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Abstract. We prove the relative hard Lefschetz theorem for Soergel bimodules. It follows that the
structure constants of the Kazhdan–Lusztig basis are unimodal. We explain why the relative hard
Lefschetz theorem implies that the tensor category associated by Lusztig to any two-sided cell in a
Coxeter group is rigid and pivotal.
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1. Introduction

Let (W, S) denote a Coxeter system and H its Hecke algebra. It is an algebra over Z[v±1
]

with standard basis {Hx | x ∈ W } and Kazhdan–Lusztig basis {H x | x ∈ W }. The
Kazhdan–Lusztig positivity conjectures are the statements:
(1) (“positivity of Kazhdan–Lusztig polynomials”) if we write H x =

∑
hy,xHy , then

hy,x ∈ Z≥0[v];
(2) (“positivity of structure constants”) if we write H xH y =

∑
µzx,yH z then µzx,y ∈

Z≥0[v
±1
].

These conjectures have been known since the 1980s for Weyl groups of Kac–Moody
groups [KL80, Spr82], using sophisticated geometric technology. More recently in
[EW14] the authors proved these conjectures algebraically for arbitrary Coxeter systems
by establishing Soergel’s conjecture.

Let us briefly recall the setting of Soergel’s conjecture. For a certain reflection repre-
sentation h of (W, S) over the real numbers, Soergel constructed a category B of Soergel
bimodules, which is a full subcategory of the category of graded R-bimodules, where R
denotes the polynomial functions on h. The category B of Soergel bimodules is monoidal
under tensor product of bimodules, and is closed under grading shift. Soergel showed that
one has a canonical isomorphism

ch : [B] ∼−→ H
of Z[v±1

]-algebras between the split Grothendieck group of Soergel bimodules and the
Hecke algebra. (The split Grothendieck group [B] is an algebra via [B][B ′] := [B⊗R B ′]
and is a Z[v±1

]-algebra via v[B] := [B(1)], where (1) denotes a grading shift.) In prov-
ing this isomorphism, Soergel constructed certain bimodules Bx for each x ∈ W which
give representatives for all indecomposable Soergel bimodules (up to isomorphism and
grading shift). Soergel’s conjecture is the statement that ch([Bx]) = H x , which immedi-
ately implies the Kazhdan–Lusztig positivity conjectures. (Property (1) follows because
the coefficient of Hy in ch([B]) is given by the graded dimension of a certain hom space.
Property (2) follows because µzx,y gives the graded multiplicity of Bz as a summand in
Bx ⊗R By .)

The geometric techniques used to understand the Kazhdan–Lusztig basis yield an-
other remarkable property of the structure constants µzx,y . Using duality, one can show
that µzx,y is preserved under swapping v and v−1. The quantum numbers

[m] :=
vm − v−m

v − v−1 = v
−m+1

+ v−m+3
+ · · · + vm−3

+ vm−1
∈ Z[v±1

]

for m ≥ 1 give a Z-basis for those elements of Z[v±1
] preserved under swapping v and

v−1. A folklore conjecture states:1

1 Unimodality is stated as a question in [dC06, §5.1], but experts assure the authors that the
conjecture is much older. In [dC06] positivity properties (2) and (3) are checked for W a finite
reflection group of H4 by computer (almost three trillion polynomials µzx,y need to be computed!).
For H4, property (1) had already been checked by Alvis [Alv87] in 1987. In [dC06, §5.2] it is
incorrectly stated that the unimodality conjecture is open for Weyl groups.
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(3) (“unimodality of structure constants”) if we writeµzx,y =
∑
m≥1 am[m], then am ≥ 0

for all m.

(In other words, each µzx,y is the character of a finite-dimensional sl2(C)-representation.)
In geometric settings unimodality follows from the relative hard Lefschetz theorem

of [BBD82]. Recall that the relative hard Lefschetz theorem states that if f : X → Y is
a projective morphism of complex algebraic varieties and if η is a relatively ample line
bundle on X then for all i ≥ 0, η induces an isomorphism:

ηi : pH−i(Rf∗ICX)
∼
−→

pHi(Rf∗ICX).

(Here ICX denotes the intersection cohomology complex onX and pHi denotes perverse
cohomology.) In this paper we prove unimodality for all Coxeter groups, by adapting the
relative hard Lefschetz theorem to the context of Soergel bimodules.

Inside the category of Soergel bimodules we consider the full subcategory pB con-
sisting of direct sums of the indecomposable self-dual bimodules Bx without shifts. We
call pB the subcategory of perverse Soergel bimodules. Soergel’s conjecture implies that
each B ∈ pB admits a canonical isotypic decomposition

B ∼=
⊕
x∈W

Vx ⊗R Bx

for certain real vector spaces Vx (in degree 0). If a Soergel bimodule is not perverse,
its decomposition into indecomposable summands of the form Bx(i) is not canonical.
However, there is a canonical filtration on any Soergel bimodule called the perverse fil-
tration, whose i-th subquotient has indecomposable summands of the form Bx(−i) for
some x ∈ W . Taking the subquotients of this filtration and shifting them appropriately,
one obtains for each i the perverse cohomology functor

H i
: B→ pB.

Any degree d map B → B ′(d) induces a map H i(B) → H i+d(B ′) on perverse coho-
mology.

Remark 1.1. The category B is an analogue of semisimple complexes, pB is an analogue
of the category of semisimple perverse sheaves and H i is an analogue of the perverse
cohomology functor.

This main result of this paper is the following:

Theorem 1.2 (Relative hard Lefschetz for Soergel bimodules). Let x, y ∈ W be arbi-
trary and fix ρ ∈ h∗ dominant regular (i.e. 〈ρ, α∨s 〉 > 0 for all s ∈ S). The map

η : Bx ⊗R By → Bx ⊗R By(2), b ⊗ b′ 7→ b ⊗ ρb′ = bρ ⊗ b′,

induces an isomorphism ( for all i ≥ 0)

ηi : H−i(Bx ⊗R By)
∼
−→ H i(Bx ⊗R By).
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Remark 1.3. A stronger version of the above theorem, involving iterated tensor prod-
ucts of indecomposable Soergel bimodules of arbitrary length is still open (see Conjec-
ture 3.5). It is amusing that establishing Conjecture 3.5 for Bott–Samelson bimodules
(i.e., when all xi ∈ S, in the notation of Conjecture 3.5) was the authors’ original plan
of attack to settle Soergel’s conjecture. This remains a very interesting Hodge-theoretic
statement that we cannot prove!

Remark 1.4. Let us give some geometric context for Theorem 1.2 from the relative hard
Lefschetz theorem, when W is the Weyl group of a complex reductive group G, with
Borel subgroup B ⊂ G. In this case the indecomposable Soergel bimodule Bx arises as
the B × B-equivariant intersection cohomology of a B × B-orbit closure BxB ⊂ G (the
inverse image of a Schubert variety in G/B). Here the intersection cohomology of the
Schubert variety BxB/B is given by

Bx ⊗R R

and the hard Lefschetz theorem and Hodge–Riemann predict remarkable structure on this
R-module. Establishing these (“global”) properties algebraically is the subject of [EW14].

