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Abstract. We prove a discretized sum-product theorem for representations of Lie groups whose
Jordan–Hölder decomposition does not contain the trivial representation. This expansion result is
used to derive a product theorem in perfect Lie groups.
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1. Introduction

Throughout this paper, G will denote a connected real Lie group, endowed with a left-
invariant Riemannian metric. For x ∈ G and ρ > 0, we denote by BG(x, ρ) the ball of
center x and radius ρ inG. For A ⊂ G and ρ > 0, A(ρ) stands for the ρ-neighborhood of
A and N(A, ρ) stands for the covering number of A by ρ-balls, i.e.

N(A, ρ) = min
{
N ∈ N

∣∣∣ ∃ x1, . . . , xN ∈ G, A ⊂

N⋃
i=1

BG(xi, ρ)
}
.

The same notation is used for other metric spaces.

1.1. Sum-product theorem in representations of Lie groups

In the first part of this paper, we study the sum-product phenomenon in representations
of Lie groups. We shall work with some linear representation of G over some finite-
dimensional real vector space V , endowed with some norm. We shall also refer to repre-
sentations of G as G-modules. For A ⊂ G, X ⊂ V and s ≥ 1, we denote by 〈A,X〉s
the set of elements in V that can be obtained as combinations of sums, differences and
products of at most s elements from A and X.

Note that the distance on G induces a natural distance on each of its quotients. Let
N C G be a closed normal subgroup. We denote by πG/N : G → G/N the canonical
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projection. Then there is a unique distance on G/N satisfying d(πG/N (x), πG/N (y)) =
d(x−1y,N) for all x, y ∈ G. Throughout this paper, all quotients G/N will be endowed
with this distance.

Following [23], we say that a subset A ⊂ G is ρ-away from closed connected sub-
groups for some parameter ρ > 0 if for any proper closed connected subgroup H < G,
there exists a ∈ A with d(a,H) > ρ. Similarly, we say that a subset X ⊂ V is ρ-
away from submodules if for any proper G-submodule W < V , there exists x ∈ X with
d(x,W) > ρ.

We say that a G-module V is in P(G) if the trivial representation does not appear as
a simple quotient in the Jordan–Hölder decomposition of G—see Definition 2.1.

Theorem 1.1 (Sum-product theorem in representations of class P). Let G be a con-
nected real Lie group and V ∈ P(G). There exists a neighborhood U of the identity in G
such that, for every ε0, κ > 0, there exist s ≥ 1 and ε > 0 such that the following holds
for any δ > 0 sufficiently small. Assume A ⊂ U and X ⊂ BV (0, 1) satisfy

(i) for any proper closed connected normal subgroup N CG,

∀ρ ≥ δ, N(πG/N (A), ρ) ≥ δ
ερ−κ ;

(ii) A is δε-away from closed connected subgroups;
(iii) X is δε-away from submodules.

Then
BV (0, δε0) ⊂ 〈A,X〉(δ)s .

This is a bounded generation statement which can be viewed as a generalization of pre-
vious sum-product results in rings. For example, applying to G = R∗ acting on V = R,
one recovers a version Bourgain’s discretized sum-product theorem [3, 4]. Note that this
is not a new proof of Bourgain’s theorem as the latter is used as an ingredient in the proof
of Theorem 1.1.

In Section 2, Theorem 1.1 will be proved in a more precise form where the conditions
(i) and (ii) can be slightly relaxed; see Theorem 2.3.

1.2. Product theorem in perfect Lie groups

In the second part of this paper, we use Theorem 1.1 to derive a product theorem in perfect
Lie groups. For subsets A,B ⊂ G of a Lie group G, we denote by AB their product set,
i.e.

AB = {ab | a ∈ A, b ∈ B}.

For k ≥ 2, we denote by Ak the k-fold product set of A with itself, A · · ·A. To avoid
confusion with Cartesian products between sets, we write A×k for the Cartesian power
A× · · · × A.

Recall that a Lie group is perfect if its Lie algebra g is perfect, i.e. [g, g] = g.
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Theorem 1.2 (Product theorem in perfect Lie groups). LetG be a connected perfect Lie
group. There exists a neighborhood U of the identity in G such that given κ > 0, there
exists ε > 0 such that the following holds for δ > 0 sufficiently small. Let A be a subset
of U such that

(i) N(A, δ) ≤ δ− dimG+κ ;
(ii) for any proper closed connected normal subgroup N CG,

∀ρ ≥ δ, N(πG/N (A), ρ) ≥ δ
ερ−κ ;

(iii) A is δε-away from closed connected subgroups in G.

Then
N(AAA, δ) ≥ δ−εN(A, δ).

For G = SU(2), the above theorem was proved by Bourgain–Gamburd [5], and for a
general simple Lie group by the second author [23], borrowing many ideas from the work
of Bourgain and Gamburd [6] on the spectral gap property in SU(d).

It is not difficult to see that the assumption of perfectness is optimal for such a product
theorem to hold, in the following sense.

Proposition 1.3. Let G be a simply connected Lie group which is not perfect with Lie
algebra g. Write d = dim g − dim [g, g]. For any neighborhood U of the identity in G,
for any κ ∈ (0, 1) and for any δ > 0 small enough, there exists A ⊂ U such that

(i) N(A, δ) ≈U δ− dimG+d(1−κ);
(ii) for any proper closed connected normal subgroup N CG,

∀ρ ≥ δ, N(πG/N (A), ρ)�U ρ
−κ
;

(iii) A is 1
OU (1)

-away from closed connected subgroups in G,

but
N(AAA, δ)�U N(A, δ).

Note that in a closely related setting, Salehi Golsefidy and Varjú [20] have already ob-
served that perfectness is a sufficient and necessary condition for an expansion result to
hold. In fact, at different places, our arguments share some conceptual similarities with the
recent work of Salehi Golsefidy [18, 19] on super-approximation. Also, these examples of
approximate subgroups can be seen as discretized analogues of measurable subgroups of
intermediate dimension whose existence is known in abelian Lie groups [10] and solvable
Lie groups [21].

We shall prove Theorem 1.2 and Proposition 1.3 in Section 3.

1.3. Applications

We conclude this introduction by mentioning several applications to Theorems 1.1 and
1.2 above. The first is that the spectral gap property discovered by Bourgain and Gam-
burd [5, 6] in the setting of SU(d), d ≥ 2, generalizes to all compact semisimple Lie
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groups. The proof follows the strategy developed by Bourgain and Gamburd, as presented
for instance in [2], where the theorem is proved for compact simple Lie groups, but we
now use Theorem 1.2 above instead of the second author’s Product Theorem in simple
Lie groups [23].

Theorem 1.4. Let G be a compact connected semisimple Lie group, with Lie algebra g,
and write L2

0(G) for the space of zero-mean square-integrable functions on G. Let µ be
a probability measure on G whose support generates a dense subgroup in G. Assume
moreover that in some basis for g, for every g ∈ Suppµ, the matrix of Ad g has algebraic
entries. Then the convolution operator

Tµ : L
2
0(G)→ L2

0(G), f 7→ f ∗ µ,

satisfies ‖Tµ‖ < 1.

The local spectral gap property introduced by Boutonnet, Ioana and Salehi Golsefidy [8]
for non-compact Lie groups can also be generalized to a general connected perfect Lie
group, but in order to keep statements as elementary as possible, we do not make this
precise here.

Originally, discretized expansion statements were introduced by Katz and Tao [12]
and used by Bourgain [3] to study Hausdorff dimensions of sum-sets and product-sets
in R and give a quantitative solution to the Erdős–Volkmann conjecture: If A is any Borel
measurable subset of R with dimH A ∈ (0, 1), then dimH (A + AA) > dimH A. The
theorems proven here have similar consequences on the Hausdorff dimension of sum
and product sets in semisimple algebras or perfect Lie groups. In particular, it should be
possible to generalize the results of the second author presented in [22] to the setting of
perfect Lie groups; we hope to address these matters in another paper.

Another nice application of Theorem 1.1 is the very recent work of Li [14, 15] on the
regularity of the Furstenberg measure associated to a random walk on a semisimple Lie
group.

Finally, our results could be used to construct new family of expanders, in the spirit
of the works of Bourgain–Yehudayoff [7] or Vigolo [26].

2. Sum-product theorem in representations of G

The goal of this section is to prove Theorem 1.1 from the introduction. In fact, our proof
will yield a slightly more precise version—see Theorem 2.3.

