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Abstract. We prove a tight bound on the number of realized 0/1 patterns (or equivalently on the
Vapnik–Chervonenkis codensity) of definable families in models of the theory of algebraically
closed valued fields with a non-archimedean valuation. Our result improves the best known re-
sult in this direction proved by Aschenbrenner, Dolich, Haskell, Macpherson and Starchenko, who
proved a weaker bound in the restricted case where the characteristics of the field K and its residue
field are both assumed to be 0. The bound obtained here is optimal and without any restriction on
the characteristics.

We obtain the aforementioned bound as a consequence of another result on bounding the Betti
numbers of semi-algebraic subsets of certain Berkovich analytic spaces, mirroring similar results
known already in the case of o-minimal structure and for real closed as well as algebraically closed
fields. The latter result is the first result in this direction and is possibly of independent interest. Its
proof relies heavily on recent results of Hrushovski and Loeser on the topology of semi-algebraic
subsets of Berkovich analytic spaces.
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1. Introduction

In this article, we prove a tight bound on the number of realized 0/1 patterns (or equiv-
alently on the Vapnik–Chervonenkis codensity) of definable families in models of the
theory of algebraically closed valued fields with a non-archimedean valuation (hence-
forth referred to just as ACVF). This result improves on the best known upper bound
on this quantity previously obtained by Aschenbrenner et al. [AD+16]. Our result is a
consequence of a topological result giving an upper bound on the Betti numbers of cer-
tain semi-algebraic sets obtained as Berkovich analytifications of definable sets in certain
models of ACVF which we will recall more precisely in the next section.

In order to state our main combinatorial result we need to introduce some preliminary
notation and definitions.

1.1. Combinatorial definitions

Suppose V andW are sets, and X ⊂ V ×W is a subset. Let πV : X→ V , πW : X→ W

denote the restrictions to X of the natural projection maps. For any v ∈ V , w ∈ W , we
set Xv := πW (π−1

V (v)), and Xw := πV (π−1
W (w)).

Notation 1.1.1. For each n > 0, we define a function

χX,V,W ;n : V ×W
n
→ {0, 1}n

as follows. For w̄ := (w1, . . . , wn) ∈ W
n and v ∈ V , we set

(χX,V,W ;n(v, w̄))i :=

{
0 if v /∈ Xwi ,
1 otherwise.

(Note that in the special case when n = 1, χX,V,W ;1 is just the usual characteristic
function of the subset X ⊂ V ×W .)

For w̄∈W n and σ ∈{0, 1}n, we will say that σ is realized by the tuple (Xw1 , . . . , Xwn)

of subsets of V if there exists v ∈ V such that χX,V,W ;n(v, w̄) = σ . We will often refer
to elements of {0, 1}n colloquially as ‘0/1 patterns’.

Finally, we define the function

χX,V,W : N→ N by χX,V,W (n) := max
w̄∈Wn

card(χX,V,W ;n(V , w̄)).

The function χX,V,W is closely related to the notion of VC-codensity of a set system.
Since some of the prior results (for example, those in [AD+16]) have been stated in terms
of VC-codensity it is useful to recall its definition here.
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Definition 1.1.2. Let X be a set and S ⊂ 2X. The shatter function of S, πS : N→ N, is
defined by setting

πS(n) := max
A⊂X, card(A)=n

card({A ∩ Y | Y ∈ S}).

We denote
vcdS := lim sup

n→∞

log(πS(n))
log(n)

.

Given a definable subset X ⊂ V ×W in some structure, we will denote

vcd(X, V,W) := vcdS ,

where S = {Xv | v ∈ V } ⊂ 2W . We will call (following the convention in [AD+16]),
vcd(X, V,W), the VC-codensity of the family of subsets, {Xw | w ∈ W }, of V . More
generally, if φ(X, Y ) is a first-order formula (with parameters) in the theory of some
structure M , we set

vcd(φ) := vcd(S,M |X̄|,M |Ȳ |),

where S ⊂ M |X̄| × M |Ȳ | is the set defined by φ. (Here and elsewhere in the paper,
|X| denotes the length of the finite tuple of variables X.) Note also that if M is an NIP
structure (see for example [Sim15, Chapter 2] for definition), then vcd(φ) <∞ for every
(parted) formula φ.

The problem of proving upper bounds on vcd(X, V,W) of a definable family can be
reduced to proving upper bounds on the function χX,V,W (see Proposition 3.4.1 below).
We will henceforth concentrate on the problem of obtaining tight upper bounds on the
function χX,V,W .

1.2. Brief history

For definable families of hypersurfaces in Fk of fixed degree over a field F, Babai, Rónyai,
and Ganapathy [RBG01] gave an elegant argument using linear algebra to show that the
number of 0/1 patterns (see Notation 1.1.1) realized by n such hypersurfaces in Fk is
bounded byC·nk , whereC is a constant that depends on the family (but independent of n).
This bound is easily seen to be optimal. A more refined topological estimate on these
realized 0/1 patterns (in terms of the sums of the Betti numbers) is given in [BPR09],
where the methods are more in line with the methods in the current paper.

A similar result was proved in [BPR05] for definable families of semi-algebraic sets
in Rk , where R is an arbitrary real closed field. For definable families in Mk , where M is
an arbitrary o-minimal expansion of a real closed field, the first author [Bas10] adapted
the methods of [BPR05] to prove a bound of C · nk on the number of 0/1 patterns for
such families where C is a constant that depends on the family (see also [JL10]). These
bounds were obtained as a consequence of more general results bounding the individ-
ual Betti numbers of definable sets defined in terms of the members of the family, and
more sophisticated homological techniques (as opposed to just linear algebra) played an
important role in obtaining these bounds.
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IfK is an algebraically closed valued field, then the problem of obtaining tight bounds
on vcd(φ) for parted formulas, φ(X, Y ), in the one-sorted language of valued fields with
parameters in K was considered by Aschenbrenner et al. [AD+16]. They obtained the
non-trivial bound of 2|X| on vcd(φ) in the case when the characteristic pair of K (con-
sisting of the characteristic of the field K and that of its residue field) is (0, 0) [AD+16,
Corollary 6.3]. In terms of 0/1 patterns (Proposition 3.4.1) their result can be restated as
saying that for each k > 0 and any fixed definable family of subsets of Kk , there exists
C > 0 (depending on the family) such that for all n > 0 the number of 0/1 patterns
realized by any n sets of the family is bounded from above by C · n2k .

Given that the model-theoretic/algebraic techniques used thus far do not immediately
yield the tight upper bound of |X| on vcd(φ(X, Y )) for valued fields, it is natural to con-
sider a more topological approach as in [Bas10]. However, for definable families over a
(complete) valued field, it is not a priori clear that there exists an appropriate well-behaved
cohomology theory (i.e. with the required finiteness/cohomological dimension properties)
that makes the approach in [Bas10] feasible in this situation. For example, ordinary sheaf
cohomology with respect to the Zariski or étale site for schemes is clearly unsuitable.
Fortunately, the recent break-through results of Hrushovski and Loeser [HL16] give us an
opening in this direction. Instead of considering the original definable subset of an affine
variety V defined over K , we can consider the corresponding semi-algebraic subset of
the Berkovich analytification BF(V ) of V (see §A.2 below for the definitions). These
semi-algebraic subsets have certain key topological tameness properties which are anal-
ogous to those used in the case of o-minimal structures, and moreover crucially they are
homotopy equivalent to a simplicial complex of dimension at most dim(V ). Therefore,
their cohomological dimension is at most dim(V ). In particular, the singular cohomology
of the underlying topological spaces satisfies the required properties. Thus, in order to
bound the number of realizable 0/1 patterns of a finite set of definable subsets of V , we
can first replace the latter set by the corresponding semi-algebraic subsets of BF(V ), and
then try to make use of their tame topological properties to obtain a bound on the number
of 0/1 patterns realized by these subsets. An upper bound on the latter quantity will also
be an upper bound on the number of 0/1 patterns realized by the definable subsets we
started with (this fact is elucidated later in Observation 3.3.1.

Using the results of Hrushovski and Loeser, one can then hope to proceed with the
o-minimal case as the guiding principle. While the arguments are somewhat similar in
spirit, there are several technical challenges that need to be overcome—for example, an
appropriate definition of “tubular neighborhoods” with the required properties (see §3.1
below for a more detailed description of these challenges). The bounds on the sum of
the Betti numbers of the semi-algebraic subsets of Berkovich spaces that we obtain in
this way are exactly analogous to the ones in the algebraic, semi-algebraic, as well as o-
minimal cases. The fact that the cohomological dimension of the semi-algebraic subsets
of BF(V ) is bounded by dim(V ) is one key ingredient in obtaining these tight bounds.

Our results on bounding the Betti numbers of semi-algebraic subsets of Berkovich
spaces are of independent interest, and they seem to suggest a more general formalism of
cohomology associated to NIP structures. For example, one obtains bounds (on the Betti
numbers) of the exact same shape and having the same exponents for definable families in
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the case of algebraic, semi-algebraic, o-minimal and valued field structures. Moreover, in
each of these cases, these bounds are obtained as a consequence of general bounds on the
dimension of certain cohomology groups. Therefore, it is perhaps reasonable to hope for
some general cohomology theory (say for NIP structures which are fields) which would in
turn give a uniform method of obtaining tight bounds on VC-density via cohomological
methods. More generally, it shows that cohomological methods can play an important
role in model theory in general.

As a consequence of the bound on the Betti numbers (in fact using the bound only on
the 0-th Betti number) we prove that vcd(φ(X, Y )) over an arbitrary algebraically closed
valued field is bounded by |X|. One consequence of our methods (unlike the techniques
used in [AD+16]) is that there are no restrictions on the characteristic pair of the valued
field K .

Finally, note that in [AD+16] the authors also obtain a bound of 2|X| − 1 on
vcd(φ(X, Y )), over Qp, where φ is a formula in Macintyre’s language [Mac76]. How-
ever, our methods right now do not yield results in this case.

Outline of the paper. In §2 we first introduce the necessary technical background (in
§2.1), and then state the main results of the paper, namely Theorems 1 and 2, and Corol-
lary 1 (in §2.2). The proofs of the main results appear in §3. We first give an outline of
the proofs in §3.1. We next prove the main topological result of the paper (Theorem 2) in
in §3.2, and prove Theorem 1 and Corollary 1 in §3.3 and §3.4 respectively.

In order to make the paper self-contained and for the benefit of the readers, we in-
clude in an appendix a review of some very classical results about singular cohomology
(in §A.1), as well as much more recent ones related to semi-algebraic sets associated to
definable sets in models of ACVF proved by Hrushovski and Loeser [HL16] (in §A.2).
These results are used heavily in the proofs of the main theorems.

2. Main results

2.1. Model theory of algebraically closed valued fields

In this section, K will always denote an algebraically closed non-archimedean valued
field, and the value group of K will be denoted by 0. Let R := K[X1, . . . , XN ] and
ANK = Spec(R). Given a closed affine subvariety V = Spec(A) of ANK = Spec(R) and an
extension K ′ of K , we will denote by V (K ′) ⊂ ANK(K

′) the set of K ′ points of V .
We denote by L the two-sorted language

(0K , 1K ,+K ,×K , | · | : K → 0 ∪ {00},≤0,×0),

where the subscript K denotes constants, functions, relations etc. of the field sort and the
subscript 0 denotes the same for the value group sort. When the context is clear we will
drop the subscripts. The constant 00 is interpreted as the valuation of 0 (and does not
technically belong to the value group).

Now suppose that φ(X1, . . . , Xn) is a quantifier-free formula with parameters in
(K;0 ∪ {00}) in the language L with free variables only of the field sort. Then φ is
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a quantifier-free formula with atoms of the form |F | ≤ λ · |G| where F,G ∈ R and
λ ∈ 0 ∪ {00}. The formula φ gives rise to a definable subset of ANK , and in particular
φ defines a subset of ANK(K

′) for every valued extension K ′ of K . We will denote the
intersection of this subset with V by R(φ, V ), and by R(φ, V )(K ′) the corresponding
subset of V (K ′).

Let φ be a formula with parameters in (K;0 ∪ {00}) in the language L with free
variables only of the field sort. Note that every such formula is equivalent modulo the
two-sorted theory of (K;0∪{00}) to a quantifier-free formula (see for example [HHM08,
Theorem 7.1(ii)]). Because of this fact, we can assume without loss of generality in what
follows that φ is a quantifier-free formula, and is thus a quantifier-free formula with atoms
of the form |F | ≤ λ · |G| where F,G ∈ R and λ ∈ 0 ∪ {00}.

2.2. New results

Our main result is the following.

Theorem 1 (Bound on the number of 0/1 patterns). Let K be an algebraically closed
valued field with value group 0. Suppose that V ⊂ ANK and W ⊂ AMK are closed affine
subvarieties and let

φ(X1, . . . , XN ;Y1, . . . , YM)

be a formula with parameters in (K;0 ∪ {00}) in the language L (with free variables
only of the field sort). Then there exists a constant C = Cφ,V,W such that for all n > 0,

χR(φ,(V×W))(K),V (K),W(K)(n) ≤ C · n
k, where k = dimV.

As an immediate corollary of Theorem 1 we obtain the following bound on the VC-
codensity for definable families over algebraically closed valued fields.

Corollary 1 (Bound on the VC-codensity for definable families over ACVF). Let K be
an algebraically closed valued field with value group 0. Let φ(X, Y ) be a formula with
parameters in (K;0 ∪ {00}) in the language L. Then

vcd(φ) ≤ |X|.

Theorem 1 will follow from a more general topological theorem which we will now state.
First, we recall some more notation.

We assume thatK is an algebraically closed complete valued field with a non-archim-
edean valuation whose value group 0 is a subgroup of the multiplicative group R>0.

