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A set of positive Gaussian measure with
uniformly zero density everywhere

Received August 15, 2018

Abstract. Existing negative results on invalidity of analogues of classical Density and Differenti-
ation Theorems in infinite-dimensional spaces are considerably strengthened by a construction of a
Gaussian measure γ on a separable Hilbert spaceH for which the Density Theorem fails uniformly,
i.e., there is a set M ⊂ H of positive γ -measure such that

lim
r↘0

sup
x∈H

γ (B(x, r) ∩M)

γB(x, r)
= 0.

Keywords. Gaussian measures on Hilbert spaces, Density Theorem

1. Introduction

Our aim here is to show that already for Gaussian measures on separable Hilbert spaces
the classical Density Theorem may fail in a very strong, and perhaps surprising, way.
Recall that for a given locally finite Borel measure µ on a metric space X the validity of
this theorem means that for every Borel set M ⊂ X,

lim
r↘0

µ(B(x, r) ∩M)

µB(x, r)
= 1M(x) for µ-almost every x ∈ X. (1.1)

This was first proved by Lebesgue for the Lebesgue measure on the real line. Nowa-
days there are a number of different short arguments showing this result of Lebesgue, for
example [18] and [4], but most textbook proofs have as their main step the Vitali Cover-
ing Theorem. These proofs or their simple modifications can show the Density Theorem
for measures absolutely continuous with respect to the Lebesgue measure on any finite-
dimensional Banach space. However, the Density Theorem is known to hold for every
locally finite Borel measure on every finite-dimensional Banach space, which is usually
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sity, Technická 2, 166 27 Praha 6, Czech Republic; e-mail: tiser@math.feld.cvut.cz

Mathematics Subject Classification (2020): Primary 28C20; Secondary 60B11

https://creativecommons.org/licenses/by/4.0/


2440 David Preiss et al.

proved using much stronger covering result than Vitali’s, namely the Besicovitch–Morse
covering theorem. (See, for example, [7].)

When one abandons the assumption of finite-dimensionality, the situation becomes
quite different. Since it is not difficult to see that in every infinite-dimensional Banach
spaces there are measures for which the Density Theorem fails, the main question is
whether it or similar results hold for measures that in some respects act as a suitable
infinite-dimensional replacement for the Lebesgue measure. Gaussian measures are the
most natural candidate, both because of their importance in mathematics (for which see,
for example, [2, Chapter 7]) and because of their known use in geometric problems of
nature similar to the Density Theorem. For example, an analogue of Rademacher’s Theo-
rem on almost everywhere differentiability of real-valued (and even some vector-valued)
Lipschitz functions holds (with Gateaux derivatives) in every separable Banach space
for every non-degenerate Gaussian measure. (See [10] or [1] for further results in this
direction.) Nearer to our theme, [16] shows that some Gaussian measures are so well
approximated by finite-dimensional ones that it is possible to use the dimension indepen-
dent estimate of the Hardy–Littlewood maximal operator from [15] to show the following
theorem giving a class of infinite-dimensional Gaussian measures on a Hilbert space for
which the Differentiation Theorem holds for all Lp functions with p > 1. The quality
of approximation of a given Gaussian measure by finite-dimensional ones may be mea-
sured, for example, by the speed of decrease of the eigenvalues of its covariance operator.
(We will actually not use the covariance operator but a representation of Gaussian mea-
sures on Hilbert spaces in which these eigenvalues are directly related to the norm; see
Section 2.)

Theorem T (Tišer 1988). Suppose the eigenvalues λk of the covariance operator of a
non-degenerate Gaussian measure γ on a separable Hilbert space H satisfy

lim
k→∞

ks
λk+1

λk
= 0

for some s > 5/2. Then for every f ∈ Lp(γ ) where p > 1,

lim
r↘0

1
γB(x, r)

∫
B(x,r)

f dγ = f (x) (1.2)

for γ -almost every x ∈ H .

The first negative result related to our problem was a simple observation made in [11] that
the Vitali Covering Theorem need not hold for Gaussian measures on infinite-dimensional
separable Hilbert spaces. This result was strengthened in [17] by showing that this the-
orem fails for every infinite-dimensional Gaussian measure on a separable Hilbert space
and in [12] by showing that even the Density Theorem may fail for Gaussian measures on
Hilbert spaces: there are a Gaussian measure γ on a separable Hilbert space and a Borel
set M with γM > 0 such that the limit in (1.1) is equal to zero γ -almost everywhere.
Since the set {

x ∈ M

∣∣∣∣ lim
r↘0

γ (B(x, r) ∩M)

γB(x, r)
= 0

}
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is γ -measurable and has strictly positive γ -measure, it contains a compact set of strictly
positive γ -measure, and we easily see that for this set the limit in (1.1) is zero everywhere.

The above negative results left open the possibility that at least a (very) weak version
of the Density Theorem holds for any Gaussian measure γ on a separable Hilbert spaceH ,
namely, that for any Borel set M ⊂ H with γM > 0, and any η > 0, there are arbitrarily
small balls B(x, r) such that

γ (B(x, r) ∩M)

γB(x, r)
> 1− η. (1.3)

An analogous question for the Differentiation Theorem was answered in a surprising way
in [13] by providing a rather artificial example of a Gaussian measure γ on a separable
Hilbert space H together with an integrable function f ∈ L1(γ ) such that

lim
r↘0

inf
{

1
γB(x, r)

∫
B(x,r)

f dγ

∣∣∣∣ x ∈ H} = ∞. (1.4)

In other words, the averages of an integrable function over balls may, instead of converg-
ing to the function almost everywhere as in (1.2), tend to infinity uniformly over points
of the space.

Here we refute even the above very weak version of the Density Theorem in perhaps
the strongest possible way: not only is the ratio on the left of (1.3) not bigger than 1−η for
small balls, but, as r tends to zero, it converges to zero uniformly over points ofH . Rather
naturally, based on Theorem T, one expects that this may hold for those Gaussian mea-
sures that are badly approximated by finite-dimensional ones. The following main result
of this note shows that this is indeed the case. Moreover, the Gaussian measures for which
we show that the Density Theorem (and, as we will see shortly, also the Differentiation
Theorem) fails in so strong way are no longer artificial: they include the Gaussian mea-
sures for which the eigenvalues of the covariance operator are k−s where 1 < s < 6/5.

Theorem 1. Suppose the eigenvalues λk of the covariance operator of a non-degenerate
Gaussian measure γ on a separable Hilbert space H form a non-increasing sequence
satisfying

lim sup
k→∞

k

(
λk

λk+1
− 1

)
<

6
5
.

Then for every ε > 0 there is a Borel set M ⊂ H such that γ (H \M) < ε and

lim
r↘0

sup
{
γ (B(x, r) ∩M)

γB(x, r)

∣∣∣∣ x ∈ H} = 0.

This theorem will be proved at the end of this note as a consequence of the rather tech-
nical Proposition 14 which can be used to provide a host of other examples of Gaussian
measures with the same property. (See the remark following this proposition.) Neverthe-
less, our methods do not allow us to decide what happens when the eigenvalues are k−s

with s ≥ 6/5.
As it is customary, and often more convenient, to state the Density Theorem in an

equivalent form for the complement Q := H \M , we also state the corresponding result
for Q.
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Corollary 2. Suppose γ satisfies the assumptions of Theorem 1. Then for every ε > 0
there is a Borel set Q ⊂ H such that γQ < ε and

lim
r↘0

inf
{
γ (B(x, r) ∩Q)

γB(x, r)

∣∣∣∣ x ∈ H} = 1.

A simple consequence of our main result is that a function satisfying (1.4) can actually
belong to all Lp(γ ) for 1 ≤ p <∞. To see this, it suffices to use the following corollary
with ϕ(x) := ex .

Corollary 3. Suppose γ satisfies the assumptions of Theorem 1 and ϕ : [0,∞)→ [0,∞)
is non-decreasing. Then there is a function f ∈ L1(γ ) such that

∫
ϕ(|f |) dγ <∞ and

lim
r↘0

inf
{

1
γB(x, r)

∫
B(x,r)

f dγ

∣∣∣∣ x ∈ H} = ∞.
Proof. Let ψ(x) := x + ϕ(x) and choose numbers ε1 ≥ ε2 ≥ · · · > 0 such that∑
∞

k=1 εkψ(k
2) < ∞. By Corollary 2 we choose sets Qn with γQn < 2−nεn satisfy-

ing

lim
r↘0

inf
{
γ (B(x, r) ∩Qn)

γB(x, r)

∣∣∣∣ x ∈ H} = 1.

Put Ak :=
⋃
∞

n=kQn and f :=
∑
∞

k=1 k1Ak . Then γAk ≤ εk and f (x) ≤ k2 for x ∈
Ak \ Ak+1, hence∫

ψ(f ) dγ ≤

∞∑
k=1

ψ(k2)γ (Ak \ Ak+1) ≤

∞∑
k=1

εkψ(k
2) <∞,

which shows that f ∈ L1(γ ) and that
∫
ϕ(|f |) dγ <∞.

