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Abstract. In the past twenty years, the enumeration of lattice walks with steps taken in a prescribed
set S and confined to a given cone, especially the first quadrant of the plane, has been intensely
studied. As a result, the generating functions of quadrant walks are now well-understood, provided
the allowed steps are small, that is, S ⊂ {−1, 0, 1}2. In particular, having small steps is crucial
for the definition of a certain group of bi-rational transformations of the plane. It has been proved
that this group is finite if and only if the corresponding generating function is D-finite (that is, it
satisfies a linear differential equation with polynomial coefficients). This group is also the key to
the uniform solution of 19 of the 23 small step models possessing a finite group.

In contrast, almost nothing is known for walks with arbitrary steps. In this paper, we extend
the definition of the group, or rather of the associated orbit, to this general case, and generalize
the above uniform solution of small step models. When this approach works, it invariably yields
a D-finite generating function. We apply it to many quadrant problems, including some infinite
families.

After developing the general theory, we consider the 13 110 two-dimensional models with steps
in {−2,−1, 0, 1}2 having at least one −2 coordinate. We prove that only 240 of them have a finite
orbit, and solve 231 of them with our method. The nine remaining models are the counterparts
of the four models of the small step case that resist the uniform solution method (and which are
known to have an algebraic generating function). We conjecture D-finiteness for their generating
functions, but only two of them are likely to be algebraic. We also prove non-D-finiteness for the
12 870 models with an infinite orbit, except for 16 of them.

Keywords. Enumerative combinatorics, lattice paths, discrete partial differential equations, D-fi-
nite generating functions

1. Introduction

The enumeration of planar lattice walks confined to the quadrant has received a lot of
attention over the past twenty years. The basic question reads as follows: given a finite
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quadrant models with small steps: 79

|G|<∞: 23

OS6=0: 19

D-finite

OS=0: 4

algebraic

|G|=∞: 56

non-D-finite

Fig. 1. Classification of quadrant walks with small steps. The group of the walk is denoted by G,
and OS stands for the orbit sum, a rational function which vanishes precisely for algebraic models.
The four algebraic models are those of Figure 2.

step set S ⊂ Z2 and a starting point P ∈ N2, what is the number qn of n-step walks,
starting from P and taking their steps in S, that remain in the non-negative quadrant N2?
This is a versatile question, since such walks encode in a natural fashion many discrete
objects (systems of queues, Young tableaux and their generalizations, among others).
More generally, the study of these walks fits in the larger framework of walks confined
to cones. These walks are also much studied in probability theory, both in a discrete
setting [36, 37] and in a continuous setting [31, 41]. From a technical point of view,
counting walks in the quadrant is part of a general program aiming at solving functional
equations that involve divided differences with respect to several variables (or discrete
partial differential equations): see Equation (2) below for a typical example, and [22,
Sec. 2] for a general discussion of these equations.

On the combinatorics side, much attention has focused on the nature of the associated
generating function Q(t) =

∑
n qnt

n. Is it rational in t , as for unconstrained walks? Is it
algebraic over Q(t), as for walks confined to a (rational) half-space? More generally, is
Q(t) the solution of a linear differential equation with polynomial coefficients in Q[t]?
(in short: is it D-finite?) The answer depends on the step set and, to a lesser extent, on the
starting point.

A systematic study was initiated in [60, 26] for walks starting at the origin (0, 0) and
taking only small steps (that is, S ⊂ {−1, 0, 1}2). For these walks, a complete classifica-
tion is now available (Figure 1). In particular, the trivariate generating functionQ(x, y; t)
that also records the coordinates of the endpoint of the walk is D-finite if and only if a
certain group G of bi-rational transformations is finite. The proof involves an attractive
variety of tools, ranging from elementary power series algebra [21, 60, 26, 22] to complex
analysis [54, 64], computer algebra [17, 51], probability theory [32, 36] and number the-
ory [19]. The most recent results on this topic discriminate, among non-D-finite models,
those that are still D-algebraic (that is, satisfy polynomial differential equations) from
those that are not [8, 7, 34, 33]. Remarkably, a new tool then comes into play: differential
Galois theory.

Contrasting with the precision of this classification is the case of quadrant walks with
arbitrary steps, for which it is fair to say that almost nothing is known. Indeed, the small
step assumption is crucial in all methods used in the small step case, aside from two of
them: the computer algebra approach of [17, 51] can in principle be adapted to any steps,



Counting walks with large steps in an orthant 2223
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Fig. 2. The four algebraic small step models in the quadrant, with their usual names.

provided one is able to guess differential or algebraic equations for the solution; and the
asymptotic estimates of [32] do not require assumptions on the size of the steps. But
even the definition of the group that is central in the classification requires small steps.
The complex analytic approach of [54] that has proved very powerful for small steps
seems difficult to extend, and the first attempts have not yet led to any explicit solution,
nor indications on the nature of the generating functions [38]. The classical reflection
principle [44] requires that no walk crosses the x- or y-axis without actually touching it,
which is equivalent to a small step condition.

The study of quadrant walks with arbitrary steps is not only a natural mathematical
challenge. It is also motivated by “real life” examples. For instance, certain orientations
of planar maps were recently shown by Kenyon et al. [52] to be in bijection with quadrant
walks taking their steps in {(−p, 0), (−p+ 1, 1), . . . , (0, p), (1,−1)}. In the subsequent
paper [24] it is shown that the method of the current article solves all these models. Other
examples can be found in queuing theory, where several clients may arrive, or be served, at
the same time (think of ski-lifts in a ski resort!). Also, a problem as innocuous as counting
walks on the square lattice confined to the cone bounded by the x-axis (for x positive)
and the line y = 2x becomes, after a linear transformation, a quadrant problem with large
steps (Figure 3). Moreover, our study raises intriguing combinatorial questions, which can
be seen as an a posteriori motivation of this work. For instance, some walks with large
steps turn out to be counted by simple hypergeometric numbers, for reasons that remain
combinatorially mysterious (see for instance Propositions 8.2 and 8.4). Furthermore, our
study gives rise to attractive conjectures involving nine large step analogues of the four
algebraic models of Figure 2 (Section 8.4). We hope that this paper will have a progeny
as rich as its small step counterpart [26].

Fig. 3. A square lattice walk confined to a wedge becomes a quadrant walk with large steps.

Our aim here is primarily to extend to arbitrary steps (and arbitrary dimension, for
walks confined to the orthant Nd ) a power series approach that was introduced in [26] to
solve the 19 easiest small step models, namely those of the leftmost branch of Figure 1.
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The group is lost, but the associated orbit survives. When the method works, it yields an
expression of the generating function as the non-negative part of an algebraic series—a
form which implies D-finiteness. On the negative side, we give a criterion that simultane-
ously implies that the orbit of a two-dimensional model is infinite and that its generating
function is not D-finite. We provide evidence that in two dimensions, the finiteness of the
orbit may still be related to the D-finiteness of the solution. This is based in particular on
the systematic exploration of quadrant walks with steps in {−2,−1, 0, 1}2.

Before we give more details on our results, let us examine the solution of a simple
small step model, as presented in [26].

1.1. A basic example: S = {↘,←,↑}

We denote by q(i, j ; n) the number of walks with steps in S that start at (0, 0), end at
(i, j) and remain in the non-negative quadrant N2. The associated generating function is

Q(x, y; t) :=
∑
i,j,n≥0

q(i, j ; n)xiyj tn.

We will find an explicit expression for this power series using a four-step approach, some-
times called the algebraic kernel method and borrowed from [26], which we then gener-
alize in the rest of the paper.

A functional equation. A step-by-step construction of quadrant walks with steps in
{↘,←,↑} yields the functional equation

Q(x, y) = 1+ t (xȳ + x̄ + y)Q(x, y)− txȳQ(x, 0)− t x̄Q(0, y), (1)

where we write x̄ := 1/x, ȳ := 1/y and replace Q(x, y; t) by Q(x, y) to lighten nota-
tion. In this equation the constant term 1 stands for the empty walk. The next term counts
quadrant walks extended by one of our three steps. The final two terms remove the con-
tributions of the two “forbidden moves”: either we have extended a walk ending on the
x-axis by a↘ step (term −txȳQ(x, 0)) or we have extended a walk ending on the y-axis
by a← step (term −t x̄Q(0, y)). Observe that the above equation can also be written in a
form that involves two divided differences, one in x and the other in y:

Q(x, y) = 1+ tyQ(x, y)+ tx
Q(x, y)−Q(x, 0)

y
+ t

Q(x, y)−Q(0, y)
x

. (2)

We refer to [22, Sec. 2] for a general discussion of equations involving divided differences
with respect to two variables (those that involve divided differences with respect to one
variable only are known to have algebraic solutions [25]). We rewrite (1) as

K(x, y)xyQ(x, y) = xy − R(x)− S(y), (3)

where R(x) = tx2Q(x, 0), S(y) = tyQ(0, y), and K(x, y) = 1 − t (xȳ + x̄ + y) is the
kernel of the equation. Observe the decoupling of the x and y variables in the right-hand
side. We call the bivariate series R(x) and S(y) sections.
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The group of the walk. We now define two bi-rational transformations 8 and 9, acting
on pairs (u, v) of coordinates (which will be, typically, algebraic functions of x and y):

8 : (u, v) 7→ (ūv, v) and 9 : (u, v) 7→ (u, uv̄).

Each transformation fixes one coordinate, and transforms the other so as to leave the step
polynomial uv̄+ ū+ v unchanged. Both transformations are involutions, and the orbit of
(x, y) under the action of 8 and 9 consists of six elements:

(x, y)
8
←→(x̄y, y)

9
←→(x̄y, x̄)

8
←→(ȳ, x̄)

9
←→(ȳ, xȳ)

8
←→(x, xȳ)

9
←→(x, y).

The group generated by 8 and 9 is thus the dihedral group of order 6.

A section-free equation. We now write, for each element (x′, y′) of the orbit, the func-
tional equation (3) with (x, y) replaced by (x′, y′):

K(x, y)xyQ(x, y) = xy − R(x)− S(y),

K(x, y)x̄y2Q(x̄y, y) = x̄y2
− R(x̄y)− S(y),

K(x, y)x̄2yQ(x̄y, x̄) = x̄2y − R(x̄y)− S(x̄), (4)
...

...

K(x, y)x2ȳQ(x, xȳ) = x2ȳ − R(x)− S(xȳ).

Due to the definition of8 and9, two consecutive equations have one section R(·) or S(·)
in common. Thus, the alternating sum of our six equations has a right-hand side free from
sections:

K(x, y)

×
(
xyQ(x, y)−x̄y2Q(x̄y, y)+x̄2yQ(x̄y, x̄)−x̄ȳQ(ȳ, x̄)+xȳ2Q(ȳ, xȳ)−x2ȳQ(x, xȳ)

)
= xy − x̄y2

+ x̄2y − x̄ȳ + xȳ2
− x2ȳ. (5)

The right-hand side is the orbit sum occurring in the classification of Figure 1. Equiva-
lently,

xyQ(x, y)− x̄y2Q(x̄y, y)+ x̄2yQ(x̄y, x̄)− x̄ȳQ(ȳ, x̄)+ xȳ2Q(ȳ, xȳ)− x2ȳQ(x, xȳ)

=
xy(1− x̄ȳ)(1− x̄2y)(1− xȳ2)

1− t (y + x̄ + xȳ)
.

Extracting Q(x, y). The last equation, combined with the fact that Q(x, y) is a power
series in t with polynomial coefficients in x and y, characterizes Q(x, y) uniquely: in-
deed, the series xyQ(x, y) has coefficients in xyQ[x, y], and thus involves only positive
powers of x and y. But the monomials occurring in each of the five other terms of the left-
hand side involve either a negative power of x, or a negative power of y (or both). Hence
the series xyQ(x, y) is obtained by expanding the right-hand side as a series in t with
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coefficients in Q[x, x̄, y, ȳ], and then collecting terms with positive powers of x and y.
We denote this extraction by

xyQ(x, y) = [x>y>]
xy(1− x̄ȳ)(1− x̄2y)(1− xȳ2)

1− t (y + x̄ + xȳ)
.

Equivalently, upon dividing by xy, the series Q(x, y) is obtained by collecting the non-
negative part in x and y of a rational function:

Q(x, y) = [x≥y≥]
(1− x̄ȳ)(1− x̄2y)(1− xȳ2)

1− t (x̄ + y + xȳ)
.

This explicit expression has strong consequences. First, it guarantees that Q(x, y) is
D-finite [55]. Second, expanding (x̄ + y + xȳ)n in powers of x and y, it delivers a hy-
pergeometric expression for the number of walks of length n = 3m + 2i + j ending at
(i, j):

q(i, j ; n) =
(i + 1)(j + 1)(i + j + 2)(3m+ 2i + j)!

m!(m+ i + 1)!(m+ i + j + 2)!
.

We conclude this example with a remark for the combinatorially inclined readers: since
walks with steps in S = {↘,←,↑} give a simple encoding of Young tableaux of height
at most 3, the above formula is just the translation in terms of walks of the classical hook
formula [65, §3.10].

1.2. Outline of the paper

Based on the above example, we can now describe our results more precisely. The next
four sections present the extension to arbitrary steps (and dimension) of the four stages
involved in the above solution. The principles of our approach are robust enough to be
applicable to the enumeration of weighted walks, which can be especially interesting in a
probabilistic context. We give many examples to illustrate these stages, but also to show
how they can fail: indeed, since our method only solves 19 of the 79 small step models
in the quadrant, we know in advance that it has to fail for some models. Two obstacles
can already be seen in the classification of Figure 1: the group (or what is left of it,
namely its orbit) can be infinite, and the orbit sum can vanish. Interestingly, we provide
in Section 3.3 a criterion that implies simultaneously the infiniteness of the orbit and the
non-D-finiteness of the generating function.

In Sections 6 and 7, we show that our approach applies systematically in dimension 1
(walks on a half-line) and for the so-called Hadamard models in dimension 2. Working
in dimension 1 is the least one can ask for, as walks on a half-line are very well under-
stood [6, 27, 42]. It is worth noting that the form of our solution is not exactly the standard
form obtained by earlier approaches. The second result, dealing with Hadamard models,
is more interesting as it seems that many models with finite orbit are Hadamard. In the
small step case for instance, 16 of the 19 models solvable by our approach (that is, 16 of
the 23 D-finite models) are of Hadamard type.
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In Section 8 we apply these principles to the classification of models with steps in
{−2,−1, 0, 1}2. Several results are still conjectural, but in a sense we obtain a perfect
analogue of the small step classification shown in Figure 1: our approach solves all 231
models with a finite orbit and a non-vanishing orbit sum (Figure 7). For each of them,
we express Q(x, y; t) as the non-negative part in x and y of an explicit rational function.
Exactly 227 of these 231 solved models are in fact Hadamard. This leaves out nine models
with a finite group but orbit sum zero, for which we state several attractive conjectures.
Finally, we establish non-D-finiteness for the 12 870 models with an infinite orbit, except
for 16 of them, which we still conjecture to be non-D-finite.

In Section 9 we show that the form of the solutions that we obtain is well-suited to the
asymptotic analysis of their coefficients, and we work out explicitly the analysis for the
four non-Hadamard models with a finite orbit solved in Section 8.

We conclude in Section 10 with a number of remarks and open questions.

Notation and definitions. For compactness we often encode a step into a word con-
sisting of its coordinates, with a bar above negative coordinates: for example, the step
(−2, 3,−5) ∈ Z3 will be denoted 2̄35̄. Similarly, as used above, we use a bar over vari-
ables to denote their reciprocals, so that x̄ = 1/x. A small forward step has its coordinates
in {1, 0,−1,−2, . . .} while a large forward step has at least one coordinate larger than 1.
We define small and large backward steps similarly. A small step has only coordinates in
{−1, 0, 1}. In two dimensions, small steps can be identified by the compass directions, and
we sometimes draw them pictorially with arrows: for instance, (1, 1) can be denoted↗.

For a ring R, we denote by R[x] (resp. R[[x]]) the ring of polynomials (resp. formal
power series) in x with coefficients in R. If R is a field, then R(x) stands for the field of
rational functions in x, and R((x)) is the field of Laurent series in x (that is, series of the
form

∑
n≥n0

anx
n, with n0 ∈ Z). This notation is generalized to several variables in the

usual way. For instance, the generating function Q(x, y; t) of walks restricted to the first
quadrant is a series in Q[x, y][[t]]. We shall also consider fractional power series, namely
power series in a (positive) fractional power of x, and finally Puiseux series, which are
Laurent series in a fractional power of the variable. We recall that if R is an algebraically
closed field, then the Puiseux series in x with coefficients in R form an algebraically
closed field (see [1] or [68, Chap. 6]).

If F(u; t) is a power series in t whose coefficients are Laurent series in u,

F(u; t) =
∑
n≥0

tn
( ∑
i≥i(n)

uif (i; n)
)
,

we denote by [u>]F(u; t) the positive part of F in u:

[u>]F(u; t) =
∑
n≥0

tn
(∑
i>0

uif (i; n)
)
.

We define the non-negative part [u≥]F(u; t) in a similar fashion, by retaining as well the
constant term in u.

We recall that a series Q(x, y; t) is algebraic if there exists a non-zero polynomial
P ∈ Q[x, y, t, s] such that P(x, y, t,Q(x, y; t)) = 0. It is D-finite (with respect to



2228 Alin Bostan et al.

the variable t) if the vector space over Q(x, y, t) spanned by the iterated derivatives
∂mt Q(x, y; t), for m ≥ 0, has finite dimension (here ∂t denotes differentiation with re-
spect to t). The latter definition can be adapted to D-finiteness in several variables, for
instance x, y and t : in this case we require D-finiteness with respect to each variable sep-
arately [56]. Every algebraic series is D-finite [56, Prop. 2.3]. If Q(x, y; t) is D-finite
in its three variables, then so are Q(0, 0; t) and Q(1, 1; t). For a one-variable series
F(t) =

∑
fnt

n, D-finiteness is equivalent to the existence of a linear recurrence rela-
tion with polynomial coefficients in n satisfied by the coefficient sequence (fn).

We often denote by Ft the derivative ∂tF of a series F(t). This notation is generalized
to several variables. For instance, Ft,u stands for ∂t∂uF .

2. A functional equation

Let d ≥ 1 and let S be a finite subset of Zd . We would like to count walks that take
their steps in S, start from the origin and are confined to the orthant Nd . We denote by
q(i1, . . . , id; n) the number of such walks consisting of n steps and ending at (i1, . . . , id),
and by Q(x1, . . . , xd; t) the associated generating function:

Q(x1, . . . , xd; t) ≡ Q(x1, . . . , xd) :=
∑

(i1,...,id ,n)∈Nd+1

q(i1, . . . , id; n)x
i1
1 · · · x

id
d t

n.

Note that we often omit the dependence of Q on t . The notation Q refers to the two-
dimensional case (walks in a quadrant), from which we will borrow most of our examples.
In that case, we use the variables x and y instead of x1 and x2.

We use bold notation for multivariate quantities, so that x = (x1, . . . , xd), and for a d-
tuple i = (i1, . . . , id) ∈ Zd we use the abbreviation xi

= x
i1
1 · · · x

id
d . The step polynomial

of a model (also called the characteristic polynomial) is

S(x1, . . . , xd) = S(x) =
∑
s∈S

xs. (6)

The step polynomial is a Laurent polynomial in the variables xi ; here every step has
weight 1, but our approach can be adapted to the enumeration of weighted walks with
weights in some field F (for instance F = R in a probabilistic context).

One can always write for the generating function Q(x1, . . . , xd; t) a functional equa-
tion defining this series, based on a step-by-step construction of walks confined to Nd ,
as was done in (1). This functional equation is linear in the main series Q(x1, . . . , xd; t)

and, when the terms are grouped on one side of the equation, the coefficient in front of
Q(x1, . . . , xd; t) is the kernel

K(x1, . . . , xd) = 1− tS(x1, . . . , xd).

The equation also involves unknown series that only depend on some of the variables
x1, . . . , xd (and on t), such as, for instance, the series Q(x, 0) and Q(0, y) in (1). These
series are called sections (of Q). Let us consider a few examples.
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Example A. Take d = 1 and S = {1̄, 2}. The equation satisfied by the series Q(x; t) ≡
Q(x) reads

Q(x) = 1+ t (x̄ + x2)Q(x)− t x̄Q(0),

where the term−t x̄Q(0) removes forbidden moves from position 0 to position−1. Equiv-
alently, with K(x) = 1− t (x̄ + x2), the previous equation reads

K(x)Q(x) = 1− t x̄Q(0). (7)

ut

Example B. Still with d = 1, we now reverse the steps of the previous example so as to
have a long backward step, and study S = {2̄, 1}. Extending a walk w by the step −2 is
now forbidden as soon as w ends at position 0 or 1. Hence, denoting by Qi ≡ Qi(t) the
length generating function of walks ending at position i, the equation satisfied by Q(x)
reads

Q(x) = 1+ t (x̄2
+ x)Q(x)− t x̄2Q0 − t x̄Q1,

or equivalently, with K(x) = 1− t (x̄2
+ x),

K(x)Q(x) = 1− t x̄2Q0 − t x̄Q1. (8)

Observe that Q0 = Q(0) and Q1 = ∂xQ(0). The occurrence of a large backward step
results in one more section on the right-hand side. ut

Example C: Gessel’s walks. We return to two-dimensional models, now with the step
set S = {→,↗,←,↙}. Appending a south-west step is forbidden as soon as the walk
ends at abscissa or ordinate zero. The functional equation thus reads

Q(x, y) = 1+t (x+xy+x̄+x̄ȳ)Q(x, y)−t x̄Q(0, y)−t x̄ȳ(Q(x, 0)+Q(0, y)−Q(0, 0)).

The term in Q(0, 0) avoids removing twice walks that end at (0, 0). Equivalently, with
K(x, y) = 1− t (x + xy + x̄ + x̄ȳ),

K(x, y)Q(x, y) = 1− t x̄(1+ ȳ)Q(0, y)− t x̄ȳ(Q(x, 0)−Q(0, 0)). ut

Example D: A model with a large forward step and a large backward step. We now
take S = {2̄0, 1̄1, 02, 11̄}. Quadrant walks formed of these steps, starting and ending at
the origin, are known to be in bijection with bipolar orientations of quadrangulations
[52, 24]. The functional equation reads

Q(x, y) = 1+ t (x̄2
+ x̄y + y2

+ xȳ)Q(x, y)− t x̄2(Q0,−(y)+ xQ1,−(y))

− t x̄yQ0,−(y)− txȳQ(x, 0),

where xiQi,−(y) counts quadrant walks ending at x-coordinate i. Note that Q0,−(y) =

Q(0, y). We can rewrite the functional equation, usingK(x, y) = 1−t (x̄2
+x̄y+y2

+xȳ),
as

K(x, y)Q(x, y) = 1− t x̄(x̄ + y)Q0,−(y)− t x̄Q1,−(y)− txȳQ(x, 0). (9)

ut
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Example E: A model in three dimensions. We now take S = {1̄1̄1̄, 1̄1̄1, 1̄10, 100}. As
for Gessel’s walks (Example C), the functional equation involves inclusion-exclusion so
as to avoid excluding several times the same move, and one obtains

K(x, y, z)Q(x, y, z)

= 1− t x̄(ȳz̄+ ȳz+ y)Q(0, y, z)− t x̄ȳ(z̄+ z)Q(x, 0, z)− t x̄ȳz̄Q(x, y, 0)
+ t x̄ȳ(z̄+ z)Q(0, 0, z)+ t x̄ȳz̄Q(0, y, 0)+ t x̄ȳz̄Q(x, 0, 0)− t x̄ȳz̄Q(0, 0, 0),

(10)

where the kernel is

K(x, y, z) = 1− t (x̄ȳz̄+ x̄ȳz+ x̄y + x). ut

After seeing all these examples, the reader should be convinced that a functional equation
can be written for any model S. We only give its general form in two cases: first in
dimension two, and then for models with small backward steps. In dimension two, the
equation reads

K(x, y)Q(x, y)

= 1− t
∑

(k,`)∈S
xky`

( ∑
0≤i<−k

xiQi,−(y)+
∑

0≤j<−`

yjQ−,j (x)−
∑

0≤i<−k
0≤j<−`

xiyjQi,j

)
,

(11)

whereK(x, y) = 1−tS(x, y) is the kernel, xiQi,−(y) (resp. yjQ−,j (x)) counts quadrant
walks ending at abscissa i (resp. at ordinate j ), andQi,j is the length generating function
of walks ending at (i, j).