Given an affine variety V as before, Hrushovski–Loeser [HL16] associate to V a
locally compact Hausdorff topological space, denoted by BF(V ). More generally, they
associate a locally compact Hausdorff topological space BF(X) to any definable subset
X ⊂ V which is functorial in definable maps. In the present setting, BF(V ) can be iden-
tified with the Berkovich analytic space associated to V and has an explicit description in
terms of valuations. We refer the reader to §A.2 for a brief review of this construction and
its main properties.
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Notation 2.2.1. If V ⊂ ANK is an affine closed subvariety, and φ a formula in the language
with parameters in (K;0 ∪ {00}) in the language L with free variables only of the field
sort, we will denote by R̃(φ, V ) the semi-algebraic subset BF(R(φ, V )) of BF(V ).

Suppose now that V ⊂ ANK and W ⊂ AMK are closed affine subvarieties and let φ(·; ·) be
a formula in disjunctive normal form without negations and with atoms of the form |F | ≤
λ · |G|, F,G ∈ K[X1, . . . , XN , Y1, . . . , YM ], λ ∈ 0 ∪ {00}. Then for each w ∈ W(K),
R̃(φ(·, w), V ) is a semi-algebraic subset of BF(V ).

For w̄ = (w1, . . . , wn) ∈ W(K)
n and σ ∈ {0, 1}n, we set

(2.2.2) R̃(σ, w̄) := R̃(φσ (w̄), V ),

where
φσ (w̄) :=

∧
i, σ (i)=1

φ(·, wi) ∧
∧

i, σ (i)=0

¬φ(·, wi).

Given a topological space Z, we denote by Hi(Z) the corresponding i-th singular
cohomology group of X with rational coefficients. We refer the reader to §A.1 for a brief
recollection of the main properties of these groups. We note that for Z = R̃(σ, w̄) these
groups are finite-dimensional Q-vector spaces. Let

bi(R̃(σ, w̄)) = dimQ Hi(R̃(σ, w̄))

denote the corresponding i-th Betti number.
The following theorem, mirroring a similar theorem in the o-minimal case [Bas10], is

the main technical result of this paper.

Theorem 2 (Bound on the Betti numbers). Let K be an algebraically closed complete
valued field with a non-archimedean valuation whose value group 0 is a subgroup of
the multiplicative group R>0. Suppose that V ⊂ ANK and W ⊂ AMK are closed affine
subvarieties and let φ(·; ·) be a formula in disjunctive normal form without negations
and with atoms of the form |F | ≤ λ · |G|, F,G ∈ K[X1, . . . , XN , Y1, . . . , YM ], λ ∈
0 ∪ {00}. Let dim(V ) = k. Then there exists a constant C = Cφ,V,W > 0 such that for
all w̄ ∈ W(K)n and 0 ≤ i ≤ k,∑

σ∈{0,1}n
bi(R̃(σ, w̄)) ≤ C · nk−i .

3. Proofs of the main results

In this section we prove our main results. Before starting the formal proof we first give a
brief outline of our methods.

3.1. Methods used

Our main technical result, Theorem 2, gives a bound, for each i, 0 ≤ i ≤ k, and w̄ ∈
W(K)n, on the sum over σ ∈ {0, 1}n of the i-th Betti numbers of R̃(σ, w̄). The technique
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for achieving this is an adaptation of the topological methods used to prove a similar
result in the o-minimal category in [Bas10, Theorem 2.1]. We recall here the main steps
of the proof in [Bas10].

We assume that V = RN ,W = RM , where R is a real closed field and X ⊂ V ×W
is a closed definable subset in an o-minimal expansion of R.

Step 1. One constructs definable infinitesimal tubes around the fibers Xw1 , . . . , Xwn .
Step 2. Let σ ∈ {0, 1}n, and C be a connected component of⋂

σ(i)=1

Xwi ∩
⋂

σ(i)=0

(V \Xwi ).

One proves that there exists a unique connected componentD of the complement
of the boundaries of the tubes constructed in Step 1 such that C is homotopy
equivalent to D. The homotopy equivalence is proved using the local conical
structure theorem for o-minimal structures.

Step 3. As a consequence of Step 2, in order to bound
∑
σ bi(R(σ, w̄)), it suffices (using

Alexander duality) to bound the Betti numbers of the union of the boundaries of
the tubes constructed in Step 1.

Step 4. Bounding those Betti numbers is achieved using certain inequalities which fol-
low from the Mayer–Vietoris exact sequence (see Properties A.1.1(5)). In these
inequalities only the Betti numbers of at most k-ary intersections of the bound-
aries play a role.

Step 5. One then uses Hardt’s triviality theorem for o-minimal structures to get a uniform
bound on each of these Betti numbers that depends only on the definable family
under consideration, i.e. on X,V , and W . Thus, the only part of the bound that
grows with n comes from certain binomial coefficients counting the number of
different possible intersections one needs to consider.

The method we use to prove Theorem 2 is close in spirit to that in [Bas10, proof of
Theorem 2.1] as outlined above but different in many important details. For each of the
steps above we give the corresponding step in the proof of Theorem 2.

Step 1′. We again construct certain tubes around the fibers and give explicit descrip-
tions of the tubes in terms of the formula φ defining the given semi-algebraic
set R̃(σ, w̄). The definition of these tubes is somewhat more complicated than in
the o-minimal case (see Notation 3.2.2). The use of two different infinitesimals to
define these tubes is necessitated by the singular behavior of the semi-algebraic
set defined by |F | ≤ λ · |G| near the common zeros of F and G.

Step 2′. The homotopy equivalence property analogous to Step 2 above is proved in
Proposition 3.2.6, and the role of the local conical structure theorem in the o-
minimal case is now played by a corresponding result of Hrushovski and Loeser
(see Theorem A.3).

Step 3′. We avoid the use of Alexander duality by directly using a Mayer–Vietoris type
inequality giving a bound on the Betti numbers of intersections of open sets in
terms of the Betti numbers of up to k-fold unions (see Proposition 3.2.47).
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Step 4′. This step is subsumed by Step 3′.
Step 5′. Finally, instead of using Hardt’s triviality to obtain a constant bound on the Betti

numbers of these ‘small’ unions, we use a theorem of Hrushovski and Loeser
which states that the number of homotopy types amongst the fibers of any fixed
map in the analytic category that we consider is finite (see Theorem A.4).

We apply Theorem 2 directly to obtain the VC-codensity bound in the case of the
theory of ACVF (using Observation 3.3.1). One extra subtlety here is in removing the
assumption on the formula φ (which occurs in the hypothesis of Theorem 2). Actually,
in order to prove Corollary 1 in general it suffices only to consider φ of the special form
having just one atom of the form |F | ≤ λ · |G| or |F | = λ · |G|. This reduction from
the general case to the special case is encapsulated in a combinatorial result (Proposi-
tion 3.3.2). With the help of Proposition 3.3.2, Corollary 1 becomes a consequence of
Theorem 2 and Observation 3.3.1.

We now give the proofs in full detail. In the next subsection (§3.2) we give the proof
of Theorem 2. In §3.3, we show how to deduce Theorem 1 from Theorem 2. Finally,
in §3.4 we show how to deduce Corollary 1 from Theorem 2.

3.2. Proof of Theorem 2

In the following, K will be a fixed algebraically closed non-archimedean (complete
real-valued) field and V is an affine variety over K . We shall freely use the results of
Hrushovski and Loeser [HL16] on the spaces BF(X) associated to definable subsets
X ⊂ V . For the reader’s convenience, an exposition (with references) of the results we
require below is provided in §A.2. We shall also make use of some standard facts about
singular cohomology of topological spaces; we refer the reader to §A.1 for a review of
these facts.

Notation 3.2.1 (Closed cube). For R ∈ R, R > 0, and N > 0, we denote by CubeN (R)
the semi-algebraic subset R̃(ψ,ANK), where

ψ =
∧

1≤i≤N

|Xi | ≤ R,

and ANK = Spec(K[X1, . . . , XN ]) is the usual affine space. Notice that CubeN (R) is a
closed topological space since the |Xi | are continuous functions (see A.2.2(4, 5)). More-
over, it is compact (see A.2.2(6)). If V = Spec(A) ⊂ ANK is a closed subvariety, then
we set CubeV (R) := CubeN (R) ∩ BF(V ). Note that this a closed semi-algebraic subset
of BF(V ).

Notation 3.2.2 (Open, closed (ε, ε′)-tubes). Suppose φ(·) is a formula in disjunctive
normal form without negations and with atoms of the form |F | ≤ λ · |G| with F,G ∈
K[X1, . . . , XN ] and λ ∈ R+ := R≥0. We denote by

φo(·; T , T ′)
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the formula obtained from φ by replacing each atom |F | ≤ λ · |G| with λ,G 6= 0 by the
formula

(|F | < (λ · T ) · |G|) ∨ ((|F | < T ′) ∧ (|G| < T ′)),

and each atom |F | ≤ λ · |G| with λ = 0 or G = 0 by the formula

|F | < T ′,

where T , T ′ are new variables of the value sort. Similarly, we denote by

φc(·; T , T ′)

the formula obtained from φ by replacing each atom |F | ≤ λ · |G| by the formula

(|F | ≤ (λ · T ) · |G|) ∨ ((|F | ≤ T ′) ∧ (|G| ≤ T ′))

if λ,G 6= 0, and by the formula

|F | ≤ T ′

if λ = 0 or G = 0. Here again T , T ′ are new variables of the value sort.
For ε > 1, ε′ > 0, and V a closed subvariety of ANK we set

TubeoV,φ(ε, ε
′) := R̃(φo(·; ε, ε′), V ), TubecV,φ(ε, ε

′) := R̃(φc(·; ε, ε′), V ).

For each R > 0, we set

TubeoV,φ(ε, ε
′, R) := CubeV (R) ∩ TubeoV,φ(ε, ε

′),(3.2.3)

TubecV,φ(ε, ε
′, R) := CubeV (R) ∩ TubecV,φ(ε, ε

′).(3.2.4)

We set

TubeComplcV,φ(ε, ε
′, R) := CubeV (R) \ TubeoV,φ(ε, ε

′, R).

Notice that by definition, TubeoV,φ(ε, ε
′, R) (resp. TubeComplcV,φ(ε, ε

′, R)) is an open
(resp. closed) subset of CubeV (R). Moreover, both are semi-algebraic as subsets
of BF(V ).

Finally, we set

TubeBoundarycV,φ(ε, ε
′, R) := TubecV,φ(ε, ε

′, R) ∩ TubeComplcV,φ(ε, ε
′, R).

Remark 3.2.5. Note that in our notation for the ‘tubes’ above, a superscript o (resp. c)
indicates that the corresponding tube is open (resp. closed).

The next proposition is the key ingredient for the proof of Theorem 2.
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Proposition 3.2.6. Let V ⊂ ANK and W ⊂ AMK be closed affine subvarieties. Let φ(·, ·)
be a formula in disjunctive normal form without negations and with atoms of the form
|F | ≤ λ · |G| where F,G ∈ K[X1, . . . , XN , Y1, . . . , YM ]. For each w̄ ∈ W(K)n, σ ∈
{0, 1}n, and for all sufficiently large R > 0 and δ, δ′, ε, ε′ ∈ R+ satisfying 0 < δ − 1 �
δ′ � ε − 1� ε′ � 1,

H∗(R̃(σ, w̄)) ∼= H∗(Sσ (δ, δ′, ε, ε′, R)),

where

Sσ (δ, δ
′, ε, ε′, R)

:=

⋂
i,σ (i)=1

TubeoV,φ(·,wi )(δ, δ
′, R) ∩

⋂
i,σ (i)=0

TubeComplcV,φ(·,wi )(ε, ε
′, R),

and R̃(σ, w̄) is as in (2.2.2).

The proof of Proposition 3.2.6 will use the following lemma.

Lemma 3.2.7. With notation as in Proposition 3.2.6:

(1) For every fixed δ′, ε, ε′, R ∈ R+, there exists δ0 = δ0(δ
′, ε, ε′, R) > 1 such that for

all 1 < t1 ≤ t2 ≤ δ0, the inclusion map Sσ (t1, δ′, ε, ε′, R) ↪→ Sσ (t2, δ
′, ε, ε′, R) is a

homotopy equivalence.
(2) For every fixed ε, ε′, R ∈ R+, there exists δ′0 = δ′0(ε, ε

′, R) > 0 such that for all
0 < t ′1 ≤ t

′

2 ≤ δ
′

0, the inclusion map⋂
t>1

Sσ (t, t
′

1, ε, ε
′, R) ↪→

⋂
t>1

Sσ (t, t
′

2, ε, ε
′, R)

is a homotopy equivalence.
(3) Let

S′σ (ε, ε
′, R) :=

⋂
t>1, t ′>0

Sσ (t, t
′, ε, ε′, R).

For every fixed ε′, R ∈ R+, there exists ε0 = ε0(ε
′, R) > 1 such that for all 1 <

s1 ≤ s2 ≤ ε0, the natural inclusion

S′σ (s2, ε
′, R) ↪→ S′σ (s1, ε

′, R)

is a homotopy equivalence.
(4) For every fixed R ∈ R+, there exists ε′0 = ε

′

0(R) > 0 such that for all 0 < s′1 ≤ s
′

2
≤ ε′0, the natural inclusion⋃

s>1

S′σ (s, s
′

2, R) ↪→
⋃
s>1

S′σ (s, s
′

1, R)

is a homotopy equivalence.
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(5) The following equality holds:

R̃(σ, w̄) ∩ CubeV (R) =
⋃

s>1, s′>0

S′σ (s, s
′, R).

