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Abstract. We prove lower bounds for the Dirichlet Laplacian on possibly unbounded domains in
terms of natural geometric conditions. This is used to derive uncertainty principles for low energy
functions of general elliptic second order divergence form operators with not necessarily continuous
main part.
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1. Introduction

Generalized eigensolutions to energies near the bottom of the spectrum of infinite vol-
ume Laplacians should be well spread out in configuration space. This can be seen as a
version of the uncertainty principle: Low (and thus well determined) kinetic energy of
a quantum particle cannot occur simultaneously with a sharp concentration of the posi-
tion of the particle. Mathematically, this is usually associated with quantitative forms of
unique continuation for solutions of second order linear differential equations. Starting
with the groundbreaking work of Carleman [13] we just mention [2, 3, 4, 20, 21] as a
small list of references, as well as [26], which contains a good overview of the literature
up to about 2006.

While this is a classical topic, it has found renewed interest in recent years in con-
nection with describing the fluctuation boundary regime of localization in Anderson-type
models with a random potential which only partially covers configuration space (also re-
ferred to as “trimmed” Anderson models by some authors, e.g. [17, 38]). Eigenvectors or
generalized eigenvectors of the unperturbed Hamiltonian have to feel the random pertur-
bation in order to see a Lifshitz tail regime and lead to an associated Wegner estimate. The
starting point of this development was the celebrated paper [8] by Bourgain and Kenig,
who were the first who could treat the Bernoulli–Anderson model and used uncertainty
principles in their analysis. For the subsequent development in this direction see [7, 9, 19,
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24, 25, 39, 35] and the references therein. Recently, in [16, 30], the authors were able to
treat the discrete Bernoulli–Anderson model in 2 and 3 dimensions, respectively, again
with an uncertainty principle as a main ingredient in the proof.

This has provided ample motivation for more thorough studies of the geometric prop-
erties required for subsets of configuration space to guarantee that these subsets carry a
“substantial” part of the mass of low energy states of the Laplacian, both in the contin-
uous setting and for discrete Laplacians on graphs. Our goal here is to establish a result
in the continuous case, similar to work in the discrete setting in [29], and we refer to the
literature cited in that paper. We mention that from a harmonic analysis point of view, our
results are close in spirit to Logvinenko–Sereda theorems (see [27]), with the important
difference that we have to restrict ourselves to spectral projectors with energy intervals
close to the ground state energy.

We should stress that the kind of uncertainty principle we aim at is complementary to
the classical unique continuation results referred to above: on the one hand, it does not
imply global vanishing of eigensolutions that vanish on a ball or vanish at some point to
infinite order. On the other hand, it can be established in situations where such classical
unique continuation results are known not to hold: for certain graphs and elliptic diver-
gence operators with discontinuous main part, which is the focus of the present paper. Let
us moreover point out that an important issue is the uniformity of estimates with respect
to the coefficients and with respect to the underlying domain.

This will allow us to prove localization at band edges for new classes of random
models, an application we will not work out here (compare e.g. [39] for the use of results
on quantitative unique continuation in localization proofs).

Here is the set-up for our main result:
Let d ≥ 3 andHG (1/2 times) the Neumann Laplacian, characterized by the quadratic

form
E[u] :=

1
2

∫
G

|∇u(x)|2 dx on W 1,2(G), (1.1)

on an open and convex, not necessarily bounded, domainG in Rd . The reason for includ-
ing the factor 1/2 here and in the following is that we will study E through its associated
Markov process and we want to get the usual Brownian motion for � = Rd . We denote
by PI (HG) the spectral projection for HG onto an interval I .

The inradius of G is

RG := sup {r | ∃x ∈ G : Br(x) ⊂ G} ∈ (0,∞]. (1.2)

Let R ≥ δ > 0. A closed subset B ⊂ G is said to be (R, δ)-relatively dense in G with
covering radius R and thickness δ provided

∀x ∈ G ∃y ∈ B : BR(x) ∩ B ⊃ Bδ(y). (1.3)

Note that this trivially implies that δ ≤ RG.
In this language a set is relatively dense (in the classical sense) if it is (R, 0)-relatively

dense for someR > 0. Typical (R, δ)-relatively dense sets are given by fattened relatively
dense sets, i.e., their δ-neighborhoods.
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The main result of our work is the following quantitative unique continuation bound
for low energy states of HG and, more generally, elliptic second order divergence form
operators of the type −∇a∇ with a ∈ L∞, a ≥ η0 that we introduce now:

Assume that a(x), x ∈ G, is a symmetric d × d-matrix whose entries are bounded
measurable functions of x such that

a(x) ≥ η0 > 0. (1.4)

Denote by HG
a the unique selfadjoint operator defined by the form

Ea[u] :=
1
2

∫
G

(a(x)∇u(x) | ∇u(x)) dx on W 1,2(G), (1.5)

where we use (· | ·) for the inner product in Rd .

Theorem 1.1. Let d ≥ 3. Then there exist constants a, b, C, c > 0, only depending on d ,
such that for every open and convex G ⊂ Rd , any (R, δ)-relatively dense subset B in G,
and every elliptic a as in (1.4) above,

‖f 1B‖2 ≥ η0κ‖f ‖
2 (1.6)

for all f in the range of PI (HG
a ), where

I =

[
0, Cη0

δd−2

Rd

]
and κ = c

(
δ

R

)d[
b

(R ∧ RG)2
+

∣∣∣∣log
aδd−2

Rd

∣∣∣∣]−2

. (1.7)

While our method of proof allows estimates only for low energies, the bound in (1.6) is
quite satisfactory. It only differs from the optimal estimate (δ/R)d (attained for constant
functions) by a logarithmic correction term and is much better than what appears in the
literature so far: see [35] for a comparison.

Maybe more importantly, it is the first uncertainty principle in d ≥ 3 that holds with-
out any continuity or smoothness assumption on the coefficient matrix a. Usual PDE–
techniques are known to break down beyond Lipschitz continuity of the main coefficient,
as can be seen from the examples in [32, 34].

A nice feature of our method of proof is that we can mainly concentrate on the easier
case of the Laplacian HG. The uncertainty principle then easily extends to any operator
bounded below by a positive multiple of HG which covers the above case of elliptic
second order operators in divergence form. We could as well add positive potentials and
consider other boundary conditions, as long as a lower bound is available. For a more
complete discussion and possible applications we refer to Section 4 below.