For a model of walks with small backward steps confined to the orthant Nd in arbitrary
dimension d , the functional equation reads

K(x)Q(x) = 1+ t
∑

∅6=I⊂J1,dK

(
(−1)|I |QI (x)

∑
s∈S:

∀i∈I, si=−1

xs
)
, (12)

where x = (x1, . . . , xd),K(x) = 1−tS(x), andQI (x) is the specialization ofQ(x)where
each xi, i ∈ I , is set to 0 (for instance, if I = {2, 3} thenQI (x)=Q(x1, 0, 0, x4, . . . , xd)).
The proof is an inclusion-exclusion argument generalizing the proof of (10).

3. The orbit of (x1, . . . , xd)

In Section 1.1, we have shown on one example how to associate a group to a two-
dimensional model with small steps. We now describe, for a general step set S in arbitrary
dimension d , how to define the counterpart of this group, or more precisely of its orbit.
To avoid trivial cases, we only consider models that have both positive and negative steps
in each direction.
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3.1. Definition and first examples

We denote by K the field C(x1, . . . , xd), and by K an algebraic closure of K. We first
define two relations ≈ and ∼ on elements of (K \ {0})d ; recall that S(x) denotes the step
polynomial of S, defined by (6).

Definition 3.1. Let u and v be distinct d-tuples in (K \ {0})d , and let 1 ≤ i ≤ d. Then u

and v are i-adjacent, denoted u
i
≈ v, if S(u) = S(v) and u and v differ only by their ith

coordinate. They are adjacent, denoted u ≈ v, if they are i-adjacent for some i.
Clearly, the relation ≈ is symmetric. We denote by ∼ its reflexive and transitive clo-

sure. The orbit of u is its equivalence class for this relation.
The u-length of an element v in the orbit of u is the smallest ` such that there exists

u(0) = u,u(1), . . . ,u(`) = v with u(0) ≈ u(1) ≈ · · · ≈ u(`).

Note that the value of S is constant over the orbit of u. We will often refer to the orbit
of x = (x1, . . . , xd) (or (x, y) in two dimensions) as the orbit of the model S, and to the
length of an element of this orbit as its x-length. We use the word orbit even though we
have not defined any underlying group: this terminology comes from the case of small
steps, as justified by Proposition 3.5 below. Before we proceed, let us check that the
structure of the orbit does not depend on the choice of the algebraic closure of K.

Lemma 3.2. Let K and K̂ be two algebraic closures of K and τ : K → K̂ be a field
automorphism fixing K. For any u = (u1, . . . , ud) ∈ (K \ {0})d , we denote by τ(u)
the element of (K̂ \ {0})d obtained by applying τ to u componentwise. Then τ preserves
adjacencies, and sends the orbit of u onto the orbit of τ(u).

Proof (sketch). Clearly, if S(v) = S(w) then S(τ(v)) = S(τ(w)), because S has rational
coefficients. And if v and v′ differ in their ith coordinate, the same holds for their images
by τ . This shows that adjacencies are preserved. The isomorphism of orbits then follows
by induction on length. ut

The next proposition tells us that two models that are equivalent up to a symmetry of the
hypercube have isomorphic orbits. Since these symmetries are generated by a reflection
and adjacent transpositions, it suffices to examine these two cases.

Proposition 3.3. Let S ⊂ Zd be a model with step polynomial S(x1, . . . , xd), and let
S̃ be the model obtained by swapping the first two coordinates, with step polynomial
S(x2, x1, x3, . . . , xd). Then the orbits of S and S̃ are isomorphic (there is a bijection
from one to the other that preserves adjacencies).

The same holds if S̃ is obtained from S by a reflection in the hyperplane x1 = 0; that
is, if its step polynomial is S(1/x1, x2, . . . , xd).

Proof. To lighten notation, we prove this result in two dimensions. The proof in higher
dimensions is similar.

In the first case, let us construct the orbit of S in the field K of iterated Puiseux series
in x and y (Puiseux series in x whose coefficients are Puiseux series in y). We shall
construct the orbit of S̃ in the field K̂ of iterated Puiseux series in y and x (note the
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inversion). If u ∈ K, let δ(u) ∈ K̂ be obtained from u by swapping x and y. We claim
that if (u, v) is in the orbit of S, then the pair (δ(v), δ(u)) is in the orbit of S̃, and vice
versa. First, if (u, v) = (x, y), then (δ(v), δ(u)) = (x, y). Then, if (u, v) is 2-adjacent to
(u,w) in the orbit of S, then (δ(v), δ(u)) is 1-adjacent to (δ(w), δ(u)) in the orbit of S̃,
because

S̃(δ(w), δ(u)) = S(δ(u), δ(w)) = S(δ(u), δ(v)) = S̃(δ(v), δ(u)).

(The second equality comes from the 2-adjacency of (u, v) and (u,w) for S.) One proves
similarly that 1-adjacencies for S become 2-adjacencies for S̃. The isomorphism between
the orbits of S and S̃ then follows by induction on length.

The proof is similar in the second case, upon constructing the orbit of S̃ in the field K̂
of iterated Puiseux series in x̄ and y. Denoting by δ the transformation from K to K̂ that
sends x to x̄, a pair (u, v) is in the orbit of S if and only if (1/δ(u), δ(v)) is in the orbit
of S̃. ut

We will now examine examples. One important observation is the following.

Lemma 3.4. If the coordinates of u are algebraically independent over Q, then the same
holds for any v in the orbit of u. Moreover, the number of elements v that are i-adjacent
to u is Mi +mi − 1, where Mi (resp. −mi) is the largest (resp. smallest) move in the ith
direction among the steps of S. In particular, for small step models (Mi = mi = 1 for
all i) there is one adjacent element in every direction.

Proof. Let v = (u1, . . . , ui−1, v, ui+1, . . . , ud) be i-adjacent to u = (u1, . . . , ud),
and let us prove that the coordinates of v are independent over Q. Assume that there
exists a non-trivial polynomial P(a) with rational coefficients such that P(v) = 0.
Since the ui’s are algebraically independent, P(a) must depend on ai . Hence v is
algebraic over Q(u1, . . . , ui−1, ui+1, . . . , ud). The same holds for S(v), and hence
for S(u). Since S(a) actually depends on ai , this means that ui is algebraic over
Q(u1, . . . , ui−1, ui+1, . . . , ud), which contradicts the algebraic independence of the uj ’s.
The first statement of the lemma follows, by induction on length.

Then, by expanding S(v) in powers of v, we have

S(v) := PMi
(u1, . . . , ui−1, ui+1, . . . , ud)v

Mi + · · ·

+ P−mi (u1, . . . , ui−1, ui+1, . . . , ud)v
−mi

= S(u).

As the coordinates of u are algebraically independent, this equation hasMi+mi solutions
in v. One of them is the trivial solution v = ui . Each root v gives rise to an element v
whose coordinates are algebraically independent. In particular, Sai (v) 6= 0, which means
that v is not a multiple root of S(v) − S(u). Hence this polynomial (in v) has distinct
roots. Removing the trivial root v = ui gives mi +Mi − 1 distinct elements v that are
i-adjacent to u. ut
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Example (d = 1). In dimension 1 the orbit of x consists of all solutions x′ of the equa-
tion S(x) = S(x′). It is thus finite. ut

Example: small steps with d = 2. Let us get back to the example of Section 1.1. Then
it can be checked that two elements are adjacent if and only if one is obtained from the
other by applying 8 or 9. This will be generalized to all small step models (in arbitrary
dimension) in the proposition below.

Note however that in dimension 2, and beyond, the orbit may be infinite. This happens
for 56 of the 79 small step quadrant models [26], for instance when S = {↑,→,↙,←},
in which case S(x, y) = y + x + x̄ȳ + x̄.

For models with small steps, the orbit of x is indeed its orbit under the action of a
certain group, as in the example of Section 1.1.

Proposition 3.5. Assume that S consists of small steps, that is, S ⊂ {−1, 0, 1}d . Define
d bi-rational transformations 81, . . . , 8d by

8i(a1, . . . , ad) =

(
a1, . . . , ai−1,

1
ai

S−i (a)
S+i (a)

, ai+1, . . . , ad

)
,

where a = (a1, . . . , ad) and S−i (a) (resp. S+i (a)) is the coefficient of 1/ai (resp. ai)
in S(a). Then the 8i’s are involutions. If the aj ’s are algebraically independent over Q,
then a and 8i(a) are i-adjacent.

Conversely, let x = (x1, . . . , xd) and let u = (u1, . . . , ud) be in the orbit of x. An
element v of (K\{0})d is i-adjacent to u if and only if v = 8i(u). Consequently, the orbit
of x is indeed its orbit under the action of a group, namely the group generated by the
involutions 8i .

Finally, the lengths of two adjacent elements in the orbit of x differ by ±1.

Proof. To prove that 8i is an involution, we first observe that S+i (a) and S−i (a) are inde-
pendent of ai . Hence, denoting a′ = 8i(a), the ith coordinate of 8i(a′) is

1
a′i

S−i (a
′)

S+i (a′)
= ai

S+i (a)
S−i (a)

S−i (a)
S+i (a)

= ai .

If the aj ’s are algebraically independent over Q, then a and a′ are distinct, differ in their
ith coordinate only, and, upon writing

S(x) =
1
xi
S−i (x)+ S

0
i (x)+ xiS

+

i (x),

we can check that S(a) = S(a′). Hence a and 8i(a) are i-adjacent.
Now let u be in the orbit of x. Write S(x) as above. Note that S−i (x), S

0
i (x) and

S+i (x) are unchanged if we only modify the ith coordinate of x. So if v
i
≈ u, the fact that

S(u) = S(v) gives

1
ui
S−i (u)+ uiS

+

i (u) =
1
vi
S−i (u)+ viS

+

i (u), that is, S−i (u) = uiviS
+

i (u).
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By the above lemma, the coordinates of u are algebraically independent, hence S+i (u) 6= 0
and v must be8i(u). Conversely, we have proved above that8i(u) is i-adjacent to u. This
concludes the description of the orbit of x.

The proof of the final result was communicated to us by Andrew Elvey Price and
Michael Wallner, whom we thank for their great help. Clearly, if u and v are two adjacent
elements in the orbit of x, their lengths differ by 0,+1 or −1. We want to exclude the
value 0, which amounts to saying that in the graph whose vertices are the elements of
the orbit, with edges between adjacent elements, there is no odd cycle. Equivalently, this
graph is bipartite. In order to prove this, we define a sign ε(u) ∈ {−1,+1} of elements u
of the orbit of x, which changes when an involution 8i is applied. The sign is defined by

ε(u) =
( d∏
i=1

xi

)
detM(u), where M(u) =

(
1
ui

∂ui

∂xj

)
1≤i,j≤d

.

It is readily checked that ε(x) = 1, and this implies ε(u) = (−1)length(u). Let us then take
v = 8i(u), and prove that ε(v) = −ε(u). The matrix M(v) only differs from M(u) in
the ith row. Let us denote

8i(a) =
(
a1, . . . , ai−1,

1
ai
Ri(a), ai+1, . . . , ad

)
,

where Ri(a) = S−i (a)/Si
+(a) only depends on the variables a1, . . . , ai−1, ai+1, . . . , ad .

Then for 1 ≤ j ≤ d, the (i, j) entry of M(v) is

1
vi

∂vi

∂xj
=

ui

Ri(u)

(
−

1
u2
i

Ri(u)
∂ui

∂xj
+

∑
k 6=i

∂Ri

∂ak
(u)

∂uk

∂xj

)
= −

1
ui

∂ui

∂xj
+

ui

Ri(u)

∑
k 6=i

∂Ri

∂ak
(u)

∂uk

∂xj
.

Subtracting from the ith row of M(v) its kth row, multiplied by uiuk ∂Ri∂ak
(u)/Ri(u), for

1 ≤ k 6= i ≤ d, we see that detM(v) is also the determinant of the matrix obtained from
M(u) by changing the sign of all elements of the ith row, which concludes the proof. ut

Example D (continued): large steps with d = 2. Let us take S = {2̄0, 1̄1, 02, 11̄}, so
that

S(x, y) = x̄2
+ x̄y + y2

+ xȳ.

We will incrementally construct the orbit of (x, y). This example should provide the in-
tuition for the algorithm given in the next subsection.

We start from (x, y) and want to determine which elements (X, y) are 1-adjacent to
it; that is, to find the solutions to S(X, y) = S(x, y) with X 6= x. We have

S(X, y)− S(x, y) =
(X − x)(x2X2

− y(1+ xy)X − xy)
x2yX2 .
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Hence the two elements that are 1-adjacent to (x, y) are (x1, y) and (x2, y), where
x1 and x2 are the two roots of P1(X, x, y) := x

2X2
− y(1 + xy)X − xy (when solved

for X). The xi’s can be taken as Laurent series in x with coefficients in Q[y, ȳ]:

x1 = yx
−2
+ y2x−1

− x2 and x2 = −x + yx
2
− y2x3

+ (y3
+ ȳ)x4

+O(x5).

Similarly, we find that the two elements that are 2-adjacent to (x, y) are (x, y1) and
(x, y2), where y1 and y2 are the roots of Q1(Y, x, y) := xyY 2

+ y(1 + xy)Y − x2.
But Q1(Y, x, y) coincides with P1(1/Y, x, y) (up to a factor of Y 2), thus we take
y1 = x̄1 := 1/x1 and y2 = x̄2 := 1/x2. We have now obtained five elements in the
orbit of (x, y) (one can follow the construction in Figure 4).

Now we want to find the elements (x1, Y ) that are 2-adjacent to (x1, y). In principle,
we should thus solve S(x1, Y ) = S(x1, y) (= S(x, y)), but we prefer not to handle
equations with algebraic coefficients (like x1). So instead, we consider the polynomial
system

P1(X, x, y) = 0, S(X, Y ) = S(x, y),

whose solutions (X, Y ) are the pairs (xi, Y ) belonging to the orbit. Upon eliminating X
between these two equations, we find that Y is necessarily either y, or x̄, or one of the
series x̄i . Upon checking that S(x1, x̄1) 6= S(x, y), we conclude that the two elements
that are 2-adjacent to (x1, y) are (x1, x̄) and (x1, x̄2). Symmetrically, (x2, x̄) and (x2, x̄1)

are 2-adjacent to (x2, y). We now have nine elements in the orbit.
In order to find the elements that are 1-adjacent to (x, x̄i), for i = 1, 2, we study

similarly the polynomial system

Q1(Y, x, y) = 0, S(X, Y ) = S(x, y)

(x, x̄1) (x, x̄2)

(ȳ, x̄2)

(x1, x̄2)(x2, x̄1)

(x2, y)

(ȳ, x̄1)

(x2, x̄)

(x, y)

(x1, y)

(x1, x̄)

(ȳ, x̄)

Fig. 4. The orbit of S = {2̄0, 1̄1, 02, 11̄}. The values x1 and x2 are the roots of P1(X, x, y) =
x2X2

− y(1 + xy)X − xy. The values x̄1 and x̄2 are their reciprocals. The dashed (resp. solid)
edges join 1-adjacent (resp. 2-adjacent) elements.
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and conclude that (ȳ, x̄1) and (x2, x̄1) are 1-adjacent to (x, x̄1) while (ȳ, x̄2) and (x1, x̄2)

are 1-adjacent to (x, x̄2). We have reached 11 elements.
At this stage, we still need one element that would be 1-adjacent to (x1, x̄) and (x2, x̄),

and one element that would be 2-adjacent to (ȳ, x̄1) and (ȳ, x̄2). We address the first
problem by solving S(X, x̄) = S(x, y), and find that (ȳ, x̄) in fact solves both problems.
The orbit is now complete, and contains 12 elements.

3.2. An algorithm that detects finite orbits (case d = 2)

Given a model in dimension d = 2 we now describe a (semi-)algorithm that stops
if and only if the orbit is finite. This algorithm constructs incrementally two sets P
and Q of irreducible polynomials in X and Y , respectively, with coefficients in Q(x, y).
It starts with P = {X − x} and Q = {Y − y}, and both polynomials are declared non-
treated. At each stage, the algorithm chooses a non-treated polynomial in P ∪ Q, say
Q ∈ Q, and constructs a new polynomial P ′(X, x, y), which is the resultant in Y of
Q(Y, x, y) and the numerator of the Laurent polynomial S(x, y) − S(X, Y ) (namely
(xX)m1(yY )m2(S(x, y) − S(X, Y )), where −m1 is the smallest move in the x-direction
and similarly for m2). Then the algorithm adds to P every irreducible factor of P ′, and
the new factors are declared non-treated. The algorithm treats symmetrically polynomials
of P . These stages are repeated as long as there are non-treated polynomials.

We recall that K denotes an algebraic closure of K := Q(x, y).

Proposition 3.6. The following two properties hold at each stage of the algorithm:

(i) the set P contains no element of Q[X]; moreover, for P ∈ P and x′ ∈ K such that
P(x′, x, y) = 0, there exist Q ∈ Q and y′ ∈ K such that Q(y′, x, y) = 0 and
(x′, y′) is in the orbit of (x, y),

(ii) symmetrically, the set Q contains no element of Q[Y ]; moreover, for Q ∈ Q and
y′ ∈ K such that Q(y′, x, y) = 0, there exist P ∈ Q and x′ ∈ K such that
P(x′, x, y) = 0 and (x′, y′) is in the orbit of (x, y).

The algorithm stops if and only if the orbit of (x, y) is finite. In this case, the converse
of (i) and (ii) holds:

(iii) for every (x′, y′) in the orbit of (x, y), the minimal polynomials of x′ and y′ over
Q(x, y) belong respectively to P and Q.

Note that the sets P and Q do not determine the orbit completely: one still has to de-
cide, for each x′ that solves a polynomial of P , which y′ (taken from the roots of the
polynomials of Q) go with it in the orbit, as was done in Example D above.

Proof of Proposition 3.6. Let us first prove (i) and (ii), by induction on the number of
stages performed by the algorithm. Both properties obviously hold at the initialization
step, where P = {X − x} and Q = {Y − y}.
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Now assume that they hold at some stage, and that we treat a polynomialQ ∈ Q as de-
scribed at the beginning of Section 3.2. Let us prove that the extended collections of poly-
nomials still satisfy (i) and (ii). Clearly (ii) still holds, since we have not extended Q. So
let us check (i). It suffices to check it for the factors of P ′ that we have added to P . So let
us take one of these factors, and let x′ be one of its roots. Then x′ is a root of P ′(X, x, y).
The properties of the resultant imply that there exists y′ such that Q(y′, x, y) = 0 and

x′m1y′m2(S(x, y)− S(x′, y′)) = 0, (13)

where −m1 (resp. −m2) is the smallest move along the x-axis (resp. the y-axis). By
property (ii) applied to Q and y′, there exists an element x′′ ∈ K such that (x′′, y′) is in
the orbit. By Lemma 3.4, x′′ and y′ are algebraically independent over Q, and in particular
y′ is not an algebraic number. If x′ = 0, then (13) tells us that the coefficient of x−m1 in
S(x, y), evaluated at y = y′, vanishes, which would make y′ algebraic, a contradiction.
Thus x′ 6= 0, y′ 6= 0, and S(x, y) = S(x′, y′). Hence S(x′, y′) = S(x′′, y′), which
shows that (x′, y′) is adjacent to (x′′, y), and thus is in the orbit of (x, y). In particular, x′

and y′ are algebraically independent over Q, thus x′ 6∈ Q, which means that its minimal
polynomial P is not in Q[X].

Now assume that the algorithm stops, that is, there are no more non-treated poly-
nomials. Let us prove (iii) by induction on the length ` of (x′, y′). If ` = 0, then
(x′, y′) = (x, y) and we have precisely initialized P and Q with the minimal polyno-
mials of x and y. Now assume that (iii) holds for length ` − 1, and that (x′, y′) has
length `. Without loss of generality, we can assume that (x′, y′) ≈ (x′′, y′), where
(x′′, y′) has length ` − 1. By the induction hypothesis, the minimal polynomial Q of
y′ belongs to Q, so we only need to consider x′. The polynomials (in Y ) Q(Y, x, y) and
Xm1Ym2(S(x, y)− S(X, Y )) have a common root (namely y′) when X = x′. Hence their
resultant P ′(X, x, y) must have x′ as a root. This implies that one of the factors of P ′ is
the minimal polynomial of x′, and this factor is added to P when the algorithm treats the
polynomial Q (unless it was already in P).

We have thus established (iii), assuming the algorithm stops. In this case P and Q are
finite, so (iii) implies that the orbit is finite.

Conversely, assume that the orbit is finite. By (i), every P ∈ P must be the minimal
polynomial of some x′ ∈ K such that (x′, y′) is in the orbit for some y′. Hence P cannot
grow indefinitely. A similar argument applies to Q, and the algorithm has to stop. ut

3.3. Infinite orbits and the excursion exponent

We now describe an approach, of wide applicability, to prove that a model has an in-
finite orbit. It generalizes a fixed point argument applied to quadrant walks with small
steps in [26, Thm. 3] (see also [35] for an application to 3D walks with small steps). It
also constructs a group of transformations which generates part of the orbit of x. In the
two-dimensional case, it establishes a connection with the asymptotic proof of non-D-
finiteness developed in [19]. One outcome will be the following convenient criterion for
two-dimensional models.
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Theorem 3.7. Let S ⊂ Z2 be a step set that is not contained in a half-plane, and contains
an element of N2. Then the step polynomial S(x, y) has a unique critical point (a, b)
in R2

>0 (that is, a solution of Sx(a, b) = Sy(a, b) = 0), which satisfies Sxx(a, b) > 0 and
Syy(a, b) > 0. Define

c =
Sxy(a, b)√

Sxx(a, b)Syy(a, b)
.

Then c ∈ [−1, 1] can be written as cos θ . If θ is not a rational multiple of π , then the
orbit of S is infinite, and the series Q(x, y; t) is not D-finite.

Note that this result is algorithmic: the quantities a, b, c are algebraic over Q and one can
compute their minimal polynomials, starting from S. Saying that θ is a rational multiple
of π amounts to saying that the solutions of z+ 1/z = 2c are roots of unity, so that their
minimal polynomials are cyclotomic. This can be checked algorithmically. In Section 8
we apply this theorem systematically to the 13 110 models having steps in {−2,−1, 0, 1}2

and at least one large step. Combined with the algorithm that detects finite orbits, it de-
termines the size of the orbit for all but 16 models. (These 16 models turn out to have an
infinite orbit; see Section 8.2.3.)

The above theorem also shows that the calculations performed in [26] to prove that
51 small step models have an infinite group are equivalent to those performed in [19] to
prove that these 51 models have a non-D-finite generating function.