Now let us turn to the relative setting. The morphism

m : G×B G→ G

induced by multiplication is smooth and proper, with fibre the flag variety G/B. The
tensor product Bx ⊗R By is realized as the equivariant cohomology of the derived push-
forward via m of the intersection cohomology complex of

BxB ×B ByB ⊂ G×B G.

The relative hard Lefschetz theorem applied to this direct image is equivalent to the state-
ment of Theorem 1.2. (The choice of relatively ample line bundle corresponds to the
choice of ρ in Theorem 1.2.)

As was true in our previous work on hard Lefschetz type theorems for Soergel bimodules
[EW14, Wil16], the inductive proof we use to establish our main theorem actually requires
proving a stronger statement, analogous to the relative Hodge–Riemann bilinear relations
[dCM05]. That is, we must calculate the signatures of certain forms on the multiplicity
spaces of H−i(Bx ⊗R By) (see Theorem 3.4).

Let us spell out an important combinatorial consequence of Theorem 1.2. As we ex-
plained above, for all x, y ∈ W we have a (non-canonical) isomorphism

Bx ⊗ By ∼=
⊕

Vz ⊗R Bz

for certain finite-dimensional graded vector spaces Vz. It is a consequence of Soergel’s
categorification theorem that the graded dimension of Vz agrees with the structure con-
stant µzx,y for multiplication in the Kazhdan–Lusztig basis. Theorem 1.2 implies that
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η induces2 a degree 2 operator on Vz which satisfies the hard Lefschetz theorem. In this
way we are able to solve the folklore conjecture (3) above on the unimodality of structure
constants.

Corollary 1.5. The structure constants µzx,y of multiplication in the Kazhdan–Lusztig
basis are unimodal.

Remark 1.6. In general, the “global” theory (developed in [EW14]) is quite different
to the “relative” theory (developed here). However, let us briefly point out one amusing
connection. Suppose that W is finite with longest element w0. One can prove that

Bw0 ⊗R Bx
∼= Bx ⊗R Bw0 .

Here Bx = Bx ⊗R R is the underlying “Soergel module”, whose Hodge theory is con-
sidered in detail in [EW14]. In this case relative hard Lefschetz (resp. Hodge–Riemann)
for Bw0 ⊗R Bx is equivalent to the global hard Lefschetz (resp. Hodge–Riemann) for Bx .
Thus, at least for finite W , the results of the current work are strictly stronger than those
of [EW14].

Relative hard Lefschetz for Soergel bimodules also has important consequences for cer-
tain tensor categories associated to cells in Coxeter groups. Recall that to any two-sided
cell c ⊂ W in a finite or affine Weyl group Lusztig has associated a tensor category,
which categorifies the J -ring of c. These categories (for finite Weyl groups) are funda-
mental for the representation theory of finite reductive groups of Lie type: by results
of Bezrukavnikov, Finkelberg and Ostrik [BFO12] and Lusztig [Lus15], their (Drinfeld)
centres are equivalent to the braided monoidal category of unipotent character sheaves
corresponding to c.

Given any two-sided cell c ⊂ W in an arbitrary Coxeter group Lusztig has generalized
his construction to yield a monoidal category J . (Note that J is only “locally unital”
unless c contains finitely many left cells, and the existence of a unit relies on a conjecture
in general, see Remark 5.2.) In the last section of this paper we explain why Theorem 1.2
implies that J is rigid and pivotal (see Theorem 5.3). (The rigidity was conjectured by
Lusztig [Lus15, §10] when W is finite. Bezrukavnikov, Finkelberg and Ostrik were able
to show rigidity for finite and affine Weyl groups [BFO12] via a very different method,
which uses the geometric Satake isomorphism and the affine theory in a crucial way. See
Remark 5.4 for additional comments.) Establishing the rigidity of J is an important step
towards the study of “unipotent character sheaves” associated to any Coxeter system.

By a theorem of [Müg03, ENO05], rigidity of J implies that the (Drinfeld) center of
J is a modular tensor category. We expect cells in non-crystallographic Coxeter groups
to provide many new examples of modular tensor categories (see [Ost14, 5.4]).

2 For the purposes of the introduction we are not quite precise here. Really we mean “after
passing to the associated graded for the perverse filtration.”
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2. Background

2.1. Equality and isomorphism

Given objects B and B ′ we write B ∼= B ′ to mean that B and B ′ are isomorphic, often
without a given isomorphism. We write B = B ′ to indicate that B and B ′ are canonically
isomorphic.

2.2. Soergel bimodules and duality

Let h be an R-linear realization of the Coxeter system (W, S), as in [Soe07, §2]. Thus h is
a finite-dimensional R-vector space, equipped with linearly independent subsets of roots
{αs}s∈S ⊂ h∗ and coroots {α∨s }s∈S ⊂ h such that

〈αs, α
∨
t 〉 = −2 cos(π/mst ),

wheremst denotes the order (possibly∞) of st ∈ W .3 We have an action ofW on h given
by the formula

s(v) = v − 〈αs, v〉α
∨
s

for all s ∈ S and v ∈ h. The contragredient action of W on h∗ is defined by an analogous
formula,

s(f ) = f − 〈f, α∨s 〉αs

for all s ∈ S and f ∈ h∗.
Let R be the ring of polynomial functions on h, graded so that the linear terms h∗ have

degree 2. Throughout this paper we work in the category of graded R-bimodules, with
degree 0 morphisms. Given two such bimodules B and B ′ we denote by Hom(B, B ′) the
morphisms in this category.

Our ring R comes equipped with an action of W . Define a graded R-bimodule

Bs := R ⊗Rs R(1)

for each s ∈ S, where Rs denotes the s-invariant polynomial subring. We use the standard
convention for grading shifts, so that the (1) above indicates that the minimal degree
element 1 ⊗ 1 lives in degree −1. Given two graded R-bimodules B,B ′ their tensor
product over R is denoted BB ′ := B ⊗R B

′. For a sequence w = (s1, . . . , sd) with
si ∈ S, the tensor product

BS(w) := Bs1 . . . Bsd

is called a Bott–Samelson bimodule.

3 The choice of roots and coroots plays a significant role in this paper, but only up to positive
rescaling; what is important (in order that we may cite certain results from [Soe07] and [EW14])
is that our representation is reflection faithful [Soe07] and that there be a well-defined notion of
positive roots. If the reader prefers, they may also take the representation given by a realization of
a generalized Cartan matrix.
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Soergel [Soe07] proved that when x is a reduced expression for an element x ∈ W ,

there is a unique indecomposable direct summandBx
⊕
⊆ BS(x)which is not isomorphic to

a summand of a shift of any Bott–Samelson bimodule corresponding to a shorter reduced
expression. Moreover, this summand does not depend on the reduced expression of x, up
to non-canonical isomorphism. (Using the main theorem of [EW14] one can make this
isomorphism canonical.) Note that the two notations for Bs agree.

Let B denote the full subcategory of graded R-bimodules whose objects are finite
direct sums of grading shifts of summands of Bott–Samelson bimodules. The objects
in this category B are known as Soergel bimodules, and the bimodules {Bx}x∈W give
a complete list of non-isomorphic indecomposable objects up to grading shift. Because
Bott–Samelson bimodules are closed under tensor product, B is as well, and inherits its
monoidal structure from R-bimodules.