Our proof of Theorem 1.1 consists of three parts, covered in the remaining three sec-
tions of this paper. The same general strategy has been used in [29] to prove corresponding
results for Laplacians on graphs. The continuous setting considered here leads to some
additional complications.

The overall idea, presented in the conclusion of the proof of our main theorem in Sec-
tion 4, is to reduce the uncertainty principle (1.6) to showing that the bottom of the spec-
trum of HG

+ β1B rises above the energy interval I in the large coupling limit β →∞
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(where 1B is the characteristic function of B). This approach to uncertainty principles
was introduced in [10]. It provides explicit lower bounds on κ which will yield (1.7).

So we have to understand the large coupling limit of HG
+ β1B , which we start

in Section 2 by studying the case of infinite coupling. This means we will find a lower
bound for HG,S , the Laplacian on � := G \ S with Neumann condition on the boundary
of G and an additional Dirichlet condition on the boundary of a set S (whose relation
to B will be explained below). It is here that we encounter one of the main differences
between the discrete and continuous cases: Points in Rd , for d ≥ 2, are not massive in
the sense of 1-capacities. We further illustrate this in the Appendix by providing a simple
(and certainly not new) example of a set with finite inradius whose Dirichlet Laplacian
has spectrum [0,∞). The key insight in this part of our proof is that we can quantify how
lower bounds of Dirichlet Laplacians with δ-fat and relatively dense complement depend
on δ. The crucial geometric quantity we identify in Theorem 2.5 can be interpreted as
the capacity per unit volume of the set S of obstacles, reminiscent of the “crushed ice
problem” (see Section 2).

As a last part of the strategy we need to be able to relate the lower bounds for finite
and infinite coupling, respectively. Here it is crucial for our proof that the set S is chosen
as a slightly smaller (“semi-fat”) version of B. The space created between the boundaries
of B and S will allow us to compare the spectral minima of HG,S and HG

+ β1B via
a norm bound on the difference of the corresponding heat semigroups. The latter bound
will be proven via the Feynman–Kac formula in Section 3. In particular, this will use a
“hit and run” lemma which bounds the probability that a Brownian path can hit the center
of a fat set and then leave the set (by crossing the space between B and S) within a short
time.

In addition to our main result, some of the auxiliary results obtained in Sections 2
and 3 should be of independent interest. The lower bounds on Dirichlet Laplacians of sets
with (R, ρ)-relatively dense complement shown in Theorem 2.5 improve on a classical
result in [15] in their dependence on the ratio ρ/R (and allow for an additional Neumann
part of the boundary); see the comments at the end of Section 2. Also, while the “hit and
run” Lemma 3.1 has been used in spectral theory before (e.g. [33]), we feel that this tool
deserves additional advertising. Moreover, as we point our here, it also holds for reflected
Brownian motion, i.e., in the study of the heat semigroup of Neumann Laplacians.

2. Lower bounds for the Dirichlet Laplacian on unbounded domains with uniform
relatively dense complement

The first ingredient in our strategy of proof is provided by quantitative lower bounds for
Dirichlet Laplacians −1� on sets � with “fat” relatively dense complement in the sense
of (1.3). More generally, we consider a set-up where this is done relative to a convex open
subsetG of Rd , on whose boundary we will place a Neumann condition. The assumption
onG could be weakened in some ways, but we make it for clarity and because it provides
a convenient class of sets which have all the properties required for our proofs.

In particular, we will use the fact that convex sets are star shaped and that intersections
of convex sets are convex. Also, convex sets satisfy the segment property and thus, by [1,
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Theorem 3.22], we have the first claim in

{u ∈ C1(G) ∩ Cc(G) | ‖u‖1,2 <∞} is dense in

(W 1,2(G), ‖ · ‖1,2) and in (Cc(G), ‖ · ‖∞). (2.1)

Here G denotes the closure of G and

‖u‖1,2 =

(∫
G

(|∇u(x)|2 + |u(x)|2) dx

)1/2

(2.2)

is the Sobolev norm. The second claim in (2.1) can be seen from the Stone–Weierstrass
Theorem: For f ∈ Cc(G) let K := supp f and choose an open ball U and a closed
ball B in Rd such that K ⊂ B ⊂ U . Stone–Weierstrass shows that {ϕ|B | ϕ ∈ C∞c (U)}
is dense in C(B), i.e., there exist ϕn ∈ C∞c (U) such that supx∈B |ϕn(x) − f (x)| → 0.
Finally, choose χ ∈ C∞c (U) such that χ |K = 1. Then χϕn ∈ C1(G) ∩ Cc(G) with
supx∈G |(χϕn)(x)− f (x)| → 0.

Note that Cc(G)-functions are not supposed to vanish at the boundary ofG. Therefore
the form (1.1) can be regarded as a regular Dirchlet form on the locally compact space G
(see [18] for the basics on Dirichlet forms and potential theory). In particular, there is a
process associated with E , via reflected Brownian motion, a fact that will be of primary
importance in what follows.

Let H = HG (mostly, we omit the superscript) be the associated Laplacian, which
is − 1

21 in L2(G) with Neumann boundary conditions. The Dirichlet Laplacians referred
to in the title are given by an additional Dirichlet boundary condition on a closed set S,
which is defined via forms again through � := G \ S and

EG,S = E on dom(EG,S) = {u ∈ C1(G) ∩ Cc(�) | ‖u‖1,2 <∞}
W 1,2

. (2.3)

As will be discussed in Section 3 below, this form is associated with a process that is
related to the one of H by killing paths once they hit S. Note that EG,S is closed and
densely defined in L2(�) and denote the associated mixed Neumann–Dirichlet Laplacian
on L2(�) by HG,S .

The main result of this section is a lower bound for

λG,S := inf σ(HG,S) (2.4)

whenever � := G \ S for an (R, ρ)-relatively dense closed subset S of G. Note that,
by (2.3) and the variational principle,

λG,S = inf
{

1
2

∫
�

|∇u(x)|2 dx

∣∣∣ u ∈ C1(G) ∩ Cc(�),

∫
�

|u(x)|2 dx = 1
}
. (2.5)

We start with a finite volume estimate: Here we letG be open and convex and assume
in addition that

Bρ(0) ⊂ G ⊂ BR(0) for 0 < ρ < R <∞. (2.6)
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Denote Sd−1
= {u ∈ Rd | |u| = 1} and let du be the surface measure on Sd−1 induced

by Lebesgue measure on Rd . Let ωd be the volume of the d-dimensional unit ball. Let
R : Sd−1

→ (ρ, R] be the “radius function” of G, i.e., Ru := sup{t | tu ∈ G} for
u ∈ Sd−1. Note that R is lower semicontinuous and hence measurable.