(6) There exists R0 > 0 such that for all R > R0, the natural inclusion

R̃(σ, w̄) ∩ CubeV (R) ↪→ R̃(σ, w̄)

is a homotopy equivalence.

Remark 3.2.8. (i) The subsets Sσ (t, δ′, ε, ε′, R) form an increasing sequence in t , i.e. if
t1 < t2, then Sσ (t1, δ′, ε, ε′, R) ⊂ Sσ (t2, δ′, ε, ε′, R). The analogous assertion also holds
for Sσ (δ, t ′, ε, ε′, R) (with t ′ replacing t).

(ii) The subsets Sσ (δ, δ′, s, ε′, R) form a decreasing sequence in s, i.e. if s1 < s2,
then Sσ (δ, δ′, s2, ε′, R) ⊂ Sσ (δ, δ

′, s1, ε
′, R). The analogous assertion also holds for

Sσ (δ, δ
′, ε, s′, R).

(iii) The sequence of subsets Sσ (δ, δ′, ε, ε′, R) is increasing in R.

Proof of Lemma 3.2.7. We prove each part separately.

Proof of (1). Let
S1
σ (δ
′, ε, ε′, R) :=

⋃
t>1

Sσ (t, δ
′, ε, ε′, R).

First observe that S1
σ (δ
′, ε, ε′, R) is a semi-algebraic subset of BF(V ). To see this let

8σ,δ′,ε,ε′(·; T ) :=
∧

i,σ (i)=1

φo(·, wi; T , δ
′) ∧

∧
i,σ (i)=0

¬(φo(·, wi; ε, ε
′))

∧

∧
1≤i≤N

(|Xi | ≤ R),

81
σ,δ′,ε,ε′(·) := (∃T ) (T > 1) ∧8σ,δ′,ε,ε′(·; T ).

By A.2.2(7),
S1
σ (δ
′, ε, ε′, R) = R̃(81

σ,δ′,ε,ε′ , V ).

It follows that S1
σ (δ
′, ε, ε′, R) is a semi-algebraic subset of BF(V ).

Now consider the function f : R(81
σ,δ′,ε,ε′

, V )→ R+ defined by

f (x) := inf
{(x,t) |8σ,δ′,ε,ε′ (x;t)}

t.

It is clear that f is definable. Note that Sσ (t, δ′, ε, ε′, R) = R̃(81
σ,δ′,ε,ε′

∧f ≥ t, V ). The
claim now follows directly from Theorem A.3. ut

Proof of (2). Let
S2
σ (ε, ε

′, R) :=
⋃
t ′>0

⋂
t>1

Sσ (t, t
′, ε, ε′, R).
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Then S2
σ (ε, ε

′, R) is a semi-algebraic subset of BF(V ). To see this let

82
σ,ε,ε′(·; T

′) :=
∧

σ(i)=1

φc(·, wi; 1, T ′) ∧
∧

σ(i)=0

¬(φo(·, wi; ε, ε
′)) ∧

∧
1≤i≤N

(|Xi | ≤ R),

83
σ,ε,ε′(·) := (∃T

′) (T ′ > 0) ∧82
σ,ε,ε′(·; T

′).

As in the previous part, S2
σ (δ
′, ε, ε′, R) = R̃(83

σ,ε,ε′
, V ). In particular, S2

σ (δ
′, ε, ε′, R) is

semi-algebraic.
Moreover, let g : R(83

σ,ε,ε′
, V )→ R+ be defined by

g(x) := inf
{(x,t ′) |82

σ,ε,ε′
(x;t ′)}

t ′.

Clearly, g is definable and S2
σ (t
′, ε, ε′, R) = R̃(83

σ,ε,ε′
∧ g ≥ t ′, V ). As in the previous

part, the result follows by applying Theorem A.3 to g. ut

Proof of (3). First note that S3
σ (ε
′, R) =

⋃
s>1 S

′
σ (s, ε

′, R) is a semi-algebraic subset of
BF(V ). To see this let

84
σ,ε′(·; S) :=

∧
σ(i)=1

φc(·, wi; 1, 0) ∧
∧

σ(i)=0

¬(φo(·, wi; S, ε
′)) ∧

∧
1≤i≤N

(|Xi | ≤ R),

85
σ,ε′(·) := (∃S) (S > 1) ∧84

σ,ε′(·; S).

Then S3
σ (ε
′, R) = R̃(85

σ,ε′
, V ). In particular, S3

σ (ε
′, R) is semi-algebraic.

Let h : R(85
σ,ε′
, V )→ R+ be given by

h(x) := sup
{(x,s) |84

σ,ε′
(x;s)}

s.

Clearly, h is definable. Moreover, S′σ (s, ε
′, R) equals R̃(85

σ,ε′
∧ h ≥ s, V ) and therefore

is also semi-algebraic. Now apply Theorem A.3. ut

Proof of (4). Let S4
σ (R) :=

⋃
s′>0 S

3
σ (s
′, R), and consider

86
σ (·) := (∃S

′) (S′ > 0) ∧85
σ,S′(·).

Then S4
σ (R) = R̃(86

σ , V ). In particular, S4
σ (R) is semi-algebraic.

We can now consider the function h : R(86
σ , V )→ R+ given by

h(x) := sup
{(x,s′) |85

σ,s′
(x)}

s′.

One can now argue as in (3). ut

Proof of (5). This follows from the definition of S′σ (s, s
′, R). ut
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Proof of (6). This part follows immediately from Theorem A.3. For example, consider
the definable function h on R̃(σ, w̄) given by

h(x) :=
1

maxi(max(1, |xi |))
,

where xi’s are the coordinates. Then h(x) ≥ 0 for all x ∈ V , and for all 0 < ε ≤ 1,

h(x) ≥ ε ⇐⇒ x ∈ CubeV (1/ε).

Then there exists 0 < ε0 < 1 such that for all 0 < ε ≤ ε0 the natural inclusions

R̃(σ, w̄) ∩ CubeV (1/ε) ↪→ R̃(σ, w̄) = R̃(σ, w̄) ∩ BF(h ≥ 0)

are homotopy equivalences. Now we set R0 := 1/ε0 > 0, and for any R ≥ R0, we
consider ε(R) := 1/R to obtain the desired conclusion. ut

This completes the proof of Lemma 3.2.7. ut

We now prove Proposition 3.2.6. Since the proof is long and technical, we begin by giving
a general outline. Because of the nature of the argument, the steps enumerated do not
actually occur in the same order as in the list below.

Step 1. By Lemma 3.2.7(6), there exists an R0 > 0 such that for all R > R0 the natural
inclusion

R̃(σ, w̄) ∩ CubeV (R) ↪→ R̃(σ, w̄)

induces an isomorphism

H∗(R̃(σ, w̄))
∼=
−→ H∗(R̃(σ, w̄) ∩ CubeV (R)).

So we fix some R > 0 large enough and consider only the semi-algebraic set
R̃(σ, w̄) ∩ CubeV (R).

Step 2. By Lemma 3.2.7(5), we have natural inclusions

S′σ (s, s
′, R) ↪→

⋃
s>1, s′>0

S′σ (s, s
′, R) = R̃(σ, w̄) ∩ CubeV (R).

We shall see in Claim 4 below that this induces an isomorphism

H∗(R̃(σ, w̄)) ∩ CubeV (R)) ∼= lim
←−
s′

lim
←−
s

H∗(S′σ (s, s
′, R)).

Step 3. We shall see in Claim 1 below that the natural inclusions

S′σ (ε, ε
′, R) ↪→ Sσ (t, t

′, ε, ε′, R)

induce an isomorphism

lim
−→
t ′

lim
−→
t

H∗(Sσ (t, t ′, ε, ε′, R)) ∼= H∗(S′σ (ε, ε
′, R)).
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Step 4. In order to conclude, we shall show that the direct and inverse limits appearing in
Step 2 (proved in Claim 6) and Step 3 (proved in Claim 3) ‘stabilize’. This will
be a consequence of the homotopy equivalences proved in Lemma 3.2.7, and it is
proved in two intermediate steps (Claims 4 and 5 for Step 2, and Claims 2 and 3
for Step 3).

The proofs involving commutation of the limit (or colimit) functors with cohomology in
Steps 2 and 3 all rely on proving that a certain increasing family of compact subspaces
Sλ, of a semi-algebraic set T , indexed by a real parameter λ, are cofinal in the family of
all compact subspaces of S :=

⋃
λ Sλ (the families are different for different steps). One

then uses Lemma A.1.2 to obtain the desired commutation of various limits (or colimits)
with cohomology. The proofs of all these cofinality statements rely on the following basic
lemma that we extract out for clarity.

Lemma 3.2.9. Let T be a compact Hausdorff space, 3 a partially ordered set, (Cλ)λ∈3
an increasing sequence of compact subsets of T , and S :=

⋃
λ Cλ. Suppose that there is

a continuous function θ : S → R>0 ∪ {∞} such that the following property holds:

(3.2.10) For each θ0 ∈ R>0, there exists a λ(θ0) ∈ J such that x ∈ Cλ(θ0) if θ(x) ≥ θ0.

Then (Cλ)λ∈3 is cofinal in the family of compact subsets of S.

Proof. Let C be a compact subset of S in T . We need to show that there is a λ such that
C ⊂ Cλ. Since C is compact, F |C attains its minimum θ0 > 0 on C. Let λ(θ0) be as in
the proposition. Clearly,

x ∈ C =⇒ θ(x) ≥ θ0 =⇒ x ∈ Cλ(θ0).

It follows that C ⊂ Cλ(θ0), and so (Cλ)λ∈3 is cofinal in the family of compact subsets
of S. ut

Proof of Proposition 3.2.6.

Claim 1. The natural inclusions

(3.2.11) S′σ (ε, ε
′, R) :=

⋂
t>1, t ′>0

Sσ (t, t
′, ε, ε′, R) ↪→ Sσ (t, t

′, ε, ε′, R)

induce an isomorphism

(3.2.12) H∗(S′σ (ε, ε
′, R)) ∼= lim

−→
t,t ′

H∗(Sσ (t, t ′, ε, ε′, R)).

As an immediate consequence,

(3.2.13) H∗(S′σ (ε, ε
′, R)) ∼= lim

−→
t ′

lim
−→
t

H∗(Sσ (t, t ′, ε, ε′, R)).
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(Here the inductive limit in (3.2.12) is taken over the poset R>1 × R>0 partially ordered
by

(t1, t
′

1) � (t2, t
′

2) ⇐⇒ t2 ≤ t1 and t ′2 ≤ t
′

1,

and for (t1, t ′1) � (t2, t
′

2), the morphism

H∗(Sσ (t1, t ′1, ε, ε
′, R))→ H∗(Sσ (t2, t ′2, ε, ε

′, R))

is induced by the inclusion Sσ (t2, t ′2, ε, ε
′, R) ↪→ Sσ (t1, t

′

1, ε, ε
′, R).)

Proof of Claim 1. First note that the isomorphism (3.2.13) is an immediate consequence
of the isomorphism (3.2.12) and the fact that

lim
−→
t ′

lim
−→
t

H∗(Sσ (t, t ′, ε, ε′, R)) ∼= lim
−→
t,t ′

H∗(Sσ (t, t ′, ε, ε′, R))

(see for example [SGA72, Exp. 1, p. 13] for the last isomorphism).
We now proceed to prove the isomorphism (3.2.12). Let

T :=
⋂

i, σ (i)=0

TubeComplcV,φ(·,wi )(ε, ε
′, R).

Since each TubeComplcV,φ(·,wi )(ε, ε
′, R) is compact, T is a compact Hausdorff space.

Notice that for each t > 1, t ′ > 0, Sσ (t, t ′, ε, ε′, R) ⊂ T .
We will now show that for fixed ε, ε′, R, the family of semi-algebraic sets

(3.2.14) (Sσ (t, t
′, ε, ε′, R))t>1, t ′>0

is a cofinal system of open neighborhoods of⋂
t>1, t ′>0

Sσ (t, t
′, ε, ε′, R)

in T . Assuming this fact, the claim follows from Lemma A.1.2(1).
We first prove the following cofinality statement from which the cofinality of (3.2.14)

will follow.
Suppose that I is a finite set, and for each i ∈ I let Fi,Gi ∈ K[X1, . . . , XN ] and

λi ∈ R+. Let V be as before, R > 0, and T (1) a compact semi-algebraic subset of
CubeV (R). We define

S(1)(t, t ′, R) := T (1) ∩
⋂
i∈I

TubeoV,|Fi |≤λi ·|Gi |(t, t
′, R).

Notice that for each t > 1, t ′ > 0, S(1)(t, t ′, R) ⊂ T (1), and hence⋂
t>1, t ′>0

S(1)(t, t ′, R) ⊂ T (1)

as well.
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Claim 1a. The family of semi-algebraic sets (S(1)(t, t ′, R))t>1, t ′>0 is a cofinal system of
open neighborhoods of ⋂

t>1, t ′>0

S(1)(t, t ′, R)

in T (1).

Proof of Claim 1a. Proving the claim is equivalent to proving the cofinality of the family
of compact subsets

(T (1) \ S(1)(t, t ′, R))t>1, t ′>0

in the partially ordered family of compact subsets of T (1) \
⋂
t>1, t ′>0 S

(1)(t, t ′, R). To
prove the latter we use Lemma 3.2.9 with 3 := R>1 × R>0, and the family (Cλ)λ∈3 :=
(T (1) \ S(1)(t, t ′, R))(t,t ′)∈3 of compact semi-algebraic subsets of the compact set T (1).