2.1. Representations without trivial simple quotients

We now define the class of representations to which our theorem will apply, and gather
some elementary properties. Then, we state the refined version of Theorem 1.1 which will
be proved here, Theorem 2.3.
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Definition 2.1. Let G be a connected Lie group. We let P(G) denote the class of finite-
dimensional linear representations V of G such that there exists a sequence {0} = V0 <

V1 < · · · < V` = V of subrepresentations of V such that, for each i = 0, . . . , `− 1, the
quotient representation Vi+1/Vi is non-trivial and irreducible.

Equivalently, V is in P(G) if the trivial representation does not appear as a simple quo-
tient in a Jordan–Hölder decomposition of V . This property, of course, does not depend on
the choice of the Jordan–Hölder decomposition. We now list some elementary properties
of representations in P(G).

Proposition 2.2. Let V be a representation of a connected Lie group G.

(i) If W is a subrepresentation of V , then V belongs to P(G) if and only if both W and
V/W belong to P(G).

(ii) If H is a closed subgroup of G and V ∈ P(H) as a representation of H , then
V ∈ P(G).

(iii) LetH be a normal subgroup ofG. If the representationG→ GL(V ) factors through
G/H , then V ∈ P(G/H) as a representation of G/H if and only if V ∈ P(G) as a
representation of G.

Proof. Indeed, (i) follows from the fact that the set of simple quotients of the Jordan–
Hölder decomposition of V is the union of those of W and those of V/W . For (ii), note
that a Jordan–Hölder sequence of G-submodules in V can be refined to a Jordan–Hölder
sequence of H -submodules, and that if there is a trivial quotient in the first sequence
there must be also one in the refined sequence. Finally, (iii) is clear, since Jordan–Hölder
decompositions of V into G-modules coincide with Jordan–Hölder decompositions into
G/H -modules. ut

Remark 1. The class P(G) is the smallest class of finite-dimensional G-modules that
contains all non-trivial irreducible representations of G and is closed under extension
(i.e., if W and V ′ are in P(G), and 0→ W → V → V ′ → 0 is a short exact sequence
of G-modules, then V is in P(G)).

Example 1. • If a representation V contains the trivial representation, then it is not in
P(G). Similarly, if V admits the trivial representation as a quotient, then it is not in
P(G).
• Let n be a positive integer. The representation of G = R∗+ on Rn given by g · v = gv

(scalar multiplication) is in P(G).
• The adjoint representation of a semisimple Lie group G is in P(G).

Throughout this article, we shall consider representations of G as normed vector spaces:
By normed G-module, we mean a G-module endowed with a norm which makes the
underlying linear space a normed vector space.

Whenever V is a normed vector space, and W ≤ V is a linear subspace, we shall
always consider on W the norm induced by the norm on V , and on the quotient space
V ′ = V/W the norm given by the formula

∀v ∈ V, ‖π(v)‖ = d(v,W),
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where π : V → V ′ is the canonical projection. Finally, we endow the space End(V ) of
linear endomorphisms with the associated operator norm.

Let ρ ∈ (0, 1/2) be a parameter and V a normed G-module. We say that a subset
X ⊂ V is ρ-away from submodules if for every proper submodule W < V , there exists
x ∈ X such that d(x,W) ≥ ρ. Similarly, a subset A ⊂ G is said to be ρ-away from
closed connected subgroups if for every proper closed connected subgroupH , there exists
a ∈ A such that d(a,H) ≥ ρ. Finally, a subset A ⊂ G is said to be ρ-away from
identity components of proper stabilizers if for any subspace W ⊂ V which is not a
G-submodule, there exists a ∈ A such that d(a, (StabGW)◦) ≥ ρ, where (StabGW)◦

denotes the identity component of the stabilizer StabGW of W in G.
We shall prove the following.

Theorem 2.3 (Sum-product in representations of class P). Let G be a connected real
Lie group and V a normedG-module. There exists a neighborhood U of the identity inG
such that, for every ε0, κ > 0, there exist s ≥ 1 and ε > 0 such that the following holds
for any δ > 0 sufficiently small. Assume A ⊂ U and X ⊂ BV (0, 1) satisfy

(i) there is a Jordan–Hölder sequence 0 = V0 < · · · < V` = V such that for every
i = 0, . . . , `− 1,

∀ρ ≥ δ, N(pVi+1/Vi (A), ρ) ≥ δ
ερ−κ ,

where pVi+1/Vi : G→ GL(Vi+1/Vi) denotes the representation of G on Vi+1/Vi;
(ii) A is δε-away from identity components of proper stabilizers;

(iii) X is δε-away from submodules.

Then
BV (0, δε0) ⊂ 〈A,X〉s + BV (0, δ).

Note that assumption (i) implies that V is of class P(G). The proof goes by induction on
the length of V (i.e. the length of any Jordan–Hölder decomposition of V ). We shall prove
the base case, where V is a non-trivial irreducible representation, in the next subsection.
The induction step will then be carried out in Subsection 2.3.

2.2. Irreducible representations

In the case V is an irreducible representation of G, the above theorem is a variant of [11,
Theorem 3]. For clarity, we restate our theorem in this particular case. Then, we shall
explain how to derive it from the first author’s sum-product theorem in simple algebras
[11, Theorem 2].

Theorem 2.4 (Base case: irreducible representations). Let G be a connected real Lie
group and πV : G → GL(V ) a non-trivial irreducible representation. There exists a
neighborhood U of the identity in G such that, for every ε0, κ > 0, there exist s ≥ 1 and
ε > 0 such that the following holds for any δ > 0 sufficiently small. Assume A ⊂ U and
X ⊂ BV (0, 1) satisfy
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(i) for every ρ ≥ δ, N(πV (A), ρ) ≥ δερ−κ ;
(ii) A is δε-away from identity components of proper stabilizers;

(iii) there exists v ∈ X such that ‖v‖ ≥ δε.

Then
BV (0, δε0) ⊂ 〈A,X〉s + BV (0, δ).

The proof of this theorem is based on Proposition 2.5 below, a sum-product statement for
matrix representations, which is essentially contained in [11]. Below, A denotes a subset
of End(V ) for some real vector space V , and 〈A〉s denotes the set of elements in End(V )
that can be obtained as combinations of sums and products of at most s elements in A. If
V is a real vector space and A is a subset of EndV , and if ρ ∈ (0, 1/2) is a parameter, we
say that A acts ρ-irreducibly on V if for every non-trivial proper linear subspaceW < V ,
there exist v ∈ BW (0, 1) and a ∈ A such that d(a · v,W) ≥ ρ.

Proposition 2.5 (Sum-product in irreducible representations). Let V be a finite-dimen-
sional normed vector space. Given ε0, κ > 0, there exist s ≥ 1 and ε > 0 such that the
following holds. Let A ⊂ BEnd(V )(0, δ−ε) and v ∈ V . Assume that

(i) for every ρ ≥ δ, N(A, ρ) ≥ δερ−κ ;
(ii) A acts δε-irreducibly on V ;

(iii) δε ≤ ‖v‖ ≤ δ−ε.

Then
BV (0, δε0) ⊂ 〈A〉s · v + BV (0, δ).

Proof. Given ε1 > 0, it follows from [11, Proposition 31] that there exists c > 0 such
that, provided ε > 0 is small enough, there exists a δ−O(ε)-bi-Lipschitz linear bijection
f : V → Kn, where K is R, C or the quaternions H, n is dimV

dimK
and Kn is endowed with

its usual L2 norm, and a scale δ1 with δ ≤ δ1 ≤ δ
c such that

fAf−1
⊂ Matn(K)+ B(0, δ1)

and such that for every proper real subalgebra F < End(Kn),

∃a ∈ A : d(f af−1, F ) ≥ δ
ε1
1 .

Choosing ε1 small enough in terms of ε0 and κ , we may then apply [11, Theorem 5] to
conclude that, provided ε > 0 is sufficiently small, for some integer s,

BMatn(K)(0, δ
ε0
1 ) ⊂ f 〈A〉sf

−1
+ BMatn(K)(0, δ1).

Therefore, without loss of generality, we may assume that V = Kn and

BMatn(K)(0, δ
ε0
1 ) ⊂ A+ BMatn(K)(0, δ1). (1)

We can further assume that ‖v‖ = 1. Then

BV (0, δ
ε0
1 ) ⊂ A · v + BV (0, δ1).
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In other words, the conclusion of the proposition holds at scale δ1. It remains to bring the
scale back to δ. To do this, we note that from (1), we have in particular

δ
1/2
1 id ∈ A+ BMatn(K)(0, δ1).

Hence, starting from (1), we may multiply both sides by δ1/2
1 id to obtain

BV (0, δ1) ⊂ BV (0, δ
ε0+1/2
1 ) ⊂ 〈A〉2 · v + BV (0, 2δ3/2

1 ),

and iterating this procedure, we get a sequence of integers s2 = 1, s3 = 2, . . . such that
for any k ≥ 2,

BV (0, skδ
k/2
1 ) ⊂ 〈A〉sk+1 · v + BV (0, sk+1δ

(k+1)/2
1 ).

