
© 2021 European Mathematical Society
Published by EMS Press. This work is licensed under a CC BY 4.0 license.

J. Eur. Math. Soc. 23, 1999–2049 (2021) DOI 10.4171/JEMS/1048

Dario Beraldo

The center of the categorified ring of differential operators

Received May 25, 2018 and in revised form January 15, 2020

Abstract. Let Y be a derived algebraic stack satisfying some mild conditions. The purpose of
this paper is three-fold. First, we introduce and study H(Y), a monoidal DG category that might
be regarded as a categorification of the ring of differential operators on Y. When Y = LSG is
the derived stack of G-local systems on a smooth projective curve, we expect H(LSG) to act on
both sides of the geometric Langlands correspondence, compatibly with the conjectural Langlands
functor. Second, we construct a novel theory of D-modules on derived algebraic stacks. In contrast
to usual D-modules, this new theory, to be denoted by Dder, is sensitive to the derived structure.
Third, we identify the Drinfeld center of H(Y) with Dder(LY), the DG category of Dder-modules
on the loop stack LY := Y×Y×Y Y.
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0. Introduction

0.1. Overview

0.1.1. Let k be a ground field of characteristic zero and Y = SpecA a global complete
intersection scheme over k, for instance the zero locus of a dominant map An

k
→ A1

k
.

This is a scheme with very mild singularities (if at all); it is the simplest example of a
quasi-smooth scheme.

A natural invariant of Y is the differential graded (DG) algebra HC(A) :=
RHomA⊗kA(A,A) of Hochschild cochains of A. As explained later, the DG category
of DG modules over HC(A), denoted H(Y ) in what follows, carries a monoidal structure.
This monoidal DG category is important in the theory of singular support of coherent
sheaves on Y ; see [1, 3] for the notion of singular support and [8, 10, 11] for the role
of H(Y ).

0.1.2. Now, given any monoidal DG category A, it is natural to try to compute its Drinfeld
center Z(A). In our situation, we show that the Drinfeld center of H(Y ) is equivalent to the
DG category of D-modules on LY := Y ×Y×kY Y , with the following two complications.

The first is that the fiber product computing LY must be taken in the derived sense.
(In fact, the underived truncation of LY is isomorphic to Y .) Practically, this means that in
the formula LY ' Spec(A⊗A⊗kAA) the tensor product over A⊗kAmust be derived. In
the cases of interest, Y is (quasi-smooth but) not smooth. Then LY is extremely derived:
technically speaking, LY is unbounded, which means that its DG algebra of functions
A ⊗A⊗kA A (the DG algebra of Hochschild chains of A) has infinitely many nonzero
cohomology groups.

The second complication is that the theory of D-modules as understood up to now
(e.g. in [18] and in [19, Volume 2, Chapter 4]) is insufficient to deal with unbounded de-
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rived schemes. To fix this, we introduce a new (yet natural) theory of D-modules, denoted
by Dder, which makes the following statement true:

Z(H(Y )) ' Dder(LY ).

0.2. The main results

We now proceed to explain the above situation more organically and in higher generality.

0.2.1. As above, let k be a ground field of characteristic zero, fixed throughout; undec-
orated products and tensor products are always taken over k. Let Y be a derived stack
(over k) satisfying some conditions to be spelled out later. A good example to have in
mind is Y = Y a quasi-smooth scheme; for instance, a global complete intersection as
above.

The first task of this paper is to introduce a monoidal DG category H(Y), which should
be thought of as a categorification of the ring of differential operators on Y. The definition
of H(Y) is given in Section 0.3. The second task is to compute the Drinfeld center of
H(Y). Surprisingly, we will discover a new notion of D-modules on derived stacks, to be
denoted by Dder, which is much more natural than the usual notion. We refer to [18] for
the usual notion, while the definition of the new notion is the third (and last) task of this
paper, performed in Section 4 and especially in Section 4.3.

0.2.2. The following example illuminates the difference between D and Dder, showing
that the latter is more natural. Again, we refer to Section 4.3. (We should remark however
that the discussion of Dder in this paper is by no means complete: we limit ourselves to
the definition and to the few properties needed to prove Theorem A below. For future ap-
plications, a proper foundational treatment is necessary; we plan to address it elsewhere.)

Example 0.2.3. Let X = SpecA be an affine DG scheme with A = (k[xi], d) quasi-
free. Then we expect Dder(X) ' WA-mod, where WA := (k〈xi, ∂i〉, d) is the Weyl DG
algebra constructed in the obvious manner fromA. On the other hand, D(X) ' WB -mod,
where B is the quasi-free DG algebra obtained from A by discarding all variables of
degree strictly less than −1.

Our main result, which appears in the main body of the paper as Theorem 5.2.3, goes as
follows:

Theorem A. Let Y be a quasi-compact derived algebraic stack that is perfect, bounded
and with perfect cotangent complex.1 Then the Drinfeld center of the monoidal DG cate-
gory H(Y) is naturally equivalent to Dder(LY), where LY := Y×Y×Y Y is the loop stack
of Y.

0.2.4. By its very construction (see [18]), the DG category D(X) is not sensitive to the
derived structure of X. Indeed, one defines D(X) := QCoh(XdR), where XdR is the de
Rham prestack of X; in turn, XdR is canonically isomorphic to the de Rham prestack of
the classical truncation of X.

1 See Section 2.1.5 for our conventions on algebraic stacks and the meaning of the adjectives.
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On the other hand, Dder(X) is sensitive to the derived structure of X in general. More
precisely, we will construct a canonical functor ϒD

X/pt : D
der(X) → D(X) that is an

equivalence when X is bounded but not in general. In fact,ϒD
X/pt fails to be an equivalence

even for the simplest unbounded affine scheme X (see Proposition 4.3.13).
Let us recall that a derived stack is said to be bounded2 if it is smooth-locally of the

form SpecA, where A is a cohomologically bounded commutative DG algebra. A stack
is said to be unbounded if it is not bounded.

Example 0.2.5. Let Y be smooth, so thatLY is quasi-smooth.3 Since quasi-smooth stacks
are easily seen to be bounded, we have Dder(LY) ' D(LY) canonically. If moreover
Y = Y is a (smooth) scheme, then D(LY ) ' D(Y ). Combining these observations, the
theorem states that, for Y a smooth scheme, the center of H(Y ) is equivalent to D(Y ).
This assertion can be regarded as a categorification of the classical theorem that relates
the Hochschild (co)homology of the ring of differential operators on Y to the de Rham
cohomology of Y (see e.g. [12]).

0.2.6. For Y quasi-smooth but not smooth, one checks that LY is unbounded (see below
for the simplest example). This is the easiest situation for which the full content of Theo-
rem A can be appreciated and it is, after all, our main case of interest. For instance, in the
next section we will consider the quasi-smooth stack Y = LSG that parametrizes G-local
systems over a smooth complete curve.

Example 0.2.7. Suppose Y = Spec(k[ε]), with ε in cohomological degree −1. This is
arguably the simplest truly derived affine scheme. It is quasi-smooth, but not smooth. By
(5.8), its loop scheme LY is isomorphic to the spectrum of the graded algebra k[ε, η],
where ε is as before and η is a variable in (cohomological) degree −2. It follows that LY
is unbounded.

0.3. The DG category H(Y) and its relatives

The origin of (relatives of) H(Y) can be traced back to the spectral gluing theorem oc-
curring in geometric Langlands, where the categories IndCoh0((LSG)∧LSP ) play a crucial
role (see [2]).

0.3.1. Let us explain the notations:

• G denotes a connected reductive group over k;
• P is one of its parabolic subgroups;
• LSP (resp., LSG) denotes the quasi-smooth stack of de Rham P -local systems (resp.,
G-local systems) on a smooth complete k-curve X;
• the map LSP → LSG used to construct the formal completion is the natural one,

induced by the inclusion P ⊆ G.

2 Alias: eventually coconnective.
3 Recall that a derived stack is quasi-smooth if it is smooth-locally isomorphic to the derived

zero locus of a map Am → An (equivalently, if the cotangent complex is perfect of Tor amplitude
[−1, 1]).
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Finally, and most importantly, the definition of the DG category IndCoh0((LSG)∧LSP ) is
an instance of the following general construction, applied to the above map LSP → LSG.

0.3.2. Before explaining the construction, let us point the reader to Section 0.6 for our
conventions regarding DG categories and higher category theory. The conventions regard-
ing derived algebraic geometry, prestacks, formal completions and ind-coherent sheaves
are explained in Section 2.

Definition 0.3.3. Let f : Y → Z be a map of perfect algebraic stacks with bounded Y.
Recall that any quasi-smooth stack (e.g., LSP ) is bounded. Then we define the DG cate-
gory IndCoh0(Z

∧

Y) as the fiber product

IndCoh0(Z
∧

Y) := IndCoh(Z∧Y) ×
IndCoh(Y)

QCoh(Y), (0.1)

where the functor IndCoh(Z∧Y) → IndCoh(Y) is the pullback along the natural map
′f : Y → Z∧Y, while the functor QCoh(Y) → IndCoh(Y) is the standard inclusion ϒY

(see [16]). The construction of IndCoh0 will be treated in more detail in Section 3.1.

Remark 0.3.4. The reader might have noticed an abuse of notation here: the definition
of IndCoh0(Z

∧

Y) really depends on the map Y → Z∧Y, not just on Z∧Y. We hope that no
confusion will ever arise and refer to Section 3.1.4 for further discussion.

Example 0.3.5. For f = idY, we have IndCoh0(Y
∧

Y) ' QCoh(Y) tautologically.

Example 0.3.6. For f : Y→ pt := Speck the structure map, we have

IndCoh0(pt∧Y) ' D(Y). (0.2)

To see this, recall first from [18] that D(Y) is defined either as QCoh(YdR) or as
IndCoh(YdR), where YdR ' pt∧Y. Also, thanks to [18, Proposition 2.4.4], we know that
ϒYdR : QCoh(YdR)→ IndCoh(YdR) is an equivalence, the equivalence between left and
right D-modules. Then the equivalence (0.2) follows from the fact that ϒ intertwines ∗-
pullbacks on the QCoh side with !-pullbacks on the IndCoh side. In general, IndCoh0(Z

∧

Y)

is the “correct” way to define the DG category of relative left D-modules with respect to
Y→ Z.

Remark 0.3.7. For bounded Y, the inclusion ϒY admits a continuous right adjoint, de-
noted by 8Y in this paper.

0.3.8. Without any extra assumptions on the map f : Y → Z, it is very difficult to
handle IndCoh0(Z

∧

Y): for example, it is not clear whether this DG category is compactly
generated and it is very difficult to exhibit compact objects. As discussed in Proposition
2.5.2 and Section 3.1.6, the situation simplifies if we restrict to perfect stacks that are
locally of finite presentation (lfp), that is, with perfect cotangent complex.4 Note that any
quasi-smooth stack tautologically has this property. This condition guarantees that each

4 Actually, what we really need is that the relative cotangent complex TY/Z be perfect.
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IndCoh0(Z
∧

Y) has pleasant features: it is compactly generated, self-dual and equipped
with a monadic adjunction

QCoh(Y) IndCoh0(Z
∧

Y),
(′f )IndCoh
∗ ◦ ϒY

8Y ◦ (
′f )! (0.3)

so that
IndCoh0(Z

∧

Y) ' (8Y ◦ U(TY/Z) ◦ ϒY)-mod(QCoh(Y)). (0.4)
Here, U(TY/Z) is the universal envelope of the Lie algebroid TY/Z → TY, which is, by
definition, the monad (′f )! ◦ (′f )IndCoh

∗ acting on IndCoh(Y) [19, Volume 2, Chapter 8,
Section 4.2].

Remark 0.3.9. We use the notation UQCoh(TY/Z) for the monad 8Y ◦ U(TY/Z) ◦ ϒY.
Note the parallel between (0.4) and the formula

IndCoh(Z∧Y) ' U(TY/Z)-mod(IndCoh(Y))

featuring in (2.8). The tangent complex appears in this context as a consequence of (a
variant of) the equivalence between formal moduli problems and DG Lie algebras. For
the latter equivalence, see [21] and references therein.

0.3.10. The assignment [Y→ Z] IndCoh0(Z
∧

Y) enjoys functorialities of two kinds:
• (∞, 1)-categorical functorialities, where we consider IndCoh0(Z

∧

Y) as a mere DG cat-
egory;
• (∞, 2)-categorical functorialities, where we consider IndCoh0(Z

∧

Y) as a left module
category for H(Z) (see below).

In this paper we treat the first item, leaving the second item to [8]. However, we are tacitly
preparing ourselves for the (∞, 2)-categorical part of the theory, as we will be very much
concerned with the study of the monoidal DG category

H(Y) := IndCoh0((Y× Y)∧Y).

The monoidal structure on H(Y) is the one given by convolution, inherited by the stan-
dard convolution structure on IndCoh((Y × Y)∧Y). Since Y is perfect, H(Y) is compactly
generated and rigid.5 By contrast, IndCoh((Y × Y)∧Y) is not rigid in general (although it
is compactly generated).

Remark 0.3.11. The adjuction (0.3) yields in this case a monoidal functor

1∗,0 := (
′1)IndCoh
∗ ◦ ϒY : QCoh(Y)→ H(Y),

with continuous conservative right adjoint. In particular, H(Y) is the DG category of mod-
ules for the inertia Lie algebra TQCoh

Y [−1] := 8Y(TY[−1]) in QCoh(Y).

Remark 0.3.12. In the case Y = S is an affine derived scheme, H(S) is the monoidal
category of modules over HC(S), the E2-algebra of Hochschild cochains of S. This point
of view drives the study of H(Y) carried out in [8].

5 See Section 0.6.4 or [14, Section 6.1] for the meaning of the adjective “rigid”.
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0.4. Module categories over H(Y)

Having the monoidal DG category H(Y) at our disposal, it is natural to search for in-
teresting examples of module categories, that is, to look for objects of the ∞-category
H(Y)-mod.

0.4.1. Objects of H(Y)-mod might be regarded as “categorified left D-modules on Y”,
in the same way as objects of QCoh(Y)-mod might be regarded as “categorified quasi-
coherent sheaves on Y”. Among the various ways to justify the validity of this point
of view, we mention the following. One can equip the ∞-category H(Y)-mod with a
symmetric monoidal structure, with unit QCoh(Y). Then, as shown in [8], we have

FunH(Y)-mod(QCoh(Y),QCoh(Y)) ' D(Y),

so that H(Y)-mod is a delooping of D(Y). In the formula above, the LHS denotes the DG
category of H(Y)-linear continuous endofunctors of QCoh(Y).

0.4.2. Pushing the analogy further, we may think of the monoidal DG category H(Y) as a
categorification of the ring of differential operators on Y. Likewise, QCoh(Y) corresponds
to the left D-module OY and the monoidal functor 1∗,0 corresponds to the algebra map
from functions to differential operators.