If B is a Soergel bimodule we will often use the symbol B to denote the identity
morphism on B. For example, if f : B ′ → B ′′ is a morphism then Bf : BB ′ → BB ′′

denotes the tensor product of the identity onB with f . Similarly, given r ∈ R of degreem,
rB (resp. Br) denotes the morphism B → B(m) given by left (resp. right) multiplication
by r .

For two Soergel bimodules B and B ′, recall that Hom(B, B ′) denotes the degree 0
homomorphisms of R-bimodules. Write

Hom•(B, B ′) :=
⊕
m∈Z

Hom(B, B ′(m))

for the graded vector space of bimodule homomorphisms of all degrees. A morphism
f ∈ Hom(B, B ′(m)) is said to be a degree m morphism from B to B ′. By a theorem
of Soergel [Soe07, Theorem 5.15], Hom•(B, B ′) is free of finite rank as a left or right
R-module.

Given a Soergel bimodule B ∈ B its dual is

DB := Hom•
−R(B,R)

where Hom•
−R denotes the graded vector space of right R-module homomorphisms of all

degrees. We make DB into anR-bimodule via r1f r2(b) = f (r1br2). Because DBS(w) ∼=
BS(w),4 the functor D descends to a contravariant equivalence of B. By the defining
property of the indecomposable bimodule Bx , we must also have DBx ∼= Bx . As usual,
we have DDB = B canonically, for any Soergel bimodule B.

A pairing on two Soergel bimodules B,B ′ is a homogeneous Z-bilinear form

〈−,−〉 : B × B ′→ R

such that 〈rb, b′〉 = 〈b, rb′〉 and 〈br, b′〉 = 〈b, b′r〉 = 〈b, b′〉r for all b ∈ B, b′ ∈ B
and r ∈ R. (Note the asymmetry in the conditions on the left and right R-actions.5)

4 We even have a canonical isomorphism, as we will discuss later. However, this is not important
at this stage.

5 This is the convention used in [EW14]. The opposite convention is used in [Wil16].
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The homogeneous condition states that deg b + deg b′ = deg〈b, b′〉. A pairing induces
bimodule morphisms B → DB ′ and B ′ → DB. We say that a pairing is non-degenerate
if one (or equivalently both) of these morphisms is an isomorphism.6

A (non-degenerate) form on a Soergel bimodule is a (non-degenerate) pairing

〈−,−〉 : B × B → R

which is in addition symmetric: 〈b, b′〉 = 〈b′, b〉 for all b, b′ ∈ B. A polarized Soergel
bimodule is a pair (B, 〈−,−〉B) where B ∈ B is a Soergel bimodule and 〈−,−〉B is a
non-degenerate form, in which case 〈−,−〉B is the polarization.

Given a map f : B → B ′(m) between polarized Soergel bimodules its adjoint is the
unique map f ∗ : B ′→ B(m) such that

〈f (b), b′〉B = 〈b, f
∗(b′)〉B ′ for all b ∈ B, b′ ∈ B ′.

Equivalently f ∗ = Df : D(B ′(m)) → DB, where we use the polarizations to identify
B = DB, B ′(−m) = D(B ′(m)).

2.3. Perverse cohomology and graded multiplicity spaces

All morphisms between indecomposable self-dual Soergel bimodules are of non-negative
degree, and those of degree 0 are isomorphisms. That is,

Hom(Bx, By) =
{
R if x = y,
0 otherwise.

(2.1)

Hom(Bx, By(m)) = 0 for x, y ∈ W and m < 0. (2.2)

These fundamental Hom-vanishing statements are equivalent to Soergel’s conjecture (see
[EW14, the paragraph following Theorem 3.6]).

A Soergel bimodule B is perverse if it is isomorphic to a direct sum of indecom-
posable bimodules Bx without shifts. We denote by pB the full subcategory of perverse
Soergel bimodules. As a consequence of (2.2), any perverse Soergel bimodule admits a
canonical decomposition

B =
⊕
x∈W

Vx ⊗R Bx (2.3)

for some finite-dimensional real vector spaces Vx . (Concretely, Vx = Hom(Bx, B).) The
rest of this section is dedicated to understanding what replaces this multiplicity space Vx
in case the bimodule B in question is not perverse.

By the classification of indecomposable bimodules, every Soergel bimodule splits into
a direct sum of shifts of perverse bimodules, but this splitting is not canonical. However,
it is a consequence of (2.1) and (2.2) that B admits a unique functorial (non-canonically
split) filtration, the perverse filtration, whose subquotients are isomorphic to a shift of
a perverse Soergel bimodule. Before discussing the details, it is worth illustrating this
subtle point in examples.

6 Warning: this is stronger than the condition 〈b, B〉 = 0⇒ b = 0.
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Example 2.1. The Bott–Samelson bimodule BsBs is isomorphic to Bs(+1) ⊕ Bs(−1).
The degree −1 projection map, that is, the map BsBs → Bs(−1), is canonical up to
a scalar. After all, it is easy to confirm from (2.1) and (2.2) that Hom•(BsBs, Bs) ∼=
Hom•(Bs(+1)⊕Bs(−1), Bs) is zero in degrees ≤ −2, and is one-dimensional in degree
−1. The same can be said about the degree−1 inclusion map, that is, the map Bs(+1)→
BsBs . However, the degree +1 projection map BsBs → Bs(+1) (resp. the degree +1
inclusion map Bs(−1)→ BsBs) is not canonical; adding to it anR-multiple of the degree
−1 projection map will give another valid projection map. Said another way, Bs(+1) is a
canonical submodule, and Bs(−1) a canonical quotient, and this filtration of BsBs splits,
but not canonically.

Example 2.2. Suppose thatW is of typeA2 with simple reflections {s, t}. Then BS(stst)
is isomorphic to Bsts(−1)⊕Bsts(+1)⊕Bst . The degree −1 projection map to Bsts(−1)
is canonical. However, the degree 0 projection map to Bst is not canonical! The morphism
space Hom(BS(stst), Bst ) is two-dimensional; it has a one-dimensional subspace arising
as the composition of the canonical projection to Bsts(−1) followed by a non-split map
Bsts(−1)→ Bst , and any morphism not in this one-dimensional subspace will serve as a
projection map to Bst . This example is meant to loudly proclaim that even what appears
to be an “isotypic component,” such as the summand Bst which is the only one of its
kind, is not canonically a direct summand, owing to the presence of other summands with
lower degree shifts.

For any i ∈ Z, define B≤i (resp. B>i) to be the full additive subcategory of B consisting of
bimodules which are isomorphic to direct sums of Bx(m) with m ≥ −i (resp. m < −i).
In formulas,

B≤i := 〈Bx(m) | x ∈ W, m ≥ −i〉⊕,∼=,
B>i := 〈Bx(m) | x ∈ W, m < −i〉⊕,∼=.