Choose k > 2/c so that skδ
k/2
1 ≤ δ. Combining all these inclusions, we find, for s =

s2 + · · · + sk ,
BV (0, δ

ε0
1 ) ⊂ 〈A〉s · v + BV (0, δ),

which proves the proposition. ut

The above proposition readily implies Theorem 2.4.

Proof of Theorem 2.4. It suffices to apply Proposition 2.5 to the set πV (A) ⊂ End(V ).
By the assumption on A, conditions (i) and (iii) of the proposition are satisfied for the set
πV (A). That condition (ii) is also satisfied is a consequence of Lemma 2.6 below. ut

Lemma 2.6. Let 0 < ρ < 1/2 be a parameter. Let π : G → GL(V ) be a non-trivial
irreducible representation. There is a neighborhood U of 1 in G such that if A ⊂ U is
ρ-away from identity components of proper stabilizers then π(A) acts ρOπ (1)-irreducibly
on V .

It might be interesting to understand how the implied constant in Oπ (1) depends on π
and G, especially if one wants to have explicit constants in Theorems 1.1 and 1.2. Our
proof does not provide any insight on this matter since we rely on an application of Ło-
jasiewicz’s inequality and effectivizing Łojasiewicz’s inequality can be difficult and in-
volves mathematics far away from the scope of the present paper (see for example [13]
and references therein).

The proof of this lemma is an application of Łojasiewicz’s inequality (which we recall
below as Theorem 2.8). First, it is convenient to reduce to the case where A is finite. This
reduction is the subject of the next lemma. Given a representation π : G→ GL(V ) of G,
a subset A ⊂ G and a parameter ρ ∈ (0, 1/2), we say that A is ρ-away from proper
stabilizers if for any linear subspace W of V which is not a G-submodule, there exists an
element a in A whose distance to the stabilizer StabGW is at least ρ.

Lemma 2.7. Let 0 < ρ < 1/2 be a parameter. Let π : G → GL(V ) be a representa-
tion. There is a neighborhood U of 1 in G such that if A ⊂ U is ρ-away from identity
components of proper stabilizers then A is ρOπ (1)-away from proper stabilizers. In fact,
A contains a subset of cardinality at most dimG which is ρOπ (1)-away from proper sta-
bilizers.
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Proof. The representation π differentiates to a representation of the Lie algebra g of G,
which we denote by T1π : g→ End(V ). The stabilizer of W in g,

StabgW = {x ∈ g | T1π(x)W ⊂ W },

is the Lie algebra of StabGW . In particular, its image under the exponential map is con-
tained in (StabGW)◦, the identity component of StabGW . We may assume that exp in-
duces a diffeomorphism from U to its image, and denote the inverse map by log. Say that
logA is ρ-away from proper stabilizers in g if for any linear subspace W < V which is
not a G-submodule, there exists a ∈ A such that d(log a,StabgW) ≥ ρ.

We claim that there is a neighborhood U of 1 inG such that if A ⊂ U is ρ-away from
identity components of proper stabilizers then logA is ρ/C-away from proper stabilizers
in g and conversely if logA is ρ-away from proper stabilizers then A is ρ/C-away from
proper stabilizers.

Let us prove this claim. Let x ∈ g. From the identity π(ex) = eT1π(x), we can express
T1π(x) as an absolutely convergent series

T1π(x) = −
∑
n≥1

1
n
(idV −π(ex))n

whenever ‖π(ex) − idV ‖ < 1. Therefore, if ex ∈ StabGW is such that the above series
converges, then x ∈ StabgW . It follows that there is r > 0 depending only on π such
that

BG(1, r) ∩ StabGW ⊂ exp(StabgW).

Let U = BG(1, r/2). Then for any g ∈ U and any proper linear subspace W ,

1
C
d(g, (StabGW)◦) ≤ d(log g,StabgW) ≤ Cd(g,StabGW)

where C > 0 is some constant depending only on the representation. This proves our
claim, and the first part of the lemma.

For the second part, one can reproduce the argument in [23, Lemma 2.5] to show that
if logA is ρ-away from proper stabilizers then logA contains a subset of cardinality at
most dim g which is ρOdimg(1)-away from stabilizers. ut

Remark 2. Note that in the above lemma, the neighborhood U depends on the represen-
tation π , and not only on G. This is readily seen by considering G = R, V = C ' R2,
and π(x)v = einxv, n ∈ N.

Let us recall Łojasiewicz’s inequality [16, Théorème 2, p. 62] before we proceed to prove
Lemma 2.6.

Theorem 2.8 (Łojasiewicz’s inequality). Let M be a real-analytic manifold endowed
with a Riemannian distance d and let f : M → R be a real-analytic map. If K is a
compact subset ofM , then there is C > 0 depending onK and f such that for all x ∈ K ,

|f (x)| ≥ C−1 min(1, d(x, Z))C

where Z = {x ∈ M | f (x) = 0}.
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Proof of Lemma 2.6. Let U be the neighborhood given by Lemma 2.7. On account of that
lemma we may assume that A is finite of cardinality n ≤ dimG and ρ-away from proper
stabilizers.

Let 0 < k < dimV and consider the real-analytic map f : G×n × Grass(k, V )→ R
defined by

f (g1, . . . , gn,W) =

n∑
i=1

∫
BW (0,1)

d(gi · w,W)
2 dw.

The integration is with respect to the k-dimensional Lebesgue measure on each W ∈
Grass(k, V ). To see that this map is real-analytic, observe that we can locally trivial-
ize the tautological bundle over Grass(k, V ), i.e. for any W0 ∈ Grass(k, V ) there is a
neighborhood U of W0 in Grass(k, V ) and a map ϕ : U × Rk → V such that for all
W ∈ Grass(k, V ), the map ϕ(W, ·) : Rk → V is linear and has W as image. Moreover,
we can choose ϕ to be real-analytic and such that ϕ(W, ·) : Rk → W is an isometry for
the Euclidean structures, for any W ∈ Grass(k, V ). Thus, for all W ∈ Grass(k, V ) and
all i = 1, . . . , n,∫
BW (0,1)

d(gi ·w,W)
2 dw =

∫
BRk (0,1)

∥∥(gi · ϕ(W, v)) ∧ ϕ(W, e1) ∧ · · · ∧ ϕ(W, ek)
∥∥2 dv

where (e1, . . . , ek) is the standard basis of Rk . The right-hand side is obviously real-
analytic.

The zero set of f is exactly

Z = {(g,W) ∈ G×n × Grass(k, V ) | ∀i, gi ∈ StabGW }.

By Łojasiewicz’s inequality (Theorem 2.8) applied on Ū×n × Grass(k, V ), there is a
constant C > 0 such that for any (g,W) ∈ U×n × Grass(k, V ),

f (g,W) ≥
1
C
d((g,W), Z)C .

Assuming that A does not act 1
C
ρC-irreducibly on V , we can find W ∈ Grass(k, V ) such

that for all a ∈ A and allw ∈ BW (0, 1), π(a)w ∈ W+BV
(
0, 1

C
ρC
)
. So f (a1, . . . , an,W)

≤
1
C
ρC , and by the inequality above there exists W ′ ∈ Grass(k, V ) such that for all

a ∈ A, d(a,StabGW ′) ≤ ρ, so that A is not ρ-away from proper stabilizers. ut

2.3. Induction step

The core of the induction step in the proof of Theorem 2.3 is the following lemma. It is
a quantitative discretized version of the following elementary fact: let V be a G-module,
and V1, X two submodules of V ; if π : V → V/V1 maps X onto V/V1 and if X ∩ V1
= {0}, then V = X ⊕ V1. Once more, the proof relies on Łojasiewicz’s inequality.
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Lemma 2.9. Let G be a connected Lie group and V a normed G-module. There exist a
neighborhood U of the identity in G and a constant C ≥ 1 such that for any parameters
0 < η < τ < 1, the following holds when δ is sufficiently small. Let V1 be a proper
submodule of V and π : V → V/V1 the canonical projection. Let A ⊂ U and X ⊂
BV (0, 1) and assume that

(i) 〈A,X〉3 ∩ V
(δ)
1 ⊂ BV (0, δCτ );

(ii) π(X) = BV/V1(0, δ
η),

(iii) A is δτ -away from identity components of proper stabilizers.

Then there exists a submodule W < V such that

(a) the restriction π|W : W → V/V1 is 3δ−η-bi-Lipschitz;
(b) BW (0, δη) ⊂ X(δ

τ ) and X ⊂ W (δτ ).

