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Abstract. We construct infinitely many new 1-parameter families of simply connected complete
non-compact G2-manifolds with controlled geometry at infinity. The generic member of each fam-
ily has so-called asymptotically locally conical (ALC) geometry. However, the nature of the asymp-
totic geometry changes at two special parameter values: at one special value we obtain a unique
member of each family with asymptotically conical (AC) geometry; on approach to the other spe-
cial parameter value the family of metrics collapses to an AC Calabi–Yau 3-fold. Our infinitely
many new diffeomorphism types of AC G2-manifolds are particularly noteworthy: previously the
three examples constructed by Bryant and Salamon in 1989 furnished the only known simply con-
nected AC G2-manifolds.

We also construct a closely related conically singular G2-holonomy space: away from a single
isolated conical singularity, where the geometry becomes asymptotic to the G2-cone over the stan-
dard nearly Kähler structure on the product of a pair of 3-spheres, the metric is smooth and it has
ALC geometry at infinity. We argue that this conically singular ALC G2-space is the natural G2
analogue of the Taub–NUT metric in 4-dimensional hyperKähler geometry and that our new AC
G2-metrics are all analogues of the Eguchi–Hanson metric, the simplest ALE hyperKähler mani-
fold. Like the Taub–NUT and Eguchi–Hanson metrics, all our examples are cohomogeneity one,
i.e. they admit an isometric Lie group action whose generic orbit has codimension one.

Keywords. Differential geometry, Einstein and Ricci-flat metrics, special and exceptional holon-
omy, non-compact G2 holonomy manifolds, cohomogeneity one metrics, collapsed Riemannian
manifolds

1. Introduction

Over the past 40 years cohomogeneity one Riemannian metrics, i.e. metrics admitting an
isometric Lie group action with generic orbit of codimension one, have played a distin-
guished role in the construction of complete Ricci-flat or Einstein metrics, particularly in
the cases of metrics with special or exceptional holonomy. Throughout its history the sub-
ject has attracted considerable interest from both mathematicians and theoretical physi-
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cists, with key contributions and important new insights from both communities [5, 10,
14,17–20,26,31,32,37,53]. Moreover, until very recently [35], the only known complete
non-compact G2-manifolds, i.e. Riemannian 7-manifolds admitting metrics with holon-
omy group the compact exceptional Lie group G2, were of cohomogeneity one.

The cohomogeneity one property affords a reduction of the system of non-linear par-
tial differential equations that characterises an Einstein metric or a holonomy reduction, to
a system of non-linear ordinary differential equations (ODEs). In some cases these ODEs
can be integrated explicitly and completeness of such metrics can then be approached
directly [5, 10, 17–20, 26, 27, 29, 31, 53]. In more complicated cases qualitative methods
from the theory of ODEs are needed to prove the existence and to establish qualitative
properties of solutions; it is usually then a significant challenge to understand when such
(non-explicit) solutions give rise to complete metrics [8, 13–15, 34].

Prior to this paper a very limited number of complete cohomogeneity one G2-metrics
had been constructed: the three rigid asymptotically conical (AC) examples constructed
by Bryant–Salamon in 1989 [18] and a 1-parameter family of so-called asymptotically lo-
cally conical (ALC) examples constructed in 2013 by Bogoyavlenskaya [13]. The asymp-
totic geometry of ALC spaces will be described a little later in this introduction. The exis-
tence of the latter family, denoted B7 in the physics literature, was first predicted in 2001
by Brandhuber–Gomis–Gubser–Gukov based on an informal analysis of deforming away
from a single explicit ALC G2-metric that they constructed [17]. In addition to these rigor-
ously constructed examples, numerical analysis of the relevant ODE systems by Brandhu-
ber, Cvetič–Gibbons–Lü–Pope and later Hori–Hosomichi–Page–Rabadán–Walcher, sug-
gested the existence of a further three 1-parameter families of ALC G2-metrics, denoted
A7 [40], C7 [16, 28] and D7 [16, 25], in the physics literature. Up to discrete symmetries,
in the first case the group G acting is SU(2)× SU(2), while the latter two cases have the
enhanced symmetry group G = SU(2)× SU(2)× U(1).

Main results. In the current paper we revisit the theory of non-compact G2-manifolds
with a cohomogeneity one action of G = SU(2)× SU(2), with a particular focus on the
case where the symmetry enhances to G = SU(2) × SU(2) × U(1). Our main results
are stated in Theorems A–E later in this introduction. Theorem B proves the existence of
the previously predicted 1-parameter family of cohomogeneity one G2-metrics D7, and
also gives a new proof of the existence of the B7 family. Theorems C and D construct
infinitely many new 1-parameter families of complete simply connected cohomogene-
ity one G2-manifolds, all with G = SU(2) × SU(2) × U(1). Theorem C is particularly
noteworthy because it constructs infinitely many new asymptotically conical G2-metrics;
previously only the three classical examples due to Bryant–Salamon, dating back to 1989,
were known. The metrics constructed in Theorems C and D include the previously pre-
dicted 1-parameter family of G2-metrics C7 as a special case. Theorem E states that our
existence results recover all complete simply connected SU(2)× SU(2)×U(1)-invariant
G2-manifolds.

The general qualitative features of all these 1-parameter families turn out to be the
same. We will give an explanation for this, which relies on the existence of a new singular
cohomogeneity one G2-metric ϕcs on (0,∞)× S3

× S3 which is forward complete with
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ALC geometry as t →∞ but which as t → 0 has a conically singular (CS) end modelled
on the G2-cone C over the standard homogeneous nearly Kähler structure on S3

×S3: see
Theorem A.

Motivation from highly collapsed G2-metrics. Recently, in [35], we developed a new
analytic method for the construction of complete non-compact G2-metrics with ALC ge-
ometry. This method is very powerful: it gives the first constructions of complete non-
compact G2-metrics with very little symmetry; easily yields G2-metrics on infinitely
many different simply connected 7-manifolds and also produces high-dimensional fami-
lies of G2-metrics. The method of construction necessarily produces G2-metrics that are
highly collapsed, that is, these G2-metrics are Gromov–Hausdorff close to a complete
non-compact Calabi–Yau 3-fold B. Since smooth complete G2-metrics typically deform
in a smooth finite-dimensional moduli space, it is natural to try to understand deforma-
tions of these highly collapsed G2-metrics, both in a local and in a global sense.

The local deformation theory of G2-metrics is already well established in other set-
tings: in the smooth compact case by Joyce [41], in the asymptotically cylindrical case
by the third author [47] and in the asymptotically conical and conically singular cases by
Karigiannis–Lotay [43]. This local deformation theory can be adapted to the ALC setting
once a Fredholm theory for elliptic operators on suitable weighted spaces on ALC spaces
is developed. We have developed such analytic tools, the details of which, together with
the local deformation theory, will appear elsewhere.

However, currently it seems (far) out of reach to hope to understand large deforma-
tions of our highly collapsed G2-metrics in any generality. In this paper we focus on
some particular cases where this large deformation question turns out to be tractable.
Although the general G2-metric we construct using the methods of [35] admits only a
circle symmetry, the symmetries are enhanced if the base Calabi–Yau B admits sym-
metries. In particular, if the limiting Calabi–Yau 3-fold B has cohomogeneity one, then
so do our highly collapsed G2-metrics. It is then not difficult to deduce that there are
infinitely many topological types of simply connected 7-manifolds that admit complete
non-compact G2-metrics of cohomogeneity one. The goal of this paper is to understand
all these complete non-compact G2-metrics including those far from the highly collapsed
regime. We achieve this by using cohomogeneity one methods. It turns out that the be-
haviour of these moduli spaces of complete cohomogeneity one G2-metrics on each of the
7-manifolds in question is qualitatively the same. However, despite the qualitative simi-
larities to the already-understood B7 family, constructing these new families of complete
cohomogeneity one solutions will require various new ideas.

Geometry of the B7 family. We now turn to a description of the key properties of the
B7 family, since these will be shared by all the cohomogeneity one families we construct
and moreover motivate our approach to constructing these new families. The B7 fam-
ily is a 1-parameter family of complete cohomogeneity one G2-metrics gα on S3

× R4,
parametrised by a finite interval, say (0, 1]. The group acting is SU(2) × SU(2) × U(1)
with principal orbits diffeomorphic to S3

× S3 and singular orbit S3
× {0}. U(1) acts

trivially on S3 and as the standard Hopf action on R4. The quotient space by the (non-
fixed-point-free) U(1)-action is nevertheless a manifold, homeomorphic to S3

× R3. For
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α ∈ (0, 1), all the metrics gα share the same basic asymptotic behaviour: they are com-
plete with (submaximal) volume growth of large geodesic balls of order r6.

ALF and ALC spaces. To model finer asymptotic behaviour of n-dimensional Ricci-flat
spaces with volume growth of order rn−1 it is natural to consider a metric g∞ on a circle
bundle M over a Ricci-flat cone (C, gC) of dimension n− 1 of the form

g∞ = gC + `
2θ2,

where ` > 0 is some constant and θ is some fixed connection on the circle bundle M .
Thus the model metric g∞ is a Riemannian submersion over the cone C with circle fi-
bres of constant length 2π`. Under appropriate conditions on curvature decay, we might
then expect that an n-dimensional Ricci-flat manifold with volume growth of order rn−1

must, outside a compact set, become asymptotic to (an exterior domain in) such a model
end. If n = 4, then (up to a possible Z2-quotient) necessarily C = R3. Such metrics
were therefore termed asymptotically locally flat (ALF) spaces by physicists. The higher-
dimensional analogues of ALF spaces were subsequently termed asymptotically locally
conical (ALC) spaces [26]. For α ∈ (0, 1), any metric gα in the B7 family is ALC. For any
ALC G2-manifold the cone C should be a 3-dimensional Calabi–Yau cone. Many such
cones are now known to exist, e.g. see the discussion in [35, §9] and references therein.
Hence, unlike the very rigid situation for ALF hyperKähler 4-manifolds, there are many
different asymptotic models for ALC G2-metrics. For all ALC metrics in the B7 family the
Calabi–Yau cone C is the conifold, i.e. the cone over the standard homogeneous Sasaki–
Einstein metric on S2

× S3, viewed as the homogeneous space SU(2)× SU(2)/1U(1).

Transitions in the asymptotic geometry of the B7 family. As we approach either endpoint
of the interval (0, 1], the asymptotic geometry of the metrics gα degenerates. Fixing the
scale of gα by requiring the size of the singular orbit S3

×{0} ⊂ S3
×R4 to be constant, as

α → 0 we find that `→ 0 and the G2-metrics collapse to the Stenzel metric [20, 53] on
the smoothing of the conifold, a well-known example of a cohomogeneity one AC Calabi–
Yau 3-fold. Collapse occurs with bounded curvature, except close to the singular S3,
which is fixed by the U(1)-action.

As α → 1, instead ` → ∞ and the metric g1 has a different asymptotic behaviour:
it is still complete but the volume growth jumps from submaximal r6 up to maximal
growth r7. The geometry at infinity of g1 is asymptotically conical (AC), i.e. it is mod-
elled by a G2-holonomy cone over a smooth nearly Kähler 6-manifold: in this case S3

×S3

endowed with its homogeneous nearly Kähler structure. In fact, the metric g1 is the clas-
sical Bryant–Salamon G2-metric on S3

× R4 [18].
When the ALC/AC transition occurs at α = 1 nothing catastrophic happens to the

local geometry, in the sense that there is an extended 1-parameter family gα , α ∈ (0,∞),
of local cohomogeneity one G2-metrics that continues to close smoothly in the neigh-
bourhood of the singular orbit S3

× {0}. However, for α > 1, these local solutions gα are
incomplete. So there are two “phases” of locally well-behaved solutions: one consisting
entirely of complete ALC metrics and the other entirely of incomplete metrics. The AC
solution appears at the transition between these two phases.
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A conically singular ALC G2-space, its desingularisations and the G2-flop. Given
the freedom to rescale any G2-metric, when describing the moduli space of G2-metrics it
is sometimes natural to impose a choice that breaks the scale invariance, and so describes
solutions up to scale. Different ways to fix this scale invariance can however lead to
different behaviour of solutions in various limiting regimes. In the above description of
the B7 family, scale invariance was broken by fixing the size of the singular orbit S3.
For a family of ALC metrics there is another geometrically natural way to break scale
invariance: keep the length ` of the asymptotic circle of all the metrics fixed. Adopting
this alternative scale fixing forces the size of the singular orbit to vary within the B7 family
and the size shrinks to zero as α approaches 1, where the ALC/AC transition occurred.

If we let g̃α denote this rescaling of the B7 metrics, then there is an obvious guess
for the behaviour of the limit of g̃α as α → 1. There should exist a cohomogeneity one
G2-metric on (0,∞) × S3

× S3 with the following properties: at the end where t → ∞
the metric is forward complete with ALC asymptotics; at the end where t → 0 we have a
conically singular (CS) end, i.e. the metric completion over t = 0 has an isolated conical
singularity, modelled on the G2-cone C over the homogeneous nearly Kähler structure on
S3
× S3.
Our first main result confirms the existence of this CS ALC G2-space: its existence

and significance does not seem to have been anticipated in the physics literature.

Theorem A. Let C be the G2–cone over the homogeneous nearly Kähler structure on
S3
× S3.

(i) There exists a 1-parameter family of SU(2) × SU(2) × U(1)-invariant torsion-free
G2-structures ϕccs, c ∈ R, defined on (0, ε)× S3

× S3 for some ε > 0 and such that
the metric gϕccs has a conical singularity as t → 0 asymptotic to the cone C. If c = 0
the solution coincides with the cone C.

(ii) If c > 0 then the local conically singular solution from (i) is forward complete and
extends to a torsion-free G2-structure on (0,∞)× SU(2)× SU(2) with a conically
singular end as t → 0 and an ALC end as t → ∞. All solutions with c > 0 differ
only by rescaling.

(iii) If c < 0 then the local conically singular solution from (i) is forward incomplete.

Desingularising CS G2-metrics. The existence of the CS ALC G2-metric constructed in
Theorem A immediately suggests the possibility of obtaining families of smooth ALC
G2-metrics from it, by a desingularisation procedure. Assuming the existence of a com-
pact CS G2-space (X, gcs), Karigiannis [42] used a gluing method to find a 1-parameter
family of G2-metrics gt on a smooth compact 7-manifold M that degenerates to (X, gcs)

as t → 0. More specifically, he assumed that the G2-cone C that models the singularity
admits a G2-desingularisation, i.e. a complete AC G2-manifold asymptotic at infinity to
the given cone C. The smooth compact manifold M is obtained from X by first replacing
a neighbourhood of the conical singularity with a rescaled copy of the AC manifold and
then correcting to G2-holonomy by analytic methods. In the compact case there are two
significant obstacles to turning Karigiannis’ desingularisation method into a practical way
to construct smooth G2-metrics: firstly, it is still unknown how to produce any compact
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CS G2-spaces; secondly, topological obstructions to smoothing do occur in the compact
setting.

One can also consider the same G2-desingularisation procedure in the setting of non-
compact CS G2-spaces. In the specific case of the CS ALC G2-space constructed in
Theorem A the classical Bryant–Salamon AC G2-metric on S3

× R4 provides a G2-
desingularisation of the cone over the standard nearly Kähler structure on S3

× S3. For
instance, for δ > 0 small and α ∈ (1− δ, 1), the B7 metric g̃α above should arise this way
as a G2-desingularisation of the CS ALC G2-metric of Theorem A.

To adapt Karigiannis’ approach to the non-compact ALC setting requires non-trivial
additional analytic work to be undertaken. However, the CS ALC setting has two notable
advantages: (i) we have already proven the existence of at least one CS ALC G2-space; (ii)
the obstructions to smoothing present in the compact setting no longer arise, essentially
because of the extra freedom to vary the asymptotic geometry. We will give the details of
this ALC G2-desingularisation method elsewhere, since this also entails developing the
requisite weighted analysis on ALC spaces.

In fact, there are three variants of the AC Bryant–Salamon G2-metric on S3
×R4, that

are equivalent up to diffeomorphism, but not up to SU(2) × SU(2) × U(1)-equivariant
diffeomorphism. Depending on which variant is used to perform the desingularisation
one obtains three different 1-parameter families of smooth complete ALC G2-metrics.
Naturally, one family is the B7 family, whose degeneration behaviour motivated us to
seek the CS ALC solution in the first place. Both the other families are versions of the
so-called D7 family: families of G2-metrics that in the collapsed limit arise from the two
small resolutions of the conifold (whereas the B7 family collapses to the smoothing of
the conifold). The transition between the B7 and D7 family through the CS ALC space
of Theorem A gives a metric version of the so-called G2-flop, whose physical signifi-
cance was emphasised by Acharya and Atiyah–Maldacena–Vafa in the context of largeN
duality [1, 6].

Since both the CS ALC G2-metric of Theorem A and the Bryant–Salamon AC met-
ric have cohomogeneity one, one would hope to be able to prove the existence of these
particular G2-desingularisations more directly by ODE methods. This is indeed the case.

Theorem B.

(i) There exists a 1-parameter family (up to scale) of SU(2)× SU(2)× U(1)-invariant
complete G2-metrics on S3

×R4 with ALC geometry where U(1) acts trivially on S3

and via the standard Hopf action on R4.
(ii) There exists a 1-parameter family (up to scale) of SU(2)× SU(2)× U(1)-invariant

complete G2-metrics on S3
×R4 with ALC geometry where U(1) acts via the standard

Hopf action on S3 and trivially on R4.

The family constructed in (i) is the B7 family whose existence was first proven in 2013
by Bogoyavlenskaya [13], following earlier work by Brandhuber–Gomis–Gubser–Gukov
[17] and Cvetič–Gibbons–Lü–Pope [24]. The family constructed in (ii) is the D7 family.
Numerical evidence for its existence was given by Cvetič–Gibbons–Lü–Pope [25] and
Brandhuber [16, §3.2] We proved the existence of sufficiently collapsed members of this
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family in [35]. The advantage of the cohomogeneity one methods of this paper is that
they allow us to construct the full 1-parameter space of solutions, not only those that are
sufficiently collapsed or close to the CS ALC solution.

Highly collapsed compact CS G2-spaces. Singular exceptional holonomy spaces play a
crucial role in physics: M theory compactified on a smooth G2-manifold has low energy
behaviour that is too simple to model known features of the Standard Model of Particle
Physics, but M theory on singular G2-spaces with a combination of codimension 4 orb-
ifold singularities and codimension 7 singularities can correct this problem [1–3, 11, 55].
Understanding compact singular spaces with G2-holonomy is therefore an important, but
currently open, problem. The existence of our CS ALC G2-space suggests a possible
approach (that we are currently pursuing) to construct highly collapsed compact CS G2-
spaces that are close to a compact CS Calabi–Yau 3-fold.

Finite quotients and infinitely many new AC G2-manifolds. We have just seen the
importance of AC G2-metrics for constructing smooth G2-manifolds by desingularising
CS G2-spaces. AC G2-manifolds have also been studied from a physics perspective, e.g.
the local physics associated with the three Bryant–Salamon AC G2-manifolds was stud-
ied in detail by Atiyah–Witten [7]. However, these three classical examples remained
the only known AC G2-metrics. As we now explain, our previous work on highly col-
lapsed G2-metrics also suggests the existence of infinitely many new cohomogeneity one
AC G2-metrics.

Earlier, we explained that specialising our analytic construction of highly collapsed
G2-metrics to the case where the collapsed AC Calabi–Yau limit is also of cohomogeneity
one, yielded the existence of infinitely many simply connected cohomogeneity one G2-
manifolds. In each of these cases (up to scale) there is a 1-parameter family of ALC
G2-metrics close to the highly collapsed limit; it is then natural to try to understand this
1-parameter family away from this highly collapsed regime. Motivated by the geometry
of the B7 family of G2-metrics, it is natural to conjecture that, as we deform any of these
infinitely many 1-parameter families away from the collapsed limit, eventually an isolated
conical singularity develops while maintaining ALC asymptotics at infinity.

CS ALC G2-spaces consistent with this conjecture exist: they are quotients of the CS
ALC space constructed in Theorem A by particular finite cyclic subgroups of its group
of G2-isometries. However, in order for such a CS ALC G2-space to be a limit of smooth
ALC G2-metrics we must have previously observed an AC G2-metric with prescribed
topology and asymptotic geometry bubbling off. Thus continuing these 1-parameter fam-
ilies of highly collapsed cohomogeneity one G2-metrics far from the collapsed regime
predicts the existence of infinitely many new cohomogeneity one AC G2-metrics, asymp-
totic to particular finite quotients of the standard G2-cone over S3

× S3.

Infinitely many new cohomogeneity one AC G2-metrics. For each m, n ∈ Z, let Mm,n

denote the total space of the circle bundle over KCP1
×CP1 whose restriction to the zero

section has first Chern class c1 = m[ω] − n[ω′], where ω and ω′ denote the standard
Kähler–Einstein metrics on the two factors. We describe Mm,n as a cohomogeneity one
space as follows. Denote by Km,n ⊂ T 2

⊂ SU(2) × SU(2) the kernel of the homomor-
phism ρm,n : T

2
→ U(1) defined by (eiθ1 , eiθ2) 7→ ei(mθ1+nθ2). ThenKm,n is isomorphic
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to U(1) × Zd where d = gcd(m, n). If m and n are coprime then Mm,n is a simply con-
nected cohomogeneity one 7-manifold with G = SU(2) × SU(2): it has singular orbit
typeG/Km,n ' S2

×S3 and principal orbit typeG/0m+n where 0m+n := Km,n∩K2,−2
is isomorphic to a cyclic group of order 2|m + n| whose generator ζ is embedded in
T 2
⊂ SU(2)×SU(2) via ζ 7→ (ζ n, ζ−m) (up to the action of the outer automorphism the

image in fact depends only on m + n). In fact, each Mm,n also admits a cohomogeneity
one action of SU(2)× SU(2)× U(1).

Theorem C. Suppose that m and n are coprime positive integers.

(i) There exists a 1-parameter family ϕα , α > 0, of smooth SU(2) × SU(2) × U(1)-
invariant torsion-free G2-structures defined in a tubular neighbourhood of the singu-
lar orbit in Mm,n.

(ii) There exists a unique αac > 0 such that ϕαac extends to a complete torsion-free AC
G2-structure on Mm,n asymptotic to the 0m+n-quotient of the homogeneous nearly
Kähler structure on S3

× S3.

These new AC G2-metrics are rigid up to scaling. This is consistent with our conjecture
that they arise as limits of 1-parameter families of ALC metrics: otherwise the desingu-
larisation construction would yield a larger parameter family of smooth ALC G2-metrics
close to the CS ALC limit.

Note also that the tangent cone at infinity of our AC G2-metrics depends only on
the sum m + n, not on m and n separately, whereas we prove (see Remark 7.2) that
metrics with different coprime pairs (m, n) satisfying 0 < m ≤ n are not isometric.
Hence by considering all such pairs with fixed sum we obtain finitely many different
AC G2-metrics asymptotic to the same G2-cone. This gives rise to infinitely many new
geometric transitions in G2-geometry.

Cohomogeneity one ALC metrics from AC ones. The existence of these new AC G2-met-
rics asymptotic to the cone over (S3

× S3)/0m+n allows us to use the ALC version of
the G2-desingularisation technique to construct new smooth ALC G2-metrics close to CS
ALC limits (and therefore far from the collapsed limit). However, the cohomogeneity one
methods we developed to prove the existence of the new AC G2-metrics also enable us to
construct such smooth ALC G2-metrics more directly. Moreover, these methods allow us
to construct the whole 1-parameter family of G2-metrics interpolating between the highly
collapsed regime and the CS ALC/AC limit, whereas analytic methods can at present pro-
duce only solutions close to one of those two limiting regimes. Under the assumptions of
Theorem C and adopting its notation we have the following.

Theorem D.

(i) If 0 < α < αac then the local solution ϕα constructed in Theorem C extends to a
complete torsion-free ALC G2-structure on Mm,n, asymptotic to a circle bundle over
a Z2-quotient of the conifold.

(ii) If α > αac then the local solution ϕα constructed in Theorem C cannot be extended
to a complete invariant G2-metric.
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Theorems C and D specialised to the casem = n = 1 establish the existence of the whole
C7 family of metrics previously conjectured to exist in [28].