Similarly we define B<i and B≥i . We have pB = B≥0
∩ B≤0. We can rephrase (2.2) as

the statement
Hom(B≤i,B>i) = 0. (2.4)

We now recall the construction of the perverse filtration, following7 [EW14, §6.2].
For any Soergel bimodule B we can choose a decomposition

B ∼=
⊕

B
⊕mx,i
x (i)

into indecomposable bimodules. We define

τ≤jB :=
⊕
i≥−j

B
⊕mx,i
x (i),

7 In [EW14, §6.2] the perverse filtration is defined on any p-split Soergel bimodule. The main
result of [EW14] is that every Soergel bimodule is p-split, so the reader trying to follow along in
[EW14, §6.2] can ignore this technicality.
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which is a summand of B. Using (2.2) we can deduce that the submodule τ≤jB does
not depend on the choice of decomposition, because it agrees with the smallest submod-
ule containing the image of any map Bx(i) → B for i ≥ −j . Note, however, that its
complement ⊕

i<−j

B
⊕mx,i
x (i)

depends in general on the choice of decomposition.
We obtain in this way the perverse filtration on B

· · · ⊂ τ≤iB ⊂ τ≤i+1B ⊂ · · ·

such that τ≤iB ⊂ B≤i and B/τ≤iB ∈ B>i . This filtration always splits, but the splitting
is not canonical.

If f : B → B ′ is a morphism then f (τ≤iB) ⊂ τ≤iB ′. We have

τ≤i(B(m)) = (τ≤i+mB)(m). (2.5)

Dually, we set
τ≥jB := B/τ≤j−1.

Every Soergel bimodule has a unique perverse cofiltration

· · ·� τ≥iB � τ≥i+1B � · · ·

where every arrow is a split surjection, each τ≥iB is in B≥i and the kernel of B � τ≥iB

belongs to B<i . We have
D(τ≥iB) = τ≤−i(DB) (2.6)

canonically.

Remark 2.3. Note that τ≥jB is canonically a quotient of B, not a submodule. It is not
“the same as” the (non-canonical) complement of τ≤j−1B, though any such complement
will map isomorphically to τ≥jB.

The perverse cohomology of a Soergel bimodule B is

H i(B) := (τ≤iB/τ≤i−1B)(i).

(The shift (i) is included so that H i(B) is perverse.) By the third isomorphism theorem,
H i(B)(−i) is also the kernel of the map τ≥iB → τ≥i+1B. From this we conclude that

D(H i(B)) = H−i(D(B)). (2.7)

Applying (2.3) we obtain canonical isotypic decompositions

H i(B) =
⊕
z∈W

H i
z (B)⊗R Bz
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for certain finite-dimensional vector spaces H i
z (B). We have a non-canonical isomor-

phism
B ∼= grB :=

⊕
i∈Z

H i(B)(−i)

and canonical isomorphisms

grB =
⊕
i,z

H i
z (B)⊗ Bz(−i) =

⊕
z

H •z (B)⊗R Bz

where H •z (B) denotes the graded vector space
⊕
H i
z (B)(−i). (That is, to form H •z (B)

we place each H i
z (B) in degree i and take the direct sum over all i.) Below we call the

graded vector spaces H •z (B) multiplicity spaces.

Remark 2.4. To reiterate the point made in Example 2.2: in general, it is not possible to
produce separate multiplicity spaces H •z (B) for different z ∈ W , without first passing to
the associated graded of the perverse filtration.

Let B,B ′ be Soergel bimodules and f : B → B ′(m) a morphism. Then by (2.4) and
(2.5) we have

f (τ≤iB) ⊂ τ≤i(B
′(m)) = (τ≤i+mB

′)(m).

Thus f induces a map
f : H i(B)→ H i+m(B ′)

of Soergel bimodules, and hence a degree m map gr f from grB to grB ′. For any z ∈ W
this induces a map

grz f : H
•
z (B)→ H •+mz (B ′)

of graded vector spaces. To simplify notation, we use f to denote all these maps: f , gr f ,
grz f for all z ∈ W . We refer to the maps gr f and grz f as the maps induced on perverse
cohomology.

The following triviality is important later:

Lemma 2.5. If f : B → B ′(m) is a map such that, for all i ∈ Z,

f (τ≤iB) ⊂ τ≤i−1(B
′(m))

then f induces the zero map on perverse cohomology. In particular, this applies to the
map given by left or right multiplication by any positive-degree polynomial in R on a
Soergel bimodule B.

Proof. Only the second sentence requires proof. The perverse filtration is a filtration
by R-bimodules, so left (resp. right) multiplication by an element of R preserves the sub-
module τ≤iB for any i. (An arbitrary endomorphism might not.) If r ∈ R is homogeneous
of degree d > 0 then multiplication by r on the left (resp. right) induces a map (see (2.5))

τ≤iB → (τ≤iB)(d) = τ≤i−d(B(d)).

Therefore, the hypothesis of the lemma applies to multiplication by r . ut
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2.4. Polarizations of Soergel bimodules

In [EW14, §3.4, see also Corollary 3.9], the Bott–Samelson bimodule BS(w) was
equipped with a non-degenerate form called the intersection form. By restriction, one
obtains a form on any summand of a Bott–Samelson bimodule. By [EW14, Lemma 3.7],
there is, up to an invertible scalar, a unique non-zero form on an indecomposable So-
ergel bimodule Bx (this statement is equivalent to Soergel’s conjecture), and it is non-
degenerate. Letting x be any reduced expression for x, the restriction of the intersection

form to Bx
⊕
⊆ BS(x) is non-zero.8 Thus this restricted form is non-degenerate, and is a

polarization of Bx . For all x ∈ W we fix a reduced expression x of x and an embed-
ding Bx ⊂ BS(x), and hence a polarization 〈−,−〉Bx on Bx . We refer to 〈−,−〉 as the
intersection form on Bx .

The intersection form has the following important positivity property:

Lemma 2.6 ([EW14, Lemma 3.10]). If ρ ∈ h∗ is dominant regular (i.e. 〈ρ, α∨s 〉 > 0 for
all s ∈ S) and b ∈ Bx is any non-zero element of degree −`(x) then

〈b, ρ`(x)b〉 > 0.9

Remark 2.7. This lemma and the discussion of the previous paragraph imply that the
intersection form on Bx does not depend on the choice of reduced expression x or the
choice of embedding Bx ⊂ BS(x), up to multiplication by a positive scalar.

Given any polarized Soergel bimodule B, it is explained in [EW14, §3.6] how to produce
a polarization on BBs , called the induced form. Moreover, if B = Bx is given its inter-

section form (i.e. the form restricted from our fixed inclusion Bx
⊕
⊆ BS(x) for a reduced

expression) then the induced form on BxBs agrees with the form restricted from the in-

clusion BxBs
⊕
⊆ BS(xs). This is because the intersection form on any Bott–Samelson

bimodule BS(w) is constructed by being repeatedly induced from the canonical form on
BS(∅) = R. Let us generalize this notion of induced forms.

If B and B ′ are two polarized Soergel bimodules, we define an induced form on BB ′

by the formula

〈b ⊗ b′, c ⊗ c′〉BB ′ := 〈(〈b, c〉B) · b
′, c′〉B ′ = 〈b

′, (〈b, c〉B) · c
′
〉B ′ . (2.8)

Lemma 2.8 ([Wil16, §6.4]). The induced form on BB ′ is non-degenerate, and thus is a
polarization of BB ′.