Proof. For convenience, we write V ′ = V/V1. On account of Lemma 2.7, which gives
us the neighborhood U , we may assume that A is finite of cardinality n ≤ dimG and
is δC1τ -away from proper stabilizers, where C1 ≥ 2 is a constant depending only on V .
Shrinking again the neighborhood U if necessary, we can ensure that the action on V of
any element in A is 2-bi-Lipschitz.

Assumption (ii) allows us to pick a section σ : BV ′(0, δη)→ X of the projection π ,
i.e. for any y ∈ BV ′(0, δη),

π ◦ σ(y) = y.

The choice of such a σ is arbitrary. In fact, thanks to assumption (i), different choices
only differ by at most δCτ . Indeed, for any x ∈ X, we have x − σ(π(x)) ∈ (X−X)∩ V1
and therefore, by assumption (i),

‖x − σ(π(x))‖ ≤ δCτ . (2)

Again from assumption (i), it follows that σ is almost a morphism of G-modules, in the
sense that for all y, z ∈ BV ′(0, δη) and all a ∈ A,

‖σ(y)‖ ≤ δCτ if y ∈ BV ′(0, δ); (3)

‖σ(y)+ σ(z)− σ(y + z)‖ ≤ δCτ if y + z ∈ BV ′(0, δη); (4)

‖a · σ(y)− σ(a · y)‖ ≤ δCτ if a · y ∈ BV ′(0, δη). (5)

Indeed, we have, respectively, σ(y) ∈ X ∩ V (δ)1 , σ(y)+ σ(z)− σ(y + z) ∈ 3X ∩ V1 and
a · σ(y)− σ(a · y) ∈ (A ·X −X) ∩ V1.

In particular, (3) and (4) say that σ is almost additive; by Lemma 2.10 below, σ is
close to a genuine linear map. More precisely, there exists a linear section ϕ : V ′ → V

of π (i.e. π ◦ ϕ = IdV ′ ) such that for all y ∈ BV ′(0, δη),

‖ϕ(y)− σ(y)‖ ≤ δ(C−1)τ (6)



2138 Weikun He, Nicolas de Saxcé

provided δ is small enough. From the linearity of ϕ, the fact that X ⊂ BV (0, 1), and (2),
(5) and (6), we deduce that for all y ∈ V ′, all a ∈ A and all x ∈ X,

‖ϕ(y)‖ ≤ 2δ−η‖y‖;

‖a · ϕ(y)− ϕ(a · y)‖ ≤ δ(C−3)τ
‖y‖;

‖x − ϕ(π(x))‖ ≤ δ(C−2)τ .

Let W0 be the image subspace of ϕ. From the above, it follows that

the restriction π|W0 : W0 → V ′ is 2δ−η-bi-Lipschitz; (7)

X ⊂ W0 + BV (0, δ(C−2)τ ); (8)

BW0(0, δ
η/2) ⊂ ϕ(BV ′(0, δη)) ⊂ X + BV (0, δ(C−1)τ ); (9)

∀a ∈ A, ∀w ∈ BW0(0, 1), d(a · w,W0) ≤ δ
(C−3)τ . (10)

The inequality (10) says that W0 is almost invariant under the action of A. We now
use Łojasiewicz’s inequality to show that it is close to a G-submodule. Let a1, . . . , an
be the elements of A and write a = (a1, . . . , an). Consider the real-analytic function on
G×n × Grass(dimV ′, V ) defined by

f (g1, . . . , gn,W) =

n∑
i=1

∫
BW (0,1)

d(gi · w,W)
2 dw.

From (10) it follows that f (a,W0) ≤ δ(2C−7)τ provided δ is small enough. By Ło-
jasiewicz’s inequality (Theorem 2.8) applied to the compact set Ū×n×Grass(dimV ′, V ),
there exists a constant C2 depending only on the representation V such that for all g =
(g1, . . . , gn) ∈ U

×n and W ∈ Grass(dimV ′, V ),

f (g,W) ≥
1
C2
d((g,W), Z)C2

where Z is the zero set of f . Therefore, there exist b = (b1, . . . , bn) ∈ G
×n and W ∈

Grass(dimV ′, V ) such that f (b,W) = 0 and

d((a,W0), (b,W)) ≤ δC1τ

provided 2C − 7 ≥ (C1 + 1)C2. The equality f (b,W) = 0 exactly means that each bi
belongs to the stabilizer StabGW , and hence

A ⊂ (StabGW)(δ
C1τ )

But A is δC1τ -away from proper stabilizers, hence W must be a G-submodule. Finally,
conclusions (a) and (b) follow from (7)–(9) and the fact that W is δC1τ -close to W0. ut

In the above proof, we made use of the following elementary lemma, a discretized version
of the fact that any continuous additive map between two vector spaces is automatically
linear.
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Lemma 2.10 (Almost additive maps). Let 0 < δ < ρ1 < ρ2 ≤ 1 be parameters. Let V
and V ′ be finite-dimensional normed vector spaces. If σ : BV ′(0, ρ2)→ V satisfies

(i) σ(BV ′(0, δ)) ⊂ BV (0, ρ1);
(ii) for all x, y ∈ BV ′(0, ρ2), if x + y ∈ BV ′(0, ρ2) then

σ(x)+ σ(y)− σ(x + y) ∈ BV (0, ρ1),

then there is a linear map ϕ : V ′→ V such that for all x ∈ BV ′(0, ρ2),

‖σ(x)− ϕ(x)‖ �V ′ (− log δ + 1)ρ1.

Moreover, if there are linear maps π : V → V ′′ and ψ : V ′ → V ′′ such that π ◦ σ = ψ
on BV ′(0, ρ2), then we may also ensure that π ◦ ϕ = ψ on V ′.

Proof. We first consider the special case where ρ2 = 1 and V ′ = R. In this case define
ϕ : R → V to be the unique linear map such that ϕ(1) = σ(1). From assumption (ii), it
follows that

∀x ∈ [0, 1/2], ‖2σ(x)− σ(2x)‖ ≤ ρ1.

Using this and a simple induction, we prove that

∀n ∈ N, ‖σ(2−n)− ϕ(2−n)‖ ≤ ρ1. (11)

LetN be the integer such that 2−N ≤ δ < 2−N+1. It follows from (11) and assumption (i)
that

‖ϕ(2−N )‖ ≤ 2ρ1. (12)

For any x ∈ [0, 1], let (x1, . . . , xN ) ∈ {0, 1}N be the firstN digits in its binary expansion,
i.e. for some r ∈ [0, δ], x =

∑N
n=1 xn2−n + r . Then by assumption (ii), (11) and (12),

‖σ(x)− ϕ(x)‖ ≤

N∑
n=1

xn‖σ(2−n)− ϕ(2−n)‖ + ‖σ(r)‖ + 2N r‖ϕ(2−N )‖ +Nρ1

≤ (2N + 5)ρ1.

Consequently,

‖σ(−x)− ϕ(−x)‖ ≤ ‖ϕ(x)− σ(x)‖ + ‖σ(−x)+ σ(x)− σ(0)‖ + ‖σ(0)‖
≤ (2N + 7)ρ1.

This proves the lemma in the case V ′ = R and ρ2 = 1. For a general normed vector
space V ′, in the case ρ2 = 1, pick a basis (u1, . . . , ud) consisting of vectors of unit length
and apply the special case to each function σi : t 7→ σ(tui), i = 1, . . . , d . This yields
linear maps ϕ1, . . . , ϕd : R→ V , and we define ϕ : V ′→ V by ϕ(t1u1 + · · · + tdud) =

ϕ1(t1) + · · · + ϕd(td). Then by (ii), we have the desired inequality for any vector in
BV ′(0, 1)∩([−1, 1]u1+· · ·+[−1, 1]ud). This domain contains a ball BV ′(0, 1/k)where
k ∈ N depends only on V ′ and the choice of the basis. We conclude by using k times the
almost additivity (ii).

The general case ρ2 ≤ 1 follows from the case ρ2 = 1, by considering the map
σ ′ : V ′→ V defined by σ ′(x) = σ(ρ2x).