To prove the remaining statement, fix any n and choose sn small enough to satisfy

inf
{
γ (B(x, r) ∩Qn)

γB(x, r)

∣∣∣∣ x ∈ H} ≥ 1
2

for all 0 < r < sn. Then, since f ≥ n1Qn , for any x ∈ H and 0 < r < sn we have

1
γB(x, r)

∫
B(x,r)

f dγ ≥ n
γ (B(x, r) ∩Qn)

γB(x, r)
≥

1
2n. ut

2. Gaussian measures, other notions and notation

We collect some of the notions and results used throughout the paper. We will use two
notations for norms in vector spaces, |·| and ‖·‖. Both will be induced by a scalar product,
the one giving | · | will be denoted by 〈·, ·〉 but we will not need any notation for the one
inducing ‖ · ‖. For the Euclidean norm in Rn we will always use the symbol | · |. If U is
a closed linear subspace of a Hilbert space H , then the same symbol U will denote the
orthogonal projection from H onto U . In particular, Ux is the orthogonal projection of
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an element x ∈ H onto U . We denote by B(x, r) the closed ball centred at x with radius
r > 0. We may use the same symbol for balls in different spaces (or different norms);
when it is not clear from the context which space is intended, we will specify it.

It will be convenient to use, in any finite-dimensional Hilbert space (H, | · |), notions
that we introduce only in Euclidean spaces. All that we need may be obtained by choosing
an orthonormal basis of H and identifying H with Rn in the usual way (the result will
not depend on the choice of the basis). In particular, the Lebesgue measure Ln on H may
be defined in this way; or it may be defined as the Hausdorff measure Hn of dimension
n = dimH .

We will often use the special case of the coarea formula, or of the polar coordinates,
saying that for every non-negative Borel function f on an (n + 1)-dimensional Hilbert
space H , ∫

H

f (x) dLn+1(x) =

∫
W

∫
∞

0
f (sw)sn ds dHn(w) (2.1)

where W := {w ∈ H | |w| = 1}. In particular, for every Borel set E ⊂ R,∫
{x∈H | |x|∈E}

e−c|x|
2
dLn+1(x) = ωn

∫
E

e−cs
2
sn ds (2.2)

where ωn := Hn
{w ∈ Rn+1

| |w| = 1}.
The term “measure” will be used only for locally finite Borel measures on separable

Banach spaces; such measures are often called Radon measures. (In fact, with the excep-
tion of the Lebesgue and Hausdorff measures all our measures will be finite.) The support
of a measure µ is defined as the set of x such that µB(x, r) > 0 for every r > 0.

An important role in our arguments is played by log-concave measures and functions.
Of a number of equivalent definitions of log-concavity of measures we choose, as in [6],
the one that is easiest to apply, namely the requirement that it satisfies the Prékopa–
Leindler inequality. So a measure on a separable Banach space X will be called log-
concave provided that ∫

X

f dµ ≥

(∫
X

g dµ

)s(∫
X

h dµ

)t
(2.3)

whenever 0 < s, t < 1, s+t = 1 and f, g, h are non-negative Borel measurable functions
satisfying

f (sx + ty) ≥ g(x)sh(y)t (2.4)

for every x, y ∈ X. Notice that the usual statement of the Prékopa–Leindler inequality
says that Ln is a log-concave measure on Rn. (See [9, 14].)

A Borel measurable function f : X→ [0,∞) is said to be log-concave if the function
x 7→ − log f (x) is convex. Here we let log t = −∞ for t ≤ 0 and allow a convex function
to attain also the value +∞.

The following properties of log-concave measures and functions, which we will freely
use, follow immediately from the definition.
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• If µ is a log-concave measure on X and f a µ-integrable log-concave function on X,
then the measure µE :=

∫
E
f dµ is log-concave.

• If µ is a log-concave measure on Y and f a log-concave function on X × Y such that
y 7→ f (x, y) is µ-integrable for all x ∈ X, the function g(x) :=

∫
Y
f (x, y) dµ(x) is

log-concave.

We will make a deep use of some basic instances of the concentration of measure
phenomenon. (See, for example, [8] for the basic techniques and uses of this important
concept.) At this moment it suffices to say that what we need originates in the special case
of the concentration phenomenon according to which in high-dimensional spaces for any
given point x log-concave measures and so (integrals of) log-concave functions tend to
be concentrated close to some sphere {y | |y − x| = c}. Unusually, it will be important
for us to relate the values of c for two concentration problems (in spaces of different
dimension). For that, the main tool will be concentration of log-concave functions close
to their maximum.

To gain information on the position of the point at which given log-concave functions
attain their maximum, the subdifferential criterion for a convex function to attain its min-
imum will be useful. Recall that when f is a convex function on Rn and f (x) < ∞, the
subdifferential of f at x is defined as the set

∂f (x) = {x∗ ∈ Rn | 〈x∗, y − x〉 ≤ f (y)− f (x) for all y ∈ Rn}.

Clearly, f attains its minimum at x if and only if zero belongs to ∂f (x).
There is a vast literature on Gaussian measures, both on finite-dimensional spaces

and on Banach spaces; see, for example, [2] and references there. We will only recall the
notions that we need.

Definition 4. The standard Gaussian measure on Rn is defined by

γF =
1

(2π)n/2

∫
F

exp(−|x|2/2) dx

for Borel sets F ⊂ Rn. The standard Gaussian measure on RN is defined as the countable
product of the one-dimensional standard Gaussian measures.

Gaussian measures in infinite dimensions will be seriously used only in Section 6, but we
introduce them already now in order to enable an informal presentation of the thinking
behind the proof of Theorem 1 in the next section. Up to an isomorphism, non-degenerate
Gaussian measures on infinite-dimensional separable Hilbert spaces are fully described
in the following way.

Gaussian measures on Hilbert spaces. The measure γ is the restriction of the standard
Gaussian measure from RN to

H :=
{
x ∈ RN

∣∣∣ ∞∑
i=1

λix
2
i <∞

}



Set of positive Gaussian measure may have uniformly zero density 2445

equipped with the norm

‖x‖ :=
( ∞∑
i=1

λix
2
i

)1/2
,

where λ1 ≥ λ2 ≥ · · · > 0 satisfy
∑
∞

i=1 λi <∞.
The summability condition on the λi is sufficient (as well as necessary) for γ to be

a Borel measure on H . In this representation, the λi are precisely the eigenvalues of
the covariance operator of γ that have been used in the statements of Theorem T and
Theorem 1. The corresponding eigenvectors are ui := (δi,j )j∈N ∈ H , where δi,j = 1
when i = j and δi,j = 0 otherwise. We will also denote

|x| =
( ∞∑
i=1

x2
i

)1/2
and 〈x, y〉 =

∞∑
i=1

xiyi provided that |x|, |y| <∞

and point out that, perhaps somewhat illogically,

B(x, r) = {y ∈ H | ‖y − x‖ ≤ r}

denotes a ball in the norm ‖ · ‖.
Finally, we recall that Gaussian measures are log-concave. Indeed, on each of the

spaces Hn := span{u1, . . . , un} the function x 7→ e−|x|
2/2 is log-concave and integrable

with respect to the log-concave measure Ln. Hence the standard Gaussian measure onHn
is log-concave, and by [6, Corollary 5] so is their weak limit γ .

3. Sketch of main arguments

Although some of our arguments may seem to be quite technical, the basic idea behind
them is rather simple. We choose mutually orthogonal finite-dimensional subspacesHi of
H , each spanned by a subset of the uj , with dimHi = ni ↗ ∞, and for suitable τi > 0
define

M :=

∞⋂
i=1

Mi where Mi :=
{
y ∈ H

∣∣ ∣∣|Hiy| − √ni∣∣ ≤ τi}.
By the well known result on concentration of norm for the standard Gaussian measure
(which will also be given in Corollary 7) the set M has positive γ -measure for τi much
smaller than

√
ni , for example for τi = 2

√
log ni . Given any z ∈ H , r > 0 and ε > 0, the

concentration phenomenon should also provide constants ci such that the restriction of γ
to the ball B(z, r) is concentrated close to {y ∈ B(z, r) | |Hiy| = ci}. In other words
there are (small) σi > 0 such that

γ
{
y ∈ B(z, r)

∣∣ ∣∣|Hiy| − ci∣∣ > σi
}
≤ εγB(z, r).

Provided that |
√
ni − ci | > τi + σi for some i, we get γ (M ∩ B(z, r)) ≤ εγB(z, r), and

if for all small r > 0 this can be done for all z, we are done.
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The main source of the technicalities in our arguments is that the ci are not easy
to estimate. We therefore explain the reasoning that lead us to the conclusion that with
suitable choices of λi and Hi the above approach may go through. For simplicity we will
assume that, when restricted to Hi , ‖ · ‖ is a constant multiple of | · |; this corresponds to
what was used in [12] and [13] and what we called artificial examples.