Proposition 2.1. Let d ≥ 3, G open and convex satisfying (2.6), S := Bρ(0) and � :=
G \ S. Then for HG,S defined as above, we have

d(d − 2)
ρd−2

Rd
≤ λG,S . (2.7)

If furthermore B2ρ(0) ⊂ G, then

λG,S ≤ 2dωd
ρd−2

vol(G)− ωd(2ρ)d
. (2.8)

Proof. For the lower bound, by (2.5), it suffices to consider f ∈ C1(G), f = 0 on Bρ(0),
and prove an estimate for ‖f ‖22 in terms of ‖∇f ‖22. So let u ∈ Sd−1 and r ∈ [ρ,Ru). We
have f (ru) =

∫ r
ρ
∂uf (tu) dt and thus

|f (ru)|2 ≤

∫ r

ρ

|∂uf (tu)|
2td−1 dt ·

∫ r

ρ

t1−d dt

≤

∫ r

ρ

|∂uf (tu)|
2td−1 dt ·

1
d − 2

ρ2−d . (2.9)

Integrating with respect to surfaces we get

‖f ‖2 =

∫
G

|f (x)|2 dx =

∫
Sd−1

∫ Ru

0
|f (ru)|2 dr du

≤

∫
Sd−1

∫ Ru

ρ

rd−1
∫ r

ρ

|∇f (tu)|2td−1 dt
1

d − 2
1

ρd−2 dr du

≤
1

(d − 2)ρd−2

∫ R

ρ

rd−1 dr

∫
Sd−1

∫ Ru

ρ

|∇f (tu)|2td−1 dt du

≤
1

d(d − 2)
Rd

ρd−2 ‖∇f ‖
2
2, (2.10)

which gives the asserted lower bound.
The upper bound can be shown by a test function of the following form: f (x) =

ϕ(|x|) where ϕ(s) = 0 for 0 ≤ s ≤ ρ, ϕ(s) = (s − ρ)/ρ for ρ < s ≤ 2ρ and ϕ(s) = 1
for s > 2ρ. It follows that |∇f (x)| = ρ−1

· 1B2ρ (0)\Bρ (0) and therefore

‖∇f ‖22 ≤ ρ
−2 vol(B2ρ(0)) = 2dωdρd−2. (2.11)

The assertion now follows from ‖f ‖22 ≥ vol(G)− vol(B2ρ(0)). ut
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Remark 2.2. (i) We think of ρ as small compared to R, and G a set of almost the size
of BR . In such a case the upper and lower bounds in the preceding proposition match up
to constants and are both of the form

ρd−2

Rd
. (2.12)

(ii) One can modify the above calculations to get bounds for d = 2, but due to the
logarithmic terms appearing we do not easily see a two-sided bound comparable to (2.12)
in this case. This is the main reason why, here and in the following, we limit our discussion
to d ≥ 3.

As a first special case of the main result of this section (Theorem 2.5 below), we ap-
ply the above local result to a standard geometric situation considered in recent unique
continuation results, e.g. [7, 39]. For obvious reasons it is called a “ball pool” by some ex-
perts in the field. The lower bound we present is a first step towards a quantitative unique
continuation estimate which is very explicit as far as constants are concerned.

Consider ρ > 0 and ` > 0 with ρ < `/2 and a sequence of balls Bρ(yk) ⊂ k+(0, `)d

for k ∈ (`Z)d . Let 0 ⊂ (ρZ)d be an arbitrary subset of lattice points and

S :=
⋃
k∈0

Bρ(yk). (2.13)

Then S is contained in the interior

G =
(⋃
k∈0

(k + [0, `]d)
)◦

(2.14)

of the corresponding union of closed cubes. Clearly, this gives an example of a set S
which is (R, ρ)-relatively dense in G for R =

√
d `.

Corollary 2.3. Let S and G be given by (2.13) and (2.14). Consider HG,S as defined
above with � := G \ S. Then

λG,S ≥ (d − 2)
(ρ/
√
d)d−2

`d
. (2.15)

Proof. By (2.5), it suffices to bound ‖f ‖22 in terms of ‖∇f ‖22 for any f ∈ C1(G)∩Cc(�).
This follows easily from (2.10), applied to each of the sets �k := (k + (0, `)d) \ Bρ(yk),
since Bρ(yk) ⊂ k + (0, `)d ⊂ B`

√
d(yk):

‖f ‖22 =
∑
k∈0

‖f 1k+(0,`)d‖
2
≤

1
d(d − 2)

(`
√
d)d

ρd−2

∑
k∈0

‖∇f · 1k+(0,`)d‖
2
2

=
1

d − 2
`d

(ρ/
√
d)d−2

‖∇f ‖22. ut

The main result of this section, Theorem 2.5 below, extends this to general (R, ρ)-rela-
tively dense subsets S of open and convex setsG, without requiring the specific geometry
used in Corollary 2.3. We start with a preliminary geometrical result that will be helpful
later.
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Proposition 2.4. Let d ≥ 3, let G ⊂ Rd be open and convex, and S ⊂ G be (R, ρ)-
relatively dense in G. Then there is a 6 ⊂ S with the following properties:

(a) Bρ(6) :=
⋃
p∈6 Bρ(p) is (3R, ρ)-relatively dense in G and Bρ(6) ⊂ S.

(b)
⋃
p∈6 B3R(p) ⊃ G.

(c) If p ∈ 6 and 6 \ {p} 6= ∅, then

R ≤ dist(p,6 \ {p}) ≤ 6R; (2.16)

in particular, 6 is uniformly discrete and Bρ(6 \ {p}) is (6R, ρ)-relatively dense
in G.

We call such a set 6 a skeleton of S.

Proof. (R, ρ)-relative denseness of S ensures that we can find a subset D ⊂ S such that⋃
p∈D

BR(p) ⊃ G (2.17)

and Bρ(p) ⊂ S for any p ∈ D. We may pick a subset D̃ ⊂ D such that

p, q ∈ D̃, p 6= q =⇒ |p − q| ≥ R, (2.18)

i.e., D̃ is uniformly discrete, which is nothing but the lower bound appearing in (c). By
Zorn’s lemma, there exists a maximal subset 6 ⊂ D with this property. Then 6 satisfies
(a)–(c):

By construction, 6 satisfies Bρ(6) ⊂ S and the lower bound in (c), i.e., uniform
discreteness.