The “moreover” part is clear from the proof. ut
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We are now ready to prove Theorem 2.3. The main idea is to use induction on the length
of the module. Note that among the assumptions of Theorem 2.3, (ii) is preserved by
passing to any submodule or any quotient of V and (iii) is preserved by passing to any
quotient. Finally, (i) passes to the quotient V/V1 of V by the first submodule V1 in the
Jordan–Hölder decomposition. Thus by the induction hypothesis, it is easy to produce a
large ball in V/V1. Then it can be proved (this is done in the third step of the proof below)
that we can produce a large vector in V1 and hence a large ball in V1 by the base case.
Then a technical difficulty arises: a large ball in V/V1 and a large ball in V1 do not add
up to a ball in V . To deal with this difficulty we need to produce the large ball in V/V1
using only vectors of controlled length (this is done in the first step of the proof below).
Another technical difficulty is in the third step where we want to produce a vector in V1 of
length ≥ δε2 for any given ε2 > 0. The idea is that, otherwise we could apply Lemma 2.9
to conclude that X is trapped in a submodule, which would contradict assumption (iii).

Proof of Theorem 2.3. The proof goes by induction on the length ` of the module V .
The base case ` = 1, where V is a non-trivial irreducible representation, corresponds to
Theorem 2.4, and is proved above. Assume that the result holds for all representations
of length less than ` ≥ 2, let V ∈ P(G) be a representation of length `, and suppose
A ⊂ G and X ⊂ V satisfy conditions (i)–(iii) of the theorem, for some small ε > 0.
Let 0 = V0 < · · · < V` = V be the Jordan–Hölder sequence given by assumption (i).
Write V ′ = V/V1 and denote by πV ′ : V → V ′ the projection. Then the module V ′ has
length `− 1 and as noted above, the conditions in Theorem 2.3 are satisfied for A acting
on πV ′(X) ⊂ V ′.

First step. We first prove that there exist ε1 > 0 and s1 ≥ 1 depending on V , ε0 and κ
such that

BV ′(0, δε0) ⊂ πV ′(〈A,X〉s1 ∩ B(0, δ
ε1))+ BV ′(0, δ).

Let ε1 ∈ (0, ε0) be a small parameter, whose precise value will be specified at the end
of this step. By applying the induction hypothesis to V ′, whose length is at most ` − 1,
and replacing X by 〈A,X〉s , we may assume that BV ′(0, δε1) ⊂ πV ′(X)

(δ). Cover X with
δ−O(ε1) balls of radius δ2ε1 , pick a ball B such that N(πV ′(B ∩ X), δ) is maximal, and
translate it back to the origin to get

N(πV ′(X
′), δ) ≥ δ− dimV ′+O(ε1)

with X′ = (X − X) ∩ BV (0, δ2ε1). This lower bound ensures that πV ′(X′) is δO(ε1)-
away from proper linear subspaces in V ′. The induction hypothesis, applied to the subset
πV ′(X

′) ⊂ V ′, with acting set A, yields the desired inclusion provided that ε1 is small
enough.

Second step. We assume X(δ) ∩ V1 contains a large vector.
Let s2, ε2 > 0 be the quantities given by Theorem 2.4 applied to the representation V1,

with constants κ, ε1. We may choose s2 and ε2 uniformly over all choices for V1; indeed,
up to a (dimV )-bi-Lipschitz isomorphism of G-modules, there are only finitely many
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choices for V1. And assume that there exists v ∈ X(δ) ∩ V1 with ‖v‖ ≥ δε2 . Then, using
the base case for the action of G on the irreducible module V1, we find that

BV1(0, δ
ε1) ⊂ 〈A,X(δ)〉s2 + BV (0, δ). (13)

Now let z ∈ BV (0, δε0). By the first step, we may find y ∈ 〈A,X〉s1 ∩ BV (0, δ
ε1) and

t ∈ V1 such that z = y + t + O(δ). Necessarily, ‖t‖ < 2δε1 , so that by (13), t ∈
〈A,X〉2s2 +O(δ). All in all, setting s = s1 +Os1(s2), we find

BV (0, δε0) ⊂ 〈A,X〉s + BV (0,Os1,s2(δ)).

This finishes the proof of the theorem in this case.

Third step. Finally, we prove that there exists s3 ≥ 1 depending on V , ε0 and κ such that
〈A,X〉

(δ)
s3 ∩V1 always contains a vector of length at least δε2 , which allows us to conclude

the proof using the second step.
Let C be the constant given by Lemma 2.9. Let 0 < ε3 < ε2/C be a parameter whose

value will be chosen later according to ε2. Let 0 < ε4 < ε3 be a parameter whose value
will be chosen later according to ε3. Using the induction hypothesis for the representation
V ′ with ε4 and κ , and replacing 〈A,X〉(δ)s byX, we may assume without loss of generality
that

BV ′(0, δε4) ⊂ πV ′(X). (14)

Either 〈A,X〉3 ∩ V
(δ)
1 contains a vector of length ≥ δε2 , in which case we are done, or

〈A,X〉3 ∩ V
(δ)
1 ⊂ BV (0, δε2). In the latter case, Lemma 2.9 applied with τ = ε2/C and

η = ε4 gives a submodule W < V such that the restriction of πV ′ to W is 3δ−ε4 -bi-
Lipschitz and

BW
(
0, 1

2δ
ε4
)
⊂ X(δ1) (15)

where δ1 = δ
ε2/C . Now we apply the base case, Theorem 2.4, to the non-trivial irreducible

representation V/W with ε3 and κ . Observe that πV ′|W being 3δ−ε4 -bi-Lipschitz implies
that πV/W |V1 : V1 → V/W is 4δ−ε4 -bi-Lipschitz. Hence, for the projections pV/W :
G→ End(V/W) and pV1 : G→ End(V1), we have

∀ρ ≥ δ, N(pV/W (A), ρ) ≥ δ
O(ε4)N(pV1(A), ρ) ≥ δ

O(ε4)+ερκ .

Therefore, provided ε4 and ε are small enough in terms of V1, ε3 and κ , Theorem 2.4
yields some constant s ≥ 1 depending only on V/W , κ and ε3 such that

BV/W (0, δε3) ⊂ πV/W (〈A,X〉s)+ BV/W (0, δ).

Together with inclusion (15), this implies that

N(〈A,X〉s +X, δ1)� (δ−1
1 δε3)dimV/W (δ−1

1 δε4)dimW
≥ δ− dimV

1 δO(ε3).

Cutting 〈A,X〉s+1 into cylinders of axis V1 and diameter δε3 and picking the part with
largest size, we see that

N(〈A,X〉2s+2 ∩ V
(δε3 )
1 , δ1) ≥ δ

− dimV
1 δO(ε3),
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which ensures thatX′ := 〈A,X〉2s+2∩V
(δε3 )
1 is δO(ε3)-away from proper linear subspaces

and a fortiori from submodules. Remembering (14), we know that

πV ′(X
′) = BV ′(0, δε3).

At this stage apply Lemma 2.9 to the setX′ with τ = ε2/C and η = ε3. If ε3 is chosen
sufficiently small compared to ε2, conclusion (b) fails while all assumptions except (i) are
satisfied. So there must be v ∈ 〈A,X′〉3 ∩ V

(δ)
1 with ‖v‖ > δε2 . This concludes the proof

of the theorem. ut

3. A product theorem for perfect Lie groups

The goal of this section is to use Theorem 2.3 to prove Theorem 1.2. More precisely, we
prove the following essentially equivalent version of Theorem 1.2, which is a bounded
generation statement.

Theorem 3.1 (Product theorem in perfect Lie groups). LetG be a connected perfect Lie
group. There exists a neighborhood U of the identity in G such that given κ > 0 and
ε0 > 0, there exist ε > 0 and s ≥ 1 such that the following holds for δ > 0 sufficiently
small. Let A be a subset of U such that

(i) for any projection πi : G→ G/Hi to a simple factor,

∀ρ ≥ δ, N(πi(A), ρ) ≥ δ
ερ−κ ;

(ii) A is δε-away from closed connected subgroups in G.

Then
BG(1, δε0) ⊂ (A ∪ {1} ∪ A−1)sBG(1, δ).

Theorem 1.2 follows immediately from Theorem 3.1 in combination with a Ruzsa-type
inequality [25, Theorem 6.8].

The proof of Theorem 3.1 goes as follows. We shall first prove the special case where
the radical of our perfect Lie group G is abelian. In this case, the adjoint representation
of G belongs to P(G), as we shall see in Lemma 3.4 below. So Theorem 2.3 applies
and shows that we can produce in the Lie algebra g of G a large ball using addition and
the adjoint action of G: Bg(0, δε0) ⊂ 〈A, logA〉(δ)s . Then we want to exponentiate this
inclusion to the level of the group G. For that, we use the Campbell–Hausdorff formula,
which allows us to approximate sums in g by products in G with any desired precision;
this is the content of Lemma 3.6. Finally, to deduce the general case from the special case,
we shall use an induction on the nilpotency class of the radical of G.