3.3.1. A group acting on the orbit. We begin with the part of the above theorem that deals
with the size of the orbit. In fact, we have a more general result that holds for models in
d dimensions. So let S ∈ Zd , and assume that there exists a point a := (a1, . . . , ad) such
that Sx1(a) = ∂S/∂x1(a1, . . . , ad) = 0. If I (X, x) denotes the Laurent polynomial

I (X, x) =
S(X, x2, . . . , xd)− S(x1, . . . , xd)

X − x1

(after normalizing the rational function) then I (a1, a) = Sx1(a) = 0. Assume now that
Sx1x1(a) 6= 0, so that IX(a1, a) = Sx1x1(a)/2 6= 0. By the implicit function theorem
(in its analytic form), there exists a unique analytic function X1(x1, . . . , xd) defined in a
neighborhood of a, satisfying X1(a) = a1 and

I (X1(x), x) =
S(X1(x), x2, . . . , xd)− S(x)

X1(x)− x1
= 0. (14)

The expansion of X1(x) around a can be computed inductively. Writing x = a + u, we
have

X1(x) = a1 − u1 −
2

Sx1x1(a)

d∑
i=2

Sx1xi (a)ui + · · · , (15)

the missing terms being of degree at least 2 in the ui’s. We define the transformation 81
by 81(x) = (X1(x), x2, . . . , xd). Clearly, 81(x) is 1-adjacent to x and thus lies in the
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orbit of x (which we construct in an algebraic closure of Q(x) containing power series in
the ui’s). Since 81(a) = a, we can iterate 81. In particular,

81 ◦81(x) =
(
X1(X1(x), x2, . . . , xd), x2, . . . , xd

)
satisfies

S(81 ◦81(x)) = S(81(x)) = S(x),

by (14). Hence either 81 ◦81 is the identity, or

I (81 ◦81(x)) =
S(81 ◦81(x))− S(x)

X1(X1(x), x2, . . . , xd)− x1
= 0,

which means that the function X̃1 : x 7→ X1(X1(x), x2, . . . , xd) satisfies the same condi-
tions as X1. By uniqueness of X1, this would imply that X̃1 = X1: but this is impossible
as X1(x) has linear part a1 − u1 + · · · while X̃1 has linear part a1 + u1 + · · · (by (15)).
Hence 81 is an involution.

Assume now that a is a critical point of S, that is, Sxi (a) = 0 for i = 1, . . . , d . Assume
moreover that Sxixi (a) 6= 0 for all i. We then define similarly the transformations 8i for
i = 1, . . . , d . Still writing x = a + u, each 8i leaves the constant term of x unchanged,
so we can compose them and they form a group G. For any 2 in this group, 2(x) lies in
the orbit of x. If the orbit of x is finite, G is finite as well, and every 2 ∈ G has finite
order. The expansion of 2 around a reads

2(a+ u) = a+ u J (a)+ (quadratic terms in the ui’s),

hence the Jacobian matrix J (a)must have finite order. This means that its eigenvalues are
roots of unity, which, once again, can be checked algorithmically.

We now restrict the discussion to the two-dimensional case, in order to lighten nota-
tion. We denote 8 := 81 and 9 := 82, x = (x, y), a = (a, b) and u = (u, v). For
2 := 9 ◦8, we have

J (a, b) :=

(
−1 −η

ν ην − 1

)
where

η =
2Sxy(a, b)
Sxx(a, b)

and ν =
2Sxy(a, b)
Syy(a, b)

.

The eigenvalues of J are the roots of

λ2
− (ην − 2)λ+ 1

and, as the orbit is finite, they must equal e±2iθ for θ a rational multiple of π . That is,

λ2
− (ην − 2)λ+ 1 = (λ− e2iθ )(λ− e−2iθ ).

Extracting the coefficient of λ gives the following proposition.
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Proposition 3.8. Consider a two-dimensional model S, and a critical point (a, b) of
S(x, y) such that Sxx(a, b)Syy(a, b) 6= 0. Then one can define involutions 8 and 9
as described above. If the orbit is finite, then 2 := 9 ◦ 8 has finite order. In particular,
there exists a rational multiple of π , denoted θ , such that

Sxy(a, b)
2

Sxx(a, b)Syy(a, b)
= cos2 θ.

We can now prove the part of Theorem 3.7 that deals with the orbit size. Since S is not
contained in a half-plane, there exists a unique positive critical point (a, b) (an argument
is given in the proof of [19, Thm. 4]). The derivatives Sxx and Syy are positive at this
point (because every monomial xiyj gives a non-negative contribution, and one of them
at least gives a positive contribution), and thus the above proposition applies. ut

3.3.2. The excursion exponent. We will now show that in the two-dimensional case, the
above criterion is closely related to an asymptotic result that has been used as a criterion
for the non-D-finiteness of Q(x, y; t) in [19]. This result originally applies to strongly
aperiodic models only, and it will take us some work to obtain a version that is valid for
periodic models as well. Given a model S , we denote by 3 the lattice of Z2 spanned by
its steps. Then S is strongly aperiodic if for any point x ∈ 3, the lattice 3x spanned
by the points x + s for s ∈ S, which is clearly a sublattice of 3, coincides with 3. For
instance, Kreweras’ model {↗,←,↓} is not strongly aperiodic: one has 3 = Z2, but for
x = (1, 0), the lattice 3x only contains points (i, j) such that i + j is a multiple of 3.

Given a model S, and a point (i, j) in Z2, we denote by w(i, j ; n) the number of n-
step walks going from (0, 0) to (i, j) consisting of steps taken in S without the quadrant
condition. We call any walk starting and ending at the same point an excursion.

Proposition 3.9. Let S ⊂ Z2 be a model that is not contained in a half-plane, and denote
by 3 the lattice of Z2 generated by S. Then there exists an integer p, called the period
of S, such that for any (i, j) ∈ 3, there exists r ∈ J0, p − 1K with w(i, j ; n) = 0 if
n 6≡ r mod p and w(i, j ; n) > 0 if n = mp + r and m is large enough.

The model S is strongly aperiodic if and only if p = 1.

Proof. Several ingredients of the proof are borrowed from Spitzer [67, Sec. I.5], who
deals with recurrent random walks and only considers the case 3 = Z2. The fact that
all points (i, j) of 3 can be reached from (0, 0) is closely related to Farkas’ Lemma [66,
Sec. 7.3].

Let N = {n ≥ 0 : w(0, 0; n) 6= 0}. Since one can concatenate two walks starting and
ending at the origin, N is an additive semigroup in N. Our first objective is to prove that
it is not reduced to {0}, that is, there exist non-empty excursions.

Let s be a non-zero vector of S. Since S is not contained in a half-plane, there exists
another non-zero vector of S, say s′, such that the wedge formed by the pair s, s′ forms an
angle φ ∈ (0, π). Let us choose s′ so as to maximize φ in this interval (Figure 5). Since
s and s′ form a basis of R2, any other vector s′′ of S can be written as s′′ = αs + βs′

for a unique pair (α, β) ∈ Q2. Since S is not contained in a half-plane, there must exist
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a vector s′′ in S such that α is negative. By maximality of φ, this vector is such that
β ≤ 0. Writing α = −a/d and β = −b/d with a, d positive integers and b a non-
negative integer, we conclude that as+bs′+ds′′ = 0, which shows that the walk starting
at the origin and formed of a copies of s, b copies of s′ and d copies of s′′ ends at the
origin as well. Thus there exist non-empty excursions. Moreover, we have

−s = (a − 1)s + bs′ + ds′′.

Since a is a positive integer, and s is an arbitrary element of S, this proves that the set
of endpoints of walks starting at the origin is not only a semigroup of Z2 (again, by a
concatenation argument), but in fact the entire lattice 3.
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φ

α < 0, β < 0

Fig. 5. On the existence of excursions.

We have established that N 6= {0}. Let p be the greatest common divisor of the ele-
ments of N . The structure of semigroups in N is well understood: N ⊂ pN, and pm ∈ N
for any large enough m. We have thus proved the first statement of the proposition for
(i, j) = (0, 0), with r = 0.

Now let (i, j) ∈ 3. We have proved above that there exists a walk going from (0, 0)
to (i, j). Assume that there are two such walks w and w′, and choose a walk w′′ from
(i, j) to (0, 0). Then both ww′′ and w′w′′ are excursions, hence they must have length 0
modulo p. Consequently, w and w′ must have the same length modulo p, say r . Finally,
by concatenating a large excursion to a walk ending at (i, j), we see that for m large
enough, there is a walk of length pm+ r from the origin to (i, j).

The equivalence between strong aperiodicity and p = 1 can be proved by mimicking
the corresponding part of the proof of Proposition P1 in [67, Sec. I.5]. ut

In the following theorem, we assume that each step s of S is weighted by a positive
weight ωs . This means that the “number” q(i, j ; n) is actually the sum of the weights
of all quadrant walks from (0, 0) to (i, j), the weight of a walk being the product of the
weights of its steps. In this context, the step polynomial is

S(x, y) =
∑

s=(s1,s2)∈S
ωsx

s1ys2 .

Definition 3.10. Given a model S ⊂ Z2, a point (i, j) ∈ N2 is reachable from infinity
if there exists a quadrant walk that starts from a point (k, `) ∈ (i, j) + Z2

>0 and ends
at (i, j).
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Note that in this case, (k, `) itself is reachable from infinity. Moreover, upon concatenat-
ing several copies of the walk, we can find a starting point (k′, `′) with arbitrarily large
coordinates, and a quadrant walk from this point to (i, j). Finally, Proposition 3.9 implies
that if S is not contained in a half-plane, then any point with large enough coordinates is
reachable from infinity.

We can now complete the asymptotic result of Denisov and Wachtel [32] with a state-
ment that holds in the periodic case.

Theorem 3.11. Let S ⊂ Z2 be a model that is not contained in a half-plane and contains
an element of N2. Then the step polynomial S(x, y) has a unique critical point (a, b)
in R2

>0, which satisfies Sxx(a, b) > 0 and Syy(a, b) > 0. Define

µ = S(a, b), c =
Sxy(a, b)√

Sxx(a, b)Syy(a, b)
and α = −1− π/arccos(−c).

Assume first that S is strongly aperiodic. Then if (i, j) is reachable from infinity, there
exists a positive constant κ such that, as n goes to infinity,

q(i, j ; n) ∼ κ µnnα.

If S is not strongly aperiodic and has period p > 1, define

S = {s1 + · · · + sp : (s1, . . . , sp) ∈ Sp},

and let 3 be the lattice spanned by the vectors of S. Then if (i, j) ∈ 3 is reachable from
infinity for S, there exist positive constants κ1 and κ2 such that for n = pm and m large
enough,

κ1µ
nnα ≤ q(i, j ; n) ≤ κ2µ

nnα. (16)

We call α the excursion exponent.

Remarks. 1. It is very likely that an asymptotic estimate holds as well in the periodic
case, but the proof does not seem to be written down, and we will content ourselves with
the above bounds.

2. The reachability condition, which is somewhat implicit in [32], is important. Con-
sider for instance the (strongly aperiodic) model S = {10, 01, 11̄, 1̄1, 3̄2, 23̄}. Then for
n > 0,

q(0, 0; n) = 0 and q(1, 0; n) = 1,

while
q(1, 1; n) ∼ κ6nnα

with α = −1−π/arccos(7/8). The reason for these different asymptotic behaviors is that
the points (0, 0) and (1, 0) are not reachable from infinity, while (1, 1) is. Similarly, any
asymptotic result for quadrant walks starting from a given point (k, `) should require that
there exists a quadrant walk that starts from (k, `) and ends in (k, `) + Z2

>0 (we say that
(k, `) reaches infinity). Given that we have assumed that S contains a point of N2 and is
not included in a half-plane, this condition holds here for any (k, `).
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Proof of Theorem 3.11. In the aperiodic case, the proof can be copied verbatim from the
proof of Theorem 4 in [19]. One considers an underlying random walk and normalizes it
into a walk whose projections on the x- and y-axes are centered, reduced, and of covari-
ance 0. The key result is then a local limit theorem of Denisov and Wachtel that applies
to such walks [32, Thm. 6] (note that one should assume in that theorem that V (x) > 0
and V ′(y) > 0, which holds if x reaches infinity and y is reached from infinity).

We thus focus on the periodic case. The idea is to consider p consecutive steps of a
walk as a single generalized step to obtain a strongly aperiodic walk. More precisely, let
us define S as above, and define the weight of a step s of S to be

ω̄s =
∑

(s1,...,sp)∈Sp
s1+···+sp=s

ωs1 · · ·ωsp .

We denote with bars all quantities that deal with the model S. For instance, w̄(i, j ; n) is
the (weighted) number of walks going from (0, 0) to (i, j) in n steps taken from S. By
the definition of p, we have w(0, 0;pn) = w̄(0, 0; n) > 0 for n large enough, hence S is
strongly aperiodic (on the lattice 3 that it generates). Observe that

S̄(x, y) = S(x, y)p, (ā, b̄) = (a, b), µ̄ = µp, c̄ = c, ᾱ = α.

Note that if (i, j) ∈ 3 is reachable from infinity in the model S, then it is also reachable
from infinity in the model S. Since we will consider both models S and S at the same
time, we will often refer to a walk with steps in S as an S-walk.

Upper bound. A quadrant walk from (0, 0) to (i, j) consisting of n = pm steps of S can
be seen as a quadrant walk from (0, 0) to (i, j) consisting of m steps of S (the converse
is not true in general: for instance, taking a step (1, 0) in S may correspond to a sequence
(−1, 0), (2, 0) of steps of S and involve crossing the y-axis). Hence

q(i, j ;pm) ≤ q̄(i, j ;m).

Since S is strongly aperiodic, and (i, j) reachable from infinity in S, the right-hand side
is asymptotic to κ (µp)mmα for some positive κ , which gives the desired upper bound on
q(i, j ; n).

Lower bound. Since (0, 0) reaches infinity, and (i, j) is reachable from infinity, we can
pick two quadrant walks w1 and w2 satisfying the following conditions:

• w1 goes from (0, 0) to a point x = (i1, j1), whose coordinates are larger than pM ,
where M is the maximal norm of a step of S. Moreover, w1 has length pm1.
• w2 goes from some point y = (i2, j2) to (i, j), and the coordinates of y are large

enough for y − x to be reachable from infinity in the model S (in particular, i2 ≥ i1
and j2 ≥ j1). Moreover, w2 has length pm2.

Now take a quadrant walk w from (0, 0) to y − x consisting of m elements of S: if we
replace every step σ = s1 + · · · + sp (with each sk ∈ S), by the sequence s1, . . . , sp,
the resulting walk w̃ may exit the quadrant. But it will remain in the translated quadrant
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[−pM,∞)2. Thus, if we translate w̃ so that it starts at x, it will remain in the quadrant
N2 and end at y. Adding w1 as a prefix and w2 as a suffix gives a quadrant walk of length
n = p(m1 +m2 +m) ending at (i, j). Consequently,

q(i, j ; n) ≥ c q̄(i2 − i1, j2 − j1;m)

for some positive constant c that depends on the weights ofw1 andw2. Since S is strongly
aperiodic, and y−x is reachable from infinity in this model, the right-hand side is asymp-
totic to some κ(µp)mmα , which gives the desired lower bound on q(i, j ; n). ut

We can now conclude the proof of Theorem 3.7.

Proof of Theorem 3.7. We have already established the part that deals with the orbit
size, so we focus on the nature of the series Q(x, y; t). We assign weight ωs = 1 to
every step of S. Let (i, j) ∈ 3, with i and j large enough for (i, j) to be reachable
from infinity. Then the bounds (16) on q(i, j ; n) hold (whether the model is periodic
or not) with α irrational. The generating function

∑
n q(i, j ; n)t

n is the coefficient of
xiyj in Q(x, y; t), and it is D-finite if Q(x, y; t) is D-finite. In this case it must be a
G-function [16, Sec. 2]. But the properties of these functions are incompatible with the
existence of such bounds [16, Thm. 2], and thus Q(x, y; t) cannot be D-finite. Indeed, it
follows from the Katz–Chudnovsky–André theorem [2, 39] on the local structure of G-
functions, combined with classical transfer theorems, that q(i, j ; n) needs to be asymp-
totically equivalent to a sum of terms of the form κρnna(log n)b with only rational expo-
nents a, and our exponent α must be one of these a’s. ut

3.3.3. Examples. We now illustrate the above results with five examples.

Example D (continued): a model with rational exponent and finite orbit. Let us take
S(x, y) = x̄2

+ x̄y + y2
+ xȳ. The unique positive critical pair is (a, b) = (31/4, 3−1/4).

We have seen that the orbit of S is finite (Figure 4), and indeed,

c :=
S12(a, b)

√
S11(a, b)S22(a, b)

= −
1
2
= cos

2π
3
.

With the notation of Theorem 3.7, we have θ = 2π/3, and by Theorem 3.11 the excursion
exponent is α = −4. The involutions 8 and 9 defined in Section 3.3.1 satisfy

8(a + u, b + v) = (a − u+
√

3 v + · · · , b + v),

9(a + u, b + v) = (a + u, b + u/
√

3− v + · · · ),

so that
2(a + u, b + v) = (a − u+

√
3 v + · · · , b − u/

√
3+ · · · ).

The matrix J is

J =

(
−1

√
3

−1/
√

3 0

)
,

its eigenvalues are e±2iπ/3, and J 3 is the identity matrix. In fact, it can be checked that
23
= id. This is reflected in Figure 4 by the existence of bicoloured hexagons. ut
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Example: a model with irrational exponent and infinite orbit. Now take S(x, y) =
x̄2
+ y + xȳ. The unique positive critical pair is (a, b) = (22/5, 21/5). We have

c :=
S12(a, b)

√
S11(a, b)S22(a, b)

= −
1
√

6
.

Let us prove that this is not the cosine of a rational multiple θ of π . With z = eiθ , this
would mean that z+1/z = −

√
2/3, so that the minimal polynomial of z (and 1/z) would

be z4
+ 4z2/3 + 1. This is not a cyclotomic polynomial, hence c is not of the required

form. We conclude from Theorem 3.7 that the orbit is infinite, and the series Q(x, y; t)
not D-finite. The excursion exponent is α = −1− π/arccos(1/

√
6) ∼ −3.73 . . . , and it

is an irrational number.
The involutions 8 and 9 satisfy

8(a + u, b + v) = (a − u+ 26/5v/3+ · · · , b + v),

9(a + u, b + v) = (a + u, b + u/21/5
− v + · · · ),

so that

2(a + u, b + v) = (a − u+ 26/5v/3+ · · · , b − u/21/5
− v/3+ · · · ).

The matrix J is

J =

(
−1 26/5/3
−1/21/5

−1/3

)
.

Its eigenvalues are the roots of λ2
+4λ/3+1, and thus are not roots of unity. In particular,

the group generated by 8 and 9 is infinite. ut

The same argument proves that the walks of Figure 3 have an irrational excursion expo-
nent α = −1− π/arccos(1/

√
5), and thus a non-D-finite generating function.

We will now consider three models that have a rational excursion exponent, but still an
infinite orbit. We will prove this using the approach of Section 3.3.1, either by taking for
(a, b) the positive critical point and pushing further the expansion of2, or by considering
another critical point.

Example: a model with rational exponent but infinite orbit. Take S(x, y) = x + y +
x̄ + ȳ + xȳ2

+ x̄2y. This is model #13 in Table 2 (Section 8.2.3). The unique positive
critical pair is (a, b) = (

√
2,
√

2). We have

c :=
S12(a, b)

√
S11(a, b)S22(a, b)

= −
1
2
= cos

2π
3
.

With the notation of Theorem 3.7, we have θ = 2π/3. The excursion exponent is α = −4.
If we start from the positive critical point (a, b) = (

√
2,
√

2) to define the involutions
8 and 9, we find

8(a+u, b+v) = (a−u+v+· · · , b+v), 9(a+u, b+v) = (a+u, b+u−v+· · · ),
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so that
2(a + u, b + v) = (a − u+ v + · · · , b − u+ · · · ).

The matrix J is

J =

(
−1 1
−1 0

)
.

Its eigenvalues are e±2iπ/3, and J 3
= id, so we cannot use the criterion of Theorem 3.7

to prove that the orbit is infinite. But let us push further the expansion of 2. We have

8(a + u, b + v)

=
(
a − u+ v + 5

8au
2
−

5
8auv −

1
8av

2
−

25
32u

3
+

7
8u

2v + 1
16uv

2
+

1
32v

3
+ · · · , b + v

)
,

where the missing terms are of order 4 or more. A symmetric formula holds for9. Hence

2(a + u, b + v)

=
(
a − u+ v + 5

8au
2
−

5
8auv −

1
8av

2
−

25
32u

3
+

7
8u

2v + 1
16uv

2
+

1
32v

3
+ · · · ,

b − u+ 1
2au

2
+

1
4auv −

1
4av

2
−

1
2u

3
−

3
8u

2v + 7
16v

3
+ · · ·

)
.

We have already seen that23 comes close to being the identity—at least, it is the identity
at first order. But in fact,

23(a + u, b + v)

=
(
a + u+ 1

8 (u− 2v)(u2
− uv + v2)+ · · · , b + v− 1

8 (v − 2u)(u2
− uv + v2)+ · · ·

)
,

so that

23k(a + u, b + v)

=

(
a+ u+

k

8
(u− 2v)(u2

− uv+ v2)+ · · · , b+ v−
k

8
(v− 2u)(u2

− uv+ v2)+ · · ·

)
.

Thus 2 has infinite order, and by Proposition 3.8 the orbit is infinite. The nature of
Q(x, y; t) remains unknown.

An alternative way to prove infiniteness of the orbit for this model is to start from an-
other critical point and use a first order argument rather than the above longer expansion.
Let us take (a, b) = (e5iπ/6, eiπ/6). Then the involutions 8 and 9 satisfy

8(a + u, b + v) =

(
a − u−

2− 6i
√

3
7

v + · · · , b + v

)
,

9(a + u, b + v) =

(
a + u, b − v −

2+ 6i
√

3
7

u+ · · ·

)
,

so that

2(a + u, b + v) =

(
a − u−

2− 6i
√

3
7

v + · · · , b +
2+ 6i

√
3

7
u+

9
7
v + · · ·

)
.

The characteristic polynomial of the corresponding matrix J is λ2
− 2λ/7 + 1, and its

roots are not roots of unity. By Proposition 3.8, the orbit is infinite. ut
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In the next example, the excursion exponent is again rational, and only the first method
above (expanding 2 to higher order) works to prove infiniteness of the orbit.

Example: one more model with rational exponent but infinite orbit. Take S(x, y) =
xy+xȳ2

+ x̄2y. This is model #2 in Table 2. The positive critical point is (a, b) = (1, 1),
and c = −1/2 = cos(2π/3). The excursion exponent is again −4. Note that there is no
quadrant excursion from (0, 0) to (0, 0), because this point is not reachable from infinity.
But the asymptotic bounds (16) apply for instance for (i, j) = (1, 1) (with period p = 3).

We can prove that the orbit is infinite by expanding 2 := 9 ◦8 up to order 3:

2(1+ u, 1+ v)

=
(
1− u+ v + 4

3u
2
−

4
3uv −

2
3v

2
−

16
9 u

3
+ 2u2v + 2

3uv
2
−

1
9v

3
+ · · · ,

1− u+ 2
3u

2
+

4
3uv −

4
3v

2
+

1
9u

3
− 3u2v + 1

3uv
2
+

22
9 v

3
+ · · ·

)
which gives

23(1+ u, 1+ v)

=
(
1+ u+ 2

3 (u− 2v)(u2
− uv + v2)+ · · · , 1+ v− 2

3 (v − 2u)(u2
− uv + v2)+ · · ·

)
.