We first look at what happens when we fix some i and use Fubini’s Theorem to cal-
culate the measures γB(z, r) and γ (Mi ∩ B(z, r)). After letting n = ni , x = Hiz and
T :=

{
y ∈ Hi

∣∣ ∣∣|y| − √n∣∣ ≤ τi}, this gives

γB(z, r)=

∫
Hi

8(y)e−|y|
2/2 dLn(y) and γ (Mi∩B(z, r))=

∫
T

8(y)e−|y|
2/2 dLn(y)

where 8 : Hi → [0,∞) and 8(y) depends only on the distance from y to x in the norm
‖ · ‖ and so also in the norm | · |. (Without loss of any significant details we may assume
that 8 is the indicator of some ball about x.) Moreover, 8 is log-concave and so the
concentration phenomenon implies that for some ρ = ρi(z, r) > 0 the integral of 8 is
concentrated close to the sphere {y ∈ Hi | |y − x| = ρ}. The situation is illustrated in
Figures 1 and 2 where we ignore the widths of concentration (the constants τi and σi) as
they are much smaller than the radii of concentration (

√
ni and ρ).

We will distinguish several cases, one “good” (yielding the failure of the Density
Theorem) in the sense that γ (Mi ∩ B(z, r)) ≤ εγB(z, r), and three “bad” when these
inequalities do not hold. For that, we will denote by S(y, t) the sphere in Hi centred at y
with radius t and use two basic instances of the concentration phenomenon: in any cone
C in Hi with vertex at the origin, the standard Gaussian measure is concentrated close
to C ∩ S(0,

√
n) and the (n− 1)-dimensional measure of a spherical cap is concentrated

close to its boundary. So, for example, if C has spherical base, we may approximate γC
by κne−n/2tn−2 where t is the radius of the sphere S(0,

√
n) ∩ ∂C and κn is a constant

depending on n only.

x

C
√

n
̺

0

Fig. 1. Concentration outside S(0,
√
n).
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√

n

x

̺

0

C

Fig. 2. Concentration on S(0,
√
n).

Figures 1 and 2 indicate a “good” and a “bad” case, respectively. We explain them
in (a) and (b) below, and add two additional simple “bad” cases.

(a) Figure 1 gives an example of a “good” case. To explain it, we pick a suitable s > 0
whose choice will be indicated shortly, and let U := S(0,

√
n+ s)∩S(x, ρ). (In Fig-

ure 1, U is the boundary of the dashed spherical cap, or equivalently its intersection
with S(x, ρ).) Also let

W := S(0,
√
n) ∩ S(x, ρ) and V := S(0,

√
n) ∩ ∂C.

We notice that U,V,W are n− 2-dimensional spheres and denote their radii u, v,w,
respectively. The way in which S(0,

√
n) and S(x, ρ) intersect (as opposed to the way

in which they intersect in Figure 2) shows that v ≥ w + cs where c > 0 is a (small)
constant independent of n. Hence

u = (1+ s/
√
n)v ≥ (1+ s/

√
n+ cs/w)w.

Since 8 is constant on S(x, ρ), the concentration arguments indicated above show
that

γ (M ∩ B(z, r)) ≤ κne
−n/2wn−2 and γB(z, r) ≥ κne

−(
√
n+s)2/2un−2.

Hence

γ (M ∩ B(z, r)) ≤ es
√
n+s2/2(1+ s/

√
n+ cs/w)−n+2γB(z, r).

For suitable s (and under reasonable assumptions on the sizes involved in Figure 1),
expansion of the coefficient of γB(z, r) leads to the main term e−ncs/w, which is a
small number.
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(b) As stated above, inside the whole cone C the standard Gaussian measure is concen-
trated close to the sphere S(0,

√
n)∩ ∂C. But S(0,

√
n)∩ ∂C is contained in S(x, ρ)

which is contained in C. Since 8 is constant on S(x, ρ), the integral of 8(y)e−|y|
2/2

is also concentrated close to S(0,
√
n) ∩ ∂C.

(c) Another “bad” case occurs when x is close to S(0,
√
n) and ρ is small, for example

because then the support of 8 may be contained in T .
(d) A final “bad” case occurs when the set S(0,

√
n) ∩ x⊥ (close to which the Gaussian

measure on the whole of Hi is concentrated) is (almost) contained in S(x, ρ).

Understanding these cases was enough to show that the almost everywhere version of the
Density Theorem fails for some Gaussian measures. Since the centre belongs to M , the
situation from (b) cannot occur for any i (or, more precisely, it is subsumed in (c)), and
since r is small, (c) occurs for small i. Hence the only way in which the density ratio may
be close to 1 is that (c) occurs for some i while (d) occurs for i + 1. Roughly, this would
mean that ρi(x, r) should be about τi and ρi+1(x, r) about

√
2ni+1. But this is impossible

when the dimensions of Hi and Hi+1 as well as the ratios of ‖ · ‖ and | · | on these spaces
are not too far from each other. The reason for this is best seen by noticing that if both
these dimensions and ratios were the same, symmetry would show that ρi(x, r) is very
close to ρi+1(x, r).

√

n

x

̺

0

C

Fig. 3. Concentration far from S(0,
√
n) ∩ x⊥.

The above programme was realized in [12], and in [13] it was refined to get a func-
tion satisfying (1.4). Nevertheless, these ideas were too weak to show Theorem 1 till the
second named author made several key observations that we summarize in the following
two points.
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(R1) The possibility (b) for the choice of “bad” centre and radius is also far from (d). As
illustrated in Figure 3, when we are in the situation from (b) then even if ρ is quite
close to |x|2 + n (which means that S(0,

√
n)∩ S(x, ρ) is close to S(0,

√
n)∩ x⊥),

the integral of 8(y)e−|y|
2/2 is concentrated close to the hyperplane indicated by

the dash line which is far from x⊥. The only way in which this discrepancy may
disappear is to have ρ very big, but this should imply that |x| is big. As we are
treating only small values of r , this should mean that B(x, r) is far from S(0,

√
n),

implying that γ (M∩B(x, r)) = 0. However, the sizes of both x and r are measured
in the norm ‖ · ‖ (which is a small multiple of | · |), so this argument needs refining.
For this, consider the dash line in Figure 3 as representing the hyperplane {y ∈ Hi |
〈y, x〉 = α} close to which the restriction of the function 〈·, x〉 to the ball B(x, r) is
concentrated. In Lemma 12(iii) we not only find that |x| is big, but obtain a lower
bound α ≥ n/4. (Incidentally, α has the same lower bound also in the case (c),
since then |x| =

√
n and B(x, ρ) is a small ball around x. So the two “bad” cases,

(b) and (c), may be treated as one, which will allow us to reduce the number of cases
in Lemmas 12 and 13 from four to three.)

(R2) For one index i, (R1) does not give a strong enough estimate. However, assuming
the case (a) never occurs, there is a chain of indices k, k + 1, . . . , l starting at (b),
ending at (d) and such that for every i = k, . . . , l − 1 either (b) or (c) occurs.
A strengthened discrepancy argument (see below) shows that this chain is long,
and (R1) provides a lower estimate of ‖Hiz‖ for mutually orthogonal vectors Hiz,
i = k, . . . , l − 1. Under conditions that are reflected in our assumptions on the
eigenvalues of the covariance operator of the Gaussian measure γ , this finally im-
plies that ‖z‖ is big, and since r has an upper bound, B(z, r) does not meet M and
so γ (M ∩ B(z, r)) = 0.

As pointed out, in (R2) we need a strengthened discrepancy argument of [12]. More
precisely, we need to understand, given z, r , what happens in Hi+1 provided that (b)
occurred for Hi . Calculating γB(z, r) and γ (Mi ∩Mi+1 ∩ B(z, r)) using Fubini’s The-
orem, we are faced with two concentration problems for a function, say, 9 in the space
Hi ⊕ Hi+1, namely with the problem of relation of the concentration constant of |Hiy|
to the concentration constant of |Hi+1y|. As we need rather sharp estimates, we use the
fact that9(y) depends only on four variables: 〈y,Hiz〉, 〈y,Hi+1z〉, the shortest distances
of Hiy to a multiple of Hiz and the shortest distances of Hi+1y to a multiple of Hi+1z.
This allows us to transform the problem to a four-dimensional one for a new function
that happens to be logarithmically concave. For this function we use the fact that its inte-
gral is concentrated close to its maximum, which relatively easily allows comparison of
concentration constants for different functions.

The above discussion assumed a simplifying condition that on eachHi the norms ‖ · ‖
and | · | are multiple of each other. As this cannot be the case for the most interesting
choices of the eigenvalues in Theorem 1 including λk = k−s for 1 < s < 6/5, the esti-
mates we need are more technical than needed for the simplified case. We therefore de-
vote the next section to showing basic results on concentration of integrals of log-concave
functions close to their maximum. One of the standard results on concentration of Gaus-
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sian measures is given in Corollary 7 as an immediate consequence. Section 5 contains
the main technical estimates needed to prove Theorem 1. There we introduce a class of
log-concave functions that can appear by an application of Fubini’s Theorem alluded to
above. This allows us to reduce the dimension of the spaces in which the concentration
is needed to either two or four. In order to estimate concentration of these functions, we
obtain an equation for their maximum in Lemma 11, and prove the corresponding variant
of the discrepancy between the “bad” cases in Lemma 12, where (i) corresponds to (a),
(ii) to (d) and (iii) to joined (b) and (c). The main Lemma 13 of this section concerns a
longer sum of the spaces Hi to realize the idea of (R2).

Finally, Proposition 14 of Section 6 does in a more general form what was indicated
here. It gives a rather technical criterion for uniform failure of the Density Theorem that
involves the behaviour of the eigenvalues λk . Theorem 1 as well as other results indicated
in the final Remark easily follow.