3.1. Perfect Lie algebras and Lie groups

We begin by recording some elementary facts about perfect Lie groups and Lie algebras.
Let G be a connected Lie group with Lie algebra g. Using Levi’s decomposition

theorem [24, Corollary 1, p. 49], we may write g as a semidirect product g = s n r of a
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semisimple Lie algebra s and a solvable radical r. Writing s = s1 ⊕ · · · ⊕ sk as a sum of
simple ideals, one sees that for each i in {1, . . . , k}, hi = (

⊕
j 6=i sj ) n r is an ideal in g.

The Lie algebra hi is the Lie algebra of a closed normal subgroupHi CG. The projection
maps πi : G → G/Hi are the projections of G to its simple factors. Note that any left-
invariant Riemannian metric d on G induces a left-invariant metric on G/Hi . Indeed, if
N CG is any closed normal subgroup, one defines a distance on the quotient G/N by

∀x, y ∈ G, d(x̄, ȳ) = inf
n,n′∈N

d(xn, yn′) = d(y, xN) = d(x−1y,N).

For later use, we now list three elementary and standard lemmas about perfect Lie
algebras.

Lemma 3.2. If g is a perfect Lie algebra, then its solvable radical r is nilpotent. In par-
ticular, g can be written as a semidirect product g = sn r of a semisimple Lie algebra s
with a nilpotent ideal r.

Proof. See for instance [1, Lemma 2.4]. ut

Lemma 3.3. Let g be a perfect Lie algebra with Levi decomposition g = snr. The image
of a proper ideal of g under the map g→ g/r is a proper ideal. In particular, the image
of a maximal proper ideal is a maximal proper ideal.

Proof. Let n be an ideal in g such that n+ r = g. We want to show that n = g. Denote by
Di r, i ≥ 0, the derived series of r, i.e. D0 r = r and Di+1 r = [Di r,Di r] for i ≥ 0. We
show by induction that for all i ≥ 0,

g = n+ Di r. (16)

Indeed, (16) is true for i = 0. Suppose that it is true for some i ≥ 0; then it follows from
[g, g] = g that

g = [n, n] + [n,Di r] + [Di r,Di r] ⊂ n+ Di+1 r,

because n is an ideal in g. Since r is solvable, we may take i such that Di r = 0 to conclude
that n = g. ut

Lemma 3.4 (Perfect abelian extension of a semisimple group). Let G be a perfect Lie
group with Lie algebra g. If the radical r of g is abelian, then the adjoint representation
of G is of class P .

Proof. We have an exact sequence of G-modules

0→ r→ g→ g/r→ 0,

and by Proposition 2.2(i), all we need to check is that both r and g/r belong to P(G). Let
R be the solvable radical of G; it is equal to the closed connected subgroup of G with
Lie algebra r. The Lie group G/R is semisimple, so its adjoint representation belongs to
P(G/R). By Proposition 2.2(iii), g/r is of class P as a representation of G.
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On the other hand, r is totally reducible under the action of the semisimple group
S = G/R, and moreover

r = [s, r],

because g is perfect and r abelian. This implies that r is a representation of class P for S,
and therefore for G by Proposition 2.2(iii). ut

Remark 3. IfG is not perfect, then g/[g, g] is non-zero, andG acts trivially on g/[g, g],
so that the adjoint representation does not belong to P(G).

Remark 4. It is not true in general that the adjoint representation of a perfect connected
Lie group is of class P . Indeed, there exist perfect Lie algebras with non-trivial centers.
For instance, let F2,2 denote the free 2-nilpotent Lie algebra over two generators x, y.
It is the Lie algebra of the Heisenberg group H3(R). The action of SL(2,R) on F2,2 by
linear substitution integrates to an action of SL(2,R) onH3(R) by group automorphisms.
This allows us to define the Lie group G = SL(2,R) n H3(R). Its Lie algebra g =
sl(2,R) n F2,2 is perfect. However, the adjoint representation of G is not of class P ,
because G acts trivially on the center of g, generated by [x, y].

3.2. Abelian extensions of semisimple groups

Here, we prove Theorem 3.1 in the case where the Lie algebra of G can be written as
a semidirect product g = s n r with r abelian. We shall see in 3.3 that the general case
follows from this one.

We fix a connected perfect Lie group G with Lie algebra g = s n r, where s is
semisimple and r is an abelian ideal. To prove Theorem 3.1 in this case, the idea is to
apply Theorem 2.3 to the adjoint representation of G on its Lie algebra, and then to use
the Campbell–Hausdorff formula. Before that, we note that condition (i) in Theorem 3.1
automatically implies non-concentration for the image of A under any non-trivial group
homomorphism.

Lemma 3.5. LetG be a perfect connected Lie group. Given a non-trivial homomorphism
ϕ : G→ H to some connected Lie groupH , there exists a neighborhoodU of the identity
in G such that the following holds. Let ε > 0 and κ > 0 be parameters and let A ⊂ U be
a subset satisfying condition (i) of Theorem 3.1. Then

∀ρ ≥ δ, N(ϕ(A), ρ)�ϕ δ
ερ−κ .

Proof. The isomorphism G/kerϕ → ϕ(G) is bi-Lipschitz when restricted to compact
neighborhoods. Hence without loss of generality, we may assume that H = G/kerϕ.
Since kerϕ is closed, there exists a neighborhood U of the identity in G such that for all
x, y, d(x−1y, kerϕ) = d(x−1y, (kerϕ)◦). This allows us to further assume that kerϕ is
connected.

Let n be a maximal proper ideal of g containing the Lie algebra of kerϕ. By
Lemma 3.3, n is exactly the kernel of the projection of g to one of its simple factors.
It follows that n is the Lie algebra of a proper closed normal subgroup N CG, withG/N
one of the simple factors ofG. We deduce the desired estimate from condition (i) of The-
orem 3.1 by using the fact that G/kerϕ→ G/N is 1-Lipschitz. ut
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Proof of Theorem 3.1 in the case where r is abelian. In this proof, implied constants in
Landau and Vinogradov notations depend on G and on the parameter κ .

By Lemma 3.4, the adjoint representation ofG on g is of class P . SetX = log(A−1A∩

BG(1, δε)) ⊂ g. Then the hypotheses of Theorem 2.3 are all met with ε replaced by
O(ε). Indeed, assumption (i) is guaranteed by Lemma 3.5, and A being δε-away from
subgroups is exactly assumption (ii) of Theorem 3.1. So it remains to check that X is
δO(ε)-away from any proper submodule W in g. We may assume that W is maximal.
Then it is a maximal proper ideal of g, which by Lemma 3.3 is equal to the kernel Hi
of some projection πi : g → g/hi of G on a simple factor. In particular, there are only
finitely many such W . Shrinking the neighborhood U if necessary, it suffices to check
that A−1A ∩ BG(1, δε) is δO(ε)-away from Hi . By assumption (i), for any ρ ≥ δ,

N(πi(A
−1A ∩ BG(1, δε)), ρ) ≥ max

g
N(πi(A ∩ BG(g, δ

ε)), ρ)

≥ δO(ε)N(πi(A), ρ) ≥ δ
O(ε)ρ−κ .

The last quantity is larger than 1 if we choose ρ = δCε with a large constant C = O(1).
This shows that A−1A ∩ BG(1, δε) is δO(ε)-away from kerπi .

Thus, we can apply Theorem 2.3 to get an integer s ≥ 1 such that

Bg(0, δε0) ⊂ 〈A,X〉s + Bg(0, δ) (17)

when ε is small enough.
The idea is now to apply the Campbell–Hausdorff formula at an order ` such that

the error term is of size at most δ. We identify an element w of the free group Fs
generated by s elements and the word map w : G×s → G it induces. If x, y are
elements in g, we want to approximate ex+y by a word in ex, ey . For example, with
a remainder term of order 2, ex+y = exeyeO(‖x‖

2
+‖y‖2). In order to get a remain-

der term of order 3, it is easier to approximate e2(x+y), and then we get e2(x+y)
=

(ex)2(ey)2(ey)2ex(ey)−2(ex)−1eO(‖x‖
3
+‖y‖3). We shall use the following lemma, which

generalizes these elementary computations, and follows from the Campbell–Hausdorff
formula.

Lemma 3.6. Let exp : g→ G denote the exponential map of a Lie group. Fix a Euclidean
norm on g and endow G with the associated left-invariant Riemannian metric. For all
integers s ≥ 1 and ` ≥ 1, there exists an integer C ≥ 1, a word map w ∈ Fs and a
neighborhood U of 0 in g such that for all x1, . . . , xs ∈ U ,

d
(
exp(Cx1 + · · · + Cxs), w(exp x1, . . . , exp xs)

)
�` (‖x1‖ + · · · + ‖xs‖)

`.