8 There are two ways to see this. The first is to note that the intersection form can be reinterpreted
as an isomorphism BS(x) → DBS(x). By the Krull–Schmidt property, this isomorphism must
restrict to an isomorphism Bx → DBx , which is another way of saying that the restriction of the
form to Bx is non-degenerate. Alternatively, one can use Lemma 2.6 below to see that the restriction
to Bx is non-zero, hence non-degenerate.

9 The reader should not forget that 〈b, b′〉 is, in general, an element of the ringR. Here, for degree
reasons, one obtains a degree 0 element of R, hence an element of R.
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The induction of forms is associative: given polarized Soergel bimodules B,B ′, B ′′,
the induced form on BB ′B ′′ is well-defined. Note that the tensor product of two Bott–
Samelson bimodules BS(w)⊗BS(x) is a Bott–Samelson bimodule for the concatenation
BS(wx). If one induces the intersection forms on BS(w) and BS(x), one again obtains
the intersection form on BS(wx). This follows from associativity, once one confirms that
the earlier definition of the induced form on BBs matches with (2.8). Consequently, if

B
⊕
⊆ BS(w) and B ′

⊕
⊆ BS(x), then the induced form on BB ′ agrees with the restriction of

the intersection form on BS(wx). All tensor products of the form Bx1 . . . Bxm are always
assumed to be polarized with respect to their intersection form.

Remark 2.9. Here is some additional motivation for (2.8), omitting many details which
can be found in [EW14, §3.4]. The intersection form on a Bott–Samelson bimodule B
can be defined in terms of a trace map TrB : B → R. There is a particular homogeneous
basis of B as a right R-module, with a special basis element ctop of top degree, and the
trace of an element b ∈ B is the coefficient of ctop in the expansion of b. The basis of
BB ′ is the tensor product of the respective bases, with top degree element ctop ⊗ ctop.
However, the right action of R on B does not match the right action of R on BB ′; instead
it is the “middle action” of R, or the left action of R on B ′. If TrB(b) = r , then the trace
of b ⊗ b′ ∈ BB ′ agrees with the trace of ctop · r ⊗ b

′
= ctop ⊗ r · b

′, which agrees with
the trace of r · b′ ∈ B ′. In other words,

TrBB ′(b ⊗ b′) = TrB ′(TrB(b) · b′).

This formula directly implies (2.8).

Let (B, 〈−,−〉B) be a polarized Soergel bimodule. If B is also perverse then by consid-
ering the isotypic decomposition (see (2.3))

B =
⊕
x∈W

Vx ⊗R Bx

and the associated map B → DB, we see that 〈−,−〉B is orthogonal for this decompo-
sition. Moreover, 〈−,−〉B is determined by symmetric forms 〈−,−〉Vx on each vector
space Vx (i.e. if v, v′ ∈ Vx and b, b′ ∈ Bx then 〈v ⊗ b, v′ ⊗ b′〉 = 〈v, v′〉Vx 〈b, b

′
〉Bx ). We

say that B is positively polarized if B = 0 or the following conditions are satisfied:

(1) B is perverse and vanishes in even or odd degree (because Bx is non-zero in degree
−`(x), the second condition is equivalent to the existence of q ∈ {0, 1} such that
Vx = 0 for all x with `(x) of the same parity as q).

(2) Let z ∈ W denote an element of maximal length in W such that Vz 6= 0. If Vy 6= 0
then 〈−,−〉Vy is (−1)(`(z)−`(y))/2 times a positive definite form, for all y ∈ W .

The canonical example of a positively polarized Soergel bimodule is given by the follow-
ing lemma:

Lemma 2.10 ([EW14, Proposition 6.12]). Suppose that y ∈ W and s ∈ S with ys > y

(resp. sy > y). Then ByBs (resp. BsBy), equipped with its interesection form, is posi-
tively polarized.
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2.5. Forms on multiplicity spaces

Assume that (B, 〈−,−〉) is a polarized Soergel bimodule. If we interpret 〈−,−〉 instead
as an isomorphism

f : B
∼
−→ D(B)

then we deduce from the functoriality of the perverse filtration that

f (τ≤iB) ⊂ τ≤i(DB)
(2.6)
= D(τ≥−iB), (2.9)

f induces an isomorphism H i(B)
∼
−→ H i(DB) (2.7)

= DH−i(B). (2.10)

Since τ≥−iB is the quotient of B by τ<−iB, the usual duality between subspaces and
quotients implies that D(τ≥−iB) is the space orthogonal to τ<−iB. Thus statement (2.9)
is equivalent to saying that 〈τ≤iB, τ<−iB〉 = 0, which implies that 〈−,−〉 induces a
pairing of Soergel bimodules

〈−,−〉 : H i(B)×H−i(B)→ R. (2.11)

Statement (2.10) tells us that this pairing is non-degenerate. By (2.1) the canonical de-
compositions

H i(B) =
⊕
z∈W

H i
z (B)⊗R Bz and H−i(B) =

⊕
z∈W

H−iz (B)⊗R Bz

are orthogonal with respect to 〈−,−〉 (i.e. 〈γ ⊗b, γ ′⊗b′〉 = 0 for γ ⊗b ∈ H i
z (B)⊗RBz

and γ ′ ⊗ b′ ∈ H−i
z′
(B)⊗R Bz′ if z 6= z′). Applying (2.1) again we conclude that (2.11) is

completely determined by the non-degenerate bilinear pairing on the vector spaces

H i
z (B)×H

−i
z (B)→ R (2.12)

for all z ∈ W . To be precise, given v ∈ H i
z (B) and v′ ∈ H−iz (B), this pairing (2.12) is

defined so that, for all b, b′ ∈ Bz, one has

〈v ⊗ b, v′ ⊗ b′〉 = 〈v, v′〉〈b, b′〉. (2.13)

The left hand side is (a summand of) the pairing in (2.11) between H i(B) and H−i(B),
and the right hand side is the pairing in (2.12) multiplied by the intersection form on Bz.

Reassembling this data, we conclude that 〈−,−〉 descends to a symmetric non-degen-
erate form

〈−,−〉 : grB × grB → R.

and that this form is determined by the symmetric non-degenerate graded bilinear forms

〈−,−〉 : H •z (B)×H
•
z (B)→ R

on multiplicity spaces for all z ∈ W .
Here is another important triviality:
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Lemma 2.11. Let B = BS(x) be a Bott–Samelson bimodule associated to a reduced
expression x for an element x ∈ W , polarized with respect to its intersecton form. The
summand Bx appears with multiplicity 1 having no grading shift, so that H •x (B) = R in
degree 0. Up to a positive scalar, the form H 0

x (B) × H
0
x (B) → R is just the standard

form, with 〈1, 1〉 = 1.

Proof. This follows immediately from (2.13), because the intersection form on BS(x)
restricts to a positive multiple of the intersection form on Bx (see Remark 2.7). ut

3. Relative hard Lefschetz and Hodge–Riemann

3.1. Statement

We fix once and for all a dominant regular ρ ∈ h∗, that is, an element such that
〈ρ, α∨s 〉 ≥ 0 for all s ∈ S.