Dihedral ALC G2-spaces. When m = n = 1, the desingularisation procedure also sug-
gests the existence of another family of complete cohomogeneity one ALC G2-metrics.
Indeed we can quotient the CS ALC space of Theorem A by a “dihedral” group Z4 that
does not preserve the circle action, in which case the quotient inherits only a cohomo-
geneity one action of SU(2)2. However, since the tangent cone at the conical singularity
has enhanced SU(2)3-symmetry, the local singularity model is in fact isomorphic to the
cone over S3

×S3/02. Hence the new AC G2-metric given by Theorem C can be used to
desingularise this singularity. The resulting smooth complete cohomogeneity one ALC
G2-manifolds have only SU(2)2-symmetry and belong to the A7 family predicted by
Hori–Hosomichi–Page–Rabadán–Walcher [40]; because of its smaller symmetry group
at present we are unable to recover the A7 family by cohomogeneity one methods. We
defer the analytic construction of the A7 family close to either the CS ALC or the highly
collapsed limits to elsewhere.

Classification of SU(2)2 × U(1)-invariant complete G2-metrics. While we therefore ex-
pect the existence of at least another family of complete cohomogeneity one SU(2)2-
invariant G2-manifolds, we show that our constructions recover all complete G2-mani-
folds with enhanced SU(2)2 × U(1)-symmetry.

Theorem E. Any complete simply connected SU(2)2 × U(1)-invariant G2-manifold is
isometric to one of the complete metrics of Theorems B, C and D.

Analogies with 4-dimensional hyperKähler geometry. There are various analogies be-
tween the geometry of hyperKähler 4-manifolds and the geometry of G2-manifolds. Here
we pursue the very strong analogy between the CS ALC G2-metric constructed in Theo-
rem A and the Taub–NUT metric on C2. The reader is encouraged to skip to the plan of
the paper if analogies with hyperKähler geometry seem unlikely to enlighten.

The Taub–NUT family. Recall that the Gibbons–Hawking ansatz [36] provides a local
description of any 4-dimensional hyperKähler metric admitting a triholomorphic circle
action in terms of a positive harmonic function h on some domain in R3. We will refer to
the family of hyperKähler metrics obtained by choosing hm(x) = m+ 1

2|x| for any choice
of m ∈ R as the Taub–NUT family of metrics gmtn . By scaling we can reduce to the three
cases: m = 0, m = +1 or m = −1. For m = 0 we obtain the flat metric on R4. For
m = 1 we obtain the (Euclidean) Taub–NUT metric on R4: a complete cohomogeneity
one ALF space discovered by Hawking [38]. Many other ALF hyperKähler 4-manifolds
can be derived from Taub–NUT as we describe below. For m = −1, h is no longer ev-
erywhere positive, and the resulting metric is incomplete. However, even this incomplete
cohomogeneity one metric is not without interest. For r sufficiently large, h is strictly
negative and one therefore obtains a (negative) definite hyperKähler ALF end from it.
The asymptotic geometry of the Atiyah–Hitchin metric [5], another more complicated
ALF hyperKähler 4-manifold that does not arise from the Gibbons–Hawking ansatz, nev-
ertheless, turns out to be exponentially well approximated by (a finite quotient of) such a
negative mass Taub–NUT metric gmtn .
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The conically singular family of G2-metrics as the G2 analogue of the Taub–NUT fam-
ily. It is natural to view the family of CS torsion-free G2-structures ϕccs we constructed
in Theorem A as the G2 analogue of the Taub–NUT family of metrics gmtn . Certain sim-
ilarities are immediately apparent: we have a 1-parameter family of cohomogeneity one
special holonomy metrics for which the singular orbit is a point; up to scale there are only
three different solution types c = 0, c > 0 or c < 0; when c = 0 we obtain a Ricci-flat
cone C with special holonomy which is rigid and that has enhanced symmetry compared
to the solutions with c 6= 0; for c > 0 the CS solution ϕccs is forward complete and has
an ALC end as t →∞; for c < 0 the CS solution ϕccs is forward incomplete.

ALF hyperKähler metrics from quotients of Taub–NUT. Further similarities between the
CS family of G2-metrics ϕccs and the Taub–NUT family of metrics gmtn are connected
with the infinitely many new families of cohomogeneity one G2-metrics we constructed
in Theorems C and D. First we need to recall how to obtain other ALF hyperKähler 4-
manifolds by combining the (positive mass) Taub–NUT metric with ALE hyperKähler
4-manifolds, following Biquard–Minerbe [12].

If we identify R4 with the quaternions H then left multiplication by any unit quater-
nion and right multiplication by unit quaternions in the normaliser U(1) o Z2 of the
maximal torus U(1) of SU(2) all give isometries of the Taub–NUT metric; the left SU(2)
action rotates the 2-sphere of compatible complex structures, while U(1)oZ2 acts triholo-
morphically. On flat R4 the group of triholomorphic isometries fixing the origin enhances
to SU(2). For any ADE subgroup 0 ⊂ SU(2) the minimal resolution of C2/0 admits a
family of complete ALE hyperKähler metrics asymptotic to the Euclidean orbifold metric
on C2/0 [44]. In the simplest case, 0 = Z2 is the centre of SU(2) and the minimal res-
olution of C2/Z2, biholomorphic to T ∗CP1, admits a unique (up to scale) cohomogene-
ity one SU(2)-invariant ALE hyperKähler metric, the Eguchi–Hanson metric [31]. For
any cyclic or dihedral subgroup 0 ⊂ SU(2), but not any of the exceptional ones, since
these are not contained in U(1) o Z2, we may consider the ALF hyperKähler orbifold,
Taub–NUT quotiented by 0. We may resolve its isolated orbifold singularity by gluing
in an ALE hyperKähler metric on the minimal resolution of C2/0. Biquard–Minerbe
[12] showed that one can glue in such ALE hyperKähler spaces without destroying the
ALF geometry at infinity. In the simplest case 0 = Z2, one obtains a 1-parameter fam-
ily of cohomogeneity one ALF hyperKähler metrics on T ∗CP1. In fact, whenever 0 is
cyclic, both the ALE metric on the minimal resolution and the Taub–NUT metric ad-
mit triholomorphic circle actions, and the result of gluing arises more explicitly from the
Gibbons–Hawking ansatz. Gluing in a dihedral ALE space will however destroy the tri-
holomorphic circle symmetry of Taub–NUT and the main point of [12] was to construct
dihedral ALF spaces.

In the analogy with hyperKähler geometry, quotients of the CS ALC G2-metric con-
structed in Theorem A by finite subgroups of its group of G2-structure-preserving isome-
tries acting freely on S3

× S3, are the G2 analogues of orbifold quotients of Taub–NUT.
The AC G2-metrics constructed in Theorem C, being rigid (up to scale) and of coho-
mogeneity one, can all be regarded as analogues of the Eguchi–Hanson metric. Finally
the ALC version of G2-desingularisation, applied to finite quotients of the CS ALC
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G2-metric of Theorem A, and desingularised by appropriate AC G2-metrics, e.g. using
the new AC G2-metrics we construct, is the G2 analogue of the Biquard–Minerbe con-
struction.

Plan of the paper. In the rest of the Introduction we give the plan of the paper, which
also serves as a detailed outline of the proof of our four main theorems.

In Section 2 we describe an infinite family of simply connected non-compact 7-
manifolds admitting cohomogeneity one actions of SU(2)×SU(2)×U(1) which, except
in one case, arise as the total space of a non-trivial circle bundle over a cohomogeneity
one AC Calabi–Yau 3-fold B. There are three main examples of the latter: the small res-
olutions and the smoothing of the conifold and the canonical bundle of CP1

× CP1. The
small resolutions and the smoothing of the conifold give rise to a single simply connected
cohomogeneity one 7-manifold each. Both are diffeomorphic to S3

× R4, with principal
orbit S3

×S3, but they have inequivalent singular orbit types and are therefore not equivari-
antly diffeomorphic. KCP1

×CP1 , because it has 2-dimensional second cohomology, pro-
vides by far the richest source of simply connected cohomogeneity one 7-manifolds: there
are infinitely many such circle bundles Mm,n over KCP1

×CP1 , parametrised as described
above by a pair of coprime integers m and n. Provided m and n have the same sign,
the circle bundles Mm,n all satisfy the hypotheses in our recent construction of com-
plete highly collapsed G2-manifolds with ALC geometry from circle bundles over an AC
Calabi–Yau 3-fold B [35]. Hence we know that each Mm,n admits a 1-parameter fam-
ily of highly collapsed ALC G2-metrics, which must be invariant under the action of
SU(2) × SU(2) × U(1). The principal orbits in Mm,n are diffeomorphic to quotients of
S3
× S3 by a cyclic group 0m+n of order 2|m+ n|.
The goal of the rest of the paper is to use cohomogeneity one techniques to understand

the whole 1-parameter family of complete cohomogeneity one SU(2) × SU(2) × U(1)-
invariant G2-metrics—not only the highly collapsed regime accessible via our analytic
methods—for each of the 7-manifolds described above.

In Section 3 we describe the system of non-linear ODEs that governs the lo-
cal behaviour of SU(2) × SU(2) × U(1)-invariant torsion-free G2-structures ϕ on
I × (S3

× S3)/0, where I is some interval and 0 is either trivial or one of the finite
cyclic subgroups 0k ' Z2k . The case where 0 is non-trivial is essential to this paper.
Both Hamiltonian and Lagrangian formulations of the ODE system arise from Hitchin’s
work on stable forms [39]; our paper makes use of both. Two real parameters p and q
determine the cohomology class of the fundamental 3-form ϕ. For each choice of param-
eters p and q, local SU(2)×SU(2)×U(1)-invariant G2-metrics on I × (S3

×S3) depend
on two parameters. The main task is to understand which of these local solutions extend to
complete metrics, or in the case of the CS ALC solution of Theorem A, to a metric that is
forward complete with ALC geometry as t → ∞ and has prescribed singular behaviour
as t → 0.

In Sections 4 and 5 we understand solutions that extend smoothly over a singular
orbit and solutions that have either conically singular or asymptotically conical end be-
haviour. Proposition 4.5, the main result of Section 4, characterises which members of the
2-parameter family of local SU(2) × SU(2) × U(1)-invariant torsion-free G2-structures
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extend smoothly over the different classes of singular orbits that we need to consider. In
each case there are strong restrictions on the values of the constants p and q compat-
ible with smooth extension over a given singular orbit type and in all cases there is (up
to scale) a 1-parameter family of smooth solutions defined in a neighbourhood of each
type of singular orbit. To prove these results we adapt to our first-order ODE systems the
representation-theoretic approach to singular initial value problems for cohomogeneity
one Einstein metrics developed by Eschenburg–Wang [32]. The first two authors used the
same framework in the course of proving the existence of complete cohomogeneity one
nearly Kähler 6-manifolds [34, §4]. The main result in Section 5 is Proposition 5.3, which
proves the existence of 1-parameter families of SU(2)× SU(2)×U(1)-invariant torsion-
free G2-structures on either a CS or AC end; in the CS case necessarily p = q = 0, while
in the AC case we get a 1-parameter family of AC ends ϕcac for each fixed p, q. Describing
solutions with either type of end behaviour leads to a class of singular initial value prob-
lems not widely studied in the previous extensive work on cohomogeneity one Einstein
metrics. We state a general existence result, Theorem 5.1, which yields convergent gener-
alised power series solutions to a wide class of first-order singular initial value problems,
including ours, and for which solutions depend real analytically on a finite number of real
parameters.

The most novel arguments in the paper appear beginning in Section 6 where we de-
velop criteria that guarantee that a locally-defined cohomogeneity one torsion-free G2-
structure extends to a forward complete solution and then establish additional conditions
under which we can bootstrap from forward completeness to finer asymptotic metric
behaviour—in our case ALC asymptotics.

Proposition 6.1 gives a necessary and sufficient condition for forward completeness in
terms of the positivity of the mean curvature of all principal orbits. The fact that (non-flat)
principal orbits cannot be minimal in complete cohomogeneity one Ricci-flat manifolds
was observed previously by Böhm [15]. The sufficiency of the positivity of mean curva-
ture of all principal orbits for forward completeness, however, uses the fact that we have
a first-order ODE system for the metric g. It is a pleasure to thank Burkhard Wilking for
suggesting this idea. Close to a singular orbit, or to an isolated conical singularity, the
mean curvature of any principal orbit is necessarily large and positive. The next step is
therefore to determine conditions under which the positivity of the mean curvature of the
principal orbits persists for all time.

Most of the results of Sections 2 to 5 are stated more generally for SU(2) × SU(2)-
invariant torsion-free G2-structures that do not necessarily enjoy an enhanced symmetry
group SU(2)×SU(2)×U(1). At this stage, to make further progress, it is crucial that we
restrict to the case where there is an additional U(1)-symmetry. Once the values of p and q
have been fixed, two coefficient functions a and b determine any closed SU(2)×SU(2)×
U(1)-invariant G2-structure ϕ. The rest of our analysis of the global behaviour of solutions
is based on the Lagrangian formulation of the problem. Under the additional symmetry
assumption this leads to the single second-order non-linear ODE, equation (3.16), which
we write schematically as Gp,q(a, b, a′, b′, a′′, b′′) = 0. In Lemma 6.4 we prove that
solutions to equation (3.16) that begin in a certain open subset Ofc of the set of principal
orbits must remain in Ofc, at least while they continue to exist with the fundamental
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3-form ϕ remaining well-defined. Moreover, it turns out that the mean curvature of any
principal orbit in Ofc is strictly positive. Therefore, by Proposition 6.1, any solution that
ever enters Ofc cannot blow up in finite time and is therefore forward complete.

Significantly more work is needed to pass from forward completeness to a statement
about the complete end necessarily having ALC geometry. The first step is to clarify what
asymptotic behaviour the coefficients a and b should exhibit along an ALC end. On the to-
tal space of the circle bundle R+×SU(2)×SU(2)→ R+×(SU(2)×SU(2))/1U(1) = C
over the conifold C there is an explicit 1-parameter family of closed SU(2) × SU(2) ×
U(1)-invariant G2-structures ϕ`∞, where the parameter ` > 0 is the asymptotic length of
the circle fibre. These closed G2-structures ϕ`∞ serve as models for the possible asymp-
totic behaviour of ALC ends of invariant G2-metrics. Convergence of ϕ to the asymptotic
model ϕ`∞ implies that, in appropriate parametrisations, a and b behave asymptotically
like s3 and s2 respectively.

For a solution to (3.16) that enters the open set Ofc above, forward completeness
already forces both a and b to go to infinity. However, without further assumptions it
does not force the asymptotic behaviour needed for an ALC end. To guarantee this we
need to restrict to a smaller open subset Oalc ⊂ Ofc of the space of principal orbits.
Proposition 6.11 establishes that if a solution of (3.16) enters Oalc then it stays in Oalc
for all future times and has an ALC end modelled on ϕ`∞ for some ` > 0. Proposition
6.11 is our main tool for establishing the existence of forward complete invariant torsion-
free G2-structures with an ALC end. On the other hand, Proposition 6.13 establishes the
existence of an open subset Oin of the space of principal orbits with the property that any
solution of (3.16) that enters Oin is forward incomplete.

We can now easily prove the existence of the conically singular ALC G2-metric de-
scribed in Theorem A and also the two 1-parameter families B7 and D7 of ALC G2-met-
rics described in Theorem B, by combining Proposition 6.11 with information about the
local solutions extending smoothly on singular orbits constructed in Section 4, or the lo-
cal solutions with CS ends constructed in Section 5. The point is that for all these local
solutions we have expansions for the coefficients a and b of the 3-form ϕ in a neighbour-
hood of the singular orbit. Using these we can identify for exactly which parameter values
local solutions enter Oalc or Oin. For instance, the local CS solutions ϕccs enter into Oalc
(respectively, Oin) precisely when c > 0 (c < 0).

One also expects a similar behaviour for the infinitely many 1-parameter (up to scale)
families of local solutions defined in a neighbourhood of the singular orbit inMm,n: there
are two phases, one corresponding to solutions that enter Oalc and one corresponding to
solutions that enter Oin; the two phases are separated by a unique (up to scale) solution
corresponding to a smooth AC metric on Mm,n. However, unlike the previous cases, it
is impossible to determine which phase each solution belongs to simply by looking at
its behaviour near the singular orbit. The key to proving Theorems C and D turns out to
be first to focus attention on the single member of each 1-parameter family that has AC
geometry. Once we prove the existence of the unique AC member of each 1-parameter
family, we will be able to compare the behaviour of our other local solutions with it. We
will use this to conclude that, for all parameter values on one side of the AC solution,
local solutions are eventually forced to enter Oalc, while on the other side of the AC
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solution, local solutions that exist for a sufficiently long time must eventually enter Oin;
see Sections 7.2 and 7.3.

It remains therefore to describe the approach we take in Section 7.1 to the construction
of a new rigid complete AC G2-metric on each of the infinitely many spaces Mm,n. To
illustrate the somewhat delicate nature of the problem consider the following facts. From
Proposition 4.5(iii, iv), for each choice of m and n there is (up to scale) a 1-parameter
family of local SU(2)× SU(2)× U(1)-invariant solutions that extend smoothly over the
singular orbit SU(2) × SU(2)/Km,n. Moreover, the constants p and q that specify the
cohomology class of the G2-structure ϕ are determined (up to scale) by the choice of m
and n. Also from Proposition 5.3(ii), for each choice of p and q, there exists a 1-parameter
family of SU(2) × SU(2) × U(1)-invariant solutions with AC ends. Finally, recall also
that the analysis of the ODEs on the principal orbits showed that, for each fixed p and q,
there is a 2-parameter family of local SU(2)× SU(2)×U(1)-invariant solutions. Putting
this together, a complete AC G2-metric corresponds to an intersection point of two curves
in a 2-dimensional manifold. For dimensional reasons we might hope that such matching
happens a (non-zero!) finite number of times.

We consider the problem of “shooting from infinity”, i.e. we consider the 0m+n quo-
tient of the 1-parameter family ϕcac, c ∈ R, of invariant AC end solutions ϕcac we con-
structed on (T ,∞) × S3

× S3 and investigate extending these solutions backwards. Our
aim is to show that as we vary the parameter c ∈ R, for exactly one value of c the max-
imal backward extension of the AC end satisfies the conditions to close smoothly on the
singular orbit SU(2)× SU(2)/Km,n at its backward extinction time. Proposition 7.6 pro-
vides our main criterion for backward extension of invariant AC ends: if a principal orbit
belongs to a certain open subset O+ac of the set of principal orbits then the solution can
be continued backwards in time remaining in O+ac, provided that the fundamental 3-form
ϕ remains well-defined. The invariant AC ends ϕcac constructed in Proposition 5.3(ii) be-
long to O+ac precisely when the parameter c ∈ R is positive. The fundamental 3-form ϕ

fails to be well-defined whenever the curve (a, b) hits the zero-locus of an explicit quartic
polynomial F (depending on m and n). The level set F = 0 contains a unique singular
point. In Proposition 7.12 we show that there exists a unique parameter value cac > 0
such that the solution ϕcac extends backward until it hits this distinguished point. Finally,
in Proposition 7.13 we show that this unique solution in fact defines a smooth torsion-free
G2-structure on Mm,n which by construction is AC.

The classification result Theorem E is also proved in Section 7 by showing that, up
to a finite quotient, any SU(2)2 × U(1)-invariant G2-manifold closing smoothly on a
singular orbit must be equivariantly diffeomorphic to one of the manifolds we consider in
the paper; cf. Theorem 7.3.

2. Cohomogeneity one ALC G2-manifolds

In this section we describe the 7-manifolds with a cohomogeneity one action of SU(2)×
SU(2) known to admit complete G2-metrics. We start by describing the B7 family [13,
17] and then discuss our analytic construction of highly collapsed ALC G2-metrics [35],
specialised to the cohomogeneity one setting.
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A cohomogeneity one manifold X is a Riemannian manifold acted upon isometrically
by a Lie group G with generic orbits of codimension one. The cohomogeneity one mani-
folds we consider in this paper are complete non-compact irreducible Ricci-flat manifolds
and G will be compact. The Splitting Theorem implies that they have only one end and
therefore the orbit space X/G is a half-line [0,∞). The cohomogeneity one structure of
X is encoded by a pair of closed subgroups K0 ⊂ K ⊂ G called its group diagram.
Orbits corresponding to points in (0,∞) are hypersurfaces all diffeomorphic to G/K0
and are called principal orbits. The orbit over 0 is the only lower-dimensional orbit G/K
and it is called the singular orbit. X has the topology of a disc bundle over the singular
orbit. The complement of the zero section of this disc bundle is foliated by the princi-
pal orbits G/K0, which themselves are sphere bundles over G/K . In particular, K/K0
must be diffeomorphic to a sphere. All the manifolds we consider in this paper admit a
cohomogeneity one action of G = SU(2)× SU(2) or of G = SU(2)× SU(2)× U(1).

2.1. The B7 family and its symmetries

The B7 family is a 1-parameter family (up to scale) of G2-metrics on S3
× R4 admitting

a cohomogeneity one action of SU(2)× SU(2), in fact of SU(2)× SU(2)×U(1). As ex-
plained in the Introduction, the generic member of the family has ALC asymptotic geom-
etry, while at a special parameter value we have the Bryant–Salamon AC metric [18]. One
special explicit ALC member of the family was found by Brandhuber–Gomis–Gubser–
Gukov [17], while the existence of the full 1-parameter family of ALC metrics was later
established by Bogoyavlenskaya [13]. We now carefully describe the cohomogeneity one
structure of these metrics and their full group of symmetries.

We identify S3
= SU(2) with the unit quaternions. S3

× R4 admits a cohomogeneity
one action of SU(2)× SU(2) described by the group diagram

{1} ⊂ 4SU(2) ⊂ SU(2)× SU(2). (2.1)

More explicitly, we can identify [0,∞) × S3
× S3/∼ with S3

× R4 via (t, q1, q2) 7→

(q1q2, tq1), where SU(2)×SU(2) acts by left multiplication on S3
×S3 and (t, q1, q2) ∼

(t ′, q ′1, q
′

2) if and only if t = 0 = t ′ and q ′1 = q1q, q ′2 = q2q for some q ∈ SU(2).
The full symmetry group of any G2-metric in the B7 family is however larger than

SU(2) × SU(2); we describe it first for the most symmetric member of the family, the
AC Bryant–Salamon metric. In this case the group of continuous G2-isometries is Gbs

=

SU(2)2 × SU(2)/4Z2, where the first factor SU(2)2 acts by left multiplication, the third
SU(2) acts diagonally by right multiplication and the quotient by1Z2 appears because to
get an effective action we must quotient by the centre Z2 of SU(2) embedded diagonally
in the three factors. The asymptotic cone C of the AC Bryant–Salamon metric is the cone
over the standard homogeneous nearly Kähler structure on S3

×S3. The induced metric on
S3
× S3 has additional discrete isometries arising from outer automorphisms of SU(2)3.

More concretely there is an action of the symmetric group S3 on S3
× S3 generated by

the pair of involutions

(q1, q2) 7→ (q1, q2q1), (q1, q2) 7→ (q1q2, q2),
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whose composition has order 3. However this action of S3 does not extend to the AC
Bryant–Salamon metric. Instead the Bryant–Salamon metric can be realised in three in-
equivalent ways as a cohomogeneity one manifold with an action of SU(2) × SU(2),
corresponding to the group diagrams (2.1), (2.4) and its image under the outer automor-
phism of SU(2)2.

The symmetry group of the ALC members of the B7 family is smaller than Gbs. The
standard Hopf action of S1 on R4 induces a circle action on S3

× R4. The action fixes
S3
×{0}, but the quotient S3

×R3 is still a manifold. Under our identification of S3
×R4

with [0,∞)×S3
×S3/∼, the projection π : [0,∞)×S3

×S3/∼→ S3
×R3 is given by

(t, q1, q2) 7→ (q1q2, t
2q1iq1),

where we identify R3 with ImH. The group of continuous isometries that preserves the
generic G2-structure in the B7 family is the subgroup Gπ of Gbs that preserves this pro-
jection π . Note that since, away from t = 0, π is a principal circle bundle endowed
with a natural connection θ (the left-invariant 1-form on SU(2)2 dual to the vector field
generating the diagonal U(1) subgroup), there is an exact sequence

1→ G+π → Gπ → Z2 → 1,

where G+π is the subgroup that preserves the connection θ (whereas arbitrary elements
of Gπ are allowed to send θ to ±θ ). We have G+π = SU(2)2 ×U(1)/4Z2, where SU(2)2

is the left-acting group, U(1) acts diagonally on the right and 4Z2 is the centre of SU(2)
embedded diagonally in each factor, and Gπ = SU(2)2×N/4Z2, where N ' U(1)oZ2
is the normaliser of U(1) in the right-acting SU(2). There is a further Z2-action generated
by the outer automorphism of SU(2)2, i.e. the involution of S3

× S3 that exchanges the
two factors. This automorphism is an isometry of all members of the B7 family but it
always acts non-trivially on the G2-structure.