We now define a continuous function θ : T (1) \
⋂
t>1, t ′>0 S

(1)(t, t ′, R)→ R≥0. We
first introduce the following auxiliary functions. For λ ≥ 0, let Hλ(u, v) : R≥0 × R≥0
→ R≥0 be defined as follows. If λ = 0, then

H0(u, v) := u,

and if λ > 0,

Hλ(u, v) :=

min
(

max(u, v),max
(

0,
u

λv
− 1

))
if v 6= 0,

u else.
(3.2.15)

It is easy to check that the functions Hλ(u, v) are continuous.
For each i ∈ I , let θi : T (1) \

⋂
t>1, t ′>0 S

(1)(t, t ′, R)→ R≥0 be defined by

θi(x) := Hλi (|Fi(x)|, |Gi(x)|),

and let θ : T (1) \
⋂
t>1, t ′>0 S

(1)(t, t ′, R)→ R≥0 be defined by

θ(x) := max
i∈I

θi(x).

Notice that each θi (and hence also θ ) are continuous, since they are compositions of
continuous functions.

In order to apply Lemma 3.2.9 it remains to check that with λ defined by λ(θ0) =

(1+ θ0, θ0):

(1) θ(x) > 0 for each x ∈ T (1) \
⋂
t>1, t ′>0 S

(1)(t, t ′, R).
(2) θ satisfies (3.2.10) with λ defined by λ(θ0) = (1+ θ0, θ0).

To prove (1), suppose that θ(x) = 0. Then θi(x) = 0 for each i ∈ I .
If λi = 0, then θi(x) = 0 implies that |Fi(x)| = 0. If λi > 0, then θi(x) = 0

implies that either |Fi(x)| = |Gi(x)| = 0 or |Fi(x)|/(λi · |Gi(x)|) ≤ 1 or equivalently
|Fi(x)| ≤ λi · |Gi(x)|. Together they imply that x ∈

⋂
t>1, t ′>0 S

(1)(t, t ′, R), which is a
contradiction.
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To prove (2), suppose θ(x) ≥ θ0. First note that

T (1) \ S(1)(1+ θ0, θ0, R) = T
(1)
\

⋂
i∈I

TubeoV,|Fi |≤λi ·|Gi |(1+ θ0, θ0, R)

= T (1) ∩
⋃
i∈I

TubeComplcV,|Fi |≤λi ·|Gi |(1+ θ0, θ0, R),

which is equal to the set

T (1) ∩
⋃
i∈I

R̃((|Fi | ≥ λi · (1+ θ0) · |Gi |) ∧ ((|Fi | ≥ θ0) ∨ (|Gi | ≥ θ0)), V ).

Since θ(x) ≥ θ0, there exists an i such that θ(x) = θi(x) = θ0. Hence |Fi(x)| and
|Gi(x)| are not simultaneously 0. We have two cases. If λi = 0, then

|Fi(x)| = θi(x) ≥ θ0,

which implies that

(3.2.16) x ∈ R̃(|Fi | ≥ (λi · (1+ θ0) · |Gi |) ∧ ((|Fi | ≥ θ0) ∨ (|Gi | ≥ θ0)), V ).

Otherwise, λi > 0. If |Gi(x)| 6= 0, we have

max(|Fi(x)|, |Gi(x)|) ≥ θi(x) ≥ θ0,

and

max
(

0,
|Fi(x)|

λi |Gi(x)|
− 1

)
≥ θi(x) ≥ θ0,

which again implies (3.2.16). If |Gi(x)| = 0, then |Fi(x)| = θ0, and again (3.2.16) holds.
This yields (2), thus completing the proof of Claim 1a. ut

Now we return to the proof of Claim 1. Let φ =
∨
h∈H φ

(h), where each φ(h) is a con-
junction of weak inequalities, |Fjh| ≤ λjh · |Gjh|, j ∈ Jh, and H, Jh are finite sets.

Let Iσ := {i ∈ [1, n] | σi = 1} and let H Iσ denote the set of maps ψ : Iσ → H . Note
that

Sσ (t, t
′, ε, ε′, R) =

⋂
Iσ

(⋃
h∈H

⋂
j∈Jh

TubeoV,|Fjh(·,wi )|≤λjh·|Gjh(·,wi )|(t, t
′, R)

)
∩ T .

(Recall that T =
⋂
i, σi=0 TubeComplcV,φ(·,wi )(ε, ε

′, R) is a compact semi-algebraic set.)
Then

Sσ (t, t
′, ε, ε′, R) =

⋃
ψ∈H Iσ

S(ψ)σ (t, t ′, ε, ε′, R),

where for ψ ∈ H Iσ ,

S(ψ)σ (t, t ′, ε, ε′, R) := T ∩
⋂
i, σi=1

Tubeo
V,φ(ψ(i))(·,wi )

(t, t ′, R).
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An open neighborhood U of
⋂
t>1, t ′>0 Sσ (t, t

′, ε, ε′, R) in T is clearly also an open

neighborhood of
⋂
t>1, t ′>0 S

(ψ)
σ (t, t ′, ε, ε′, R) for each ψ ∈ H Iσ .

Fixing a ψ ∈ H Iσ , we apply Claim 1a with

T (1) := T , I := {(j, ψ(i)) | i ∈ Iσ , j ∈ Jψ(i)},

and for i0 = (j, ψ(i)) ∈ I ,

Fi0 = Fj,ψ(i), Gi0 = Gj,ψ(i), λi0 = λj,ψ(i).

We deduce that for each ψ ∈ H Iσ , there exists θ (ψ)0 > 0 such that

S(ψ)σ (1+ θ (ψ)0 , θ
(ψ)

0 , ε, ε′, R) ⊂ U.

Now take θ0 := minψ∈H Iσ θ
(ψ)

0 . Then

Sσ (1+ θ0, θ0, ε, ε
′, R) =

⋃
ψ∈H Iσ

S(ψ)σ (1+ θ0, θ0, ε, ε
′, R) ⊂ U.

This proves (3.2.12) and concludes the proof of Claim 1. ut

Claim 2. The natural inclusions⋂
t>1

Sσ (t, t
′, ε, ε′, R) ↪→ Sσ (t, t

′, ε, ε′, R)

induce for each fixed t ′ > 0, ε > 1, ε′ > 0, R > 0 an isomorphism

(3.2.17) H∗
(⋂
t>1

Sσ (t, t
′, ε, ε′, R)

)
∼= lim
−→
t

H∗(Sσ (t, t ′, ε, ε′, R)).

Proof of Claim 2. The proof is structurally similar to the proof of Claim 1. Let

T :=
⋂

i, σ (i)=0

TubeComplcV,φ(·,wi )(ε, ε
′, R).

Then T is compact. We will show for fixed t ′, ε, ε′, R, the family of semi-algebraic sets

(3.2.18) (Sσ (t, t
′, ε, ε′, R))t>1

is a cofinal system of open neighborhoods of
⋂
t>1 Sσ (t, t

′, ε, ε′, R) in T . Assuming this
fact, the claim follows from Lemma A.1.2(1).

We first prove the following cofinality statement from which the cofinality of (3.2.18)
will follow.

Suppose that I is a finite set, and for each i ∈ I let Fi,Gi ∈ K[X1, . . . , XN ] and
λi ∈ R+. Let V be as before, R > 0, and T (2) a compact semi-algebraic subset of
CubeV (R). We define

S(2)(t, t ′, R) := T (2) ∩
⋂
i∈I

TubeoV,|Fi |≤λi ·|Gi |(t, t
′, R).
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Claim 2a. The family of semi-algebraic sets (S(2)(t, t ′, R))t>1 is a cofinal system of open
neighborhoods of ⋂

t>1

S(2)(t, t ′, R)

in T (2).

Proof of Claim 2a. Proving the claim is equivalent to proving that the family of compact
semi-algebraic sets

(T (2) \ S(2)(t, t ′, R))t>1

is cofinal in the family of compact subsets of T (2) \
⋂
t>1 S

(2)(t, t ′, R).
Let

S
(2)
i (t, t ′, R)c := T (2) ∩ TubeComplcV,|Fi |≤λi ·|Gi |(t, t

′, R)

=


T (2) ∩ R̃((|Fi | ≥ t · λi · |Gi |)
∧ ((|Fi | ≥ t

′) ∨ (|Gi | ≥ t
′)), V ) if λi > 0,

T (2) ∩ R̃(|Fi | ≥ t ′, V ) if λi = 0.

Note that
T (2) \ S(2)(t, t ′, R) =

⋃
i∈I

S
(2)
i (t, t ′, R)c,

and
T (2) \

⋂
t>1

S(2)(t, t ′, R) =
⋃
i∈I

⋃
t>1

S
(2)
i (t, t ′, R)c.

The last cofinality statement would follow if for each i we can show that the family
of compact semi-algebraic sets (S(2)i (t, t ′, R)c)t>1 is cofinal in the family of compact
subspaces of

⋃
t>1 S

(2)
i (t, t ′, R)c. This is because if for each compact subspace

C ⊂ T (2) \
⋂
t>1

S(2)(t, t ′, R) =
⋃
i∈I

⋃
t>1

S
(2)
i (t, t ′, R)c

and i ∈ I , there exists t0,i > 1 such that C ∩
⋃
t>1 S

(2)
i (t, t ′, R)c ⊂ S

(2)
i (t0,i, t

′, R)c, then
C ⊂ T (2) \ S(2)(t0, t

′, R) with t0 := mini t0,i .
We now proceed to show the cofinality of (S(2)i (t, t ′, R)c)t>1 in the family of compact

subspaces of
⋃
t>1 S

(2)
i (t, t ′, R)c using Lemma 3.2.9.

For each i ∈ I , define the continuous function θi :
⋃
t>1 S

(2)
i (t, t ′, R)c → R+ ∪ {∞}

by

θi(x) :=

|Fi(x)| if λi = 0,
|Fi(x)|

λi |Gi(x)|
if λi > 0.

(3.2.19)
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It is an easy exercise to check that the functions θi are positive and satisfy (3.2.10) with
the map λ defined by

λ(θ0) :=

{
t ′ if λi = 0,
θ0 if λi > 0.

This finishes the proof of Claim 2a. ut

Claim 2 follows from Claim 2a in exactly the same manner as in the proof of Claim 1
from Claim 1a. ut

Claim 3. For every fixed ε > 1, ε′ > 0 and R > 0, there exists δ′0 > 0 such that for each
0 < δ′ ≤ δ′0, there exists δ0(δ

′) > 1 such that the inclusion

S′σ (ε, ε
′, R) ↪→ Sσ (δ, δ

′, ε, ε′, R)

induces an isomorphism

(3.2.20) H∗(S′σ (ε, ε
′, R)) ∼= H∗(Sσ (δ, δ′, ε, ε′, R))

for all 1 < δ ≤ δ0(δ
′).

Proof of Claim 3. We fix ε > 1, ε′ > 0 and R > 0. First, note that (3.2.13) yields

(3.2.21) H∗(S′σ (ε, ε
′, R)) ∼= lim

−→
t ′

lim
−→
t

H∗(Sσ (t, t ′, ε, ε′, R)).

By Lemma 3.2.7(2) there exists δ′0 such that for all 0 < t ′2 ≤ t
′

1 ≤ δ
′

0, the inclusion
map ⋂

t>1

Sσ (t, t
′

2, ε, ε
′, R) ↪→

⋂
t>1

Sσ (t, t
′

1, ε, ε
′, R)

induces an isomorphism

H∗
(⋂
t>1

Sσ (t, t
′

1, ε, ε
′, R)

)
→ H∗

(⋂
t>1

Sσ (t, t
′

2, ε, ε
′, R)

)
.

It follows that, for any 0 < δ′ ≤ δ′0,

(3.2.22) lim
−→
t ′

H∗
(⋂
t>1

Sσ (t, t
′, ε, ε′, R)

)
∼= H∗

(⋂
t>1

Sσ (t, δ
′, ε, ε′, R)

)
.

Moreover, it follows from (3.2.17) that

(3.2.23) H∗
(⋂
t>1

Sσ (t, t
′, ε, ε′, R)

)
∼= lim
−→
t

H∗(Sσ (t, t ′, ε, ε′, R))

for each fixed t ′ > 0, ε > 1, ε′ > 0 and R > 0. Hence, from (3.2.21)–(3.2.23) we get

(3.2.24) H∗(S′σ (ε, ε
′, R)) ∼= lim

−→
t

H∗(Sσ (t, δ′, ε, ε′, R))
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It again follows from Lemma 3.2.7(1) that for each fixed δ′, there exists δ0(δ
′) such that

for all 1 < t2 ≤ t1 ≤ δ0(δ
′) the inclusion Sσ (t2, δ′, ε, ε′, R) ↪→ Sσ (t1, δ

′, ε, ε′, R)

induces an isomorphism

H∗(Sσ (t1, δ′, ε, ε′, R))→ H∗(Sσ (t2, δ′, ε, ε′, R)),

which implies that

(3.2.25) lim
−→
t

H∗(Sσ (t, δ′, ε, ε′, R)) ∼= H∗(Sσ (t0, δ′, ε, ε′, R))

for all 1 < t0 ≤ δ0(δ
′). Claim 3 follows from (3.2.24) and (3.2.25), after taking δ′0 and

δ0(δ
′) as above. ut

Claim 4. The inclusion⋃
s>1, s′>0

S′σ (s, s
′, R) ↪→ R̃(σ, w̄)) ∩ CubeV (R)

induces an isomorphism

(3.2.26) H∗(R̃(σ, w̄) ∩ CubeV (R)) ∼= lim
←−
s′,s

H∗(S′σ (s, s
′, R)).

As an immediate consequence,

(3.2.27) H∗(R̃(σ, w̄) ∩ CubeV (R)) ∼= lim
←−
s′

lim
←−
s

H∗(S′σ (s, s
′, R)).