4. Concentration around maximum

Results on concentration of log-concave functions are nowadays standard (see, for exam-
ple, [3]). Most often, they treat concentration about the mean value or median, while to
prove our main concentration estimates in Section 5, concentration about the maximum
is considerably more convenient. To make our proof complete, we therefore provide the
full basic argument.

Lemma 5. Let g : R→ [0,∞) be log-concave, a ∈ R and g(a) > 0. Then for t ≥ 0,∫
∞

a+t

g(s) ds ≤
g(a + t)

g(a)

∫
∞

a

g(s) ds,

and for t ≤ 0, ∫ a+t

−∞

g(s) ds ≤
g(a + t)

g(a)

∫ a

−∞

g(s) ds.

Proof. We show only the first statement, the second being analogous. The case g(a+t) ≥
g(a) is obvious, since the integral on the left is clearly bounded by the integral on the
right, and so is the case g(a + t) = 0 since then g(s) = 0 for all s ≥ a + t . So assume
0 < g(a + t) < g(a) and let

h(s) := −αs + β

be an affine function passing through the points (a, log g(a)) and (a + t, log g(a + t)).
Since log g(a + t) < log g(a), we have α > 0. Further, by concavity of log g we have
log g(s) ≥ h(s) for s ∈ (a, a + t) and log g(s) ≤ h(s) for s ∈ (a + t,∞). Equivalently,

g(s) ≥ e−αs+β and g(s) ≤ e−αs+β
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for s belonging to (a, a + t) and (a + t,∞), respectively. Denote A = 1/α. Integrating
the first inequality over (a, a + t) and the second over (a + t,∞), we get∫ a+t

a

g(s) ds ≥ A(g(a)− g(a + t))

and ∫
∞

a+t

g(s) ds ≤ Ag(a + t).

Combining these two estimates we obtain∫ a+t

a

g(s) ds ≥
g(a)− g(a + t)

g(a + t)

∫
∞

a+t

g(s) ds =
g(a)

g(a + t)

∫
∞

a+t

g(s) ds −

∫
∞

a+t

g(s) ds,

and the statement follows by adding
∫
∞

a+t
g(s) ds. ut

Lemma 6. Suppose ϕ : [0,∞)→ [0,∞) is log-concave and c, r ≥ 0.

(i) If t 7→ ϕ(t)ect
2

is non-increasing on [r,∞), then for every s ≥ r and 0 ≤ k ≤ 2cr2,∫
∞

s

ϕ(t)tk dt ≤ e−c(s−r)
2
∫
∞

r

ϕ(t)tk dt.

(ii) If t 7→ ϕ(t)ect
2

is non-decreasing on (0, r], then for every 0 < s ≤ r and k ≥ 2cr2,∫ s

0
ϕ(t)tk dt ≤ e−c(s−r)

2
∫ r

0
ϕ(t)tk dt.

Proof. First notice that the case c = 0 is trivial and the statement (ii) is vacuously true
when r = 0. Also, under the assumption of (i),

ϕ(t)ect
2
≥ ϕ(t + s)ec(t+s)

2
≥ ϕ(t + s)ect

2
+cs2

for every t, s ≥ 0. Thus ϕ(t + s) ≤ ϕ(t)e−cs
2

and integrating over t ∈ (0,∞) shows that
the inequality (i) holds with r = 0. Hence we may assume that c, r > 0.

Notice that the integrand ϕ(t)tk is log-concave. We multiply the inequality ϕ(s)ecs
2
≤

ϕ(r)ecr
2
, which holds in both cases, by e−cs

2
to get

ϕ(s) ≤ ecr
2
−cs2

ϕ(r).

Also,

k log s = k log r + k log(1+ (s − r)/r) ≤ k log r + k(s − r)/r, i.e. sk ≤ rkek(s−r)/r .

Combining the last two inequalities and using the fact that our assumptions imply
k(s − r)/r ≤ 2c(s − r)r , we get

ϕ(s)sk ≤ ecr
2
−cs2

ϕ(r)rkek(s−r)/r ≤ ecr
2
−cs2
+2c(s−r)rϕ(r)rk = e−c(s−r)

2
ϕ(r)rk.
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By the first statement of Lemma 5 with a = r and a + t = s,∫
∞

s

ϕ(t)tk dt ≤
ϕ(s)sk

ϕ(r)rk

∫
∞

r

ϕ(t)tk dt ≤ e−c(s−r)
2
∫
∞

r

ϕ(t)tk dt,

which is (i). The second statement of Lemma 5 with the same choice establishes (ii). ut

Corollary 7. Let n ∈ N, c > 0 and r =
√
(n− 1)/(2c). Then for every λ > 0,∫

{x∈Rn| ||x|−r|>λ}
e−c|x|

2
dLn(x) ≤ e−cλ

2
∫
Rn
e−c|x|

2
dLn(x).

Proof. Using (2.2) we get∫
{x∈Rn| ||x|−r|>λ}

e−c|x|
2
dLn(x) = ωn−1

∫ r−λ

0
e−ct

2
tn−1 dt + ωn−1

∫
∞

r+λ

e−ct
2
tn−1 dt

(4.1)

where
∫ r−λ

0 e−ct
2
tn−1 dt is set equal to zero if λ ≥ r . We apply Lemma 6 to ϕ(t) = e−ct

2

and k = 2cr2
= n−1. Observe that ϕ satisfies the assumptions of both (i) and (ii). Hence

the estimate (4.1) may be continued by

≤ωn−1e
−cλ2

∫ r

0
e−ct

2
tn−1 dt+ωn−1e

−cλ2
∫
∞

r

e−ct
2
tn−1 dt= e−cλ

2
∫
Rn
e−c|x|

2
dLn(x).

ut

Lemma 8. Let ϕ : Rn → [0,∞) attain its maximum at p ∈ Rn. Assume further that a
positive semi-definite quadratic form Q on Rn is such that the function x 7→ ϕ(x)eQ(x)

is log-concave. Then ψ(x) := ϕ(x)eQ(x−p) is log-concave and attains its maximum at p.

Proof. The function ψ is log-concave since ψ(x) = ϕ(x)eQ(x)eh(x) where the function
h(x) := Q(x−p)−Q(x) is affine. Hence g(x) := − logψ(x) = − logϕ(x)−Q(x−p)
is a convex function. Assuming, as we may, that ϕ(p) > 0, we see that − logϕ attains its
minimum at p. Using this, we infer

lim inf
t→0

g(p + tx)− g(p)

t
= lim inf

t→0

− logϕ(p + tx)+ logϕ(p)−Q(tx)
t

≥ lim inf
t→0

−t2Q(x)

t
= 0.

This estimate means that zero belongs to the subdifferential of g at p. Hence g attains its
minimum at p, and consequently ψ = e−g attains its maximum at p. ut

Lemma 9. Suppose ϕ : Rn → [0,∞) attains its maximum at p ∈ Rn and a positive
semi-definite quadratic form Q on Rn is such that the function x 7→ ϕ(x)eQ(x) is log-
concave. Then for every τ ≥ (n− 1)/2,∫

{x∈Rn|Q(x−p)≥τ }
ϕ dLn ≤ e−σ

∫
Rn
ϕ dLn, (4.2)

where σ :=
(√
τ −
√
(n− 1)/2

)2.
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Proof. Clearly, only the situation when ϕ(p) > 0 and the integral on the right of (4.2) is
finite needs treatment. By Lemma 8, ψ(x) := ϕ(x)eQ(x−p) is log-concave and attains its
maximum at p.

Let S = {u ∈ Rn | |u| = 1, Q(u) > 0}. For u ∈ S define ϕu : R → [0,∞) by
ϕu(t) := ϕ(p + tu). Given τ ≥ (n− 1)/2, we let for u ∈ S,

ru :=

(
τ

Q(u)

)1/2

−

(
σ

Q(u)

)1/2

and su :=

(
τ

Q(u)

)1/2

.

Then by (2.1),∫
{x∈Rn|Q(x−p)≥τ }

ϕ dLn =
∫
S

∫
∞

su

ϕu(t) t
n−1 dt dHn−1(u). (4.3)

We estimate the inner integral on the right side of this inequality by an application of
Lemma 6(i) with ϕu(t) = ψ(p + tu)e−Q(tu), c = Q(u), r = ru, s = su and k = n − 1.
To see that its assumptions hold is straightforward: since ψ is log-concave, ϕu(t) and
ϕu(t)e

ct2 are also log-concave. Together with the assumption that ϕu(t)eQ(tu) attains its
maximum at t = 0 this shows that ϕu(t)ect

2
is non-increasing on [0,∞). Finally, by

assumption, 2cr2
= 2(
√
τ −
√
σ)2 = n − 1 = k and clearly 0 ≤ r ≤ s. Hence, using

first Lemma 6(i) and then (2.1) we can finish the estimates started at (4.3),

≤

∫
S

e−Q(u)(su−ru)
2
∫
∞

ru

ϕu(t) t
n−1 dt dHn−1(u)

= e−σ
∫
S

∫
∞

ru

ϕu(t) t
n−1 dt dHn−1(u) ≤ e−σ

∫
Rn
ϕ dLn. ut

5. Main concentration estimates

We recall from Section 2 that both | · | and ‖ · ‖ are used to denote a norm induced by a
scalar product on a vector space H and that 〈·, ·〉 denotes the scalar product inducing | · |.
Additionally, it will be convenient to let 〈u, v〉+ := max {0, 〈u, v〉}. To indicate the reason
for distinguishing the two norms, we notice that | · | is used for the norm related to the
standard Gaussian measure γ (so it is the Euclidean norm in Rn or the usual norm in `2 in
the infinite-dimensional situation) while ‖·‖ is used for a norm in which γ is σ -additive or
for its approximation in the finite-dimensional case. In statements in which only one norm
is used, and so this distinction is immaterial, we try to use the notation that corresponds
best to later usage.