We conclude as above that all series 23k(1 + u, 1 + v) are distinct, and that the orbit is
infinite.

Starting from another critical pair (a, b) does not make the argument shorter: for all
possible choices, the transformation 23 is the identity at linear order. ut

We conclude with a third model with a rational exponent but an infinite orbit. This one is
symmetric in both coordinate axes. Recall that highly symmetric models with small steps
behave nicely in any dimension: they have a finite orbit, a D-finite generating function,
and explicit asymptotic enumeration is known [58]. But the highly symmetric model with
large steps of the next example has an infinite orbit. This cannot be proved starting from
the positive critical point, because the corresponding involutions 8 and 9 do generate a
finite group. But taking another critical point works.

Example: a highly symmetric model with an infinite orbit. Take

S(x, y) = (x + x̄)(y + ȳ)+ (x2
+ x̄2)(y2

+ ȳ2).

The positive critical point is (a, b) = (1, 1), and c = 0. The excursion exponent is −3.
The transformations 8 and 9 defined from a = b = 1 are respectively (x, y) 7→ (x̄, y)

and (x, y) 7→ (x, ȳ) and they do generate a finite group, of order 4. But let us consider
instead the critical point (a, b) = (i, i). Then

2(a + u, b + b) = (a − u+ v/2+ · · · , b + u/2− v + · · · ),

and the Jacobian matrix J has characteristic polynomial λ2
+ 7λ/4 + 1, which is not

cyclotomic. Hence the orbit is infinite.
We do not know the nature of the associated generating function, but the first 70 000

terms of the series Q(0, 0) (modulo a prime) did not allow us to guess any recurrence
relation for its coefficients. ut
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4. Section-free functional equations

In this section we consider step sets S ⊂ Zd such that the orbit of x = (x1, . . . , xd) is
finite. For every element x′ of this orbit we can replace x by x′ in the main functional
equation defining Q(x), as we did in (4). The resulting equation will be called an orbit
equation.1 As the left-hand side of the original functional equation is K(x)Q(x), where
K(x) = 1 − tS(x) is the kernel, the orbit equation associated with x′ has left-hand side
K(x)Q(x′), because the kernel takes the same value for all elements in the orbit. On the
right-hand side of the orbit equations there are several specializations of the generating
function Q, which we call sections. Due to the construction of the orbit, every section
occurs at least in two orbit equations.

The next step in our approach is to form a linear combination of the orbit equations
that is free from sections, if one exists, as was the case for (5). Once the main functional
equation is written, and the (finite) orbit determined, section-free equations can be found
by solving a linear system with coefficients in the algebraic closure of Q(x1, . . . , xd). In
all cases that we have examined, we find that a section-free equation exists (and some-
times there are several). However, we have not been able to find a generic form for section-
free equations. Let us examine two simple examples; the first one shows that there can be
multiple section-free combinations.

Example A (continued). We return to the one-dimensional step set S = {1̄, 2}. The step
polynomial is S(x) = x̄ + x2, and the elements x′ of the orbit of x are the solutions of
S(x) = S(x′). Hence the orbit is {x, x1, x2}, with

x1,2 =
−x2
±

√
x(x3 + 4)

2x
.

Substituting the three orbit elements into the functional equation (7) gives three orbit
equations, each involving only one section (namely,Q(0)). There are several section-free
linear combinations of the orbit equations. One of them is

K(x)(xQ(x)− x1Q(x1)) = x − x1, (17)

another one is
K(x)(xQ(x)− x2Q(x2)) = x − x2, (18)

and in fact any section-free equation is a linear combination of these two. ut

Example B (continued). We now reverse the steps of the previous example and consider
S = {2̄, 1}. The orbit of x consists of x, x1 and x2 with

x1,2 =
1±
√

4 x3 + 1
2x2 .

Substituting the orbit elements into (8) gives three orbit equations containing two sec-
tions, Q0 and Q1. There is, up to a multiplicative factor, a unique section-free linear

1 In other papers, like [11], the orbit equation is what we call here the section-free equation. We
hope that this change in the terminology will not cause any trouble.
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combination of these three equations:

K(x)

(
x2

(x − x1)(x − x2)
Q(x)+

x2
1

(x1 − x)(x1 − x2)
Q(x1)+

x2
2

(x2 − x)(x2 − x1)
Q(x2)

)
=

x2

(x − x1)(x − x2)
+

x2
1

(x1 − x)(x1 − x2)
+

x2
2

(x2 − x)(x2 − x1)
= 1. ut

The above two examples are instances of a more general result that applies to any one-
dimensional model.

Proposition 4.1. Assume d = 1. Let −m (resp. M) be the smallest (resp. largest) ele-
ment in S, and assume thatm ≥ 0 andM > 0. Then the orbit of x has cardinalitym+M .
The vector space of section-free equations consists of all linear combinations of

K(x)

m∑
i=0

umi∏
j 6=i(ui − uj )

Q(ui) = 1,

where u0, u1, . . . , um are any distinct elements in the orbit of x.

This proposition will be proved in Section 6. The number of ways of choosing the ui’s is(
m+M
m+1

)
. These section-free equations are not always linearly independent (in Example A,

the third equation of this type, which involves x1 and x2, is the difference of (17) and (18)).
However, if the largest step is 1 (that is, M = 1), then Proposition 4.1 tells us that there
is a unique section-free equation (up to a multiplicative factor). This was observed in
Example B, and seems to generalize to dimension 2.

Conjecture 4.2. When d = 2 and the orbit is finite, there always exist non-trivial section-
free linear combinations of the orbit equations. Moreover, if there is no large forward step,
then there is a unique section-free combination, up to a multiplicative factor.

Example. In some x/y-symmetric quadrant models, like Kreweras’ model S =

{↗,←,↓}, the orbit of (x, y) contains (y, x), and we want to clarify what we mean
by the uniqueness of the section-free equation. The functional equation reads

K(x, y)Q(x, y) = 1− t x̄Q(0, y)− t ȳQ(x, 0).

The orbit of (x, y) consists of six pairs:

(x, y), (x̄ȳ, y), (x̄ȳ, x), (y, x), (y, x̄ȳ), (x, x̄ȳ).

A linear combination of the six orbit equations, with indeterminate weights α1, . . . , α6,
involves six sections: three specializations ofQ(x, 0), and three ofQ(0, y). If we require
the contribution of each to vanish, we find (up to a multiplicative factor) a unique solution
for the αi’s, and thus a unique section-free equation:

K(x, y)
(
xyQ(x, y)− x̄Q(x̄ȳ, y)+ ȳQ(x̄ȳ, x)− xyQ(y, x)+ x̄Q(y, x̄ȳ)− ȳQ(x, x̄ȳ)

)
= 0. (19)

Note that the right-hand side (the so-called orbit sum) vanishes. The x/y-symmetry makes
this equation trivial.
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However, it makes sense to exploit the symmetry of the model in the functional equa-
tion, and to write

K(x, y)Q(x, y) = 1− t x̄Q(y, 0)− t ȳQ(x, 0).

Now a linear combination of the six orbit equations involves only three sections. If we
want the contribution of each to vanish, we find a three-dimensional vector space of solu-
tions, generated by all equations of the form

K(x, y)(Q(x′, y′)−Q(y′, x′)) = 0

for (x′, y′) in the orbit. Again, these equations are trivial. ut

We now prove that Conjecture 4.2 holds in the case of small steps—and in fact, in arbitrary
dimension.

Proposition 4.3. If S ⊂ {−1, 0, 1}d has positive and negative steps in every direction,
and the associated orbit is finite, then there is a unique section-free linear combination of
orbit equations, up to a multiplicative factor. It reads

∑
u
(−1)`(u)K(u)Q(u)

d∏
i=1

ui =
∑

u
(−1)`(u)

d∏
i=1

ui, (20)

where the sum runs over all elements u = (u1, . . . , ud) of the orbit and `(u) is the length
of u.

Proof. We consider the result of multiplying the functional equation (12) by the product
of all variables

∏
i xi :

K(x)Q(x)
∏
i

xi =
∏
i

xi + t
∑

∅6=I⊂J1,dK

(
(−1)|I |QI (x)

∑
s∈S: si=−1∀i∈I

xs
∏
i

xi

)
. (21)

Note that since the last sum is over all s such that si = −1 for i ∈ I , the monomial
xs∏

i xi does not involve any of the xi’s for i ∈ I . The same holds for QI (x). We now
call any version of (21) instantiated at an orbit element an orbit equation.

Take I = {i} with 1 ≤ i ≤ d . For u in the orbit of x, the section QI (u) occurs
in exactly two orbit equations: the equation obtained from u, and the one obtained from
v := 8i(u), with 8i defined as in Proposition 3.5. Moreover, the coefficient of QI (u)
is the same in both equations (it does not depend on the ith coordinate of u). Hence in a
section-free linear combination of orbit equations, the weights of the equations associated
with u and8i(u)must be opposite. By transitivity, there cannot be more than one section-
free equation. Moreover, in the small step case, the lengths of two adjacent elements differ
by ±1 (Proposition 3.5), and thus the only possible section-free equation is (20).

So let us form the linear combination of orbit equations having the same left-hand side
as (20). For u in the orbit and I ⊂ J1, dK, the sectionQI (u) occurs (with the same weight)
in all orbit equations obtained from elements v that only differ from u at positions of I .
We can define on these elements an involution that changes the parity of the length (for
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instance 8min(I )). This implies that the coefficient of QI (u) in the signed sum vanishes,
and that we have indeed constructed a section-free equation. ut

Of course, all the examples of this paper support Conjecture 4.2. The next example shows
that the number of sections occurring in the orbit equations can be larger than the number
of orbit equations, which makes the existence of section-free equations more surprising.

Example F: a model with small forward steps. Take S = {10, 1̄0, 2̄1, 01̄}. Then the
orbit of (x, y) consists of the following pairs:

(x, y), (x1, y), (x2, y),

(x, x2ȳ), (−x̄1, x
2ȳ), (−x̄2, x

2ȳ),

(x1, x
2
1 ȳ), (−x̄, x2

1 ȳ), (−x̄2, x
2
1 ȳ),

(x2, x
2
2 ȳ), (−x̄, x2

2 ȳ), (−x̄1, x
2
2 ȳ),

(22)

where

x1,2 =
x + y ±

√
(x + y)2 + 4x3y

2x2

and x̄i = 1/xi . The structure of this orbit is the first shown in Figure 10 (Section 8). The
functional equation reads

K(x, y)Q(x, y) = 1− t x̄(1+ x̄y)Q0,−(y)− t x̄yQ1,−(y)− t ȳQ(x, 0). (23)

The 12 orbit equations involve in total 6+4+4 = 14 distinct sections: six specializations
ofQ(x, 0), four specializations ofQ0,−(y) and four specializations ofQ1,−(y). Hence in
order to find a section-free equation, we need to solve a linear system with 14 equations
but only 12 unknowns. Still, we find a solution (and only one, up to a multiplicative
factor). The weight of the orbit equation associated with the pair (x′, y′) is

±x′2(x′1 − x
′

2)
√
yy′,

where (x′i, y
′) ≈ (x′, y′) for i = 1, 2, and x′1 6= x

′

2. More precisely, the weights associated
with the above 12 orbit elements are

x2(x1 − x2)y, x2
1(x2 − x)y, −x2

2(x1 − x)y,

x2(x̄2 − x̄1)x, −x̄2
1(x + x̄2)x, x̄2

2(x + x̄1)x,

x2
1(x̄ − x̄2)x1, x̄2(x1 + x̄2)x1, −x̄2

2(x1 + x̄)x1,

−x2
2(x̄ − x̄1)x2, −x̄2(x2 + x̄1)x2, x̄2

1(x2 + x̄)x2.

(24)

ut

Example D (continued): a model with large forward and backward step. Let us take
S = {2̄0, 1̄1, 02, 11̄}. Recall that the orbit of (x, y) is shown in Figure 4, with

x1,2 =
xy2
+ y ±

√
y(x2y3 + 4x3 + 2xy2 + y)

2x2 .



2252 Alin Bostan et al.

The functional equation for this model is given by (9), and the 12 orbit equations in-
volve 4+ 4+ 4 = 12 sections. The vector space of section-free linear combinations has
dimension 2; it is generated by two linear combinations of nine orbit equations:

x2yQ(x, y)−
x2

1y(x − x2)Q(x1, y)

x1 − x2
+
x2

2y(x − x1)Q(x2, y)

x1 − x2
− x2x̄1Q(x, x̄1)

+
x2

2(xy − 1)Q(x2, x̄1)

x1(x2 y − 1)
−
(x − x2)Q(ȳ, x̄1)

yx1(x2 y − 1)
+
x2

1(x − x2)Q(x1, x̄)

x(x1 − x2)

−
x2

2(x1 y − 1)(x − x2)Q(x2, x̄)

x(x1 − x2)(x2 y − 1)
+
(x − x2)Q(ȳ, x̄)

xy(x2 y − 1)

=
(1− xy)(1− x1y)(x − x1)(x − x2)

xyx1K(x, y)
,

and the same equation with x1 and x2 exchanged. We refer to [24] for the solution of a
family of models with arbitrarily large steps which generalizes this one.

5. Extracting the main generating function

We now assume that, for a step set S with a finite orbit, we have obtained one or several
section-free functional equations. Can we extract from these equations the main generat-
ing function Q(x1, . . . , xd), as we did in Section 1.1? Not systematically, as we already
learnt from some small step models.

Example C: Gessel’s walks (continued). The orbit of (x, y) consists of eight elements.
The steps are small, hence the unique section-free equation is the alternating sum (20).
Remarkably, its right-hand side vanishes:

xyQ(x, y)− x̄Q(x̄ȳ, y)+ xQ(x̄ȳ, x2y)− xyQ(x̄, x2y)

+ x̄ȳQ(x̄, ȳ)− xQ(xy, ȳ)+ x̄Q(xy, x̄2ȳ)− x̄ȳQ(x, ȳx̄2) = 0.

This homogeneous equation does not characterize Q(x, y). For instance, 1, x, xy, and
y − x2 are solutions. The space of solutions is actually infinite-dimensional, as it clearly
contains all monomials xiyi . ut

Among the 23 quadrant models with small steps that have a finite orbit, exactly four have
a section-free equation that does not characterizeQ(x, y): Gessel’s model, as just shown,
and the three Kreweras-like models: S = {↗,←,↓}, its reverse S = {↙,→,↑} and the
union S ∪ S [26]. For those three, the orbit of (x, y) contains (y, x), and the section-free
equation is (19). Clearly, any symmetric series in x and y satisfies this equation.

For these four models, the orbit sum, that is, the right-hand side of the section-free
equation, vanishes. However, there exist as well (weighted) models with a non-vanishing
orbit sum, for which the section-free equation does not characterizeQ(x, y). Let us recall
an example taken from [11, Sec. 8.2].
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Example. Take S = {1̄1̄, 1̄1, 1̄0, 1̄0, 10, 11} (note the repeated West step). The step
polynomial is

S(x, y) = (1+ y)(x̄(1+ ȳ)+ x).

The orbit of (x, y) contains six elements, and the unique section-free equation reads

xyQ(x, y)− x̄(1+y)Q(x̄(1+ ȳ), y)+
x(1+ y)

(1+ y)2 + x2y2 Q

(
x̄(1+ ȳ),

x2y

(1+ y)2 + x2y2

)
−
xy(1+ y + x2y)

(1+ y)2 + x2y2 Q

(
x̄(1+ y)+ xy,

x2y

(1+ y)2 + x2y2

)
+
x̄ȳ(1+ y + x2y)

1+ x2 Q

(
x̄(1+ y)+ xy,

ȳ

1+ x2

)
−

xȳ

1+ x2 Q

(
x,

ȳ

1+ x2

)
=
(1+ y(1− x2))(1− y2(1+ x2))(1− x2

+ y(1+ x2))

xy(1+ x2)K(x, y)((1+ y)2 + x2y2)
.

The right-hand side is non-zero, but this equation does not define Q(x, y) uniquely in
the ring Q[x, y][[t]]. In fact, the associated homogeneous equation (in Q(x, y)) seems to
have an infinite-dimensional space of solutions. It includes at least the following polyno-
mials in x and y:

x, 2xy + x3y, x2y + x2
+ y + 2, x3y2

− x3y + x3
+ 2xy2. ut

We now consider examples where the series Q(x) is indeed characterized by a section-
free equation, but for which the extraction is not as simple as in Section 1.1. Our first
example is one-dimensional.

Example A (continued). It can be seen that (17) (or (18)) characterizes Q(x), but how
can we extract it effectively? Here is one solution.

Take the first of these two linear combinations, written as

Q(x)− x̄x1Q(x1) =
1− x̄x1

K(x)

with K(x) = 1 − t (x̄ + x2), and choose for the algebraic closure of Q(x) the set of
Puiseux series in x̄ (not in x!). Then

x1 =

√
4x̄3 + 1− 1

2x̄
= x̄2

− x̄5
+O(x̄8)

is a formal power series in x̄. Now both sides of the above section-free equation are series
in t whose coefficients are Laurent series in x̄. Extracting the non-negative part in x gives

Q(x) = [x≥]
1− x̄x1

K(x)
,

where the right-hand side is first expanded in t , then in x̄. This will be generalized to
arbitrary one-dimensional models in Section 6 (Proposition 6.2). ut
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In our next example, one simply has to extract the positive part of a rational series to
obtain Q(x, y), but justifying why is a bit delicate.

Example F (continued). Let S = {10, 1̄0, 2̄1, 01̄}. The functional equation is given
by (23), the orbit by (22) and the weights in the section-free linear combination by (24).
Let us divide this linear combination by x2y(x1 − x2)K(x, y), so as to isolate Q(x, y).
The resulting equation reads

Q(x, y)+ xx̄1x̄2ȳQ(x, x
2ȳ)+ A1 + A2 + A3 + A4 + A5 = R(x, y) (25)

with

A1 = x̄
2 x

2
1(x2 − x)Q(x1, y)− x

2
2(x1 − x)Q(x2, y)

x1 − x2
,

A2 = −x̄
2ȳ
x̄2

1(x + x̄2)xQ(−x̄1, x
2ȳ)− x̄2

2(x + x̄1)xQ(−x̄2, x
2ȳ)

x1 − x2
,

A3 = x̄
2ȳ
x3

1(x̄ − x̄2)Q(x1, x
2
1y)− x

3
2(x̄ − x̄1)Q(x2, x

2
2y)

x1 − x2
,

A4 = x̄
2ȳ
x̄2(x1 + x̄2)x1Q(−x̄, x

2
1 ȳ)− x̄

2(x2 + x̄1)x2Q(−x̄, x
2
2 ȳ)

x1 − x2
,

A5 = −x̄
2ȳ
x̄2

2(x1 + x̄)x1Q(−x̄2, x
2
1 ȳ)− x̄

2
1(x2 + x̄)x2Q(−x̄1, x

2
2 ȳ)

x1 − x2
,

(26)

and

R(x, y) =
(x2
+ 1)(x + y)(y − x)(x2y − 2x − y)(x3

− x − 2y)
x7y3(1− t (x + x̄ + x̄2y + ȳ))

.

Each term in (25) is written as a power series in t whose coefficients are Laurent polyno-
mials in x, y, x1 and x2, symmetric in x1 and x2 (because the numerators of the series Ai
are anti-symmetric in x1 and x2). Observe that the symmetric functions of x1 and x2 are
Laurent polynomials in x and y, and more precisely, polynomials in x̄Q[x̄, y, ȳ] (we say
that they are x-negative):

x1 + x2 = x̄(1+ x̄y) and x1x2 = −x̄y. (27)

The symmetric functions of their reciprocals are Laurent polynomials in x and y, and
more precisely, polynomials in Q[x, x̄, ȳ] (we say that they are y-non-positive):

x̄1 + x̄2 = −x̄ − ȳ and x̄1x̄2 = −xȳ. (28)

Hence every term of (25) is a series in t whose coefficients are Laurent polynomials in x
and y. We claim that extracting from the left-hand side of (25) the non-negative part in
x and y gives Q(x, y). First, the second term of (25) is y-negative, and hence does not
contribute. Then

A1 = x̄
x2

1(x̄x2 − 1)Q(x1, y)− x
2
2(x̄x1 − 1)Q(x2, y)

x1 − x2
,



Counting walks with large steps in an orthant 2255

and is x-negative by (27). Using xx1x2 = −y, we see that the same holds for

A3 = x̄ȳ
x3

1(x̄
2
+ x1ȳ)Q(x1, x

2
1y)− x

3
2(x̄

2
+ x2ȳ)Q(x2, x

2
2y)

x1 − x2

and for

A4 = x̄
2ȳ
x̄x2

1(x̄ − ȳ)Q(−x̄, x
2
1 ȳ)− x̄x

2
2(x̄ − ȳ)Q(−x̄, x

2
2 ȳ)

x1 − x2
.

We are left with two terms. One is

A2 = −x̄ȳ
2 x̄

2
1(x + x̄2)xQ(−x̄1, x

2ȳ)− x̄2
2(x + x̄1)xQ(−x̄2, x

2ȳ)

x̄1 − x̄2
,

which is y-negative by (28). The other is A5, which looks more challenging because the
variables in the seriesQmix positive and negative powers of the xi’s. Its analysis requires
the following lemma.

Lemma 5.1. For a ≥ 0, the expression

Ea :=
xa+1

1 − xa+1
2

x1 − x2
(29)

is a polynomial in x̄ and y. Every monomial x̄eyf that occurs in it satisfies f ≤ e.

Proof. By induction on a ≥ 0, usingE−1 = 0,E0 = 1,Ea = (x1+x2)Ea−1−x1x2Ea−2
and (27). ut

Let us return to the expression (26) of A5. Since Q(x, y) is a series in t with polynomial
coefficients in x and y, it suffices to prove that, for i, j ≥ 0, the term obtained by replacing
Q(x, y) by xiyj , namely

±x̄2ȳ
x̄2

2(x1 + x̄)x1x̄
i
2x

2j
1 ȳ

j
− x̄2

1(x2 + x̄)x2x̄
i
1x

2j
2 ȳ

j

x1 − x2
,

has no non-negative part in x and y. By splitting the sum and using xx1x2 = −y, it
suffices to prove this for

x̄2ȳj+1 x̄
2+i
2 x

2+2j
1 − x̄2+i

1 x
2+2j
2

x1 − x2
= (−1)ixi ȳi+j+3 x

4+i+2j
1 − x

4+i+2j
2

x1 − x2
(30)

and for

x̄3ȳj+1 x̄
i+2
2 x

1+2j
1 − x̄i+2

1 x
1+2j
2

x1 − x2
= (−1)i+1xi−1ȳi+j+3 x

3+i+2j
1 − x

3+i+2j
2

x1 − x2
. (31)

By Lemma 5.1, any monomial xayb that occurs in (30) satisfies

a = i − e, b = f − i − j − 3,
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with f ≤ e. Saying that a and b are both non-negative means that e ≤ i and f ≥ i+j+3,
so that

e + j + 3 ≤ f ≤ e,

which is impossible for j ≥ 0. A similar argument proves that (31) contains no monomial
that would be non-negative in x and in y. So the non-negative part of the left-hand side
of (25) is indeed Q(x, y). This tricky extraction deserves a proposition.

Proposition 5.2. The generating function Q(x, y) of quadrant walks with steps in S =
{10, 1̄0, 01̄, 2̄1} is the non-negative part (in x and y) of the rational series

R(x, y) =
(x2
+ 1)(x + y)(y − x)(x2y − 2x − y)(x3

− x − 2y)
x7y3(1− t (x + x̄ + x̄2y + ȳ))

,

seen as a power series in t with coefficients in Q[x, x̄, y, ȳ].