Let x := (x1, . . . , xm) be a sequence of elements in W , and fix scalars a :=
(a1, . . . , am−1) ∈ Rm−1. Consider the operator

La : Bx1Bx2 . . . Bxm → Bx1Bx2 . . . Bxm(2),
La = a1Bx1ρBx2 . . . Bxm + a2Bx1Bx2ρ . . . Bxm + · · · + am−1Bx1Bx2 . . . ρBxm .

In words, La is the sum of the operators of multiplication by aiρ in the gap between Bxi
and Bxi+1 .

We have explained that to any z ∈ W we may associate a graded vector space

V • := H •z (Bx1 . . . Bxm)

equipped with

(1) a symmetric graded non-degenerate form 〈−,−〉V • obtained from the intersection
form on Bx1 . . . Bxm ;

(2) a degree 2 Lefschetz operator La : V
•
→ V •+2 obtained by taking perverse coho-

mology of La.

Remark 3.1. The operator La involves only internal multiplication by polynomials. One
could also consider the Lefschetz operator La + a0ρ · (−) + am(−) · ρ which includes
multiplication on the left and right. However, as observed in Lemma 2.5, left and right
multiplication by polynomials act trivially on perverse cohomology, so this does not affect
the degree 2 operator on V •.

We say that La satisfies relative hard Lefschetz if for any d ≥ 0, La induces an isomor-
phism

Lda : V
−d ∼
−→ V d .

We say that La satisfies relative Hodge–Riemann if La satisfies relative hard Lefschetz
and the restriction of the Lefschetz form (v, v′) := 〈v, Ldav

′
〉V • on V −d to

P−d := kerLd+1
a : V −d → V d+2
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is (−1)ε(x,z,d)-definite for all d ≥ 0, where

ε(x, z, d) :=
1
2

( m∑
i=1

`(xi)− `(z)− d
)
.

Note that relative hard Lefschetz and relative Hodge–Riemann are both statements
about H •z which are required to hold for all z ∈ W .

Remark 3.2. The sign (−1)ε(x,z,d) might appear mysterious. The following is a useful
mnemonic. Set B := Bx1 . . . Bxm and consider the finite-dimensional graded vector space

B := B ⊗R R.

We have a non-canonical isomomorphism

B ∼=
⊕
z∈W

H •z (B)⊗ Bz.

Now ε(x, z, d) has the following meaning: it is half the difference between the smallest
non-zero degree in H−dz (B) ⊗R B

−`(z)

z on the right hand side (i.e. −`(z) − d) and the
smallest non-zero degree in B (i.e. −

∑
`(xi)). In this way one may see that the above

definition is compatible with the signs predicted by Hodge theory in the geometric setting
(see [dCM05, Theorem 2.1.8] and [Wil17, Theorem 3.12], where the signs are made
explicit).

Remark 3.3. One important reason to fix the signs globally is that it makes the statement
of relative Hodge–Riemann compatible under direct sums. Let x := (x1, . . . , xm) and
x′ := (x′1, . . . , x

′
m) be two sequences inW of the same lengthm, and let B = Bx1 . . . Bxm

and B ′ = Bx′1 . . . Bx′m . Define V • and (V ′)• as above, for some z ∈ W , and equip them
with their respective Lefschetz operators La for the same sequence a. Clearly then La
acting on the direct sum (V ⊕ V ′)• will satisfy hard Lefschetz. As long as

∑
`(xi) and∑

`(x′i) have the same parity, we have ε(x, z, d) = ε(x′, z, d) for all d ≥ 0, and the signs
on the primitive subspaces of V • and (V ′)• will agree. Thus La acting on (V ⊕ V ′)•

will satisfy the Hodge–Riemann bilinear relations, i.e. the Lefschetz form on primitives
is definite with the expected sign.

For x1, . . . , xm ∈ W as above we introduce the following abbreviations:

RHL(x1, . . . , xm): La satisfies relative hard Lefschetz

for all a := (a1, . . . , am−1) ∈ Rm−1
>0 ;

RHR(x1, . . . , xm): La satisfies relative Hodge–Riemann

for all a := (a1, . . . , am−1) ∈ Rm−1
>0 .

As always, it is implicitly assumed in these statements that all tensor products of the form
Bx1 . . . Bxm are equipped with their intersection form.

The main theorem of this paper is:

Theorem 3.4. For any x, y ∈ W , RHR(x, y) holds.
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3.2. A conjecture

Conjecture 3.5. For any x1, . . . , xm ∈ W , RHR(x1, . . . , xm) holds.

More generally, relative Hodge–Riemann should hold for any operator of the form

Bx1ρ1Bx2 . . . Bxm + Bx2Bx2ρ2 . . . Bxm + · · · + Bx1Bx2 . . . ρm−1Bxm ,

where ρ1, . . . , ρm−1 is any sequence of dominant regular elements. (Such elements span
the cone of relatively ample classes in the Weyl group case.) For the conjecture above,
one sets ρi = aiρ.

3.3. Base cases

Lemma 3.6. RHL(x) and RHR(x) hold, for any x ∈ W .

Proof. The only non-vanishing H •z (Bx) occurs when z = x, and this multiplicity space
is concentrated in degree 0. Thus RHL(x) is trivial, and RHR(x) is equivalent to the
statement that the form H 0

x (Bx) × H
0
x (Bx) → R is positive definite, which holds by

Lemma 2.11. ut

Lemma 3.7. If RHL(x1, . . . , xm) holds, then so does RHL(x1, . . . , xm, id) and
RHL(id, x1, . . . , xm). The same statement can be made for RHR.

Proof. Let us compare RHL(x1, . . . , xm) and RHL(x1, . . . , xm, id). Because B =

Bx1 . . . Bxm and B ′ = Bx1 . . . BxmBid are canonically isomorphic, the multiplicity spaces
H •z (B)

∼= H •z (B
′) being studied are the same. If a = (a1, . . . , am−1) and a′ =

(a1, . . . , am−1, am), then under the isomorphism B ∼= B ′ we have La′ = La + amBρ.
That is, the difference between the Lefschetz operators in question is right multiplication
by amρ, which acts trivially on perverse cohomology (see Lemma 2.5 and Remark 3.1).
Thus the induced Lefschetz operators on H •z (B) and H •z (B

′) are the same. ut

To warm up, we consider the first interesting case: x1 = x and x2 = s for s ∈ S. This splits
into two subcases: xs < x and xs > x. Suppose that xs > x. Then BxBs is perverse, and
so each H •z (BxBs) is concentrated in degree 0 and RHL(x, s) holds automatically. In this
case RHR(x, s) is equivalent to Lemma 2.10.

Suppose now that xs < x. Then BxBs ∼= Bx(+1)⊕Bx(−1). The action of BxρBs on
the multiplicity spaces H •x (BxBs) is independent of x (see Lemma 4.15 below), and can
be computed when x = s, where it is a simple exercise. (We have been brief here because
this computation, expanded upon and in further generality, comprises the bulk of §4.2.)