To show (b), assume that there is x ∈ G such that dist(x,6) ≥ 3R. By (2.17)
the ball BR(x) contains at least one p0 ∈ D. The triangle inequality implies that
{p0} ∪ 6 still satisfies (2.18), contradicting the assumed maximality of 6. This shows⋃
p∈6 B3R(p) ⊃ G. The union on the left is closed (by uniform discreteness), so that (b)

follows. This readily implies that Bρ(6) is (3R, ρ)-relatively dense inG, completing the
verification of (a).

It remains to prove the upper bound in (c) under the assumptions that p ∈ 6 and
6 \ {p} 6= ∅. So let R′ := dist(p,6 \ {p}) = |p − q| for q ∈ 6 \ {p}. By uniform
discreteness of6, we can find such a q. The midpoint s of the line segment [p, q] belongs
to G by convexity and so there is an s′ ∈ 6 such that |s − s′| ≤ 3R. The minimality of
|p − q| gives |s − q| ≤ 3R as well, implying that |p − q| = 2|s − q| ≤ 6R. ut

Theorem 2.5. Let d ≥ 3, let G ⊂ Rd be open and convex, and let S ⊂ G be (R, ρ)-
relatively dense in G. Then, for � := G \ S, we have

λG,S ≥
d(d − 2)

3d
ρd−2

Rd
. (2.19)
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Proof. First, by monotonicity it suffices to prove a bound for any subset S̃ ⊂ S.
We pick S̃ = Bρ(6), where 6 is a skeleton of S, the existence of which is granted by

Proposition 2.4 above. Define the corresponding Voronoı̈ decomposition of G by

Gp := {x ∈ G | |x − p| ≤ |x − q| for all q ∈ 6}, p ∈ 6. (2.20)

By construction we see that

(i)
⋃
p∈6 Gp = G,

(ii) G̊p ∩ G̊q = ∅ for p, q ∈ 6, p 6= q,
(iii) Bρ(p) ⊂ Gp ⊂ B3R(p)

and Gp is the intersection of G and a finite number of half-spaces. In particular, all the
sets Gp as well as their interiors are convex.

To prove the assertion, it suffices to bound ‖f ‖22 appropriately in terms of ‖∇f ‖22 for
given f ∈ C1(G)∩Cc(�). Note that (iii) above allows us to apply Proposition 2.1 toGp
with R replaced by 3R. Therefore we get, also using (i) and (ii),

‖f ‖22 =
∑
p∈6

‖f 1Gp‖
2
2 ≤

1
d(d − 2)

(3R)d

ρd−2

∑
p∈6

‖(∇f )1Gp‖
2
2

=
3d

d(d − 2)
Rd

ρd−2 ‖∇f ‖
2
2. ut

We remark that wanting to work with a Voronoı̈ decomposition required to choose a
uniformly discrete skeleton 6 of D in the above proof. That is why the constants in
(2.19) and the special case (2.15), where the Voronoı̈ cells are given a priori, differ by a
factor 3d .

In case G = Rd , we could employ [15, Theorem 1.5.3] which gives a lower bound
on HRd ,S , the Dirichlet Laplacian on � = Rd \ S, in terms of

du(x) := min{|t | | x + tu ∈ S}, u ∈ Sd−1, (2.21)
1

m(x)2
:=

∫
Sd−1

du

du(x)2
. (2.22)

More precisely,

HG,S
≥

d

8m2 (2.23)

in the sense of quadratic forms. In the case at hand and in the regime 0 < ρ � R we
could bound du(x) by R on a set of unit vectors of size ρd−1/Rd−1, so that we would get
a lower bound on λ� of the form

const
ρd−1

Rd+1 , (2.24)

which is worse (by a factor of ρ/R) than what we have proven above. More importantly,
it is not clear how to adapt Davies’ method of proof to the case of the Neumann Laplacian
on subdomains.
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It is well known that the capacity of a ball of radius r in Rd behaves like rd−2 for
d ≥ 3 and small r ≥ 0 (see the discussion in the Appendix). For well-spaced S this
means that the crucial geometric characteristic of S that determines the lower bound in
(2.19) can be regarded as capacity per unit volume.

This is well in accordance with the results for the “crushed ice problem” in the cele-
brated article [36] by Rauch and Taylor.

We will now discuss some consequences of Theorem 2.5 for related situations that
shed some light on “singular homogenization” in the following sense.

Fix G ⊂ Rd for d ≥ 3 and consider a sequence Sn of sets that are (Rn, ρn)-relatively
dense. We think of each Sn as a union of ρn-balls with ρn→ 0 as n→∞. If we increase
the number of balls so that

inf
n∈N

ρd−2
n

Rdn
> 0, (2.25)

the presence of the tiny obstacles will be felt in the limit, since there is a uniform lower
bound for the operators HG,Sn by (2.19) above.

If
ρd−2
n

Rdn
→∞ as n→∞, (2.26)

the operators HG,Sn “diverge to∞” in the sense that

‖(HG,Sn + 1)−1
‖ → 0 as n→∞,

again by (2.19) above. To relate this behavior to the set-up in [36], let us specialize to the
case where G is bounded and Sn consists of n balls of radius ρn (called rn in the above
paper). There it is shown that for nρd−2

n → 0, the effect of the small holes vanishes in the
limit, the obstacles are fading. This is a consequence of the fact that the capacity of Sn
tends to 0 in this case. Actually, using [40, Theorem 1], it follows that the semigroup
of HG,Sn converges to the semigroup of HG in the Hilbert–Schmidt norm, which gives a
quite strong convergence result. A volume counting argument shows that

n ∼ R−dn ,

so that we recover the different phases identified in [36], where the limit of the operators is
studied while we restrict ourselves to the analysis of lower bounds. However, the estimates
in (2.25) and (2.26) give information for fixed configurations, in contrast to what is found
in [36].

3. A norm estimate for the heat semigroup at large coupling

In comparison with the discrete case, [29], this is probably the most tricky part of the
present analysis.