From this, one can derive interesting results for the specialization Q(0, 0) counting ex-
cursions.

Corollary 5.3. For S = {10, 1̄0, 01̄, 2̄1}, the sequence en := q(0, 0; 2n) counting excur-
sions satisfies a linear recurrence relation of order 2:

(n+3)(n+2)(n+1)en = 12(2n−1)(2n−3)(n−1)en−2+4(2n−1)(n+2)(n+1)en−1,

with e0 = e1 = 1. It is not hypergeometric.
The associated generating function admits an expression in terms of hypergeometric

series:

Q(0, 0)

=
3
4t
+

9t − 2
2t2

∫
(1+ 4t)3/2

(9t − 2)2

(
2F1

(
−

3
2

3
2

2

∣∣∣∣ 16 t
1+ 4t

)
+ 2 · 2F1

(
−

1
2

3
2

3

∣∣∣∣ 16 t
1+ 4t

))
.

Proof (sketch). The recurrence relation is easily guessed from the first few values of en.
It can be proved using computer algebra and the approach of [14]. The idea is to write
Q(0, 0) as the constant coefficient (with respect to x and y) of the rational function
R(x, y), then to apply creative telescoping techniques. This proves that Q(0, 0) satisfies
an explicit linear differential equation of order 4, from which the validity of the above
linear recurrence relation for en is easily deduced. The fact that the sequence (en) is not
hypergeometric follows from Petkovšek’s algorithm [63].

The use of 2F1 solving algorithms [15, 47, 14] then provides a closed-form expression
of Q(0, 0). ut

6. The one-dimensional case revisited

So far we have only studied sporadic models. We now consider a family of models,
namely general one-dimensional models. We take S ⊂ Z and denote by −m (resp. M)
the smallest (resp. largest) step of S; to avoid trivial cases we assume m ≥ 0 and M > 0.
Finally, we allow step weights taken in some algebraically closed field F of characteristic
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zero. The indeterminates t and x are algebraically independent over F. The step polyno-
mial is then

S(x) =
∑
i∈S

wix
i,

where wi is the weight of the step i. The weight of a walk is the product of the weights of
its steps.

Let us first recall the standard solution, originally obtained by Gessel [42] (see also
[27, Ex. 3] and [6]). It involves auxiliary series Xi , which are fractional series in the
length variable t , algebraic over F(t).
Proposition 6.1. The kernel K(x) = 1 − tS(x), when solved for x, admits m + M
roots, which are Puiseux series in t with coefficients in F. Exactly m of these roots, de-
noted X1, . . . , Xm, are finite at t = 0 (and in fact, vanish at t = 0). Let us denote by
Xm+1, . . . , Xm+M the other ones. The generating function Q(x; t) ≡ Q(x) is

Q(x) =

∏m
i=1(1− x̄Xi)
K(x)

= −
1
twM

m+M∏
i=m+1

1
x −Xi

. (32)

We recall the proof given in [27, Ex. 3] or [6], for comparison with the approach of this
paper. Roughly speaking, the standard solution is obtained by canceling the kernel by
appropriate specializations of x, while the approach of this paper is more algebraic and
consists in playing with certain invariance properties of the kernel.
Proof of Proposition 6.1. The statements of the proposition dealing with the roots of the
kernel come from the fact that the equation K(x) = 0, once written as a polynomial
equation in x (that is, as xmK(x) = 0), has degreem+M in x, reducing tom when t = 0
(see [68, Prop. 6.1.8]).

Let us write Q(x) =
∑
i≥0 x

iQi, where Qi counts walks ending at abscissa i. The
functional equation reads

K(x)Q(x) = 1−
−1∑

k=−m

xkGk, (33)

where
Gk = t

∑
i∈S, i≤k

wiQk−i .

So we have m unknown series G−1, . . . ,G−m (or equivalently, Q0, . . . ,Qm−1) on the
right-hand side of the functional equation. When we replace x by Xi in (33), for 1 ≤ i
≤ m, both the left and right-hand sides vanish (we only use the “small” rootsX1, . . . , Xm,
because the substitution by a root involving negative powers of t may be undefined). But
the right-hand side is a polynomial in x̄, of degree m and constant term 1. Hence it must
be equal to

∏m
i=1(1 − x̄Xi), and this gives the first expression of Q(x). The second one

follows by factoring K(x) as

K(x) = −twM

m∏
i=1

(1− x̄Xi)
m+M∏
i=m+1

(x −Xi). (34)

(The factor −twM is obtained by extracting the coefficient of xM in K(x).) ut
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We now present the expression provided by the method of this paper. Rather than alge-
braic series in t (the Xi’s), it involves algebraic series in x̄ (denoted by xi), and then the
extraction of a non-negative part. Admittedly, it is not as attractive as the standard solu-
tion. In particular, it does not make the algebraicity of Q(x) clear, unless the largest step
is 1. But we show later how to recover the standard solution from it. One surprising fea-
ture of this solution is that, as foreseen in Example A, it involves expansions in x̄ rather
than x.

Proposition 6.2. The equation S(X) = S(x) (when solved for X) admits m +M roots,
which can be taken in the field of Puiseux series in x̄ := 1/x with coefficients in F. Exactly
m of these roots, denoted x1, . . . , xm, contain no positive power of x (and, in fact, have
no constant term either).

The generating function Q(x; t) ≡ Q(x) is

Q(x) = [x≥]

∏m
j=1(1− x̄xj )

K(x)
, (35)

where the right-hand side is expanded first in t , then in x̄.
If the largest step of S is M = 1 the right-hand side of (35) is rational, and

Q(x) = [x≥]
S′(x)

w1K(x)
. (36)

We will use the following lemma, which is a simple application of the Lagrange interpo-
lation formula [23, Lemma 13].

Lemma 6.3. Let u0, u1, . . . , um be m+ 1 variables. Then
m∑
i=0

ui
d∏

j 6=i (ui − uj )
=

{
1 if d = m,
0 if 0 ≤ d < m.

Proof of Propositions 4.1 and 6.2. We first establish the section-free equation of Propo-
sition 4.1. The equation S(X) = S(x) has m +M solutions (counted with multiplicity),
includingX = x, which form the orbit of x. These solutions are in fact distinct: a solution
of S′(X) = 0 belongs to the ground field F, and cannot satisfy S(X) = S(x) since x is an
indeterminate.

Let u0, . . . , um be m + 1 distinct orbit elements. For 0 ≤ i ≤ m, the functional
equation (33) specializes to

K(x)Q(ui) = 1−
−1∑

k=−m

ukiGk.

Note that K(ui) = K(x) since K(x) = 1− tS(x). We can eliminate the m series Gk by
taking an appropriate linear combination of our m+ 1 equations, namely

K(x)

m∑
i=0

umi∏
j 6=i(ui − uj )

Q(ui) =

m∑
i=0

umi∏
j 6=i(ui − uj )

−

−1∑
k=−m

Gk

m∑
i=0

uk+mi∏
j 6=i(ui − uj )

= 1 (37)

by Lemma 6.3.
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We have thus exhibited
(
m+M
m+1

)
section-free equations, each involving m + 1 orbit

equations, but we still need to prove that they generate all section-free equations. So let
us take a generic section-free equation, say

m+M−1∑
i=0

αiK(x)Q(ui) =

m+M−1∑
i=0

αi(1−
−1∑

k=−m

ukiGk) =

m+M−1∑
i=0

αi,

where u0, u1, . . . , um+M−1 are now all orbit elements. By subtracting a number of ver-
sions of (37) (with well chosen ui’s and well chosen weights), we can assume that this
equation only involves (at most) m of the ui’s, say u1, . . . , um. Then saying that this
equation is section-free means that for all k in J−m,−1K,

m∑
i=1

αiu
k
i = 0.

But the determinant of this system is not zero (since the ui’s are distinct), and thus all αi’s
must be zero.

We now go on with the proof of Proposition 6.2. The equation S(X) = S(x), written
as a polynomial in x̄ and X, reads

x̄M
∑
i∈S

wiX
m+i
= Xm

∑
i∈S

wi x̄
M−i .

The number of solutions X that are fractional power series in x̄ is the degree in X of the
above polynomial, once evaluated at x̄ = 0 (see again [68, Prop. 6.1.8]), hence m. From
now on we denote these roots by x1, . . . , xm, and it is clear that x is not among them, so
we denote x0 = x.

We now write the section-free equation (37) with ui = xi , and isolateQ(x0) = Q(x):

Q(x)+

m∏
j=1

(1− x̄xj )
m∑
i=1

xmi∏
0≤j 6=i≤m(xi − xj )

Q(xi) =

∏m
j=1(1− x̄xj )

K(x)
. (38)

Comparing with (35) shows that we have to prove that the second term on the left-hand
side, once expanded as a series in t , only contains negative powers of x. In the coef-
ficient of Q(xi), the term 1 − x̄xi coming from the numerator gets simplified with the
term xi − x0 = xi − x = −x(1 − x̄xi) coming from the denominator. Hence the least
common denominator of the coefficients of all Q(xi) is the Vandermonde determinant in
x1, . . . , xm. We can thus rewrite the second term as follows:

m∏
j=1

(1− x̄xj )
m∑
i=1

xmi∏
0≤j 6=i≤m(xi − xj )

Q(xi) = −x̄

m∑
i=1

(
xmi Q(xi)

∏
1≤j 6=i≤m

1− x̄xj
xi − xj

)

=
x̄∏

1≤k<`≤m(xk − x`)

m∑
i=1

(
(−1)ixmi Q(xi)

∏
1≤j 6=i≤m

(1− x̄xj )
∏

1≤k<`≤m
k,` 6=i

(xk − x`)
)
.

(39)
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The sum over i is easily checked to be an antisymmetric expression in x1, . . . , xm. More
precisely, if we exchange in this sum xa and xa+1, the summands involving Q(xa) and
Q(xa+1) are exchanged, and their signs change (because of the factor (−1)i), and for
i 6∈ {a, a + 1} the sign of the summand involving Q(xi) changes (because of the factor
xa − xa+1 occurring in the rightmost product). Thus, dividing the sum over i by the Van-
dermonde determinant in x1, . . . , xm gives a series in t with polynomial coefficients in
x̄, x1, . . . , xm. Hence, once expanded in t and x̄, the right-hand side of (39) contains only
negative powers of x (because the xi’s contain no positive power of x and there is a fac-
tor x̄). We now return to (38), which we expand in powers of t and x̄. The expression (35)
of Q(x) follows.

Now assume M = 1. Then x1, . . . , xm are all roots of S(X) = S(x) except X = x.
That is,

S(X)− S(x)

X − x
= w1

m∏
j=1

(1− xj/X).

Taking the limit as X→ x gives

S′(x) = w1

m∏
j=1

(1− x̄xj ). (40)

Substituting into (35) gives (36). ut

Why Proposition 6.2 implies Proposition 6.1. We now derive from (35) the standard
expression (32). We start from the factorization (34) of the kernel. It gives the following
partial fraction decomposition in x:

1
K(x)

= −
1
twM

m∑
i=1

x̄Xmi

(1−x̄Xi)
∏
j 6=i(Xi−Xj )

+
1
twM

m+M∑
i=m+1

Xm−1
i

(1−x/Xi)
∏
j 6=i(Xi−Xj )

.

The expansion in x̄ of the termA(x̄) :=
∏m
j=1(1−x̄xj ) only involves non-positive powers

of x, hence (35) implies

Q(x) =
1
twM
[x≥]A(x̄)

m+M∑
i=m+1

Xm−1
i

(1− x/Xi)
∏
j 6=i(Xi −Xj )

. (41)

Recall that, as x1, . . . , xm themselves, A(x̄) is a fractional power series in x̄ with coeffi-
cients in F, say A(x̄) =

∑
n≥0 anx̄

n/p for a positive integer p. In fact we can take p = 1.
Indeed, by [68, Prop. 6.1.6], for 1 ≤ i ≤ m, every conjugate of xi over the field F((x̄)) of
Laurent series in x̄ is one of the xj ’s, with 1 ≤ j ≤ m; hence

∏m
i=1(u − xi) is a product

of minimal polynomials over F((x̄)), and thus only involves integer powers of x̄ in its
expansion.

Now let us return to (41), and focus on the term A(x̄)/(1 − x/Xi). Recall that for
i > m, Xi is a Puiseux series in t , infinite at t = 0. Thus 1/Xi is a fractional power series
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in t , vanishing at t = 0, and hence A(1/Xi) is also a fractional series in t . Moreover, in
the ring of fractional series in t with coefficients in F[[x̄]], we have

[x≥]
A(x̄)

1− x/Xi
= [x≥]

(∑
m≥0

xm

Xmi

∑
n≥0

anx̄
n

)
=

∑
n≥0

an
∑
m≥n

xm−n

Xmi

=

∑
n≥0

an
1

Xni (1− x/Xi)
=
A(1/Xi)
1− x/Xi

.

Returning to (41), this gives

Q(x) =
1
twM

m+M∑
i=m+1

Xm−1
i A(1/Xi)

(1− x/Xi)
∏
j 6=i(Xi −Xj )

.

Thus it remains to determine A(1/Xi) when Xi is one of the roots of the kernel that
diverges at t = 0. That is, we have to know the values of x1, . . . , xm when x is Xi .
Recall the definition of these xj : they are power series in (a rational power of) x̄, satis-
fying S(xj ) = S(x). Specializing this at x̄ = 1/Xi shows that when x = Xi , the series
x1, . . . , xm are power series in (a fractional power of) t , satisfying S(Xi) = S(xj ). But
Xi cancels the kernel 1− tS, hence the xj are also roots of the kernel, and since they must
be finite at t = 0, they are X1, . . . , Xm. This holds for any Xi with i > m.

Hence,

Q(x) =
1
twM

m+M∑
i=m+1

Xm−1
i

(1− x/Xi)
∏
j 6=i(Xi −Xj )

m∏
j=1

(1−Xj/Xi)

=
1
twM

m+M∑
i=m+1

1
(Xi − x)

∏
j>m,j 6=i(Xi −Xj )

where we recognize the partial fraction expansion of

−
1
twM

m+M∏
i=m+1

1
x −Xi

.

This gives the second expression in (32).

7. Two-dimensional Hadamard walks

Following [11], we say that a two-dimensional model S is Hadamard if its step polyno-
mial can be written as

S(x, y) = U(x)+ V (x)T (y) (42)
for some Laurent polynomials U , V and T . Some examples are shown in Figure 6. When
T (y) = y + ȳ, the model has small variations along the y-axis and is symmetric with
respect to the x-axis. It was proved in [20, 28] that the associated generating function
Q(x, y) is always D-finite. This holds in fact for all two-dimensional Hadamard models,
whatever T (y) is. We provide two proofs, one based on a simple projection argument, the
other on the method of this paper.
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Fig. 6. Some Hadamard models. The series Q(x, y) is D-finite for all of them, and given as the
non-negative part of a rational function for those that have small forward steps (the leftmost two).

Proposition 7.1. Consider a Hadamard model with step polynomial given by (42), and
let U , V and T be the subsets of Z with generating polynomials U(x), V (x) and T (y)
respectively. Let C1(x, v; t) be the generating function of walks on N, starting from 0
and taking steps in the multiset U ∪ V (steps in U ∩ V occur twice), counted by the
length (variable t), the position of the endpoint (x), and the number of steps in V (v).
Let C2(y; v) be the generating function of walks on N, starting from 0 and taking steps
in T , counted by the length (v) and the endpoint (y). Then C1(x, v; t) and C2(y; v) are
algebraic, and the generating function of quadrant walks with steps in S is

Q(x, y; t) = C1(x, v; t)�v C2(y; v)|v=1 ,

where �v denotes the Hadamard product in v, defined by
∑
anv

n
�v

∑
bnv

n
=∑

anbnv
n. In particular, Q(x, y; t) is D-finite.

Proof. The proof is the same as in [11, Sec. 5], but generalized (in a harmless fashion)
to walks with arbitrary steps. It goes by projecting quadrant walks along the x-axis, and
“decorating” steps of V in this 1D walk with steps of a “vertical” walk with steps in T ;
we omit the details. The Hadamard product of algebraic (and in fact of D-finite) series is
known to be D-finite [55]. ut

The approach of this paper works systematically in the Hadamard case, and provides
the solution as the positive part of an algebraic (sometimes rational) series, often more
explicitly than the above solution. In the case of small steps, 16 of the 19 models solvable
by the method of this paper (the leftmost branch in Figure 1) are Hadamard. The three
remaining ones are shown below.

Consider a Hadamard model S . Let −m (resp. M) be the valuation (resp. degree) of
S(x, y) in x, and write similarly −m′ and M ′ for the valuation and degree in y. In other
words, −m (resp. M) is the smallest (resp. largest) move in the x-direction, and similarly
for m′ and M ′. We assume m,m′ ≥ 0 and M,M ′ > 0. The solution given below has
strong analogies with the one-dimensional case of Proposition 6.2.
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Proposition 7.2. The equation S(x, y) = S(X, y), solved for X, admits m + M so-
lutions (including x itself ), which can be seen as Puiseux series in x̄ with coefficients
in an algebraic closure of Q(y) (below we take Puiseux series in ȳ). Denote them by
x0(y), . . . , xm+M−1(y), with x0(y) = x. Exactlym of them, say x1(y), . . . , xm(y), do not
involve positive powers of x.

The equation S(x, y) = S(x, Y ), now solved for Y , reads T (y) = T (Y ). It admits
m′ + M ′ solutions (including y itself), which can be seen as Puiseux series in ȳ with
coefficients in C. Denote them by y0, . . . , ym′+M ′−1, with y0 = y. Exactlym′ of them, say
y1, . . . , ym′ , do not involve positive powers of y.

The orbit of (x, y) consists of all pairs (xi, yj ) for i ∈ J0, m + M − 1K and j ∈
J0, m′ +M ′ − 1K.

The series Q(x, y) reads

Q(x, y) = [x≥y≥]

∏m
i=1(1− x̄xi(y))

∏m′

j=1(1− ȳyj )

K(x, y)
, (43)

where the right-hand side is expanded first in powers of t , then x̄, and finally ȳ. The
extraction of the non-negative part in x can be done explicitly, and yields

Q(x, y) = [y≥]

∏m
i=1(1− x̄Xi(y))

∏m′

j=1(1− ȳyj )

K(x, y)

= −[y≥]

∏m′

j=1(1− ȳyj )

tBM(y)
∏m+M
i=m+1(x −Xi)

, (44)

where X1(y), . . . , Xm(y) are the roots (in x) of 1 − tS(x, y), seen as Puiseux series
in t with coefficients in the algebraic closure of Q(y), that are finite at t = 0, and
Xm+1, . . . , Xm+M are the other ones. The polynomial BM(y) is the coefficient of xM

in S(x, y).
If M = 1, then the derivative of S(x, y) with respect to x factors as

Sx(x, y) = B1(y)

m∏
i=1

(1− x̄xi(y)).

Similarly, if M ′ = 1, then

Ty(y) =

m′∏
j=1

(1− ȳyj ).

This simplifies the above expressions. In particular, when all forward steps are small
(M = M ′ = 1), we can write Q(x, y) as the non-negative part of a simple rational
function:

Q(x, y) = [x≥y≥]
Sx(x, y)Ty(y)

B1(y)K(x, y)
. (45)

Proof. The statements dealing with roots are in essence one-dimensional, and follow
from Proposition 6.2 since we allowed weights in the previous section.
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We next want to build the orbit of (x, y). By definition of the xi’s and yj ’s we have
(xi, y) ≈ (x, y) ≈ (x, yj ) for all i and j . Now

S(xi, yj ) = U(xi)+ V (xi)T (yj )

= U(xi)+ V (xi)T (y) by definition of yj
= S(xi, y).

Thus (xi, yj ) ≈ (xi, y), and all pairs (xi, yj ) are in the orbit. In this collection, every
element (xi, yj ) is 1-adjacent tom+M−1 other elements, and 2-adjacent tom′+M ′−1
other elements, hence the orbit is complete (Lemma 3.4).

The functional equation has the following general form (see (11)):

K(x, y)Q(x, y) = 1−
m∑
k=1

x̄kRk(y)−

m′∑
`=1

ȳ`S`(x)

for some series Rk(y) and S`(x). A similar equation holds with (x, y) replaced by any
element (xi, yj ) of the orbit. The fact that the orbit is a Cartesian product allows us to
construct a section-free equation by mimicking the argument that led to (37):

K(x, y)

( m∑
i=0

m′∑
j=0

xmi y
m′

j Q(xi, yj )∏
0≤k 6=i≤m(xi − xk)

∏
0≤ 6̀=j≤m′(yj − y`)

)
= 1.

Equivalently, after isolating Q(x0, y0) = Q(x, y),

Q(x, y)− ȳ

m′∑
j=1

ym
′

j Q(x, yj )
∏

1≤` 6=j≤m′

1− ȳy`
yj − y`

− x̄

m∑
i=1

xmi Q(xi, y)
∏

1≤k 6=i≤m

1− x̄xk
xi − xk

+ x̄ȳ

m∑
i=1

m′∑
j=1

xmi y
m′

j Q(xi, yj )
∏

1≤k 6=i≤m

1− x̄xk
xi − xk

∏
1≤ 6̀=j≤m′

1− ȳy`
yj − y`

=

∏m
i=1(1− x̄xi)

∏m′

j=1(1− ȳyj )

K(x, y)
.

We now expand the coefficient of tn in this identity in powers of x̄ (with coefficients in
the field of Puiseux series in ȳ), and extract the non-negative powers of x. The coefficients
of the first two terms on the first line (those involving Q(x, y) and Q(x, yj )) are clearly
non-negative in x. By recycling our analysis of (39), we see that the coefficient of tn in
the third term (involving Q(xi, y)) is a polynomial in y, x̄, x1, . . . , xm, multiplied by x̄,
and thus only involves negative powers of x and does not contribute. A similar argument
shows that the second line does not contribute either. We are thus left with

Q(x, y)− ȳ

m′∑
j=1

ym
′

j Q(x, yj )
∏

6̀=j∈J1,m′K

1− ȳy`
yj − y`

= [x≥]

∏m
i=1(1− x̄xi)

∏m′

j=1(1− ȳyj )

K(x, y)
.
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The symmetry argument applied earlier to (39) shows that the sum over j is a series
in t whose coefficients are polynomials in x, ȳ, y1, . . . , ym. Hence a final expansion in
powers of ȳ, followed by the extraction of non-negative powers of y, gives the first ex-
pression (43) of Q(x, y). The second one, that is, (44), follows by combining the one-
dimensional results of Propositions 6.1 and 6.2. Indeed, Proposition 6.2 shows that

[x≥]

∏m
i=1(1− x̄xi(y))
K(x, y)

counts walks with steps in S confined to the half-plane {(i, j) : i ≥ 0}, and Proposi-
tion 6.1 gives an alternative expression for this series.

The rest of the proof follows the same lines as the end of the proof of Proposition 6.2
(see in particular (40)). ut

Example: a Hadamard model with small forward steps. Take S = {10, 1̄1, 1̄2̄}. The
step polynomial is

S(x, y) = x + x̄(y + ȳ2) = U(x)+ V (x)T (y)

with U(x) = x, V (x) = x̄ and T (y) = y + ȳ2, so this is a Hadamard model. Moreover,
the forward steps are small, so that the simple formula (45) holds:

Q(x, y) = [x≥y≥]
(1− x̄2(y + ȳ2))(1− 2ȳ3)

1− t (x + x̄(y + ȳ2))
.