(Here the projective limit is taken over the poset R>1 × R>0 partially ordered by

(s1, s
′

1) � (s2, s
′

2) ⇐⇒ s2 ≤ s1 and s′2 ≤ s
′

1,

and for (s1, s′1) � (s2, s
′

2), the morphism

H∗(S′σ (s2, s
′

2, R))→ H∗(S′σ (s1, s
′

1, R))

is induced by inclusion.)

Proof of Claim 4. First note that (3.2.27) is an immediate consequence of (3.2.26) and
the fact that

lim
←−
s′

lim
←−
s

H∗(S′σ (s, s
′, R)) ∼= lim

←−
s,s′

H∗(S′σ (s, s
′, R))

(see for example [SGA72, Exp. 1, p. 13] for the last isomorphism). Note that the semi-
algebraic sets S′σ (s, s

′, R) are compact for each choice of s > 1, s′ > 0 and R > 0.
In order to see this, recall that by definition (see (3.2.11)) S′σ (s, s

′, R) is the intersec-
tion of

⋂
i, σ (i)=1

⋂
t>1, t ′>0 TubeoV,φ(·,wi )(t, t

′, R) with the compact semi-algebraic set⋂
i,σ (i)=0

⋂
t>1,t ′>0 TubeComplcV,φ(·,wi )(s, s

′, R). Therefore, it suffices to prove that the
semi-algebraic set ⋂

t>1, t ′>0

TubeoV,φ(·,wi )(t, t
′, R)
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is compact for each i. In general, φ =
∨
h∈H φ

(h) where each φ(h) is a conjunction of
weak inequalities |Fjh| < λjh · |Gjh|, j ∈ Jh, where H and Jh are finite sets. It follows
that the semi-algebraic set

⋂
t>1,t ′>0 TubeoV,φ(·,wi )(t, t

′, R) is the union over H of the
intersection over Jh of the semi-algebraic sets⋂

t>1, t ′>0

TubeoV,|Fjh(·,wi )|≤λjh·|Gjh(·,wi )|(t, t
′, R).

We claim that

(3.2.28)
⋂

t>1, t ′>0

TubeoV,|Fjh(·,wi )|≤λjh·|Gjh(·,wi )|

= CubeV (R) ∩ R̃(|Fjh(·, wi)| ≤ λjh · |Gjh(·, wi)|, V ),

and the latter set is easily seen to be compact. Verifying (3.2.28) is an easy exercise
starting from the definition in (3.2.3). It follows that

R̃(σ, w̄) ∩ CubeV (R) =
⋃

s>1, s′>0

S′σ (s, s
′, R),

where each S′σ (s, s
′, R) is a compact subset of R̃(σ, w̄) ∩ CubeV (R). We now prove that

the family

(3.2.29) (S′σ (s, s
′, R))s>1, s′>0

is cofinal in the family of compact subspaces of

R̃(σ, w̄) ∩ CubeV (R) =
⋃

s>1, s′>0

S′σ (s, s
′, R).

Then the isomorphism (3.2.26) will follow from Lemma A.1.2(2).
We first prove the following cofinality statement from which the cofinality of (3.2.29)

will follow.
Suppose that I is a finite set, and for each i ∈ I , let Fi,Gi ∈ K[X1, . . . , XN ] and

λi ∈ R+. Let V and R > 0 be as before. We define

S(3)(s, s′, R) :=
⋃
i∈I

TubeComplcV,|Fi |≤λi ·|Gi |(s, s
′, R)

=


CubeV (R) ∩

⋃
i∈I

R̃(|Fi | ≥ s′, V ) if λi = 0,

CubeV (R) ∩
⋃
i∈I

R̃((|Fi | ≥ s · λi · |Gi |)

∧ (|Fi | ≥ s
′
∨ |Gi | ≥ s

′), V ) if λi > 0.

Claim 4a. The family of semi-algebraic sets (S(3)(s, s′, R))s>1, s′>0 is cofinal in the di-
rected family of compact subspaces of⋃

s>1, s′>0

S′′(s, s′, R).
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Proof of Claim 4a. One can deduce this formally from Claim 1a by taking complements
and setting T (1) = CubeV (R). On the other hand, one can also proceed via Lemma 3.2.9
using the function

θ :
⋃

s>1, s′>0

S(3)(s, s′, R)→ R≥0

defined as follows. For each i ∈ I , let θi :
⋃
s>1, s′>0 S

(3)(s, s′, R)→ R≥0 be defined by

θi(x) := Hλi (|Fi(x)|, |Gi(x)|)

(see (3.2.15) for the definition of Hλi (·, ·)), and let θ :
⋃
s>1, s′>0 S

(3)(s, s′, R) → R≥0
be defined by

θ(x) := max
i∈I

θi(x).

One can now directly verify that θ is positive and satisfies (3.2.10) with the map λ defined
by λ(θ0) = (1 + θ0, θ0). We leave the details to the reader. This concludes the proof of
Claim 4a. ut

The proof of Claim 4 from Claim 4a is formally analogous to the similar derivation of
Claim 1 from Claim 1a and is omitted. ut

Claim 5. For each fixed s′ > 0 and R > 0 the natural inclusion

S′σ (s, s
′, R) ↪→

⋃
s>1

S′σ (s, s
′, R)

induces an isomorphism

(3.2.30) H∗
(⋃
s>1

S′σ (s, s
′, R)

)
∼= lim
←−
s

H∗(S′σ (s, s
′, R)).

Proof of Claim 5. The proof is structurally similar to the proof of Claim 4.
We will now show that for fixed s′, R, the family of semi-algebraic sets

(3.2.31) (Sσ (s, s
′, R))s>1

is a cofinal system of compact subsets of
⋃
s>1 Sσ (s, s

′, R). Assuming this fact, the claim
follows from Lemma A.1.2(2).

We first prove the following cofinality statement from which the cofinality of (3.2.31)
will follow.

Suppose that I is a finite set, and for each i ∈ I , let Fi,Gi ∈ K[X1, . . . , XN ] and
λi ∈ R+. Let V and R > 0 be as before. We define

S(4)(s, s′, R) :=
⋃
i∈I

TubeComplcV,|Fi |≤λi ·|Gi |(s, s
′, R).

Claim 5a. The family of semi-algebraic sets (S(4)(s, s′, R))s>1 is a cofinal system of
compact semi-algebraic subsets of ⋃

s>1

S(4)(s, s′, R).
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Proof of Claim 5a. One can deduce this formally from Claim 2a by taking complements
and T (2) := CubeV (R). Alternatively, one can argue directly as follows.

For each i ∈ I , let

S
(4)
i (s, s′, R) := TubeComplcV,|Fi |≤λi |Gi |(s, s

′, R)

=


CubeV (R) ∩ R̃(|Fi | ≥ s′, V ) if λi = 0,

CubeV (R) ∩ R̃((|Fi | ≥ s · λi · |Gi |)
∧ ((|Fi | ≥ s

′) ∨ (|Gi | ≥ s
′)), V ) if λi > 0.

Note that
S(4)(s, s′, R) =

⋃
i∈I

S
(4)
i (s, s′, R),

and ⋃
s>1

S(4)(s, s′, R) =
⋃
i∈I

⋃
s>1

S
(4)
i (s, s′, R).

Note that the cofinality statement in our claim would follow if for each i we can show
that the family of compact semi-algebraic sets (S(4)i (s, s′, R))s>1 is cofinal in the family
of compact subspaces of

⋃
s>1 S

(4)
i (s, s′, R). To see this, suppose that we have proven

the latter cofinality statement (for each i). Let C ⊂
⋃
s>1 S

(4)(s, s′, R) be a compact
subspace. Then Ci := C ∩

⋃
s>1 S

(4)
i (s, s′, R) is a compact subspace and by hypothesis

for each i ∈ I , there exists s0,i > 1 such that Ci ⊂ S
(4)
i (s0,i, s

′, R). It follows that
C ⊂ S(4)(s0, s

′, R) with s0 := mini s0,i .
We now proceed to show the cofinality of (S(4)i (s, s′, R))s>1 in the family of com-

pact subspaces of
⋃
s>1 S

(4)
i (s, s′, R) using Lemma 3.2.9. For each i ∈ I , consider the

continuous function θi :
⋃
s>1 S

(4)
i (s, s′, R)→ R+ ∪ {∞} defined by

θi(x) :=

|Fi(x)| if λi = 0,
|Fi(x)|

λi |Gi(x)|
if λi > 0.

It is an easy exercise to check that the functions θi are positive and satisfy (3.2.10) with
the map λ defined by λ(θ0) = θ0. This completes the proof of Claim 5a. ut

Claim 5 follows from Claim 5a in exactly the same manner as in the proof of Claim 1
from Claim 1a. ut

Claim 6. Let R > 0. Then there exists ε′0(R) > 0 such that for each 0 < ε′ ≤ ε′0(R),
there exists ε0(ε

′) > 1 such that

(3.2.32) H∗(R̃(σ, w̄) ∩ CubeV (R)) ∼= H∗(S′σ (ε, ε
′, R))

for all 1 < ε ≤ ε0(ε
′).
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Proof of Claim 6. It follows from (3.2.27) that

(3.2.33) H∗(R̃(σ, w̄) ∩ CubeV (R)) ∼= lim
←−
s′

lim
←−
s

H∗(S′σ (s, s
′, R)).

It follows from Lemma 3.2.7(2) that there exists ε′0(R) such that for all 0 < s′2 ≤ s
′

1 ≤

ε′0(R), the inclusion map ⋃
s>1

S′σ (s, s
′

1, R) ↪→
⋃
s>1

S′σ (s, s
′

2, R)

induces an isomorphism

H∗
(⋃
s>1

S′σ (s, s
′

2, R)
)
→ H∗

(⋃
s>1

S′σ (s, s
′

1, R)
)
.

Hence

(3.2.34) lim
←−
s′

H∗
(⋃
s>1

S′σ (s, s
′, R)

)
∼= H∗

(⋃
s>1

S′σ (s, ε
′, R)

)
for all 0 < ε′ ≤ ε′0(R). Moreover, it follows from (3.2.30) that

(3.2.35) H∗
(⋃
s>1

S′σ (s, ε
′, R)

)
∼= lim
←−
s

H∗(S′σ (s, ε
′, R)).

Hence, from (3.2.33)–(3.2.35) we get an isomorphism

(3.2.36) H∗(R̃(σ, w̄) ∩ CubeV (R)) ∼= lim
←−
s

H∗(S′σ (s, ε
′, R))

It again follows from Lemma 3.2.7(1) that for each fixed s′, and hence for s′ = ε′,
there exists ε0(ε

′) > 1 such that for all 1 < s2 ≤ s1 ≤ ε0(ε
′), the inclusion map

S′σ (s1, ε
′, R) ↪→ S′σ (s2, ε

′, R) induces an isomorphism

H∗(S′σ (s2, ε
′, R))→ H∗(S′σ (s1, ε

′, R)),

which implies that

(3.2.37) lim
←−
s

H∗(S′σ (s, ε
′, R)) ∼= H∗(S′σ (ε, ε

′, R))

for all 1 < ε ≤ ε0(ε
′). Claim 6 follows from (3.2.36) and (3.2.37). ut

We now return to the proof of Proposition 3.2.6. Using Lemma 3.2.7(6), we find that there
exists R0 > 0 such that for all R ≥ R0,

(3.2.38) H∗(R̃(σ, w̄) ∩ CubeV (R)) ∼= H∗(R̃(σ, w̄)).

Fix R ≥ R0. It follows from (3.2.32) that there exists ε′0(R) > 0 such that for each
0 < ε′ ≤ ε′0(R), there exists ε0(ε

′) > 1 such that for all 1 < ε ≤ ε0(ε
′),

(3.2.39) H∗(R̃(σ, w̄) ∩ CubeV (R)) ∼= H∗(Sσ (ε, ε′, R)).

Fix ε′ and ε satisfying 0 < ε′ ≤ ε′0(R) and 1 < ε ≤ ε0(ε
′).
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Now it follows from (3.2.20) that there exists δ′0(ε, ε
′, R) > 0 such that for each

0 < δ′ ≤ δ′0(ε, ε
′, R), there exists δ0(δ

′) > 1 such that for all 1 < δ ≤ δ0(δ
′),

H∗(S′σ (ε, ε
′, R)) ∼= H∗(Sσ (δ, δ′, ε, ε′, R)).

Choose δ′, δ satisfying 0 < δ′ ≤ δ′0(ε, ε
′, R) and 1 < δ ≤ δ0(δ

′). It is now clear that with
the above choices of R, ε′, ε, δ′, δ, we have

H∗(R̃(σ, w̄)) ∼= H∗(Sσ (δ, δ′, ε, ε′, R)).

This concludes the proof of Proposition 3.2.6. ut

Before stating the next proposition we introduce some notation. As in the hypothesis of
Proposition 3.2.6, let V ⊂ ANK and W ⊂ AMK be closed affine subvarieties and φ(·, ·) a
formula in disjunctive normal form without negations and with atoms of the form |F | ≤
λ · |G| where F,G ∈ K[X1, . . . , XN , Y1, . . . , YM ].

For δ, ε > 1 and δ′, ε′ > 0 let

S′′σ (δ, δ
′, ε, ε′, R) :=

⋂
i, σ (i)=1

TubeoV,φ(·,wi )(δ, δ
′, R)−

⋃
i, σ (i)=0

TubecV,φ(·,wi )(ε, ε
′).

It follows from the definition that for all δ, ε > 1 and δ′, ε′ > 0,

S′′σ (δ, δ
′, ε, ε′, R) ⊂ Sσ (δ, δ

′, ε, ε′, R).