0.4.3. There are plenty of examples of DG categories carrying a natural action of H(Y):
• it is easy to see that H(Y) acts by convolution on IndCoh(Y), on QCoh(Y) and on the

category of singularities IndCoh(Y)/QCoh(Y);
• more generally, for X→ Y a map of stacks as above, H(Y) acts on IndCoh0(Y

∧

X) and
on IndCoh(Y∧X), again by convolution;
• if Y is quasi-smooth, the H(Y)-action on IndCoh(Y) preserves any subcategory of

IndCoh(Y) cut out by a singular support condition [1].

0.4.4. Digression on “geometric Langlands”. A much less trivial example of an H(Y)-
action is given by the following. Referring to Section 0.3.1 for the notation, let BunG
denote the stack of G-bundles on X and by Ǧ the Langlands dual group of G.

We claim that H(LS
Ǧ
) acts on D(BunG) via Hecke operators. This action and the

explanation of the terminology, i.e. the connection with derived Satake, is addressed in
[8, Section 1.4]. Here we just mention that the datum of such an action proves almost
immediately the conjecture about tempered D-modules formulated in [1, Section 12].

0.5. The center of the monoidal DG category H(Y)

Let us come back to the contents of the present paper. After having studied the functorial-
ity of the assignment IndCoh0, we turn to the computation of the Drinfeld center Z(H(Y))
of H(Y). By definition, Z(H(Y)) is the DG category

Z(H(Y)) := Fun(H(Y),H(Y))-bimod(H(Y),H(Y)).

In the analogy of Section 0.4.2, one may suggest that Z(H(Y)) is the categorification of
the center of the ring of differential operators on Y.
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Remark 0.5.1. As pointed out later in Remark 5.1.6, it turns out that the DG category un-
derlying Z(H(Y)) is canonically equivalent to the trace of H(Y), the DG category defined
by

Tr(H(Y)) := H(Y) ⊗
H(Y)⊗H(Y)rev

H(Y).

0.5.2. We believe that the computation of Z(H(Y)) is interesting in its own right. How-
ever, we were brought to it by the need to make sure that the monoidal functor

D(Y)
oblvL
−−−→ QCoh(Y)

1∗,0
−−→ H(Y)

factors through Z(H(Y)). In other words, we wanted to construct a functor

ζ : D(Y)→ Z(H(Y))

making the following diagram commutative:

D(Y) QCoh(Y)

Z(H(Y)) H(Y)

oblvL

ev

ζ 1∗,0 (0.5)

Here, the functor oblvL is the “left forgetful” functor from D-modules to quasi-coherent
sheaves [18], while ev is the tautological functor that “forgets the central structure”, that
is, the evaluation functor

Z(H(Y)) = Fun(H(Y),H(Y))-bimod(H(Y),H(Y))
φ φ(1H(Y))
−−−−−−−→ H(Y). (0.6)

0.5.3. Digression on geometric Langlands, again. The functor ζ : D(Y) → Z(H(Y))
will be important in future applications, which come after having constructed the action
of H(LS

Ǧ
) on D(BunG) mentioned in Section 0.4.4. Indeed, such an action yields in

particular a monoidal functor

D(LS
Ǧ
)→ Fun(D(BunG),D(BunG)), (0.7)

defined as the composition

D(LS
Ǧ
)

oblvL
−−−→ QCoh(LS

Ǧ
)
1∗,0
−−→ H(LS

Ǧ
)

act
−−→ Fun(D(BunG),D(BunG)).

Now, the commutative diagram (0.5) guarantees that (0.7) factors through a monoidal
arrow

D(LS
Ǧ
)→ FunH(LS

Ǧ
)(D(BunG),D(BunG)),

i.e., objects of D(LS
Ǧ
) give rise to endofunctors of D(BunG) that commute with the

Hecke operators. Note, by contrast, that endofunctors of D(BunG) defined by objects of
QCoh(LS

Ǧ
) do not commute with the Hecke operators in general.
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0.5.4. At a heuristic level, the existence of the dashed arrow in (0.5) is clear. Indeed, for
Q ∈ QCoh(Y) and F ∈ H(Y), we have

1∗,0(Q) ? F ' (p̂1)
!(ϒYQ)

!

⊗ F, F ? 1∗,0(Q) ' (p̂2)
!(ϒYQ)

!

⊗ F,

where ? denotes the monoidal structure of H(Y) and

p̂1, p̂2 : Y×YdR Y⇒ Y

are the two projections forming the infinitesimal groupoid of Y. Hence, a “homotopically
coherent” identification

(p̂1)
!(ϒYQ) ' (p̂2)

!(ϒYQ),

that is, a left crystal structure onQ, promotes1∗,0(Q) to an object of the center of H(Y).

0.5.5. Rather than turning this argument into a proof, we will first compute the full center
Z(H(Y)) in geometric terms and then exhibit the natural map ζ from D(Y). In this paper
we only perform the former task, leaving the latter to a sequel. Let us however anticipate
that ζ is the pushforward functor D(Y) ' Dder(Y) → Dder(LY) in the theory of Dder-
modules along the inclusion ι : Y→ LY.

0.6. Conventions

Our conventions on higher category theory and derived algebraic geometry follow those
of [19]. Let us recall the most important ones. The reader might also consult [14] for a
brief digest.

0.6.1. Throughout the paper, “DG category” means “stable presentable k-linear∞-cat-
egory”, in the sense of [20]. Unless otherwise stated, our DG categories are cocomplete
and functors between them are colimit preserving. In other words, we work within the∞-
category DGCat of cocomplete DG categories and continuous functors. That∞-category
is symmetric monoidal when equipped with the Lurie tensor product defined in [20].

0.6.2. Given a DG category C as above and two objects c, c′ ∈ C, we denote by
HomC(c, c

′) the DG vector space of morphisms from c to c′.
If C′ is another DG category, Fun(C,C′) denotes the DG category of continuous func-

tors from C to C′. We also set End(C) := Fun(C,C).

0.6.3. We assume familiarity with the notion of dualizability for objects in a symmetric
monoidal∞-category, as well as with the notion of ind-completion and compact genera-
tion for DG categories. Recall that a compactly generated DG category is automatically
dualizable. Given C ∈ DGCat, we denote by Ccpt its non-cocomplete full subcategory of
compact objects.
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0.6.4. Let (A, m) be a monoidal (cocomplete) DG category. Following [14, Section 6.1]
and [17, Appendix D], we say that A is rigid if:

• the multiplication m : A⊗A→ A admits a continuous right adjoint, mR;
• the unit u : Vect→ A admits a continuous right adjoint, uR : A→ Vect;
• the functor mR : A→ A⊗A is (A,A)-linear.

This notion of rigidity might appear to be non-standard for some readers: as pointed out in
[14, Section 6.1.1], when A is compactly generated, A is rigid iff the unit is compact and
the compact objects are all left and right dualizable. The reference [13, Sections 4.3.6–
4.3.8], useful in the main body of the paper, discusses the consequences of rigidity for
DG categories of quasi-coherent sheaves.

0.6.5. Assume that (A, m) is a compactly generated rigid monoidal DG category. Given
a compact object a ∈ Acpt, we denote by ∨a and a∨ its left and right dual, respectively.
Following [5, Definition 3.8], we say that (A, m) is pivotal if we are given a natural
identification between the functor

Acpt
→ Acpt, a 7→ (a∨)∨,

and the identity functor on Acpt. One could define the notion of pivotality even when
A is not compactly generated [14, Section 6.1.2]; we will not need this extra level of
generality.

0.6.6. Given a monoidal (cocomplete) DG category A, the symbol A-mod stands for
the∞-category of (cocomplete) DG categories with a left action of A and (continuous)
A-linear functors among them. Similar conventions hold for the symbol (A,B)-bimod.
If M and N belong to A-mod, the symbols

FunA(M,N) := FunA-mod(M,N)

both denote the DG category of A-linear (continuous) functors from M to N.

0.6.7. The symbols QCoh(−) and D(−) always stand for the DG categories of quasi-
coherent sheaves and D-modules (that is, we never refer to the abelian categories). Ac-
cordingly, for A a DG algebra, the notation A-mod stands for the DG category of DG
modules over A.

The pushforward and pullback functors between DG categories of sheaves are always
understood in the derived sense. Fiber products and tensor products are always derived,
too.

0.6.8. The∞-category of∞-groupoids is denoted by Grpd∞. The other main notations
of (derived) algebraic geometry are reviewed in Section 2 and especially in Section 2.1.

0.7. Contents of the paper

In the first section, we give an overview of the computation of Z(H(Y)) to explain how
Dder(LY) comes about. Then, in the second section, we review the bit of algebraic geom-
etry that we need and discuss ind-coherent sheaves on our prestacks of interest: algebraic
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stacks and formal completions thereof. In the third section, we define the DG categories
IndCoh0(Z

∧

Y) in the bounded case (that is, when Y is bounded), and we extend the assign-
ment [Y→ Z] IndCoh0(Z

∧

Y) to a functor out of a category of correspondences. In the
fourth section, we extend the definition of IndCoh0(Z

∧

Y) to the case when Y is possibly
unbounded. In this context, IndCoh0(Z

∧

Y) lacks some of the pleasant features present in
the bounded case; we discuss the features that do generalize. Lastly, in the fifth section,
we apply the theory developed in the previous sections to identify the center of H(Y) with
Dder(LY).

1. Outline of the center computation

As anticipated in Theorem A, the center Z(H(Y)) is (slightly incorrectly!) equivalent to
the category of D-modules on LY, the loop stack of Y. This answer is literally correct
whenever LY is bounded, but should otherwise be modified as explained below (from
Section 1.2 on). In Section 1.1, we show how to guess this incorrect answer; this will also
give hints as to how correct it, which we take up in Section 1.2.

1.1. Computing the center

Let us get acquainted with H(Y) by explaining a natural approach to computing its
Drinfeld center. Recall that Y is a quasi-compact derived algebraic stack that is perfect,
bounded and with perfect cotangent complex. We usually denote by m : H(Y) ⊗ H(Y)
→ H(Y) the multiplication functor and by mrev the reversed multiplication (obtained
from m by swapping the two factors).

1.1.1. Since H(Y) is rigid, the conservative functor ev admits a left adjoint evL, whence
Z := Z(H(Y)) is equivalent to the category of modules for the monad ev ◦ evL acting
on H(Y). Moreover, thanks to the pivotality of H(Y) discussed in Section 3.5, the functor
underlying ev ◦ evL is naturally isomorphic to

mrev
◦mR : H(Y)→ H(Y).

1.1.2. To understand the compositionmrev
◦mR , we first need to understand the multipli-

cation m more explicitly. For this, it is convenient to anticipate some of the functoriality
on IndCoh0 that we will develop. To start, note that the assignment

[Y→ Z] IndCoh0(Z
∧

Y)

extends to a functor
(Arr(Stkperf ,lfp)

′)op
→ DGCat,

where Stkperf ,lfp is the ∞-category of perfect stacks locally of finite presentation and
Arr(Stkperf ,lfp)

′ is the full subcategory of Arr(Stkperf ,lfp) := Fun(11,Stkperf ,lfp) spanned
by those arrows Y→ Z with bounded Y.
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1.1.3. We denote by φ!,0 the structure functor

IndCoh0(Z
∧

Y)→ IndCoh0(V
∧

U)

associated to a commutative square [U → V] → [Y → Z]. By construction, φ!,0 is
induced by the IndCoh-pullback along φ : V∧U→ Z∧Y.

If U = Y, then φ!,0 admits a left adjoint, which we denote by φ∗,0. On the other
hand, if the commutative square [U → V] → [Y → Z] is cartesian, then φ!,0 admits a
continuous right adjoint, which we denote by φ?.

1.1.4. By construction, the multiplication m : H(Y)⊗H(Y)→ H(Y) is the composition
of the functors

m : IndCoh0((Y× Y)∧Y × (Y× Y)∧Y)
(p12×p23)

!,0

−−−−−−−→ IndCoh0((Y× Y× Y)∧Y)

(p13)∗,0
−−−−→ IndCoh0((Y× Y)∧Y).

By the theory sketched above, both arrows possess continuous right adjoints, whence mR

is the continuous functor

mR : IndCoh0((Y× Y)∧Y)
(p13)

!,0

−−−−→ IndCoh0((Y× Y× Y)∧Y)

(p12×p23)?
−−−−−−→ IndCoh0((Y× Y)∧Y × (Y× Y)∧Y).

1.1.5. To computemrev
◦mR , we will resort to the horocycle diagram (see [5]) for the map

Y → YdR. In general, the horocycle diagram attached to a map Y → Z is the following
commutative diagram with cartesian squares:

Y×Z Y Z×Z×Z Y Z×Z×Z Z

Y×Z Y×Z Y Y×Z×Z Y Y×Z×Z Z

Y×Z Y× Y×Z Y Y×Z Y×Z Y Y×Z Y
p13p12 × p23

p23 × p12

p13

1.1.6. Applied to the case Z = YdR, and using the tautological isomorphisms

(Y× Y)∧Y ' Y×YdR Y, pt∧Z ' ZdR,
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the above diagram becomes

(Y× Y)∧Y Y∧
LY pt∧

LY

(Y× Y× Y)∧Y (Y× Y)∧
LY Y∧

LY

(Y× Y)∧Y × (Y× Y)∧Y (Y× Y× Y)∧Y (Y× Y)∧Y
p13

t

v

P

r

s

P ′ r ′ s

p13 t ′ v

where we have set P := p12 × p23 and P ′ = p23 × p12 to save space. Observe that mrev

is the composition

mrev
: IndCoh0((Y× Y)∧Y × (Y× Y)∧Y)

(P ′)!,0

−−−→ IndCoh0((Y× Y× Y)∧Y)

(p13)∗,0
−−−−→ IndCoh0((Y× Y)∧Y).

1.1.7. Notation. We have denoted by LY := Y ×Y×Y Y the loop stack of Y, the fiber
product of the diagonal map1 : Y→ Y×Y with itself. There are two standard maps: the
insertion of “constant loops” ι : Y→ LY and the projection π : LY→ Y.

1.1.8. Assume for the time being that LY is bounded, so that the DG category
IndCoh0(W

∧

LY) makes sense for any LY→W. Then we can consider the diagram

IndCoh0((Y×Y)
∧

Y) IndCoh0(Y
∧

LY) IndCoh0(pt∧
LY)

IndCoh0((Y×Y×Y)
∧

Y) IndCoh0((Y×Y)
∧

LY) IndCoh0(Y
∧

LY)

IndCoh0((Y×Y)
∧

Y×(Y×Y)
∧

Y) IndCoh0((Y×Y×Y)
∧

Y) IndCoh0((Y×Y)
∧

Y)
(p13)∗,0

t∗,0

v∗,0

P !,0

r !,0

s!,0

(P ′)? (r ′)? (s′)?

(p13)
!,0 (t ′)!,0 (v′)!,0

(1.1)

1.1.9. As an application of the functoriality of IndCoh0 (specifically, the base-change
isomorphisms established in Sections 3 and 4), one easily proves that these four squares
are commutative. It follows that the monad ev◦evL ' mrev

◦mR is isomorphic (as a plain
functor) to the monad of the adjunction

H(Y) = IndCoh0((Y× Y)∧Y) IndCoh0(pt∧
LY).