By considering quotients of the B7 family by finite subgroups 0 ⊂ Gπ that act freely
on S3

×S3 we can obtain either non-simply-connected smooth ALC G2-manifolds or ALC
G2-orbifolds with singularities contained in a compact set. Finite subgroups of Gπ acting
freely on S3

×S3 exist in abundance: since the subgroup SU(2)2 acts by left translations on
S3
× S3, any finite subgroup 0 ⊂ SU(2)2 ⊂ Gπ necessarily acts freely. (More generally,

a partial classification of subgroups of SU(2)3 acting freely on S3
× S3 was obtained

recently in [22], though the complete classification remains open.) In general the resulting
quotient space (S3

×R4)/0 will no longer admit a cohomogeneity one action. However, if
one chooses 0 to be contained in the subgroup Z2

2×N/4Z2 of Gπ that commutes with the
left action of SU(2)2 then the quotient space does still admit a cohomogeneity one action
of SU(2) × SU(2). Note that Z2

2 × N/4Z2 ' Z2 × N and the action on the two factors
of S3

× R4 is given precisely by this isomorphism. There are three possibilities for 0:

(i) 0 = 00 where 00 is a cyclic or binary dihedral subgroup of SU(2);
(ii) 0 = Z2 × 00 with 00 as above;

(iii) 0 is a cyclic group of even order or a binary dihedral group embedded in Z2×N via
the homomorphism φ × ι, where φ : 0 → Z2 is a non-trivial homomorphism and ι
is the standard embedding of 0 in N ⊂ SU(2).
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The resulting orbifolds are S3
× (R4/00), RP3

× (R4/00) and (S3
× (R4/00))/Z2, re-

spectively, where in the latter case 00 := φ
−1(1). In this paper the case where 0 is a cyclic

group of even order embedded in Z2×U(1) ⊂ Z2×N as in (iii) plays a distinguished role.
We introduce the following notation that we use throughout the rest of the paper: for

each m, n ∈ Z let Km,n be the subgroup of the maximal torus T 2
⊂ SU(2) × SU(2)

defined by
Km,n = {(e

iθ1 , eiθ2) ∈ T 2
| ei(mθ1+nθ2) = 1}, (2.2)

i.e. Km,n is the kernel of the group homomorphism (eiθ1 , eiθ2) 7→ ei(mθ1+nθ2) from T 2

to U(1). In particular, K1,−1 is the diagonally embedded circle 4U(1) in SU(2)× SU(2)
and the subgroup Z2×U(1) of elements inG+π that commute with the left SU(2)2-action
on S3

× S3 can be identified with the right-acting K2,−2. Indeed, note that Km,n is iso-
morphic to the direct product U(1)×Zgcd (m,n) via the map (eiθ , ζ ) 7→ (eikθζ r , e−ihθζ s),
wherem = gcd (m, n)h, n = gcd (m, n)k and rh+ sk = 1. We also note that conjugation
by j ∈ SU(2) (or any other unit quaternion orthogonal to 1 and i) on the first [second]
factor identifies Km,n with K−m,n [Km,−n] since −jeiθj = e−iθ .

Now, if 0k ' Z2k is the subgroup of K2,−2 = Z2 × U(1) defined by the embedding
ζ 7→ (ζ k, ζ ), then the orbifold (S3

× R4)/0k admits a 1-parameter family of cohomo-
geneity one G2-metrics (the quotients of the B7 family of metrics) with group diagram

0k ⊂ 4SU(2) ⊂ SU(2)× SU(2).

We can think of this orbifold as a partial resolution of the cone over (S3
×S3)/0k . In the

next section we will see that there are smooth 7-manifolds that topologically resolve the
same cone and that are known to carry complete cohomogeneity one ALC G2-metrics.

Remark 2.3. When k is odd, the isomorphism Z2k → Z2×Zk defined by ζ 7→ (ζ k, ζ 2)

and the outer automorphism of SU(2) × SU(2) that exchanges the two factors yield an
isomorphism between 0k and the subgroup Z2 × Z2k ⊂ Z2 × U(1) of type (ii).

2.2. Highly collapsed ALC G2-metrics

The starting point for this paper is our construction of complete G2-manifolds from AC
Calabi–Yau 3-folds [35] and its specialisation to the cohomogeneity one case. Our ana-
lytic construction yields the existence of infinitely many new families of cohomogeneity
one G2-metrics, but recovers only metrics close to a certain degenerate (collapsed) limit.
In this section we describe these cohomogeneity one manifolds. The main goal of the pa-
per is to describe the full moduli space of invariant G2-metrics on each of the 7-manifolds
in question.

Cohomogeneity one AC Calabi–Yau 3-folds. The cross-sections of Calabi–Yau cones are
called Sasaki–Einstein manifolds. The only homogeneous Sasaki–Einstein 5-manifolds
are the round 5-sphere and S2

× S3
= SU(2)× SU(2)/4U(1), or finite quotients thereof

[52, §2.2]. The case of the round 5-sphere and its quotients is not relevant for this paper
and therefore we consider only AC Calabi–Yau 3-folds B asymptotic to (quotients of) the
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conifold, i.e. the Calabi–Yau cone C(6) over 6 = S2
× S3 endowed with its SU(2) ×

SU(2)-invariant Sasaki–Einstein structure. If we insist that the Calabi–Yau 3-fold B has
a cohomogeneity one action then there are three known possibilities. In the following we
use the notation Km,n introduced in (2.2).

(i) B is one of the two small resolutions of the conifold [20]. They have group diagrams

K1,−1 ⊂ U(1)× SU(2) ⊂ SU(2)× SU(2),
K1,−1 ⊂ SU(2)× U(1) ⊂ SU(2)× SU(2).

The two resolutions are in fact isomorphic under the outer automorphism of SU(2)×
SU(2) that exchanges the two factors. Without loss of generality we can therefore
concentrate only on the first case, which from now on we will refer to as the small
resolution of the conifold.

(ii) B is the canonical line bundle of CP1
× CP1. Its group diagram is

K2,−2 ⊂ T
2
⊂ SU(2)× SU(2).

In this case the tangent cone at infinity is a (free) Z2-quotient of the conifold. More-
over, while the AC Calabi–Yau metric on the small resolution of the conifold is
unique (up to scale), in this case there is a 2-parameter family of AC Calabi–Yau
metrics on B, parametrised by the Kähler class of the corresponding Kähler form.
The metrics corresponding to the unique (up to scale) compactly supported Kähler
class are due to Calabi [19]; the full 2-parameter family of AC Calabi–Yau metrics
was first considered in [49].

(iii) B = T ∗S3 is the smoothing of the conifold [20, 53]. Its group diagram is

K1,−1 ⊂ 4SU(2) ⊂ SU(2)× SU(2).

Remark. In (ii), it would perhaps be more natural to define S2
× S3/Z2 as SU(2) ×

SU(2)/K2,2. Our choice is motivated by the desire to use the same conventions adopted
in the physics literature, in particular those of [16]. The main confusing consequence of
our choice is that the complex structures on the two factors in CP1

× CP1
= SU(2) ×

SU(2)/T 2 are conjugate to each other. In particular, with our choices Kähler classes on
CP1
× CP1 are parametrised by pairs (α,−β) with α, β > 0.

Highly collapsed G2-metrics on circle bundles over AC Calabi–Yau 3-folds. Let
(B, g0, ω0, �0) be one of the three simply connected cohomogeneity one AC Calabi–
Yau 3-folds just described. Here ω0 is the Kähler form of the AC Calabi–Yau metric g0
and�0 is a holomorphic complex volume form normalised so that ω3

0 =
3
2 Re�0∧Im�0.

We now consider a non-trivial circle bundle M over B: therefore we consider only cases
(i) and (ii), since the second cohomology vanishes in case (iii).

(i) When B is the small resolution of the conifold, up to finite quotients and a change
of orientation, there is only one possible choice of line bundle. The total space M is
S3
× R4, endowed with an SU(2)× SU(2)-action with group diagram

{1} ⊂ {1} × SU(2) ⊂ SU(2)× SU(2). (2.4)
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(ii) When B = KCP1
×CP1 we have an infinite family of examples: for a pair (m, n) of

coprime integers we consider the simply connected manifold Mm,n described by the
group diagram

Km,n ∩K2,−2 ⊂ Km,n ⊂ SU(2)× SU(2). (2.5)

The subgroup Km,n ∩ K2,−2 is isomorphic to Z2|n+m| embedded in T 2
⊂ SU(2) ×

SU(2) via ζ 7→ (ζ n, ζ−m) = (ζ n, ζ n+mζ n). If n is odd then gcd (n, 2|n+m|) = 1
since n and m are coprime and therefore ζ 7→ ζ n is an isomorphism; Km,n ∩ K2,−2
is then isomorphic to the group 0|n+m| defined in the previous section. If n = 2n′

is even, then gcd(n′, |n + m|) = 1 and Km,n ∩ K2,−2 is isomorphic to the sub-
group {(ξ, ε ξ) ∈ T 2

| ξ ∈ Z|n+m|, ε ∈ Z2} via the composition of the isomorphism
Z2|n+m| ' Z|n+m| ×Z2 given by ζ 7→ (ζ 2, ζ |n+m|) and the automorphism of Z|n+m|
defined by ξ 7→ ξn

′

. As explained in Remark 2.3 the outer automorphism that ex-
changes the two factors of SU(2)× SU(2) identifies this group with 0|n+m| (in fact,
note that if n is even then m must be odd).

In all cases there exists a unique SU(2) × SU(2)-invariant connection θ on the circle
bundle M → B (the left-invariant 1-form dual to the vector field that generates the di-
agonal U(1) subgroup) and therefore a 1-parameter family of SU(2)2 × U(1)-invariant
metrics

gε = g0 + ε
2θ2.

Note that the model metric gε has ALC asymptotic geometry. Furthermore, for ε > 0
sufficiently small, gε is approximately G2. In [35] we use analytic methods to show that,
under the necessary topological condition c1(M) ∪ [ω0] = 0 ∈ H 4(B), for all ε > 0
sufficiently small, we can perturb gε to an SU(2)2 × U(1)-invariant ALC G2-metric gε .
The metric gε is highly collapsed: gε is arbitrarily close (in certain weighted Hölder
spaces) to the model metric gε and therefore (M, gε) collapses to (B, g0) as ε → 0
(with globally bounded curvature). The specialisation of the main result of [35] to the
cohomogeneity one setting therefore yields the following theorem.

Theorem 2.6.
(i) The manifoldM = S3

×R4 described by the group diagram (2.4) carries a 1-parame-
ter family (up to scale) of highly collapsed SU(2)2×U(1)-invariant ALC G2-metrics.

(ii) For every pair of coprime positive integers m, n the manifold Mm,n described by the
group diagram (2.5) carries a 1-parameter family (up to scale) of highly collapsed
SU(2)2 × U(1)-invariant ALC G2-metrics.

Proof. Given the main result of [35], we need only explain why the necessary topolog-
ical constraint c1(M) ∪ [ω0] = 0 ∈ H 4(B) is satisfied. The uniqueness (modulo diffeo-
morphism) of metrics in the construction of [35] implies that the continuous isometries
SU(2) × SU(2) of the Calabi–Yau base B extend to M , and rotation in the circle fibres
provides the additional U(1). In case (i) the constraint is automatically satisfied since
H 4(B) = 0. In case (ii) note that B = KCP1×CP1 retracts onto its singular orbit D =
CP1
×CP1. Hence the 7-manifoldMm,n retracts onto its singular orbitMm,n|D , a princi-

pal circle bundle over D. We can then understand the constraint c1(Mm,n) ∪ [ω0] = 0 by
restriction to this singular orbit.
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Fix a basis of left-invariant 1-forms e1, e2, e3, e
′

1, e
′

2, e
′

3 (the dual vector fields will be
denoted by Ei, E′i) on SU(2)× SU(2) with the property that

dei = −ej ∧ ek, de′i = −e
′

j ∧ e
′

k (2.7)

for (ijk) any cyclic permutation of (123). When identifying su2 with ImH we adopt the
convention that E1 = i/2, E2 = j/2, E3 = k/2; indeed by the first Maurer–Cartan
structure equation, we must have [Ei, Ej ] = Ek in order for (2.7) to be satisfied. In
particular, note that Ei, E′i have period 4π . Without loss of generality we can assume that
the maximal torus T 2 in SU(2) × SU(2) is generated by E3 and E′3. The area forms of
the two factors of CP1

× CP1
= SU(2)× SU(2)/T 2 are

ω1 = −
1
2de3 =

1
2e1 ∧ e2, ω2 = −

1
2de
′

3 =
1
2e
′

1 ∧ e
′

2.

Now, c1(Mm,n|D) = m[ω1] + n[ω2], [ω0|D] = α[ω1] − β[ω2] for some α, β > 0 and we
must have mβ − nα = 0, i.e. (α, β) = a(m, n) for some a 6= 0. In particular, m and n
must have the same sign and so up to changing the circle bundle to its dual we can assume
that both are positive. ut

3. Invariant half-flat structures and Hitchin’s flow

Let M be a cohomogeneity one 7-manifold acted upon by SU(2)× SU(2) and described
by one of the group diagrams (2.1), (2.4) or (2.5). The first step of our analysis is to de-
scribe torsion-free G2-structures on the open dense subset of principal orbits, i.e. on a
cylinder of the form (0,∞)× SU(2)× SU(2)/K0, where K0 is either trivial or the finite
cyclic subgroup Z2|m+n| = Km,n ∩K2,−2 for coprime integersm, n. Any cohomogeneity
one G2-structure on (0,∞) × SU(2) × SU(2)/K0 can be thought of as a 1-parameter
family of invariant SU(3)-structures on the principal orbit SU(2)× SU(2)/K0. The con-
dition that the G2-structure be torsion-free can then be written as “static” and “evolution”
equations for the corresponding family of SU(3)-structures. The “static” equations con-
strain the torsion of the SU(3)-structures; solutions are called half-flat structures. The
“evolution” equations form a system of first-order ODEs known as Hitchin’s flow. The
notions of stable forms and volume functionals introduced by Hitchin [39] allow one
to interpret the ODE system as a Hamiltonian system on the space of invariant half-flat
structures. We also give an alternative description of cohomogeneity one torsion-free G2-
structures based on Hitchin’s description of torsion-free G2-structures as critical points
of a volume functional on the space of closed stable 3-forms on a 7-manifold in a fixed
cohomology class. Palais’ Principle of Symmetric Criticality (which holds in our context
since the symmetry group is compact [48, Theorem 5.4]) allows us to give an alternative
Lagrangian formulation of Hitchin’s flow.

3.1. Invariant half-flat structures on SU(2)× SU(2)

The holonomy reduction of a Riemannian 7-manifold to G2 is conveniently expressed as
the existence of a closed and coclosed (in fact, parallel) 3-form ϕ with special algebraic
properties at each point. The natural action of GL(7,R) on 33(R7)∗ has two open orbits;
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one of these is isomorphic to GL(7,R)/G2 and we say that a 3-form ϕ on a 7-manifold
M is positive if ϕx lies in this orbit for every x ∈ M . Since the stabiliser of a positive
3-form is conjugate to G2, the existence of ϕ is equivalent to the reduction of the frame
bundle of M to G2. Moreover, since G2 is a subgroup of SO(7), every positive 3-form ϕ

defines a Riemannian metric gϕ and volume form dvϕ on M .
A G2-structure on a family of parallel hypersurfaces such as the principal orbits in

a cohomogeneity one manifold is described by a 1-parameter family of half-flat SU(3)-
structures.

Definition 3.1. An SU(3)-structure on a 6-manifold is a pair of smooth differential forms
(ω,�), where ω is a non-degenerate 2-form and � is a complex volume form, satisfying
the algebraic constraints

ω ∧ Re� = 0, 1
6ω

3
=

1
4 Re� ∧ Im�. (3.2)

A half-flat structure is an SU(3)-structure (ω,�) such that

dω ∧ ω = 0 = d Re�. (3.3)

Invariant half-flat structures on SU(2)×SU(2) have been studied by Schulte-Hengesbach
[51, Chapter 5] and Madsen–Salamon [45]. We now briefly summarise their results. It
is useful to recall first the formal geometric set-up introduced by Hitchin [39, §6]. Let
N be a compact 6-manifold. Let U and V be the space of closed stable 4-forms and 3-
forms representing a fixed pair of cohomology classes on N of degree 4 and degree 3
respectively. Here a 4-form on N is stable if it can be written as 1

2ω
2 for a non-degenerate

2-form ω (uniquely determined up to sign) and a 3-form is stable if it is the real part of a
holomorphic volume form � (in this case the imaginary part of � is uniquely determined
by its real part). The tangent space of U × V at any point

( 1
2ω

2,Re�
)

is the product of
affine spaces �4

exact ⊕�
3
exact. There is a non-degenerate pairing

〈σ, ρ〉 =

ˆ
N

α ∧ ρ = −

ˆ
N

σ ∧ β,

where σ = dα is an exact 4-form and ρ = dβ an exact 3-form, which can be used to
define a symplectic form 9 on U × V .

The diffeomorphism group of N acts naturally on U × V preserving 9. Given( 1
2ω

2,Re�
)
∈ U × V and a vector field X on N , the infinitesimal action vX of X on

U × V is by Lie derivative and therefore

(vXy9)(σ, ρ) =
ˆ
N

(
Xy 1

2ω
2)
∧ ρ − σ ∧ (XyRe�).

We claim that vX is a Hamiltonian vector field on U × V . Indeed, it is clear that the
function µX on U × V defined by

µX
( 1

2ω
2,Re�

)
=

ˆ
N

(
Xy 1

2ω
2)
∧ Re� = −

ˆ
N

1
2ω

2
∧ (XyRe�)
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satisfies dµX = vXy9. Moreover, since ω is non-degenerate, X 7→ Xyω is an isomor-
phism: rewriting

µX
( 1

2ω
2,Re�

)
=

ˆ
N

(Xyω) ∧ ω ∧ Re�

we see that the vanishing of the moment map µX for all X is equivalent to ω∧Re� = 0.
Hitchin defines volume functionals V

( 1
2ω

2) and V (Re�) and a diffeomorphism-
invariant functional H by taking a certain linear combination of these:

H
( 1

2ω
2,Re�

)
=

ˆ
N

2ω3
− 3 Re� ∧ Im�.

By diffeomorphism invariance H descends to the symplectic quotient

M = µ−1(0)/Diff0(N).

The zero-level set of H in M can almost be identified with the moduli space of half-flat
structures on N in the given cohomology classes: the second constraint in (3.2) is only
satisfied in an integral sense. However, if N is a homogeneous space and we restrict to
invariant forms (and invariant diffeomorphisms) then the zero-level set of H in M does
indeed parametrise invariant half-flat structures on N with fixed cohomology classes.

We now specialise this general framework to the case where N = SU(2) × SU(2)
(or, later, a finite free quotient of this). The group of Lie algebra inner automorphisms
of su2 ⊕ su2 (i.e. the group of invariant diffeomorphisms of N isotopic to the identity)
is Aut = SO(3) × SO(3). Fix (p, q) ∈ R2. We consider the space U of invariant non-
degenerate 2-forms ω such that dω ∧ ω = 0 (since H 4(N) = 0 the closed 4-form ω2 is
necessarily exact) and the space V of invariant closed stable 3-forms Re� of the form

Re� = p e1 ∧ e2 ∧ e3 + q e
′

1 ∧ e
′

2 ∧ e
′

3 + dη

for some invariant 2-form η. Here ei , e′i denote the left-invariant 1-forms defined in (2.7).
By [51, Chapter 5, Lemmas 1.1 and 1.3], U and V are each identified with open subsets
of the space M3×3 of real 3× 3 matrices via

ω =
∑
i,j

Aij ei ∧ e
′

j , η =
∑
i,j

Bij ei ∧ e
′

j .

Via the double cover SO(4)→ SO(3)×SO(3), we identify the SO(3)×SO(3)-represen-
tation M3×3 with the SO(4)-representation Sym2

0(R
4) [45, Lemma 1]. Then (U × V, 9)

can be identified with T ∗Sym2
0(R

4) endowed with its canonical symplectic form. The
vanishing of the moment map µ for the action of SO(4) guarantees that the two matrices
A and B, thought of as traceless symmetric 4×4 matrices, commute [45, Theorem 1]. By
singular symplectic reduction, µ−1(0)/SO(4) is the cotangent space of Sym2

0(R
4)/SO(4)

and is identified with R3
× R3/W , where W is the symmetric group on three elements

acting diagonally on R3
× R3 [45, Corollary 1].
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Concretely [51, Chapter 5, Theorem 1.4], up to the action of Aut we can assume that

ω = α1 e1 ∧ e
′

1 + α2 e2 ∧ e
′

2 + α3 e3 ∧ e
′

3,

Re� = p e1 ∧ e2 ∧ e3 + q e
′

1 ∧ e
′

2 ∧ e
′

3 + d(a1 e1 ∧ e
′

1 + a2 e2 ∧ e
′

2 + a3 e3 ∧ e
′

3).
(3.4)

The 2-form ω is non-degenerate and Re� is stable if and only if, respectively, α1, α2, α3
> 0 and

3(a1, a2, a3) = a
4
1 + a

4
2 + a

4
3 − 2a2

1a
2
2 − 2a2

2a
2
3 − 2a2

3a
2
1

+ 4(p − q)a1a2a3 + 2pq(a2
1 + a

2
2 + a

2
3)+ p

2q2 < 0. (3.5)

Moreover, the second constraint in (3.2) forces

2α1α2α3 =
√
−3(a1, a2, a3) .

Note that there is a residual ambiguity in the parametrisation (3.4): the Weyl group W
acts permuting (α1, α2, α3) and (a1, a2, a3) simultaneously.

Remark. Due to different choices of basis of su2, the definition of 3 in (3.5) is differ-
ent from the one given by Schulte-Hengesbach [51, Chapter 5, equation (1.7)]. The two
formulas are related by ai 7→ −ai for all i = 1, 2, 3.

Remark 3.6. In addition to the (left) SU(2) × SU(2)-invariance, when α1 = α2 and
a1 = a2, the half-flat structure (3.4) is invariant under the right action of 4U(1) (in fact,
of the normaliser N of U(1) in SU(2) if we do not restrict to continuous symmetries) on
SU(2)× SU(2). Similarly, if α1 = α2 = α3 and a1 = a2 = a3 then the half-flat structure
is invariant under the right action of 4SU(2). The Bryant–Salamon AC G2-metric on the
spinor bundle of S3 [18] has the additional 4SU(2)-symmetry; cf. Example 3.14. All the
global examples we construct in this paper will have the additional 4U(1)-symmetry.

The case of non-trivial stabiliser of the principal orbits. We now extend the previous
discussion to the case where the stabiliser K0 of the principal orbits is non-trivial. In the
situation of interest, the isotropy representation of K0 = Km,n ∩ K2,−2 ' Z2|m+n| on
su2 ⊕ su2 is generated by the automorphism

T = diag(ζ 2|n|, 1, ζ 2|n|, 1), (3.7)

where we identify span(E1, E2) and span(E′1, E
′

2)with C, and ζ is a generator of Z2|m+n|.
The subgroup AutT of Aut = SO(3)×SO(3) of inner automorphisms that commute with
T is AutT = O(2)×O(2), where O(2) is the subgroup of SO(3) that fixes E3. Similarly,
an invariant 2-form ∑

i,j

Cij ei ∧ e
′

j

on SU(2)×SU(2) determined by a 3×3 matrix C descends to SU(2)×SU(2)/K0 if and
only if T t

( 0 C
−Ct 0

)
T =

( 0 C
−Ct 0

)
. A computation shows that

C =

 c11 c12 0
c21 c22 0
0 0 c33

 ,
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with the upper-left 2 × 2 block commuting with the rotation of R2 of angle 2π |n|
|n+m|

. The

latter condition forces c11 = c22 and c12 = −c21 unless e
2πi|n|
|n+m| = ±1. This can only

happen if there exists d ∈ Z such that (d + 1)m+ (d − 1)n = 0.
The constraints that K0-invariant forms must satisfy and the smaller group of auto-

morphisms AutT play off against each other and, as in the case of trivial stabiliser of the
principal orbit, we deduce the following proposition.

Proposition 3.8. Up to the action of AutT any invariant half-flat structure (ω,�) on
SU(2)× SU(2)/Km,n ∩K2,−2 can be put in the normal form

ω = α1 e1 ∧ e
′

1 + α2 e2 ∧ e
′

2 + α3 e3 ∧ e
′

3,

Re� = p e1 ∧ e2 ∧ e3 + q e
′

1 ∧ e
′

2 ∧ e
′

3 + d(a1 e1 ∧ e
′

1 + a2 e2 ∧ e
′

2 + a3 e3 ∧ e
′

3)

with α1, α2, α3,−3(a1, a2, a3) > 0 and 2α1α2α3 =
√
−3(a1, a2, a3). Furthermore,

α1 = α2 and a1 = a2 unless there exists d ∈ Z such that (d + 1)m+ (d − 1)n = 0.

