting the
global operations on types.

Definition B.2.1. A universe in a contextual category C is a distinguished object (U,El)
∈ Ob2 C.

Assuming a Π-type structure on C, we say (U,El) is closed under Π-types if for all
maps a : 0 → U and b : (0, a∗El) → U, we are given a map π(a, b) : 0 → U such
that (0,π(a, b)∗El) = (0,Π(a∗El, b∗El)), and moreover stably in 0, i.e. such that for
f : 0′→ 0 and a, b as above, f ∗(π(a, b)) = π(f ∗a, f ∗b).

Similarly, given a Σ-type structure on C, say (U,El) is closed under Σ-types if for
each a : 0 → U and b : (0, a∗El) → U, we are given σ (a, b) : 0 → U such that
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(0, σ (a, b)∗El) = (0,Σ(a∗El, b∗El)), and such that for f : 0′ → 0 and a, b as above,
f ∗(σ (a, b)) = σ (f ∗a, f ∗b).

Given an Id-type structure on C, say (U,El) is closed under Id-types if for
each a : 0 → U, we are given a map ida : (0, a

∗El, p∗
a∗Ela

∗El) → U such that
(0, a∗El, p∗

a∗Ela
∗El, id∗aEl) = (0, a∗El, p∗

a∗Ela
∗El, Ida∗El), and such that for f : 0′ → 0

and a as above, f ∗(ida) = idf ∗a .
Given a zero-type (resp. unit-type) structure on C, say (U,El) contains 0 (resp. 1) if

we are given a map z : 1→ U (resp. o) such that z∗El = 0 (resp. o∗El = 1).
Given a sum-type structure on C, say (U,El) is closed under sum types if for each pair

of maps a, b : 0 → U, we are given a + b : 0 → U such that (a + b)∗El = a∗El + b∗El,
and moreover such that f : 0′→ 0 and a, b as above, f ∗(a + b) = f ∗a + f ∗b.

Given a W-type structure on C, say (U,El) is closed under W-types if for each a : 0→
U and b : (0, a∗El) → U, we are given w(a, b) : 0 → U such that (0,w(a, b)∗El) =
(0,W(a∗El, b∗El)), and such that for f : 0′ → 0 and a, b as above, f ∗(w(a, b)) =
w(f ∗a, f ∗b).

B.3. Extensionality and Univalence

For the following group of rules, let C be a contextual category equipped with chosen
Π- and Id-type structures.

Definition B.3.1. Say that C satisfies the Π-η rule if for any (0,A,B), the “η-expansion”
map

q(pΠ(A,B),Π(A,B)) · λ(1p∗Π(A,B)A, appA,B) : (0,Π(A,B))→ (0,Π(A,B))

is equal to 1(0,Π(A,B)).
A Π-EXT structure on C is an operation giving for each (0,A,B) a map

extA,B : (0,Π(A,B), p∗Π(A,B)Π(A,B),HtpA,B)

→ (0,Π(A,B), p∗Π(A,B)Π(A,B), IdA,B)

over (0,Π(A,B), p∗Π(A,B)Π(A,B)), stably in 0, where HtpA,B is the object

(
0, Π(A,B), p∗Π(A,B)Π(A,B), Π

(
(pΠ(A,B) · pp∗Π(A,B)Π(A,B)

)∗A,(
appA,B · q(pΠ(A,B), A), appA,B · q(q(pΠ(A,B),Π(A,B)), A)

)∗
IdB

))
.

Given a Π-EXT structure on C, a Π-EXT-COMP-PROP structure for it is an operation
giving, for each (0,A,B) and section f : 0→ (0,Π(A,B)), a map

ext-comp(f ) : 0→

(0, Π(A,B), p∗Π(A,B)Π(A,B), IdΠ(A,B), p
∗

IdΠ(A,B)
IdΠ(A,B), IdIdΠ(A,B)

)
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over the pair of maps

extA,B(f, g) · λ(1A, reflB · pp∗AB · app((1A, f ), (1A, 1A))), reflΠ(A,B) · f :

0→ (0, Π(A,B), p∗Π(A,B)Π(A,B), IdΠ(A,B)),

stably as ever in 0.

Before defining the Univalence Axiom, we first (as in Section 3.1) set up several auxil-
iary definitions. We assume, from now on, that C is also equipped with Σ- and Id-type
structures.

Definition B.3.2. For objects (0,X), (0, Y ) of C, let

exchX,Y : (0,X, p
∗

XY )→ (0, Y, p∗YX)

be the evident “exchange” map, (q(pX, Y ), pp∗XY ).

Definition B.3.3. Let (0,A), (0, B) be objects of C.
Take (0, [A,B], LInvA,B) to be the object(
0, [A,B], Σ

(
p∗
[A,B][B,A], Π

(
(p[A,B] · pp∗

[A,B][B,A]
)∗A,(

q(pB , A) · appB,A · q(pp∗
[B,A]A

, p∗
[B,A]B) · appp∗

[B,A]A,p
∗
[B,A]B

· q(exch[A,B],[B,A], A), q(p[A,B] · pp∗
[A,B][B,A]

, A)
)∗

IdA
)))

.