β := v∗,0 ◦ s
!,0

βR := s? ◦ v
!,0

(1.2)

We emphasize again that IndCoh0(pt∧
LY) ' D(LY), with IndCoh0(pt∧

LY) being well-
defined thanks to the boundedness of LY.
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1.1.10. It is not hard to check that the right adjoint in (1.2) is conservative. Moreover,
one can show that the isomorphism ev ◦ evL ' βR ◦ β preserves the monad structures.
All in all, we obtain Z(H(Y)) ' D(LY) whenever LY is bounded. Moreover, in this case,
the functor ζ : D(Y) → Z(H(Y)) making the diagram (0.5) commutative is simply the
pushforward ι∗,dR : D(Y)→ D(LY) along ι : Y→ LY.

Remark 1.1.11. The center of a monoidal DG category comes equipped with a monoidal
structure. In the case at hand, the monoidal structure on D(LY) is the one induced by
composition of loops, that is, by the correspondence

LY× LY← LY×Y LY→ LY.

We will not use that monoidal structure in this paper and therefore do not discuss it further.

Example 1.1.12. As an example of the above computation, consider the case where Y =
BG, the classifying stack of an affine algebraic group G. Then LY is isomorphic to the
adjoint quotient G/G, which is bounded (in fact, smooth). By [7, Section 2], we know
that

H(BG) ' IndCoh(G\GdR/G)

is the monoidal DG category of Harish-Chandra bimodules for G. The theorem states
that its center is equivalent to D(G/G).

1.2. Beyond the bounded case

The issue with the above argument leading to Z(H(Y)) ' D(LY) is that boundedness
of LY is rare (for instance, see Remark 1.2.7 below) and, for LY unbounded, the entire
bottom-right square of (1.1) makes no sense.

To remedy this, we need to search for an extension of the definition of IndCoh0(Z
∧

X)

to the case of unbounded X. Such a definition must come with functors making the four
squares of (1.1) commutative; then the above argument would go through and would show
that the center of H(Y) is equivalent to IndCoh0(pt∧

LY), whatever the latter means.

1.2.1. To concoct this more general definition, we will try to adapt (0.4), that is, we
will try to define IndCoh0(Z

∧

X) as the DG category of modules over a monad acting on
QCoh(X).

The most naive attempt is to take the same formula as in (0.4); indeed, the expression
8X ◦ U(TX/Z) ◦ ϒX still makes sense as a monad. This attempt fails, however, as such
monad is discontinuous in general (indeed, 8X is continuous iff X is bounded).

1.2.2. To fix that discontinuity, we could restrict the functor in question to Perf(X), and
then ind-complete. Let us denote the resulting (continuous) functor by

(8XU(TX/Z)ϒX)
ren
: QCoh(X)→ QCoh(X). (1.3)

We claim that this definition is not the right one either. To see this, look at the result of
this operation in the case where TX/Z is an abelian Lie algebra in IndCoh(X), so that

U(TX/Z) ' Sym(TX/Z)
!

⊗ − : IndCoh(X)→ IndCoh(X).
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In this simple case, we expect our monad to be the functor of tensoring with the symmetric
algebra of TQCoh

X/Z . What we get instead is the functor of tensoring with

(8X Sym(TX/Z)ϒX)
ren(OX) ' 8XϒX(SymQCoh(TQCoh

X/Z )).

This object is the convergent renormalization6 of Sym(TQCoh
X/Z ), which is different from

Sym(TQCoh
X/Z ) as long as the latter is not bounded above in the t-structure of QCoh(X).

Working with such convergent renormalizations is not pleasant: in fact, all the base-
change results that we need fail.

1.2.3. We can however turn the above failure into a positive observation. Note that
Sym(TQCoh

X/Z ) and Sym(TX/Z) are filtered by Sym≤n(TQCoh
X/Z ) and Sym≤n(TX/Z), respec-

tively. Since Sym≤n(TQCoh
X/Z ) is perfect for each n (in particular, bounded above), the renor-

malization procedure (1.3) applied to

Sym≤n(TX/Z)
!

⊗ − : IndCoh(X)→ IndCoh(X)

yields precisely the functor

Sym≤n(TQCoh
X/Z )⊗− : QCoh(X)→ QCoh(X).

We thus have

Sym(TQCoh
X/Z ) ' colim

n≥0
(8X ◦ Sym(TX/Z)

≤n
◦ ϒX)

ren. (1.4)

1.2.4. The general situation is analogous, thanks to the existence of a canonical filtration
of U(TX/Z), the PBW filtration, which specializes to the above in the case of abelian Lie
algebras. See [19, Volume 2, Chapter 9, Section 6]. Rather than renormalizing U(TX/Z)

itself, we renormalize each piece of the filtration and then put them together. In symbols,
we define

UQCoh(TX/Z) := colim
n≥0

(UQCoh(TX/Z)
≤n) (1.5)

where
UQCoh(TX/Z)

≤n
:= (8X ◦ U(TX/Z)

≤n
◦ ϒX)

ren (1.6)

is the only continuous functor whose restriction to Perf(X) is given by8XU(TX/Z)
≤nϒX.

1.2.5. In Section 4.1, we will prove that UQCoh(TX/Z) comes equipped with the structure
of a monad on QCoh(X). This allows us to extend the definition of IndCoh0 to the case
of X unbounded as

IndCoh0(Z
∧

X) := UQCoh(TX/Z)-mod(QCoh(X));

6 See Section 2.2.8 for the definition in the scheme case (the stack case is similar).



2014 Dario Beraldo

see Definition 4.1.6 where this is done officially. In the later parts of Section 4, we show
that the assignment

[X→ Z] IndCoh0(Z
∧

X) := UQCoh(TX/Z)-mod(QCoh(X))

possesses all the functorialities that we need for the computation of Z(H(Y)). Specifically,
our main Theorems 5.2.3 and 5.3.4 will assert that

Z(H(Y)) ' IndCoh0(pt∧LY) =: D
der(LY),

sitting in a monadic adjunction H(Y)� Z(H(Y)) defined exactly as in (1.2).

1.2.6. Let us comment on the relationship between D(LY) and Dder(LY) in the general
case. As shown in Section 4.2.7, there always exists a tautological functor

ϒD
LY/pt : D

der(LY)→ D(LY), (1.7)

which can be regarded as a passage from left to right D-modules in our setting. In contrast
to the usual setting, this functor is not an equivalence in general (see Corollary 4.3.13 for
an example).

Remark 1.2.7. For Y quasi-smooth, the following assertions are equivalent:

(1) Y is smooth;
(2) LY is quasi-smooth;
(3) LY is bounded;
(4) the above functor ϒD

LY/pt is an equivalence.

The implications (1)⇒(2)⇒(3) are obvious. The implication (3)⇒(4) will be a conse-
quence of the fact that UQCoh(TX) ' 8XU(TX)ϒX whenever X is bounded, combined
with Example 0.3.6. The implication (4)⇒(1), not needed in the present paper, will be
discussed elsewhere.

2. Ind-coherent sheaves on formal completions

This section is devoted to recalling the theory of ind-coherent sheaves. We are particularly
interested in ind-coherent sheaves on formal completions of perfect stacks. The main
references are [16] and [19].

2.1. Some notions of derived algebraic geometry

2.1.1. Denote by Aff the∞-category of affine (DG) schemes over k. We usually omit the
adjective “DG”, so our schemes (and then prestacks) are derived unless stated otherwise.
An affine scheme SpecA is bounded if H i(A) is zero except for finitely many i ≤ 0.

Denote by Affaft ⊆ Aff the ∞-category of affine schemes almost of finite type: by
definition, SpecA belongs to Affaft if and only if H 0(A) is of finite type over k and each
cohomology H i(A) is finitely generated as a module over H 0(A).
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We shall often consider affine schemes that are both bounded and almost of finite
type; we denote by Aff<∞aft the∞-category they form.

Denote by Schaft the ∞-category of quasi-compact (DG) schemes almost of finite
type. A scheme S ∈ Schaft is bounded if it is Zariski locally so (hence we reduce to
the definition for affine schemes). Moreover, S is the colimit of its truncations S≤n as
n→∞.

2.1.2. A prestack is an arbitrary functor Y : Affop
→ Grpd∞. Denote by PreStk the

∞-category of prestacks. Important for us is the subcategory PreStklaft of prestacks that
are locally almost of finite type (laft) [19, Volume 1, Chapter 2, Section 1.7]. Rather than
the actual definition, what we need to know about PreStklaft is the following properties:

• it is closed under fiber products;
• it is closed under the operation Y YdR (the de Rham prestack of Y);
• it contains all perfect stacks (see below).

Example 2.1.3. In particular, for Y→ Z in PreStklaft, the formal completion of Y in Z,
i.e. the fiber product

Z∧Y := Z ×
ZdR

YdR,

is laft.

Remark 2.1.4. The point of the condition laft is that PreStklaft is equivalent to the∞-
category of arbitrary functors from (Aff<∞aft )

op to Grpd∞.

2.1.5. Algebraic stacks. We will be quite restrictive on the kinds of stacks that we deal
with. Namely, we denote by Stk ⊂ PreStk the full subcategory consisting of those (quasi-
compact) algebraic stacks with affine diagonal and with an atlas in Affaft. We will call
them just stacks.

2.1.6. We say that Y ∈ Stk is bounded if for some (equivalently any) atlas U → Y, the
affine scheme U is bounded. Denote by Stk<∞ ⊂ Stk the full subcategory of bounded
stacks. It is closed under products, but not under fiber products. We say that a map Y→ Z

in Stk is bounded if, for any S ∈ (Aff<∞aft )/Z, the fiber product S×Z Y belongs to Stk<∞.
Following [4], we say that Y ∈ Stk is perfect if the DG category QCoh(Y) is com-

pactly generated by its subcategory Perf(Y) of perfect objects.
We say that Y ∈ Stk is locally finitely presented (lfp) if its cotangent complex LY ∈

QCoh(Y) is perfect. In that case, we denote by TQCoh
Y ∈ Perf(Y) its monoidal dual.

We denote by Stk<∞perf ,lfp ⊆ Stk the full subcategory of stacks that are perfect, bounded
and locally of finite presentation. Similarly, the notations Stkperf ,lfp and Stkperf have the
evident meaning. By [4, Proposition 3.24], Stkperf is closed under fiber products (this is
because our stacks have affine diagonal by assumption).

2.2. Ind-coherent sheaves on schemes

This section is a recapitulation of parts of [16], [19] and [13]. It is included for the reader’s
convenience and to fix the notation.
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2.2.1. For a scheme S ∈ Schaft, consider the noncocomplete DG category Coh(S), the
DG category of cohomologically bounded complexes with coherent cohomology. We de-
fine IndCoh(S) := Ind(Coh(S)) to be its ind-completion. The latter comes equipped with
an action of QCoh(S) and a tautological QCoh(S)-linear functor 9S : IndCoh(S) →
QCoh(S).

Proposition 2.2.2. 9S is an equivalence iff S is a smooth classical scheme.

For the proof, see [16, Lemma 1.1.6 and Proposition 1.4.6].

2.2.3. Boundedness of S is equivalent to 9S having a fully faithful left adjoint 4S :
QCoh(S) → IndCoh(S). Indeed, for Perf(S) to be contained in Coh(S), the structure
sheaf has to be bounded. (When 4S exists, it is automatically QCoh(S)-linear.) Thus, for
bounded schemes, IndCoh is an enlargement of QCoh; more precisely, 9 is a colocaliza-
tion.

Remark 2.2.4. For unbounded schemes, the situation is unwieldy. For instance, consider
the scheme S = Spec(SymV ∗[2]), with V a finite-dimensional ordinary vector space
over k. In this case,9S is fully faithful (but not an equivalence): indeed, the augmentation
module Karoubi generates Coh(S) and it is perfect by Example 2.2.7 below.

2.2.5. The assignment S  IndCoh(S) underlies an (∞, 2)-functor

Corr(Schaft)
proper
all;all → DGCat2-Cat,

where DGCat2-Cat denotes the (∞, 2)-category of DG categories and the notation
Corr(C)adm

vert;horiz is taken from [19, Volume 1, Chapter 7]. In any case, the above (∞, 2)-
functor is a fancy way to encode the following data:

• for any map f : S → T in Schaft, we have a pushforward functor f IndCoh
∗ : IndCoh(S)

→ IndCoh(T ) and a pullback functor f ! : IndCoh(T )→ IndCoh(S);
• pushforwards and pullbacks are equipped with base-change isomorphisms along carte-

sian squares;
• if f is proper, then f IndCoh

∗ is left adjoint to f !.

2.2.6. The action of QCoh(S) on IndCoh(S) and the canonical object ωS := (pS)!(k) ∈
IndCoh(S) yield the functor

ϒS := − ⊗ ωS : QCoh(S)→ IndCoh(S).

The latter admits a continuous right adjoint if and only if ωS ∈ Coh(S), which in turn
is equivalent to S being bounded. Since this right adjoint does not have a notation in the
original paper [16], we shall call it 8S .

Example 2.2.7. Let Yn = Spec(SymV ∗[n]), with V a nonzero finite-dimensional ordi-
nary vector space and n ≥ 1. Then

QCoh(Yn) ' (SymV ∗[n])-mod, (2.1)
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tautologically. On the other hand, we have the Koszul duality equivalence

IndCoh(Yn) ' Sym(V [−n− 1])-mod. (2.2)

Indeed, Coh(Yn) is generated by a single object, the augmentation module, and a standard
Koszul resolution yields

HomSymV ∗[n](k,k) ' Sym(V [−n− 1]).

Under (2.1) and (2.2), the functor ϒYn is the tensor product with the augmentation k, the
latter viewed as a (Sym(V ∗[n]),Sym(V [−n− 1]))-bimodule.

2.2.8. As in [1, Lemma F.5.8], one shows that the composition 8S ◦ϒS is the functor of
convergent renormalization, computed explicitly as follows:

M  Mconv
:= lim

n≥0
(in)∗(in)

∗M ∈ QCoh(S),

where in : S≤n ↪→ S is the inclusion of the n-connective truncation of S. This shows that
ϒS is fully faithful when S is bounded: indeed, in that case S ' S≤n for some n and the
limit stabilizes.

2.2.9. More generally, regardless of whether S is bounded or not, the unit of the adjunc-
tion M → Mconv is the identity on Perf(S) and more generally on QCoh(S)− (the full
subcategory of QCoh(S) consisting of objects bounded from above in the usual t-structure
on QCoh(S)). In particular, whether S is bounded or not, we can consider ϒS(Perf(S))
and ϒS(QCoh(S)−) as (noncocomplete) full subcategories of IndCoh(S).

Example 2.2.10. The functor ϒS fails to be fully faithful for the simplest unbounded
scheme S = Spec(k[u]) (here u is a variable in cohomological degree −2). To see this,
it suffices to prove that the functor 8S ◦ ϒS : M  Mconv is not conservative: indeed,
the k[u]-module k[u, u−1

] is obviously nonzero and yet (k[u, u−1
])conv

' 0 for degree
reasons.