3.2. The fundamental ODE system

We now introduce the evolution equations for a 1-parameter family of invariant half-flat
structures on SU(2)× SU(2)/K0 to define a torsion-free G2-structure.

The Hamiltonian formulation: Hitchin’s flow. Consider a G2-structure ϕ = dt∧ω+Re�
on a cylinder (0, t0)×N . Here (ω,�) is a 1-parameter family of SU(3)-structures on the
6-manifold N . Then we have ∗ϕ = −dt ∧ Im�+ 1

2ω
2 and the condition that ϕ be closed

and coclosed is equivalent to the half-flat equations (3.3) for (ω,�) together with the
evolution equations

∂t Re� = dω, ∂t (ω
2) = −2d Im�. (3.9)

We specialise now to the case of a cohomogeneity one G2-structure on M =

(0, t0) × N with N = SU(2) × SU(2)/K0. Fix p, q ∈ R and consider a closed
SU(2)× SU(2)-invariant 3-form

ϕ = p e1 ∧ e2 ∧ e3 + q e
′

1 ∧ e
′

2 ∧ e
′

3 + d(a1 e1 ∧ e
′

1 + a2 e2 ∧ e
′

2 + a3 e3 ∧ e
′

3), (3.10)

where d denotes the differential in 7 dimensions. We rewrite ϕ as ϕ = dt ∧ω+Re� for
a 1-parameter family of pairs of differential forms

ω = ȧ1 e1 ∧ e
′

1 + ȧ2 e2 ∧ e
′

2 + ȧ3 e3 ∧ e
′

3,

Re� = p e1 ∧ e2 ∧ e3 + q e
′

1 ∧ e
′

2 ∧ e
′

3 + d(a1 e1 ∧ e
′

1 + a2 e2 ∧ e
′

2 + a3 e3 ∧ e
′

3),

where now d is the differential on the 6-manifold SU(2) × SU(2)/K0 and ȧi = dai
dt

.
Assuming that t is the arc-length parameter along a geodesic meeting all principal orbits
orthogonally, the 3-form ϕ is a G2-structure if and only if the pair (ω,�) defines an
SU(3)-structure for all t , i.e.

ȧi > 0, 3(a1, a2, a3) < 0, 2ȧ1ȧ2ȧ3 =
√
−3(a1, a2, a3).
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Remark 3.11. The last condition is equivalent to the requirement that t be the arc-length
parameter along a geodesic meeting all principal orbits orthogonally. In the following it
will sometimes be convenient to drop this constraint. In that case, we will only require
ȧi > 0 and 3(a1, a2, a3) < 0.

Set yi = ai and xi = ȧj ȧk . Then we have

1
2ω

2
= x1 e2 ∧ e

′

2 ∧ e3 ∧ e
′

3 + x2 e3 ∧ e
′

3 ∧ e1 ∧ e
′

1 + x3 e1 ∧ e
′

1 ∧ e2 ∧ e
′

2,

Re� = p e1 ∧ e2 ∧ e3 + q e
′

1 ∧ e
′

2 ∧ e
′

3 + d(y1 e1 ∧ e
′

1 + y2 e2 ∧ e
′

2 + y3 e3 ∧ e
′

3).

We are going to rewrite (3.9) as an ODE system for the pair (x, y) ∈ R3
×R3. In Hitchin’s

formalism, the evolution equations (3.9) are interpreted as the Hamiltonian flow of the
Hamiltonian function H on the space U × V of half-flat structures in fixed cohomology
classes [39, Theorem 8]. Specialising to the SU(2)× SU(2)-invariant setting, the Hamil-
tonian H is given by

H(x, y) =
√
−3(y1, y2, y3)− 2

√
x1x2x3, (3.12)

where 3 was defined in (3.5). Then (3.9) is equivalent to the Hamiltonian system

ẋi =
∂H

∂yi
=

2
√
−3(y1, y2, y3)

(
yi(−y

2
i + y

2
j + y

2
k − pq)− (p − q)yjyk

)
,

ẏi = −
∂H

∂xi
=

xjxk
√
x1x2x3

.

(3.13)

In particular, H is constant along the flow. In fact H = 0 along the flow since we require
the normalisation 2ω3

= 3 Re� ∧ Im�.

Remark. Alternatively, one can use [51, Corollary 1.5] (with the usual change of sign
due to our different choice of basis of su2) to write

√
−3 Im� =

(
2y1y2y3 − p(y

2
1 + y

2
2 + y

2
3 + pq)

)
e1 ∧ e2 ∧ e3

+
(
2y1y2y3 + q(y

2
1 + y

2
2 + y

2
3 + pq)

)
e′1 ∧ e

′

2 ∧ e
′

3

+
(
yi(y

2
i − y

2
j − y

2
k + pq)− 2qyjyk

)
ei ∧ e

′

j ∧ e
′

k

+
(
yi(y

2
i − y

2
j − y

2
k + pq)+ 2pyjyk

)
e′i ∧ ej ∧ ek,

with the convention that we sum over cyclic permutations (ijk) of (123). The equivalence
between (3.9) and (3.13) is then immediate.

Example 3.14. By Remark 3.6, solutions of (3.13) satisfying x1 = x2 = x3 = x and
y1 = y2 = y3 = y correspond to SU(2)3-invariant torsion-free G2-structures. In this
highly symmetric setting, (3.13) reduces to algebraic equations. Indeed, the vanishing of
the Hamiltonian function H describes a curve 4x3

= 3y4
− 4(p− q)y3

− 6pqy2
−p2q2

in the (x, y)-plane. The solution with p = 0 = q induces a conical metric: the G2-cone C
over the homogeneous nearly Kähler structure on S3

×S3. Since the asymptotic behaviour



2178 Lorenzo Foscolo et al.

of the curve H(x, y) = 0 for large y is independent of p and q, solutions for arbitrary p
and q have one AC end asymptotic to C. As observed in [16, §2.1], only when (p, q) =
(r3

0 ,−r
3
0 ), (−r

3
0 , 0) or (0, r3

0 ) for some r0 > 0, do solutions close smoothly on a singular
orbit. Up to scale and (not necessarily SU(2)×SU(2)-equivariant) diffeomorphisms there
exists a unique complete AC metric asymptotic to the cone C: the Bryant–Salamon metric
on the spinor bundle of S3 [18, §3].

The Lagrangian formulation. Later in the paper it will be useful to have a different for-
mulation of (3.13), first introduced by Brandhuber [16].

Let ϕ be a closed G2-structure on a 7-manifold M and denote by gϕ the induced
Riemannian metric. Hitchin [39, Theorem 1] showed that the equation d∗ϕ = 0 is the
Euler–Lagrange equation for the volume functional ϕ 7→ Vol(M, gϕ) restricted to vari-
ations of ϕ amongst closed 3-forms with fixed cohomology class. Assume that M =
(0, s0) × SU(2) × SU(2)/K0, with coordinate s on the first factor, and let ϕ be a closed
SU(2)× SU(2)-invariant G2-structure of the form (3.10), i.e.

ϕ = p e1 ∧ e2 ∧ e3 + q e
′

1 ∧ e
′

2 ∧ e
′

3 + d(a1 e1 ∧ e
′

1 + a2 e2 ∧ e
′

2 + a3 e3 ∧ e
′

3).

Then up to a constant we have

Vol(M, gϕ) =
ˆ s0

0
L(a, a′) ds, L(a, a′) = (−a′1a

′

2a
′

33(a1, a2, a3))
1/3. (3.15)

Here a′i =
dai
ds

. In order to prove (3.15) observe that the fixed parameter s and the arc-
length parameter t are related by

2
(
ds

dt

)3

a′1a
′

2a
′

3 =
√
−3(a1, a2, a3)

and that the volume form of gϕ is

dvgϕ =
1
6dt ∧ ω

3
= ȧ1ȧ2ȧ3 dt ∧ e1 ∧ e

′

1 ∧ e2 ∧ e
′

2 ∧ e3 ∧ e
′

3.

By the Principle of Symmetric Criticality, we conclude that ϕ is coclosed if and only if
the triple a = (a1, a2, a3) satisfies the second-order Lagrangian system

(∂a′i
L(a, a′))′ − ∂aiL(a, a

′) = 0.

However, since Hitchin’s volume functional is invariant under diffeomorphisms, we know
a priori that (∂a′iL(a, a

′))′ − ∂aiL(a, a
′) is orthogonal to the vector field (a′1, a

′

2, a
′

3). We
therefore reduce to an ODE system of two second-order equations in three variables. This
reformulation makes sense since we have the freedom to change the parametrisation s.

We carry out the relevant calculations explicitly in the case where a1 = a2, i.e. when
there is an additional U(1)-symmetry; cf. Remark 3.6. All the global solutions we find in
this paper will admit this additional U(1)-symmetry. Set a := a1 = a2, b := a3 and

F(a, b) := −3(a, a, b) = 4a2(b − p)(b + q)− (b2
+ pq)2.
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Let Fa and Fb denote the partial derivatives of F . Then we calculate

9L5
(
d

ds

(
∂L

∂a′

)
−
∂L

∂a

)
= (a′)2b′F

(
2F(a′b′′ − b′a′′)− a′b′(a′Fa − 2b′Fb)

)
,

9L5
(
d

ds

(
∂L

∂b′

)
−
∂L

∂b

)
= (a′)3F

(
−2F(a′b′′ − b′a′′)+ a′b′(a′Fa − 2b′Fb)

)
.

Thus the pair of functions (a, b) yields a torsion-free SU(2) × SU(2) × U(1)-invariant
G2-structure if and only if

2F(a′b′′ − b′a′′)− a′b′(a′Fa − 2b′Fb) = 0. (3.16)

As a sanity check, note that (3.16) can be immediately derived from (3.13). Indeed, in
the presence of the additional U(1)-symmetry, (3.13) becomes the ODE system

ẋ1 =
Fa(y1, y2)

4
√
F(y1, y2)

, ẋ2 =
Fb(y1, y2)

2
√
F(y1, y2)

,

ẏ1 =
x1x2√
x2

1x2

, ẏ2 =
x2

1√
x2

1x2

,
(3.17)

for the four functions x1 = ȧḃ, x2 = ȧ
2, y1 = a, y2 = b. Then (3.16) is an immediate

consequence of (3.17). Moreover, the variable t in (3.17) is the arc-length parameter along
a geodesic meeting all principal orbits orthogonally and therefore we have the further
normalisation 2ȧ2ḃ =

√
F(a, b); cf. Remark 3.11.

3.3. The induced metric

For later use, we briefly discuss properties of the map ϕ 7→ gϕ in the SU(2) × SU(2)-
invariant setting. Lemma 3.19 below shows that Hitchin’s flow (3.13) can be regarded
as an evolution equation for the family of Riemannian metrics induced by the 1-
parameter family of half-flat structures. In fact, cohomogeneity one SU(2) × SU(2)-
invariant G2-manifolds are described by a first-order ODE system for the metric co-
efficients in the work of Brandhuber–Gomis–Gubser–Gukov [17], Cvetič–Gibbons–
Lü–Pope [23–25, 28], Hori–Hosomichi–Page–Rabadán–Walcher [40] and Bazaı̆kin–
Bogoyavlenskaya [9, 13].

Consider the SU(2)× SU(2)-invariant closed G2-structure

ϕ = p e1 ∧ e2 ∧ e3 + q e
′

1 ∧ e
′

2 ∧ e
′

3 + d(a1 e1 ∧ e
′

1 + a2 e2 ∧ e
′

2 + a3 e3 ∧ e
′

3).

The induced metric gϕ takes the form gϕ = dt
2
+ gt , where t is the arc-length parameter

along a geodesic meeting all SU(2)× SU(2)-orbits orthogonally and gt is a 1-parameter
family of SU(2)× SU(2)-invariant metrics on the principal orbits. By [51, Corollary 1.5]
(with the usual change of signs)
1
2

√
−3gt = ȧi(ajak−pai)ei⊗ei+ ȧi(ajak+qai)e

′

i⊗e
′

i+ ȧi(a
2
i −a

2
j −a

2
k−pq)ei⊗e

′

i,

(3.18)
where (ijk) runs over cyclic permutations of (123).
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Remark. When p + q = 0 the metric gt is invariant under the involution generated by
the outer automorphism of SU(2)×SU(2) that exchanges the two factors. This additional
symmetry however does not preserve the G2-structure ϕ.

Lemma 3.19. Fix p, q ∈ R and assume that ȧ1, ȧ2, ȧ3 and 2ȧ1ȧ2ȧ3 =
√
−3(a1, a2, a3)

are all positive. Then (ȧ1, ȧ2, ȧ3, a1, a2, a3) is uniquely determined by the metric gt (up
to discrete symmetries when p + q = 0). In other words, the map that associates to each
invariant half-flat structure in a given cohomology class (p, q) its induced metric is a
(local) diffeomorphism.

Proof. By (3.18), up to the action of the automorphism group of su2 ⊕ su2, the SU(2)×
SU(2)-invariant metrics g that could possibly be induced by an invariant half-flat structure
must be of the form

g = Ai ei ⊗ ei + Bi e
′

i ⊗ e
′

i + Ci ei ⊗ e
′

i .

Furthermore, Ai = Bi if p+q = 0. If the coefficients Ai, Bi, Ci are given by (3.18) then
a straightforward computation shows that

4ȧj ȧk =
√
(4AjBj − C2

j )(4AkBk − C
2
k ).

Thus ȧ1, ȧ2, ȧ3 are uniquely determined by the metric g. Furthermore, (p + q)ai =
ȧj ȧk(Bi−Ai) and therefore a1, a2, a3 are also uniquely determined whenever p+q 6= 0.

If p + q = 0 we calculate instead

ȧj ȧk(Ai + Bi + Ci) = (aj − ak − ai + p)(ak − aj − ai + p),

−ȧj ȧk(Ai + Bi − Ci) = (a1 + a2 + a3 + p)(ai − aj − ak + p),

from which it follows, using Ai = Bi , that

3(a1, a2, a3) = (a1+a2+a3+p)(a1−a2−a3+p)(a2−a3−a1+p)(a3−a1−a2+p).

Together with 2ȧ1ȧ2ȧ3 =
√
−3(a1, a2, a3), these relations allow us to determine ai −

aj − ak + p up to sign:

4(ai − aj − ak + p)2 = (Ai + Bi − Ci)(Aj + Bj + Cj )(Ak + Bk + Ck). ut

A Riemannian quantity that will play an important role later in the paper is the mean
curvature of the principal orbits in an SU(2)× SU(2)-invariant G2-manifold. Consider a
1-parameter family of invariant half-flat structures satisfying Hitchin’s flow (3.13). The
shape operator L of the hypersurface {t = const} is L = 1

2g
−1
t ġt , where the dot stands

for time differentiation. The mean curvature is then l = tr(L) or alternatively the time
derivative of the logarithm of the orbital volume function 2ȧ1ȧ2ȧ3 =

√
−3(a1, a2, a3).

We easily calculate

l =
1

2(ȧ1ȧ2ȧ3)2

3∑
i=1

ȧi
(
ai(−a

2
i + a

2
j + a

2
k − pq)− (p − q)ajak

)
. (3.20)
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4. Local solutions in a neighbourhood of the singular orbit

We are interested in 7-manifolds M with a cohomogeneity one action of G = SU(2) ×
SU(2) and one singular orbitQ = G/K , where up to automorphisms ofG the stabiliserK
can be taken as one of the following:

4SU(2), {1} × SU(2), Km,n

for two coprime integers m, n, with Km,n as defined in (2.2). Note that Q ' S3 in the
first two cases andQ ' S2

×S3 whenK = Km,n. The only reason we restrict to coprime
m, n is that the resulting 7-manifold M is simply connected in this case. We recover the
general case by taking finite quotients of the simply connected manifolds.

A tubular neighbourhood of the singular orbit Q in M is equivariantly diffeomorphic
to a neighbourhood of the zero section in the vector bundle

G×K V → Q,

where V is an orthogonal representation of K of dimension d = 1 + dim(K): V is the
standard representation of SU(2) when K = 4SU(2) or {1} × SU(2), while V is the
irreducible 2-dimensional real representation with weight 2|m + n| when K = Km,n '
SO(2). Fix a vector v0 in the unit sphere in V and denote by K0 the stabiliser of v0
in K . Then K0 is the principal orbit stabiliser; K0 is trivial when K = 4SU(2) and
K = {1} × SU(2), and K0 ' Z2|m+n| when K = Km,n.

In this section we derive explicit conditions on p, q and the ai so that the invariant
3-form

ϕ = p e1 ∧ e2 ∧ e3 + q e
′

1 ∧ e
′

2 ∧ e
′

3 + d(a1 e1 ∧ e
′

1 + a2 e2 ∧ e
′

2 + a3 e3 ∧ e
′

3)

defines a smooth invariant closed positive 3-form in a neighbourhood of the zero section
in G×K V . We then use this analysis to set up and study singular initial value prob-
lems for the ODE system (3.13) that correspond to local cohomogeneity one torsion-free
G2-structures defined in a neighbourhood of the three types of singular orbit. The main
result of the section is Proposition 4.5 where we parametrise the space of cohomogeneity
one torsion-free G2-structures defined in a neighbourhood of each of the three types of
singular orbit.

4.1. Smooth extension over the singular orbit

An efficient way of understanding conditions for the smooth extension of tensors along a
singular orbitQ = G/K in a cohomogeneity one manifoldM = G×K V has been given
by Eschenburg–Wang [32, §1]. We briefly recall their approach. Write g = k⊕ p where g
and k are the Lie algebras of G and K respectively. Given a point q ∈ Q we can identify
TqQ with p and TqM with p⊕ V . By G-invariance, the 3-form ϕ is uniquely determined
by its restriction to the fibre of G ×K V over q. We can therefore interpret ϕ as a K-
equivariant map ϕ : V → 33(p⊕V )∗. Furthermore, if we fix a point v0 in the unit sphere
Sd−1 in V and denote by K0 its stabiliser in K , by K-equivariance ϕ : V → 33(p⊕ V )∗
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is uniquely determined by the curve t 7→ ϕ(tv0), which must lie in the subspace of K0-
invariant 3-forms on p ⊕ V . Similarly, every K-equivariant map from the unit sphere
in V to 33(p ⊕ V )∗ is uniquely determined by its value at v0. Eschenburg and Wang
show that ϕ : V → 33(V ⊕ p)∗ defines a smooth G-invariant 3-form if and only if for
all p ≥ 0 there exists a homogeneous degree p polynomial ϕp : Sd−1

→ 33(V ⊕ p)∗

with values in the subspace of K0-invariant forms such that t 7→ ϕ(tv0) has Taylor series∑
p≥0 ϕp(v0) t

p.

Proposition 4.1. Set G = SU(2) × SU(2) and (K, V ) to be one of (4SU(2),C2),
({1} × SU(2),C2) or (Km,n,R2

2|m+n|), where C2 denotes the standard representation of
SU(2) and R2

2|m+n| is the irreducible real 2-dimensional representation ofKm+n'SO(2)
with weight 2|m+ n|. Let

ϕ = p e1 ∧ e2 ∧ e3 + q e
′

1 ∧ e
′

2 ∧ e
′

3 + d(a1 e1 ∧ e
′

1 + a2 e2 ∧ e
′

2 + a3 e3 ∧ e
′

3)

be an invariant closed 3-form defined on the complement of the zero section in a disc
subbundle of the vector bundle G×K V → G/K .

(i) If K = 4SU(2) then ϕ extends as a smooth positive 3-form over the zero section of
G×K V if and only if

(a) p + q = 0;
(b) for i = 1, 2, 3, ai is an even function of t with ai(t) = p + 1

2αt
2
+ O(t4) for

some α ∈ R;
(c) 8α3

= p > 0.

(ii) IfK = {1}×SU(2) then ϕ extends as a smooth positive 3-form over the zero section
of G×K V if and only if

(a) q = 0;
(b) for i = 1, 2, 3, ai is an even function of t vanishing at the origin with ai =

1
2αi t

2
+O(t4) for some αi > 0;

(c) 8α1α2α3 = −p > 0.

(iii) If K = Km,n then ϕ extends as a smooth positive 3-form over the zero section of
G×K V if and only if

(a) mn > 0;
(b) p = −m2r3

0 and q = n2r3
0 for some r0 6= 0;

(c) a3 is an even function of t with a3(0) = mnr3
0 and ä3(0) > 0;

(d) a1 + a2 is an odd function of t and ȧ1(0)+ ȧ2(0) > 0;
(e) a1 = a2 unless m = n = ±1; in the latter case a1 − a2 is an even function of t

and α = 1
2 (a1(0)− a2(0)) satisfies α2 < r6

0 .

Remark. In Theorem 7.3 we will prove that, up to finite quotients, the proposition covers
all possible singular orbits of smooth G2-metrics with enhanced SU(2)× SU(2)×U(1)-
symmetry.

We now prove the three cases of the proposition.
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The case K = 4SU(2). The singular orbit is Q = SU(2) × SU(2)/4SU(2) ' S3

and the stabiliser of points on principal orbits is trivial. A tubular neighbourhood of the
singular orbit S3 is equivariantly diffeomorphic to S3

× R4, where SU(2) × SU(2) acts
on S3

× R4
⊂ H ⊕ H by (q1, q2) · (x, y) = (q2xq

∗

1 , q1y). Therefore along the ray
γ (t) = (1, t) ∈ S3

×H ⊂ H2 we have

E1 =
1
2 (−i, it), E2 =

1
2 (−j, j t), E3 =

1
2 (−k, kt),

E′1 =
1
2 (i, 0), E′2 =

1
2 (j, 0), E′3 =

1
2 (k, 0).

In particular, if we define e±i =
1
2 (ei ± e

′

i) and let t, x1, x2, x3 be Euclidean coordinates
on R4 we have

e+1 = 2t−1dx1, e+2 = 2t−1dx2, e+3 = 2t−1dx3.

For t 6= 0 the closed positive 3-form ϕ can then be written as

1
2ϕ = V e

−

1 ∧ e
−

2 ∧ e
−

3 +

3∑
i=1

e−i ∧ ωi + 8(p + q)t−3dx1 ∧ dx2 ∧ dx3

+ 2(p + q)t−1
3∑
i=1

dxi ∧ e
−

j ∧ e
−

k .

Here ωi = −2ȧi t−1dt ∧ dxi + 4Vi t−2dxj ∧ dxk and

V = a1 + a2 + a3 +
p−q

2 , Vi = ai − aj − ak +
p−q

2 . (4.2)

If ϕ extends smoothly at t = 0 then clearly p+ q = 0, since otherwise the coefficient
of dx1 ∧ dx2 ∧ dx3 would blow up. In order to detect subtler conditions for the smooth
extension along the singular orbit, following Eschenburg–Wang’s analysis we regard ϕ
as a map ϕ : H → 33(H ⊕ ImH) identifying vector spaces with their duals using their
standard metrics. As an SU(2)-representation we have

33(H⊕ ImH) = 33H⊕(3+H⊗ ImH)⊕(3−H⊗ ImH)⊕(H⊗32 ImH)⊕(33 ImH)

' H⊕(ImH⊗ ImH)⊕(R3
⊗ ImH)⊕(H⊗ ImH)⊕R,

where H and ImH are the standard and adjoint representations of SU(2), respectively, and
we used the fact that the induced action of SU(2) on 32H acts trivially on anti-self-dual
forms and acts via the adjoint representation on the space of self-dual forms (with respect
to the volume form dt ∧ dx1 ∧ dx2 ∧ dx3). By applying Eschenburg–Wang’s analysis we
deduce conditions for the extension of ϕ over the singular orbit as a smooth 3-form:

(i) e−1 ∧ e
−

2 ∧ e
−

3 is SU(2)-invariant and therefore V must be even.
(ii) e−i ∧ω

−

i ∈ R3
× ImH corresponds to a degree 2 polynomial of the form q 7→ quq∗

for q ∈ H and some fixed u ∈ ImH. Here ω−i is the anti-self-dual part of ωi . We
deduce that

t ȧi + 2Vi
t2

must be even and vanish at t = 0.
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(iii) The triple (e−1 ∧ ω
+

1 , e
−

2 ∧ ω
+

2 , e
−

3 ∧ ω
+

3 ) represents a map ImH→ ImH which is
diagonal in the standard basis of ImH and therefore symmetric. We decompose this
map into a multiple of the identity and a traceless part. The equivariant polynomial
H → Sym(ImH) which corresponds to the identity by evaluation at 1 is clearly
the constant polynomial q 7→ [u 7→ u]. On the other hand, an equivariant map
H→ Sym0(ImH) which has value A ∈ Sym0(ImH) at q = 1 must correspond to
the degree 4 polynomial q 7→ Adq ◦ A ◦ Adq∗ . We therefore conclude that

t ȧi − 2Vi
t2

must have an even Taylor series expansion with 0th and 2nd order coefficients inde-
pendent of i.