We fix an open and convex set G and a closed (R, ρ)-relatively dense subset S of G,
and set

B := Bρ(S). (3.1)



Dirichlet Laplacians and uncertainty principle 2347

To get a lower bound for eigenfunctions of H = HG we will use a lower bound on

λβ := inf σ(Hβ), (3.2)

where Hβ := H + β1B . To this end, we will introduce an additional Dirichlet boundary

condition on S and compare, in this section, e−Hβ and e−H
G,S
β in the operator norm. Here

� := G \ S and
H
G,S
β = HG,S

+ β1B\S (3.3)

on L2(�) and, as usual, e−H
G,S
β is interpreted as an operator on L2(G) by setting it to

be 0 on L2(S).
The main idea is that this additional Dirichlet boundary condition at S does not matter

too much for large β, since the potential barrier given by β1B\S is almost impenetrable
from within �. To formalize and quantify this heuristic we use the probabilistic repre-
sentation of the semigroup, the Feynman–Kac formula, which shows how the potential
and the Dirichlet boundary condition enter the probabilistic formulae and, most impor-
tantly, the “hit and run” lemma, which shows that, with an overwhelming probability,
each Brownian path that hits S stays around at least for some time in the ρ-neighborhood
B of S.

This additional twist is necessary, since there are no quantitative results that allow one
to control the convergence of λβ as β → ∞ directly. We refer to [6, 11] and the results
cited there for partial results.

First note that since, by assumption,H corresponds to a regular Dirichlet form, by [18,
Thm. 6.2.1, p. 184] there is a process (�, (Px)x∈G, (Xt )t≥0, (Ft )t≥0) which is associated
with H in the sense that for any t ≥ 0 and f ∈ Lp(G) (1 ≤ p ≤ ∞),

Ex(f ◦Xt ) = e−tHf (x) (3.4)

almost everywhere. Here Ex is expectation with respect to Px .
By [18, p. 89f.] we know that this process has the strong Markov property, and since

the form is strongly local, the paths are continuous; see [18, Thm. 6.2.2, p. 184]. In the
case at hand, (Xt )t≥0 is the reflected Brownian motion RBM, which coincides with the
usual Brownian motion on Rd , denoted (Wt )t≥0, as long as particles do not hit the bound-
ary of G. The exact meaning of this will be elaborated in our arguments below.

From the general theory we infer the Feynman–Kac formula [18]

e−tHβf (x) = Ex
[
f ◦Xt · exp

(
−

∫ t

0
β1B ◦Xs dx

)]
(3.5)

and denote the appearing occupation time for t = 1 by

T = T (ω) =

∫ 1

0
1B ◦Xs dx = meas {s ∈ [0, 1] | Xs ∈ B}. (3.6)

Moreover, we denote the first hitting time of S by

σ := σS := inf {s ≥ 0 | Xs ∈ S} (3.7)
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and infer from [18] that the additional Dirchlet boundary condition kills the Brownian
motion, i.e.,

e−tH
G,S

f (x) = Ex[f ◦Xt · 1σ>t ] (3.8)

as well as

e
−tH

G,S
β = Ex

[
f ◦Xt · exp

(
−

∫ t

0
β1B ◦Xs ds

)
1σ>t

]
. (3.9)

We specialize to t = 1, where the r.h.s. of (3.9) becomes Ex[f ◦X1 · e
−βT 1σ>1].

Lemma 3.1 (“Hit and Run” Lemma). In the situation above, for x ∈ G,

Px{σ ≤ 1, T ≤ α} ≤ 2d/2+2 exp
(
−
ρ2

16α

)
. (3.10)

Let us mention the very convincing intuitive meaning of (3.10), at least at a qualitative
level: A Brownian path belonging to the event in question has to do a full crossing of a
wall of thickness ρ in time at most α, i.e., “hit” S and then quickly “run” away from it
again. Clearly, the probability for this to happen should be quite small if ρ is large and α
small.

In the case of G = Rd the “hit and run” lemma was already used for spectral-
theoretic purposes in [33, Lemma 3] (see also [42] for related techniques). Let us briefly
explain why reflected Brownian motion agrees with the usual one up to the hitting time
of the boundary. For bounded regions, much more precise statements are known: see [14]
and [12], where a calculation quite like the one we use below is presented. Since we allow
unbounded regions, however, these references do not settle the case, although it is quite
obvious that boundedness should not matter. Our argument goes as follows: the process
(Xt )t≥0 in question is, as we saw above, associated with the regular Dirichlet form of
H = HG; adding a killing or Dirichlet b.c. at ∂G results in the same form that one ob-
tains when adding a Dirichlet condition on Gc for the usual Laplacian on Rd , for which
we get the usual Brownian motion (Wt )t≥0, killed at ∂G. Since processes are essentially
uniquely determined by the form (see [18, Theorem 4.2.8]), this means that (Xt )t≥0 and
(Wt )t≥0 agree up to the time when they hit ∂G.

Proof of Lemma 3.1. We introduce the following auxiliary set and stopping time:

B ′ := Bρ/2(S) ⊂ B, (3.11)
τ := inf {s > 0 | Xs ∈ B ′}, (3.12)

as well as the event

E := {ω ∈ � |X0(ω) ∈ B
′ and |Xs(ω)−X0(ω)| ≥ ρ/2 for some s ≤ α}. (3.13)

Since Bρ/2(y) ⊂ B for y ∈ B ′, Xs agrees with the classical Brownian motion up to the
exit time τWρ/2 for the Wiener process,

Px(E) = P0[τ
W
ρ/2 ≤ α]. (3.14)
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By the reflection principle,

P0[τ
W
ρ/2 ≤ α] ≤ 2P0[|Wα| ≥ ρ/2}. (3.15)

From the explicit formula for the latter we get

P0[|Wα| ≥ ρ/2] = (2πα)−d/2
∫
|y|≥ρ/2

exp
(
−
|y|2

2α

)
dy

≤ (2πα)−d/2 exp
(
−
ρ2

16α

)∫
|y|≥ρ/2

exp
(
−
|y|2

4α

)
dy

≤ 2d/2 exp
(
−
ρ2

16α

)
(4πα)−d/2

∫
Rd

exp
(
−
|y|2

4α

)
dy

= 2d/2 exp
(
−
ρ2

16α

)
. (3.16)

We conclude that

Px(E) ≤ 2d/2+1 exp
(
−
ρ2

16α

)
. (3.17)

We go on to estimate the probability in question by

Px{σ ≤ 1, T ≤ α} ≤ Px(�1)+ Px(�2) (3.18)

for the events�1 := {σ ≤ 1, T ≤ α, τ ≤ 1−α} and�2 := {σ ≤ 1, T ≤ α, τ > 1−α}.
First consider �1 and x 6∈ B ′. In this case, as X0(ω) = x for Px-a.e. ω ∈ �1, we

know by continuity of sample paths that τ(ω) ≤ σ(ω) and Xτ(ω)(ω) ∈ ∂B ′. From T ≤ α

we conclude that ω must leave B before τ + α (≤ 1). In particular, ω must leave

Bρ/2(Xτ(ω)(ω)) ⊂ B, (3.19)

and therefore
(Xτ+s(ω))s≥0 ∈ E. (3.20)

Denoting conditional expectation (in L∞(�)) by E•, this can be put together as

Px(�1) = Ex(E•(�1 | Fτ ))
≤ Ex(E•((Xτ+s)s≥0 ∈ E | Fτ )) = Ex(PXτ (ω)(E)) (3.21)

by the strong Markov property. Finally, by (3.17),

Px(�1) ≤ 2d/2+1 exp
(
−
ρ2

16α

)
. (3.22)

For x ∈ B ′ it is clear that τ(ω) = 0 for Px-a.e. ω ∈ �1 and, by the reasoning above,
(3.22) holds in this case as well.