Proof. Consider g-valued functions f defined on a neighborhood of 0 in g×s that can be
written as a sum of a convergent series

f (x1, . . . , xs) =

+∞∑
k=1

fk(x1, . . . , xs)

where for each k, fk(x1, . . . , xs) is a Q-linear combination of repeated brackets
[xi1 , . . . , xik ] = [xi1 , [xi2 , . . . , [xi`−1 , xik ] . . . ]] of length k. The series converges on
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Bg(0, r)×s for some r > 0 in the sense that the numerical series obtained by replac-
ing each repeated bracket of length k by rk and each coefficient by its absolute value is
convergent. Identifying two such functions if they agree on a neighborhood of 0, we get
a linear space Gs over Q. Equipped with its obvious Lie bracket, Gs is a graded Lie al-
gebra over Q. For ` ≥ 1, we write O(d◦ ≥ `) to denote an unspecified element in Gs of
valuation at least `.

By the Baker–Campbell–Hausdorff formula [9], the map defined by (x, y) 7→ x∗y =

log(exp(x) exp(y)) belongs to G2, and moreover

x ∗ y = x + y + 1
2 [x, y] +O(d

◦
≥ 3). (18)

From that we deduce, by induction on s, that

x1 ∗ · · · ∗ xs = x1 + · · · + xs +O(d
◦
≥ 2). (19)

We denote by [x, y]∗ the group commutator x ∗ y ∗ (−x) ∗ (−y) and by [x1, . . . , xs]∗ the
repeated group commutator [x1, [x2 . . . , [xs−1, xs]∗ . . . ]∗]∗. By (18) we have

[x, y]∗ = [x, y] +O(d
◦
≥ 3),

and again by induction on s,

[x1, . . . , xs]∗ = [x1, . . . , xs] +O(d
◦
≥ s + 1). (20)

Now we prove by induction on ` that there exists an integer C` and a word w` ∈ Fs such
that

x1 + · · · + xs = w
∗

` (x1/C`, . . . , xs/C`)+O(d
◦
≥ `), (21)

where w∗` is the word map induced by w`, which is well defined on a neighborhood of 0
in g×s . For ` = 2, this is given by (19). Suppose the result has been proved for some
` ≥ 2. Let f be the sum of terms of degree ` in the remainder term O(d◦ ≥ `) on the
right-hand side of (21). Since f has rational coefficients, there is an integer C ≥ 1 such
that we can write

f (x1, . . . , xs) =

N∑
i=1

mi(x1/C, . . . , xs/C)

where each mi is a repeated bracket of length `. Therefore, by (20) and (19), there is a
product w′ ∈ Fs of repeated commutators such that

f (x1, . . . , xs) = w
′∗(x1/C, . . . , xs/C)+O(d

◦
≥ `+ 1).

Thus,

x1 + · · · + xs = w
∗

` (x1/C`, . . . , xs/C`)+ w
′∗(x1/C, . . . , xs/C)+O(d

◦
≥ `+ 1)

= w∗` (x1/C`, . . . , xs/C`) ∗ w
′∗(x1/C, . . . , xs/C)+O(d

◦
≥ `+ 1).

In the last step we used the fact that w′∗(x1/C, . . . , xs/C) has valuation at least `. This
finishes the proof of the induction step and concludes the proof of the lemma. ut
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To conclude the proof of Theorem 3.1 in case r is abelian, we choose ` > 1/ε and
apply Lemma 3.6 to elements xi of the form xi = Ad(ai)yi with ai ∈ As and yi ∈ X.
By definition X ⊂ Bg(0, δε), so the error term is indeed of size Os(δ`ε) = O(δ), and
therefore

exp[C Ad(a1)y1 + · · · + C Ad(as)ys] ∈ w(a1e
y1a−1

1 , . . . , ase
ysa−1

s )BG(1,O(δ))

∈ (A ∪ {1} ∪ A−1)s
′

BG(1,O(δ))

for some s′ = Os,`(1). Recalling (17), we obtain

BG(1, δε0) ⊂ exp[C · Bg(0, δε0)] ⊂ exp[C · 〈A,X〉s + Bg(0, Cδ))] ⊂ As
′

BG(1,O(δ)).

This finishes the proof of the theorem for r abelian. ut

3.3. Proof of the product theorem: general case

We now explain how to deal with a perfect Lie group G with Lie algebra g = s n r,
where r is nilpotent by Lemma 3.2 but not abelian. This will follow from the previous
case, together with a quantitative version of the following fact: If R is a nilpotent Lie
group, then a subset A ⊂ R generates the group R if and only if A mod [R,R] generates
R/[R,R].

ForA and B subsets of a groupG, we shall write [A,B] for the set of all commutators
[a, b], a ∈ A, b ∈ B. This notation is in conflict with the group-theoretic commutator
which is the subgroup generated by all commutators. Despite this inconvenience, it will
be clear from the context what [A,B] means. The precise lemma that we shall use is as
follows.

Lemma 3.7. Let R be a connected nilpotent Lie group with descending central series Ri ,
i ≥ 1, i.e. R1 = R and for i ≥ 1, Ri+1 = [R,Ri]. For each i ≥ 1 there is k ≥ 1 such
that for all ρ > 0 small enough,

BRi+1(1, ρ
2) ⊂ [BR(1, ρ), BRi (1, ρ)]

k.

Proof. Denote by ri , i ≥ 1, the descending central series of the Lie algebra r. Let
(z1, . . . , zm) be a basis of ri+1 consisting of commutators zj = [xj , yj ] with xj ∈ r
and yj ∈ ri . For each j , consider the map fj : R→ Ri+1 defined by

fj (t) =

{
[exp(
√
t xj ), exp(

√
t yj )] if t ≥ 0,

[exp(
√
−t yj ), exp(

√
−t xj )] if t < 0,

and further define f : Rm → Ri+1 by f (t1, . . . , tm) = f1(t1) · · · fm(tm). The function f
is of class C1 and its differential at 0 is

T0f (h1, . . . , hm) = h1z1 + · · · + hmzm,
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so it is a C1-diffeomorphism on a neighborhood of 0. This implies that for some constant
c > 0 depending only on R,

BRi+1(1, cρ
2) ⊂ f (BR(0, ρ)) ⊂ [BR(1, ρ), BRi (1, ρ)]

m.

This finishes the proof, because for ρ small enough, BRi+1(1, cρ
2) · BRi+1(1, cρ

2) ⊃

BRi+1(1, 2cρ2). ut

We are now ready to finish the proof of Theorem 3.1.

Proof of Theorem 3.1 in the general case. Here again implied constants in Landau and
Vinogradov notations depend on G and κ . Write the Lie algebra of G as a semidirect
product g = s n r, with s semisimple and r a nilpotent ideal, and let R be the nilpotent
radical of G, i.e. the closed connected normal subgroup of G with Lie algebra r. The
proof goes by induction on the nilpotency class ` of R.

We have already seen that Theorem 3.1 holds if ` ≤ 1. Now suppose that R has
nilpotency class ` ≥ 2 and that Theorem 3.1 has been proved if the nilpotency class is
strictly less than `.

Let Ri , i ≥ 1, denote the lower central series of the group R. Each Ri , i ≥ 1, is
closed and connected, and the Lie algebra of Ri is exactly the i-th term in the lower
central series of r (see e.g. [17, Theorem 5.7, p. 55]). We first remark that the assumptions
of Theorem 3.1 are preserved when projecting to a quotient. The nilpotency class of the
radical of G/R` is ` − 1. Let ε1 > 0 be some constant, whose value will be specified
later. By the induction hypothesis applied toG/R`, provided ε is small enough compared
to ε1, for some integer s depending on κ and ε1,

BG(1, δε1) ⊂ (A ∪ {1} ∪ A−1)sBG(1, δ)R`

Without loss of generality, we may replace (A ∪ {1} ∪ A−1)sBG(1, δ) by A, and assume
that

BR(1, δε1) ⊂ (R ∩ A)R` and BR`−1(1, δ
ε1) ⊂ (R`−1 ∩ A)R`.

By Lemma 3.7, we also have

BR`(1, δ
2ε1) ⊂ [BR(1, δε1), BR`−1(1, δ

ε1)]O(1).

From these inclusions and the fact that R` is in the center of R, it follows that

BR`(1, δ
2ε1) ⊂ AO(1)BG(1,O(δ)). (22)

At this stage replace AO(1)BG(1,O(δ)) by A. The fact that BR(1, δε1) ⊂ AR` and
BR`(1, δ

2ε1) ⊂ A does not prove what we want yet but gives the lower bound

N(A2, δ)�G δ
− dimG+O(ε1).