When H is equipped with ‖ · ‖ and x ∈ H , we denote by F(H, ‖ · ‖, x) the collection
of bounded log-concave ‖ · ‖-upper semicontinuous functions 9 : H → [0,∞) such that
9(u) depends only on ‖u− x‖ and 9(u) > 0 for all u from a ‖ · ‖-neighbourhood of x.
In the case when ‖u‖ = 〈u,A(u)〉1/2 where A is a bounded positive definite symmetric
linear operator on (H, | · |), we will write ‖ · ‖A and F(H,A, x) instead of ‖ · ‖ and
F(H, ‖ · ‖, x), respectively.
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Lemma 10. Let V be a closed subspace of the Hilbert space (H, ‖ · ‖), Z its orthogonal
complement, and ν a finite log-concave Borel measure on Z. Suppose further that x ∈ H
is such that Zx belongs to the support of ν and 9 ∈ F(H, ‖ · ‖, x). Then the function
8(v) :=

∫
Z
9(v + z) dν(z) belongs to F(V , ‖ · ‖, V x).

Proof. As noticed in Section 2, 8 is log-concave. Clearly, it is bounded, and using the
fact that 9 is bounded and upper semicontinuous, we infer from Fatou’s Lemma that 8
is upper semicontinuous. Since 9(y) = f (‖y − x‖2) for some f , we have

8(v) =

∫
Z

f (‖v + z− x‖2) dν(z) =

∫
Z

f (‖v − V x‖2 + ‖z− Zx‖2) dν(z).

Hence 8(v) depends on the value of ‖v − V x‖ only.
Finally, to show that 8 > 0 on a neighbourhood of V x, let r > 0 be such that 9 > 0

on B(x, r). Then 9(v + z) > 0 whenever v ∈ VB
(
x, 1

2 r
)

and z ∈ ZB
(
x, 1

2 r
)
. Since

ν ZB
(
x, 1

2 r
)
> 0, we see that 8(v) > 0 for v ∈ VB

(
x, 1

2 r
)
. ut

Lemma 11. Suppose that A is a positive definite symmetric linear operator on a finite-
dimensional Hilbert space (H, | · |), x ∈ H , and 9 ∈ F(H,A, x). Suppose further that
I is a finite index set, and for each i ∈ I we are given ni ∈ N and wi ∈ H such that
〈x,wi〉 ≤ 0 and

{u ∈ H | 9(u) > 0} ∩
⋂
i∈I

{u ∈ H | 〈u,wi〉 > 0} 6= ∅. (5.1)

Then there is a unique point p ∈ H at which the log-concave function

f (u) := e−|u|
2/29(u)

∏
i∈I

〈u,wi〉
ni
+

attains its maximum. Moreover, 〈p,wi〉 > 0 for each i ∈ I and there is λ ≥ 0 such that

p + λA(p − x)−
∑
i∈I

niwi

〈p,wi〉
= 0.

Proof. Recall that h(u) := − log9(u) is a convex function depending only on ‖u−x‖A.
Since h is even with respect to x (i.e. h(u) = h(2x − u)), it attains its minimum at x.
Consider any point p ∈ H such that p 6= x and h(p) <∞. We show that any y ∈ ∂h(p)
is a non-negative multiple of A(p − x). For this, it suffices to show that 〈y, u〉 ≤ 0
whenever 〈u,A(p−x)〉 < 0. So assume that u ∈ H is such that 〈u,A(p−x)〉 < 0. Then
for small t > 0,

‖tu+ p − x‖2A = t
2
‖u‖2A + 2t〈u,A(p − x)〉 + ‖p − x‖2A ≤ ‖p − x‖

2
A.

It follows that h(tu+ p) ≤ h(p) and so

〈tu, y〉 ≤ h(tu+ p)− h(p) ≤ 0.

So indeed 〈y, u〉 ≤ 0 whenever 〈u,A(p − x)〉 < 0, and we infer that y = λA(p − x) for
some λ ≥ 0.
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To finish the proof, we introduce the function g := − log f , i.e.

g(u) = |u|2/2+ h(u)−
∑
i∈I

ni log 〈u,wi〉+.

The function g is convex, lower semicontinuous, and not identically +∞ due to the con-
dition (5.1). Moreover g(u) tends to infinity when |u| → ∞ and hence g attains its
minimum at some point p ∈ H . From (5.1) we see that g(p) <∞, and since g is strictly
convex on the set {u ∈ H | g(u) <∞}, the point p is unique. Since g(p) <∞, we have
〈p,wi〉 > 0 for all i ∈ I and so p 6= x. Further, zero belongs to the subdifferential of g
at p. Since |u|2/2 −

∑
i∈I ni log 〈u,wi〉 is smooth on a neighbourhood of p, the latter

condition implies that

0 = p + y −
∑
i∈I

niwi

〈p,wi〉

for some y ∈ ∂h(p). Recalling that y = λA(p − x) we obtain

p + λA(p − x)−
∑
i∈I

niwi

〈p,wi〉
= 0. ut

Lemma 12. Let {v,w} be an orthonormal basis of a 2-dimensional Hilbert space (U, |·|)
and let A be a symmetric linear operator on U with eigenvalues α ≥ β ≥ 8α/9 > 0.
Suppose further that n ∈ N, 0 < τ ≤ 2−6√n, and x is a multiple of v satisfying |x| ≤
2−6n/τ and (α−β)|x| ≤ α

√
n/18. Finally, let λ ≥ 0 and p ∈ U satisfy 〈p,w〉 > 0 and

p + λA(p − x)−
nw

〈p,w〉
= 0. (5.2)

Then at least one of the following statements holds:

(i)
∣∣|p| − √n∣∣ > 2τ ;

(ii) λα ≤ 23τ/
√
n and |p −

√
nw| ≤ 25τ(1+ |x|/

√
n);

(iii) λα ≥ 2−3n/(
√
n+ |x|)2 and |〈p, x〉| ≥ n/4.

Proof. If λ = 0 we get p =
√
nw and (ii) holds. Hence we may assume that λ > 0 and,

replacing A by λA, that λ = 1. Observe that

|〈z,Au〉| ≤ α|z| |u|, 〈u,Au〉 ≥ β|u|2, |〈u,Az〉 − α〈u, z〉| ≤ (α − β)|u| |z|.

These inequalities will be used without a reference.
Suppose that (i) fails. Then, letting κ := 1+ 2−5, we have

|p| ≤
√
n+ 2τ ≤ κ

√
n (5.3)

and ∣∣|p|2 − n∣∣ = ∣∣|p| − √n∣∣(|p| + √n) ≤ 2τ(κ
√
n+
√
n) ≤ 4κτ

√
n. (5.4)
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Multiplying (5.2) by v we obtain

|〈p, v〉| = |〈v,A(p − x)〉| ≤ α|p − x| ≤ α(|p| + |x|)

≤ α(κ
√
n+ |x|) ≤ 2α(

√
n+ |x|). (5.5)

If α ≤ 23τ/
√
n, (5.5) shows

|〈p, v〉| ≤ 24τ(1+ |x|/
√
n).

By the assumptions 0 < τ ≤ 2−6√n and |x| ≤ 2−6n/τ this implies |〈p, v〉| ≤
√
n/2. So

〈p, v〉2 ≤ |〈p, v〉|
√
n/2 and, using also (5.4) and (5.5), we obtain the second inequality

in (ii) by estimating

|p −
√
nw| ≤ |

√
n−

√
|p|2 − 〈p, v〉2| + |〈p, v〉| ≤

|n− |p|2 + 〈p, v〉2|
√
n

+ |〈p, v〉|

≤ 4κτ + 3
2 |〈p, v〉| ≤ 4κτ + 24τ(1+ |x|/

√
n) ≤ 25τ(1+ |x|/

√
n).

It remains to assume α > 23τ/
√
n and show (iii). Multiplying (5.2) by p and using

(5.4) we get

〈p,Ax〉 = 〈p,Ap〉 + |p|2 − n ≥ β|p|2 + |p|2 − n ≥
8α
9

(
n− 4κτ

√
n
)
− 4κτ

√
n

≥
8αn

9
(1− 2−4κ)−

αn

2
κ =

(8− 5κ)αn
9

,

where we have estimated the first occurrence of τ by τ ≤ 2−6√n and the second by
τ ≤ 2−3α

√
n. Using (α − β)|x| ≤ α

√
n/18, (5.3) and κ ≤ 23/22, we get

α|〈p, x〉| ≥ |〈p,Ax〉| − (α − β)|p| |x| ≥
(8− 5κ)αn

9
−
α
√
n

18
κ
√
n

=
(16− 11κ)αn

18
≥
αn

4
.