Concerning the second term in (3.18), it is clear that Px(�2) = 0 for x ∈ B ′, so we
can stick to the case x 6∈ B ′. For Px-a.e. ω ∈ �2 we know that τ ≤ σ andXτ(ω)(ω) ∈ ∂B ′
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by continuity of sample paths. Since τ < 1 − α and σ ≤ 1, any ω ∈ �2 must get from
∂B ′ to S. Therefore, as above, (Xτ+s(ω))s≥0 ∈ E, so that

Px(�2) ≤ 2d/2+1 exp
(
−
ρ2

16α

)
. (3.23)

Putting the above together, we get the assertion. ut

Our main result in this section is

Proposition 3.2. In the situation above, for β > 0,

‖e−Hβ − e−H�,β‖ ≤
√

1+ 4 · 2d/2 exp
(
−
ρ
√
β

4
√

2

)
. (3.24)

Proof. By the above probabilistic interpretation we get, for f ∈ L2, ‖f ‖2 ≤ 1 and
x ∈ G,

|e−Hβf (x)− e−H�,βf (x)| = |Ex[f ◦X1 · exp(−βT )− f ◦X1 · exp(−βT ) · 1{σ>1}]|

= |Ex[f ◦X1 · exp(−βT ) · 1{σ≤1}]|. (3.25)

Therefore, by Cauchy–Schwarz,

|(e−Hβ − e−H�,β )f (x)|2 ≤ Ex[|f |2 ◦X1] · c(x, ρ, β), (3.26)

where we have set c(x, ρ, β) := Ex[exp(−2βT ) · 1{σ≤1}]. Note that |f |2 ∈ L1 with
‖|f |2‖1 = ‖f ‖

2
2 ≤ 1 and that

Ex[|f |2 ◦X1] = e
−H (|f |2)(x). (3.27)

Integrating over G gives

‖(e−Hβ − e−H−�,β)f ‖2 ≤ 1 ·
√

sup
x
c(x, ρ, β) (3.28)

since ‖e−H : L1
→ L1

‖ ≤ 1 as H generates a Dirichlet form.
We are left with estimating c(x, ρ, β) appropriately. To this end we fix α ∈ (0, 1), to

be specified later, and write

c(x, ρ, β) = Ex[. . . | T ≥ α] + Ex[. . . | T < α]

≤ exp(−2βα)+ Px[σ ≤ 1, T ≤ α]. (3.29)

The second term was estimated in the hit-and-run lemma by

Px[σ ≤ 1, T ≤ α] ≤ 4 · 2d/2 · exp
(
−
ρ2

16α

)
. (3.30)
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To get the desired bound on c(x, ρ, β) we pick α so as to equate exponents in (3.29)
above, i.e.,

ρ2

16α
= 2βα, so α =

ρ

4
√

2
√
β
. (3.31)

Plugged back into (3.29) this gives

c(x, ρ, β) = (1+ 4 · 2d/2) exp
(
−
ρ
√
β

2
√

2

)
, (3.32)

as was to be shown. ut

4. The uncertainty principle: Proof of Theorem 1.1

In this section we will combine Theorem 2.5 and Proposition 3.2 with a spectral-theoretic
uncertainty principle from [10] to derive our main result, Theorem 1.1, a quantitative
unique continuation bound for low energy states of Neumann Laplacians on arbitrary
convex, not necessarily bounded, subsets G of Rd . Actually, we will deduce a slightly
stronger, more abstract version in Theorem 4.1 below, which relates directly to the spec-
tral uncertainty principle we recall next.

Theorem 1.1 from [10] refers to a bounded non-negative perturbation W of a semi-
bounded selfadjoint operator H in any Hilbert space. If I is an interval and PI = PI (H)
the corresponding spectral projection of H , then the theorem says that

PIWPI ≥ κPI (4.1)

as long as there is a β > 0 with

max I < min σ(H + βW) =: λβ . (4.2)

A lower bound for κ is given by

κ ≥ sup
β>0

λβ −max I
β

, (4.3)

meaning, in fact, that (4.1) holds with κ replaced by (λβ − max I )/β for every β > 0
which satisfies (4.2).

In our application, H = HG will be the Neumann Laplacian, characterized by the
quadratic form (1.1), on an open and convex domain G in Rd . We choose W = 1B , the
indicator function of a set B which arises as a “fattened” relatively dense subset of G.

To determine the maximal energy interval I of applicability of (4.1)–(4.3) in this case,
we will need to find (at least a lower bound) for

lim
β→∞

λβ = lim
β→∞

min σ(Hβ) (4.4)

with Hβ := HG
+ β1B . This will be done in two steps, using our results from Sections 2

and 3: Theorem 2.5 will provide a lower bound on the lowest eigenvalue of a mixed
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Neumann–Dirchlet Laplacian, with Neumann condition on ∂G and Dirichlet condition
on a “semi-fat” subset S of B. Then the norm bound on the difference of semigroups
found in Proposition 3.2 will show that this eigenvalue is sufficiently close to λβ , giving
the desired lower bound for the latter.

In the proof of Theorem 4.1 we will frequently use the fact that the first Dirichlet
eigenvalue λR of a ball of radius R in Rd is given by

jdR
−2, (4.5)

where jd is the first positive zero of the Bessel function Jd/2−1. We refrain from telling
the whole history and refer to the survey article [5] instead.