In summary we must have

p + q = 0, ai = p +
1
2αt

2
+O(t4)

for some α ∈ R.
Finally, the requirements that ϕ be a positive 3-form and t be the arc-length parameter

along a geodesic meeting orthogonally all principal orbits impose further constraints. As
in the proof of Lemma 3.19, it is useful to observe that when q = −p we can factor
3(a1, a2, a3) as VV1V2V3, where V, Vi are defined in (4.2). Since V ≈ 4p + 3

2αt
2 and

Vi ≈ −
1
2αt

2 as t → 0, at leading order in t the conditions ȧi,−3(a1, a2, a3) > 0 and
2ȧ1ȧ2ȧ3 =

√
−3(a1, a2, a3) are equivalent to the requirement

8α3
= p > 0.

The case K = {1} × SU(2). In this case we have Q = S3 and M = S3
× R4 with

action of SU(2)× SU(2) given by the left multiplication by unit quaternions on S3
⊂ H

and R4
' H. Hence as K-representations we have V = H and p = ImH. The 1-forms

e1, e2, e3 define a coframe on p. If t, x1, x2, x3 are Euclidean coordinates on V , then along
the ray t ∈ H ' V we have

e′i = 2t−1dxi, i = 1, 2, 3.

Hence we can write

ϕ = p e1 ∧ e2 ∧ e3 + 8qt−3 dx1 ∧ dx2 ∧ dx3

+

3∑
i=1

t−1(−ȧi + 2t−1ai)ei ∧ (dt ∧ dxi + dxj ∧ dxk)

− t−1(ȧi + 2t−1ai)ei ∧ (dt ∧ dxi − dxj ∧ dxk)− 2t−1ai dxi ∧ ej ∧ ek,

where for each i = 1, 2, 3 we have εijk = 1. Now, for ϕ to be smooth we must certainly
have q = 0. Moreover, Eschenburg–Wang’s analysis implies that necessary and sufficient
conditions for the smoothness of ϕ are that for all i = 1, 2, 3,

(i) 2t−1(ȧi ± 2t−1ai) has Taylor series involving only even powers of t and also
2t−1(ȧi − 2t−1ai) vanishes at the origin;

(ii) 2t−1ai has Taylor series only involving odd powers of t .
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These conditions are satisfied if and only if a1, a2, a3 are smooth even functions vanishing
at t = 0. Finally, at leading order in t the requirement that ϕ be a positive 3-form and
t be the arc-length parameter along a geodesic meeting all orbits imposes the further
constraints

αi > 0, 8α1α2α3 = −p > 0,

where we write ai(t) = 1
2αi t

2
+O(t4).

The case K = Km,n. In this case the singular orbit is a circle bundle over

D = S2
× S2

= SU(2)× SU(2)/T 2

and the 7-manifold M is the total space of a C × S1-bundle over D. More precisely,
Q = G ×T 2 S1 and M = G ×T 2 (S1

× C), where T 2 acts on S1 and C with weights
(m, n) and (2,−2) respectively. The Km,n-representations V and p are naturally induced
by the T 2-representations V = C2,−2 and p = R ⊕ C2,0 ⊕ C0,2. Since m and n are
coprime, Km,n ' U(1) is embedded in T 2 via eiθ 7→ (einθ , e−imθ ) and as real Km,n-
representations we have V = R2

2|n+m| and p = R⊕ R2
2|n| ⊕ R2|m|.

It is convenient to introduce a new Z-basis for the Lie algebra of the maximal torus T 2

in SU(2)× SU(2): fix integers (r, s) with mr + ns = 1 and consider the basis elements

nE3 −mE
′

3, rE3 + sE
′

3.

The dual basis of left-invariant 1-forms is se3 − re
′

3, me3 + ne
′

3. Note that

e3 = n(se3 − re
′

3)+ r(me3 + ne
′

3), e′3 = −m(se3 − re
′

3)+ s(me3 + ne
′

3).

Let t, x be coordinates on V ' R2. Since nE3 − mE
′

3 has period 2π
|m+n|

in SU(2) ×
SU(2)/K0, along the ray t in V we must have (up to changing x into −x)

(n+m)(se3 − re
′

3) = t
−1dx.

On the other hand e1, e2 and e′1, e
′

2 are coframes on n = R2
2|n| and n′ = R2

2|m| respectively
and me3 + ne

′

3 generates the trivial real factor in p.
Although we work with real representations of Km,n, in order to apply Eschenburg–

Wang’s analysis it is convenient to complexify V ⊕ p and work with complex U(1)-
representations instead. We have

V⊗C = C2(n+m)⊕C−2(n+m), R⊗C = C0, n⊗C = C2n⊕C−2n, n′ = C−2m⊕C2m.

Introduce the following basis of (V ⊕ p) ⊗ C (identified with its dual) adapted to the
decomposition of (V ⊕ p)⊗ C into Km,n-representations:

dzV = dt + idx = dt + i(n+m)(se3 − re
′

3),

dzV = dt − idx = dt − i(n+m)(se3 − re
′

3),

dzR = me3 + ne
′

3,

dzn = e1 + ie2, dzn = e1 − ie2, dzn′ = e
′

1 + ie
′

2, dzn′ = e
′

1 − ie
′

2.
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We can then rewrite ϕ as

ϕ =
i

2
(pr − sa3)dzR ∧ dzn ∧ dzn +

i

2
(a3r + sq)dzR ∧ dzn′ ∧ dzn′

+
i

2
pn+ma3

(m+ n)t
Im(dzV ) ∧ dzn ∧ dzn +

i

2
a3n−mq

(m+ n)t
Im(dzV ) ∧ dzn′ ∧ dzn′

+
i

2
ȧ3

(m+ n)t
dzR ∧ dzV ∧ dzV

+
r + s

2
(a1 − a2)dzR ∧ Im(dzn ∧ dzn′)−

r − s

2
(a1 + a2)dzR ∧ Im(dzn ∧ dzn′)

+
t (ȧ1 + ȧ2)− (a1 + a2)

4t
Re(dzV ∧ dzn ∧ dzn′)

+
t (ȧ1 + ȧ2)+ (a1 + a2)

4t
Re(dzV ∧ dzn ∧ dzn′)

+
t (ȧ1 − ȧ2)+

m−n
m+n

(a1 − a2)

4t
Re(dzV ∧ dzn ∧ dzn′)

+
t (ȧ1 − ȧ2)−

m−n
m+n

(a1 − a2)

4t
Re(dzV ∧ dzn ∧ dzn′).

Working with complex representations makes it very easy to understand which U(1)-
representation each component of ϕ in this decomposition belongs to. We collect the
weights of the corresponding real representations in the following table.

dzR ∧ dzn ∧ dzn 0 dzR ∧ dzn′ ∧ dzn′ 0
Im(dzV ) ∧ dzn ∧ dzn 2|m+ n| Im(dzV ) ∧ dzn′ ∧ dzn′ 2|m+ n|
dzR ∧ dzV ∧ dzV 0 dzR ∧ Im(dzn ∧ dzn′) 2|m− n|

dzR ∧ Im(dzn ∧ dzn′) 2|m+ n| Re(dzV ∧ dzn ∧ dzn′) 4|m+ n|
Re(dzV ∧ dzn ∧ dzn′) 0 Re(dzV ∧ dzn ∧ dzn′) 4|n|
Re(dzV ∧ dzn ∧ dzn′) 4|m|

The principal orbits have non-trivial stabiliser K0 = Z2|m+n| and all terms that are
not K0-invariant must vanish. Note that R2

2|m−n|, R
2
4|m| and R2

4|n| are trivial K0-represen-
tations if and only if there exists d ∈ Z such that (d + 1)m+ (d − 1)n = 0. If this is not
the case we must have a1 = a2, as we already know from Proposition 3.8.

From the table above we read off the necessary and sufficient conditions for ϕ to
extend smoothly along the principal orbit:

(i) a3 is even and there exists r0 ∈ R such that

p = −m2r3
0 , q = n2r3

0 , a3(0) = mnr3
0 ;

(ii) a1 + a2 is odd;
(iii) if there exists d ∈ Z such that (d + 1)m + (d − 1)n = 0 then the Taylor series of

a1 − a2 only involves monomials of the form t |d|+2l , l ≥ 0 (in fact l ≥ 1 if d 6= 0);
otherwise a1 = a2.
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Indeed, note that if (d + 1)m + (d − 1)n = 0 then m − n = −d(m + n), 2m =
−(d − 1)(m+ n) and 2n = (d + 1)(m+ n).

Finally, we determine constraints imposed by the requirement that ϕ defines a G2-
structure for small t . Note that the conditions (i), (ii) and (iii) above allow us to write

a1 = α+βt+γ t
2
+O(t3), a2 = −α+βt−γ t

2
+O(t3), a3 = mnr

3
0+δt

2
+O(t4),

with α = 0 = γ unless m = n = ±1 (i.e. d = 0). Thus β, δ > 0 guarantee that ȧi > 0
for i = 1, 2, 3. Moreover, we calculate that the first three coefficients of the Taylor series
of 3(a1, a2, a3) at t = 0 are

4mnr6
0 (m− n)

2α2, 0, −4r6
0β

2mn(m+ n)2 + 16α2β2.

Note that the first coefficient, i.e. the value of 3(a1, a2, a3) at t = 0, always vanishes, in
agreement with the requirement 2ȧ1ȧ2ȧ3 =

√
−3(a1, a2, a3). Hence 3(a1, a2, a3) < 0

for small t > 0 if and only ifmn > 0 and α2 < r6
0 when n = m = ±1. Note also that once

we know thatm and n have the same sign, then the only way that (d+1)m+(d−1)n = 0
for some d ∈ Z is if d = 0 and m = n (and therefore m = n = ±1 since we assume that
gcd(m, n) = 1).

4.2. The singular IVP

We now aim to construct and parametrise solutions to the fundamental ODE system (3.13)
satisfying the smoothness conditions of Proposition 4.1. The main tool is the following
existence result for a special type of singular initial value problems; cf. [32, §5; 33, §4;
46, Theorem 7.1].

Theorem 4.3. Consider the singular initial value problem

ẏ =
1
t
M−1(y)+M(t, y), y(0) = y0, (4.4)

where y takes values in Rk ,M−1 : Rk → Rk is a smooth function of y in a neighbourhood
of y0 andM : R×Rk → Rk is smooth in t, y in a neighbourhood of (0, y0). Assume that

(i) M−1(y0) = 0;
(ii) h Id−dy0M−1 is invertible for all h ∈ N, h ≥ 1.

Then there exists a unique solution y(t) of (4.4). Furthermore y depends continuously on
y0 satisfying (i) and (ii).

The main results of the section are summarised in the following proposition. In the state-
ment, t is the arc-length parameter along a geodesic meeting all principal orbits orthogo-
nally.

Proposition 4.5. Let M be one of the cohomogeneity one 7-manifolds considered in
Proposition 4.1, labelled by the stabiliser K of the singular orbit. Consider SU(2) ×
SU(2)-invariant G2-structures on M of the form

ϕ = p e1 ∧ e2 ∧ e3 + q e
′

1 ∧ e
′

2 ∧ e
′

3 + d(a1 e1 ∧ e
′

1 + a2 e2 ∧ e
′

2 + a3 e3 ∧ e
′

3).
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(i) If K = 4SU(2) then there exists a 3-parameter family of torsion-free G2-structures
ϕ defined in a neighbourhood of the singular orbit. The family is parametrised by
r0 > 0 and α1, α2, α3 ∈ R such that

64r0(α1 + α2 + α3) = 1, p = −q = r3
0 , ai(t) = r

3
0 +

1
4 r0t

2
+ αi t

4
+O(t6).

(ii) If K = {1} × SU(2) then there exists a 3-parameter family of torsion-free
G2-structures ϕ defined in a neighbourhood of the singular orbit. The family is
parametrised by r0 > 0 and α1, α2, α3 ∈ R such that

α1α2α3 = 1, p = −r3
0 , q = 0, ai(t) =

1
4 r0αi t

2
+O(t4).

(iii) If K = K1,1 then there exists a 3-parameter family of torsion-free G2-structures
ϕ defined in a neighbourhood of the singular orbit. The family is parametrised by
r0, α, β ∈ R with β > 0 via p = −q = −r3

0 and

a1 = r
3
0α + r

2
0βt +O(t

2), a2 = −r
3
0α + r

2
0βt +O(t

2), a3 = r
3
0 +O(t

2).

(iv) If K = Km,n for coprime integers with mn > 1 then there exists a 2-parameter
family of torsion-free G2-structures ϕ defined in a neighbourhood of the singular
orbit. The family is parametrised by r0 ∈ R and β > 0 via p = −m2r3

0 , q = n2r3
0

and
a1 = a2 = r

2
0βt +O(t

3), a3 = mnr
3
0 +O(t

2).

In the rest of the section we show how to apply Theorem 4.3 to prove the four cases of
the proposition.

The case K = 4SU(2). Fix r0 > 0. According to Proposition 4.1(i) we must have
p = −q = r3

0 and

xi = ȧj ȧk =
r2
0
4 t

2
+ 2r0(αj + αk)t4 +O(t6), yi = ai = r

3
0 +

r0
4 t

2
+ αi t

4
+O(t6).

The constraint H(x, y) = 0 is already satisfied up to fourth order at t = 0. The vanishing
of the fifth t-derivative of H(x, y) at t = 0 imposes the further constraint

64r0(α1 + α2 + α3) = 1.

Fix any triple (α1, α2, α3) satisfying this constraint and write

xi =
r2
0
4 t

2
+ t4Xi, yi = r

3
0 +

r0
4 t

2
+ t4Yi,

where Xi(0) = 2r0(αj + αk) and Yi(0) = αi . Writing O(tk) for any (convergent) series∑
i≥k ci t

i with coefficients ci depending on X1, . . . , Y3, r0, we find that (X, Y ) satisfies
an ODE system

Ẋi = t
−1(
−4Xi + r0(−5Yi + 3Yj + 3Yk)+ 5

64

)
+O(1),

Ẏi = t
−1( 1

r0
(−Xi +Xj +Xk)− 4Yi

)
+O(1)

with the same structure as the one considered in Theorem 4.3. The condition 64r0(α1 +

α2 + α3) = 1 guarantees that the initial condition y0 for (X, Y ) satisfies M−1(y0) = 0.
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Moreover, we have

dy0M−1 =



−4 0 0 −5r0 3r0 3r0
0 −4 0 3r0 −5r0 3r0
0 0 −4 3r0 3r0 −5r0
−

1
r0

1
r0

1
r0
−4 0 0

1
r0
−

1
r0

1
r0

0 −4 0
1
r0

1
r0
−

1
r0

0 0 −4


and therefore for all h ≥ 1,

det(h Id−dy0M−1) = h
2(h+ 3)(h+ 5)(h+ 8)2 > 0.

The case K = {1} × SU(2). Fix r0 > 0. According to Proposition 4.1(ii) we must have
p = −r3

0 , q = 0 and

xi =
r2
0
4 αjαkt

2
+O(t4), yi =

r0
4 αi t

2
+O(t4)

for α1, α2, α3 ∈ R satisfying α1α2α3 = 1.
The pair (X, Y ) defined by xi = t2Xi and yi = t2Yi satisfies an ODE system of the

form of Theorem 4.3:

Ẋi = t
−1
(
−2Xi +

√
r3

0YjYk

Yi

)
+O(1), Ẏi = t

−1
(
−2Yi +

√
XjXk

Xi

)
+O(1).

The initial condition y0 =
( r2

0
4 αjαk,

r0
4 αi

)
for (X, Y ) satisfies M−1(y0) = 0 precisely

when α1α2α3 = 1. Moreover, for any such triple (α1, α2, α3) we have

dy0M−1 =



−2 0 0 −α2
2α

2
3r0 −α3r0 −α2r0

0 −2 0 −α3r0 −α
2
3α

2
1r0 −α1r0

0 0 −2 −α2r0 −α1r0 −α
2
1α

2
2r0

−
α2

1
r0
−
α1α2
r0
−
α3α1
r0

−2 0 0

−
α1α2
r0
−
α2

2
r0
−
α2α3
r0

0 −2 0

−
α3α1
r0
−
α2α3
r0
−
α2

3
r0

0 0 −2


and therefore for all h ≥ 1,

det(h Id−dy0M−1) = h
2(h+ 4)2(h+ 1)(h+ 3) > 0.

Remark 4.6. For future use we record higher-order expansions of a1, a2, a3 in the spe-
cial case where there is an additional U(1)-symmetry:

a1(t) = a2(t) =
1
4 r0α1t

2
+

8− 5α3
3

576α1r0
t4 +O(t6),

a3(t) =
1
4 r0α3t

2
−
(4− 7α3

3)α3

576α2
1r0

t4 +O(t6).
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The case K = K1,1. Fix r0 ∈ R. According to Proposition 4.1(iii) we must have p =
−r3

0 , q = r3
0 and

y1 = r
3
0α + r

2
0βt +O(t

2), y2 = −r
3
0α + r

2
0βt +O(t

2), y3 = r
3
0 +O(t

2),

for some α ∈ R and β > 0 (in particular we can assume that y1+ y2 > 0 for small t > 0;
we will use this condition freely below to simplify square roots).

We now set

x1 = tX1, x2 = tX2, x3 = r
4
0β

2
+ t2X3,

y1 = r
3
0α + tY1, y2 = −r

3
0α + tY2, y3 = r

3
0 + t

2Y3.

Then (X, Y ) satisfies an ODE system of the form of Theorem 4.3:

Ẋ1 =
1
t
(2εr3

0

√
1− α2 −X1)+O(1),

Ẋ2 =
1
t
(2εr3

0

√
1− α2 −X2)+O(1),

Ẋ3 =
1
t

(
(Y1 + Y2)

2
− 2Y3r

3
0 (1− α

2)

(Y1 + Y2)ε
√

1− α2
− 2X3

)
+O(1),

Ẏ1 =
1
t

(
r2

0βX2
√
X1X2

− Y1

)
+O(1),

Ẏ2 =
1
t

(
r2

0βX1
√
X1X2

− Y2

)
+O(1),

Ẏ3 =
1
t

(
X1X2

r2
0β
√
X1X2

− 2Y3

)
+O(1),

where ε is the sign of r0.
There is a unique solution

y0 =

(
2εr3

0

√
1− α2, 2εr3

0

√
1− α2,

εβr2
0

√
1− α2

−
r2

0 (1− α
2)

2β2 , r2
0β, r

2
0β,

εr0
√

1− α2

β

)
to the equation M−1(y0) = 0. Moreover, dy0M−1 is given by

−1 0 0 0 0 0
0 −1 0 0 0 0

0 0 −2 2εβ3
+(1−α2)

√
1−α2

2β3
√

1−α2

2εβ3
+(1−α2)

√
1−α2

2β3
√

1−α2
−
εr0

√
1−α2

β

−
εβ

4r0
√

1−α2

εβ

4r0
√

1−α2
0 −1 0 0

εβ

4r0
√

1−α2
−

εβ

4r0
√

1−α2
0 0 −1 0

1
2βr2

0

1
2βr2

0
0 0 0 −2


.

and
det(h Id−dy0M−1) = (h+ 1)4(h+ 2)2 > 0

for all h ≥ 1.
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The case K = Km,n, mn > 1. This case is very similar to the previous one. Fix r0 ∈ R.
According to Proposition 4.1(iii) we must have p = −m2r3

0 , q = n2r3
0 and

y1 = y2 = r
2
0βt +O(t

2), y3 = mnr
3
0 +O(t

2),

for some β > 0. Using y1 = y2 and x1 = x2, we now set

x1 = tX1, x3 = r
4
0β

2
+ t2X3, y1 = tY1, y3 = mnr

3
0 + t

2Y3.

Then (X1, X3, Y1, Y3) satisfies an ODE system of the form of Theorem 4.3:

Ẋ1 =
1
t
(
√
mn(m+ n)εr3

0 −X1)+O(1),

Ẋ3 =
1
t

(
(m+ n)2Y 2

1 − 2m2n2Y3r
3
0

√
mn(m+ n)εY1

− 2X3

)
+O(1),

Ẏ1 =
1
t
(r2

0βX1 − Y1)+O(1),

Ẏ3 =
1
t

(
X1

r2
0β
− 2Y3

)
+O(1),

where ε is the sign of r0.
There is a unique solution

y0 =

(
ε
√
mn(m+ n)r3

0 ,
ε(m+ n)βr2

0

2
√
mn

−
r2

0m
2n2

2β2 , r2
0β,

ε
√
mn(m+ n)r0

2β

)
to the equation M−1(y0) = 0. Moreover,

dy0M−1 =


−1 0 0 0

0 −2 ε(m+n)β3
+m2n2√mn

√
mnβ3 −

2εr0mn
√
mn

(m+n)β

0 0 −1 0
1

2βr2
0

0 0 −2


and

det(h Id−dy0M−1) = (h+ 1)2(h+ 2)2 > 0
for all h ≥ 1.

Remark 4.7. For future use note that the proof yields

y1 = r
2
0βt +O(t

3), y2 = mnr
3
0 +

√
mn (m+ n)|r0|

2β
t2 +O(t4)

as t → 0.

Remark. A more geometric interpretation of the parameters in Proposition 4.5 is given
by studying the leading order behaviour of the induced metric (3.18) as t → 0. For
example, in the case of Proposition 4.5(ii) with α1 = α2 (so that we have the enhanced
U(1)-symmetry) we have

gt ≈ r
2
0α

2
1(e1 ⊗ e1 + e2 ⊗ e2)+ r

2
0α

2
3 e3 ⊗ e3 +

1
4 t

2(e′1 ⊗ e
′

1 + e
′

2 ⊗ e
′

2 + e
′

3 ⊗ e
′

3).
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The metric on the singular orbit is a Berger metric on the 3-sphere. If we fix r0 = 1 by
scaling, the parameters α1 = α2 and α3 determine, respectively, the size of the base S2

and of the Hopf fibres. Similarly, in the case of Proposition 4.5 (iv) we calculate

gt ≈
r2

0β
√
mn

(m(e1 ⊗ e1 + e2 ⊗ e2)+ (e
′

1 ⊗ e
′

1 + e
′

2 ⊗ e
′

2))

+
mnr2

0
β2 (me3 + ne

′

3)
2
+ t2(m+ n)2(se3 − re

′

3)
2

as t → 0. Fixing r0 = 1 by scaling, we see that the metric on the singular orbit is a
squashed metric on the principal circle bundle S2

×S3
→ S2

×S2: the metric on the base
S2
× S2 is a product of the round metrics with ratio m/n between the areas of the two

factors; the parameter β determines the respective sizes of the base and the circle fibres.

Remark. As an aside, we note that Alekseevsky–Dotti–Ferraris have classified invariant
Einstein metrics on SU(2) × SU(2)/Km,n [4, Theorem 4.1]. When mn > 1 there exists
a unique invariant Einstein metric, which coincides with the Einstein metric obtained
by Wang–Ziller on any circle bundle over a product of Kähler–Einstein manifolds [54,
Theorem 1.4]; when m = n = 1 there are two Einstein metrics, the product of round
metrics and the Sasaki–Einstein metric. The restriction of gt to the singular orbit is never
Einstein unless m = n = 1 and 2β6

= 1.

5. Conically singular and asymptotically conical ends

In addition to the solutions of (3.13) just constructed in Proposition 4.5 and which are
defined in the neighbourhood of various classes of singular orbits we will need two fur-
ther classes of local solutions to (3.13): (i) solutions with an isolated conical singularity
modelled on the cone over the homogeneous nearly Kähler structure on S3

× S3 and (ii)
solutions with an asymptotically conical end asymptotic to the same cone. Describing
solutions with either type of end behaviour leads to a class of singular initial value prob-
lems not widely studied in the previous extensive work on cohomogeneity one Einstein
metrics. The closest work we are aware of is Dancer–Wang’s work [30] on Painlevé-type
expansions of singular solutions to the cohomogeneity one Ricci-flat equations. In many
cases their expansions construct continuous families of either AC or ALC Ricci-flat ends,
subsets of which often have special or exceptional holonomy. However, because they con-
sider only “rational resonances”, their approach often does not capture the full space of
ends, e.g. in [30, Theorem 5.6] the only G2-holonomy AC ends obtained arise from the
original Bryant–Salamon AC metric.