Note that the sets S′′σ (δ, δ
′, ε, ε′, R) and Sσ (δ, δ′, ε, ε′, R) shrink as δ, δ′ decreases,

and they grow with decreasing ε, ε′. More precisely, for all δi, δ′i, εi, ε
′

i , i = 1, 2, satisfy-
ing 1 < δ1 < δ2, 0 < δ′1 < δ′2, 1 < ε2 < ε1, 0 < ε′2 < ε′1, we have

Sσ (δ1, δ
′

1, ε1, ε
′

1, R) ⊂ Sσ (δ2, δ
′

2, ε2, ε
′

2, R),

S′′σ (δ1, δ
′

1, ε1, ε
′

1, R) ⊂ S
′′
σ (δ2, δ

′

2, ε2, ε
′

2, R).

Proposition 3.2.40. With notation as above, for all δ, δ′, ε, ε′ ∈ R+ satisfying 0 < δ −

1 < δ′ < ε − 1 < ε′, every connected component of S′′σ (δ, δ
′, ε, ε′, R) is a connected

component of the semi-algebraic set

Uφ,δ,δ′,ε,ε′,R :=
⋂

1≤i≤n

(Ui,ε,ε′,R ∩ Ui,δ,δ′,R),(3.2.41)

where for 1 ≤ i ≤ n and t > 1, t ′ > 0,

Ui,t,t ′,R := CubeV (R) \ TubeBoundarycV,φ(·,wi )(t, t
′, R).

Before proving Proposition 3.2.40, we note that Propositions 3.2.40 and 3.2.6 imply

Proposition 3.2.42. For each w̄ ∈ W(K)n, there exist δ > 1, δ′ > 0, ε > 1, ε′ > 0, and
R > 0 such that for each σ ∈ {0, 1}n and 0 ≤ i < k,

(3.2.43)
∑

σ∈{0,1}n
bi(R̃(σ, w̄)) ≤ bi(Uφ,δ,δ′,ε,ε′,R).
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Proof. By Proposition 3.2.6 and using the notation of its proof there exist an R > 0, an
ε′(R) > 0, and for each 0 < ε′ < ε′0(R), there exists an ε0(ε

′) > 1 such that

(3.2.44) H∗(R̃(σ, w̄) ∩ CubeV (R)) ∼= H∗(S′σ (ε, ε
′, R))

for all 1 < ε ≤ ε0(ε
′). Fix ε′i and εi (i = 1, 2) satisfying 0 < ε′1 < ε′2 ≤ ε′0(R) and

1 < ε1 < ε2 ≤ min(ε0(ε
′

1), ε0(ε
′

2)). Recall that it follows from (3.2.20) that there exists
δ′0(εi, ε

′

i, R) > 0 such that for each 0 < δ′ ≤ δ′0(εi, ε
′

i, R), there exists δ(i)0 (δ′) > 1
(depending on δ′ and δ′0(εi, ε

′

i, R)) such that for all 1 < δ ≤ δ
(i)
0 (δ′),

H∗(S′σ (εi, ε
′

i, R))
∼= H∗(Sσ (δ, δ′, εi, ε′i, R)).

Let

0 < δ′ ≤ min(δ′0(ε1, ε
′

1, R), δ
′

0(ε2, ε
′

2, R)), 1 < δ ≤ min(δ(1)0 (δ′), δ
(2)
0 (δ′)).

With the above choices of R, ε′i, εi, δ
′, δ, we have

H∗(R̃(σ, w̄)) ∼= H∗(Sσ (δ, δ′, εi, ε′i, R)).

On the other hand, let Ti := Sσ (δ, δ
′, εi, ε

′

i, R) and T ′′i := S′′σ (δ, δ
′, εi, ε

′

i, R). Then
T2 ⊂ T

′′

1 ⊂ T1, and by the previous remarks the natural map

Hi(T1)→ Hi(T2)

is an isomorphism. On the other hand, this map factors through Hi(T ′′1 ) and therefore the
natural map

Hi(T ′′1 )→ Hi(T1)

is surjective. It follows that bi(T1) ≤ bi(T
′′

1 ). Since the connected components of the T ′′1
(as σ varies) are connected components of Uφ,δ,δ′,ε,ε′,R (by Proposition 3.2.40), the in-
equality (3.2.43) follows immediately. ut

Proof of Proposition 3.2.40. Recall that φ is a disjunction of the formulas φh, h ∈ H ,
where H is a finite set, and each φh is a conjunction of weak inequalities |Fhj | ≤
λhj · |Ghj |, j ∈ Jh, where Jh is a finite set. As before for each i we let Fihj := Fhj (·, wi),
Gihj := Ghj (·, wi).

We first observe that S′′σ (δ, δ
′, ε, ε′, R) ⊂ Uφ,δ,δ′,ε,ε′,R . To see this, for t ′ > 0, t > 1,

and i ∈ [1, n], let θi,t,t ′ : BF(V )→ R be the continuous function defined by

θi,t,t ′(x) := max
h∈H

min
j∈Jh

µi,h,j,t,t ′(x),(3.2.45)

where

µi,h,j,t,t ′(x) :=


t ′ − |Fihj (x)| if λhj = 0,
max

(
λj · t · |Gihj (x)| − |Fihj (x)|,

min(t ′ − |Fihj (x)|, t ′ − |Gihj (x)|)
)

if λhj > 0.
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The formula defining θi,t,t ′ might seem formidable at first glance, but becomes easier to
understand with the observation that each occurrence of max and min in (3.2.45) corre-
sponds to an occurrence of respectively

∨
and

∧
in the formula φo(·; T , T ′) (see Nota-

tion 3.2.2). With this observation, and the obvious facts that for any A ⊂ R,∨
a∈A

(a > 0) ⇐⇒ max
a∈A

a > 0,
∧
a∈A

(a > 0) ⇐⇒ min
a∈A

a > 0,

it is easy to verify that

x ∈ TubeoV,φ(·,wi )(δ, δ
′) ⇐⇒ θi,δ,δ′(x) > 0,

x ∈ TubecV,φ(·,wi )(δ, δ
′) ⇐⇒ θi,δ,δ′(x) ≥ 0,

and finally that for any R > 0,

(3.2.46)
x ∈ TubeBoundarycV,φ(·,wi )(δ, δ

′, R) ⇐⇒ x ∈ CubeV (R) ∧ (θi,δ,δ′(x) = 0).

Now let x ∈ S′′σ (δ, δ
′, ε, ε′, R). Then, for each i with σ(i) = 1, we have x ∈

TubeoV,φ(·,wi )(δ, δ
′, R), and hence x 6∈ TubeBoundarycV,φ(·,wi )(δ, δ

′, R).
Using the fact that δ′ < ε′ and δ < ε, one can also check that θi,δ,δ′(x) > 0 implies

θi,ε,ε′(x) > 0 as well. This in turn implies that

x ∈ TubeoV,φ(·,wi )(δ, δ
′, R) =⇒ x 6∈ TubeBoundarycV,φ(·,wi )(ε, ε

′, R).

Hence,

x 6∈ TubeBoundarycV,φ(·,wi )(δ, δ
′, R) ∪ TubeBoundarycV,φ(·,wi )(ε, ε

′, R)

for all i with σ(i) = 1. In particular, x ∈ Ui,ε,ε′,R ∩ Ui,δ,δ′,R .
We now consider the case of i such that σ(i) = 0. Then x ∈ CubeV (R) \

TubecV,φ(·,wi )(ε, ε
′, R), and hence x 6∈ TubeBoundarycV,φ(·,wi )(ε, ε

′, R).
Also, if x 6∈ TubecV,φ(·,wi )(ε, ε

′, R), then x 6∈ TubeBoundarycV,φ(·,wi )(δ, δ
′, R), since

clearly
TubeBoundarycV,φ(·,wi )(δ, δ

′, R) ⊂ TubecV,φ(·,wi )(ε, ε
′, R).

Hence,

x 6∈ TubeBoundarycV,φ(·,wi )(δ, δ
′, R) ∪ TubeBoundarycV,φ(·,wi )(ε, ε

′, R)

for all i with σ(i) = 0. Combining everything, we have x ∈ Uφ,δ,δ′,ε,ε′,R .
Now let C be a connected component of S′′σ (δ, δ

′, ε, ε′, R), and D be the connected
component of Uφ,δ,δ′,ε,ε′,R containing C. We claim that D = C. Let x ∈ D, and let
y be any point of C. Since y ∈ D and D is path connected, there exists a path γ :
[0, 1] → D with γ (0) = y, γ (1) = x, and γ ([0, 1]) ⊂ D. We claim that γ ([0, 1]) ⊂
S′′σ (δ, δ

′, ε, ε′, R), which immediately implies D = C.
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We first show that for each i with σ(i) = 1, γ ([0, 1]) ⊂ TubeoV,φ(·,wi )(δ, δ
′, R). For

each i with σ(i) = 1, consider the continuous function θi : [0, 1] → R defined by

θi(t) := θi,δ,δ′(γ (t)).

It follows from (3.2.46) that θi(t) = 0 implies that

γ (t) ∈ TubeBoundarycV,φ(·,wi )(δ, δ
′, R).

Consequently, since

γ ([0, 1]) ⊂ CubeV (R) \ TubeBoundarycV,φ(·,wi )(δ, δ
′, R)

for each i, θi cannot vanish anywhere on [0, 1]. Also θi(t) > 0 if and only if γ (t) ∈
TubeoV,φ(·,wi )(δ, δ

′, R). Since γ (0) = y ∈ S′′
σ,δ,δ′,ε,ε′,R

, this implies that θi(0) > 0, hence
θi(t) > 0 for each t ∈ [0, 1], and

γ ([0, 1]) ⊂
⋂

i,σ (i)=1

TubeoV,φ(·,wi )(δ, δ
′, R).

Finally, we show that

γ ([0, 1]) ⊂
⋂

i, σ (i)=0

(CubeV (R) \ TubecV,φ(·,wi )(ε, ε
′, R)).

For each i with σ(i) = 0, consider the continuous function µi : [0, 1] → R defined
by

µi(t) := −θi,ε,ε′(γ (t)).

Notice that µi(t) = 0 implies γ (t)∈TubeBoundarycV,φ(·,wi )(ε, ε
′, R), and since γ ([0, 1])

⊂ CubeV (R) \ TubeBoundarycV,φ(·,wi )(ε, ε
′, R) for each i, µi cannot vanish anywhere

on [0, 1]. Moreover, µi(t) > 0 if and only if γ (t) ∈ CubeV (R) \ TubecV,φ(·,wi )(ε, ε
′, R).

Since γ (0) = y ∈ S′′σ (δ, δ
′, ε, ε′, R), this implies that µi(0) > 0, hence µi(t) > 0 for

each t ∈ [0, 1], and so

γ ([0, 1]) ⊂
⋂

i,σ (i)=0

(CubeV (R) \ TubecV,φ(·,wi )(ε, ε
′, R)).

This proves that D = C. ut

Let X ⊂ V be a definable subset where V is an affine variety of dimension k, and let
U1, . . . , Un be open semi-algebraic subsets of BF(X). For J ⊂ [1, n], we denote UJ :=⋃
j∈J Uj and UJ :=

⋂
j∈J Uj . We have the following proposition, which is very similar

to [BPR06, Proposition 7.33(ii)].

Proposition 3.2.47. With notation as above, for each 0 ≤ i ≤ k = dim(V ),

bi(U[1,n]) ≤

k−i∑
j=1

∑
J⊂[1,n], card(J )=j

bi+j−1(U
J )+

(
n

k − i

)
bk(BF(V )).
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Proof. We first prove the claim when n = 1. If 0 ≤ i ≤ k − 1, the claim is

bi(U1) ≤ bi(U1)+ bk(BF(V )),

which is clear. If i = k, the claim is bk(U1) ≤ bk(BF(V )), which is true by Corol-
lary A.6(d).

The claim is now proved by induction on n. Assume that the induction hypothesis
holds for all n− 1 open semi-algebraic subsets of BF(V ), and for all 0 ≤ i ≤ k.

It follows from the standard Mayer–Vietoris sequence (see Properties A.1.1(5)) that

(3.2.48) bi(U[1,n]) ≤ bi(U[1,n−1])+ bi(Un)+ bi+1(U[1,n−1] ∪ Un).

Applying the induction hypothesis to the set U[1,n−1], we deduce that

bi(U[1,n−1]) ≤

k−i∑
j=1

∑
J⊂[1,n−1], card(J )=j

bi+j−1(U
J )(3.2.49)

+

(
n− 1
k − i

)
bk(BF(V )).

Next, applying the induction hypothesis to the set

U[1,n−1] ∪ Un =
⋂

1≤j≤n−1

(Uj ∪ Un),

we get

bi+1(U[1,n−1] ∪ Un) ≤

k−i−1∑
j=1

∑
J⊂[1,n−1], card(J )=j

bi+j (U
J∪{n})(3.2.50)

+

(
n− 1

k − i − 1

)
bk(BF(V )).

From the inequalities (3.2.48)–(3.2.50) we obtain

bi(U[1,n]) ≤

k−i∑
j=1

∑
J⊂[1,n], card(J )=j

bi+j−1(U
J )+

(
n

k − i

)
bk(BF(V )),

which finishes the induction. ut

Proof of Theorem 2. Using Proposition 3.2.42 we find that there exist δ >1, δ′ > 0,
ε > 1, ε′ > 0, R > 0 (which we fix for the remainder of the proof) such that for each i,
0 ≤ i ≤ k,

(3.2.51)
∑

σ∈{0,1}n
bi(R̃(σ, w̄)) ≤ bi(Uφ,δ,δ′,ε,ε′,R).
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From the definition of Uφ,δ,δ′,ε,ε′,R in (3.2.41), we see that Uφ,δ,δ′,ε,ε′,R is an intersec-
tion of the sets

CubeV (R) \ TubeBoundarycV,φ(·,wj )(ε, ε
′, R),

CubeV (R) \ TubeBoundarycV,φ(·,wj )(δ, δ
′, R),

for 1 ≤ j ≤ n.
Now for each m ≥ 1 and m′, m′′ ≥ 0 with m′ +m′′ = m, let

8m′,m′′(X, Y
(1)
, . . . , Y

(m)
; s, s′, t, t ′, R) := (91 ∨92) ∧ (93 ∧94),

where

91 :=
∨

1≤j≤m′

(
¬φc(X, Y

(j)
; s, s′) ∨ φo(X, Y

(j)
; s, s′)

)
,

92 :=
∨

m′+1≤j≤m

(
¬φc(X, Y

(j)
; t, t ′) ∨ φo(X, Y

(j)
; t, t ′)

)
,

93 := 8V (X;R),

94 :=
∧

1≤j≤m

8W (Y
(j)
).