Remark 2.2.11. The same idea should prove that ϒS is not fully faithful as long as S is
unbounded.

2.2.12. Let A be a monoidal DG category acting on C. Recall our conventions on DG
categories explained in Section 0.6. For c ∈ C, consider the possibly discontinuous functor

HomA(c,−) : C→ A,

the right adjoint to the functor of action on c. For instance, 8S ' HomQCoh(S)(ωS,−),
where we are of course using the standard action of QCoh(S) on IndCoh(S).

2.2.13. Consider instead the functor

HomQCoh(S)(−, ωS) : Coh(S)op
→ QCoh(S).

It is shown in [16, Lemma 9.5.5] that the above yields an involutive equivalence

DSerre
S : Coh(S)op

→ Coh(S),

which is the usual Serre duality. This equivalence exhibits IndCoh(S) as its own dual.
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2.2.14. For bounded S, it is easy to see that DSerre
S exhanges the two subcategories

Perf(S) ⊆ Coh(S) and ϒS(Perf(S)) ⊆ Coh(S). Indeed, the definition of DSerre
S imme-

diately yields

DSerre
S (ϒS(P )) ' DQCoh

S (P ), P ∈ Perf(S),

where DQCoh
S is the standard duality involution on Perf(S).

Remark 2.2.15. The Serre duality isomorphism

HomIndCoh(S)(M,N) ' HomIndCoh(S)(DSerre
S (N),DSerre

S (M)) for M,N ∈ Coh(S)
(2.3)

holds true slightly more generally. Indeed, observe that DSerre
S := HomQCoh(S)(−, ωS)

extends to a contravariant functor of IndCoh(S) that sends colimits to limits. Then it is
easy to check that (2.3) is valid for N ∈ Coh(S) and M ∈ IndCoh(S) arbitrary.

2.3. Ind-coherent sheaves on laft prestacks

2.3.1. Recall that laft prestacks are by definition presheaves of spaces on Aff<∞aft . Ind-
coherent sheaves are defined for arbitrary laft prestacks: one simply right-Kan extends
the functor

IndCoh! : (Aff<∞aft )
op
→ DGCat

along Aff<∞aft ↪→ PreStklaft. In particular, for any Y ∈ PreStklaft, the !-pullback along
Y → pt yields a canonical object ωY ∈ IndCoh(Y). Since, as in the case of schemes,
IndCoh(Y) admits an action of QCoh(Y), we have the canonical functor

ϒY : QCoh(Y)→ IndCoh(Y)

corresponding to the action on ωY.

2.3.2. Let us now discuss ind-coherent sheaves on stacks (recall our convention regarding
the term “stack”: our stacks are all algebraic, quasi-compact, with affine diagonal, and
laft).

Proposition 2.3.3. For Y ∈ Stk, the DG category IndCoh(Y) is compactly generated by
Coh(Y), and self-dual by Serre duality.

Proposition 2.3.4 ([13, Corollary 4.3.8]). If Y ∈ Stk is bounded, then QCoh(Y) is rigid
and in particular self-dual. Therefore, an object of QCoh(Y) is compact if and only if it is
perfect.

In the situation above, it is not known whether QCoh(Y) is compactly generated. How-
ever, this condition (almost always satisfied in practice!) is convenient for many manip-
ulations, hence we include it “by hand” in our main results by requiring our stacks to be
perfect.
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2.4. Base-change

Next, one would like to define pushforward functors of ind-coherent sheaves on laft
prestacks, together with base-change isomorphisms. For this, one needs to find the cor-
rect ∞-category of correspondences of laft prestacks. Indeed, unlike !-pullbacks, push-
forwards are not to be expected to be defined (and continuous) for all maps between laft
prestacks.

2.4.1. The situation is neatly summarized by the following theorem [19, Volume 2, Chap-
ter 3, Theorem 5.4.3].

Theorem 2.4.2. The assignment Y IndCoh(Y) extends uniquely to an (∞, 2)-functor

IndCoh : Corr(PreStklaft)
ind-inf -schem&ind-proper
ind-inf -schem;all → DGCat2-Cat, (2.4)

where the abbreviation “ind-inf -schem” stands for ind-inf-schematic.

Translated into plain language, the theorem states that:

• (∗, IndCoh)-pushforwards are defined only for ind-inf-schematic maps and have base-
change isomorphisms against !-pullbacks;
• if f is ind-inf-schematic and ind-proper, then f IndCoh

∗ is left adjoint to f !.

2.4.3. Luckily, in this paper we do not need such high level of generality (whence, we
will not need to recall the definitions of those words). We only need to be aware of the
following fact: if X → Y → Z is a string in Stk with X → Y schematic (and proper),
then the resulting map Z∧X→ Z∧Y is ind-inf-schematic (and ind-proper). This yields

Lemma 2.4.4. The assignment

Arr(Stk)→ PreStklaft, [Y→ Z] Z∧Y,

extends to an (∞, 2)-functor

Corr(Arr(Stk))
schem&proper
schem;all → Corr(PreStklaft)

ind-inf -schem&ind-proper
ind-inf -schem;all , (2.5)

where a morphism [X→ Y] → [U→ V] in Arr(Stk) is said to be schematic (or proper)
if so is the map X→ U.

Proof. The only thing to check is the 1-categorical composition of correspondences. This
boils down to the following fact (whose proof, left to the reader, is a diagram chase): for
a cospan

[X→ Y] → [U→ V] ← [X′→ Y′]

in Arr(PreStk), the resulting map

Y∧X ×
V∧

U

(Y′)∧X′ ←− (Y×V Y′)∧X×UX′

is an isomorphism. ut
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Theorem 2.4.5. The assignment [Y→ Z] IndCoh(Z∧Y) underlies an (∞, 2)-functor

IndCoh : Corr(Arr(Stk))
schem&proper
schem;all → DGCat2-Cat. (2.6)

Proof. This (∞, 2)-functor is the composition of (2.5) with (2.4). ut

Example 2.4.6. For Y ∈ Stk, consider the tautological proper arrow [Y → Y] →

[Y → pt]. Under the equivalence IndCoh(pt∧Y) ' D(Y), the resulting adjunction
IndCoh(Y) � D(Y), coming from the (∞, 2)-categorical structure on correspondences,
is the usual induction/forgetful adjunction (indR, oblvR).

2.5. Nil-isomorphisms and self-duality

2.5.1. A map of laft prestacks is said to be a nil-isomorphism if it is an isomorphism at
the reduced level. If a map is a nil-isomorphism, then the resulting IndCoh-pullback is
conservative [19, Volume 2, Chapter 3, Proposition 3.1.2].

As a main example consider the following: for f : Y → Z a map in Stk, the natural
map ′f : Y→ Z∧Y is a nil-isomorphism. Thus, we obtain the following statement.

Proposition 2.5.2. In the situation above, the functors (′f )IndCoh
∗ and (′f )! form a

monadic adjunction

IndCoh(Y) IndCoh(Z∧Y).
(′f )IndCoh
∗

(′f )! (2.7)

In particular, IndCoh(Z∧Y) is compactly generated by (′f )IndCoh
∗ (Coh(Y)).

2.5.3. By the definition of the universal envelope of a Lie algebroid [19, Volume 2, Chap-
ter 8, Section 4.2], we may write

IndCoh(Z∧Y) ' U(TY/Z)-mod(IndCoh(Y)). (2.8)

Recall that a compactly generated DG category is automatically dualizable (for a proof,
see [14, Proposition 2.3.1]). The next result describes the dual of IndCoh(Z∧Y).

Proposition 2.5.4. In the situation above, the DG category IndCoh(Z∧Y), which is auto-
matically dualizable by the above proposition, is self-dual.

Proof. We will exhibit two functors and prove they form a self-duality datum for
IndCoh(Z∧Y). We set

coev : Vect
(pZ∧

Y
)!

−−−−→ IndCoh(Z∧Y)

1IndCoh
∗
−−−−→ IndCoh(Z∧Y × Z∧Y) ' IndCoh(Z∧Y)⊗ IndCoh(Z∧Y),

where the second functor is continuous as1 : Z∧Y→ Z∧Y×Z∧Y is inf-schematic7 (since Y
has schematic diagonal) and the last equivalence holds because IndCoh(Z∧Y) is dualizable.

7 The notion of inf-schematic morphism is introduced in [19, Volume 2, Part 1, Chapter 2].
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As for the functor going in the opposite direction, we set

ev : IndCoh(Z∧Y)⊗ IndCoh(Z∧Y)
1!

−→ IndCoh(Z∧Y)
π IndCoh
∗
−−−−→ D(Y)

0(YdR,−)ren
−−−−−−−→ Vect,

where π : Z∧Y → YdR is the tautological inf-schematic map and 0(YdR,−)ren is the
functor of renormalized de Rham global sections [13]. By definition, 0(YdR,−)ren is the
dual of (pYdR)

! under the standard self-duality of D(Y) and Vect.
After a straightforward diagram chase, proving that these two functors yield a self-

duality datum boils down to proving that the functor

IndCoh(Z∧Y)
(π×id)IndCoh

∗
−−−−−−−→ D(Y)⊗ IndCoh(Z∧Y)

0(YdR,−)ren⊗id
−−−−−−−−−→ IndCoh(Z∧Y)

is the identity. It suffices to check this smooth-locally on Z. Then we can assume that
Z = Z is a scheme, in which case

IndCoh(Z∧Y) ' IndCoh(Z)⊗D(Z) D(Y) (2.9)

and the assertion is obvious (the functor in question being dual to the identity). To prove
(2.9), first use the dualizability of IndCoh(Z) as a D(Z)-module (proven in [8, Corollary
4.2.2]) to reduce to the case where Y is also a scheme; then combine [2, Proposition 3.1.2]
with the 1-affineness of ZdR, which allows us to use [17, Proposition 3.1.9]. ut

2.5.5. Unraveling the construction, the two functors (2.7) are dual to each other under the
self-duality of the above proposition and the standard self-duality of IndCoh(Y). Conse-
quently, the Serre involution

DSerre
Z∧

Y
: (IndCoh(Z∧Y)

cpt)op '
−→ IndCoh(Z∧Y)

cpt

sends (′f )IndCoh
∗ (C) to (′f )IndCoh

∗ (DSerre
Y C).

3. IndCoh0 in the bounded case

We start this section by officially defining the DG category IndCoh0(Y → Z∧Y) attached
to a map of stacks Y → Z, with Y ∈ Stk<∞. A crucial condition to make this DG
category manageable is the perfection of the relative cotangent complex LY/Z. Another
useful condition to impose is the perfection of Y itself: as we show below, this makes
IndCoh0(Y→ Z∧Y) compactly generated.

Thus, for simplicity, we will restrict our attention to stacks that are bounded per-
fect and lfp. It will then be immediately clear that the assignment [Y → Z]  
IndCoh0(Y→ Z∧Y) underlies a functor

IndCoh0 : (Arr(Stk<∞perf ,lfp))
op
→ DGCat. (3.1)

We shall extend this functor to an (∞, 2)-functor out of an (∞, 2)-category of correspon-
dences (see (3.9)). We will also discuss descent for IndCoh0, as well as its behavior under
tensoring up over QCoh.
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3.1. Definition and first properties

In this section, we define the DG category IndCoh0(Y→ Z∧Y) attached to the nil-isomor-
phism ′f : Y→ Z∧Y and discuss some generalities.

Definition 3.1.1. Let f : Y → Z be a morphism in Stk with Y bounded. We define
IndCoh0(Y→ Z∧Y) as the DG category sitting in the pullback square

IndCoh0(Y→ Z∧Y)

IndCoh(Z∧Y)

QCoh(Y)

IndCoh(Y)

ι ϒY

(′f )!,0

(′f )!

(3.2)

Remark 3.1.2. The definition is taken from [2], with the proviso that [2] assumed quasi-
smoothness of the stacks involved and used the functor 4Y in place of ϒY (those two
functors differ by a shifted line bundle in the quasi-smooth case).

Remark 3.1.3. Since ϒY is (symmetric) monoidal, it is clear that the tensor product
!

⊗

on IndCoh(Z∧Y) preserves the subcategory IndCoh0(Z
∧

Y). In other words, ι is the inclusion
of a symmetric monoidal subcategory.

3.1.4. Warning. We will abuse notation and write IndCoh0(Z
∧

Y) instead of the more
precise IndCoh0(Y→ Z∧Y). Observe that the latter category really depends on the formal
moduli problem Y→ Z∧Y, and not just on Z∧Y: indeed, Z∧Y is insensitive to any derived or
nonreduced structure on Y, while IndCoh0(Y→ Z∧Y) is not.

Proposition 3.1.5. Let f : Y → Z be a map in Stk, with Y bounded. Assume that the
relative cotangent complex LY/Z is perfect. Then the pullback diagram (3.2) is left ad-
jointable, i.e., the horizontal arrows admit left adjoints and the resulting lax-commutative
diagram

IndCoh0(Z
∧

Y)

IndCoh(Z∧Y)

QCoh(Y)

IndCoh(Y)

ι ϒY

(′f )∗,0

(′f )IndCoh
∗

(3.3)

is actually commutative.

Proof. We just need to verify that the functor

(′f )IndCoh
∗ ◦ ϒY : QCoh(Y)→ IndCoh(Z∧Y)

lands inside IndCoh0(Z
∧

Y). It suffices to show that the monad U(TY/Z) :=(
′f )!◦(′f )IndCoh

∗

on IndCoh(Y) preserves the subcategory ϒY(QCoh(Y)). We proceed as in [2, Proposition



The center of the categorified ring of differential operators 2023

3.2.3]. Since U(TY/Z) admits a canonical nonnegative filtration (the PBW filtration [19,
Volume 2, Chapter 9, Theorem 6.1.2]), it suffices to check the assertion for each nth

associated graded piece. Since LY/Z is perfect, the latter is the functor of tensoring with

Symn(TY/Z) ' ϒY(Symn(TQCoh
Y/Z )),

where TQCoh
Y/Z is the dual of LY/Z in QCoh(Y). It is clear that tensoring with

ϒY(Symn(TQCoh
Y/Z )) preserves ϒY(QCoh(Y)). ut

3.1.6. Let us assume, as in the above proposition, that f : Y→ Z is a map in Stk with Y

bounded and with LY/Z perfect. Since (′f )!,0 is continuous and conservative, the monadic
adjunction

QCoh(Y) IndCoh0(Z
∧

Y)
(′f )∗,0 ' (

′f )IndCoh
∗ ◦ ϒY

(′f )!,0 ' 8Y ◦ (
′f )!

(3.4)

yields an equivalence

IndCoh0(Z
∧

Y) ' UQCoh(TY/Z)-mod(QCoh(Y)),

where UQCoh(TY/Z) is, by definition, the monad 8Y ◦ U(TY/Z) ◦ ϒY.
This monadic description implies the compact generation of IndCoh0(Z

∧

Y):

Corollary 3.1.7. With the notation above, assume furthermore that Y is perfect. Then the
DG category IndCoh0(Z

∧

Y) is compactly generated by objects of the form

(′f )∗,0(P ) ' (
′f )IndCoh
∗ (ϒY(P )) for P ∈ Perf(Y).