Since α > 0, this gives the second inequality in (iii). Using also (5.5) and the assumption
that x is a multiple of v, we get the first inequality of (iii) by estimating

2α(
√
n+ |x|)2 ≥ |x| |〈p, v〉| = |〈p, x〉| ≥ n/4. ut

Lemma 13. Let I = {k, k + 1, . . . , l} where k, l ∈ N, k ≤ l. For each i ∈ I , let {vi, wi}
be an orthonormal basis of a 2-dimensional Hilbert space (Ui, | · |) and Ai a symmetric
linear operator on Ui with eigenvalues αi ≥ βi ≥ 8αi/9 > 0. Suppose further that
ni ∈ N, τi ≥ 4, xi is a multiple of vi satisfying (αi − βi)|xi | ≤ αi

√
ni/18 and

165τj (1+ |xi |/
√
ni)

2
≤
√
nj αj/αi when k ≤ i ≤ j ≤ min {i + 1, l}. (5.6)

Let U denote the orthogonal direct sum of the Ui , A =
∑
i∈I Ai ◦ Ui , x =

∑
i∈I xi ,

9 ∈ F(U,A, x) and µ be the Borel measure on U defined by

µE :=

∫
E

e−|u|
2/29(u)

∏
i∈I

〈u,wi〉
ni
+ dL2s(u), where s = l − k + 1. (5.7)
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Then at least one of the following statements holds:

(i) µ{u ∈ U | |Uku−
√
nkwk| ≥

√
nk/2} ≤ e−τ

2
k /4µU .

(ii) µ{u ∈ U |
∣∣|Uiu| − √ni∣∣ ≤ τi} ≤ e−τ 2

i /4µU for some i ∈ I .

(iii) µ{u ∈ U | |〈Uiu, xi〉| ≤ ni/5} ≤ e−τ
2
i /4µU for each i ∈ I .

Proof. The case µ ≡ 0 being trivial, we assume µ 6≡ 0. In particular,

{u ∈ U | 9(u) > 0} ∩
⋂
i∈I

{u ∈ U | 〈u,wi〉 > 0} 6= ∅.

We will also assume that (i) and (ii) fail, i.e.

µ{u ∈ U | |Uku−
√
nk wk| ≥

√
nk/2} > e−τ

2
k /4µU (5.8)

and for every i ∈ I ,

µ
{
u ∈ U

∣∣ ∣∣|Uiu| − √ni∣∣ ≤ τi} > e−τ
2
i /4µU. (5.9)

The proof will have five steps in which we will consider the validity of the inequalities

µ{u ∈ U | |Uiu−
√
ni wi | ≥ 33τi(1+ |xi |/

√
ni)} ≤ e

−τ 2
i /4µU (5.10)

and (iii), i.e.

µ{u ∈ U | |〈Uiu, xi〉| ≤ ni/5} ≤ e−τ
2
i /4µU. (5.11)

First we make a simple observation about the incompatibility of (5.10) and (5.11). Then
we show that for each i at least one of these two inequalities holds, and observe that (5.10)
fails for i = k. The last observation is then extended to all i, which combined with the
incompatibility of (5.10) and (5.11) easily finishes the proof.

Step 1. The inequalities (5.10) and (5.11) cannot both hold for the same i. Indeed, the
inequality (5.6) with j = i implies

33τi |xi |(1+ |xi |/
√
ni) ≤

|xi |
√
ni

5(1+ |xi |/
√
ni)
≤
ni

5
,

and so for each u ∈ U , either

|Uiu−
√
ni wi | ≥ 33τi(1+ |xi |/

√
ni)

or

|〈Uiu, xi〉| = |〈Uiu−
√
ni wi, xi〉| ≤ 33τi |xi |(1+ |xi |/

√
ni) ≤ ni/5.

Hence the validity of both (5.10) and (5.11) would give a contradiction:

µU ≤ µ{u ∈ U | |Uiu−
√
niwi | ≥ 33τi(1+ |xi |/

√
ni)}

+ µ{u ∈ U | |〈Uiu, xi〉| ≤ ni/5}

≤ 2e−τ
2
i /4µU < µU. �
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Step 2. For each i ∈ I , either (5.10) or (5.11) holds. Fix i ∈ I . We apply Lemma 10
with H = U , V = Ui , Z =

⊕
m∈I\{i} Um, x and 9 given in the assumptions, and the

Borel measure ν on Z defined by

νF =

∫
F

e−|z|
2/2

∏
j∈I\{i}

〈z,wj 〉
nj
+ dL2s−2(z).

Hence8(u) =
∫
Z
9(u+z) dν(z) belongs to F(Ui, Ai, xi), and by Fubini’s Theorem for

every Borel set E ⊂ Ui ,

µ(U−1
i E) =

∫
E

e−|u|
2/28(u)〈u,wi〉

ni
+ dL2(u). (5.12)

By Lemma 11 the integrand of (5.12) attains its maximum at a point p ∈ Ui such that
〈p,wi〉 > 0 and for some λ ≥ 0,

p + λAi(p − xi)−
niwi

〈p,wi〉
= 0. (5.13)

Since the integrand multiplied by e|u|
2/2 is log-concave, we may use Lemma 9 in R2 with

Q(u) = |u|2/2 and τ = τ 2
i /2. Since τi ≥ 4, we get

σ = (τi/
√

2− 1/
√

2)2 ≥ 1
2τ

2
i

(
1− 1

4

)2
≥ τ 2

i /4,

and so
µ{u ∈ U | |Uiu− p| ≥ τi} ≤ e

−σµU ≤ e−τ
2
i /4µU. (5.14)

By Lemma 12 with the choice n = ni and τ = τi at least one of the following
statements holds:

(a)
∣∣|p| − √ni∣∣ > 2τi ;

(b) |p −
√
ni wi | ≤ 25τi(1+ |xi |/

√
ni);

(c) |〈p, xi〉| ≥ ni/4.

If (a) holds, then
{
u ∈ U

∣∣ ∣∣|Uiu| − √ni∣∣ ≤ τi} ⊂ {u ∈ U | |Uiu − p| ≥ τi} and
hence (5.14) implies

µ
{
u ∈ U

∣∣ ∣∣|Uiu| − √ni∣∣ ≤ τi} ≤ µ{u ∈ U | |Uiu− p| ≥ τi} ≤ e−τ 2
i /4µU.

Since this contradicts (5.9), we infer that (a) fails.
When (b) holds,

{u ∈ U | |Uiu−
√
ni wi | ≥ 33τi(1+ |xi |/

√
ni)} ⊂ {u ∈ U | |Uiu− p| ≥ τi},

and we get (5.10) by inferring from (5.14) that

µ{u ∈ U | |Uiu−
√
ni wi | ≥ 33τi(1+ |xi |/

√
ni)} ≤ µ{u ∈ U | |Uiu− p| ≥ τi}

≤ e−τ
2
i /4µU.
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Finally, when (c) holds, we observe that xi 6= 0 and use (5.6) to infer that τi ≤ ni/(20|xi |).
Hence |〈Uiu, xi〉| ≤ ni/5 implies

|Uiu− p| ≥ (|〈p, xi〉| − |〈Uiu, xi〉|)/|xi | ≥ ni/(20|xi |) ≥ τi

and we obtain (5.11) by estimating

µ{u ∈ U | |〈Uiu, xi〉| ≤ ni/5} ≤ µ{u ∈ U | |Uiu− p| ≥ τi} ≤ e−τ
2
i /4µU. �

Step 3. The inequality (5.10) fails for i = k. This follows from (5.8) since (5.6) implies
33τk(1+ |xk|/

√
nk) <

√
nk/2. �

Step 4. The inequality (5.10) fails for each k ≤ i ≤ l. By Step 3, if this is not the case,
there is k ≤ i < l such that (5.10) fails for i but holds for j := i + 1, and by Step 1 this
implies that (5.11) fails for j .

Let Ui,j := Ui ⊕ Uj , xi,j := xi + xj and Ai,j := Ai ◦ Ui + Aj ◦ Uj . Similarly to
the proof of Step 2, we use Lemma 10 with H = U , V = Ui,j , Z =

⊕
m∈I\{i,j} Um, the

given x and 9, and the Borel measure ν on Z defined by

νF =

∫
F

e−|z|
2/2

∏
m∈I\{i,j}

〈z,wm〉
nm
+ dL2s−4(z).

Hence8(u) =
∫
Z
9(u+z) dν(z) belongs to F(Ui,j , Ai,j , xi,j ), and by Fubini’s Theorem

for every Borel set E ⊂ Ui,j ,

µ(U−1
i,j E) =

∫
E

e−|u|
2/28(u)〈u,wi〉

ni
+ 〈u,wj 〉

nj
+ dL4(u). (5.15)

Again, similarly to Step 2 it suffices to make appropriate estimates of the integral in (5.15).
By Lemma 11 the integrand of (5.15) attains its maximum at a point p = pi + pj ,

where pi ∈ Ui and pj ∈ Uj , such that 〈pi, wi〉 > 0, 〈pj , wj 〉 > 0 and for some λ ≥ 0,

p + λAi,j (p − xi,j )−
niwi

〈p,wi〉
−

njwj

〈p,wj 〉
= 0. (5.16)

Notice that (5.16) holds coordinatewise, i.e. for each ι = i, j ,

pι + λAι(pι − xι)−
nιwι

〈pι, wι〉
= 0.