In order to construct solutions with prescribed singular/asymptotic behaviour we will
use the following extension of Theorem 4.3. The theorem is proved in Chapter I of Vol-
ume 3 of Picard’s treatise [50] using the method of majorants; cf. in particular [50, Chap-
ter I, §13].
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Theorem 5.1. Consider the singular initial value problem

t ẏ = 8(y, t), y(0) = y0, (5.2)

where y takes values in Rk and 8 : Rk × R→ Rk is a real analytic function in a neigh-
bourhood of (y0, 0) with 8(y0, 0) = 0. Assume also that ∂t8(y0, 0) lies in the image of
Id−dy08( · , 0) and fix a preimage y1 ∈ Rk . After possibly a change of basis, assume that
dy08( · , 0) contains a diagonal block diag(λ1, . . . , λm) in the upper-left corner. Further-
more assume that the eigenvalues λ1, . . . , λm satisfy:

(i) λ1, . . . , λm > 0;
(ii) for every h = (h0, . . . , hm) ∈ Zm+1

≥0 with |h| = h0 + · · · + hm ≥ 2 the matrix

(h · λ) Id− dy08( · , 0)

is invertible. Here λ = (1, λ1, . . . , λm) and h · λ =
∑m
i=0 hiλi .

Then for every (u1, . . . , um) ∈ Rm there exists a unique solution y(t) of (5.2) given as a
convergent generalised power series

y(t) = y0 + y1t + (u1t
λ1 , . . . , umt

λm , 0, . . . , 0)+
∑
|h|≥2

yh t
h·λ.

Furthermore, the solutions depend real analytically on u1, . . . , um.

Remark. It is clear that if 8 does not depend on t then the solution y has a generalised
power series expansion in powers of tλ1 , . . . , tλm only and we should take h0 = 0 in
condition (ii).

Remark. The existence theorem can be extended to the case of smooth (rather than real
analytic)8 by truncation of a formal generalised power series solution to sufficiently high
order and a contraction mapping argument.

We now use this existence result to construct 1-parameter families of conically singular
and asymptotically conical ends.

Proposition 5.3. Let C be the G2–holonomy cone over the homogeneous nearly Kähler
structure on S3

× S3 and set ν0 =
√

145−7
2 ≈ 2.5 and ν∞ =

√
145+7

2 ≈ 9.5.

(i) For every c ∈ R there exists a unique SU(2) × SU(2) × U(1)-invariant torsion-free
G2-structure

ϕ = d
(
a (e1 ∧ e

′

1 + e2 ∧ e
′

2)+ b e3 ∧ e
′

3
)

defined on (0, ε)×S3
×S3 for some ε > 0, where the functions t−3a and t−3b admit

convergent generalised power series expansions in powers of tν0 satisfying

54
√

3
t−3a(t) = 1+ 1

2ct
ν0 +O(t2ν0), 54

√
3
t−3b(t) = 1− ctν0 +O(t2ν0).

In particular the associated metric gϕ has a conical singularity as t → 0 asymptotic
to the cone C with rate ν0.
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(ii) Fix p, q ∈ R. For every c ∈ R there exists a unique SU(2)×SU(2)×U(1)-invariant
torsion-free G2-structure

ϕ = p e1 ∧ e2 ∧ e3 + q e
′

1 ∧ e
′

2 ∧ e
′

3 + d
(
a (e1 ∧ e

′

1 + e2 ∧ e
′

2)+ b e3 ∧ e
′

3
)

on (T ,∞) × S3
× S3 for some T > 0, where the functions t−3a and t−3b admit

convergent generalised power series expansions in powers of t−3 and t−ν∞ satisfying
54
√

3
t−3a = 1+O(t−3), 54

√
3
t−3b = 1+O(t−3), 54

√
3
t−3(b−a) = ct−ν∞+O(t−12).

In fact if p = 0 = q then t−3a and t−3b admit convergent generalised power series
expansions in powers of t−ν∞ only. In particular the associated metric gϕ has a
complete asymptotically conical end as t → ∞ asymptotic to the cone C with rate
−ν∞ if p = 0 = q and rate −3 otherwise.

Proof. First of all, note that, because of its invariance under SU(2)3 and scaling, the
solution to the fundamental ODE system (3.13) corresponding to the G2-cone over the
homogeneous nearly Kähler structure on S3

× S3 must satisfy a = b = Ct3. It is then
immediate to check that C =

√
3

54 .
The proof of the existence of CS solutions is a straightforward application of Theorem

5.1. We write a =
√

3
54 t

3(1 + Y1) and b =
√

3
54 t

3(1 + Y2). Define functions X1 and X2

by ȧḃ = 1
108 t

4(1+ X1) and ȧ2
=

1
108 t

4(1+ X2). Then the U(1)-enhanced ODE system
(3.17) for (ȧḃ, ȧ2, a, b) becomes an ODE system for (X1, X2, Y1, Y2) of the form (5.2):

tẊ1 = −4X1 +
4
√

3(1+ Y1)(1+ Y2)
2√

4(1+ Y1)2(1+ Y2)2 − (1+ Y2)4
− 4,

tẊ2 = −4X2 +
4
√

3(1+ Y2)(2(1+ Y1)
2
− (1+ Y2)

2)√
4(1+ Y1)2(1+ Y2)2 − (1+ Y2)4

− 4,

t Ẏ1 = −3Y1 +
3(1+X1)(1+X2)√
(1+X1)2(1+X2)

− 3,

t Ẏ2 = −3Y2 +
3(1+X1)

2√
(1+X1)2(1+X2)

− 3.

The linearisation of 8 at y0 = (0, 0, 0, 0) is

L =


−4 0 −

4
3

16
3

0 −4 32
3 −

20
3

0 3
2 −3 0

3 −
3
2 0 −3

 . (5.4)

L has four distinct eigenvalues −1,−6,−ν∞ = −ν0 − 7, ν0. The corresponding eigen-
vectors are, respectively,

(4, 4, 3, 3), (2, 2,−1,−1), (3+ ν0,−6− 2ν0,−3, 6), (4+ ν0,−8− 2ν0, 3,−6).

The proof of part (i) now follows immediately from Theorem 5.1.
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Constructing AC ends is more involved: Theorem 5.1 cannot be applied immediately
because the non-resonance condition (ii) fails. As above we work with the system (3.17)
for the 4-tuple (x1 = x2 = ȧḃ, x3 = ȧ

2, y1 = y2 = a, y3 = b) but it is now convenient to
change variable s = 1/t . Define functions (X1, X2, Y1, Y2) by s3y1 =

√
3

54 (1+Y1), s3y3 =
√

3
54 (1+ Y2), s4x1 =

1
108 (1+X1) and s4x3 =

1
108 (1+X2). The 4-tuple (X1, X2, Y1, Y2)

satisfies a system of the form sẏ = 8(y, s3)where8 does not depend on s3 if p = 0 = q.
The linearisation of 8( · , 0) at 0 is −L, with L as in (5.4).

Now, the presence of 1 in the spectrum of−L is explained by the fact that the original
system (3.17) is t-invariant. By a translation t 7→ t + t0 we can therefore always reduce
to the case when the eigenvalue 1 is never excited. The eigenvalue 6 should not be excited
either. Indeed, we are interested in solutions of (3.17) satisfying the conservation law
H(x, y) = 0. RewritingH = H(s3, X1, X2, Y1, Y2), a calculation shows thatH vanishes
at leading order if and only if 3(2X1 +X2)− 4(2Y1 + Y2) = 0.

The discussion above motivates us to look for a 1-parameter family of AC solutions to
the ODE system (3.17) given by convergent generalised power series in powers of s3, sν∞

and parametrised by the coefficient of sν∞ . A further change of variable s 7→ s3 justifies
the fact that powers of s3 and not s should be considered.

Given that ∂s8(0, 0) = 0, the conditions to be satisfied in order to apply Theorem 5.1
are

3h0 + ν∞h1 6= 1, 6, ν∞,−ν0

for every h0, h1 ∈ Z≥0 with h0 + h1 ≥ 2. The non-resonance condition fails only when
(h0, h1) = (2, 0). There is therefore a potential obstruction to solve the system: the coef-
ficient y2,0 of s6 must satisfy an equation

(L+ 6)y2,0 = Q2,0(y0, y1,0), (5.5)

where Q2,0 is a real analytic function of the initial condition y0 = 0 for (X, Y ) and the
coefficient y1,0 of s3, which is uniquely determined by the equation. We know that L+ 6
has a 1-dimensional kernel and cokernel. Only if Q2,0(y0, y1,0) lies in the hyperplane
im (L + 6) can we solve (5.5). Assuming this is the case, we fix the choice of a solution
y2,0 to (5.5) by imposing the vanishing of the coefficient of order s6 of the HamiltonianH .
Since the linearisation ofH does not annihilate the eigenvector of−L of eigenvalue 6, this
requirement fixes a unique choice for y2,0. Once y2,0 is uniquely determined, the iteration
procedure to find a formal generalised power series solution to (3.17) can be continued
without further obstructions and the majorisation argument in the proof of Theorem 5.1
still guarantees that the generalised power series converges.

The key observation now is that the potential obstruction to solve (5.5) does in fact
vanish. Instead of showing this by computation, we observe that for every p, q ∈ R there
exists an AC solution of the ODE system (3.17) with an enhanced SU(2)-symmetry, i.e.
with a = b. Using the conserved quantity H = 0 we can describe such a solution by the
curve (x, y) ∈ R2 defined by the equation 4x3

= 3y4
− 4(p − q)y3

− 6pqy2
− p2q2.

Recalling that y = a = b and x = ȧ2 we can rewrite this equation as the ODE

4ȧ6
= 3a4

− 4(p − q)a3
− 6pqa2

− p2q2
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for the function a. Taking the sixth root of both sides of the equation (ȧ > 0 with our
conventions), changing variable s = 1/t and writing a =

√
3

54 s
−3(1 + w), the equation

can be written in the form sẇ = w +O(w2
+ s3). Theorem 5.1 then guarantees that the

solution admits a convergent power series expansion in s3
= t−3, unique up to a time

translation t 7→ t − t0. We conclude that all the coefficients yh,0 in a formal generalised
power series expansion of y (in particular the coefficient y2,0) are uniquely determined
by the equation up to a time translation. ut

Remark. In order to relate the proposition to the general deformation theory of CS and
AC G2-manifolds developed by Karigiannis–Lotay [43], one can check that σ = e1 ∧ e

′

1
+ e2 ∧ e

′

2 − 2e3 ∧ e
′

3 is a coclosed primitive (1, 1)-form with

4σ = (ν0 + 3)(ν0 + 4)σ = (−ν∞ + 3)(−ν∞ + 4)σ = 36σ

on S3
× S3 endowed with its homogeneous nearly Kähler structure. It follows that

d(tν0+3σ) and d(t−ν∞+3σ) are closed and coclosed 3-forms of type 27 on the G2-cone C
and therefore infinitesimal deformations of C as a G2-manifold. On the other hand, dif-
ferentiating our solutions with respect to the parameter c in the construction yields so-
lutions d(tν0+3σ) and d(t−ν∞+3σ) of the linearisation of (3.17) at the conical solution
a = b =

√
3

54 t
3.

6. Existence of ALC metrics

In this section we obtain our first main (global) existence results, Theorems A and B in
the Introduction: we prove the existence of two 1-parameter families of complete ALC
G2-metrics and the existence of an ALC G2-space with an isolated conical singularity.
One of the two families of ALC G2-metrics we obtain, named B7 in the physics literature,
is already known to exist thanks to work of Bogoyavlenskaya [13] (one member of this
family is explicit and was found earlier by Brandhuber–Gomis–Gubser–Gukov [17]); the
other family, named D7 in the physics literature, is currently only known numerically
or in the collapsed limit of [35]. The existence of the CS ALC space seems not to have
been anticipated in the physics literature: as explained in the Introduction it can be used,
together with the Bryant–Salamon AC metric on S3

×R4, to explain the existence of both
the B7 and D7 families of ALC manifolds by a gluing construction.

6.1. A criterion for forward completeness

In the following proposition we relate the forward completeness of a cohomogeneity one
torsion-free G2-structure to the sign of the mean curvature l of the principal orbits. One
direction is very closely related to a result of Böhm [15, Proposition 3.2], while the other
implication, which plays a crucial role in our analysis, was suggested to us by Wilking.

Proposition 6.1. Let (M, ϕ) be a cohomogeneity one SU(2)×SU(2)-invariant G2-man-
ifold (not necessarily complete). Assume that l(t0) > 0 for some initial time t0 corre-
sponding to a principal orbit. Then the solution blows up in finite time if and only if there
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exists t∗ > t0 such that l(t∗) = 0, i.e. if and only if there exists a principal orbit that is a
minimal hypersurface.

Proof. Since the 7-dimensional metric dt2 + gt induced by ϕ is Ricci-flat, the mean
curvature l of the principal orbits satisfies 0 = l′ + |L|2 = l′ + 1

6 l
2
+ |L̊|2, where L̊

denotes the traceless part of the second fundamental form L of the principal orbits; cf. for
example [32, Proposition 2.1].

Note that M cannot contain a totally geodesic principal orbit O. To see this, let ψ
denote the parallel spinor on M and recall that using Clifford multiplication the covari-
ant derivative of ψ |O can be identified with the second fundamental form of O. If O
were totally geodesic, it would therefore carry a parallel spinor and hence a homoge-
neous Calabi–Yau (and therefore Ricci-flat) metric. This is impossible since homoge-
neous Ricci-flat metrics must be flat, while the principal orbits of M , which are finite
quotients of S3

× S3, do not carry flat metrics. In particular, l(t∗) = 0 implies l(t) < 0
for t > t∗. Then comparison with the solution of u′+ 1

6u
2
= 0 shows that l must blow up

in finite time.
Conversely, assume that the solution exists only on a finite interval [t0, T ). By Lemma

3.19 we can regard Hitchin’s flow as a first-order ODE system for the metric g. Since it
satisfies a first-order equation, the metric must degenerate as we approach the maximal
existence time T (otherwise we could use local existence to extend the solution beyond
t = T ). Hence as t → T the norm of a Jacobi field J , i.e. a vector field satisfying
J ′ = LJ , converges either to zero or to infinity. In either case, we deduce that

´ T
t0
|L| ≥

limt→T log |J |(t)− log |J |(t0) = ∞. Since T <∞, by Hölder’s inequality we also have´ T
t0
|L|2 = ∞. Integration of l′ + |L|2 = 0 shows that l(t) → −∞ as t → T . Since

l(t0) > 0 we deduce there must exist t∗ ∈ (t0, T ) such that l(t∗) = 0. ut

Remark. If M closes smoothly on a singular orbit or has an isolated conical singularity
at t = 0 then limt→0 l(t) = +∞ so the assumption about the positivity of the mean
curvature at an initial time is certainly satisfied in these cases.

Remark. Finite time blow-up when there exists a minimal principal orbit can be deduced
as in the proposition from any condition that would exclude the existence of a totally
geodesic principal orbit. For example, in [15, Proposition 3.2] Böhm shows that in a
complete cohomogeneity one Ricci-flat manifold that does not contain a line and is not
flat principal, orbits cannot be minimal.

6.2. The U(1)-enhanced symmetric system

Let us now specialise to the setting where we assume an additional U(1)-symmetry. In
the rest of the paper we will give a detailed qualitative analysis of the single second-order
equation (3.16) arising from the Lagrangian formulation of the problem. Hence in the
rest of the paper ˙ denotes differentiation with respect to an arbitrary parameter s. We
reserve the freedom to change parametrisation (compatible with a fixed orientation) and
will specify the choice of a parametrisation when additional properties are needed. We
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consider pairs of functions (a, b) satisfying

2F(ȧb̈ − ḃä) = −ȧḃ(2ḃFb − ȧFa),

where F = 4a2(b−p)(b+q)− (b2
+pq)2 and Fa, Fb denote its partial derivatives, and

the constraints
ȧ, ḃ > 0, F (a, b) > 0.

Note that the latter condition forces a to have a definite sign and b− p, b+ q to have the
same definite sign.

The following formulas will play an important role in our analysis:

2Fb − Fa = 8(a − b)
(
a(2b + q − p)+ b2

+ pq
)
, (6.2a)

2bFb − aFa = 8(a − b)(a + b)(b2
+ pq). (6.2b)

Furthermore the formula (3.20) for the mean curvature l of the principal orbits reads

l =
ȧFa + ḃFb

2F
. (6.3)

We also observe that in all cases we are interested in, p and q satisfy pq ≤ 0. By
Theorem 7.3 below this is no accident: every SU(2) × SU(2) × U(1)-invariant torsion-
free G2-structure closing smoothly on a singular orbit must satisfy this condition.

Lemma 6.4. Assume that (a, b) is a solution to (3.16) with pq ≤ 0. Then the conditions

ȧ > ḃ, a > b > max
(
p,−q,

√
−pq

)
≥ 0 (6.5)

are preserved as long as the solution exists with ȧ, ḃ, F > 0.

Proof. Since ȧ, ḃ > 0 the inequalities a > 0 and b > max(p,−q,
√
−pq) ≥ 0 are

certainly preserved. If ȧ > ḃ then also a > b is preserved. We therefore must show that
the condition ȧ − ḃ > 0 is preserved as long as the solution satisfies the open constraints
to define a G2-structure. Now, at a point where ȧ = ḃ, (3.16) yields

2F(ä − b̈) = ȧ2(2Fb − Fa).

Hence by (6.2a), ä − b̈ > 0 as long as a > b > max(p,−q,
√
−pq) ≥ 0. ut

Proposition 6.6. If the conditions (6.5) are satisfied then the solution (a, b) is forward
complete. In particular, a→∞ as we approach the complete end.

Proof. By (6.3) the mean curvature of the principal orbit has the same sign as
2(ȧFa + ḃFb) = ḃ(2Fb − Fa) + (2ȧ + ḃ)Fa > 0 if the conditions (6.5) are satisfied
(note that Fa = 8a(b − p)(b + q) is strictly positive). By Proposition 6.1 the solution
cannot blow up in finite time.

In order to prove that a →∞, parametrise with respect to the arc-length parameter t
along a geodesic meeting all principal orbits orthogonally. Note that since ȧ > ḃ we have
2ȧ3 > 2ȧ2ḃ. Up to a positive multiplicative constant, the right-hand side is the orbital
volume function Vol(t). Since the mean curvature l is positive, Vol(t) ≥ Vol(t0) > 0 for
all t ≥ t0. Hence ȧ is bounded below by a positive constant. Since t is unbounded along
the complete end, so is a. ut
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Remark. In the course of proving ALC asymptotics in Proposition 6.11 we will show
that the assumptions (6.5) also force b→∞ along the complete end.

6.3. ALC asymptotics

We are now going to show that under an additional assumption the complete ends of
Proposition 6.6 are ALC. First note that the conical Calabi–Yau structure (ωC, �C) on
the conifold C = C(6), 6 = SU(2)× SU(2)/K1,−1, is given by

Re�C = d
( 1

18 t
3(e1 ∧ e

′

1 + e2 ∧ e
′

2)
)
, ωC = −d(

1
6 t

2(e3 − e
′

3)).

Moreover, θ = 1
2 (e3 + e

′

3) is the (unique up to gauge transformations) Hermitian Yang–
Mills connection on the circle bundle R+ × SU(2) × SU(2) → C, i.e. dθ ∧ ω2

C = 0 =
dθ ∧ �C. Fix ` > 0 and consider the closed G2-structure ϕ∞ on the total space of this
circle bundle,

ϕ∞ = d
( 1

18 t
3(e1 ∧ e

′

1 + e2 ∧ e
′

2)+
1
6`t

2e3 ∧ e
′

3
)
. (6.7)

Since θ is Hermitian Yang–Mills, d ∗ϕ∞ ϕ∞ = O(t
−2). Moreover, up to terms that decay

as t−1 the metric induced by ϕ∞ is

gϕ∞ = dt
2
+ t2gse + `

2θ2
+O(t−1),

where gse is the (pull-back to the total space of the circle bundle of the) Sasaki–Einstein
metric on 6 = SU(2) × SU(2)/4U(1). (In particular here t is the arc-length parameter
along a geodesic meeting all principal orbits orthogonally.) We therefore regard ϕ∞ as
the asymptotic model for an SU(2)× SU(2)-invariant torsion-free G2-structure inducing
an ALC metric.

Lemma 6.8. Let

ϕ = p e1 ∧ e2 ∧ e3 + q e
′

1 ∧ e
′

2 ∧ e
′

3 + d
(
a (e1 ∧ e

′

1 + e2 ∧ e
′

2)+ b e3 ∧ e
′

3
)

be an SU(2) × SU(2) × U(1)-invariant torsion-free G2-structure defined on (t0,∞) ×
SU(2)× SU(2). Assume that a, b are positive increasing functions with limt→∞ a = ∞,
limt→∞

a2

b3 =
2

3`3 for some ` > 0 and limt→∞
a
b
db
da
=

2
3 . Then the functions ã(t) =

18t−3a(t) − 1 and b̃(t) = 6`−1t−2b(t) − 1 satisfy ã(k)(t) = O(t−k−1) and b̃(k)(t) =
O(t−k−1) as t →∞ for all k ≥ 0. In particular, ϕ converges to the closed G2-structure
ϕ∞ of (6.7) in C∞ as t →∞.

Proof. Since a is a positive increasing function of t we can introduce a parameter s such
that a = 1

18 s
3. Then by our assumptions on a and b, b ≈ 1

6`s
2 in C0. Hence, 2

`s
db
ds
≈

a
b
db
da
≈

2
3 and therefore b − 1

6`s
2 converges to zero in C1. Now, the arc-length parameter

t is related to s by

2
(
ds

dt

)3(
da

ds

)2
db

ds
=

√
F(a, b).
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As s → ∞ we therefore have ds
dt
≈ 1 and by integration s ≈ t in C1. Thus a(t) − 1

18 t
3

and b(t)− 1
6`t

2 converge to zero in C1.
Now consider the system (3.17) for the four functions x1 = ȧḃ, x2 = ȧ2, y1 = a,

y2 = b. Write x1 =
`

18 t
3(1 + X1), x2 =

1
36 t

4(1 + X2), y1 =
1
18 t

3(1 + Y1) and y2 =
`
6 t

2(1 + Y2). After changing variable eτ = t , one can check that (X1, X2, Y1, Y2) is a
solution to an initial value problem of the form

Ẋ1 = −3(1+X1)+ 3
(1+ Y1)(1+ Y2)

2
+O(e−2τ )√

(1+ Y1)2(1+ Y2)2 +O(e−2τ )
,

Ẋ2 = −4(1+X2)+ 4
(1+ Y1)

2(1+ Y2)+O(e
−2τ )√

(1+ Y1)2(1+ Y2)2 +O(e−2τ )
,

Ẏ1 = −3(1+ Y1)+ 3
√

1+X2,

Ẏ2 = −2(1+ Y2)+ 2
1+X1
√

1+X2
,

(6.9)

where O(e−2τ ) indicates a real analytic function of (X1, X2, Y1, Y2) with coefficients
depending real analytically on e−τ and vanishing at e−τ = 0 at least with order 2.

Define Z = (X1, X2, Y1, Y2, e
−τ ) so that (6.9) can be rewritten as an autonomous

system dZ
ds
= 8(Z) for a real analytic map8. The linearisation d08 has a 1-dimensional

kernel and four negative eigenvalues −1 (with multiplicity 2), −5 and −6. The presence
of a 1-dimensional kernel is explained by the freedom to change `. In fact {(c, 0, 0, c, 0) |
c ∈ R} is the centre manifold of the system dZ

ds
= 8(Z). Hence standard centre manifold

theory [21, §2.4, Theorem 2(b)] implies that any solution Z that stays in a neighbourhood
of 0 must satisfy Z = (c, 0, 0, c, 0) +O(e−τ ) as τ →∞ for some c ∈ R. In particular,
if (x1, x2, y1, y2) is a solution to (3.17) asymptotic to

(
`

18 t
3, 1

36 t
4, 1

18 t
3, `6 t

2) for some
` > 0 then

(t−3x1, t
−4x2, t

−3y1, t
−2y2) =

(
`

18 ,
1

36 ,
1

18 ,
`
6

)
+O(t−1).

The statement about the decay of derivatives of t−3a and t−2b then follows from a boot-
strap argument. ut

Remark. In terms of a new independent variable s = 1
log τ , the system (6.9) takes the

form sż = 8(z, s2) of Theorem 5.1. The linearisation of 8( · , 0) at the origin has four
distinct eigenvalues 0, 1, 5, 6. We have already observed that the 1-dimensional kernel is
due to the freedom of choosing ` > 0. The eigenvector with eigenvalue 1 is due to the t-
invariance of the original system. The eigenvectors with eigenvalue 5, 6 are, respectively,
(−3, 0, 0, 2) and (−1, 2,−1, 1). Moreover, the Hamiltonian constraint H(x, y) = 0 is
satisfied at leading order as (s, z)→ 0 if and only if 2X1+X2 = 2(Y1+ Y2). The eigen-
vector with eigenvalue 5 does not satisfy this constraint. One could then try to use Theo-
rem 5.1 to show that, up to translations in t and the scaling freedom to fix the asymptotic
length ` of the circle fibre, there exists a 1-parameter family of SU(2) × SU(2) × U(1)-
invariant ALC G2-holonomy ends. However, since the non-resonance condition (ii) in
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Theorem 5.1 is not satisfied, this does not follow immediately from that theorem. We do
not pursue the matter further here since it is not necessary in our analysis.