Remark 3.1.8. The lax commutative diagram

IndCoh0(Z
∧

Y)

IndCoh(Z∧Y)

QCoh(Y)

IndCoh(Y)

ιR 8Y

(′f )∗,0

(′f )IndCoh
∗

(3.5)

obtained from (3.3) by changing the vertical arrows to their right adjoints, is commutative.
Checking this boils down to proving that ιR sends (′f )IndCoh

∗ (C), with C ∈ IndCoh(Y),
to the object (′f )IndCoh

∗ (ϒY8YC). This is a simple computation, which uses the fact that
8Y is QCoh(Y)-linear.

3.2. Duality

Let Y→ Z be a morphism in Stk, with Y bounded and perfect. Assume also that LY/Z is
perfect. We show that the DG category IndCoh0(Z

∧

Y) is naturally self-dual.
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3.2.1. Denote by IndCoh(4)0 (Z∧Y) the DG category defined as in diagram (3.2), but with
the inclusion 4Y in place of ϒY. Reasoning as above, we see that there is a monadic
adjunction

QCoh(Y) IndCoh(4)0 (Z∧Y).
(′f )IndCoh
∗ ◦4Y

9Y ◦ (
′f )! (3.6)

In particular, since Y is perfect, IndCoh(4)0 (Z∧Y) is compactly generated by
(′f )IndCoh
∗ (4Y Perf(Y)).

Lemma 3.2.2. The DG categories IndCoh(4)0 (Z∧Y) and IndCoh0(Z
∧

Y) are mutually dual.
Proof. Both categories are compactly generated, hence dualizable. Furthermore, they are
retracts of the dualizable DG category IndCoh(Z∧Y) by means of the right adjoints of the
structure inclusions

ι : IndCoh0(Z
∧

Y) ↪→ IndCoh(Z∧Y), IndCoh(4)0 (Z∧Y) ↪→ IndCoh(Z∧Y).

Observe that these right adjoints are continuous in view of Remark 3.1.8.
Now, using the self-duality of IndCoh(Z∧Y) proven in Proposition 2.5.4, we see that the

dual of IndCoh0(Z
∧

Y) is the full subcategory of IndCoh(Z∧Y) consisting of those objects F
for which the natural arrow (ιR)∨ι∨(F) → F is an isomorphism. This happens if and
only if

〈F, (′f )IndCoh
∗ (ϒY8YC)〉 → 〈F, (

′f )IndCoh
∗ (C)〉

is an isomorphism for any C ∈ Coh(Y), which in turn is equivalent to

4Y9Y((
′f )!F)

'
−→ (′f )!F.

In other words, (′f )!F must belong to 4Y(QCoh(Y)), which means precisely that F ∈
IndCoh(4)0 (Z∧Y). ut

Remark 3.2.3. One easily checks that the dual of the inclusion ι : IndCoh0(Z
∧

Y) ↪→

IndCoh(Z∧Y) is the functor

ι∨ : IndCoh(Z∧Y)� IndCoh(4)0 (Z∧Y)

that sends (′f )IndCoh
∗ (F) to (′f )IndCoh

∗ (4Y9YF).

Proposition 3.2.4. In the situation above, there exists an equivalence

σ : IndCoh(4)0 (Z∧Y)
'
−→ IndCoh0(Z

∧

Y)

that renders the triangle

IndCoh0(Z
∧

Y)IndCoh(4)0 (Z∧Y)

QCoh(Y)

σ

(3.7)

commutative. In particular, IndCoh0(Z
∧

Y) is self-dual in the only way that makes (′f )∗,0
and (′f )!,0 dual to each other.
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Proof. The adjunction (3.6) is monadic, and the monad is easily seen to coincide with
the one of the monadic adjunction (3.4): indeed, it suffices to show that each functor
U≤n(TY/Z) preserves the subcategory 4(Perf(Y)) ⊆ IndCoh(Y), which is immediately
checked at the level of the associated graded.

This fact implies the existence of the equivalence σ fitting in the above triangle. As
for the duality statement, let us compute the evaluation between f∗,0(Q) and an arbitrary
F ∈ IndCoh0(Z

∧

Y). We have

〈(′f )IndCoh
∗ (ϒYQ),F〉IndCoh0(Z

∧

Y
) ' 〈σ

−1(′f )IndCoh
∗ (ϒYQ),F〉IndCoh(Z∧

Y
)

' 〈(′f )IndCoh
∗ (4YQ),F〉IndCoh(Z∧

Y
)

' 〈Q,8Y(
′f )!F〉QCoh(Y) ' 〈Q, (

′f )!,0F〉QCoh(Y),

as claimed. ut

3.3. Functoriality

The results of the previous sections show that the DG category IndCoh0(Z
∧

Y) is particu-
larly well-behaved in the case Y ∈ Stk<∞perf and the relative contangent complex LY/Z is
perfect. Hence, it makes sense to restrict IndCoh0 to arrows Y→ Z in Stk<∞perf ,lfp. In this
section, we upgrade the functor

(Arr(Stk<∞perf ,lfp))
op
→ DGCat, [Y→ Z] IndCoh0(Z

∧

Y).

to a functor out of a certain category of correspondences of Arr(Stk<∞perf ,lfp). To do so, we
shall reduce the question to the functoriality of

[Y→ Z] IndCoh(Z∧Y),

which is known thanks to Theorem 2.4.2.

3.3.1. To simplify the notation, denote by Arr := Arr(Stk<∞perf ,lfp) the∞-category of ar-
rows in Stk<∞perf ,lfp. A 1-morphism in Arr, say between [Y1 → Z1] and [Y2 → Z2], is
represented by a commutative diagram

Z1 Z2

Y1 Y2

(3.8)

where, by convention, objects of Arr are always drawn as vertical arrows.

3.3.2. Note that Arr is not closed under fiber products, as Stk<∞ is not (see Example
0.2.7). Hence, we cannot define the∞-category Corr(Arr) without restricting the class of
vertical arrows in some appropriate way. To this end, let us make the following definitions.
We say that a morphism (3.8) is schematic and bounded (respectively, schematic and
proper) if so is the top horizontal map.
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It is then clear that the (∞, 2)-category

Corr(Arr)
schem&bdd&proper
schem&bdd;all

is well defined. We will show that the assignment [Y → Z]  IndCoh0(Z
∧

Y) can be
upgraded to an (∞, 2)-functor out of the above (∞, 2)-category of correspondences, with
pushforward functor directly induced by the (∗, IndCoh)-pushforward. More precisely,
we will establish the following theorem.

Theorem 3.3.3. The functor IndCoh of (2.6) restricts to an (∞, 2)-functor

IndCoh0 : Corr(Arr)
schem&bdd&proper
schem&bdd;all → DGCat2−Cat. (3.9)

Proof. It is clear that !-pullbacks always preserve the IndCoh0 subcategories. It remains
to check that, for a diagram (3.8) with schematic and bounded top arrow, the IndCoh-
pushforward functor

IndCoh((Z1)
∧

Y1
)→ IndCoh((Z2)

∧

Y2
)

preserves the IndCoh0-subcategories. We can write the map (Z1)
∧

Y1
→ (Z2)

∧

Y2
as the

composition

(Z1)
∧

Y1

α
−→ (Z2)

∧

Y1

β
−→ (Z2)

∧

Y2
(3.10)

and analyze the resulting two functors αIndCoh
∗ and βIndCoh

∗ separately. Let us show that
αIndCoh
∗ preserves the IndCoh0-subcategories. As we know by Corollary 3.1.7, the DG

category IndCoh0((Z1)
∧

Y1
) is generated under colimits by the essential image of the in-

duction map
QCoh(Y1)→ IndCoh0((Z1)

∧

Y1
),

and αIndCoh
∗ obviously sends each such generator to an object of IndCoh0((Z2)

∧

Y1
). It re-

mains to discuss the pushforward βIndCoh
∗ along the rightmost map in (3.10). The question

is settled by the following more general result. ut

Lemma 3.3.4. Consider a string X → Y → Z in Stklfp, with both X and Y bounded.
Assume that the first map f : X → Y is schematic and bounded. Denoting by β :
Z∧X → Z∧Y the induced map, the functor βIndCoh

∗ : IndCoh(Z∧X) → IndCoh(Z∧Y) sends
IndCoh0(Z

∧

X) to IndCoh0(Z
∧

Y).

Proof. It suffices to check that the image of the functor

f IndCoh
∗ ◦ ϒX : QCoh(X)→ IndCoh(Y)

is contained in ϒY(QCoh(Y)) ⊆ IndCoh(Y). Since the question is smooth local in Y, we
may pull back to an atlas of Y, thereby reducing the assertion to the case of X = X and
Y = Y schemes.

We need to prove that the natural transformation

ϒY8Yf
IndCoh
∗ ϒX → f IndCoh

∗ ϒX
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is an isomorphism. Passing to duals, this is equivalent to showing that

9Xf
!4Y9Y (F)→ 9Xf

!(F) (3.11)

is an isomorphism for any F ∈ Coh(Y ). We now use [16, Lemma 7.2.2]: since f is
bounded (eventually coconnective in the terminology of [16, Section 7.2]), there exists a
continuous functor f !,QCoh equipped with as isomorphism f !,QCoh

◦9Y ' 9X ◦ f
!. The

conclusion follows from the fully-faithfulness of 4Y . ut

3.3.5. Let ξ : [Y1 → Z1] → [Y2 → Z2] be a morphism in Arr as in (3.8), which is
schematic and bounded. We denote by

ξ∗,0 : IndCoh0((Z1)
∧

Y1
)→ IndCoh0((Z2)

∧

Y2
)

the pushforward functor of the above theorem. This notation matches the usage of the
(∗, 0)-pushforwards that appeared earlier in the text. Indeed, if ξ is proper, then ξ∗,0 is
left adjoint to ξ !,0.

3.3.6. Let us spell out the base-change isomorphism for IndCoh0 stated in Theorem 3.3.3.
A pair of maps

f : [W→ X] → [Y→ Z], g : [U→ V] → [Y→ Z]

in Arr corresponds to a commutative diagram

X Z

W Y U

V

in Stk<∞lfp . That diagram yields the commutative diagram

X X×Z V

W W×Y U U

V

which we regard as a correspondence

[W→ X]
G
←− [W×Y U→ X×Z V]

F
−→ [U→ V]

in Arr, provided that f is bounded (so that W×Y U is bounded too). The theorem states
that if f is moreover schematic, the diagram

IndCoh0(X
∧

W) IndCoh0(Z
∧

Y)

IndCoh0(V
∧

U)IndCoh0((X×Z V)∧W×YU
)

f∗,0

F∗,0

G!,0 g!,0

is naturally commutative.
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3.3.7. We now use the above functoriality to prove descent of IndCoh0 “in the second
variable”.

Corollary 3.3.8. For any W ∈ Stk<∞lfp , the functor

((Stk<∞lfp )W/)
op
→ DGCat, [W→ Z] IndCoh0(Z

∧

W),

satisfies descent along any map.

Proof. Let W → Y → Z be a string in Stk<∞lfp , giving rise to a “nil-isomorphism”
ξ : [W→ Y] → [W→ Z]. Denote by Z• the Čech resolution of ξ . The (!, 0)-pullback
functors yield a cosimplicial category IndCoh0(Z

•) and a functor

IndCoh0(Z
∧

W)→ Tot(IndCoh0(Z
•)),

which we need to prove to be an equivalence. The cosimplicial category in question sat-
isfies the left Beck–Chevalley condition: this follows from the adjunction

α∗,0 : IndCoh0(Y
∧

W)� IndCoh0(Z
∧

W) : α
!,0 (3.12)

induced by the nil-isomorphism Y∧W → Z∧W (recall that the ind-coherent pushforward
along such map preserves the IndCoh0 subcategories). Then we conclude by using the
paradigm of [17, Section C.1], which is based on [20, Theorem 4.7.5.2]. ut

3.4. Exterior tensor products

Consider a diagram U → V → Z ← Y ← X in Stk<∞perf ,lfp. In this situation, QCoh(Z)
acts on IndCoh0(V

∧

U) and IndCoh0(Y
∧

X) by pullback.

Proposition 3.4.1. In the above situation, assume furthermore that U×Z X is bounded.
Then the exterior tensor product descends to an equivalence

IndCoh0(V
∧

U) ⊗
QCoh(Z)

IndCoh0(Y
∧

X)
'
−→ IndCoh0((V×Z Y)∧U×ZX

). (3.13)

Proof. Both DG categories are modules for monads acting on QCoh(U×Z X). Note that
QCoh(U ×Z X) is generated by objects of the form p∗P ⊗ q∗Q for P ∈ QCoh(U) and
Q ∈ QCoh(X), where p : U ×Z X→ U and q : U ×Z X→ X are the two projections.
We will identify the values of the two monads acting on such generators.

The monad on the LHS is given by

p∗P ⊗ q∗Q p∗(UQCoh(TU/V)(P ))⊗ q
∗(UQCoh(TX/Y)(Q)),

while the monad on the RHS by

p∗P ⊗ q∗Q UQCoh(TU×ZX/V×ZY)(p
∗P ⊗ q∗Q).

Now, the elementary isomorphism

LU×ZX/V×ZY ' p
∗LU/V ⊕ q

∗LX/Y,

taking place in QCoh(U×Z X), yields the assertion upon dualization. ut



The center of the categorified ring of differential operators 2029

3.4.2. As a consequence of the above exterior product formula, we obtain another kind of
functor, the ?-pushforward, for IndCoh0. To construct it, consider maps X→ Z← Y in
Stk<∞perf ,lfp, with the property that X×Z Y is also bounded. We view the resulting cartesian
diagram

X Z

X×Z Y Y

h

as a morphism
η : [X×Z Y→ X] → [Y→ Z]

in Arr = Arr(Stk<∞perf ,lfp). Then the equivalence

QCoh(X) ⊗
QCoh(Y)

IndCoh0(Z
∧

Y)
'
−→ IndCoh0(X

∧

X×ZY
)

of Proposition 3.4.1, together with the usual adjunction h∗ : QCoh(Z)� QCoh(X) : h∗,
yields the adjunction

η!,0 : IndCoh0(Z
∧

Y)� IndCoh0(X
∧

X×ZY
) : η?. (3.14)

3.5. The monoidal category H(Y)

In this short section, we officially introduce the main object of this paper: the monoidal
category H(Y) attached to Y ∈ Stk<∞lfp .

3.5.1. Let Y be as above and recall the convolution monoidal structure on
IndCoh(Y×YdR Y) defined by pull-push along the correspondence

(Y× Y)∧Y × (Y× Y)∧Y
p̂12×p̂23
←−−−−− (Y× Y× Y)∧Y

p̂13
−−→ (Y× Y)∧Y.

It is clear that
ι : IndCoh0((Y× Y)∧Y) ↪→ IndCoh((Y× Y)∧Y)

is the inclusion of a monoidal subcategory: indeed, it suffices to show that convolution
preserves the subcategory ′1∗,0(QCoh(Y)) ⊆ IndCoh((Y × Y)∧Y), which is a simple dia-
gram chase.