Here 8V,R(X;R) is a formula such that CubeV (R) = R̃(8V,R, V ), and 8W (Y ) is a
formula such that BF(W) = R̃(8W , V ).

Denote by Xm′,m′′ the definable subset of V ×W × · · · ×W︸ ︷︷ ︸
m

×R5 defined by the for-
mula

8m′,m′′(X, Y
(1)
, . . . , Y

(m)
; s, s′, t, t ′, R),

and let
πm′,m′′ : Xm′,m′′ → W × · · · ×W︸ ︷︷ ︸

m

×R5

denote the projection map. It follows from Theorem A.4 (with Y = W × · · · ×W︸ ︷︷ ︸
m

, V

viewed as a quasi-projective variety in PN and Xm′,m′′ as above) that the number of ho-
motopy types amongst the semi-algebraic sets

BF(π
−1
m′,m′′

(w′1, . . . , w
′
m, s, s

′, t, t ′, R))

is finite, and moreover since each such fiber is homotopy equivalent to a finite simplicial
complex by Theorem A.5, there exists a finite bound Ci,m′,m′′ ∈ Z≥0 such that

bi(BF(π
−1
m′,m′′

(w′1, . . . , w
′
m, s, s

′, t, t ′, R)) ≤ Ci,m′,m′′

for all (w′1, . . . , w
′
m) ∈ W(K)

m and s, s′, t, t ′, R ∈ R.
Let

(3.2.52) Ci,m := max
m′,m′′≥0
m′+m′′=m

Ci,m′,m′′ .

Note that Ci,m depends only on V and φ.
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It follows from Notation 3.2.2 that for each 1 ≤ j ≤ n, the semi-algebraic set

R̃
(
(¬(φc(X,wj ; ·, ·) ∨ φ

o(X,wj ; ·, ·)), V )
)
∩ CubeV (R)

is equal to
CubeV (R) \ TubeBoundarycV,φ(·,wj )(·, ·, R).

It follows that for any

J ′ = (j ′1, . . . , j
′

card(J ′)), J ′′ = (j ′′1 , . . . , j
′′

card(J ′′)) ⊂ [1, n]

with J ′ ∩ J ′′ = ∅, the semi-algebraic set

R̃(8card(J ′),card(J ′′)(·, wj ′1
, . . . , wj ′card(J ′)

, wj ′′1
, . . . , wj ′′card(J ′′)

; ε, ε′, δ, δ′, R)

is the union of ⋃
j∈J ′

(CubeV (R) \ TubeBoundarycV,φ(·,wj )(ε, ε
′, R))

and ⋃
j∈J ′′

(CubeV (R) \ TubeBoundarycV,φ(·,wj )(δ, δ
′, R)).

Also, since each m-ary union amongst the semi-algebraic sets

CubeV (R) \ TubeBoundarycV,φ(·,wj )(ε, ε
′, R),

CubeV (R) \ TubeBoundarycV,φ(·,wj )(δ, δ
′, R)

is clearly homeomorphic to one of the sets BF(π
−1
m′,m′′

(w′1, . . . , w
′
m, s, s

′, t, t ′, R)),
m′ + m′′ = m, (w′1, . . . , w

′
m) ∈ W(K)

m, s, s′, t, t ′, R ∈ R, the i-th Betti number of
every such union is bounded by Ci,m.

It now follows from (3.2.52) and Proposition 3.2.47 that

∑
σ∈{0,1}n

bi(R̃(σ, w̄)) ≤
k−i∑
j=1

(
2n
j

)
Ci+j−1,j +

(
2n
k − i

)
bk(BF(V )).

The theorem follows after noticing that
(2n
j

)
≤ (2n)j for all n, j ≥ 0. ut

3.3. Proof of Theorem 1

We need a couple of preliminary results of a set-theoretic nature, starting with the follow-
ing observation.
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Observation 3.3.1. Let Y, Y ′, V , V ′,W,W ′ be sets such that Y ⊂ V ×W , Y ′ ⊂ V ′×W ′,
V ⊂ V ′, W ⊂ W ′, and Y ′ ∩ (V ×W) = Y . Then, for every n > 0,

χY,V,W (n) ≤ χY ′,V ′,W (n).

Proof. Note that a 0/1 pattern is realized by the tuple (Yw1 , . . . , Ywn) in V only if it is
realized by the tuple (Y ′w1

, . . . , Y ′wn) in V ′. This follows from the fact that Y ′ ∩ (V ×W)
= Y , and therefore for all w ∈ W , Y ′w ∩ V = Yw. ut

Let V,W be sets, I a finite set, and for each α ∈ I , let Xα be a subset of V ×W . Let iα :
Xα ↪→ V ×W denote the inclusion map. Suppose thatX is a subset of V ×W obtained as
a Boolean combination of the Xα’s. LetW ′ :=

∐
α∈I W , and for α ∈ I let jα : W ↪→ W ′

denote the canonical inclusion. Let X′ :=
⋃
α∈I Im((1V × jα) ◦ iα) ⊂ V ×W ′. With this

notation we have the following proposition.

Proposition 3.3.2.
χX,V,W (n) ≤ χX′,V ,W ′(card(I ) · n).

Proof. For v ∈ V and S ⊂ W (resp. S′ ⊂ W ′) we set Sv := S∩Xv (resp. S′v := S
′
∩X′v).

Let w̄ ∈ W n. We claim that for v, v′ ∈ V ,

χX,V,W ;n(v, w̄) 6= χX,V,W ;n(v
′, w̄)

=⇒ χX′,V ,W ′;card(I )·n(v, jn(w̄)) 6= χX′,V ,W ′;card(I )·n(v
′, jn(w̄)),

where jn : W [1,n]→ W ′I×[1,n] is defined by

jn(w1, . . . , wn)(α,i) := jα(wi).

To prove the claim first observe that since χX,V,W ;n(v, w̄) 6= χX,V,W ;n(v′, w̄), there
exists i ∈ [1, n] such that v ∈ Xwi ⇔ v′ 6∈ Xwi .

Since X is a Boolean combination of the Xα, α ∈ I , there must exist α ∈ I such
that v ∈ (Xα)wi ⇔ v′ 6∈ (Xα)wi . It now follows from the definition of X′,W ′ that
χX′,V ,W ′;card(I )·n(v, jn(w̄)) 6= χX′,V ,W ′;card(I )·n(v

′, jn(w̄)). This implies that

card(χX,V,W ;n(V , w̄)) ≤ card(χX′,V ,W ′;card(I )·n(V , jn(w̄))).

It follows immediately that χX,V,W (n) ≤ χX′,V ,W ′(card(I ) · n). ut

Proof of Theorem 1. We make two reductions. We first claim that it suffices to prove the
theorem in the case of an algebraically closed complete valued field of rank 1, i.e. the
value group is a subgroup of the multiplicative group R+. Secondly, we claim that we
can assume without loss of generality that the formula φ is in disjunctive normal form
without negations and with atoms of the form |F | ≤ λ · |G|.

Reduction to complete algebraically closed field of rank 1. The theory of algebraically
closed valued fields in the two-sorted language L becomes complete once we fix the char-
acteristic of the field and that of the residue field. Moreover, for each such characteristic
pair (0, 0), (0, p), or (p, p) (p a prime) there exists a model (K;0) of the theory of
algebraically closed valued field such that the value group is a multiplicative subgroup
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of R+ (i.e. of rank 1) and K is complete. It follows by a standard transfer argument that
it suffices to prove the theorem for such a model.

Reduction to the case of disjunctive normal form without negations and with atoms of the
form |F | ≤ λ · |G|. We now observe that it suffices to prove the theorem in the case when
the formula φ is equivalent to a formula in disjunctive normal form without negations
with atoms of the form |F | ≤ λ · |G|. Furthermore, using the first reduction, we may
assume that the value group is R+ andK is an algebraically closed complete valued field.
In particular, we assume that the atoms of φ are of the form |F | ≤ λ · |G| with λ ∈ R+
and F,G,∈ K[X, Y ]. Let (φα)α∈I be the finite tuple of atomic formulas appearing in φ.
Denote

φ′′ :=
(∨
α∈I

(
φα(X, Y

(α)
) ∧ (|Zα − 1| = 0)

))
∧

∨
α∈I

θα((Zα)α∈I ),

where θα((Zα)α∈I ) is the closed formula

(|Zα − 1| = 0) ∧
∧
β 6=α

(|Zβ | = 0).

Note that φ′′ is equivalent to a formula in disjunctive normal form without negations
and with atoms of the form |F | ≤ λ · |G|.

Let Xα := R(φα, V × W)(K) and X := R(φ, V × W)(K). Then X is a Boolean
combination of theXα’s and we can considerX′ ⊂ V (K)×W(K)′ whereX′ andW(K)′

are defined as in Proposition 3.3.2. In particular, we let π1 : X
′
→ V (K) and π ′1 : X

′
→

W(K)′ denote the natural projection maps. Similarly, we let

π ′′2 : R(φ
′′, V ×W × A|I |)(K)→ W(K)× A|I |(K)

and
π ′′1 : R(φ

′′, V ×W × A|I |)(K)→ V (K)

denote the natural projection maps. Note that the diagram

R(φ′′, V ×W × A|I |)(K)

π ′′1vv
π ′′2 ((

V (K) Im(π ′′2 )

is isomorphic to the diagram

X′

π ′1|| π ′2 ""

V (K) Im(π ′2)

By isomorphism, we mean that there are natural bijections R(φ′′, V×W×A|I |)(K)→X′

and Im(π ′′2 )→ Im(π ′2)making the resulting morphism of diagrams above commute (with
the identity as the map on V (K)).
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Using Proposition 3.3.2, we get

χR(φ,(V×W))(K),V (K),W(K)(n) ≤ χX′,V (K),(W(K))′(card(I ) · n),

and the right hand side clearly equals

χR(φ′′,(V×W×A|I |))(K),V (K),W(K)×A|I |(K)(card(I ) · n).

So it suffices to prove that there exists a constant C (depending only on V and φ) such
that for all n,

χR(φ′′,(V×W×A|I |))(K),V (K),W(K)×A|I |(K)(n) ≤ C · n
dim(V ).

This shows that we can assume that φ is equivalent to a formula in disjunctive normal
form without negations and with atoms of the form |F | ≤ λ · |G|.

We now use the special case of Theorem 2 obtained by setting i = 0. In that
case, b0(R̃(σ, w̄)) is the number of connected components, which is at least 1 as soon
as R̃(σ, w̄) is non-empty. Now use Observation 3.3.1 with V ′ := BF(V ), Y ′ :=⋃
w∈W(K)(R̃(φ(·, w), V ) × {w}) and Y := R(φ, (V × W))(K), noting that there ex-

ists a canonical injective map ι : V (K) ↪→ BF(V ) such that for each w ∈ W(K) the
following diagram of injective maps commutes:

V (K)
ιV // BF(V )

R(φ(·, w), V )(K) //

OO

R̃(φ(·, w), V )

OO

This finishes the proof. ut

3.4. Proof of Corollary 1

Corollary 1 follows immediately from Theorem 1 and the following proposition, which
is well known, but whose proof we include for the sake of completeness.

Proposition 3.4.1. Suppose that there exists a constant C > 0 such that for all n > 0,
χX,V,W (n) ≤ C · n

k . Then vcd(X, V,W) ≤ k.

Proof. Notice that for v ∈ V and w ∈ W , w ∈ Xv ⇔ v ∈ Xw. Let S = {Xv | v ∈ V },
A = {w1, . . . , wn} ⊂ W , and I ⊂ [1, n]. For v ∈ V , we have wi ∈ Xv for all i ∈ I ;
wi 6∈ Xv for all i ∈ [1, n] \ I if and only if v ∈ Xwi for all i ∈ I ; v 6∈ Xwi for all
i ∈ [1, n] \ I . This implies that

card({A ∩ Y | Y ∈ S}) = χX,V,W ;n(V , w̄) ≤ C · nk.

The proposition now follows from Definition 1.1.2. ut
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Appendix

A.1. Review of singular cohomology

In this section we recall some basic statements about singular cohomology groups which
are used throughout this article. These facts are all standard and we refer the reader to
[Spa66] for their proofs.

Given any topological space X, one can associate to X the singular cohomology
groups Hi(X,Q) (for i ≥ 0) which satisfy the following general properties (see for ex-
ample [Spa66, pp. 238–240]):

Properties A.1.1. (1) The Hi(X,Q) are Q-vector spaces. If X is a finite simplicial
complex of dimension n, then each Hi(X,Q) is finite-dimensional, and moreover
Hi(X,Q) = 0 for all i > n.

(2) The singular cohomology groups are contravariant and homotopy invariant, i.e. a
continuous morphism f : X→ Y induces a linear map f ∗ : Hi(Y,Q)→ Hi(X,Q),
and if f is a homotopy equivalence, then the induced map f ∗ is an isomorphism.

(3) (Connected components) The dimension of H0(X,Q) equals the number of con-
nected components of X.