Thanks to Lemma 6.8, in order to prove that a complete end is ALC it is enough to control
the quantities a2

b3 and a
b
db
da

.
Let us fix the notation that will be used throughout the rest of the section. Let λ = ȧ/ḃ.

Then (3.16) can be rewritten as

2F λ̇ = λḃ(2Fb − λFa).

We fix a parameter s that satisfies s → ∞ along the complete end (for example we can
take s = a or s = t , the arc-length parameter along a geodesic meeting all principal orbits
orthogonally).

For α ∈ R we introduce the following pair of (positive) ratios:

Pα =
b1+α

a
, Qα =

bα

λ
.

Using (3.16) as rewritten above we find that these two quantities satisfy

a2Ṗα = b
α ḃRα, 2FQ̇α = b

−1ḃQα(Sα − FaRα), (6.10a)

where
Rα = (1+ α)a − bλ, Sα = α(2F + aFa)− (2bFb − aFa).

Moreover,
2FṘα = λḃ(Sα − FaRα). (6.10b)

Proposition 6.11. Assume that either q ≥ p or q = −p ≤ 0. If (a, b) is a solution to
(3.16) satisfying (6.5) and additionally

aḃ − ȧb < 0 (6.12)

holds at some initial time, then along the complete end the ratio a2

b3 converges to a constant
and a

b
db
da

converges to 2
3 .

Proof. The proof is based on the study of the behaviour of the positive ratios Pα and Qα

introduced above for α ≥ 0.
We begin by analysing (6.10b) for α sufficiently large. Since a > 0, for all α suffi-

ciently large Rα is positive at the initial time s0. We claim that, assuming α even larger if
necessary, Rα remains positive for all s ≥ s0. Indeed, using 2αF > 0 we find

Sα > (1+ α)aFa − 2bFb

= 8a2((1+ α)(b − p)(b + q)− (b − p)− (b + q))+ 8b2(b2
+ pq)

> 8a2((1+ α)(b − p)(b + q)− (b − p)− (b + q)).
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If α > 1
2b−p+q then (1+ α)(b−p)(b+ q)− (b−p)− (b+ q) is an increasing function

of b. Since ḃ > 0 we conclude that Sα > 0 provided we choose α so that

(1+ α)(b − p)(b + q)− (b − p)− (b + q) > 0, α >
1

2b − p + q

are satisfied at the initial time s0. Then (6.10b) shows that for large enough α, Ṙα > 0
whenever Rα = 0. We conclude that Rα(s) > 0 for all s ≥ s0 and all sufficiently large α
as claimed. Hence by (6.10a), for all sufficiently large α, Pα is an increasing function of s,
and in particular it is bounded away from 0. In particular b, as well as a, is unbounded
along the complete end. For otherwise Pα = b1+α/a ≤ c/a → 0. Note that we have not
yet made use of assumption (6.12), only of assumptions (6.5).

We now consider the equation (6.10b) for small α. Note that our assumption (6.12)
is equivalent to the assumption that R0 is negative at s0. Hence by continuity Rα is also
negative at s0 for α > 0 sufficiently small. We want to show that for all α ≥ 0 sufficiently
small Rα remains negative for all s ≥ s0. First consider the case α = 0. We have S0 =

−(2bFb − aFa) < 0 by (6.2b) and (6.5). Hence (6.10b) shows that at a point where
R0 = 0 we must have Ṙ0 < 0. We therefore conclude that R0(s) < 0 for all s ≥ s0. In
particular, P0 is strictly decreasing by (6.10a).

Now, since S0 < 0, for all s ≥ s0 there exists αs such that Sα(s) < 0 for all 0 ≤
α < αs . In order to show that we can choose αs independent of s, using a, b → ∞ we
calculate

lim
s→∞

Sα = lim
s→∞

α(16a2b2
− 2b4)− 8a2b2

+ 8b4.

Thus lims→∞ Sα < 0 if and only if

α < lim
s→∞

4(a2
− b2)

8a2 − b2 = lim
s→∞

4(1− P 2
0 )

8− P 2
0
.

Note that this rational function of P0 is decreasing for P0 in (0, 1) with range (0, 1/2).
Since P0 takes values in (0, 1) and is decreasing in s we conclude that lims→∞ αs > 0
and therefore αs is bounded below.

As in the case α = 0, we now conclude that Rα < 0 for all s ≥ s0 and any α ≥ 0
sufficiently small. Then Pα is decreasing and therefore bounded above. We conclude that
b/a→ 0 as s →∞ since otherwise Pα = b

a
bα ≥ cbα could not be bounded.

We can now study the behaviour of Rα for all α ∈ R. Using the fact that a, b → ∞
and a dominates b to show that 2F ≈ 8a2b2 and Sα ≈ 8(2α−1)a2b2 along the complete
end, we now conclude that for every ε > 0 there exists sε > 0 such that

dRα

da
≤ 2α − 1+ ε if Rα ≥ 0,

dRα

da
≥ 2α − 1− ε if Rα ≤ 0

for all s > sε . We conclude that Rα eventually becomes strictly negative if α < 1/2 and
strictly positive if α > 1/2. In other words, for all δ > 0 there exists sδ > 0 such that

±
( 3

2a − λb ± δa
)
> 0

for all s > sδ . Rearranging and writing λ−1
=

db
da

, we therefore have limt→∞
a
b
db
da
=

2
3 .

Note that so far we have not used the assumption that either q ≥ p or q = −p ≤ 0.
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In order to show that P1/2 converges we now consider the two quantities P1/2 and
Q1/2 at the same time. First note that along the end S1/2 ≈ 7b4

+ 8(q − p)a2b.
Assume now that q ≥ p so that S1/2 is eventually positive. In particular, R1/2 has a

definite sign along the complete end, since if it becomes positive for large enough s then
it must remain positive by (6.10b).

If R1/2 is eventually negative, then by (6.10a), P1/2 is eventually decreasing, and in
particular bounded above, andQ1/2 is eventually increasing and therefore bounded below.
Moreover, since R1/2 < 0 can be rewritten as 3Q1/2 ≤ 2P1/2, we conclude that P1/2 and
Q1/2 are monotone and bounded and therefore convergent. If R1/2 is eventually positive,
then eventually 3Q1/2 ≥ 2P1/2, P1/2 is increasing, while Q1/2 satisfies

d logQ1/2

db
≤
S1/2

2bF
≈

7b
8a2 +

q − p

b2 .

Now, since we know that bγ /a converges to zero along the end for all γ < 3/2, we
conclude that for b sufficiently large,

d logQ1/2

db
≤ cγ (b

1−2γ
+ b−2)

for some constant cγ > 0. Choosing 2γ ∈ (2, 3)makes the right-hand side integrable in b
as b→∞. ThusQ1/2 is bounded along the end. We conclude that P1/2 is bounded above
and increasing and therefore convergent. The proof in the case q ≥ p is now complete.

When q = −p < 0 the final part of the argument, i.e. the convergence of P1/2, breaks
down because S1/2 does not necessarily have a definite sign. We modify the argument as
follows. For α ≥ 0 we now consider functions

Pα =
(b − p)1+α

a − p
, Qα =

(b − p)α

λ
.

The analogues of (6.10) are

(a − p)2Ṗα = (b − p)
α ḃRα, 2FQ̇α = (b − p)

−1ḃQα(Sα − FaRα),

but now we must define

Rα= (1+α)(a−p)−(b−p)λ, Sα=α(2F+aFa−pFa)−(2bFb−aFa)+p(2Fb−Fa).

With these new definitions we also have

2FṘα = λḃ(Sα − FaRα).

Using q = −p we now calculate

Sα

2(b − p)2
= 4(2α − 1)a2

− 4(1+ α)pa + (4− α)(b + p)2 − 4p(b + p).

Indeed, if q = −p then F = (b−p)2(2a− b−p)(2a+ b+p) and the formulas in (6.2)
become

2Fb−Fa = 8(a−b)(2a+b+p)(b−p), 2bFb−aFa = 8(a−b)(a+b)(b−p)(b+p).
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Since a, b, a/b → ∞ as s → ∞, we see that Sα ≈ 8(2α − 1)a2b2
+ 2(4 − α)b4 for

large s. In particular Sα is eventually positive for all α ≥ 1/2. The proof now proceeds
exactly as before. ut

6.4. Incompleteness

The tools we have developed to prove forward completeness and ALC asymptotics can
also be used to prove that certain solutions yield incomplete metrics.

Proposition 6.13. Let (a, b) be a solution to (3.16) with a > 0, b >max(p,−q,
√
−pq)

and ȧ, ḃ, F (a, b) > 0. If there exists a time such that

0 <
ȧ

ḃ
<
a

b
< 1 (6.14)

then the solution cannot be forward complete.

Proof. Recall the functions Pα, Rα and Sα introduced just before Proposition 6.11 and
the evolution equations (6.10) for Pα andRα . We will assume that the solution is complete
and derive a contradiction by studying the behaviour of the function Pα for small enough
α < 0.

We first show that the conditions (6.14) are preserved for all time the solution exists
and satisfies ȧ, ḃ, F (a, b) > 0. The fact that the conditions a < b and ȧ < ḃ persist is
proved as in Lemma 6.4 exploiting the fact that 2Fb − Fa < 0 whenever 0 < a < b

and b > max(p,−q,
√
−pq) by (6.2a). In order to prove the persistence of the condition

ȧ/ḃ < a/b consider the quantity R0 and note that ȧ/ḃ < a/b is equivalent to R0 > 0. It
is enough to observe that Ṙ0 > 0 at any point where R0 = 0. Indeed, by (6.10b) at a point
where R0 = 0, Ṙ0 has the same sign as S0 = aFa − 2bFb. By (6.2b), S0 > 0 whenever
0 < a < b and b > max(p,−q,

√
−pq). We conclude that R0 > 0 for all time. Note

that in particular P0 = b/a is strictly increasing by (6.10a).
Assume now for a contradiction that the solution is complete. Using ȧ < ḃ we con-

clude that b → ∞ along the complete end in the same way as we proved that a was
unbounded in Proposition 6.6. Since F(a, b) > 0 for all time, we must also have

4
(
a

b

)2

>
(b2
+ pq)2

b2(b − p)(b + q)
→ 1 (6.15)

as b→∞. Hence a is also unbounded along the complete end. Moreover, since P0 = b/a

is increasing and initially P0 > 1 by (6.14), a ≈ kb for some 1/2 ≤ k < 1 as b→∞.
We are now going to derive a contradiction to the completeness assumption by study-

ing the behaviour of the function Pα = bα/a for small enough α < 0. Since S0 > 0 as
observed earlier, there exists αs > 0 such that Sα(s) > 0 for all |α| < αs . In order to
show that αs can be chosen independent of s, using a ≈ kb→∞ we calculate

lim
s→∞

Sα

b4 = lim
s→∞

α(16a2b2
− 2b4)− 8a2b2

+ 8b4

b4 = 2α(8k2
− 1)+ 8(1− k2).
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Since 1/2 ≤ k < 1, both of these coefficients are positive and we conclude that
lims→∞ Sα > 0 for all α > − 4(1−k2)

8k2−1 . We conclude that Sα > 0 for all α sufficiently
small as claimed.

Now, the condition R0(s0) > 0 for some initial time s0, which holds by assumption
(6.14), forces Rα(s0) > 0 for all small enough α by continuity. Since Sα > 0 we can now
conclude that Rα > 0 for all time and any α sufficiently small as we did above in the case
α = 0. In particular Pα is positive and increasing for α sufficiently small. If α < 0 we
now reach a contradiction since Pα = b

a
bα ≈ 1

k
bα → 0. ut

6.5. Global behaviour

We now use Propositions 6.11 and 6.13 to describe the global behaviour of the local coho-
mogeneity one torsion-free G2-structures of Proposition 4.5(i, ii) and of Proposition 5.3(i)
under an enhanced U(1)-symmetry assumption.

Theorem 6.16. Let (ijk) be a cyclic permutation of (123). Consider the local cohomo-
geneity one torsion-free G2-structures of Proposition 4.5(i) and the subfamily defined by
αj = αk .

(i) If αi < αj = αk then the torsion-free G2-structure extends to a complete SU(2) ×
SU(2) × U(1)-invariant ALC G2-metric on S3

× R4. Here the U(1)-action is the
Hopf circle action on the second factor.

(ii) If αi = αj = αk then the torsion-free G2-structure is the Bryant–Salamon complete
SU(2)3-invariant AC G2-metric on S3

× R4.
(iii) If αi > αj = αk then the torsion-free G2-structure is incomplete.

Theorem 6.17. Let (ijk) be a cyclic permutation of (123). Consider the local cohomo-
geneity one torsion-free G2-structures of Proposition 4.5(ii) and the subfamily defined by
αj = αk .

(i) If αi < αj = αk then the torsion-free G2-structure extends to a complete SU(2) ×
SU(2) × U(1)-invariant ALC G2-metric on S3

× R4. Here the U(1)-action is the
Hopf circle action on the first factor.

(ii) If αi = αj = αk then the torsion-free G2-structure is the Bryant–Salamon complete
SU(2)3-invariant AC G2-metric on S3

× R4.
(iii) If αi > αj = αk then the torsion-free G2-structure is incomplete.

Theorem 6.18. Consider the conically singular SU(2)×SU(2)×U(1)-invariant torsion-
free G2-structure of Proposition 5.3(i) parametrised by c ∈ R.

(i) If c > 0 then the solution extends to a torsion-free G2-structure on (0,∞)×S3
×S3

with a CS end as t → 0 and an ALC end as t →∞.
(ii) If c = 0 then the solution is the G2-cone over the SU(2)3-invariant nearly Kähler

structure over S3
× S3.

(iii) If c < 0 then the solution is incomplete.
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Remark. In all three cases one parameter can be fixed by scaling, hence we have found
two 1-parameter families of complete ALC metrics and a unique CS ALC manifold up to
scale. The ALC family of Theorem 6.16 is the B7 family of Brandhuber–Gomis–Gubser–
Gukov [17] and Bogoyavlenskaya [13]. The ALC family of Theorem 6.17 is the conjec-
tured D7 family in the physics literature.

Case (ii) in Theorems 6.16–6.18 is characterised by an enhanced SU(2)-symmetry and
is therefore dealt with in Example 3.14. We therefore concentrate on proving cases (i)
and (iii) in each theorem. Up to a change of basis, we can assume that the additional
U(1)-action is generated by E3 + E

′

3 in all cases, i.e. (ijk) = (312) in Theorems 6.16
and 6.17.

Proposition 4.5(i, ii) and Proposition 5.3(i) provide the leading-order behaviour of
a = a1 = a2 and b = a3 as t → 0. We need to check that the hypotheses of Propositions
6.11 and 6.13 are satisfied, i.e. the conditions on p and q together with the inequalities
(6.5) and (6.12) or (6.14).

• In the case of Theorem 6.16, q = −p < 0 so b− p, b+ q, b−
√
−pq > 0. Moreover

for small t the signs of a−b, ȧ− ḃ and ȧb−aḃ are all the same as the sign of α1−α3.
• In the case of Theorem 6.17, q = 0 and p = −r3

0 < 0. Moreover, α3 > 0 since
α1α2α3 = 1. Then b − p, b + q, b −

√
−pq > 0. The signs of a − b, ȧ − ḃ are the

same as the sign of α1− α3. In order to control the sign of ȧb− aḃ for small t we have
to use the higher-order expansions of a, b in Remark 4.6. We find

ȧb − aḃ =
(1− α3

3)α3

96α1
t5 +O(t7).

Since α2
1α3 = 1, if α3 < α1 then 0 < α3 < 1 < α1, while 0 < α1 < 1 < α3 if

α3 > α1.
• In the case of Theorem 6.18, p = 0 = q and for small t > 0 we have b > 0. The signs

of a− b, ȧ− ḃ are the same as the sign of c. In order to control the sign of ȧb− aḃ we
calculate

542(ȧb − aḃ)

3t5
≈

3
2cν0t

ν0

as t → 0.

Remark. Theorems 6.16 and 6.17 do not address the issue of what happens to solutions
that do not enjoy an enhanced U(1)-symmetry. Our expectation is that all of these local
cohomogeneity one metrics are incomplete.

7. Existence of AC metrics

In Proposition 4.5 we constructed four different families of local solutions to (3.13) that
close smoothly over various different singular orbits. In the previous section we have
shown that a subset of the local solutions closing smoothly on a singular orbit S3 con-
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structed in Proposition 4.5(i, ii) extend to complete ALC metrics. None of the local so-
lutions constructed in Proposition 4.5(iii, iv) is covered by these results: no choice of
parameters there allows us to satisfy all the hypotheses of Propositions 6.11 or 6.13 for
small positive t . In this section we use a different approach to study SU(2)×SU(2)×U(1)-
invariant G2-manifolds with singular orbit SU(2) × SU(2)/Km,n and thus prove the fol-
lowing theorem.

Theorem 7.1. Fix coprime positive integers m, n and a real number r0 > 0. For β > 0,
let

ϕβ = −m
2r3

0 e1 ∧ e2 ∧ e3 + n
2r3

0 e
′

1 ∧ e
′

2 ∧ e
′

3 + d
(
a (e1 ∧ e

′

1 + e2 ∧ e
′

2)+ b e3 ∧ e
′

3
)

be the (locally defined) SU(2)×SU(2)×U(1)-invariant torsion-free G2-structure closing
smoothly on SU(2) × SU(2)/Km,n defined in Proposition 4.5(iii) (when m = n = 1) or
(iv) satisfying

a = r2
0βt +O(t

3), b = mnr3
0 +O(t

2)

as t → 0. There exists βac > 0 such that the following holds.

(i) If β > βac then ϕβ extends to a complete torsion-free ALC G2-structure asymptotic
to a circle bundle over a Z2-quotient conifold.

(ii) If β = βac then ϕβ extends to a complete torsion-free AC G2-structure asymptotic to
the cone over the Z2(m+n)-quotient of the homogeneous nearly Kähler structure on
S3
× S3 with rate −3.

(iii) If β < βac then ϕβ does not extend to a complete torsion-free G2-structure.

Figure 1 illustrates a small number of solution curves (a, b) to the ODE system (3.16)
illustrating all three cases of Theorem 7.1 in the case where m = 1 and n = 2.

Remark. The existence of the ALC metrics in part (i) of the theorem when β is suffi-
ciently large is guaranteed by our analytic construction of highly collapsed ALC G2-met-
rics on circle bundles over AC Calabi–Yau 3-folds [35, Theorem 9.7].

Remark. The case m = n = 1 has also been considered by Bazaı̆kin–Bogoyavlenskaya
[9] and Cvetič–Gibbons–Lü–Pope [28, §3]. In [9] the existence of ALC metrics for every
positive value of β was claimed. However, there appear to be mistakes in the proof of
[9, Lemma 9]. In [28, §3] numerical experiments suggested the existence of a full 3-
parameter family of ALC G2-metrics closing smoothly on the singular orbit SU(2) ×
SU(2)/K1,1. In the collapsed limit this contradicts our analysis in [35, Theorem 9.7].

The most interesting part of Theorem 7.1 is part (ii). Only three simply connected AC
G2-metrics (up to symmetries and scaling) are currently known [18]. Part (ii) of the the-
orem provides infinitely many new AC G2-metrics. It is essential that we consider AC
manifolds asymptotic to a non-trivial quotient of the G2-cone over S3

× S3 since, by
Karigiannis–Lotay [43, Corollary 6.10], the Bryant–Salamon metric on the spinor bundle
of S3 is the unique (up to scale) AC G2-metric asymptotic to the cone over S3

× S3.
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Fig. 1. Numerical solutions of (3.16) withm = 1, n = 2 satisfying the initial conditions of Proposi-
tion 4.5(iv): There are two incomplete solutions approaching the set F = 0, the unique AC solution
asymptotic to the diagonal a = b and two complete solutions crossing the diagonal transversally.

Remark 7.2. The smooth 7-manifoldMm,n underlying the G2-metrics constructed in the
theorem depends only on the summ+n. In fact,Mm,n can be identified withH 2(n+m)

×S3,
whereH 2(n+m) is the total space of the R2-bundle on S2 with Euler class 2(n+m). How-
ever, metrics for different choices of (m, n) can never be isometric. Indeed, an isom-
etry would have to respect the SU(2) × SU(2) × U(1)-orbit structure: otherwise the
tangent space at a point would be spanned by Killing vectors and the metric would be
homogeneous; the latter is impossible since the metric is Ricci-flat but cannot be flat.
The group of SU(2) × SU(2) × U(1)-equivariant diffeomorphisms of the principal or-
bit SU(2) × SU(2)/Z2(m+n) is SU(2) × SU(2) × N o Z2, where N is the normaliser of
U(1) in SU(2) acting on the right on SU(2) × SU(2) and Z2 is generated by the outer
automorphism of SU(2) × SU(2) that exchanges the two factors. The induced action of
SU(2)× SU(2)× N o Z2 on cohomology is generated by the involution that exchanges
e1 ∧ e2 ∧ e3 and e′1 ∧ e

′

2 ∧ e
′

3. Since the image of the cohomology class of ϕ in the co-
homology of the principal orbits depends on the pair (m, n), we conclude that different
choices of (m, n) with 0 < m ≤ n and gcd(m, n) = 1 give rise to non-isometric metrics.
In fact this argument also shows that, modulo the outer automorphism of SU(2)×SU(2),
there is no diffeomorphism between Mm,n and Mm′,n′ asymptotic to an isometry of the
asymptotic cone. In particular, considering pairs (m, n) with 0 < m ≤ n and fixed (suf-
ficiently large) m+ n, part (ii) of the theorem yields different AC G2-metrics asymptotic



Infinitely many families of complete cohomogeneity one G2-manifolds 2209

to the same G2-cone and therefore gives rise to infinitely many new geometric transitions
in G2-geometry.

Before proving Theorem 7.1 we show that the complete solutions obtained in Theorems
6.16, 6.17 and 7.1(i, ii) are the only complete simply connected SU(2)× SU(2)× U(1)-
invariant G2-manifolds.

Theorem 7.3. Let (M, g) be a complete SU(2)×SU(2)×U(1)-invariant G2-metric with
M simply connected. Then up to symmetries (M, g) is isometric to one of the complete
metrics of Theorems 6.16, 6.17 and 7.1.

Proof. Given the completeness and incompleteness statements in Theorems 6.16, 6.17
and 7.1, it only remains to prove that if (M, g) is an SU(2) × SU(2) × U(1)-invariant
G2-metric closing smoothly on a singular orbitQ, then, up to a finite cover and the action
of the outer automorphism of SU(2)2,M is described by one of the group diagrams (2.4),
(2.5) and (2.1).

Let

ϕ = p e1 ∧ e2 ∧ e3 + q e
′

1 ∧ e
′

2 ∧ e
′

3 + d
(
a (e1 ∧ e

′

1 + e2 ∧ e
′

2)+ b e3 ∧ e
′

3
)

be an SU(2)× SU(2)× U(1)-invariant torsion-free G2-structure defined in a neighbour-
hood of a singular orbit Q. Let t be the arc-length parameter along a geodesic meeting
all orbits orthogonally and assume that the point t = 0 lies on the singular orbit Q. In
particular, a, b are smooth functions defined on [0, t0) for some t0 > 0.

In order to determine the behaviour of the functions a and b as t → 0, observe that
F → 0 as t → 0 since

√
F(a, b) = 2ȧ2ḃ is the orbital volume function. Moreover,

the evolution equations for x1 = ȧḃ and x2 = ȧ2 in (3.17) show that (Fa, Fb) → 0
as t → 0, i.e. the point (a0, b0) = (a, b)|t=0 must be a critical point of F on the level
set F = 0. As an aside, note that we must have pq ≤ 0 since F = 0 = Fa force
b2
+ pq = 0. Since the coefficients of the autonomous ODE system (3.17) depend real

analytically on a and b, we conclude that there exist a critical point (a0, b0) of F with
F(a0, b0) = 0, positive integers h, k and a1, b1 6= 0 such that a = a0 + a1t

h
+O(th+1)

and b = b0 + b1t
k
+O(tk+1). In fact, since with our conventions ȧ, ḃ > 0 for t > 0, we

must have a1, b1 > 0.
We now consider the metric gϕ = dt2 + gt induced by ϕ. Regard M as a cohomo-

geneity one manifold with group diagram

K0 ⊂ K ⊂ SU(2)× SU(2),

where Q = SU(2)2/K , K0 is a finite subgroup of SU(2)2 and K/K0 is a sphere. As
t → 0, gt converges to a smooth metric g0 on the singular orbit Q. Moreover, thinking
of g0 as a symmetric endomorphism of su2⊕ su2, the kernel of g0 coincides with the Lie
algebra k of K . By studying the behaviour of gt as t → 0 we can therefore determine the
possibilities for k and therefore the group diagram of M up to finite quotients.