3.5.2. The same reasoning shows that the functor

′1∗,0 : QCoh(Y)→ IndCoh0((Y× Y)∧Y)

is monoidal: indeed, it can be written as the composition

QCoh(Y)
ϒY
−−→ IndCoh(Y)

′1IndCoh
∗
−−−−→ IndCoh((Y× Y)∧Y)

of monoidal functors.
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Definition 3.5.3. We set (H(Y), ?) to be the monoidal DG category

H(Y) := IndCoh0((Y× Y)∧Y),

with the monoidal structure given by convolution, that is, the product induced by the
correspondence

Y4 Y3

Y2 Y Y

Y2
p12 × p23

1 idY

p13

1×1 1 1

in Arr. The identity for convolution is of course the object 1H(Y) := ′1
IndCoh
∗ (ωY).

Lemma 3.5.4. Suppose that Y is perfect. Then the monoidal DG category (H(Y), ?) is
compactly generated, rigid and pivotal (see Sections 0.6.4 and 0.6.5 for the definitions).
Proof. Compact generation and rigidity follow immediately from the fact that

′1∗,0 : QCoh(Y)→ IndCoh0((Y× Y)∧Y)

is monoidal and generates the target under colimits. As for pivotality, we need to show
that left and right duals of compact objects can be functorially identified. Note that H(Y)
is self-dual in two different looking ways. The first way is a consequence of rigidity: any
rigid monoidal DG category is self-dual with evaluation given by uR ◦m. In our case, this
reads

ev? : H(Y)⊗H(Y)→ H(Y), (F,G) 7→ HomH(Y)(1H(Y),F ? G).

The second self-duality datum comes from the general theory of IndCoh0, as proven in
Section 3.2: it determines a second evaluation functor that we will denote by ev⊗. In
view of [20, Lemma 4.6.1.10], the two duality data are canonically identified: ev? ' ev⊗.
Denote by D the contravariant involution on H(Y)cpt induced by ev⊗ (explicitly, D is the
composition of Serre duality for IndCoh(Y×YdR Y) and σ−1). Then, for F ∈ H(Y)cpt, we
have

HomH(Y)(D(F),−) ' ev⊗(F ⊗−) ' ev?(F ⊗−) = HomH(Y)(1H(Y),F ?−)

' HomH(Y)(
∨F,−).

It follows that ∨F ' D(F) naturally, which yields the desired pivotal structure. ut

4. Beyond the bounded case

The computation of Z(H(Y)) sketched in Section 1 showed the need to extend the defi-
nition of IndCoh0(Z

∧

Y) to the case where Y ∈ Stklfp is not necessarily bounded, but still
perfect. This task is the goal of the present section.

Inspired by the equivalence (0.4), we will define IndCoh0(Z
∧

Y) as the DG category of
modules for a monad UQCoh(TY/Z) acting on QCoh(Y), where UQCoh(TY/Z) is defined
so that:
• its meaning coincides with the already established one when Y is bounded;
• it is equivalent to UQCoh(TQCoh

Y/Z )⊗− when TY/Z is a Lie algebra.
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To define such a monad, we will use the PBW filtration of the universal envelope of a Lie
algebroid.

After this is done, we will discuss the functoriality of IndCoh0 in the unbounded
context. The functoriality is not as rich as the one discussed in the previous section, the
issue being that we can no longer rely on the functoriality of ind-coherent sheaves on
formal completions. For instance, in the present context, the (∗, 0)-pushforward will be
defined only for maps in Arr(Stkperf ,lfp) coming from diagrams of the form

[W→ X] → [W→ Y].

Similarly, the (!, 0)-pullback will be defined only for maps with cartesian associated
square. These two kinds of functors are “good” because they preserve compact objects,
whence they admit continuous right adjoints: the so-called ?-pullback and ?-pushforward,
respectively.

We also discuss descent and tensoring up with QCoh. The material of this section is
essential to the computation Z(H(Y)) ' Dder(LY) in Section 5.

4.1. The definition

Consider a Lie algebroid L on Y and its universal envelope U(L), which is a monad acting
on IndCoh(Y). By [19, Volume 2, Chapter 9, Section 6.1], the assignment L  U(L)
upgrades to a functor

Lie-algbd(Y)→ Alg(End(IndCoh(Y))Fil,≥0). (4.1)

The target ∞-category will be referred to as the ∞-category of monads (acting on
IndCoh(Y)) with nonnegative filtration.

We will assume familiarity with the Rees–Simpson point of view that filtered objects
are objects that lie over the stack A1/Gm: we refer to [19, Volume 2, Chapter 9, Section
1.3] for the main results on the subject and for the notation.

4.1.1. Let L ∈ Lie-algbd(Y) be such that its underlying ind-coherent sheaf
oblvLie-algbd(L) belongs to the subcategory ϒY(Perf(Y)) ⊂ IndCoh(Y). In this situation,
we will show that the monad U(L) induces a canonical monad acting on QCoh(Y), de-
noted UQCoh(L). We need the following paradigm, which goes under the slogan: the fil-
tered renormalization of a filtered monad is also a filtered monad.

Lemma 4.1.2. Let µ be a monad with nonnegative filtration acting on a (cocomplete)
DG category C. Let C0 ⊂ C be a noncocomplete subcategory with the property that, for
each n ≥ 0, the nth piece of the filtration µ≤n preserves C0.8 Let Ind(C0) be the ind-
completion of C0 and µ̃≤n the ind-completion of the functor µ≤n : C0 → C0. Then the
nonnegatively filtered functor

µ̃ := colim
n≥0

µ̃≤n : Ind(C0)→ Ind(C0)

admits a canonical structure of monad with filtration.

8 Note that we do not require that µ have this property.
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Proof. Consider the DG category

End(C)Fil
:= Fun(Z,End(C)),

equipped with the monoidal structure given by Day convolution. A monad with filtration
on C (for instance, µ) is an algebra object of the above DG category. Let us express
End(C)Fil using the stack A1/Gm. By [19, Volume 2, Chapter 9, Section 1.3],

End(C)Fil
' End(C)⊗ QCoh(A1/Gm).

Since QCoh(A1/Gm) is dualizable (and self-dual), we further obtain

End(C)Fil
' Fun(C,C⊗ QCoh(A1/Gm)) ' EndQCoh(A1/Gm)(C⊗ QCoh(A1/Gm)),

in such a way that the Day convolution on the LHS corresponds to the obvious monoidal
structure on the RHS.

Now, denote by C′0 the Karoubi completion of C0. The assumption on µ means that
its restriction along C′0 ⊗ Perf(A1/Gm) gives rise to an (automatically algebra) object µ′

of

End
noncocomplete
Perf(A1/Gm)

(C′0 ⊗ Perf(A1/Gm)).

In the above formula, in contrast to our previous usage, we have considered exact endo-
functors of the noncocomplete DG category C′0⊗Perf(A1/Gm). By ind-extending µ′, we
obtain an object

µ̃ ∈ Alg(EndQCoh(A1/Gm)(Ind(C0)⊗ QCoh(A1/Gm))).

Since Ind(C0) = Ind(C′0), the latter is the monad with filtration we were looking for. ut

4.1.3. We apply the above paradigm to µ = U(L) acting on C = IndCoh(Y) and we
choose C0 to be the subcategory IndCoh(Y)dualiz of dualizable objects in IndCoh(Y), with

respect to the
!

⊗ symmetric monoidal structure. By [15, Remark 5.4.4], the adjunction

ϒY : Perf(Y)� IndCoh(Y)dualiz
: 8Y := (ϒY)

R

is an equivalence. Thus, we just need to check that each U(L)≤n : IndCoh(Y) →
IndCoh(Y) preserves the subcategory IndCoh(Y)dualiz

' ϒY(Perf(Y)). This is obvious:
the n-associated graded piece is the functor

Symn(oblvLie-algbd(L))
!

⊗ − : IndCoh(Y)→ IndCoh(Y)

and oblvLie-algbd(L) belongs to ϒY(Perf(Y)) by assumption.
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4.1.4. Through the above construction, the functor (4.1) yields a functor

UQCoh
: Lie-algbd(Y) ×

IndCoh(Y)
IndCoh(Y)dualiz

→ Alg(End(QCoh(Y))Fil,≥0). (4.2)

Explicitly, the functor underlying the monad UQCoh(L) is the unique endofunctor of
QCoh(Y) whose restriction to Perf(Y) is given by

Perf(Y)→ QCoh(Y), P  colim
n≥0

8Y ◦ U
≤n(L) ◦ ϒY(P ).

Remark 4.1.5. Since 8Y is discontinuous for Y unbounded, UQCoh(L) is different (in
general) from the ind-extension of P  8YU(L)ϒY(P ).

The construction of UQCoh allows us to extend the definition of IndCoh0 to the unbounded
case as follows.

Definition 4.1.6 (IndCoh0 in the unbounded case). For Y→ Z in Stklfp, with Y perfect
but not necessarily bounded, we define

IndCoh0(Z
∧

Y) := UQCoh(TY/Z)-mod(QCoh(Y)). (4.3)

Clearly, this DG category is compactly generated and hence dualizable.

4.2. Basic functoriality

4.2.1. By construction, the assignment IndCoh0(−
∧

W) underlies the structure of a covari-
ant functor StkW/ → DGCat. Explicitly, a string W→ X→ Y in Stklfp gives a canon-
ical map of Lie algebroids TW/X → TW/Z on W (equivalently, a map ξ : X∧W → Y∧W
of nil-isomorphisms under W). Induction along the resulting algebra arrow

UQCoh(TW/X)→ UQCoh(TW/Z)

yields the structure functor

ξ∗,0 : IndCoh0(X
∧

W)→ IndCoh0(Y
∧

W).

4.2.2. Since the functor ξ∗,0 preserves compact objects, it admits a continuous right ad-
joint that we shall denote by

ξ ?
: IndCoh0(Y

∧

W)→ IndCoh0(X
∧

W).

This is just the forgetful functor along the above maps of universal enveloping algebras.

Remark 4.2.3. If W is bounded, then ξ ? is simply the (!, 0)-pullback, while ξ∗,0 reduces
to its already established meaning.

Example 4.2.4. For W = X, we just have a map f : X → Z in Stkperf ,lfp and we
rediscover the defining monadic adjunction

(′f )∗,0 : QCoh(X)� IndCoh0(Y
∧

X) : (
′f )?. (4.4)
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4.2.5. For Y bounded, IndCoh0(Z
∧

Y) has been defined as a full subcategory of
IndCoh(Z∧Y). For Y unbounded, we show there still is a canonical arrow IndCoh0(Z

∧

Y)→

IndCoh(Z∧Y), which is no longer an inclusion.

Lemma 4.2.6. Let f : Y → Z be a morphism in Stkperf ,lfp. There is a natural isomor-
phism

ϒY ◦ U
QCoh(TY/Z)→ U(TY/Z) ◦ ϒY

of nonnegatively filtered functors from QCoh(Y) to IndCoh(Y).

Proof. It suffices to construct a filtered isomorphism

ϒY ◦ U
QCoh(TY/Z)|Perf(Y)→ U(TY/Z) ◦ ϒY|Perf(Y)

between the restrictions of the above functors to Perf(Y). By definition, this amounts to
giving a compatible N-family of isomorphisms

ϒY ◦8Y ◦ U
≤n(TY/Z) ◦ ϒY|Perf(Y)→ U≤n(TY/Z) ◦ ϒY|Perf(Y).

These isomorphisms are manifest since U≤n(TY/Z) preserves ϒY(Perf(Y)). ut

4.2.7. This lemma shows that ϒY : QCoh(Y)→ IndCoh(Y) upgrades to a functor

ϒD
Y/Z : IndCoh0(Z

∧

Y)→ IndCoh(Z∧Y)

sitting in the commutative diagram

QCoh(Y) IndCoh(Y)

IndCoh0(Z
∧

Y) IndCoh(Z∧Y)

ϒY

ϒD
Y/Z

oblv = (f )? oblv = (′f )!

In view of the formulas

IndCoh0(Z
∧

Y) := UQCoh(TY/Z)-mod(QCoh(Y)),
IndCoh(Z∧Y) := U(TY/Z)-mod(IndCoh(Y)),

the functor ϒD
Y/Z might be regarded as the passage from left to right relative D-modules.

When Z = pt, we write ϒD
Y rather than ϒD

Y/pt.

4.2.8. As we see in this section, a special case (the absolute case where Z = pt) of
Definition 4.1.6 yields a new notion of D-module on a derived stack.

Definition 4.2.9 (Derived D-modules). For Y ∈ Stkperf ,lfp, we set

Dder(Y) := IndCoh0(pt∧Y), that is, Dder(Y) := UQCoh(TY)-mod(QCoh(Y)).

Remark 4.2.10. The notation Dder is in place to distinguish Dder(Y) from the usual DG
category

D(Y) := IndCoh(pt∧Y) ' U(TY)-mod(IndCoh(Y))

of D-modules on Y.
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4.3. D-modules and derived D-modules

In this section, we compute the DG category Dder(Y ) for Y = SpecA an affine DG
scheme locally of finite presentation. We will first perform the computation in general
and then apply it to the affine schemes of Example 2.2.7.

4.3.1. Since Y is affine, Dder(Y ) is the DG category of modules over the DG algebra

0(Y,UQCoh(TY )(OY )).

To describe this DG algebra, we need to compute the monad U(TY ), understand its PBW
filtration, and then do the filtered renormalization.

4.3.2. For any m ≥ 1, denote by

1m
sm×tm
−−−→ Y × Y

themth infinitesimal neighborhood of the diagonal, so that (Y ×Y )∧Y ' colimm1m. Each
1m is a formal groupoid acting on Y ; we form the groupoid quotient Y (m) := Y/1m and
let p(m) : Y → Y (m) be the structure projection map.

4.3.3. By definition, the monad U(TY ) is the push-pull p!pIndCoh
∗ along p : Y → YdR.

According to [19, Volume 2, Chapter 9, Section 6.5], the filtration on U(TY ) is induced by
the filtration of the groupoid (Y×Y )∧Y by the infinitesimal neighborhoods of the diagonal.
Namely, it is given by the sequence

m (p(m))!(p(m))IndCoh
∗ ' (sm)

IndCoh
∗ (tm)

!.

Thus, to compute UQCoh(TY ), we need to compute the filtered monad

m 8Y (sm)
IndCoh
∗ (tm)

!ϒY .

Similarly, for the filtered algebra 0(Y,UQCoh(TY )(OY )), we need to understand the fil-
tered monad structure on

m W≤m := HomIndCoh(Y )
(
ωY , (sm)

IndCoh
∗ (tm)

!(ωY )
)
.

4.3.4. In all cases, that structure is induced via base-change by the structure maps

αm,p : 1m ×Y 1p → 1m+p

over Y × Y , together with similar ones for higher compositions.9 Now observe that each
1m is an affine DG scheme, say 1m ' SpecAm: indeed, each of them is a square-
zero extension of the preceding one. Hence the maps αm,p correspond to (A,A)-bilinear
algebra maps Am+p → Am ⊗A Ap going the other way.