Theorem 4.1. Let d ≥ 3. Then there exist constants a, b, C, c > 0, only depending on d,
such that for every open and convex G ⊂ Rd , any (R, δ)-relatively dense subset B in G,
and λβ := min σ(HG

+ β1B) as above,

sup
β>0

λβ − E

β
≥ κ(R, δ), (4.6)

where

E = C
δd−2

Rd
and κ(R, δ) = c

(
δ

R

)d[
b

(R ∧ RG)2
+

∣∣∣∣log
aδd−2

Rd

∣∣∣∣]−2

. (4.7)

Proof. First note that by monotonicity we can replace B by any subset. Thus, without
restriction, we modify the set-up slightly, choosing a skeleton 6 ⊂ B for B (see Propo-
sition 2.4). We replace B by Bδ(6) and keep the name so that B is now (3R, δ)-dense.
Moreover, we set ρ := 1

2δ and S := Bρ(6), so that S is (3R, ρ)-dense (a “semi-fat”
subset of B).

We may assume further that� = G\B 6= ∅ (as our result would be trivial otherwise),
giving that

λ� := inf σ(HG,B) <∞. (4.8)

Now we proceed in two steps. First, we will prove the theorem with an expression
for κ where the term b/(R∧RG)

2 in (1.7) will be replaced by λ�. Then we will use some
additional geometric considerations to get the more explicit final form of (1.7).

First step: By estimate (2.19) from Theorem 2.5 we find that µ0 := λ
G,S satisfies

µ0 ≥ c
δd−2

Rd
, (4.9)

where we have set c := d(d − 2)/18d (which is not the final value of c in the theorem).
Our aim is a lower bound for

λβ = min σ(HG
+ β1B), (4.10)

which we achieve by comparing it to

µβ := inf σ(HG,S
+ β1B\S) ≥ µ0, (4.11)
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noting that λβ ≤ µβ ≤ λ�. In fact, the difference of the corresponding semigroups is
estimated in norm by

‖e−(H
G
+β1B ) − e−(H

G,S
+β1B\S )‖ ≤ (1+ 2d/2+2)1/2 exp

(
−
ρ
√
β

4
√

2

)
(4.12)

by Proposition 3.2. Finally, we pick t ∈ (0, 1) and E0 := tµ0 < µ0, so that, by mono-
tonicity,

µβ − E0 ≥ (1− t)µ0. (4.13)

If
µβ − λβ ≤

1
2 (1− t)µ0, (4.14)

we get
λβ − E0 ≥

1
2 (1− t)µ0 > 0, (4.15)

giving a desired lower bound 4.7 with κ(R, δ) determined by the corresponding β.
Towards (4.14), we observe that (4.12) gives

e−λβ − e−µβ ≤ A exp(−aρ
√
β) (4.16)

with the obvious (not final) choice of the explicit constants a,A. The mean value theorem
implies that there is ξ ∈ [λβ , µβ ] with

µβ − λβ = e
ξ (e−λβ − e−µβ ) ≤ eλ�(e−λβ − e−µβ ). (4.17)

Combining (4.16) and (4.17) we must determine β in such a way that

A exp(−aρ
√
β)eλ� ≤ 1

2 (1− t)µ0. (4.18)

Solving for β in the previous formula gives

β0 = (aρ)
−2
[
λ� − log

(
(1− t)µ0

2A

)]2

. (4.19)

We plug this value into the right hand side of (4.3), using (4.15), and obtain

κ ≥ 1
2 (1− t)µ0(aρ)

2
[
λ� − log

(
(1− t)µ0

2A

)]−2

, (4.20)

which gives, by (4.9),

κ ≥ (1− t) 1
2 (aρ)

2c
δd−2

Rd

[
λ� − log

(
(1− t)c

2A
δd−2

Rd

)]−2

= (1− t)c′
δd

Rd

[
λ� − log

(
(1− t)a′

δd−2

Rd

)]−2

, (4.21)
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with constants only depending on d ,

c′ = 1
8a

2c = 2−8 d(d − 2)
18d

, (4.22)

a′ = 1
2cA

−1
=
d(d − 2)
2 · 18dA

, (4.23)

A = (1+ 2d/2+2)1/2. (4.24)

We thus get an uncertainty estimate with

sup
β>0

λβ − Et

β
≥ κt := (1− t)c′

δd

Rd

[
λ� − log

(
(1− t)a′

δd−2

Rd

)]−2

(4.25)

valid in the energy range up to

Et := tc
δd−2

Rd
. (4.26)

On the one hand, this is more general than what we asserted (which we get for
t = 1/2), but not yet the bound we strive for: the dependence of κt on λ� might be
unpleasant if � is small. On the other hand, this would imply that B is large, a situation
which clearly is in favor of our overall result and provides the reason behind the following
modifications.

Second step: We now modify B (and �) so as to get an upper bound on λ�. This will
require some geometrical considerations, partly based on Proposition 2.4 above.

Fix R0 so that {
1
4RG ≤ R0 <

1
2RG if RG <∞,

4R ≤ R0 if RG = ∞.
(4.27)

By definition of RG, in both cases there is x0 ∈ G such that

B2R0(x0) ⊂ G. (4.28)

We first consider

Case 1: 4R ≤ R0, including the possibility that RG < ∞. Clearly, in this case the
skeleton 6 introduced at the beginning of the proof must contain at least two elements.

Case 1.1: 6 ∩ BR0(x0) = ∅. Since δ ≤ R by definition (and we have set B = Bδ(6) as
before), it follows that

dist(x0, B) ≥ 4R − δ ≥ 3R, (4.29)

therefore the open ball UR(x0) is contained in G \ B and so

λ� ≤ jdR
−2 (4.30)

by identity (4.5) above. Plugging this bound into estimate (4.25) above, we get the asser-
tion of the theorem with a suitable b since R−2

≤ (R ∧ RG)
−2.
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Case 1.2: 6 ∩ BR0(x0) 6= ∅. Choose s0 ∈ 6 ∩ BR0(x0) and denote 60 := 6 \ {s0} and
B0 := Bδ/2(60). Note that, by Proposition 2.4, dist(s0, 60) ≥ R and B0 is

(
6R, 1

2δ
)
-

dense. Carrying out the above calculations with this smaller subset of B, rather than the
set Bδ(6) used before, we arrive at the estimate (4.25) with λ� replaced by λ�0 and
suitably modified d-dependent constants.

We obtain
dist(s0, B0) ≥ R − δ/2 ≥ 1

2R, (4.31)

so that
U 1

2R
(s0) ⊂ G \ B0 =: �0, (4.32)

giving λ�0 ≤ bR
−2 and thus the assertion.

Case 2: R0 < 4R. Consequently, RG < ∞, so that R0 and RG are comparable by the
definition of R0 above.