3.4. Structure of the proof

Let us outline the major steps in the proof of Theorem 3.4, which will be carried out in
the rest of this paper. The proof is by induction on `(x) + `(y) and then on `(y). More
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precisely, for integers M and N , consider the statements:

XM,N : RHR(x′, y′) holds whenever either

(1) `(x′)+ `(y′) < M , or

(2) `(x′)+ `(y′) = M and `(y′) ≤ N;

YM,N : RHR(x′, s, y′) holds, for all s ∈ S, whenever either

(1) `(x′)+ `(y′)+ 1 < M , or

(2) `(x′)+ `(y′)+ 1 = M and `(y′) ≤ N .

(So M always bounds the length of the sequence, and N bounds the length of the final
factor.) Let us writeXM,− for the statement thatXM,N holds for allN ≥ 0, and similarly
for YM,−.

Certain implications are obvious. For example, XM,M implies XM,−. Also, XM,0 is
equivalent to XM−1,−, because the only element with `(y′) = 0 is y′ = id (see Lem-
mas 3.6 and 3.7). Similarly, YM,M−1 implies YM,−, and YM,0 is equivalent to YM−1,−
together with XM,1.

Suppose we knew XM−1,− and YM−1,−. Then we can deduce XM,0. The warm-up
case sketched above, where y = s, will prove that XM,0 implies XM,1. Then XM,1 to-
gether with YM−1,− imply YM,0. To continue the induction, let us fix M > N ≥ 1. Our
goal is to show that XM,N and YM,N−1 together imply XM,N+1 and YM,N . From this we
inductively deduce XM,M and YM,M−1, which yields XM,− and YM,−.

To reiterate, going forth let us fix M > N ≥ 1. We now outline why XM,N and
YM,N−1 together imply XM,N+1 and YM,N .

Let x, y ∈ W be such that `(x)+ `(y) = M and `(y) = N + 1. By a weak Lefschetz
style argument (Proposition 4.7)

RHR(<x, y)+ RHR(x,<y)⇒ RHL(x, y). (3.1)

Let us fix s ∈ S with sy < y and set ẏ := sy. Again weak Lefschetz style arguments
yield (Proposition 4.9)

RHR(<x, s, ẏ)+ RHR(x, s,<ẏ)⇒ RHL(x, s, ẏ). (3.2)

We now distinguish two cases. If xs > x then an easy limit argument (Proposition
4.11) gives

RHR(≤xs, ẏ)+ RHL(x, s, ẏ)⇒ RHR(x, s, ẏ). (3.3)

If xs < x then a more complicated limit argument (Proposition 4.13) allows us to
reach essentially the same conclusion:

RHR(x, ẏ)+ RHL(x, s, ẏ)⇒ RHR(x, s, ẏ). (3.4)

Another limit argument (Proposition 4.12) yields

RHR(x, s, ẏ)+ RHL(x,≤y)⇒ RHR(x, y). (3.5)

Thus assuming XM,N and YM,N−1 we have concluded that XM,N+1 holds.
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Finally, if x, y ∈ W and t ∈ S is such that `(x)+ `(y)+ 1 = M and `(y) = N then
as in (3.2) we deduce

RHR(<x, t, y)+ RHR(x, t,<y)⇒ RHL(x, t, y). (3.6)

If xt < x then we have

RHR(x, y)+ RHL(x, t, y)⇒ RHR(x, t, y). (3.7)

If xt > x then

RHR(≤xt, y)+ RHL(x, t, y)⇒ HR(x, t, y).

Thus assuming XM,N and YM,N−1 we have deduced that YM,N holds.
Putting these two steps together we deduce

XM,N + YM,N−1 ⇒ XM,N+1 + YM,N .

We conclude by induction that XM,−, YM,− hold for all M . This reduces the proof of the
theorem to the propositions listed above.

4. The proof

4.1. Hodge–Riemann implies hard Lefschetz

In [EW14] it was observed that homological algebra in the homotopy category of Soergel
bimodules can be used to imitate the weak Lefschetz theorem. This is the key step to
deduce the hard Lefschetz theorem by induction. In this section we show that the same
idea is useful for studying relative hard Lefschetz.

Recall that B denotes the category of Soergel bimodules. Let

K := Kb(B)

denote its bounded homotopy category. As in [EW14, §6.1] we denote the cohomological
degree of an object by an upper left index, so as not to get confused with the grading.
Thus, an object in K is a complex

· · · →
iF → i+1F → · · ·

with each iF in B. We denote by (K≤0,K≥0) the perverse t-structure on K (see [EW14,
§6.3]).

Lemma 4.1. Let F = (0→ 0F
d0
→

1F → · · · ) be a complex supported in non-negative
homological degrees, and suppose that F ∈ K≥0. Then the induced map

d0 : H
i(0F)→ H i(1F)

is split injective for all i < 0.
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Proof. Because F ∈ K≥0, by definition we can find an isomorphism of complexes

F ∼= Fp ⊕ Fc

with Fc contractible and Fp such that H i(jFp) = 0 if i < −j . Only the summand Fc
contributes to H i(0F) for i < 0, but the first differential in a contractible complex is a
split injection. ut

Given any x ∈ W we denote by

Fx = (· · · →
−1Fx = 0→ 0Fx = Bx →

1Fx → · · · )

a fixed choice of minimal complex for the Rouquier complex (unique up to isomorphism;
see [EW14, §6.4]). The following lemma shows that tensor product with Fx is left t-exact.

Lemma 4.2. For any x ∈ W , (K≥0)Fx ⊂ K
≥0 and Fx(K≥0) ⊂ K≥0.

Proof. Because Fx is a tensor product of various Fs , s ∈ S, it is enough to prove the
lemma for x = s. That (−) ⊗ Fs preserves K≥0 is proven in [EW14, Lemma 6.6];
the proof deduces the general statement from [EW14, Lemma 6.5], which states that
BxFs ∈ K

≥0 for all x ∈ W and s ∈ S. The same proof shows that FsBx ∈ K≥0, and
consequently that Fs ⊗ (−) preserves K≥0. ut

The following proposition is fundamental for what follows. (In rough form it appears first
in [EW14] as Theorem 6.9, Lemma 6.15 and Theorem 6.21.)

Proposition 4.3. For any x there exists a map dx : Bx → F(1) between positively
polarized Soergel bimodules such that

(1) all summands of F are isomorphic to Bz with z < x, such that `(z) and `(x) − 1
have the same parity;

(2) dx is isomorphic to the first differential on a Rouquier complex;
(3) if d∗x : F → Bx(1) denotes the adjoint of d, then

d∗x ◦ dx = Bxρ − (xρ)Bx .

Proof. Except for part (2) and the parity assumption in part (1), this proposition is [Wil16,
Proposition 7.14]. However, the reader may easily check that the inductive proof of
[Wil16, Proposition 7.14] goes through if one adds these assumptions to the induction.
(Indeed, the proof mimics tensoring with a complex isomorphic to the Rouquier com-
plex Fs to carry out the induction.) ut

Exchanging left and right actions gives

Proposition 4.4. For any y there exists a map dy : By → G(1) between positively
polarized Soergel bimodules such that

(1) all summands ofG are isomorphic to Bz with z < y such that `(z) and `(y)− 1 have
the same parity;

(2) dy is isomorphic to the first differential on a Rouquier complex;
(3) if d∗y : G→ By(1) denotes the adjoint of d , then

d∗y ◦ dy = ρBy − By(y
−1ρ).
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Putting these three statements together gives

Proposition 4.5. Consider the map

f :=

(
dxBy
Bxdy

)
: BxBy → E(1) := FBy(1)⊕ BxG(1).