Hence by Lemma 12 for each ι = i, j at least one of the following statements holds:

(a)
∣∣|pι| − √nι∣∣ > 2τι;

(b) λαι ≤ 23τι/
√
nι and |pι −

√
nιwι| ≤ 25τι(1+ |xι|/

√
nι);

(c) λαι ≥ 2−3nι/(
√
nι + |xι|)

2 and |〈pι, xι〉| ≥ nι/4.
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In a way completely similar to the end of the proof of Step 2 we see that for each
ι = i, j , (a) fails, the condition (b) implies (5.10), and (c) implies (5.11). Since (5.10)
fails for i, we see that (b) fails and hence (c) holds for ι = i. Since (5.11) fails for j ,
(c) fails and hence (b) holds for ι = j . Summarizing, (b) holds for ι = j and (c) for
ι = i. Moreover, the validity of (c) for ι = i implies that λ > 0, and we get the final
contradiction by using (5.6) to estimate

αj

αi
≤

23τj
√
nj

23(
√
ni + |xi |)

2

ni
=

64τj
√
nj

(
1+
|xi |
√
ni

)2

<
αj

αi
. �

Step 5. End of proof. By Steps 4 and 2, (5.11) holds for each k ≤ i ≤ l, which is exactly
the statement of (iii). ut

6. Invalid density theorems

Proposition 14. Suppose that λj > 0, j ∈ N, are such that for some ni, mi ∈ N satisfy-
ing mi+1 > mi + ni + 1 and some σi ≥ 1 and ξi, τi > 0,

(i) ξi ≤ λj ≤ ξiσi whenever mi ≤ j ≤ mi + ni + 1;
(ii) σi = 1+O(

√
ξini);

(iii) τi = O(ξi
√
ni min {ni, ni−1});

(iv)
∑
∞

i=1 e
−τ 2

i <∞.

Then for every Gaussian measure γ in a separable Hilbert space H whose covariance
operator has eigenvalues λj and for every ε > 0 there is a Borel set M ⊂ H with
γM > 1− ε such that

lim
r→0

sup
x∈H

γ (M ∩ B(x, r))

γB(x, r)
= 0. (6.1)

Proof. Let C ∈ (0,∞) be such that σi ≤ 1+C
√
ξini and τi ≤ 1

4Cξi
√
ni min {ni, ni−1},

and choose η ∈ (0, 1) such that

18Cη ≤ 1 and 8 · 165Cη2
≤ 1.

Recalling that existence of γ implies
∑
∞

j=1 λj < ∞ and that limi→∞ τi = ∞ because
of (iv), we find i0 ∈ N such that mi0 > 1,

∑
∞

j=mi0
λj < η2 and τi ≥ 1 for i ≥ i0.

Observing that then ξini < η2 for i ≥ i0 by (i), we shift the parameter i by redefining

(ni, mi, σi, ξi, τi) as (ni0+i, mi0+i, σi0+i, ξi0+i, 4τi0+i),

respectively, to achieve, in addition to (i), also the validity of the following inequalities
for each i:

(v) ξini ≤ η2/16;
(vi) σi ≤ 1+ C

√
ξini , so in particular σi ≤ 1+ Cη and σi ≤ 9/8;

(vii) τi ≤ Cξi
√
ni min {ni, ni−1} if i ≥ 2, in particular τi ≤

√
ni ;

(viii) τi ≥ 4 and
∑
∞

i=1 e
−τ 2

i /16 <∞.
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We recall the notation introduced in Section 2: H := {x ∈ RN
|
∑
∞

i=1 λix
2
i < ∞}

equipped with the norm ‖x‖ = (
∑
∞

i=1 λix
2
i )

1/2, γ is the restriction of the countable
product of the one-dimensional standard Gaussian measures to H , |x| = (

∑
∞

i=1 x
2
i )

1/2,
〈x, y〉 =

∑
∞

i=1 xiyi when |x|, |y| < ∞, B(x, r) = {y ∈ H | ‖y − x‖ ≤ r} and uj ∈ H
are defined by uj := (δi,j )i∈N, where δi,j = 1 when i = j and δi,j = 0 otherwise.
Additionally, for i ∈ N we let

Hi := span{uj ∈ H | mi ≤ j ≤ mi + ni + 1}.

The rest of the proof consists of three steps. In the first step we define the desired set M ,
in the second we introduce measures µw, and finally in the third step we apply Lemma 13
to µw for a suitably chosen parameter w.

Step 1. Our plan is to find for each ε > 0 a Borel set L = Lε ⊂ H and r0 > 0 such that
γL > 1− ε and γ (L ∩ B(x, r)) ≤ εγB(x, r) for every x ∈ H and 0 < r < r0. Clearly,
the set M required in the proposition can then be obtained as M =

⋂
∞

i=1 Lε/2i .
For the rest of the proof we fix ε > 0 and find k ∈ N, k ≥ 2, large enough that∑
∞

i=k e
−τ 2

i /8 < ε. We let

L :=

∞⋂
i=k

Mi,

where Mi :=
{
x ∈ H

∣∣ ∣∣|Hix| − √ni∣∣ ≤ τi}. Since τi ≥ 1 ≥ 1/
√
ni , we see that

τi − (
√
ni + 1−

√
ni) ≥ τi − 1/(2

√
ni) ≥ τi/2.

Hence Mi ⊃
{
x ∈ H

∣∣ ∣∣|Hix| − √ni + 1
∣∣ ≤ τi/2}. Noticing that dimHi = ni + 2, we

infer from Corollary 7 with c = 1/2, n = ni + 2 and λ = τi/2 that γMi ≥ 1 − e−τ
2
i /8

and so

γL ≥ 1−
∞∑
i=k

e−τ
2
i /8 > 1− ε.

Let r0 =
√
ξknk/2 and suppose, for a contradiction, that γ (L∩B(x, r)) > εγB(x, r)

for some x ∈ H and 0 < r < r0. Fix such x and r and find ρ > 0 such that

γ (L ∩ B(x, r)) > εγB(x, r)+ ρ. (6.2)

Choose l > k such that e−τ
2
l /4/(1 − e−τ

2
l /4) < ρ and put I = {k, k + 1, . . . , l}

and J = N \ I . Let U be the linear span of
⋃
i∈I Hi and Z the ‖ · ‖-closed linear span

of
⋃
j∈J Hj . Also denote n := dimU =

∑
i∈I (ni + 2), s := #I = l − k + 1 and

q :=
∑
i∈I ni . Lemma 10 applied with V = U , x chosen above, 9 = 1B(x,r), and the

standard Gaussian measure ν on Z shows that the function 8(u) =
∫
Z
9(u + z) dν(z)

belongs to F(U, ‖ · ‖, Ux). Clearly,8 ≤ 1,8(u) = 0 for ‖u−Ux‖ > r and by Fubini’s
Theorem for every Borel set E ⊂ U ,

γ {y ∈ B(x, r) | Uy ∈ E} = (2π)−n/2
∫
E

e−|u|
2/28(u) dLn(u). (6.3)
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Step 2. For i ∈ I let xi := Hix. Notice that Mi ∩ B(xi, r) 6= ∅ since Mi ∩ B(xi, r) = ∅

would imply L ∩ B(x, r) = ∅, which contradicts (6.2). Choosing u ∈ Mi ∩ B(xi, r) and
using the fact that τi ≤

√
ni by (vii) and |u− xi | ≤ ‖u− xi‖/

√
ξi by (i), we use (v) and

r ≤ η/2 to get

|xi | ≤ |u| + |u− xi | ≤
√
ni + τi + r/

√
ξi ≤ 2

√
ni + r/

√
ξi ≤ η/

√
ξi . (6.4)

Choose now vi ∈ Hi with |vi | = 1 such that xi = |xi |vi and put

W = {w ∈ U | 〈w, vi〉 = 0 and |Hiw| = 1 for every i ∈ I }.

As pointed out by one of the referees, it may help to notice that the setW , being a product
of mutually orthogonal spheres Si = {u ∈ Hi | 〈u, vi〉 = 0, |u| = 1}, i ∈ I , has a torus
structure.

Let w ∈ W , w = (wi)i∈I , wi ∈ Hi . We denote Uw := span{vj , wj | j ∈ I } and
define a Borel measure µw on Uw by

µwF = (2π)−n/2
∫
F

e−|u|
2/28(u)

∏
j∈I

〈u,wj 〉
nj
+ dL2s(u). (6.5)

By (6.3) and iterated application of cylindrical coordinates we obtain, for every Borel set
E ⊂ U ,

γ {y ∈ B(x, r) | Uy ∈ E} =

∫
W

µw(E ∩ Uw) dHq . (6.6)

Using this with the orthogonal projection of L on U , so with the set

E1 := UL =
⋂
i∈I

{
x ∈ H

∣∣ ∣∣|Hix| − √ni∣∣ ≤ τi},
and recalling (6.2), we get∫
W

µw(E1∩Uw) dHq
= γ {y ∈ B(x, r) | Uy ∈ E1} ≥ γ (L∩B(x, r)) > εγB(x, r)+ρ.