Covering A2 by balls of radius 1
2δ

3ε1 , we obtain

N(A−2A2
∩ BG(1, δ3ε1), δ)�G δ

− dimG+O(ε1).
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Write A′ = A−2A2
∩BG(1, δ3ε1). Then A′ satisfies the assumptions of Theorem 3.1 with

κ = 1 and ε = O(ε1). Hence if ε1 is small enough compared to ε0, then by the induction
hypothesis again,

BG(1, δε0) ⊂ A′sBG(1, δ)R`

for some s depending on ε0. Since any element in R` involved in this inclusion is within
distance δ2ε1 from the identity, we can conclude using (22) that

BG(1, δε0) ⊂ A′O(1)BG(1, δ)A.

This finishes the proof of Theorem 3.1. ut

3.4. Approximate subgroups in non-perfect Lie groups

Here we prove Proposition 1.3. First, observe that in a non-trivial abelian Lie group, gen-
eralized arithmetic progressions (i.e. sums of arithmetic progressions) are the prototypes
of approximate subgroups. Then in a non-perfect Lie group G, it suffices to lift a gen-
eralized arithmetic progression in its abelianization G/[G,G] to obtain an approximate
subgroup with the desired properties.

Proof of Proposition 1.3. First consider the abelian case G = R×d , with d ≥ 1. Let
κ ∈ (0, 1]. Given a neighborhood U of 0 ∈ R×d , let r > 0 be such that BRd (0, r) ⊂ U .
Define

P = {δκx ∈ R×d | x ∈ Z×d ∩ [−δ−κr, δ−κr]×d}.

It is easy to check that P has the required properties.
Now let G be a simply connected non-perfect Lie group. Then G/[G,G] ' R×d

where d = dim g−dim [g, g]. Let π : G→ R×d be the projection. Given a neighborhood
U of 1G ∈ G, let r > 0 be such that BG(1G, 2r) ⊂ U and BRd (0, r) ⊂ π(U). Let P be
defined as above and put A = BG(1G, 2r) ∩ π−1(P ).

On the one hand,

N(A, δ) ≈G,r δ
− dim [g,g]N(π(A), δ) ≈G,r δ

− dim [g,g]N(P, δ) ≈G,r δ
− dim [g,g]−dκ ,

and for similar reasons,

N(AAA, δ)�G,r δ
− dim [g,g]N(P + P + P, δ)�G,r N(A, δ).

On the other hand, when δ is so small that δκ < r , then A is δκ -dense in BG(1G, r),
that is,

BG(1G, r) ⊂ A(δ
κ ).

It follows immediately that for any connected normal subgroup N C G, πG/N (A) is
δκ -dense in BG/N (1G/N , r) and hence

∀ρ ≥ δ, N(πG/N (A), ρ)�G,r ρ
−κ .

Moreover, it is not difficult to see that given a simply connected Lie group G and r > 0,
there is c = c(G, r) > 0 such that no proper closed connected subgroup is c-dense in
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BG(1G, r). From this we deduce that A is (c − δκ)-away from proper closed connected
subgroups. ut
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[10] Erdős, P., Volkmann, B.: Additive Gruppen mit vorgegebener Hausdorffscher Dimension.
J. Reine Angew. Math. 221, 203–208 (1966) Zbl 0135.10202 MR 0186782

[11] He, W.: Discretized sum-product estimates in matrix algebras. J. Anal. Math. 139, 637–676
(2019) Zbl 07172359 MR 4041116

[12] Katz, N. H., Tao, T.: Some connections between Falconer’s distance set conjecture and sets of
Furstenburg type. New York J. Math. 7, 149–187 (2001) Zbl 0991.28006 MR 1856956

[13] Kollár, J.: An effective Łojasiewicz inequality for real polynomials. Period. Math. Hungar. 38,
213–221 (1999) Zbl 0973.26012 MR 1756239

[14] Li, J.: Discretized sum-product and Fourier decay in Rn. arXiv:1811.06852v1 (2018)
[15] Li, J.: Fourier decay, renewal theorem and spectral gaps for random walks on split semisimple

Lie groups. arXiv:1811.06484v1 (2018)
[16] Łojasiewicz, S.: Ensembles semi-analytiques. Preprint IHES (1965); a version revised by

M. Coste (2006) available at https://perso.univ-rennes1.fr/michel.coste
[17] Onishchik, A. L., Vinberg, E. B.: Foundations of Lie theory. In: Lie Groups and Lie Alge-

bras I. Foundations of Lie Theory. Lie Transformation Groups. Springer, Berlin, 1–94 (1993)
Zbl 0781.22003 MR 0950862

[18] Salehi Golsefidy, A.: Super-approximation, I: p-adic semisimple case. Int. Math. Res. Notices
2017, 7190–7263 Zbl 1405.22025 MR 3802123

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1371.22015&format=complete
http://www.ams.org/mathscinet-getitem?mr=3505667
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1357.22003&format=complete
http://www.ams.org/mathscinet-getitem?mr=3529116
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1115.11049&format=complete
http://www.ams.org/mathscinet-getitem?mr=1982147
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1234.11012&format=complete
http://www.ams.org/mathscinet-getitem?mr=2763000
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1135.22010&format=complete
http://www.ams.org/mathscinet-getitem?mr=2358056
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1254.43010&format=complete
http://www.ams.org/mathscinet-getitem?mr=2966656
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1268.05103&format=complete
http://www.ams.org/mathscinet-getitem?mr=3037896
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1366.22004&format=complete
http://www.ams.org/mathscinet-getitem?mr=3648974
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0029.24507&format=complete
http://www.ams.org/mathscinet-getitem?mr=0021940
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0135.10202&format=complete
http://www.ams.org/mathscinet-getitem?mr=0186782
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:07172359&format=complete
http://www.ams.org/mathscinet-getitem?mr=4041116
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0991.28006&format=complete
http://www.ams.org/mathscinet-getitem?mr=1856956
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0973.26012&format=complete
http://www.ams.org/mathscinet-getitem?mr=1756239
http://arxiv.org/abs/1811.06852v1
http://arxiv.org/abs/1811.06484v1
https://perso.univ-rennes1.fr/michel.coste
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0781.22003&format=complete
http://www.ams.org/mathscinet-getitem?mr=0950862
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1405.22025&format=complete
http://www.ams.org/mathscinet-getitem?mr=3802123


Sum-product for real Lie groups 2151

[19] Salehi Golsefidy, A.: Super-approximation, II: the p-adic and bounded powers of square-free
integers cases. J. Eur. Math. Soc. 21, 2163–2232 (2019) Zbl 1422.22013 MR 3959861

[20] Salehi Golsefidy, A., Varjú, P. P.: Expansion in perfect groups. Geom. Funct. Anal. 22, 1832–
1891 (2012) Zbl 1284.20044 MR 3000503

[21] de Saxcé, N.: Subgroups of fractional dimension in nilpotent or solvable Lie groups. Mathe-
matika 59, 497–511 (2013) Zbl 1272.22006 MR 3081784

[22] de Saxcé, N.: Borelian subgroups of simple Lie groups. Duke Math. J. 166, 573–604 (2017)
Zbl 1362.22010 MR 3606726

[23] de Saxcé, N.: A product theorem in simple Lie groups. Geom. Funct. Anal. 25, 915–941
(2015) Zbl 1321.22013 MR 3361775

[24] Serre, J.-P.: Lie Algebras and Lie Groups. 2nd ed., Springer, Berlin (1992) Zbl 0132.27803
MR 1176100

[25] Tao, T.: Product set estimates for non-commutative groups. Combinatorica 28, 547–594
(2008) Zbl 1254.11017 MR 2501249

[26] Vigolo, F.: Measure expanding actions, expanders and warped cones. Trans. Amer. Math. Soc.
371, 1951–1979 (2019) Zbl 1402.05205 MR 3894040

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1422.22013&format=complete
http://www.ams.org/mathscinet-getitem?mr=3959861
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1284.20044&format=complete
http://www.ams.org/mathscinet-getitem?mr=3000503
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1272.22006&format=complete
http://www.ams.org/mathscinet-getitem?mr=3081784
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1362.22010&format=complete
http://www.ams.org/mathscinet-getitem?mr=3606726
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1321.22013&format=complete
http://www.ams.org/mathscinet-getitem?mr=3361775
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0132.27803&format=complete
http://www.ams.org/mathscinet-getitem?mr=1176100
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1254.11017&format=complete
http://www.ams.org/mathscinet-getitem?mr=2501249
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1402.05205&format=complete
http://www.ams.org/mathscinet-getitem?mr=3894040

	1. Introduction
	2. Sum-product theorem in representations of G
	3. A product theorem for perfect Lie groups
	References