The number of walks of length n ending at (i, j) is non-zero if and only if n = i+2j+6m
for some m, in which case

q(i, j ; n) =
(i + 1)(j + 1)n!

m!(2m+ j + 1)!(3m+ i + j + 1)!
. (46)

ut

Example: a Hadamard model with a large forward step. Let us now reverse the above
steps. The step polynomial becomes

S(x, y) = x̄ + x(ȳ + y2)

and is of course still Hadamard. With the notation of Proposition 7.2, m = m′ = 1,

x1(y) =
x̄

ȳ + y2 and y1 =
−1+

√
4ȳ3 + 1

2ȳ
.

Indeed, y1 is a power series in ȳ, while its conjugate root y2 contains a term −y in its
expansion. The two expressions of Proposition 7.2 read

Q(x, y) = [x≥y≥]
(1− x̄x1(y))(1− ȳy1)

K(x, y)
= −[y≥]

x̄(1− ȳy1)

t (ȳ + y2)(1− x̄X2)
,

with

X2 =
1+

√
1− 4t2(ȳ + y2)

2t (ȳ + y2)
.

As before, we expand the right-hand side first in t , then in x̄, then in ȳ.
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8. Quadrant walks with steps in {−2,−1, 0, 1}2

In this section, we explore systematically all models obtained by taking S in
{−2,−1, 0, 1}2 \ (0, 0), with the (ultimate) objective of reaching a classification similar
to that of quadrant walks with small steps (Figure 1). Our results are summarized in Fig-
ure 7. In Section 10 we discuss the classification of orbits (not of generating functions!)
for models in {−1, 0, 1, 2}2 \ (0, 0).

quadrant models: 13 110

|orbit| <∞: 13+ 227

OS 6= 0: 4+ 227

D-finite
Sec. 8.3

OS = 0: 9

D-finite?
Sec. 8.4

|orbit| = ∞: 12 870

α rational: 16

non-D-finite?
Sec. 8.2.3

α irrational: 12 854

non-D-finite
Sec. 8.2.1

Fig. 7. Partial classification of quadrant walks with steps in {−2,−1, 0, 1}2, when at least one
large backward step is allowed. The approach of this paper solves the 231 models on the leftmost
branch, including 227 Hadamard models.

8.1. The number of relevant models

We first proceed as in [26, Sec. 2] in order to count, among the 215 possible models (Fig-
ure 8), those that are really distinct and relevant. Clearly, we do not want to consider sep-
arately two models that only differ by an x/y-symmetry, as such models are isomorphic.
Moreover, for certain models, forcing walks to lie in some half-plane automatically forces
them to remain in the first quadrant. This happens, for instance, for S = {↗,↑,↙} and
the right half-plane. Half-plane models are essentially one-dimensional and thus have an
algebraic generating function, which can be determined in an automatic fashion (Propo-
sition 6.1).

Fig. 8. The 15 allowed steps.

Using the same arguments as in [26, Sec. 2], we first determine the number of step
sets S that contain at least an x-positive, an x-negative, a y-positive and a y-negative step.
More precisely, we count such sets by their cardinality. An inclusion-exclusion argument
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gives their generating polynomial as

P1(z) = (1+ z)15
− 2(1+ z)11

− 2(1+ z)7 + 2(1+ z)3 + (1+ z)8

+ 2(1+ z)5 + (1+ z)3 − 2(1+ z)2 − 2(1+ z)+ 1.

The term (1 + z)15 counts all step sets, while (1 + z)11 counts those that contain no x-
positive step, (1+ z)7 those that contain no x-negative step, (1+ z)3 those that contain no
x-positive or x-negative step, and so on. We refer to [26, Sec. 2] for a detailed argument.
Then, we must exclude sets in which no step belongs to N2. This leaves fewer step sets,
counted by

P2(z) = P1(z)−
(
(1+ z)12

− 2(1+ z)10
+ (1+ z)8

)
.

We also do not wish to consider step sets such that all walks confined to the right half-
plane x ≥ 0 are automatically quadrant walks. As in the case of small steps, this means
that all steps (i, j) of S satisfy j ≥ i. That is, we have an upper diagonal model. The
generating polynomial of such sets, satisfying the above conditions (steps in all directions,
at least one step in N2) is

z
(
(1+ z)8 − (1+ z)5

)
,

where the factor z accounts for the step (1, 1), which is necessarily in such a set. Symmet-
rically, we need to exclude lower diagonal models, and avoid excluding twice the models
that are both upper and lower diagonal. We are left with a collection of step sets counted
by

P3(z) = P2(z)− 2z
(
(1+ z)8 − (1+ z)5

)
+ z(2z+ z2).

Finally, if two models differ only by a diagonal symmetry, we do not want to consider
them both. We thus have to count separately the models counted by P3 that have an x/y
symmetry. Mimicking the above argument, and including the symmetry constraint, gives

P
sym
1 (z) = (1+ z)3(1+ z2)6 − (1+ z)2(1+ z2)3 − (1+ z)(1+ z2)+ 1,

P
sym
2 (z) = P

sym
1 (z)−

(
(1+ z)2(1+ z2)5 − (1+ z)2(1+ z2)3

)
,

P
sym
3 (z) = P

sym
2 (z)− z(2z+ z2).

We have thus restricted the collection of models that we have to study to 13 189 models,
with generating polynomial

1
2 (P3(z)+P

sym
3 (z)) = z15

+9z14
+57z13

+236z12
+691z11

+1481z10
+2374z9

+2872z8

+ 2610z7
+ 1749z6

+ 826z5
+ 248z4

+ 35z3.

Among these, we know from [26] that those with small steps are counted by

7z3
+ 23z4

+ 27z5
+ 16z6

+ 5z7
+ z8,

and we are thus left with 13 110 models with at least one large backward step, counted by

z15
+ 9z14

+ 57z13
+ 236z12

+ 691z11
+ 1481z10

+ 2374z9

+ 2871z8
+ 2605z7

+ 1733z6
+ 799z5

+ 225z4
+ 28z3.

Note that no model in our collection is included in a half-plane. This will allow us to
apply Theorem 3.7 systematically.
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8.2. The size of the orbit

8.2.1. The excursion exponent. Consider a model S in our collection. Recall that if the
quantity c defined in Theorem 3.7 cannot be written as cos θ with θ ∈ πQ, then the orbit
of S is infinite and Q(x, y; t) is not D-finite. In order to decide if c is of the required
form, we apply the following procedure, borrowed from [19].

(1) Compute a polynomial P(C) that admits c as a root. This is done by eliminating the
variables x, y and u from the polynomial system comprised of (the numerators of)

Sx(x, y), Sy(x, y), C2
−

Sxy(x, y)

Sxx(x, y)2Syy(x, y)2
, 1− uxy.

The final equation forces x, y 6= 0. This is done via a Gröbner basis computation.
(2) Identify the irreducible factor I (C) of P(C) which admits c as a root. To do this, it

is sufficient to determine the critical pair (a, b), and thus c, to sufficient numerical
precision.

(3) Decide whether c can be written as cos θ with θ ∈ πQ. Equivalently, decide if the
solutions of 2c = z + 1/z are roots of unity. To do this, it is sufficient to examine
whether the polynomial R(z) := zdeg I I

( z+1/z
2

)
has cyclotomic factors.

The polynomials R(z) which are constructed by running this algorithm on the 13 110 step
sets in our collection are all irreducible and have degree less than 72. Thus, as the degree
of the kth cyclotomic polynomial is

φ(k) >
k

eγ log log k + 3
log log k

,

where γ ≈ 0.577 is Euler’s constant [5, Thm. 8.8.7], to prove that the excursion exponent
is irrational it is sufficient to show that R(z) is not divisible by any of the first 349 cy-
clotomic polynomials; constructing cyclotomic polynomials is a routine task in computer
algebra [4].

After performing this filtering step, we conclude that 12 854 models have an irrational
excursion exponent, and thus an infinite orbit and a non-D-finite generating function.
They form the rightmost branch in Figure 7.

8.2.2. Detecting finite orbits. We are thus left with 256 step sets, each of which having
a rational exponent α. Among them we find 227 Hadamard models. Proposition 7.2 tells
us that they have a finite orbit, of cardinality 6 or 9 depending on the sizes of the steps
(Figure 9). For each of them the excursion exponent is found to be α = −3.

There are 29 models remaining. We apply to them the semi-algorithm of Section 3.2,
which detects 13 more models with a finite orbit, of cardinality 12 or 18. They are listed
in Table 1. Three distinct orbit structures arise, shown in Figure 10.
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Fig. 9. The possible orbits for two-dimensional Hadamard models with long steps in
{−2,−1, 0, 1}2, depending on whether there are steps with −2 in only one coordinate (left) or
both coordinates (right). The convention for dashed and solid edges is the same as in Figure 4.

Table 1. The 13 non-Hadamard models with a finite orbit. Our method solves the ones on the
left, proving that their generating function is D-finite (and transcendental). We conjecture that the
nine others are D-finite too, two of them being possibly algebraic (the second and third in the last
column). We also give the excursion exponent α, and the genus g of the curve K(x, y), which is 0
or 1 for small step models.

g steps orbit α g steps orbit α g steps orbit α

1 O12 −4 2 Õ12 −5/2 1 O12 −5/2

2 O12 −4 3 Õ12 −5/2 2 O12 −5/2

2 O12 −4 2 Õ12 −5/2 2 O12 −5/2

2 O18 -4 3 Õ12 −5/2 2 O18 −7/3

4 Õ12 −5/2

8.2.3. Sixteen models with a rational exponent but an infinite orbit. For each of the re-
maining 16 models, listed in Table 2, we ran our semi-algorithm by specializing x = 1
and y = 2 until we found at least 200 distinct orbit elements (the sum of the degrees of the
polynomials in P—or Q—gives a lower bound on the size of the orbit). We found in each
case minimal polynomials of degree over 100. The following proposition explains why.

Proposition 8.1. The 16 models of Table 2 have an infinite orbit.

Proof. The proof is based on Proposition 3.8, and mimics the proof used in the third
example of Section 3.3.3. For each model, we start from the positive critical point (a, b),
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Fig. 10. The three finite orbit types which arise from non-Hadamard models in {−2,−1, 0, 1}2.
Two have cardinality 12, the third one has cardinality 18. We call these orbit structures, from left to
right, O12, Õ12 and O18.

Table 2. Sixteen models with a rational excursion exponent α and an infinite orbit.

steps α steps α steps α

#1 −5 #7 −7 #13 −4

#2 −4 #8 −11/5 #14 −4

#3 −7 #9 −7/3 #15 −3

#4 −5 #10 −7/3 #16 −4

#5 −7/3 #11 −5/2

#6 −11/5 #12 −4

define 8 and 9 as in Section 3.3.1, and compute the expansion of 2 := 9 ◦ 8 to
cubic order. There exists some integer m > 0 such that 2m is the identity at first order
(otherwise the excursion exponent would be irrational). Moreover, we observe that the
quadratic term in 2m vanishes, but there is a non-zero cubic term. This implies that all
elements 2km are distinct, so that the orbit is infinite.

Below we give the values of a, b, and m (for model #10 the value of a is the positive
root of a3

= a + 2). Since models #5, #6, #8 and #12 are obtained from another model
in the table by a reflection in the x-axis, we omit them (their orbits are infinite by Propo-
sition 3.3). However, the method works as well for them (with b replaced by 1/b, and a
and m unchanged).
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model #1 #2 #3 #4 #7

(a, b) (31/2, 31/2/21/3) (1, 1) (1, 1) (2−1/3, 3−1/2) (1, 3−1/2)
m 4 3 6 4 6

model #9 #10 #11 #13 #14 #15 #16

(a, b) (21/3, 1) (a, 1) (1,
√

2) (
√

2,
√

2) (1, 1) (1, 1) (1, 1)
m 4 4 3 3 3 2 3 ut

For each model, we have tested D-finiteness experimentally, by generating 10 000 coeffi-
cients of the seriesQ(0, 0), and trying to guess from them a linear recurrence relation for
the coefficients or a linear differential equation for the generating function. The guess-
ing procedure is detailed in Section 8.4. We could not find any recurrence or differential
equation, and are tempted to believe that Q(x, y; t) is not D-finite for these 16 models.
However, it must be noted that, for some models of Section 8.4, it takes more than 10 000
coefficients to guess a differential equation.

8.3. Solving models with a finite orbit

As written above, 227 of the 240 models that have a finite orbit are Hadamard. Our method
applies systematically to them, as proved in Section 7. In particular, all these models have
a D-finite generating function, and, because they make small forward moves, Q(x, y) is
expressed as the non-negative part of a simple rational function (see (45)). The excursion
exponent being −3 in all cases, these series are transcendental [40].

We are left with the 13 models shown in Table 1. For each of them, there exists a
unique section-free equation, in agreement with Conjecture 4.2 (up to a multiplicative
factor, as usual). For the four models shown in the first column, this equation defines
Q(x, y) uniquely and we are able to extract it as the positive part of a rational series. In
particular, these four series are D-finite (but transcendental, because of the exponent−4).
Details are given below, and we work out detailed asymptotic behavior of their coeffi-
cients in Section 9. For the remaining nine models, the right-hand side of the section-free
equation vanishes, so that this equation does not characterize Q(x, y) (for a start, any
constant is a solution). These models are the counterparts of the four algebraic models
from the small step case, shown in the second branch of Figure 1. Clearly they deserve a
specific study, and we state conjectures regarding the nature of their generating functions
in Section 8.4.

8.3.1. Case S = {10, 1̄0, 01̄, 2̄1}. This is model F, which we have studied as one of our
examples in this paper. Our main result is stated in Proposition 5.2:

Q(x, y) = [x≥y≥]
(x2
+ 1)(x + y)(y − x)(x2y − 2x − y)(x3

− x − 2y)
x7y3(1− t (x + x̄ + x̄2y + ȳ))

.

The excursion exponent α ≡αe, given by Theorem 3.11, is−4. The exponent of all quad-
rant walks—that is, the exponent associated with the coefficients of Q(1, 1)—can be
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determined using multivariate singularity analysis, and is found to be αw = −4. This is
detailed for all four models shown in the left part of Table 1 in Section 9.

For comparison with the next cases, we recall that the orbit, given by (22), has
type O12.

8.3.2. Case S = {01, 11̄, 1̄1̄, 2̄1}

Proposition 8.2. For S = {01, 11̄, 1̄1̄, 2̄1}, we have

Q(x, y) = [x≥y≥]
(x3
− 2y2

− x)(y2
− x)(x2y2

− y2
− 2x)

x5y4(1− t (y + xȳ + x̄ȳ + x̄2y))
,

where the right-hand side is seen as a power series in t with coefficients in Q[x, x̄, y, ȳ].
The coefficients are hypergeometric: q(i, j ; n) is zero unless n is of the form n = 2i +
j + 4m, in which case

q(i, j ; n) =
(i + 1)(j + 1)(i + j + 2)n!(n+ 2)!

m!(3m+ 2i + j + 2)!(2m+ i + 1)!(2m+ i + j + 2)!
.

The excursion exponent αe and the walk exponent αw are both −4.

Proof. The proof is very similar to the solution of Example F. The step polynomial is
S(x, y) = y + xȳ + x̄ȳ + x̄2y. All elements of the orbit belong to the extension of
Q(x, y) generated by

√
(x + y2)2 + 4x3y2. More precisely, denoting

x1,2 =
x + y2

±

√
(x + y2)2 + 4x3y2

2x2 ,

the orbit has type O12 and consists of the following 12 pairs:

(x, y), (x1, y), (x2, y),

(x, xȳ), (−x̄1, xȳ), (−x̄2, xȳ),

(x1, x1ȳ), (−x̄, x1ȳ), (−x̄2, x1ȳ),

(x2, x2ȳ), (−x̄, x2ȳ), (−x̄1, x2ȳ).

(47)

Note the similarities with the orbit (22) obtained for model F. The functional equation
reads

(1− tS(x, y))Q(x, y)

= 1− txȳQ(x, 0)− t x̄ȳ(Q0,−(y)+Q(x, 0)−Q(0, 0))− t x̄2y(Q0,−(y)+ xQ1,−(y)),

where, as before, xiQi,−(y) is the generating function of walks ending at abscissa i. There
is a unique section-free equation. To form it, the orbit equation associated with (x′, y′)
must be weighted by ±x′2(x′1 − x

′

2), where (x′1, y
′) ≈ (x′, y′) ≈ (x′2, y

′) and x′1 6= x
′

2.
More precisely, the weights associated with the 12 above orbit elements are
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x2(x1 − x2), x2
1(x2 − x), −x2

2(x1 − x),

x2(x̄2 − x̄1), −x̄2
1(x + x̄2), x̄2

2(x + x̄1),

x2
1(x̄ − x̄2), x̄2(x1 + x̄2), −x̄2

2(x̄ + x1),

−x2
2(x̄ − x̄1), −x̄2(x2 + x̄1), x̄2

1(x̄ + x2).

(48)

Again, note the similarities with (24). We now divide the section-free equation by
x2(x1 − x2), so as to isolate Q(x, y). This gives an equation similar to the one obtained
with Example F (see (25)):

Q(x, y)+ x̄1x̄2Q(x, xȳ)+ A1 + A2 + A3 + A4 + A5 = R(x, y), (49)

where R(x, y) is the rational function occurring in Proposition 8.2, and each Ai involves
two of the series Q(x′, y′) (again, as in Example F), chosen so that the expression of
Ai is symmetric in x1 and x2. More precisely, the orbit elements occurring in A1 (resp.
A2, A3, A4, A4, A5) are (x1, y) and (x2, y)

(
resp. (−x̄1, xȳ) and (−x̄2, xȳ), (x1, x1ȳ)

and (x2, x2ȳ), (−x̄, x1ȳ) and (−x̄, x2ȳ), (−x̄1, x2ȳ) and (−x̄2, x1ȳ)
)
. We now examine

the symmetric functions of the xi’s and of their reciprocals. They are Laurent polynomials
in x and y, which are, respectively, negative in x and non-positive in y:

x1 + x2 = x̄ + x̄
2y2, x1x2 = −x̄y

2,

while
x̄1 + x̄2 = −x̄ − ȳ

2, x̄1x̄2 = −xȳ
2.

With this, we conclude that the series Ai also have coefficients in Q[x, ȳ, y, ȳ], that A1,
A3 and A4 are negative in x, and that A2 is negative in y. As in Example F, the case of A5
is a bit trickier, due to the mixture of positive and negative powers of the xi’s. Following
the same lines as in Example F, one can prove that A5 contains no monomial that would
be non-negative in x and y. The counterpart of Lemma 5.1 is that every monomial x̄eyf

occurring in the expression Ea defined by (29), for the values of x1 and x2 here, satisfies
f ≤ 2e.

The simplicity of the coefficients q(i, j ; n) comes from the fact that the expansion of
S(x, y)n = (1+ x̄2)n(y + xȳ)n in x and y has simple coefficients.

The excursion exponent can be determined using Theorem 3.11, but it is more natural
to start from the explicit expression of q(0, 0; 4m), for which we derive

q(0, 0; 4m) ∼
4
√

3
27πm4

(
16
3

)3m

.

The asymptotic behavior of the number of quadrant walks is determined in Section 9. ut

8.3.3. Case S = {01, 11̄, 1̄1̄, 2̄1, 1̄0}

Proposition 8.3. For S = {01, 11̄, 1̄1̄, 2̄1, 1̄0}, we have

Q(x, y) = [x≥y≥]
(y2
− x)(x2y2

− xy − y2
− 2x)(x3

− xy − 2y2
− x)

x5y4(1− t (y + xȳ + x̄ȳ + x̄2y + x̄))
,

where the right-hand side is seen as a power series in t with coefficients in Q[x, x̄, y, ȳ].
The excursion exponent αe and the walk exponent αw are both −4.
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Proof. This example is very close to the previous one, from which it only differs by one
West step. The orbit is still given by (47), but with different values of x1 and x2:

x1,2 =
x + xy + y2

±

√
(x + xy + y2)2 + 4x3y2

2x2 .

The symmetric functions of the xi’s, and of their reciprocals, have promising non-nega-
tivity properties (the same as in the previous example):

x1+x2 = x̄+ x̄y+ x̄
2y2, x1x2 = −x̄y

2, x̄1+ x̄2 = −x̄− ȳ− ȳ
2, x̄1x̄2 = −xȳ

2.

The functional equation differs from the previous one by the new term −t x̄Q0,−(y) on
the right-hand side. There is a unique section-free equation, with weights again given
by (48). Thus this equation is again (49), with the same expressions of the series Ai . The
seriesQ(x, y) is extracted in the same way as in the previous example. In particular, only
one series, A5, raises difficulties in the extraction procedure. They are solved as before
by proving that f ≤ 2e for every monomial x̄eyf occurring in the expression Ea defined
by (29).

The excursion exponent is determined from Theorem 3.11, and the walk exponent in
Section 9. ut

8.3.4. Case S = {10, 11̄, 2̄1, 2̄0}

Proposition 8.4. For S = {10, 11̄, 2̄1, 2̄0}, we have

Q(x, y) = [x≥y≥]
(2− y)(x3

− y2)(x6y − 3x3y − x3
− y2)(x3

− 2y)
x9y4(1− t (x̄2 + x̄2y + xȳ + x))

,

where the right-hand side is seen as a power series in t with coefficients in Q[x, x̄, y, ȳ].
The coefficients are hypergeometric: q(i, j ; n) is zero unless n is of the form n = i + 3j
+ 3m, in which case

q(i, j ; n)

=
(i+ 1)(j + 1)(i+ 3j + 4)

(
(i+ 2j + 2)(i+ 2j + 3)+m(2i+ 3j + 4)

)
n!(n+ 3)!

m!(m+ j + 1)!(2m+ i+ 2j + 3)!(2m+ i+ 3j + 4)!
.

The excursion exponent αe and the walk exponent αw are both −5.

Proof. The step polynomial is S(x, y) = x + xȳ + x̄2
+ x̄2y. All elements of the or-

bit belong to the extension of Q(x, y) generated by
√
y(y + 4x3) and

√
1+ 4y. More

precisely, let us define

x1,2 =
y ±

√
y(y + 4x3)

2x2 and u3,4 =
1±
√

1+ 4y
2y

. (50)
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Then the orbit consists of the following 18 pairs:

(x, y), (x1, y), (x2, y),

(x, x3ȳ), (xu3, x
3ȳ), (xu4, x

3ȳ),

(x1, x
3
1 ȳ), (x1u3, x

3
1 ȳ), (x1u4, x

3
1 ȳ),

(x2, x
3
2 ȳ), (x2u3, x

3
2 ȳ), (x2u4, x

3
2 ȳ),

(xu3, u
3
3y), (x1u3, u

3
3y), (x2u3, u

3
3y),

(xu4, u
3
4y), (x1u4, u

3
4y), (x2u4, u

3
4y),

and its structure is shown in Figure 11.

(x, x3ȳ)

(xu4, x
3ȳ) (xu3, x

3ȳ)

(x2, x
3
2 ȳ)

(x2u4, x
3
2 ȳ)(x1u3, x

3
1 ȳ)

(x1u4, x
3
1 ȳ) (x2u3, x

3
2 ȳ)

(x2u3, u
3
3y)(x1u4, u

3
4y)

(x1u3, u
3
3y)

(x1, x
3
1 ȳ)

(xu3, u
3
3y)

(x, y)

(x2u4, u
3
4y)

(xu4, u
3
4y)

(x1, y) (x2, y)

Fig. 11. The orbit of S = {10, 11̄, 2̄1, 2̄0}. The values xi and ui are given by (50).