Denote by n, n′ and t the subspaces of su2 ⊕ su2 defined by span(E1, E2),
span(E′1, E

′

2) and span(E3, E
′

3) respectively. SinceK/K0 is a sphere andK0 is finite, we
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deduce that k cannot contain n⊕ n′ or t. Indeed, if n⊕ n′ ⊆ k then K = SU(2)× SU(2)
(since n⊕n′ generates su2⊕su2 as a Lie algebra) andK/K0 cannot be a sphere; similarly,
if t ⊆ k then K is diffeomorphic to a 2-torus, S3

× S1 or S3
× S3, none of which finitely

covers a sphere.
Now, in order to study the behaviour of gt for small t ≥ 0, regard it as a symmetric

endomorphism of su2 ⊕ su2 and note that the decomposition su2 ⊕ su2 = (n⊕ n′)⊕ t is
gt -orthogonal. By (3.18) the restriction of gt to the first factor n⊕ n′ is the block matrix

2ȧ
√
F

(
a(b − p) −

1
2 (b

2
+ pq)

−
1
2 (b

2
+ pq) a(b + q)

)
,

and the restriction of gt to t is

2ḃ
√
F

(
a2
− pb −

1
2 (2a

2
− b2
+ pq)

−
1
2 (2a

2
− b2
+ pq) a2

+ qb

)
.

Now, consider first the case where pq(p+q) 6= 0. In this case F has only two critical
points contained in the level set F = 0, (0,±

√
−pq). In fact, since ȧ, ḃ > 0 for t > 0

we must have b0 =
√
−pq, p < 0 and q > 0. Indeed, since a(0) = 0, the sign constraint

ȧ > 0 for t > 0 forces the same sign constraint for a. Then the positive definiteness of gt
for t > 0 forces −pb0, qb0, b0 − p, b0 + q > 0.

Using a = a1t
h
+ O(th+1) and b =

√
−pq + b1t

k
+ O(tk+1), we now calculate

F = O(tm) where m ≥ 2h. Indeed, h ≤ k since F > 0 for t > 0. Moreover, m > 2h if
and only if h = k and a1, b1 are appropriately chosen so that the coefficient of t2h in F
vanishes.

At leading order in t as t → 0, the restriction of gt to t takes the form

ctk−1−m/2
(
|p|

√
−pq

√
−pq |q|

)
for some c > 0, while the restriction of gt to n⊕ n′ is of the form(

O(t2h−1−m/2) O(th+k−1−m/2)

O(th+k−1−m/2) O(t2h−1−m/2)

)
.

Since the kernel k of g0 cannot contain t or n ⊕ n′, we deduce that k − 1 − m/2 =
2h − 1 − m/2 = 0, i.e. h = 1, k = 2. Then k is 1-dimensional, spanned by
√
|q|E3 −

√
|p|E′3. The orbit of this vector field in SU(2)2 is closed if and only if

√
−p/q ∈ Q. If this is the case there exist relatively prime positive integers m, n and

r0 > 0 such that K = Km,n up to finite quotients and p = −m2r3
0 , q = n2r3

0 .
Finally, since K = Km,n is a circle we must also argue that the principal orbit sta-

biliser K0 is Km,n ∩ K2,−2. This is a consequence of the proof of Proposition 4.5(iv).
Indeed, the proposition parametrises all smooth solutions (x1, x2, y1, y2) to (3.17) with
p = −m2r3

0 and q = n2r3
0 satisfying x1 = O(t), x2 = r4

0β + O(t
2), y1 = O(t)

and y2 = mnr3
0 + O(t

2). We have already established that a = a1t + O(t
2) and
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b = mnr3
0+b1t

2
+O(t3) for some a1, b1 > 0. Hence (x1 = ȧḃ, x2 = ȧ

2, y1 = a, y2 = b)

coincides with one of the solutions of Proposition 4.5(iv).
We now briefly indicate the changes to the proof in the case where pq(p+ q) = 0. If

p + q = 0 the critical locus of F contained in the zero-level set is {(a0, p) | a0 ∈ R} ∪
{(0,−p)}. Consider first the 1-dimensional component. Boundedness of the restriction
of gt to t as t → 0 forces a0 = ±p. If p 6= 0, consideration of the behaviour of the
restriction of gt to n ⊕ n′ as t → 0 implies that p > 0 and k = 4su2. If p = 0, one
shows instead that it is impossible to find h, k ≥ 1 so that gt remains bounded as t → 0
and k contains neither n ⊕ n′ nor t. The case p 6= 0 and (a0, b0) = (0,−p) is analysed
exactly as in the case pq(p + q) 6= 0. When p 6= 0 and q = 0 (the case p = 0, q 6= 0
can be reduced to this by acting with the outer automorphism of SU(2)2), F has a unique
critical point, (0, 0), on its zero-level set. Analysis of the behaviour of the restriction of
gt to n ⊕ n′ as t → 0 forces n ⊕ {0} ⊆ k. The only possibility for k is then su2 ⊕ {0}.
Finally, since K is 3-dimensional in all these cases, K0 is automatically trivial. ut

Remark 7.4. In particular, we deduce a strong rigidity and uniqueness result for the AC
G2-metrics of Theorem 7.1(ii). Indeed, by [43, Propositions 6.3 and 6.8] any complete
AC G2-manifold (M, g) asymptotic to the cone over S3

× S3/Z2(n+m) must be SU(2)×
SU(2) × U(1)-invariant. By Theorem 7.3, up to a finite quotient, any such metric has
group diagram either (2.4), (2.5) and (2.1). The proof of Theorems 6.16, 6.17 and 7.1
then shows that (M, g) is either a finite quotient of the Bryant–Salamon AC metric on
S3
×R4 (if Z2(m+n) acts freely on S3

×R4) or one of the AC metrics of Theorem 7.1(ii).

In the rest of the section we prove Theorem 7.1. We first establish part (ii) of the theorem
and the existence of the critical value βac, which is not explicit. Our strategy is to consider
the AC ends constructed in Proposition 5.3(ii) and study which of these extend backward
to close smoothly on the singular orbit SU(2)× SU(2)/Km,n. Once part (ii) of Theorem
7.1 is established, a comparison argument with the AC solution will let us obtain the
existence of the ALC G2-metrics in part (i) and the incompleteness result in part (iii).

7.1. Extending AC ends backwards

Fix a pair of positive coprime integers m, n and r0 ∈ R and set p = −m2r3
0 , q = n2r3

0 .
We consider pairs of functions (a, b) satisfying the ODE (3.16), i.e.

2F(ȧb̈ − ḃä) = −ȧḃ(2ḃFb − ȧFa),

where
F = 4a2(b +m2r3

0 )(b + n
2r3

0 )− (b
2
−m2n2r6

0 )
2. (7.5)

By Proposition 5.3(ii) for each c ∈ R there exists a solution (a, b) corresponding to an
AC end asymptotic to the cone over the homogeneous nearly Kähler structure on S3

×S3.
We now consider the problem of extending these AC ends backwards, i.e. to decreasing
values of the parameter t .
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Proposition 7.6. Suppose that r0 ≥ 0 and (a, b) is a solution to (3.16) satisfying

ȧ, ḃ > 0, a > 0, b > max(−m2r3
0 ,−n

2r3
0 ), F > 0 (7.7a)

and
b > a, ȧ > ḃ > 0 (7.7b)

at some time t0 (or equivalently, since (7.7) are open conditions, on an open interval
(t1, t2) of existence). Then the solution extends backwards in time, with the conditions
(7.7) persisting, until F(a, b)→ 0, i.e. until

2a −
|b2
−m2n2r6

0 |√
(b +m2r3

0 )(b + n
2r3

0 )

→ 0.

Proof. Set µ := ḃ/ȧ. As at the beginning of the proof of Proposition 6.11, we rewrite
(3.16) in the form

2Fµ̇ = µȧ(Fa − 2µFb). (7.8)

The coefficient of µ̇ on the left-hand side of the equation is positive. On the other
hand, thanks to our hypotheses (7.7b), µ takes values in the interval (0, 1) and there-
fore Fa − 2µFb is greater than the minimum of Fa and Fa − 2Fb. Using (7.7a) one can
check that the former is always positive and the latter is a concave function of a which is
non-negative for both a = 0 and a = b. Thus Fa−2µFb is positive whenever b > a > 0.
We conclude that µ̇ > 0.

Now, since µ̇ > 0, the inequality µ < 1 is preserved as we evolve backwards, and
hence b > a is also preserved. It remains to prove that we can extend backwards until
F(a, b)→ 0.

Since (3.16) is equivalent to Hitchin’s flow (3.17) for the 4-tuple (ȧḃ, ȧ2, a, b), it is
clear that solutions fail to extend only when one of a, b, ȧ, ḃ diverges or when one of
the inequalities ȧ, ḃ, F (a, b) > 0 fails to be satisfied. Now, for any M > 0, the curves
{a = b}, {F(a, b) = 0} and {a2

+ b2
= M2

} bound a compact region R ⊂ {F ≥ 0} in
the first quadrant in the (a, b)-plane. By assumption, the curve (a, b) lies in R for some
M > 0 and therefore the solution can be extended backward until F(a, b)→ 0 provided
we control ȧ, ḃ. Since 2ȧ2ḃ =

√
F(a, b) and ḃ < ȧ it is enough to prove that ḃ is bounded

away from zero until F(a, b)→ 0.
Now, since ȧ > 0, we can reparametrise so that ȧ = 1. Then (7.8) becomes

d log ḃ
da

=
Fa − 2µFb

2F

The right-hand side can only blow up as F(a, b) → 0, so until then log ḃ remains
bounded. Thus ḃ is bounded away from zero until F(a, b)→ 0. ut

The solutions (a, b) of (3.16) constructed in Proposition 5.3(ii) always satisfy (7.7a) in the
interior of a maximal interval of existence. Moreover, the solutions of Proposition 5.3(ii)
satisfy

b − a ≈
√

3
54 ct

3−ν∞
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as t →∞ for some c ∈ R. When c is positive, (7.7b) will then also hold for t sufficiently
large. Hence we can apply Proposition 7.6 to conclude that the solutions constructed in
Proposition 5.3(ii) with c > 0 extend backward until F(a, b) → 0. In the limiting case
c = 0, the uniqueness statement in Proposition 5.3(ii) implies that a = b.

We will prove that there exists cac > 0 such that, after taking the quotient of the
principal orbits by Z2|m+n|, the AC G2-metric corresponding to the solution (aac, bac)

constructed in Proposition 5.3 (ii) with c = cac extends smoothly over a singular orbit
SU(2) × SU(2)/Km,n. The following lemma will be used to show that there exists a
unique such value cac.

Lemma 7.9. Fix a pair of positive coprime integers m and n and suppose that r0 ≥ 0.
Let (a1, b1) and (a2, b2) be solutions of (3.16) satisfying

b > max(a,mnr3
0 ), F (a, b) > 0, ȧ, ḃ > 0. (7.10)

Parametrise the curves (a1, b1) and (a2, b2) so that a1(s) = s = a2(s).

(i) The inequalities b1 > b2, ḃ1 < ḃ2 are preserved evolving (a1, b1) and (a2, b2)

backwards until either solution hits the boundary of the region defined by (7.10).
(ii) The inequalities b1 < b2, ḃ1 < ḃ2 are preserved evolving (a1, b1) and (a2, b2)

forwards until either solution hits the the boundary of the region defined by (7.10).

Proof. Let (a, b) be a solution (3.16) parametrised so that ȧ = 1. Then (3.16) can be
rewritten as

2b̈ =
(
Fa

F
− 2ḃ

Fb

F

)
bḃ. (7.11)

In order to compare two solutions (a1, b1) and (a2, b2) we now observe that, for each
fixed a > 0, Fa/F and −Fb/F are strictly increasing functions of b on the range defined
by the inequalities b > max(a,mnr3

0 ) and F(a, b) > 0. Indeed, the function

Fa

F
=

8a

4a2 −
(b2−m2n2r6

0 )
2

(b+m2r3
0 )(b+n

2r3
0 )

is increasing in b if and only if

(b2
−m2n2r6

0 )
2

(b +m2r3
0 )(b + n

2r3
0 )
= (b −mnr3

0 )
2 (b +mnr3

0 )
2

(b +mnr3
0 )

2 + (m− n)2r3
0b

is. Each factor on the right-hand side is increasing precisely when b > mnr3
0 . Meanwhile

Fbb = 4(2a2
− 3b2

+m2n2r6
0 ) < 0 in the given range, while F is a priori positive. Thus

−
d

db

(
Fb

F

)
=
−FbbF + F

2
b

F 2 > 0.

Going back to (7.11), we now conclude that at every point where ḃ1 = ḃ2, b̈1 − b̈2
has the same sign as b1 − b2. Hence the inequalities b1 > b2 and ḃ1 < ḃ2 [b1 < b2
and ḃ1 < ḃ2] are preserved as we evolve backwards [forwards] as long as both solutions
remain in the region defined by the inequalities (7.10). ut
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Proposition 7.12. For each r0 > 0 there exists a unique cac > 0 such that the solution of
(3.16) constructed in Proposition 5.3(ii) with c = cac extends backwards until a→ 0 and

b → mnr3
0 . Moreover, for any k ∈ (1, 2) the solution satisfies ka > |b2

−m2n2r6
0 |√

(b+m2r3
0 )(b+n

2r3
0 )

and b > mnr3
0 whenever (a, b) 6= (0, mnr3

0 ).

Proof. Fix k ∈ (1, 2). For any c ≥ 0, evolve the AC end solution of Proposition 5.3(ii)
backwards until we hit the curve γ which is the union of the curves

γ1 = {b = mnr
3
0 } and γ2 =

{
ka =

|b2
−m2n2r6

0 |√
(b +m2r3

0 )(b + n
2r3

0 )

}
.

Since γ is smooth except at the intersection point (0, mnr3
0 ) of γ1 and γ2, the intersection

point of the trajectory (a, b) with γ depends continuously on c unless (a, b) approaches
(0, mnr3

0 ).
The uniqueness statement in Proposition 5.3(ii) implies that the solution with c = 0

satisfies a = b and therefore it must hit γ along the segment γ1. In order to analyse the
behaviour of the intersection point as c → ∞, we can rescale so that r0 → 0 and c > 0
is fixed. This solution must hit the half-line ka = b, b > 0 away from (0, 0) since a − b
is strictly increasing for all time and strictly negative along the AC end.

We conclude that for each r0 > 0 the set S of c ≥ 0 for which we hit the segment
γ1 is non-empty and bounded. Set cac = sup S. The solution corresponding to c = cac
can hit neither γ1 nor γ2, so by Proposition 7.6 the only possibility is that it approaches
(0, mnr3

0 ).
The uniqueness part of the claim follows from Lemma 7.9(i). Indeed, if (a, b) is a

solution of (3.16) given by Proposition 5.3(ii) then

a ≈
√

3
54 t

3, b − a ≈
√

3
54 ct

3−ν∞

for some c ∈ R. Hence if we parametrise (a, b) so that a(s) = s we have

b ≈ s +

(√
3

54

)ν∞/3
cs(3−ν∞)/3

as s →∞. Since 3−ν∞ ≈ −6.5, if (a1, b1) and (a2, b2) are two solutions corresponding
to c1 > c2 > 0 then

b1 > b2, ḃ1 < ḃ2

for large s. ut

In order to conclude the proof of Theorem 7.1(ii) we must show that after a Z2(m+n)-
quotient the AC solution with c = cac singled out by Proposition 7.12 extends smoothly
across the singular orbit SU(2)× SU(2)/Km,n.
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Proposition 7.13. Fix k ∈ (1, 2). Consider a solution (a, b) satisfying (7.7), b > mnr3
0

and

ka >
b2
−m2n2r6

0√
(b +m2r3

0 )(b + n
2r3

0 )
. (7.14)

Assume that (a, b) → (0, mnr3
0 ). Then (a, b) defines a cohomogeneity one torsion-free

G2-structure with principal orbits SU(2) × SU(2)/Z2(m+n) and extending smoothly on
the singular orbit SU(2)× SU(2)/Km,n.

Proof. We must show that (a, b) satisfies the boundary conditions of Proposition 4.1(iii).
First of all note that (7.14) implies that the function F in (7.5) satisfies

(4− k2)(b +m2r3
0 )(b + n

2r3
0 )a

2
≤ F(a, b) ≤ 4(b +m2r3

0 )(b + n
2r3

0 )a
2. (7.15a)

Differentiating the expression in (7.5) and using (7.14) and (7.15a) we also obtain

√
(b +m2r3

0 )(b + n
2r3

0 ) ≤
Fa

4
√
F
≤

2
√

4− k2

√
(b +m2r3

0 )(b + n
2r3

0 ) (7.15b)

and

−2kb(b +mnr2
0 ) ≤

Fb

2
√
F
≤

2
√

4− k2

(2b + (m2
+ n2)r3

0 )a√
(b +m2r3

0 )(b + n
2r3

0 )
. (7.15c)

Reparametrise so that ȧ = 1 and consider the first-order equation (7.8) for µ = db
da

.
Since dF

da
= Fa + µFb, we find

d

da

(√
F

µ

)
=

√
F

µ

3µFb
2F
≤ C

√
F

µ

for some C > 0. Indeed, Fb/F is bounded above by (7.15a) and (7.15c) and 0 < µ < 1.
Thus the logarithm of

√
F/µ is a function of a whose derivative is bounded above. It

follows that
√
F/µ is bounded below away from zero as a→ 0.

Now change parametrisation and introduce the arc-length parameter t along a
geodesic meeting all principal orbits orthogonally. Recall that t is defined by the nor-
malisation 2ȧ2ḃ =

√
F(a, b). By (7.15a) and the hypothesis ḃ < ȧ in (7.7b) we have

Ca ≤
√
F(a, b) = 2ȧ2ḃ < 2ȧ3

for some C > 0. Since the function a 7→ a−1/3 is integrable near a = 0, t has a finite
limit as (a, b)→ (0, mnr3

0 ). By a time translation we can assume that t → 0 as (a, b)→
(0, mnr3

0 ). Moreover, since
√
F

µ
=

2ȧ2ḃ

µ
= 2ȧ3

and
√
F/µ is bounded below away from zero, so is ȧ.
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Consider now the ODE system (3.17) for x1 = ȧḃ, x2 = ȧ2, y1 = a, y2 = b.
By (7.15b) and (7.15c), ẋ1 and ẋ2 remain bounded and therefore x1 and x2 have a well-
defined limit as t → 0. Since 2ḃ3

≤ 2ȧ2ḃ =
√
F → 0 as t → 0 and ȧ is bounded

away from zero, (x1, x2)→ (0, r4
0β

2
ac) as t → 0 for some βac > 0. Then the right-hand

side of (3.17) is bounded as t → 0 and a bootstrap argument shows that x1, x2, y1, y2 are
smooth functions of t up to t = 0. Uniqueness of the solutions in Proposition 4.5(iii, iv)
then forces (a, b) to satisfy the conditions of Proposition 4.1(iii). ut

7.2. Existence of ALC metrics

We now prove Theorem 7.1(i). Theorem 7.1(ii) guarantees the existence of βac > 0 such
that the SU(2) × SU(2) × U(1)-invariant local solution (aac, bac) of Proposition 4.5(iii)
(when m = n = 1) or (iv) with

aac = r
2
0βact +O(t

3), bac = mnr
3
0 +O(t

2)

exists for all time t ≥ 0 and gives rise to a complete AC metric. From the proof of
Theorem 7.1(ii) we also know that

bac > max(aac, mnr
3
0 ), ȧac > ḃac > 0

for all t > 0.
Consider now one of the local solutions (a, b) of Proposition 4.5(iii, iv) with β > βac.

We want to show that (a, b) eventually satisfies the constraints (6.5) and (6.12), i.e.

a > b > mnr3
0 , ȧ > ḃ, aḃ − ȧb < 0,

so that Propositions 6.6 and 6.11 can be applied to guarantee that the solution (a, b) is
immortal and gives rise to an ALC end as t → ∞. In fact, it is enough to show that the
solution (a, b), initially contained in the region

a < b, ȧ > ḃ,

will intersect the line a = b with the condition ȧ > ḃ preserved, for (6.5) and (6.12) will
then be satisfied immediately after the intersection time.

First of all, note that a > 0 and b > mnr3
0 are preserved as long as the solution exists.

From Remark 4.7 we know that a = r2
0βt+O(t

3) and b = mnr3
0+
√
mn (m+n)r0

2β t2+O(t4)

as t → 0. In order to compare (a, b) and (aac, bac), we now reparametrise both solutions
so that a(s) = s = aac(s). Then

b = mnr3
0 +

√
mn (m+ n)

2β3r3
0

s2
+O(s4), bac = mnr

3
0 +

√
mn (m+ n)

2β3
acr

3
0

s2
+O(s4)

(7.16)
as s → 0. In particular, if β > βac we have

b < bac, ḃ < ḃac
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for s > 0 sufficiently small. By Lemma 7.9(ii) these conditions are preserved as long as
b > max(a,mnr3

0 ).
Now, on the one hand the solution (a, b) certainly exists as long as b > a > 0,

because then (a, b) is bounded to stay in the region {bac > b > a, b > mnr3
0 } where

(3.16) cannot blow up. On the other hand, since bac ≈ aac = s = a(s) for large s,
for all ε > 0 there exists s0 such that bac < a + ε for all s ≥ s0. Moreover, as long
as b > max(a,mnr3

0 ), b − bac is strictly decreasing and therefore bounded above by a
definite constant −δ0 < 0 depending only on β − βac. Hence if b > a for all s ∈ [0, 2s0]
we would have

b − a − ε < b − bac < −δ0 < 0

for all s ∈ [s0, 2s0]. If ε is chosen small enough we reach a contradiction. We conclude
that (a, b) must intersect the boundary of the region {bac > b > a, b > mnr3

0 }. By
Lemma 7.9(ii) the only possibility is that (a, b) intersects the line a = b. Moreover since
we must have

ḃ ≤ ḃac < 1

up to and including the intersection time, at the intersection time we also have ḃ < ȧ.
An application of Propositions 6.6 and 6.11 now concludes the proof of Theo-

rem 7.1(i).

7.3. Incompleteness results

We now conclude the proof of Theorem 7.1 establishing part (iii).
Let (a, b) be one of the local solutions constructed in Proposition 4.5(iii, iv) with

β < βac. Assume for a contradiction that (a, b) yields a complete G2-metric. We want to
show that the constraints (6.14), i.e.

0 <
ȧ

ḃ
<
a

b
< 1,

are eventually satisfied, for Proposition 6.13 would otherwise give a contradiction.
We compare (a, b) and (aac, bac): parametrise both solutions so that a(s) = s =

aac(s) and use (7.16) to conclude that since β < βac we have

b > bac, ḃ > ḃac

by Lemma 7.9 (ii). Since bac > aac = s we already conclude that b > a = s for all time.
We will also need to know that b is unbounded and exists for all s ≥ 0. For this note

that 2ḃ =
√
F is the orbital volume function, which must be bounded below if (a, b)

is complete. Hence b is unbounded. By (6.15), the condition F > 0 forces the ratio
a/b = s/b to be bounded below and therefore s →∞ as b→∞.

Now consider the quantities R = sḃ−b and Rac = sḃac−bac and, taking into account
the parametrisation a(s) = s, note that R > 0 is equivalent to

ȧ

ḃ
<
a

b
.
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By (7.16), R and Rac are both initially strictly negative, but Rac → 0 along the AC end.
We make two further crucial observations about R and Rac:

(i) R − Rac is strictly increasing: indeed, Ṙ − Ṙac = s(b̈ − b̈ac) and b̈ − b̈ac > 0 for
b, bac > s is proved in Lemma 7.9;

(ii) R − Rac > 0 for small s > 0, by (7.16).

Hence by (i) and (ii), R −Rac has a strictly positive lower bound. Since Rac converges to
zero as s →∞, we conclude that R must eventually be positive.
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[25] Cvetič, M., Gibbons, G. W., Lü, H., Pope, C. N.: M-theory conifolds. Phys. Rev. Lett. 88,
121602 (2002) MR 1901726

[26] Cvetič, M., Gibbons, G. W., Lü, H., Pope, C. N.: New complete noncompact Spin(7) mani-
folds. Nuclear Phys. B 620, 29–54 (2002) Zbl 1037.53032 MR 1873145
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