Similarly, take (0, [A,B],RInvA,B) to be the object(
0, [A,B], Σ

(
p∗
[A,B][B,A], Π

(
(p[A,B] · pp∗

[A,B][B,A]
)∗B,(

q(pA, B) · appA,B · q(pp∗
[A,B]B

, p∗
[A,B]A) · appp∗

[A,B]B,p
∗
[A,B]A

,

q(p[A,B] · pp∗
[A,B][B,A]

, B)
)∗

IdB
)))

.

Now, set

(0, [A,B], isHIsoA,B) := (0, [A,B], LInvA,B × RInvA,B),

(0,HIso(A,B)) := (0,Σ([A,B], isHIsoA,B).

Definition B.3.4. For any (0,A), there is a canonical “identity” section

idA := λ((1A, 1A)) : 0→ (0, [A,A]);

and this morevover lifts to a section idisHIso
A : 0 → (0, [A,A], isHIsoA,A), given in full

by

pairLInvA,A,RInvA,A ·
(
pairp∗

[A,A][A,A],HL
· q((idA, idA),HL) · λ((1A, reflA)),

pairp∗
[A,A][A,A],HR

· q((idA, idA),HR) · λ((1A, reflA))
)
,
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where HL is the object

(
0, [A,A], p∗

[A,A][A,A], Π
(
(p[A,A] · pp∗

[A,A][A,A]
)∗A,(

q(pA, A) · appA,A · q(pp∗
[A,A]A

, p∗
[A,A]A) · appp∗

[A,A]A,p
∗
[A,A]A

· q(exch[A,A],[A,A], A), q(p[A,A] · pp∗
[A,A][A,A]

, A)
)∗

IdA
))

and HR is the same but with q(exch[A,A],[A,A], A) omitted.
Lastly, set idHIso

:= pair[A,A],isHIsoA,A · id
isHIso
A : 0→ (0,HIso(A,A)).

Definition B.3.5. For any object (0,A,B), we can now define a map

wA,B : (0,A, p
∗

AA, IdA)→ (0,A, p∗AA,HIso(p∗p∗AA
B, q(pA, A)

∗B))

by

wA,B := q(pIdA ,HIso(p∗p∗AA
B, q(pA, A)

∗B))

· J
(
p∗IdA

HIso(p∗p∗AA
B, q(pA, A)

∗B),

q(reflA, p
∗

IdA
HIso(p∗p∗AA

B, q(pA, A)
∗B)) · idHIso

B

)
.

Given this, define the predicate “B is a univalent family over A” as

(0, isUvt(A,B))

:=
(
0,Π

(
A,Π

(
p∗AA, λ((1IdA , wA,B))

∗isHIsoIdA,HIso(p∗
p∗
A
A
B,q(pA,A)

∗B)

)))
.

Definition B.3.6. Given a universe (U,El) in C, say (U,El) satisfies the Univalence
Axiom if C is equipped with a map uvtU,El : 1→ isUvt(U,El).
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[Wer94] Werner, B.: Une théorie des constructions inductives. Ph.D. thesis, Univ. Paris 7 (De-
nis Diderot) (1994)

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0539.03048&format=complete
http://www.ams.org/mathscinet-getitem?mr=0727078
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1217.18002&format=complete
http://www.ams.org/mathscinet-getitem?mr=2767048
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1362.03008&format=complete
http://www.ams.org/mathscinet-getitem?mr=3340541
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0790.68068&format=complete
http://www.ams.org/mathscinet-getitem?mr=1134134
http://homotopytypetheory.org/book
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1298.03002&format=complete
http://www.ams.org/mathscinet-getitem?mr=3204653
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1362.03009&format=complete
http://www.ams.org/mathscinet-getitem?mr=3340536
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1376.03012&format=complete
http://www.ams.org/mathscinet-getitem?mr=3737240
http://math.ucr.edu/home/baez/Voevodsky_note.ps
http://www.math.ias.edu/~vladimir/Site3/Univalent_Foundations_files/expressions_current.pdf
http://www.math.ias.edu/~vladimir/Site3/Univalent_Foundations_files/expressions_current.pdf
http://arxiv.org/abs/1407.3394
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1436.03311&format=complete
http://www.ams.org/mathscinet-getitem?mr=3402489
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1361.68192&format=complete
http://www.ams.org/mathscinet-getitem?mr=3340542
http://arxiv.org/abs/1505.06446
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1380.03072&format=complete
http://www.ams.org/mathscinet-getitem?mr=3584698
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:06607949&format=complete
http://www.ams.org/mathscinet-getitem?mr=3475277
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1383.03056&format=complete
http://www.ams.org/mathscinet-getitem?mr=3607210
https://github.com/UnivalentMathematics/Foundations
https://github.com/UniMath/UniMath
https://github.com/UniMath/UniMath
https://github.com/UniMath/UniMath
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1243.03012&format=complete
http://www.ams.org/mathscinet-getitem?mr=2867977

	Introduction
	1. Models from universes
	2. The simplicial model
	3. Univalence
	Appendix A. Syntax of Martin-Löf type theory
	Appendix B. Logical structure on contextual categories
	References