Since (6.6) with E2 := U gives

γB(x, r) =

∫
W

µwUw dHq ,

we conclude that∫
W

µw(E1 ∩ Uw) dHq
≥ γ (L ∩ B(x, r)) >

∫
W

(
εµwUw + ρ (HqW)−1) dHq .

So there is w ∈ W such that

µw(E1 ∩ Uw) ≥ εµwUw + ρ (HqW)−1. (6.7)

Step 3. We fix such aw and use Lemma 13 to show that this leads to a contradiction. First
we define the remaining parameters needed for an application of that lemma. For i ∈ I we
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let (Ui, | · |) be the span of {vi, wi} (so Uw is the space denoted by U in Lemma 13) and
choose a positive definite symmetric linear operator Ai on Ui such that ‖u‖2 = 〈u,Aiu〉
for u ∈ Ui . Using the last inequality from (vi), we see that the eigenvalues αi ≥ βi of Ai
satisfy

ξiσi ≥ αi ≥ βi ≥ ξi ≥ 8ξiσi/9 ≥ 8αi/9 > 0.

Since ni , τi and xi have already been defined and xi is a multiple of vi , we just need to ver-
ify the remaining inequalities required in the assumptions of Lemma 13. The inequality
τi ≥ 4 is in (viii). Using the estimate of |xi | from (6.4) and (vi), we get

18(αi − βi)|xi | ≤ 18(σi − 1)ξiη/
√
ξi ≤ 18Cηξi

√
ni ≤ αi

√
ni .

Whenever i ≥ 1 and j = i or j = i + 1 we use (6.4), ni ≤ η2/ξi (see (v)) and

4 · 165Cσiη2
≤ 8 · 165Cη2

≤ 1

to estimate

165τj (1+ |xi |/
√
ni)

2
≤ 2 · 165Cξj

√
nj ni(1+ η2/(ξini))

≤ 2 · 165Cξj
√
nj η

2/ξi + 2 · 165Cξj
√
nj η

2/ξi

= 4 · 165Cσiξj
√
nj η

2/(σiξi) ≤
√
nj αj/αi .

Hence Lemma 13 may be applied and consequently at least one of the following
statements holds:

(a) µw{u ∈ Uw | |Uku−
√
nk wk| ≥

√
nk/2} ≤ e−τ

2
k /4µwUw.

(b) µw
{
u ∈ Uw

∣∣ ∣∣|Uiu| − √ni∣∣ ≤ τi} ≤ e−τ 2
i /4µwUw for some i ∈ I .

(c) µw{u ∈ Uw | |〈Uiu, xi〉| ≤ ni/5} ≤ e−τ
2
i /4µwUw for each i ∈ I .

We show that each of these possibilities leads to a contradiction.
Using the fact that xk is a multiple of vk to infer that |xk −

√
nk wk| ≥

√
nk , and

recalling that8(u) = 0 when ‖u−Uwx‖ > r , we see that the support of µw is contained
in

{u ∈ Uw | ‖u− Uwx‖ ≤ r} ⊂ {u ∈ Uw | ‖Uku− xk‖ ≤ r}

⊂ {u ∈ Uw | |Uku− xk| ≤ r/
√
ξk}

⊂ {u ∈ Uw | |Uku− xk| <
√
nk/2}

⊂ {u ∈ Uw | |Uku−
√
nk wk| ≥

√
nk/2},

which clearly contradicts (a).
If (b) were true, then

µw(E1 ∩ Uw) ≤ µw
{
u ∈ Uw

∣∣ ∣∣|Uiu| − √ni∣∣ ≤ τi} ≤ e−τ 2
i /4µwUw < εµwUw,

which contradicts (6.7).
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Finally, we show that (c) fails as well. To this end we observe that for any i ∈ I the
standard formulas for the 0-function and area of the sphere (see, e.g., [5, pp. 250–251])
give∫
Ui

e−|u|
2/2
〈u,wi〉

ni
+ dL2(u)=

∫
R
e−t

2/2dt ·

∫
∞

0
e−t

2/2tni dt = (2π)(ni+2)/2(HniWi)
−1,

where Wi := {u ∈ Hi | |u| = 1, 〈u, vi〉 = 0}. We look at i 6= l and use the above
equality together with the facts that 8 ≤ 1 and n =

∑
i∈I (ni + 2) to get

µw{u ∈ Uw | |〈Ulu, vl〉| ≥ τl}

≤ (2π)−n/2
∫
{u∈Uw | |〈u,vl〉|≥τl}

e−|u|
2/2
∏
i∈I

〈u,wi〉
ni
+ dL2s(u)

=

(
(2π)(nl+2)/2

l−1∏
i=k

HniWi

)−1
∫
{u∈Ul | |〈u,vl〉|≥τl}

e−|u|
2/2
〈u,wl〉

nl
+ dL2(u).

The last integrand attains its maximum at
√
nl wl and its multiple by e|u|

2/2 is log-
concave. Hence, Lemma 9 with n = 2, ϕ(u) = e−|u|

2/2
〈u,wl〉

nl
+ , Q(u) = |u|2/2, and

τ = τ 2
l /2 gives

µw{u ∈ Uw | |〈Ulu, vl〉| ≥ τl}

≤

(
(2π)(nl+2)/2

l−1∏
i=k

HniWi

)−1
∫
{u∈Ul | |〈u,vl〉|≥τl}

e−|u|
2/2
〈u,wl〉

nl
+ dL2(u)

≤

(
(2π)(nl+2)/2

l−1∏
i=k

HniWi

)−1
∫
{u∈Ul | |u−

√
nlwl |≥τl}

e−|u|
2/2
〈u,wl〉

nl
+ dL2(u)

≤

(
(2π)(nl+2)/2

l−1∏
i=k

HniWi

)−1
e−τ

2
l /4

∫
Ul

e−|u|
2/2
〈u,wl〉

nl
+ dL2(u) = e−τ

2
l /4(HqW)−1.

Since (6.4), (vii) and (v) imply τl |xl | ≤ ητl/
√
ξl ≤ Cη

√
ξlnl nl ≤ Cη2nl ≤ nl/5, we

have
{u ∈ Uw | |〈Ulu, vl〉| ≤ τl} ⊂ {u ∈ Uw | |〈Ulu, xl〉| ≤ nl/5}.

Hence, assuming (c) holds,

µwUw ≤ µw{u ∈ Uw | |〈u, vl〉| ≤ τl} + µw{u ∈ Uw | |〈u, vl〉| ≥ τl}

≤ e−τ
2
l /4µwUw + e

−τ 2
l /4(HqW)−1.

Consequently,

µwUw ≤
e−τ

2
l /4

1− e−τ
2
l /4

(HqW)−1.

Recalling that l satisfies e−τ
2
l /4/(1 − e−τ

2
l /4) < ρ, this yields µwUw ≤ ρ (HqW)−1,

which contradicts (6.7) and so finishes the proof. ut
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7. Proof of Theorem 1

Choose m ∈ N and 1 < p < 6/5 such that k(λk/λk+1 − 1) < p for k ≥ m. Then for
every k ≥ m,

kpλk

(k + 1)pλk+1
<

1+ p/k
(1+ 1/k)p

< 1,

and hence the sequence kpλk is increasing for k ≥ m. If necessary, we increase m so that
m ≥ 2 and (1+ (m2−p

+ 2)/m)p < 2.
We show that the assumptions of Proposition 14 hold with

mi := m
i,

ni := dm
2−p
i e, i.e., ni ∈ N and m

2−p
i ≤ ni < m

2−p
i + 1,

σi := (1+ (ni + 1)/mi)p,
ξi := λmi/σi,

τi := m
3−5p/2
i .

For that, we observe that our assumptions onm imply σi ≤ 2, and we make the following
estimates:
• For mi ≤ j ≤ mi + ni + 1, λj ≤ λmi = ξiσi and λj ≥ (mi/j)

pλmi ≥ ξi ; hence
ξi ≤ λj ≤ ξiσi .
• Clearly, σi − 1 = O(ni/mi) = O(m

1−p
i ). On the other hand recalling that kpλk is

increasing we obtain mpi λmi ≥ m
pλm, hence λmi ≥ λmm

pm
−p
i and

ξini ≥
λmi

2
m

2−p
i ≥

λmm
p

2
m

2−2p
i .

Hence σi = 1+O(
√
ξini).

• If i > m and j = i or j = i − 1, then

ξi
√
ni nj ≥

1
2λmim

1−p/2
i m

2−p
j ≥

1
2m

2p−2λmm
3−5p/2
i ,

and hence τi = O(ξi
√
ni min {ni, ni−1}).

•
∑
∞

i=1 e
−τ 2

i <∞ since p < 6/5.
Hence the statement follows from Proposition 14.

Remark. In addition to those given in Theorem 1, there are many other choices of λj
satisfying the conditions of Proposition 14. In the introduction we indicated perhaps the
simplest way of choosing them which may be realized, for example, by letting λj = 32−i

for 16i−1
≤ j ≤ 16i , with the remaining parameters required by Proposition 14 given by

ni = mi = 16i , σi = 1, ξi = 32−i , and τi = 2i .
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