9 We are just making explicit the fact that the functor m  1m is an algebra object in the (Day
convolution) monoidal∞-category of sequences of groupoids over Y .
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4.3.5. Let us now begin the computation of W≤m. We have

W≤m := HomIndCoh(Y )
(
ωY , (sm)

IndCoh
∗ (tm)

!(ωY )
)

' HomIndCoh(Y )
(
ωY , (sm)

IndCoh
∗ (ω1m)

)
,

where we recall that sm : 1m → Y is the first of the two structure maps. It is clear that
sm is proper and in fact finite. Before continuing, we need to establish another property
of sm.

Lemma 4.3.6. The map sm is bounded (or eventually coconnective, in the terminology
of [16, Section 7.2]).

Proof. In view of the reformulations given immediately after [16, Definition 3.5.2], it is
enough to show that R ⊗A Am is cohomologically bounded for any algebra map A→ R

with R ' H 0(R). Since Am is constructed inductively as a sequence of square-zero
extensions by symmetric powers of LA, it suffices to show that R ⊗A Symm LA is coho-
mologically bounded. This is clear: the cotangent complex LA is perfect by assumption
and so R ⊗A Symm LA is a perfect R-module, whence bounded (as R is classical). ut

4.3.7. Since sm is proper and bounded, we can invoke [16, Propositions 7.2.2 and
7.2.9(a)] to conclude that (sm)∗ : QCoh(1m) → QCoh(Y ) admits a continuous right
adjoint (sm)!,QCoh sitting in the commutative diagram

IndCoh(1m) QCoh(1m)

IndCoh(Y ) QCoh(Y )

91m

9Y

(sm)
! (sm)

!,QCoh

By passing to dual functors, we deduce that (sm)∗ admits a left adjoint, to be denoted

(sm)! : QCoh(1m)→ QCoh(Y ),

which gets intertwined to (sm)IndCoh
∗ by the ϒ functors. In other words,

(sm)
IndCoh
∗ (ω1m) ' (sm)

IndCoh
∗ ϒ1m(O1m) ' ϒY (sm)!(O1m).

4.3.8. We obtain

W≤m ' HomIndCoh(Y )(ωY , ϒY (sm)!(O1m)) ' HomQCoh(Y )(OY , (sm)!(O1m)),

where the last step used the fact that (sm)!(O1m) is automatically perfect and that ϒY is
fully faithful on Perf(Y ) even if Y is not bounded (see Section 2.2.9).

4.3.9. The naive duality on Perf(Y ) further yields

W≤m ' HomQCoh(Y )(((sm)!O1m)
∨,OY ) ' HomQCoh(Y )((sm)∗O1m ,OY )

' HomA-mod(Am, A) =: (Am)
∗.
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Hence
0(Y,UQCoh(TY )(OY )) ' WA := colim

m≥1
W≤m ' colim

m≥1
(Am)

∗,

with algebra structure induced by the A-linear duals of the system of maps Am+p →
Am ⊗A Ap.

Example 4.3.10. Consider Y = A1
= Spec(k[x]). Then 1m ' SpecAm with Am =

k[u, v]/(u − v)m+1. Let us declare that sm is the map corresponding to the natural map
k[v] → Am. Then, changing variables (u, v) 7→ (u− v, v), we obtain

(Am)
∗
'

m⊕
i=0

∂ i · k[v],

as right k[v]-modules. An easy check shows that the left k[v]-module structure is the
one giving rise to the Weyl algebra. By taking products, an analogous result holds for
Dder(Ap).

Example 4.3.11. Consider now the derived affine scheme Yn = Spec(k[u]), where n≥ 1
and u is a variable in cohomological degree −n. In this case, D(Yn) ' Vect since
the classical truncation of Yn is just a point. One shows that Dder(Yn) is equivalent to
k〈u, ∂u〉-mod, where k〈u, ∂u〉 is the Weyl graded algebra built on k[u]. Here ∂u has co-
homological degree n. This follows, as above, from the knowledge of the inifinitesimal
neighborhoods of the diagonal: they are obtained from k[u1, u2] = H

∗(Yn × Yn,O) by
attaching a cell that kills off (u1− u2)

m+1. By taking products, an analogous result holds
true for Dder(Spec(SymV ∗[n])).

4.3.12. In the setup of Example 4.3.11, there is a huge difference between the even and
the odd cases. Set Wn := k〈u, ∂u〉. Unraveling the constructions, the natural functor

ϒD
Yn
: Dder(Yn)→ D(Yn) ' Vect

goes over to the functor

φn : Wn-mod

k[∂u] ⊗
Wn

−

−−−−−→ k-mod,

where the right Wn-module structure on k[∂u] is the one induced by the isomorphism
k[∂u] ' k⊗k[u] Wn.

Corollary 4.3.13. The functorϒD
Yn

is an equivalence if and only if n is odd, that is, if and
only if Yn is bounded.

Proof. When n is odd, Yn is bounded and thus the functor in question is an equivalence
by the general theory. In particular this implies that the Weyl algebra on an odd vector
space is Morita equivalent to k. If n = 2m is even, then we claim that the functor is not an
equivalence. While this can proven directly, we prefer to give a quick argument that uses
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the shift of grading trick introduced in [1, Appendix A].10 Since φn is Gm-equivariant,
we can apply the shift of grading m times to cancel the shifts. This shows that φn is an
equivalence if and only if so is φ0. But the latter is the functor D(A1) → Vect of !-
restriction at 0, which is obviously not an equivalence. ut

4.3.14. Let us return to the case of a general affine scheme Y = SpecA. In regard to
the formula Dder(Y ) ' WA-mod established above, we always expect WA to be a Weyl
algebra. For instance, if A = (k[xi], d) is a quasi-free commutative DG algebra with
finitely many variables, we expect WA to look as follows:

• as graded vector space, WA := k[xi, ∂i] with deg(∂i) = − deg(xi);
• the differential dW of WA is determined by

dW (xi) = d(xi) =: fi, dW (∂i) =
∑
j

∂fj

∂xi
∂j ;

• the algebra structure is determined by the super-commutation relations [xi, xj ] = 0,
[∂i, ∂j ] = 0, [∂i, xj ] = δij .

We defer this computation to a future work.

Corollary 4.3.15. As above, let Y = SpecA, where A = (k[xi], d) is a quasi-free com-
mutative DG algebra. Then D(Y ) ' WB -mod, where B is the quasi-free commutative
DG algebra obtained from A by discarding all xi of degrees ≤ −2.

Proof. By definition, D(Y ) ' D(Y ′) for any map Y → Y ′ that is an isomorphism on
the classical truncations of Y and Y ′. This is the case for the map SpecB → Y induced
by the projection A → B, whence D(Y ) ' D(SpecB). Since SpecB is quasi-smooth,
it is bounded; we deduce that D(SpecB) ' Dder(SpecB). It remains to apply Section
4.3.14. ut

4.4. Descent in the “second variable”

In this section, we generalize Corollary 3.3.8.

Proposition 4.4.1. For any fixed W ∈ Stkperf ,lfp, the contravariant functor
IndCoh0((−)

∧

W), under ?-pullbacks, satisfies descent along any map in (Stkperf ,lfp)W/.

Proof. Let W → Y → Z be a map in (Stkperf ,lfp)W/. Consider the Čech complex
(Y×Z(•+1))∧W of the map Y∧W→ Z∧W and the resulting pullback functor

IndCoh0(Z
∧

W)→ Tot(IndCoh0((Y
×Z(•+1))∧W)).

We need to show that this functor is an equivalence. By passing to left adjoints, this
amounts to showing that the arrow

colim
[n]∈1

(IndCoh0((Y
×Z(•+1))∧W))→ IndCoh0(Z

∧

W)

10 See [17, Section 13.4], [10, Section 1], [9, Sections 3.2, 3.3], [6, Section 3.2] for other applica-
tions of this trick.
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is an equivalence, where now the structure maps forming the colimit are given by the
(∗, 0)-pushforward functors (that is, induction along the maps between the universal en-
velopes). Hence, it suffices to show that the natural arrow

colim
[n]∈1

UQCoh(TW/Y×Z(n+1))→ UQCoh(TW/Z),

taking place in Alg(End(QCoh(W))Fil,≥0), is an isomorphism. Forgetting the monad
structure is conservative, whence we will just prove that the arrow above is an isomor-
phism in End(QCoh(W))Fil,≥0 (i.e., an isomorphism of filtered endofunctors).

Since the filtrations in questions are nonnegative, it is enough to prove the isomor-
phism separately for each component of the associated graded. Recall that the j th associ-
ated graded of UQCoh(L) is the functor Symj (8W(L)) ⊗ − : QCoh(W) → QCoh(W).
Thus, we are to prove that the natural map

colim
[n]∈1

Symj (TQCoh
W/Y×Z(n+1))→ Symj (TQCoh

W/Z
)

is an isomorphism in QCoh(W) for each j ≥ 0. Since Sym commutes with colimits, it
suffices to show that

colim
[n]∈1

TQCoh
W/Y×Z(n+1) → TQCoh

W/Z

is an isomorphism. We will show that the cone of map is zero. First, with no loss of
generality, we may assume that W = Y. Then we compute the cone in question as

colim
[n]∈1op

(TQCoh
Y/Z )

⊕(n+1),

and this expression is manifestly isomorphic to the zero object of QCoh(Y): indeed, the
simplicial object in question is the Čech nerve of the map TQCoh

Y/Z → 0 in QCoh(Y). ut

4.5. Tensor products of IndCoh0 over QCoh

In this section, we show that formation of IndCoh0 behaves well with respect to fiber
products.

Lemma 4.5.1. Let X → Z ← Y be a diagram in Stkperf ,lfp and denote by p : X ×Z Y

→ Y the natural map. There is a natural isomorphism

UQCoh(TX×ZY/X) ◦ p
∗
→ p∗ ◦ UQCoh(TY/Z) (4.5)

in the DG category Fun(QCoh(Y),QCoh(X×Z Y))Fil,≥0.

Proof. We need to exhibit a compatible N-family of isomorphisms

UQCoh(TX×ZY/X)
≤n
◦ p∗→ p∗ ◦ UQCoh(TY/Z)

≤n.

By the continuity of these functors and perfection of Y, it suffices to exhibit a compatible
N-family of isomorphisms

UQCoh(TX×ZY/X)
≤n
◦ p∗|Perf(Y)→ p∗ ◦ UQCoh(TY/Z)

≤n
|Perf(Y).
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When restricted to Perf(Y) ⊂ QCoh(Y), the LHS can be rewritten as

8X×ZY ◦ U(TX×ZY/X)
≤n
◦ p! ◦ ϒY

and the RHS as
8X×ZY ◦ p

!
◦ U(TY/Z)

≤n
◦ ϒY.

It then suffices to give a compatible N-family of isomorphisms

p! ◦ U(TY/Z)
≤n
→ U(TX×ZY/X)

≤n
◦ p! (4.6)

of functors IndCoh(Y)→ IndCoh(X×Z Y).
By [19, Volume 2, Chapter 9, Section 6.5], for a Lie algebroid L in IndCoh(Y), the

functor U(L)≤n can be written using the nth infinitesimal neighborhood of the formal
groupoid associated to L. In our case, let Ṽ(n) the nth infinitesimal neighborhood attached
to TX×ZY/X→ TX×ZY, equipped with the two structure maps p̃s, p̃t : Ṽ(n) ⇒ X×Z Y;
then

U(TX×ZY/X)
≤n
' (p̃s)

IndCoh
∗ ◦ (p̃t )

!.

Similarly, let ps, pt : V(n) ⇒ Y be the same data for TY/Zm→ TY, so that

U(TY/Z)
≤n
' (ps)

IndCoh
∗ ◦ (pt )

!.

By the very construction of nth infinitesimal neighborhoods, we have canonical isomor-
phisms

Ṽ(n) ' (X×Z Y)×Y,ps V
(n)
' V(n) ×pt ,Y (Y×Z X),

which are compatible with varying n. Hence, the compatible isomorphisms (4.6) come
from base-change for ind-coherent sheaves. ut

Corollary 4.5.2. With the notation of the above lemma, assume furthermore that at least
one of the following two requirements is satisfied:

• the map X → Z is affine (more generally, we just need that p∗ : QCoh(X ×Z Y) →

QCoh(Y) be right t-exact up to a finite shift);
• Y is bounded.

Then the arrow
UQCoh(TY/Z) ◦ p∗→ p∗ ◦ U

QCoh(TX×ZY/X),

obtained from (4.5) by adjunction, is an isomorphism of filtered functors from
QCoh(X×Z Y) to QCoh(Y).

Proof. As the arrow in question is the colimit of the N-family

UQCoh(TY/Z)
≤n
◦ p∗→ p∗ ◦ U

QCoh(TX×ZY/X)
≤n,

it suffices to prove the assertion separately for each piece of the associated graded. For
each n ≥ 0, the map in question is

8Y

(
Symn(TY/Z)

!

⊗ ϒY(p∗(−))
)
→ p∗8X×ZY

(
Symn(TX×ZY/X)

!

⊗ ϒX×ZY(−)
)
.
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Let us now finish the proof in the situation of the first assumption; the argument for the
second one is easier. It suffices to check the isomorphism after restricting both sides to
Perf(X×Z Y), in which case we are dealing with the arrow

8YϒY(Symn(TQCoh
Y/Z )⊗ p∗(−))|Perf(X×ZY)→ p∗(Symn(TQCoh

X×ZY/X
)⊗−)|Perf(X×ZY).

Now the assertion follows from the projection formula and the fact (see Section 2.2.9)
that ϒY is fully faithful on the full subcategory of QCoh(Y) consisting of eventually
connective objects. ut

Corollary 4.5.3. In the situation of Corollary 4.5.2, the two monads UQCoh(TY/Z) and
p∗p

∗ commute.

4.5.4. We now generalize the simplest instance of Proposition 3.4.1.

Proposition 4.5.5. Let Y→ Z← V← U be a diagram in Stk<∞perf ,lfp (we do not assume
that Y×Z U is bounded). Then the exterior product yields an equivalence

QCoh(Y) ⊗
QCoh(Z)

IndCoh0(V
∧

U)
'
−→ IndCoh0((Y×Z V)∧Y×ZU

). (4.7)

Proof. Without loss of generality, we may assume that Z = V. Thus, for a diagram
Y→ Z← U, we need to construct a QCoh(Y)-linear equivalence

QCoh(Y) ⊗
QCoh(Z)

IndCoh0(Z
∧

U)
'
−→ IndCoh0(Y

∧

Y×ZU
). (4.8)

Both categories are modules for monads acting on QCoh(U) (this is true thanks to
the hypothesis of affineness), so it suffices to construct a map between those monads and
check it is an isomorphism.

Let p : U×Z Y→ U denote the obvious projection. The two monads in questions are

p∗ ◦ p
∗
◦ UQCoh(TU/V) and p∗ ◦ U

QCoh(TU×ZX/V×ZY) ◦ p
∗.