The functional equation reads

(1− tS(x, y))Q(x, y) = 1− txȳQ(x, 0)− t x̄2(1+ y)(Q0,−(y)+ xQ1,−(y)),

and there is a unique section-free equation. To form it, the orbit equation associated with
(x′, y′) must be weighted by ±x′y′(x′1 − x

′

2)(x
′

3 − x
′

4), where

(x′1, y
′′)

(x′2, y
′′)

}
≈ (x′, y′) ≈ (x′, y′′) ≈

{
(x′3, y

′′)

(x′4, y
′′)

and both x′1 6= x
′

2 and x′3 6= x
′

4. More precisely, the weights associated with the 18 above
pairs are
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x2y(x1 − x2)(u3 − u4), −x2
1y(x − x2)(u3 − u4), x2

2y(x − x1)(u3 − u4),

−x5ȳ(x1 − x2)(u3 − u4), x5ȳu2
3(1− u4)(x1 − x2), −x

5ȳu2
4(1− u3)(x1 − x2),

x5
1 ȳ(x − x2)(u3 − u4), −x5

1 ȳu
2
3(1− u4)(x − x2), x5

1 ȳu
2
4(1− u3)(x − x2),

−x5
2 ȳ(x − x1)(u3 − u4), x5

2 ȳu
2
3(x − x1)(1− u4), −x5

2 ȳu
2
4(x − x1)(1− u3),

−x2u5
3y(1− u4)(x1 − x2), x2

1u
5
3y(x − x2)(1− u4), −x2

2u
5
3y(x − x1)(1− u4),

x2u5
4y(1− u3)(x1 − x2), −x

2
1u

5
4y(1− u3)(x − x2), x2

2u
5
4y(1− u3)(x − x1).

(51)
We now divide the section-free equation by x2y(x1−x2)(u3−u4), so as to isolateQ(x, y).
This gives

Q(x, y)− x3ȳ2Q(x, x3ȳ)+ A1 + A2 + A3 + A4 + A5 + A6 = R(x, y), (52)

where R(x, y) is the rational function occurring in Proposition 8.4 and each Ai involves
two or four instances of the series Q, as described below:

A1 A2 A3 A4 A5 A6

(x1, y) (x1, x
3
1 ȳ) (xu3, x

3ȳ) (xu3, u
3
3y) (x1u3, x

3
1 ȳ) (x1u3, u

3
3y)

(x2, y) (x2, x
3
2 ȳ) (xu4, x

3ȳ) (xu4, u
3
4y) (x2u3, x

3
2 ȳ) (x2u3, u

3
3y)

(x1u4, x
3
1 ȳ) (x1u4, u

3
4y)

(x2u4, x
3
2 ȳ) (x2u4, u

3
4y)

Then each Ai is a series in t whose coefficients are polynomials in x, x̄, y, ȳ, x1, x2,

u3, u4. The symmetric functions of the xi’s (resp. ui’s) are Laurent polynomials in x
and y, negative in x (resp. in y):

x1 + x2 = x̄
2y, x1x2 = −x̄y, u3 + u4 = ȳ, u3u4 = −ȳ.

Hence each Ai is a series in t whose coefficients are Laurent polynomials in x and y. We
now want to extract the non-negative part, in x and y, of (52). Clearly the second term is
y-negative. Then the above properties, and the form (51) of the weights, imply that

• A1, A2, A5, and A6 are x-negative;
• A3 is y-negative.

It remains to examine

A4 =
−u5

3(1− u4)Q(xu3, u
3
3y)+ u

5
4(1− u3)Q(xu4, u

3
4y)

u3 − u4
.

Since Q(x, y) has polynomial coefficients in x and y, it suffices to prove that for any
i, j ≥ 0, the expression

−u5
3(1− u4)u

i
3u

3j
3 y

j
+ u5

4(1− u3)u
i
4u

3j
4 y

j

u3 − u4
,

which is a Laurent polynomial in y, is in fact y-negative. This is readily checked, using
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the fact that u3u4 = −ȳ and

Ea :=
ua+1

3 − ua+1
4

u3 − u4

is a polynomial in ȳ of valuation da/2e (this is proved by induction on a, as Ea =
ȳ(Ea−1+Ea−2)). The expression ofQ(x, y) follows by extracting the non-negative part,
in x and y, of (52).

The simplicity of the coefficients q(i, j ; n) comes from the fact that the expansion of
S(x, y)n = (1+ y)n(xȳ + x2)n in x and y has simple coefficients.

The excursion exponent can be computed from Theorem 3.11, but it is more natural
to start from the explicit expression of q(0, 0; 3m), for which we derive

q(0, 0; 3m) ∼
81

32πm5

(
27
4

)2m

.

The asymptotic behavior of the number of quadrant walks is determined in Section 9. ut

8.4. Nine interesting models with a finite orbit

For nine models, shown in the second and third columns of Table 1, an interesting phe-
nomenon occurs: the orbit is finite and the right-hand side of the unique section-free
equation vanishes. These models come in two types, depending on whether they have
an x/y-symmetry or not. They cannot be solved using the method of this paper, and we
explore them experimentally.

Questions. For each of the nine models, we focus on two important univariate specializa-
tions of Q(x, y) = Q(x, y; t), namely the generating function of excursions Q(0, 0) =∑
n ent

n and the generating function of all quadrant walks Q(1, 1) =
∑
n qnt

n. For these
18 power series we address, as before, three types of questions: qualitative (are they al-
gebraic? are they D-finite transcendental? are they non-D-finite?), quantitative (do they
admit closed-form expressions?) and asymptotic (what is the growth of the sequences (en)
and (qn)?).

Answers. In this section, most answers to these questions are conjectural, although
with a high degree of confidence. They are obtained by performing computer calcula-
tions that take as input a finite amount of information on Q(0, 0) and Q(1, 1), namely
the first terms2 of the sequences (en) and (qn). The main technique that we use is au-
tomated guessing, a classical tool in experimental mathematics [16]. In principle, the
guessing part could be complemented by an automated proof part, which would make
the (algebraicity/D-finiteness) results fully rigorous, as in [17] and [11, §8]. This would
require, among other things, to consider more general series such asQ(x, 0) andQ(0, y).
Given that the equations conjectured for Q(0, 0) and Q(1, 1) are already quite big (see
Tables 3 and 4), we have decided to conduct the guessing part only.

2 Precisely, 20 000 integer coefficients, and even 100 000 coefficients modulo the prime p =
2147483647. For this time- and memory-consuming step, we have appealed to highly efficient
implementations due to Axel Bacher.
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Approach. For each model, we have first tried to guess linear recurrence relations with
coefficients in Z[n] satisfied by the sequences (en) and (qn), starting from the integer
values of their first terms. When the available terms were not enough to recognize such
a recurrence, we have used more terms modulo the prime p = 2147483647, and tried
to recover recurrences with coefficients in Z/pZ[n]. In both cases, we used the guessed
recurrence relations to produce even more terms, on which we repeated guessing proce-
dures in order to get (hopefully) minimal-order linear differential equations with polyno-
mial coefficients (in Z[t], resp. in Z/pZ[t]) for the associated series. On the one hand,
such minimal-order equations are hard to guess because they tend to have many appar-
ent singularities and thus coefficients of very large degrees; sometimes, it is necessary
to produce them indirectly, e.g., by taking (right) gcd’s of equations with higher orders
but smaller degrees. On the other hand, they are interesting because they contain a lot
of information on their solutions. For instance, minimal-order differential equations with
coefficients in Z[t] are helpful in proving transcendence of their solutions. This is detailed
below in Section 8.4.1.

Even when one can only guess differential equations with coefficients in Z/pZ[t], for
a sufficiently large prime such as p = 2147483647, rational reconstruction allows one
to predict the small factors of the leading coefficients of plausible differential operators
over Q[t], and thus the growth constant in the asymptotics of (en) and (qn). A similar pro-
cedure applied to recurrences instead of differential equations allows one to guess the crit-
ical exponents of these sequences. They can also give, via p-curvature computations [12,
13], some insight into the algebraic/transcendental nature of the power series in Z[[t]]
(modulo classical conjectures in the arithmetic theory of G-operators [3]). Examples are
provided in [16, 17] and [9, §2.3.3]. However, given the size of our conjectured equations,
and especially of the prime number p, we have not applied these algorithms here.

We refer to [16, 9] for more details on guessing techniques, and now describe the
results that we have obtained on the nine models.

8.4.1. Five models of the Kreweras type. These models are symmetric in the first diag-
onal, and are shown in the central column of Table 1 and in Table 3 below. Their orbits
are all of the same form: they consist of all pairs (xi, xj ), with 0 ≤ i 6= j ≤ 3, where
x3 = y and x0 = x, and x1 and x2 are the three roots of the equation S(X, y) = S(x, y).
In particular, for a pair (x′, y′) in the orbit, the symmetric pair (y′, x′) also lies in the
orbit. The orbit structure is Õ12, as shown in Figure 10.

Theorem 3.11 gives for each model the growth constant µ of excursions and the as-
sociated exponent α ≡αe, which happens to be −5/2 in all cases. The first two mod-
els are not strongly aperiodic, but it appears (numerically) that an asymptotic estimate
en ∼ κ µnn−5/2 holds in all cases (provided n is a multiple of 4 in the first case, and
of 2 in the second case). The growth constant of the total number qn of quadrant walks of
length n can be determined using the results of [41, 49]: in all five cases, it coincides with
the excursion constant µ. Observe that the drift (Sx(1, 1), Sy(1, 1)) is always negative.
When the model is, in addition, aperiodic (last three models), we can apply the result
of [36, Ex. 7]: there exists a constant K such that

qn ∼ Kµ
nn−5/2.
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Table 3. The five Kreweras-like models, with their periods m. For each sequence (emn) and (qn),
resp. for the associated seriesQ(0, 0; t1/m) andQ(1, 1; t), a pair [r, d] indicates the order r and the
coefficients degree d of a (conjectural) recurrence relation, resp. of a differential equation. A star
indicates that we have only guessed recurrences or differential equations modulo p = 2147483647.

model m en Q(0, 0) alg. αe qn Q(1, 1) alg. αwα

4 [2, 12] [8, 13]
irred.

no −5/2 [32, 76] [17, 296]
red. min.

no −5/2 ?

2 [4, 5] [5, 8]
red. min.

no −5/2 [19, 59] [9, 83]
red. min.

no −5/2 ?

1 [12, 37] [9, 52]
red. min.

no −5/2 [33, 266] [17, 309]
red. min.

no −5/2

1 [20, 75] [13, 94]
red. min.

no −5/2 [60, 118]? [25, 663]? ? −5/2

1 [36, 520]? [26, 573]? ? −5/2 [99, 204]? [44, 652]? ? −5/2

Numerical computations (of two different types: floating point and modulo p) suggest
that this also holds for the first two (periodic) models, with a constant K that depends on
nmod 4 (first model) and on nmod 2 (second model). Such periodicity phenomena will be
established in Section 9 for the four solved models of Section 8.3 (see for instance (56)).

Algorithmic guessing has succeeded for all ten sequences in Table 3, but only mod-
ulo p = 2147483647 for three of them. We are extremely confident that the guessed
recurrences and differential operators are correct. In particular, they pass with success the
filters described in [16, Sec. 2.4]. For instance, the leading coefficients of the differential
operators that (conjecturally) annihilateQ(0, 0) andQ(1, 1), or their rational reconstruc-
tion when operators are available modulo p only, vanish at t = 1/µ. Also, the occurrence
of 3/2 among the local exponents of the operators around t = 1/µ is in agreement with
the exponents αe = αw = −5/2.

Assuming these recurrences and equations are correct, we can use them to derive
some properties of the sequences (en) and (qn). For instance, guessing already strongly
indicates that there is no hypergeometric sequence among the ten sequences. In cases
where recurrences are guessed over the integers (not only modulo p), we have applied
Petkovšek’s algorithm [62] to them, and obtained a proof that these sequences are indeed
not hypergeometric.

Guessing also strongly indicates that there is no algebraic generating function for any
of the ten sequences. In cases where differential equations are guessed over the integers
(not only modulo p), we have a proof for this fact, based on the following strategy. Linear
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differential operators can be factored algorithmically [69]. Those that are irreducible in
Q(t)〈∂t 〉 are necessarily minimal. We have proved minimality of the others using the ar-
gument of [11, Prop. 8.4]. Next, we computed the first terms of a local basis of solutions at
t = 0. At least one basis element contains logarithms, which, combined with minimality,
implies that the solution is transcendental [29, §2]. Note that this cannot be directly de-
duced from estimates of the form c µnn−5/2, which are compatible with algebraicity [40].
For the excursions of the second model, we were even able to solve the differential equa-
tion, thus obtaining a conjectural closed form expression ofQ(0, 0;

√
t) (Conjecture 8.5).

When we have only guessed differential equations modulo p = 2147483647, we still
conjecture that the corresponding operators have minimal order.

We now briefly review the five Kreweras-like models and add a few details completing
Table 3.

• Case K1 = {2̄1̄, 1̄2̄, 01, 10}. The excursion generating function Q(0, 0) =
∑
n ent

n

starts
Q(0, 0) = 1+ 6t4 + 236t8 + 14988t12

+ 1193748t16
+O(t20)

and the walk generating function Q(1, 1) =
∑
n qnt

n starts

Q(1, 1) = 1+ 2t + 4t2 + 8t3 + 22t4 + 64t5 + 178t6 +O(t7).

The growth constant is µ = 8/33/4 for both sequences.
The model has period m = 4, and en = 0 if n is not a multiple of 4. For the subse-

quence (un) = (e4n) we have guessed that

(4608n4
+ 37504n3

+ 114144n2
+ 153992n+ 77715)

× (2n+ 3)(2n+ 1)(4n+ 5)(4n+ 1)(n+ 1)2(4n+ 3)2un

−

(
62208n12

+1159488n11
+9826272n10

+50056248n9
+

341349339
2

n8
+410259762n7

+
22807094283

32
n6
+

28845939249
32

n5
+

421694744175
512

n4
+

1085550761145
2048

n3

+
1868027110233

8192
n2
+

1929023165205
32768

n+
1807811742825

262144

)
un+1

+ (n+ 3)(n+ 2)(2n+ 5)2(6n+ 13)2(6n+ 11)2

×

(
81

2048
n4
+

1341
8192

n3
+

8235
32768

n2
+

22257
131072

n+
44739

1048576

)
un+2 = 0.

The leading coefficient of the minimal differential operator Le annihilating Q(0, 0; t1/4)
is

t7(27−4096t)2
(
t4−

47
640

t3−
374489

125829120
t2−

23644531
2319282339840

t+
29645

281474976710656

)
,

where the factor 27− 4096t vanishes when t = 27/4096 = 1/µ4.
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For walks ending anywhere in the quadrant, the leading coefficient of the operator Lw
is

t13(4t − 1)(16t3 + 8t2 + 11t − 4)4 (4096t4 − 27)4 × (irreducible poly. of degree 254),

which is again compatible with the value of µ.

• Case K2 = {2̄0, 1̄1̄, 02̄, 11}. The excursion generating function Q(0, 0) =
∑
n ent

n

starts

Q(0, 0) = 1+ t2 + 4t4 + 21t6 + 138t8 + 1012t10
+ 8064t12

+O(t14)

while
Q(1, 1) = 1+ t + 2t2 + 5t3 + 12t4 + 32t5 + 86t6 +O(t7).

The growth constant is µ = 2
√

3 for both sequences.
The model has period m = 2, and en = 0 if n is odd. For the non-trivial subsequence

(un) = (e2n) we have guessed that

(4n+ 9)(n+ 5)2(n+ 4)2 un+4 − 4(n+ 2)(16n2
+ 100n+ 153)(n+ 4)2 un+3

− 4(32n5
+ 584n4

+ 4096n3
+ 13909n2

+ 22947n+ 14742)un+2

+ 96(2n+ 3)(n+ 2)(16n3
+ 108n2

+ 239n+ 183)un+1

+ (9216n5
+ 76032n4

+ 230400n3
+ 319680n2

+ 201024n+ 44928)un = 0.

The differential operator Le found for Q(0, 0; t1/2) =
∑
n e2nt

n has leading coefficient

t3(1+ 4t)2(1− 12t)3

where the factor (1−12t) is compatible with the value of µ. Furthermore, Le is reducible
in Q(t)〈∂t 〉; one can write L = L

(1)
2 L

(2)
2 L1, where L1 has order 1 and L(1)2 and L(2)2

have order 2. More importantly, L can be written as the least common left multiple of the
following three operators:

∂t +
1
t
, ∂2

t +
120t2 + 2t − 3

(12t − 1)t (4t + 1)
∂t +

288t3 − 48t2 + 14t + 1
(4t + 1)t2(12t − 1)2

,

∂2
t +

120t2 + 2t − 3
(12t − 1)t (4 t + 1)

∂t +
24t2 − 8t − 1

t2(4t + 1)(12t − 1)
.

The use of 2F1 solving algorithms [15, 47, 14] leads us to the following conjectural ex-
pression.

Conjecture 8.5. For the model S = {2̄0, 1̄1̄, 02̄, 11}, the excursion generating function
Q(0, 0; t1/2) is equal to

1
3t
−

√
1− 12t

6t

(
2F1

( 1
6

1
3

1

∣∣∣∣ 108t (1+ 4t)2

(12t − 1)3

)
+ 2F1

(
−

1
6

2
3

1

∣∣∣∣ 108t (1+ 4t)2

(12t − 1)3

))
.



2282 Alin Bostan et al.

Remark. The first hypergeometric term above can be rewritten with a simpler argument,
as

1
√

1− 12t
2F1

( 1
6

1
3

1

∣∣∣∣ 108t (1+ 4t)2

(12t − 1)3

)
= 2F1

( 1
6

1
3

1

∣∣∣∣ 108t2(1+ 4t)
)
.

Moreover, the square of this power series is known to count excursions of the face cen-
tered cubic lattice [10, Appendix A] (see also [50, §4]). This is entry A002899 in the
on-line encyclopedia of integer sequences [48]. The guessed operator Le is the minimal-
order operator canceling the conjectured series. The leading coefficient of the operator
Lw contains the factor

t5(4t − 1)(4t2 + 1)2(16t3 + 8t2 + 11t − 4)2(12t2 − 1)4,

which is compatible with µ = 2
√

3.

• Case K3 = {2̄1̄, 1̄2̄, 1̄1̄, 01, 10}. The excursion generating function starts

Q(0, 0) = 1+ 2t3 + 6t4 + 16t6 + 122t7 + 236t8 +O(t9)

while
Q(1, 1) = 1+ 2t + 4t2 + 10t3 + 32t4 + 98t5 + 292t6 +O(t7).

The model is strongly aperiodic, with growth constant µ ∼ 4.03 for both sequences,
where µ is the unique positive root of 4069+ 768u− 6u2

+ u3
− 27u4.

The leading coefficient of Le is

t8(1+ t2)2(4069t4 + 768t3 − 6t2 + t − 27)2 × (irreducible poly. of degree 32),

and vanishes at t = 1/µ. Similarly, the leading coefficient of Lw is

t13(1− 5t)(t2 + 1)2(4069t4 + 768t3 − 6t2 + t − 27)4(23t3 + 32t2 + 8t − 4)4

× (irreducible poly. of degree 263).

• Case K4 = {2̄0, 1̄1̄, 1̄0, 02̄, 01̄, 11}. The excursion generating function starts

Q(0, 0) = 1+ t2 + 2t3 + 4t4 + 24t5 + 37t6 + 276t7 +O(t8)

while
Q(1, 1) = 1+ t + 4t2 + 11t3 + 42t4 + 148t5 + 576t6 +O(t7).

The model is strongly aperiodic, with growth constant µ ∼ 4.91 for both sequences,
where µ is the largest positive root of 405− 108u− 72u2

+ u3
+ 3u4.

The leading coefficient of Le is

t8(65t2 + 8t + 16)2(405t4 − 108t3 − 72t2 + t + 3)4 × (irreducible poly. of degree 66),

and vanishes at t = 1/µ. Similarly, the leading coefficient of Lw contains the factor

t17(1− 6t)(405t4 − 108t3 − 72t2 + t + 3)8(3t3 + 4t2 + 20t − 4)6(65t2 + 8t + 16)2.
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• Case K5 = {2̄1̄, 2̄0, 1̄2̄, 1̄1̄, 02̄, 01, 10, 11}. The excursion generating function starts

Q(0, 0) = 1+ t2 + 8t3 + 10t4 + 106t5 + 467t6 + 1850t7 +O(t8)

while

Q(1, 1) = 1+ 3t + 10t2 + 51t3 + 260t4 + 1350t5 + 7568t6 +O(t7).

The model is strongly aperiodic, with growth constant µ = 2
√

3 + 8/33/4
≈ 6.97 for

both sequences. The value µ is the unique positive root of 208+ 4608u+ 648u2
− 27u4.

In this case we only have conjectures modulo p = 2147483647 for both en and qn.
For excursions, rational reconstruction shows that the leading coefficient of the operator
Le contains the factor

t23(4t2 + 1)4(208t4 + 4608t3 + 648t2 − 27)7,

which vanishes at t = 1/µ. Similarly, the leading coefficient of Lw contains the factor

t35(8t − 1)(4t2 + 1)4(64t3 + 16t2 + 11t − 2)10(208t4 + 4608t3 + 648t2 − 27)12,

which again vanishes at t = 1/µ.

8.4.2. Four models of the Gessel type. The remaining four models, shown on the right
of Table 1 and in Table 4, do not have a symmetry property. They are obtained from the
models shown on the left of Table 1 (solved in Section 8.3) by a reflection in a horizontal
line. By Proposition 3.3, their orbit type isO12 for the first three, andO18 for the last one.
More precisely, in the first three cases the orbit consists of

(x, y), (x1, y), (x2, y),

(x, x̄eȳ), (−x̄1, x̄
eȳ), (−x̄2, x̄

eȳ),

(x1, x̄
e
1 ȳ), (−x̄, x̄e1 ȳ), (−x̄2, x̄

e
1 ȳ),

(x2, x̄
e
2 ȳ), (−x̄, x̄e2 ȳ), (−x̄1, x̄

e
2 ȳ),

where x1, x2 are the two solutions of S(X, y) = S(x, y) (different from x), e = 2 for the
first model and e = 1 for the next two. In the fourth case, the orbit consists of

(x, y), (x1, y), (x2, y),

(x, x̄3ȳ), (xu3, x̄
3ȳ), (xu4, x̄

3ȳ),

(x1, x̄
3
1 ȳ), (x1u3, x̄

3
1 ȳ), (x1u4, x̄

3
1 ȳ),

(x2, x̄
3
2 ȳ), (x2u3, x̄

3
2 ȳ), (x2u4, x̄

3
2 ȳ),

(xu3, ū
3
3y), (x1u3, ū

3
3y), (x2u3, ū

3
3y),

(xu4, ū
3
4y), (x1u4, ū

3
4y), (x2u4, ū

3
4y),

where

x1,2 =
1±

√
1+ 4x3y

2x2y
and u3,4 =

y ±
√
y2 + 4y
2

.

For each of these four models, there exists a unique section-free equation, and its right-
hand side vanishes.
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Table 4. The four Gessel-like models, with their periods m. The table gives, for each sequence
(emn) and (qn), and for the associated series Q(0, 0; t1/m) and Q(1, 1; t), the order and degree of
the guessed recurrence relation or differential equation (in the two algebraic cases, the first/second
value is the degree in the series/variable). A star indicates that we have only guessed recurrences or
differential equations modulo p = 2147483647.

model m en Q(0, 0) alg. αe qn Q(1, 1) alg. αw

2 [8, 5] [9, 18]
red. min.

no −5/2 [46, 176] [17, 400]
red. min.

no −3/2 ?