(4) For any subspace Y ⊂ X, one can define relative cohomology groups Hi(X, Y ;Q)
which fit into a long exact sequence

· · · → Hi(X, Y ;Q)→ Hi(X,Q)→ Hi(Y,Q)→ Hi+1(X, Y ;Q)→ · · · .

(5) (Mayer–Vietoris) If U,V ⊂ X are open subsets such that U ∪ V = X, then there is
a long exact sequence of cohomology groups

· · · → Hi(X,Q)→ Hi(U,Q)⊕Hi(V ,Q)→ Hi(U∩V,Q)→ Hi+1(X,Q)→ · · · .

Note that this implies immediately that

bi(U ∩ V ) ≤ bi(U)+ bi(V )+ bi+1(X).

Finally, we recall some properties of singular cohomology with regard to projective and
injective limits. These properties are used in the proof of Proposition 3.2.6. Below, we
drop the coefficients Q from the notation of singular cohomology groups.

Let I be a directed set, (Ui)i∈I be a directed system of topological spaces, and

U = lim
−→
i

Ui

denote the corresponding direct limit. In particular, for all i ≤ j (i, j ∈ I ), we have
continuous maps fij : Ui → Uj which induce morphisms f ∗ij : Hk(Uj ) → Hk(Ui).
The latter cohomology groups form an inverse system, and the natural continuous maps
Ui → U induce a morphism

Hk(U)→ lim
←−
i

Hk(Ui).
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Similarly, an inverse system (Ui)i∈I of topological spaces gives rise to a direct system
of corresponding cohomology groups and a natural morphism

lim
−→
i

Hk(Ui)→ Hk(U), where U = lim
←−
i

Ui .

In this article, we only consider direct systems Ui given by an increasing sequence
of subspaces of a space X or inverse systems Ui given by a decreasing sequence of sub-
spaces. In the former case, the direct limit U is given by the union of these spaces, and
in the latter case the inverse limit is given by the intersection of these subspaces. The fol-
lowing lemma is our main tool for understanding the corresponding cohomology groups.

Lemma A.1.2. Let X be a paracompact Hausdorff space having the homotopy type of a
finite simplicial complex, and I a directed set.

(1) Let {Ui}i∈I be a decreasing sequence of open subspaces of X, and S :=
⋂
i Ui .

Suppose that the family Ui is cofinal in the family of open neighborhoods of S in X.
Then the natural map

lim
−→
i

Hk(Ui)→ Hk(S)

is an isomorphism.
(2) Let {Ci}i∈I be an increasing sequence of compact subspaces of S, and S :=

⋃
i Ci .

Suppose that the family Ci is cofinal in the family of compact subspaces of S. Then
the natural map

Hk(S)→ lim
←−
i

Hk(Ci)

is an isomorphism.

Proof of (1). This is Theorem 5 in [LR68]. ut

Proof of (2). The statement follows from the fact that the singular homology of any
space is isomorphic to the direct limit of the singular homology of its compact subspaces
[Spa66, Theorem 4.4.6], the fact that the singular cohomology group H∗(S,Q) is canon-
ically isomorphic to Hom(H∗(S,Q),Q) since Q is a field, and that the dual of a direct
limit of finite-dimensional vector spaces is the inverse limit of the duals of those spaces.

ut

Remark A.1.3. Note that a compact Hausdorff space is paracompact Hausdorff. In the
applications considered in this paper, the previous lemma is applied in the setting of com-
pact Hausdorff spaces.

A.2. Recollections from Hrushovski–Loeser

In this section we recall some results from the theory of non-archimedean tame topology
due to Hrushovski and Loeser [HL16]. The main reference for this section is [HL16,
Chapter 14], but we refer the reader to [Duc16] for an excellent survey. In particular, we
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will deal with the model theory of valued fields. We denote by K a complete valued field
with values in the ordered multiplicative group of positive real numbers.

We consider a two-sorted language with the two sorts corresponding to valued fields
and the value group. The signature of this two-sorted language will be

(0, 1,+K ,×K , | · | : K → R+,≤R+ ,×R),

where the subscript K denotes constants, functions, relations etc. of the field sort and the
subscript R+ denotes the same for the value group sort. When the context is clear we will
drop the subscripts.

We denote by | · | the valuation written multiplicatively. The valuation | · | satisfies

|x + y| ≤ max(|x|, |y|), |x · y| = |x| |y|, |0| = 0.

Remark A.2.1. Note that we follow Berkovich’s convention and write our valuations
multiplicatively. In particular, the terminology ‘valuation’ is somewhat abusive, and here
we really mean a non-archimedean absolute value. In [HL16], all valuations are written
additively.

Following [HL16, §14.1], we will denote by F the two-sorted structure (K;R+) viewed
as a substructure of a model of ACVF (with value group R+). Given a quasi-projective
variety V defined overK and an F-definable subsetX of V ×Rn+, Hrushovski and Loeser
[HL16] associate to X (functorially) a topological space BF(X). By definition, this is the
space of types, in X, defined over F which are almost orthogonal to the definable set R+.
Given a variety V as above, we say that a subset Z ⊂ BF(V ) is semi-algebraic if it is of
the form BF(X) for an F-definable subset X ⊂ V . We note that X itself can be identified
in BF(X) as the set of realized types, and hence there is a canonically defined injection
X ↪→ BF(X).

We now recall a description of the spaces BF(X) in some special cases and some of
their properties; these are the only properties which are used in this article.

Properties A.2.2. (1) ([HL16, 14.4.1]) For every F-definable set X, BF(X) is a Haus-
dorff topological space which is locally path connected. This construction is functo-
rial in definable maps, i.e. a definable map f : X→ Y induces a continuous map of
the corresponding topological spaces.

(2) ([HL16, 14.1, p. 194]) If V is an affine variety and X ⊂ V a definable subset, then
BF(X) is a subspace of BF(V ). In fact, it is a semi-algebraic subset (in the sense of
Berkovich spaces, see property (3) below).

(3) ([HL16, 14.1, p. 194]) Suppose X is an affine variety Spec(A). In this case, BF(X)
can be identified with the Berkovich analytic space associated to X. Its points can
be described in terms of multiplicative semi-norms as follows. A point of BF(X) is a
multiplicative map φ : A→ R+ such that φ(a + b) ≤ max(φ(a), φ(b)).

(4) With X = Spec(A), the topology on BF(X) is the one inherited from viewing it as a
natural subset of RA+. If f ∈ A, then f gives rise to a continuous function

f : BF(X)→ R+
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defined as follows:
f (φ) = φ(f ) ∈ R+.

This follows from the previous observation and the definition of the topology on
Berkovich analytic spaces.

(5) ([HL16, 14.1, p. 194]) Let V = Spec(A). Then any formula φ of the form f FG λg,
where f, g ∈ A, λ ∈ R+ and FG ∈ {≤, <,≥, >}, gives a definable subset X of V ,
and therefore a semi-algebraic subset BF(X) of BF(V ). It can be described in the
language of valuations as the set {x ∈ BF(V ) | f (x) FG λg(x)}. In general, the
semi-algebraic subset associated to a Boolean combination of such formulas is the
corresponding Boolean combination of the semi-algebraic subsets associated to each
formula. Moreover, a subset of BF(V ) is semi-algebraic if and only if it is a Boolean
combination of subsets of the form {x ∈ BF(X) | f (x) FG λg(x)}, where f, g ∈ A,
λ ∈ R+ and FG ∈ {≤, <,≥, >}.

(6) ([HL16, 14.1.2]) IfX is an F-definable subset of an algebraic variety V , then BF(X)
is compact if and only if BF(X) is closed in BF(V

′) where V ′ is a complete algebraic
variety containing V .

(7) Suppose that K is algebraically closed, V = Spec(A) ⊂ ANK is an affine subvariety,
and φ(X; T ) (withX = (X1, . . . , XN )) a formula with parameters in F. Here theXi
are free variables of the field sort and T is a free variable of the value sort. Suppose
a ∈ R+ is such that for all t, t ′ satisfying a < t < t ′, (K;R+) |= φ(X; t ′) →

φ(X, t). Let ψ(X) be the formula

∃T (T > a) ∧ φ(X, T ).

Then
R̃(ψ, V ) =

⋃
a<t

R̃(φ(·; t), V ).

Proof of (7). The inclusion
⋃
a<t R̃(φ(·; t), V ) ⊂ R̃(ψ, V ) is obvious, since for each

t > a, (K;R+) |= φ(X, t)→ ψ(X), which implies that R̃(φ(·; t), V ) ⊂ R̃(ψ(·), V ).
To prove the reverse inclusion, let p ∈ R̃(ψ, V ). Then, by definition p is a type which

is almost orthogonal to the value group, and moreover there exists x ∈ R(ψ, V )(K ′) such
that x |= p and (K ′;R+) is an elementary extension of (K;R+) (since types which are
orthogonal to R+ can always be realized in such a model). Hence, there exists t0 > a,
t0 ∈ R+, such that (K ′;R+) |= φ(x, t0), and so p ∈ R̃(φ(·, t0), V ). This proves that

R̃(ψ, V ) ⊂
⋃
a<t

R̃(φ(·; t), V ). ut

Given an F-definable map f : X → R+, we will denote by BF(f ) : BF(X) →
BF(R+) = R+ the induced map. We will say that BF(f ) is a semi-algebraic map.

The following theorems which are easily deduced from the main theorems in [HL16,
Chapter 14] will play a key role in the results of this paper. We will use the same notation
as above.
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Theorem A.3 ([HL16, Theorem 14.4.4]). Let V be a quasi-projective variety over K ,
X ⊂ V be an F-definable subset and f : X → R+ be an F-definable map. For t ∈ R+,
let BF(X)≥t denote the semi-algebraic subset BF(X ∩ (f ≥ t)) = BF(X) ∩ BF(f ≥ t)
of BF(V ). Then there exists a finite partition P of R+ into intervals such that for each
I ∈ P and for all ε ≤ ε′ ∈ I , the inclusion BF(X)≥ε′ ↪→ BF(X)≥ε is a homotopy
equivalence.

Theorem A.4 ([HL16, Theorem 14.3.1(1)]). Let Y be a variety and X ⊂ Y ×Rr+× Pm
be an F-definable set. Let π : X→ Y ×Rr+ be the projection map. Then there are finitely
many homotopy types amongst the fibers (BF(π

−1(y, t)))(y,t)∈Y×Rr+ .

Theorem A.5 ([HL16, Theorem 14.2.4]). Let V be a quasi-projective variety defined
over K , and X an F-definable subset of V such that BF(X) is compact. Then there exists
a family of finite simplicial complexes (Xi)i∈I (where I is a directed partially ordered set)
embedded in BF(X) of dimension ≤ dim(V ), deformation retractions πi,j : Xi → Xj ,
j < i, and deformation retractions πi : BF(X) → Xi , such that πi,j ◦ πi = πj and the
canonical map BF(X)→ lim

←−i
Xi is a homeomorphism.

As an immediate consequence of Theorem A.5 we have, using the same notation:

Corollary A.6. Let V ⊂ ANK be a closed affine subvariety, and let BF(X) be a semi-
algebraic subset of V .

(a) Every connected component of BF(X) is path connected.
(b) Hi(BF(X)) = 0 for i > dim(V ).
(c) dim H∗(BF(X)) <∞.
(d) The restriction homomorphism Hdim(V )(BF(V ))→ Hdim(V )(BF(X)) is surjective.

Proof. Recall the definition of CubeV (R) (see Notation 3.2.1) and that CubeV (R) is a
compact topological space. Similar remarks apply to CubeV (R) ∩ BF(X). Moreover,
arguing as for part (6) of Lemma 3.2.7, for sufficiently large R the natural inclusions
CubeV (R) ∩ X ↪→ BF(X) and CubeV (R) ↪→ BF(V ) induce homotopy equivalences. In
the following, we fix an R large enough such that both inclusions are homotopy equiva-
lences. Note that (a)–(c) now follow directly from Theorem A.5. We shall now prove (d).

By the previous remarks, it is sufficient to prove that the natural induced morphism

Hdim(V )(CubeV (R))→ Hdim(V )(CubeV (R) ∩ BF(X))

is surjective.
By Theorem A.5, CubeV (R) has the homotopy type of a finite simplicial polyhedron

of dimension at most dim(V ). Since CubeV (R) is compact, it follows that the cohomolog-
ical dimension (in the sense of [Ive86, p. 196, Definition 9.4]) of CubeV (R) is≤ dim(V ).

It follows again from Theorem A.5 that there exists a compact polyhedron Z ⊂
CubeV (R) ∩X such that Z is a deformation retract of CubeV (R) ∩ BF(X). Let ι : Z ↪→
CubeV (R) ∩ BF(X) be the inclusion map. Since the inclusion of Z in CubeV (R) factors
through ι, and ι induces isomorphisms in cohomology, it follows (using the long exact
sequence of cohomology for pairs) that

H∗(CubeV (R),CubeV (R) ∩ BF(X)) ∼= H∗(CubeV (R), Z).
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We now prove that

Hdim(V )+1(CubeV (R),CubeV (R) ∩ BF(X)) ∼= Hdim(V )+1(CubeV (R), Z) = 0.

This gives the desired result by an application of the long exact sequence in cohomology
associated to the pair (CubeV (R),CubeV (R) ∩ BF(X)).

Recall that CubeV (R) is a Hausdorff space, and so Z is a closed subspace of
CubeV (R). By [Ive86, p. 198, Proposition 9.7] it follows that the cohomological dimen-
sion of U := CubeV (R)) \ Z is also ≤ dim(V ). This implies that Hdim(V )+1

c (U) ∼=

Hdim(V )+1(CubeV (R), Z) = 0, which finishes the proof. ut
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