Note that the monad structure on the former functor has been discussed in Corollary 4.5.3.
By assumption, QCoh(U ×Z Y) is compactly generated by objects of the form p∗P

for P ∈ Perf(U). Now the assertion follows from Lemma 4.5.1. ut

4.6. The exceptional pullback and pushforward functors

Let us now generalize Section 3.4.2.

4.6.1. Given maps X→ Z← Y in Stkperf ,lfp, we regard the resulting cartesian diagram

X Z

X×Z Y Y

g

G

F f



2042 Dario Beraldo

as a morphism
η : [X×Z Y→ X] → [Y→ Z]

in Arr(Stkperf ,lfp). We emphasize that none of the stacks in question is required to be
bounded. In this situation, we define the adjunction

η!,0 : IndCoh0(Z
∧

Y)� IndCoh0(X
∧

X×ZY
) : η? (4.9)

exactly as in Section 3.4.2, using the equivalence

IndCoh0(X
∧

X×ZY
) ' QCoh(X) ⊗

QCoh(Z)
IndCoh0(Z

∧

Y)

proven in Proposition 4.5.5.

4.6.2. Tautologically, the functors η!,0 and η? fit in the commutative diagrams

QCoh(Y) IndCoh0(Z
∧

Y)

QCoh(X×Z Y) IndCoh0(X
∧

X×ZY
)

(′f )?

(′F)?

G∗ η!,0

QCoh(Y) IndCoh0(Z
∧

Y)

QCoh(X×Z Y) IndCoh0(X
∧

X×ZY
)

(′f )?

(′F)?

G∗ η?

(4.10)

Example 4.6.3. Let us illustrate the adjunction (η!,0, η?) in the simple example where
X = Y = pt, both mapping to a marked point of Z. We further assume that Z = Z is
a bounded affine scheme locally of finite presentation. In this case, X ×Z Y = �Z :=

pt×Z pt and the adjunction takes the form

η!,0 : IndCoh(Z∧pt)� IndCoh0(pt∧�Z) =: D
der(�Z) : η?.

Now, the LHS is equivalent to U(L)-mod, where L is the DG Lie algebra TZ,z[−1] (see
[21]). On the other hand, since �Z is a formal group DG scheme with Lie algebra L,
we have 0(�Z,O) ' U(L)∗ ' Sym(L∗) as commutative DG algebras; the RHS is thus
equivalent to

(Sym(L∗)o U(L))-mod.

The adjunction in question becomes

U(L)-mod (Sym(L∗)o U(L))-mod,
indWeyl

oblvWeyl

that is, the induction/restriction adjunction along the algebra map U(L) →

Sym(L∗)o U(L) defined by φ  1⊗ φ.
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4.7. Base-change

We now construct base-change isomorphisms between (∗, 0)-pushforwards and (!, 0)-
pullbacks.

4.7.1. As we have seen, in the unbounded context we have defined (∗, 0)-pushforwards
only for morphisms of the form

[X→ Y] → [X→ Z]

in Arr(Stkperf ,lfp), and (!, 0)-pullbacks only for arrows of the form

[W×Z X→W] → [X→ Z].

Let us call the arrows of the first type nil-isomorphisms and the arrows of the sec-
ond type cartesian. It is straightforward to check that the associated ∞-category
Corr(Arr(Stkperf ,lfp))nil-iso;cart of correspondences is well-defined.

Proposition 4.7.2. The (∗, 0)-pushforwards and (!, 0)-pullbacks assemble to a functor

IndCoh0 : Corr(Arr(Stkperf ,lfp))nil-iso;cart → DGCat.

Proof. A diagram

[X→ Y]
ξ
−→ [X→ Z]

η
←− [W×Z X→W],

with all stacks in Stkperf ,lfp, gives rise to a correspondence

[X→ Y]
η̃
←− [W×Z X→W×Z Y]

ξ̃
−→ [X×Z W→W]

and to a square

IndCoh0(Y
∧

X) IndCoh0(Z
∧

X)

IndCoh0(W
∧

W×ZX
)IndCoh0((W×Z Y)∧W×ZX

)

ξ∗,0

ξ̃∗,0

η̃!,0 η!,0

The latter is canonically commutative: to see this, use Proposition 4.5.5 to rewrite the two
DG categories in the top row as relative tensor products. ut

5. The center of H(Y)

The goal of this final section is to compute the center of the monoidal DG category H(Y)
associated to Y ∈ Stk<∞perf ,lfp.
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5.1. The center of a monoidal DG category

In this preliminary section, we will recall some general facts on the center of a monoidal
DG category A. For instance, we will recall why, for A rigid and pivotal, the center of A
(with values in a bimodule category M) sits in a monadic adjunction

M ZA(M).
evL

ev

5.1.1. Let A be a monoidal DG category and M an (A,A)-bimodule. Then the center
of M with respect to A is the DG category

ZA(M) := Fun(A,A)-bimod(A,M).

When M = A, we write Z(A) in place of ZA(A).

5.1.2. Denote by
ev : ZA(M)→ FunA-mod(A,M) ' M

the tautological (continuous and) conservative functor that forgets the right A-action.
Thus, we see that ZA(M) consists of elements m ∈ M with extra structure: this extra
structure captures precisely the commutation of m with elements of A.

5.1.3. To express ZA(M)more explicitly, we use the bar resolution of the (A,A)-bimod-
ule A ' A⊗A A to obtain:

ZA(M) ' Tot FunA⊗Arev(A⊗(•+2),M)

' Tot Fun(A⊗•,M)

= lim
(
M ⇒ Fun(A,M) // //// Fun(A⊗ A,M) · · ·

)
. (5.1)

Unraveling the construction, for n ≥ 0 and i = 0, . . . , n+ 1, the structure arrow

∂ in : Fun(A⊗n,M)→ Fun(A⊗(n+1),M)

sends f to the functor

∂ in(f ) : (a1, . . . , an+1) 


a1 ? f (a2, . . . , an+1) if i = 0,
f (a1, . . . , ai ? ai+1, . . . , an+1) if 1 ≤ i ≤ n,
f (a1, . . . , an) ? an+1 if i = n+ 1,

with the obvious reinterpretation in the case n = 0.

5.1.4. Assume from now on that A is rigid and pivotal (in particular, A is compactly
generated); see Sections 0.6.4 and 0.6.5 for the definitions. Any rigid monoidal category
is self-dual in such a way that m∨ ' mR . Pivotality further implies that the self-duality
A∨ ' A is an equivalence of (A,A)-bimodules. Using this and [17, Proposition D.2.2],
we can turn the limit of (5.1) into a colimit by taking left adjoints. We find that ZA(M)
can also be computed as the colimit of the simplicial DG category

ZA(M) ' colim
[n]∈1op

(
· · ·A⊗ A⊗M ////// A⊗M ⇒ M

)
, (5.2)

with arrows induced by multiplication, action and reversed action as usual.
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Remark 5.1.5. If A is rigid but not pivotal, then the equivalence A∨ ' A is (A,A)-
bilinear provided that we twist one of the two actions onA by the monoidal automorphism
of A induced by a 7→ (a∨)∨ at the level of compact objects. We are grateful to Lin Chen
for pointing out this issue, which is discussed in [5, Section 3.2].

Remark 5.1.6. The colimit on the RHS in (5.2) computes the relative tensor product
A ⊗A⊗Arev M; this is called the trace of M with respect to A, denoted Tr(A,M). Thus,
center and trace are canonically identified whenever A is rigid and pivotal. See [4, Sec-
tion 5.1] for more details on this general situation.

5.1.7. Thanks to [17, Corollary D.4.9(a)], we know that the cosimplicial diagram fea-
turing in (5.1) satisfies the left Beck–Chevalley condition.11 We then use [20, Theorem
4.7.5.2] to deduce that:

• the evaluation functor ev : ZA(M) → M is monadic: it is conservative, continuous
(hence the split colimit condition is obviously satisfied) and it admits a left adjoint evL

yielding the equivalence

ZA(M) ' (ev ◦ evL)-mod(M);

• the functor underlying the monad ev ◦ evL is isomorphic to the composition (∂0
0 )
L
◦ ∂1

0
' m ◦ (mrev)R .

5.2. The computation

In this section, we let A be the monoidal DG category H(Y) associated to Y ∈ Stk<∞perf ,lfp.
It is rigid and pivotal in view of Lemma 3.5.4. To reduce clutter, let us set

Q := QCoh(Y), H := H(Y) = IndCoh0((Y× Y)∧Y), Z := Z(H).

To compute Z, we will use a variation of the equivalence (5.2) which takes into account
the monoidal functor ′1∗,0 : Q→ H . This will allow us to use the equivalence Z(Q) '

QCoh(LY) established in [4].

5.2.1. Let M be an (H,H)-bimodule category. For any m ≥ 0, we shall use the notation

H⊗Qm := H ⊗Q · · · ⊗Q H︸ ︷︷ ︸
m times

,

with the understanding that H⊗Q0
= Q. The bar resolution of H in the symmetric

monoidal ∞-category Q-mod allows us to write ZH (M) (or rather Tr(H,M)) as the
colimit

ZH (M) ' colim
[n]∈1op

(
· · · (H ⊗Q H)⊗Q⊗Qrev M ////// H ⊗Q⊗Qrev M ⇒ Q⊗Q⊗Qrev M

)
(5.3)

11 Alternatively, the simplicial diagram appearing in (5.2) satisfies the right Beck–Chevalley con-
dition.
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of the simplicial category

H⊗Q(•+2)
⊗

H⊗H rev
M ' H⊗Q(•) ⊗

Q⊗Qrev
M,

with the obvious structure arrows. In the case M = H , we have

Z ' colim
(
H⊗Q• ⊗

Q⊗Qrev
H
)
. (5.4)

Let us proceed to express the DG category on the RHS in geometric terms.

Proposition 5.2.2. There is a natural equivalence

H⊗Q• ⊗
Q⊗Qrev

H → IndCoh0((Y
•+1)∧LY) (5.5)

of simplicial categories, where IndCoh0((Y
•+1)∧

LY) is the simplicial category induced,
under (∗, 0)-pushforwards, by the Čech resolution of Y→ pt.

Proof. For fixed n ≥ 0, we have the obvious equivalence

H⊗Qn ⊗
Q⊗Qrev

H ' H⊗Q(n+1)
⊗

Q⊗Qrev
Q.

Proposition 3.4.1 gives the equivalence

H⊗Q(n+1) '
−→ IndCoh0((Y

n+2)∧Y).

Combining this with Proposition 4.5.5, we obtain

H⊗Qn ⊗
Q⊗Qrev

H ' IndCoh0((Y
n+2)∧Y) ⊗

Q⊗Qrev
Q
'
−→ IndCoh0((Y

n+1)∧LY).

It is a routine exercise (left to the reader) to unravel the structure functors. ut

We can now state and prove the first part of our main theorem.

Theorem 5.2.3. For Y ∈ Stk<∞perf ,lfp, there is a canonical equivalence

Z(H(Y)) ' IndCoh0(pt∧LY).

Proof. The above proposition yields the equivalence

Z ' Tot(IndCoh0((Y
•+1)∧LY)),

where the totalization is taken with respect to the ?-pullbacks. It remains to apply descent
on the RHS: we use Proposition 4.4.1 to obtain

IndCoh0(pt∧LY)
'
−→ Tot(IndCoh0((Y

•+1)∧LY)), (5.6)

as claimed. ut
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5.3. Relation between H(Y) and its center

In the previous section, we have constructed an equivalence Z ' IndCoh0(pt∧
LY). Our

next task is to describe what the adjunction H � Z becomes under that equivalence.

5.3.1. Let
s : [LY→ Y] → [Y→ Y2

]

be the map in Arr(Stkperf ,lfp) defined by the cartesian diagram

Y Y× Y

LY Y

By its very construction, the functor s!,0 : IndCoh0((Y×Y)∧Y)→ IndCoh0(Y
∧

LY) is given
by

H ' (Q⊗Q) ⊗
Q⊗Qrev

H
1∗⊗id
−−−→ Q ⊗

Q⊗Qrev
H
'
−→ IndCoh0(Y

∧

LY).

By adjuction, s? is the continuous functor induced by the QCoh-pushforward 1∗. Since
1 is affine, the functor s? is monadic.

5.3.2. Denote by v : [LY→ Y] → [LY→ pt] the obvious morphism in Arr(Stkperf ,lfp).
As seen above, the adjunction

QCoh(LY) IndCoh0(Y
∧

LY)
v∗,0

v?

is obtained from the adjunction

H ⊗Q H H
m̃

(m̃)R

by tensoring up with H ⊗H⊗H rev −.

5.3.3. We are now ready to combine all the constructions above in the second part of our
main theorem, which describes the relationship of Z(H(Y)) and H(Y) in geometric terms.

Theorem 5.3.4. Under the equivalence IndCoh0(pt∧
LY) ' Z(H(Y)) of Theorem 5.2.3,

the adjunction

H(Y) Z(H(Y))
evL

ev

goes over to the (monadic) adjunction

IndCoh0((Y× Y)∧Y) IndCoh0(pt∧
LY).

v∗,0 ◦ s
!,0

s? ◦ v
!,0

Proof. It suffices to show that the composition

IndCoh0(pt∧LY)
'
−→ Z

ev
−→ H
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corresponds to the functor s? ◦ v!,0. By (5.4), the structure functor ev is the composition

Z := H ⊗
H⊗H rev

H
(m̃)R⊗idH
−−−−−−→ (H ⊗Q H) ⊗

H⊗H rev
H ' Q ⊗

Q⊗Qrev
H

1∗⊗idH
−−−−−→ H,

so that the assertion follows from the remarks above. ut

Example 5.3.5. Let us illustrate the above adjunction in the case where Y = G is a
group DG scheme (as usual, bounded and lfp). The automorphism of G × G given by
(x, y) 7→ (x, xy) yields an equivalence

H(G) ' QCoh(G)⊗ IndCoh(G∧pt) (5.7)

of DG categories. Now set �G := pt×G pt ' Spec(Sym g∗[1]). Since

LG ' G×�G (5.8)

canonically, we obtain

Z(H(G)) ' IndCoh0(pt∧LG) ' D(G)⊗Dder(�G), (5.9)

IndCoh0(G
∧

LG) ' IndCoh0(G
∧

G×�G) ' QCoh(G)⊗Dder(�G). (5.10)

Recalling the example treated in Section 4.6.3, the adjunction H(G)� Z(H(G)) reads

QCoh(G)⊗ IndCoh(G∧pt) QCoh(G)⊗Dder(�G)

id⊗ indWeyl

id⊗ oblvWeyl

D(G)⊗Dder(�G),
indL ⊗ id

oblvL ⊗ id

where indL is the induction functor for left D-modules (which makes sense as G is
bounded).

Acknowledgments. I would like to thank David Ben-Zvi, Dennis Gaitsgory, Ian Grojnowski, Kobi
Kremnizer, Sam Raskin, Pavel Safronov and Bertrand Toën for several interesting conversations.
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