Case 2.1: 6 ∩BR0(x0) = ∅. This is treated much like Case 1.1 above. In fact, by defini-
tion, δ ≤ RG ≤ 4R0. Replacing B = Bδ(6) by B = Bδ/8(6), i.e., � = G \Bδ/8(6), we
obtain

U 1
4R0
(x0) ⊂ G \ B, (4.33)

and therefore the assertion follows with λ� ≤ bR−2
G for suitable b.

Case 2.2: 6 ∩ BR0(x0) 6= ∅ and 6 contains at least two elements. Then we proceed as
in Case 1.2 above, this time getting a bound of the form bR−2

G . Since no new ideas are
involved, we skip the details.

Case 2.3:6 = {s0} ⊂ BR0(x0). Again replacing δ by 1
8δ, we see that B2R0(x0)\BR0(x0)

contains a ball of radius R0 that does not intersect B, once more giving a bound of the
form bR−2

G for the corresponding λ�.
This completes the proof of Theorem 4.1. ut

Combining the previous estimate with the spectral uncertainty principle, Theorem 1.1
from [10], as explained above, we immediately get:

Corollary 4.2. Let d ≥ 3. Then there exist constants a, b, C, c > 0, only depending
on d , such that for every open and convex G ⊂ Rd , any (R, δ)-relatively dense B in G,
and every selfadjoint operator H ] satisfying

H ]
≥ η0H

G for some η0 > 0,

we have
‖f 1B‖2 ≥ η0κ‖f ‖

2 (4.34)

for all f in the range of PI (H ]), where

I =

[
0, Cη0

δd−2

Rd

]
and κ = c

(
δ

R

)d[
b

(R ∧ RG)2
+

∣∣∣∣log
aδd−2

Rd

∣∣∣∣]−2

. (4.35)
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As a special case we obtain our main Theorem 1.1 stated in the introduction. Note that

(i) While lower bounds of the form (4.34) and (4.35) have important applications also
for bounded sets G (for example for large cubes, where we get volume independent
bounds), the result is already new and well illustrated in the case G = Rd or other
sets with infinite inradius. In this case it gives the following small-δ and large-R
asymptotics:

For fixed R = R0 we have κ ∼ δd/|log δ| on I = [0, Cδd−2
] as δ→ 0.

For fixed δ = δ0 we have κ ∼ 1
Rd (logR)2 on I = [0, CR−d ] as R→∞.

(ii) In principle, our methods could also be used to get bounds for d = 2, but the con-
stants would look less satisfactory (and contain more logarithms).

(iii) Totally different methods are available for d = 1; see [23].

We refrain from spelling out more consequences in the form of corollaries and instead list
a few more possibilities of exploiting the flexibility of the preceding corollary.

• We can regard different b.c., in particular periodic b.c. whenG is a cube and obtain the
same estimates as above for the corresponding operator HG

b.c..
• We can add a non-negative potential V and get the same estimates as above for the

corresponding operator HG
b.c. + V .

• More generally, not necessarily positive lower order terms that are controlled by HG

can be added, i.e., we can treat HG
+ B as long as B ≥ −γHG for some γ < 1.

We end our discussion by mentioning that the above results can be used to prove local-
ization (see [22, 41] for the general phenomenon of bound states for random models) for
new classes of random models. As remarked in the introduction, uncertainty principles
are used to derive Wegner and Lifshitz tail estimates when the random perturbation obeys
no covering condition. With the uniform estimates above, one could treat models with a
random second order main term plus a random potential.

Appendix. Capacities of balls in Rd

As compared to the discrete case of graphs, euclidean space is more complicated in many
ways. One important difference that matters for our analysis is that points are not massive
at all, at least in dimension d ≥ 2. This is why a finite inradius of an open set � ⊂ Rd
does not imply that inf σ(−1�) > 0 for the Dirichlet Laplacian−1�, defined via forms
as the Friedrichs extension of −1 on C∞c (�), or, equivalently, as the selfadjoint operator
associated with the form

E[u] :=
∫
�

|∇u(x)|2 dx on W 1,2
0 (�). (A.1)

Example A.1. In Rd for d ≥ 2 consider D = Zd and the union of closed balls S :=⋃
k∈D Brk (k) with 0 < rk < 1/2 for k ∈ D. For

� := Rd \ S (A.2)
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we see that the inradius R� = sup {s > 0 | ∃x ∈ � : Bs(x) ⊂ �} is bounded above by
√
d/2. However, as we will see below,

cap(Br(x)) = cap(Br(0))→ 0 as r → 0, (A.3)

so that we can pick rk such that

cap(S) ≤
∑
k

cap(Brk (k)) <∞. (A.4)

In that case, by [40, Theorem 1], we find that e−1 − e−1� is Hilbert–Schmidt and there-
fore σess(−1�) = σ(−1�) = [0,∞).

As different notions of capacity are around, let us briefly settle the case of (A.3) above:
In the above result, capacity refers to the 1-capacity, often used in potential theory for

Dirichlet forms and defined by the following variational principle:

cap(Br(0)) := inf {‖∇f ‖2 + ‖f ‖2 | f ∈ C1
c (R

d), f ≥ 1Br (0)}. (A.5)

Set φ(x) = 1 if 0 ≤ x ≤ 1, φ(x) = 2− x if 1 ≤ x ≤ 2 and φ(x) = 0 for x > 2 and
define fr(x) = φ(|x|/r) on Rd . Then cap(Br(0)) ≤ ‖∇fr‖2 + ‖fr‖2 ≤ Cdrd−2, which
gives the claim for d ≥ 3. In d = 2 this only gives boundedness, but can be combined
with ‖fr‖2 → 0, weak compactness of the unit ball in W 1,2 and Hahn–Banach to give a
sequence rn with cap(Brn(0))→ 0, proving (A.3) by monotonicity of the capacity.

We go on to show that for d ≥ 3,

cap(Br(0)) ∼ rd−2 for r ≤ 1. (A.6)

This is most easily seen by using the slightly smaller Newtonian capacity

capN (Br(0)) := inf {‖∇f ‖2 | f ∈ C1
c (R

d), f ≥ 1Br (0)}. (A.7)

The above scaling shows immediately that capN (Br(0)) ∼ rd−2, so that (A.6) follows,
since capN (Br(0)) ≤ cap(Br(0)). We cannot resist to mention two classical papers on
capacities, [37, 43]. For a thorough discussion, we refer to [31, Section 11.15], as well as
to classical textbooks like [28].

Acknowledgments. Many thanks go to Marcel Reif for most valuable comments over the years and
Wolfgang Löhr for an inspiring discussion concerning reflected Brownian motion and the strong
Markov property.
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