4 [2, 12] [8, 13]
irred.

[32, 14] −5/2 ? ? ? −3/2 ?

1 [12, 37] [9, 52]
irred.

[32, 57] −5/2 ? ? ? −3/2 ?

3 [23, 572]? [48, 589]? ? −7/3 ? ? ? −3/2 ?

Theorem 3.11 gives for each model the excursion constant µ and the corresponding
exponent, which is αe = −5/2 for the first three models, and αe = −7/3 for the last
one. Only the third model is strongly aperiodic, the other models having respectively
periodm = 2 (first model),m = 4 (second model) andm = 3 (last model). But it appears
numerically that an asymptotic estimate q(0, 0; n) ∼ κ µnnαe holds in all cases (provided
n is a multiple ofm in the periodic cases). The growth constant µ̄ of the sequence (qn) can
be determined using the results of [41, 49]: in all four cases, it is larger than the excursion
constant µ. Observe that the drift (Sx(1, 1), Sy(1, 1)) is always of the form (−δ, 0) with
δ positive. The second component being 0, we cannot apply the result of [36, Ex. 7],
and indeed, the walk exponent αw, which we conjecture numerically, turns out to differ
from αe. In fact, we believe that for each of the four models,

qn ∼ Kµ̄
nn−3/2

with a constant K that depends on n mod m in the periodic cases.

What we have done. We have applied to these four models the same guessing proce-
dures as for the Kreweras-like models. Remarkably, we discovered two possibly alge-
braic models among them. More precisely, for the second and third models, the series
Q(0, 0) seems to be algebraic of degree 32. But it must be noted that in contrast with
Kreweras-like models, for three of the four models we could not guess any recurrence for
the sequence (qn), even modulo the prime p = 2147483647.

Our results are summarized in Table 4, and completed with a few details below.
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• Case G1 = {2̄1̄, 1̄0, 01, 10}. The excursion generating function starts

Q(0, 0) = 1+ t2 + 5t4 + 27t6 + 188t8 + 1414t10
+O(t12)

while

Q(1, 1) = 1+ 2t + 5t2 + 13t3 + 38t4 + 112t5 + 346t6 + 1071t7 +O(t8).

The model has period m = 2, and en = 0 if n is odd. The growth constant is µ = 2
√

3
for the excursion sequence, and

µ̄ =

3
√

6371+ 624
√

78
12

+
217

12 3
√

6371+ 624
√

78
+

11
12
∼ 3.61 (53)

for all quadrant walks. The value µ̄ is the unique (positive) real root of 16 + 8u +
11u2

− 4u3.
The leading coefficient of the operator Le annihilating Q(0, 0; t1/2) is

t5(1+ 4t)3(1− 12t)5(279936t5 − 62208t4 + 13608t3 − 5796t2 + 675t − 20)

where the factor (1− 12t) is compatible with the growth constant µ. The leading coeffi-
cient of Lw is

t10(1+ 4t)(1− 4t)4(1+ 4t2)5(1− 12t2)9(16t3 + 8t2 + 11t − 4)4

× (irreducible poly. of degree 345),

which is compatible with the value of µ̄.

• Case G2 = {2̄1̄, 1̄1, 01̄, 11}. The excursion generating function starts

Q(0, 0) = 1+ 5t4 + 190t8 + 11892t12
+ 939572t16

+O(t20)

while

Q(1, 1) = 1+ t + 3t2 + 8t3 + 24t4 + 65t5 + 211t6 + 649t7 +O(t8).

The model has period m = 4, and en = 0 if n is not a multiple of 4. The growth constant
of excursions is µ = 8/33/4, while the constant for all quadrant walks is again given
by (53).
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For the non-trivial subsequence (un) = (e4n) we have guessed that

3(6n+ 11)(18n+ 41)(2n+ 5)(3n+ 7)(18n+ 35)(6n+ 13)(n+ 2)(18n+ 29)

× (41472n4
+ 150144n3

+ 200864n2
+ 117704n+ 25491)un+2

− (47552535724032n12
+ 798266178404352n11

+ 6092888790269952n10

+ 27954969361514496n9
+ 85850716160655360n8

+ 185860480394330112n7

+ 290753615920332800n6
+ 331020927507759104n5

+ 272073153165252608n4

+ 157356059182977536n3
+ 60749526504280448n2

+ 14046784950077600n
+ 1470033929525700)un+1

+ 1048576(12n+ 5)(4n+ 1)(3n+ 2)(2n+ 1)(12n+ 11)(4n+ 3)(6n+ 7)(n+ 1)

× (41472n4
+ 316032n3

+ 900128n2
+ 1135752n+ 535675)un = 0.

Remarkably, the series E(t) := Q(0, 0; t1/4) appears to be algebraic, of degree 32.
More precisely,E(t)2 seems to have degree 16 and to satisfy an equation P(t, E(t)2) = 0
with coefficients of degree at most 14 in t . The guessed polynomial P(t, z) seems plau-
sible because: it has a small bitsize compared to the bitsize of the expansion of E(t) that
we used to produce it; we have then checked, using more terms of E(t), that it annihilates
E(t)2 to much higher orders; its discriminant factors as

t418(268435456t3 + 57671680t2 − 69632t − 27)2(4096t − 27)48

× (irreducible poly. of degree 31)4,

which is compatible with the value of µ. Moreover, P(t, z) defines a rational curve,
parametrized by

t =
U(1− 2U)3(1− 3U)3(1− 6U)9

(1− 4U)4
,

z =
(1− 4U)2(1− 24U + 120U2

− 144U3)2

(1− 3U)2(1− 2U)3(1− 6U)9
.

This leads to the following conjectural statement.

Conjecture 8.6. For the model S = {2̄1̄, 1̄1, 01̄, 11}, the excursion generating function
Q(0, 0; t) is equal to

(1− 4U)(1− 24U + 120U2
− 144U3)

(1− 3U)(1− 2U)3/2(1− 6U)9/2
,

where U = t4 + 53t8 + 4363t12
+ · · · is the unique power series in Q[[t]] satisfying

U(1− 2U)3(1− 3U)3(1− 6U)9 = t4(1− 4U)4.
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As mentioned above, we could not guess any differential or algebraic equation for
Q(1, 1; t), even with 100 000 terms and modulo p= 2147483647.

• Case G3 = {2̄1̄, 1̄0, 1̄1, 01̄, 11}. The excursion generating function starts

Q(0, 0) = 1+ 2t3 + 5t4 + 16t6 + 107t7 + 190t8 +O(t9)

while

Q(1, 1) = 1+ t + 4t2 + 12t3 + 39t4 + 133t5 + 485t6 + 1746t7 +O(t8).

This model is strongly aperiodic. The growth constants are µ ∼ 4.03, the unique positive
root of 4069+ 768u− 6u2

+ u3
− 27u4, and

µ̄ =

3
√

1261+ 57
√

57
6

+
56

3 3
√

1261+ 57
√

57
+

2
3
∼ 4.22.

This is the unique (positive) real root of 4u3
− 8u2

− 32u− 23.
Again, Q(0, 0; t) appears to be algebraic of degree 32, this time with coefficients of

degree 57. The guessed polynomial seems plausible for various reasons, including the
nice factorization of its discriminant as

t1732(t2 + 1)32(4069t4 + 768t3 − 6t2 + t − 27)48

× (irreducible poly. of degree 13)2 × (irreducible poly. of degree 31)4,

which vanishes at t = 1/µ.

Remark. There are analogies between excursions of this model and those of the
Kreweras-type model K3 = {2̄1̄, 1̄2̄, 1̄1̄, 01, 10}. Indeed, the sizes of the recurrence rela-
tion and of the differential equation match. The growth constant and the singular exponent
are also the same for both models.

• Case G4 = {2̄1̄, 2̄0, 10, 11}. The excursion generating function starts

Q(0, 0) = 1+ 3t3 + 41t6 + 850t9 + 21538t12
+ 614530t15

+O(t16)

while

Q(1, 1) = 1+ 2t + 4t2 + 15t3 + 45t4 + 121t5 + 471t6 + 1533t7 +O(t8).

The model has periodm = 3, and en = 0 if n is not a multiple of 3. The growth constants
are µ = 9/24/3 and µ̄ = 3 · 21/3.

The leading coefficient ofLe contains the factor t42(729t−16)23, which is compatible
with the value of µ.
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9. A glimpse at asymptotics

The method that we develop in this paper provides expressions for generating functions
of walks confined to an orthant, as positive parts of certain rational or algebraic series. We
now demonstrate that these expressions are often well suited to a multivariate singularity
analysis. The use of analytic techniques in this fashion is the domain of analytic com-
binatorics in several variables (ACSV) [61]; recent work has shown the strength of this
approach, proving conjectures in lattice path asymptotics [59], generalizations in higher
dimensions [58], and handling families of models with weighted steps [30]. Much of the
singularity analysis is effective [57] when the multivariate generating function under con-
sideration is represented in the form Q(x, y; t) = [x≥y≥]R(x, y; t) for a rational func-
tion R(x, y; t). Although some asymptotic techniques have been developed to perform
a singularity analysis on multivariate functions with algebraic singularities [45], this is a
more difficult task. For the purposes of this paper, we show how dominant asymptotics
for the number of walks in the four models of Section 8.3 can be determined through
the simple use of analytic techniques. We focus on the series Q(1, 1) counting all quad-
rant walks. Future work could extend this argument to deal with the multivariate alge-
braic functions which arise, for instance, in the generating functions for two-dimensional
Hadamard models given by Proposition 7.2.

The first step is to convert our expression of the form Q(x, y; t) = [x≥y≥]R(x, y; t)

for the multivariate generating function Q(x, y; t) into an expression for the univariate
generating function Q(1, 1; t) which is amenable to asymptotic computations. Given an
element

R(x, y; t) =
∑
n≥0

(∑
i,j

r(i, j ; n)xiyj tn
)
∈ Q[x, x̄, y, ȳ][[t]], (54)

the diagonal operator 1 takes R(x, y; t) and returns the univariate power series (1R)(t)
:=
∑
n≥0 r(n, n; n)t

n. The relationship between positive parts and diagonals is given by
the following lemma.

Lemma 9.1. Given R(x, y; t) as in (54), and (a, b) ∈ {0, 1}2, one has

[x≥y≥]R(x, y; t)|x=a,y=b = 1

(
R(x̄, ȳ; xyt)

(1− x)a(1− y)b

)
.

The proof follows from basic formal series manipulations; see [58, Proposition 2.6] for
details. In particular, this lemma, combined with the expressions obtained for Q(x, y; t)
in Section 8.3, gives us diagonal representations for the generating functions of quadrant
walks ending anywhere (a = b = 1), returning to the origin (excursions, a = b = 0), or
returning to the x- or y-axes (a = 1, b = 0 or a = 0, b = 1).

At its most basic level, the theory of ACSV takes a multivariate Cauchy residue in-
tegral representation for power series coefficients and reduces it to an integral expres-
sion where saddle-point techniques can be used to determine asymptotics. Because of
the simple rational functions which are obtained for many lattice path models, the usual
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analysis can be greatly simplified. In particular, for each of the four models detailed in
Section 8.3 we obtain the generating function Q(1, 1; t) as a diagonal of the form

Q(1, 1; t) = 1
(

P(x, y)

(1− x)(1− y)(1− txyS(x̄, ȳ))

)
,

where P(x, y) is a Laurent polynomial which is coprime with 1−x and 1−y. Expanding
the rational function on the right-hand side of this equation as a power series in t then
gives

qn = [t
n
]Q(1, 1; t) = [xnyntn]

(
P(x, y)

(1− x)(1− y)(1− txyS(x̄, ȳ))

)
= [x0y0

]
P(x, y)S(x̄, ȳ)n

(1− x)(1− y)
,

and the multivariate Cauchy integral formula [61, Prop. 7.2.6] implies

qn =
1

(2πi)2

∫
|x|=r1, |y|=r2

P(x, y)S(x̄, ȳ)n

(1− x)(1− y)
·
dx dy
xy

=
1

(2πi)2

∫
|x|=r1, |y|=r2

P(x, y)

xy(1− x)(1− y)
en log S(x̄,ȳ) dx dy

for any 0 < r1, r2 < 1. Making the substitutions x = r1eiθ1 and y = r2eiθ2 converts this
integral into a Fourier–Laplace integral, that is, an integral of the form∫

T

A(θ1, θ2)e
−nφ(θ1,θ2) dθ1 dθ2.

Here T := [−π, π]2, while

A(θ1, θ2) :=
1

(2π)2
P(r1e

iθ1 , r2e
iθ2)

(1− r1eiθ1)(1− r2eiθ2)
,

φ(θ1, θ2) := − log S(r−1
1 e−iθ1 , r−1

2 e−iθ2).

The asymptotics of Fourier–Laplace integrals have been well studied. In particular, sup-
pose the amplitude A and phase φ are analytic functions on the domain T . If φ admits
a non-empty finite set of critical points,3 at which the Hessian of φ is non-singular and
the real part of φ is locally minimized, then explicit asymptotic formulas in terms of the
Taylor coefficients of A and φ are known [46, Theorem 7.7.5] (see also [57, Prop. 53] for
the explicit formulas used in our calculations). Each critical point of φ has an asymptotic
contribution, and one simply sums up the contributions of all critical points to determine
dominant asymptotics of the Fourier–Laplace integral.

For the above value of φ(θ1, θ2), the chain rule shows that in order to find real values
r1 and r2 such that φ admits critical points, it is sufficient to find the complex points (x, y)
such that

Sx(x̄, ȳ) = Sy(x̄, ȳ) = 0 (55)

3 For the purposes of this discussion, points in T where the gradient of φ vanishes.
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and take r1 and r2 to be their moduli. One then determines the corresponding critical pairs
(θ1, θ2), that is, the arguments of x and y satisfying (55), and computes the Hessian of
φ at these points. In each of the four cases that we consider there are critical points with
0 < r1, r2 < 1, and the Hessian is never singular. The next step is to show that the real
part of φ(θ1, θ2),

<φ(θ1, θ2) = − log |S(r−1
1 e−iθ1 , r−1

2 e−iθ2)|,

is locally minimized at critical values of (θ1, θ2). Minimizing this quantity means maxi-
mizing |S(x̄, ȳ)| on {(x, y) : |x| = r1, |y| = r2}. Since S(x̄, ȳ) is a (Laurent) polynomial
with non-negative coefficients, if |x| and |y| are fixed then |S(x̄, ȳ)| is maximized (in
particular) when x and y are positive and real (that is, x = r1, y = r2). The triangle
inequality then shows that the maximizers of |S(x̄, ȳ)| occur when the arguments of all
monomials occurring in S(x̄, ȳ) are equal. When this holds for all critical values (θ1, θ2),
explicit asymptotics can be obtained by direct computation. In particular, the exponential
growth associated with the critical point (θ1, θ2) is e−φ(θ1,θ2) = S(x̄, ȳ).

We now list our results; full details of the computations can be found in an accompa-
nying MAPLE worksheet, available on the authors’ webpages.4

9.1. Case S = {10, 1̄0, 01̄, 2̄1}

Specializing Lemma 9.1 to Proposition 5.2 gives the diagonal representation

Q(1, 1; t) = 1
(
(x2
+ 1)(x2

+ 2xy − 1)(2x3
+ x2y − y)(x2

− y2)

x2y(1− x)(1− y)(1− t (x3 + x2y + xy2 + y))

)
.

Solving (55) for x and y gives two solutions with coordinates of modulus less than 1,

(x, y) = (3−1/2, 3−1/2) and (x, y) = (−3−1/2,−3−1/2),

along with solutions (i,−i), and (−i, i) which are irrelevant to asymptotics. Taking r1 =
r2 = 3−1/2 in the argument above, one gets a Fourier–Laplace integral with critical points
at (θ1, θ2) = (0, 0) and (π, π). A direct computation shows that the Hessian of φ is non-
singular at these critical points. Following the above lines, we then check that

|S(x̄, ȳ)| = |x̄ + x + y + x2ȳ|

is indeed maximal on the integration domain for angles (0, 0) and (π, π), as desired.
The exponential growth of the resulting Fourier–Laplace integral is given by the

value of e−φ(θ1,θ2)= S(x̄, ȳ) at the critical points, in this case S(
√

3,
√

3) = 2
√

3 and
S(−
√

3,−
√

3) = −2
√

3. One then computes successively higher order terms in an
asymptotic expansion

(2
√

3)n
(
A0 +

A1

n
+
A2

n2 + · · ·

)
+ (−2

√
3)n
(
A′0 +

A′1
n
+
A′2
n2 + · · ·

)
4 For lattice path examples with more exotic critical point behavior, see [57, Chs. 10 and 11].
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until finding terms which are non-zero (see [57, Prop. 53]). The vanishing of the highest
order terms is related to, but not completely determined by, the order of vanishing of the
amplitude A(θ1, θ2) at the critical points under consideration. Ultimately, we obtain the
asymptotic expansion

qn =
(2
√

3)n

πn4

(
Cn +O

(
1
n

))
,

where

Cn =

{
5616
√

3 for n even,
9720 for n odd.

(56)

9.2. Case S = {01, 11̄, 1̄1̄, 2̄1}

Applying Lemma 9.1 to the generating function expression in Proposition 8.2 gives a
diagonal representation

Q(1, 1; t) = 1
(

(2xy2
+ x2

− 1)(x − y2)(x2y2
+ 2x3

− y2)

xy2(1− x)(1− y)(1− t (x2y2 + x3 + y2 + x))

)
.

This time the system of equations (55) admits four solutions whose coordinates have
moduli less than 1,

(3−1/2, 3−1/4), (3−1/2,−3−1/4), (−3−1/2, i3−1/4), (−3−1/2,−i3−1/4),

all of which have coordinatewise moduli (r1, r2) = (3−1/2, 3−1/4). A similar analysis to
the first case gives

qn =
(8 · 3−3/4)n

πn4

(
Cn +O

(
1
n

))
,

where

Cn =


5120
√

3 for n ≡ 0 mod 4,
6656 · 31/4 for n ≡ 1 mod 4,
26624/3 for n ≡ 2 mod 4,
3840 · 33/4 for n ≡ 3 mod 4.

9.3. Case S = {01, 11̄, 1̄1̄, 2̄1, 1̄0}

Specializing Lemma 9.1 to Proposition 8.3 gives a diagonal representation

Q(1, 1; t) = 1
(
(x − y2)(2xy2

+ x2
+ xy − 1)(x2y2

+ 2x3
+ x2y − y2)

xy2(1− x)(1− y)(1− t (x2y2 + x3 + x2y + y2 + x)))

)
.

Here the system (55) has four solutions (x, y) with coordinates of modulus less than 1,
which make up the set

{(y2, y) : 3y4
+ y3

− 1 = 0}. (57)

The polynomial 3y4
+ y3

− 1 has a unique positive root, yc ' 0.688 . . . , and we con-
sider the solution (y2

c , yc). None of the three other solutions has the same coordinate-
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wise moduli, hence our only critical point associated with moduli (r1, r2) = (y2
c , yc) is

(θ1, θ2) = (0, 0). The Hessian of φ is not singular at (0, 0), and by positivity, this point
maximizes the modulus of S in [−π, π]2. In the end, one obtains the asymptotics

qn =
(8y3

c + 3y2
c )
n

2313πn4

(
C +O

(
1
n

))
≈ (1112.183 . . . )

(4.03164 . . . )n

n4 ,

where
C =
√

3(2527386y3
c + 2727881y2

c + 1805111yc + 1306017).
It can be checked that the three other solutions in (57) are not local maximizers of
|S(x̄, ȳ)| among points with the same coordinatewise moduli.

9.4. Case S = {10, 11̄, 2̄1, 2̄0}

Specializing Lemma 9.1 to Proposition 8.4 gives a diagonal representation

Q(1, 1; t) = 1
(
(1− 2y)(x3

− y2)(x6
+ x3y2

+ 3x3y − y)(2x3
− y)

x3y2(1− x)(1− y)(1− t (x3y + x3 + y2 + y))

)
.

Here there are three solutions to (55) with moduli less than 1:

(4−1/3, 1/2), (e2πi/34−1/3, 1/2), (e−2πi/34−1/3, 1/2).

All of them have moduli (r1, r2) = (4−1/3, 1/2). They give rise to three critical points
of φ, where the Hessian is non-singular and |S(x̄, ȳ)| is maximized. An analysis similar
to those above gives another periodic asymptotic expansion

qn =
(9 · 4−2/3)n

πn5

(
Cn +O

(
1
n

))
,

where

Cn =


216513/2 for n ≡ 0 mod 3,
1358127 · 2−11/3 for n ≡ 1 mod 3,
124659 · 2−1/3 for n ≡ 2 mod 3.

10. Final questions and comments

We have outlined above the first general approach to count walks confined to an orthant
with arbitrary steps, and demonstrated its efficacy across several families and a large
number of sporadic cases. In addition to the examples presented here, the power of this
method is illustrated by the fact that it solves another family of quadrant models, with
steps S = {(−p, 0), (−p + 1, 1), . . . , (0, p), (1,−1)}, which arose naturally in other
applications; the details of this family (containing both large forward and large backward
steps) are given in [24]. The current work attempts to lay a basis for the systematic study
of lattice walks with longer steps, and we suggest here some possible research directions.

• Uniqueness of the section-free equation. Is it true that, for a model with no large for-
ward step and a finite orbit, there exists a unique section-free equation (Conjecture 4.2)?
Can one describe it generically?
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• Walks with steps in {2̄, 1̄, 0, 1}2. In our study of these walks (Section 8) we have left
open the case of nine models which have analogies with the four tricky-but-algebraic
small step models of Figure 2 (see Tables 3 and 4). Can one apply to them some of the
techniques used for the small step algebraic models [7, 17, 18, 21, 22, 26, 43, 51, 53,
60]? In particular, are the associated series D-finite? Which ones are algebraic?
Can one prove the non-D-finiteness of the 16 models of Table 2, which have a rational
excursion exponent but an infinite orbit?
• Walks with steps in {1̄, 0, 1, 2}2. Symmetrically, one can examine the 14 268 inter-

esting (non-isomorphic and non-trivial) models with steps in {−1, 0, 1, 2}2, having at
least one large forward step. Proceeding as in Section 8 reveals that 1 189 of them are
included in a half-space, and thus analogous to the five half-space models with small
steps. Of the remaining 13 079 models, 12 828 have an irrational excursion exponent,
and hence a non-D-finite generating function and an infinite orbit (Section 3.3). The
251 that have a rational exponent split into three families:

– 11 have yet an infinite orbit. They are the reverses of the 11 models of Table 2 that
contain a step in Z2

− (for the other five models in this table, there is no non-trivial
walk starting at the origin after reversing steps).

– 227 are Hadamard, and thus solvable by Proposition 7.2 and D-finite. They are the
reverses of the 227 Hadamard models of Section 8.3.

– 13 are the reverses of the models in Table 1, and thus share their orbit structure:O12,
Õ12 or O18. They also share their excursion generating function, which we have
either proved or conjectured to be D-finite in all 13 cases.

• It has been proved [14] that for the 19 small step models in the quadrant that are D-finite
but transcendental, the series Q(x, y; t) has an explicit expression involving integrals
and specializations of the hypergeometric series 2F1. For which models with larger
steps is this still true? Corollary 5.3 and Conjecture 8.5 show that a similar property
may indeed hold in some cases.
• We have focussed in this paper on two-dimensional examples, because the quadrant

is already a rich source of interesting problems. But the four stages of the method,
described in Sections 2 to 5, apply just as well to higher dimensional models. In fact,
they were already successfully applied to 3D models with small steps in [11].
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