Here, dx and F are as in Proposition 4.3, and dy and G are as in Proposition 4.4. Then

(1) the induced map f : H i(BxBy)→ H i+1(E) is split injective for i < 0;
(2) if f ∗ : E→ BxBy(1) denotes the adjoint of f then

f ∗ ◦ f = Bx(2ρ)By − x(ρ)BxBy − BxBy(y−1ρ).

Proof. The first claim follows by noticing that f is isomorphic to the first differential on
a Rouquier complex representing

FxFy ∼= (Bx → F(1)→ · · · )(By → G(1)→ · · · ).

Because FxFy ∈ K≥0 by Lemma 4.2, the first claim follows from Lemma 4.1.
The adjoint of f is given by the matrix (d∗xBy Bxd

∗
y ) and hence

f ∗ ◦ f = (d∗x ◦ dx)By + Bx(d
∗
y ◦ dy) = Bx(2ρ)By − x(ρ)BxBy − BxBy(y

−1ρ),

which is the second claim in the lemma. ut

Similarly we have

Proposition 4.6. Fix a, b > 0 and consider the map

ga,b :=

(√
a · dxBsBy√
b · BxBsdy

)
: BxBsBy → E(1) := FBsBy(1)⊕ BxBsG(1).

Then

(1) the induced map ga,b : H i(BxBsBy)→ H i+1(E) is split injective for i < 0;
(2) if g∗a,b : E→ BxBy(1) denotes the adjoint of ga,b then

g∗a,b ◦ ga,b = aBx(ρ)BsBy + bBxBs(ρ)By − a(xρ)BxBxBy − bBxBy(y
−1ρ).

Proof. The argument for (2) is the same as for the previous proposition.
It remains to show (1). Note that ga,b is the first differential on a complex representing

FxBsFy ∼= (Bx → E(1)→ · · · )Bs(By → F(1)→ · · · ),

and so FxBsFy ∈ K≥0 by Lemma 4.2. Now (1) follows from Lemma 4.1. ut

The following two propositions explain the title of this section.

Proposition 4.7. Fix x, y ∈ W and suppose RHR(x′, y) and RHR(x, y′) hold for all
x′ < x, y′ < y. Then RHL(x, y) holds.
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Remark 4.8. This proposition is an instance of the philosophy that HR in dimension
≤ n− 1 implies HL in dimension n.

Proof. Let us keep the notation in the statement of Proposition 4.5. We assume that BxBy
is standardly polarized (see Lemma 2.8 and following) and E is polarized with the in-
duced form. Fix z ∈ W and consider the graded vector spaces

V := H •z (BxBy) and U := H •z (E).

These have operators L : V •→ V •+2 and L : U•→ U•+2 obtained by applyingH •z (−)
to the “middle multiplication” maps

BxBy → BxBy(2) : b1b2 7→ b1ρb2,

E→ E(2) : (b1b2, b3b4) 7→ (b1ρb2, b3ρb4).

Also, the maps f, f ∗ of Proposition 4.5 induce maps (again by taking perverse cohomol-
ogy)

U•
f ∗

→ V •+1 f
→ U•+2.

These maps are morphisms of graded R[L]-modules. We have:

(1) f is injective in degrees < 0, by Proposition 4.5(1).
(2) 〈f (v), f (v′)〉 = 〈v, f ∗(f (v′))〉 = 〈v, 2Lv′〉 for all v, v′ ∈ V •. The first equality

holds because f ∗ is the adjoint of f . The second equality holds by Proposition 4.5(2),
and by Lemma 2.5.

(3) U satisfies the Hodge–Riemann bilinear relations, which we now justify. Recall
that E = FBy ⊕ BxG. Every direct summand of F has the form Bx′ for x′ < x

with `(x′) having the same parity as `(x) − 1. We have assumed RHR(x′, y), which
applies to every direct summand of FBy (since E is given its standard polariza-
tion). Thus H •z (Bx′By) satisfies the Hodge–Riemann bilinear relations for each of
these summands. Moreover, their direct sum H •z (FBy) also satisfies the Hodge–
Riemann bilinear relations by Remark 3.3, since the parity of each tensor product
agrees with `(x) + `(y) − 1. The same argument applies to BxG, with the same
parity `(x)+ `(y)− 1, and thus it also applies to the direct sum H •z (E).

Now we may repeat the proof of [EW14, Lemma 2.3] to deduce that LiV : V
−i
→ V i

is injective and hence is an isomorphism by comparison of dimension. The property
RHL(x, y) follows. ut

Proposition 4.9. Fix x, y ∈ W and s ∈ S and suppose RHR(x′, s, y) and RHR(x, s, y′)
hold for all x′ < x, y′ < y. Then RHL(x, s, y) holds.

Proof. The proof is the same as that of the previous proposition, replacing Proposition 4.5
with Proposition 4.6. ut
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4.2. Signs via limit arguments

In this section we will repeatedly appeal to the principle of conservation of signs, which
states that a continuous family of non-degenerate symmetric forms on a real vector space
has constant signature. The following lemma, which was one of the key techniques used
by de Cataldo and Migliorini in their proof of the Hodge–Riemann bilinear relations in
geometry [dCM02], is an immediate consequence.

Lemma 4.10. Consider a polarized graded vector space and a continuous family of op-
erators Lt parametrized by a connected set. Assume all the operators in the family satisfy
hard Lefschetz. If any member of the family satisfies the Hodge–Riemann bilinear rela-
tions, then they all do.

To spell out this general argument in slightly more detail: one is given a finite-dimensional
graded vector space V • equipped with a non-degenerate graded symmetric form

〈−,−〉 : V • × V •→ R.

A degree 2 Lefschetz operator induces a symmetric form on each V −i for i ∈ Z≥0 via
(v,w) := 〈v, Liw〉, which collectively are non-degenerate if and only if L satisfies hard
Lefschetz. If L does satisfy hard Lefschetz, then L satisfies the Hodge–Riemann bilinear
relations (in the sense of [EW14, §2]) if and only if the signature of the Lefschetz form
on each V −i agrees with a certain formula, which depends only on the graded dimension
of V . From the principle of conservation of signs, one deduces the lemma above. The
applications will become clear immediately.

Proposition 4.11. Suppose x, y ∈ W , s ∈ S and xs > x. Assume RHL(x, s, y) and
RHR(≤xs, y). Then RHR(x, s, y) holds.

Proof. For a, b ∈ R, consider the Lefschetz operator

La,b := Bx(aρ)BsBy + BxBs(bρ)By : BxBsBy → BxBsBy(2).

Recall that HR(x, s, y) means that La,b induces an operator on H •z (BxBsBy) which sat-
isfies hard Lefschetz and Hodge–Riemann, for any a > 0, b > 0.

However BxBs is perverse, and by RHR(x, s) (see Lemma 2.10 above) the restriction

of the intersection form on BxBs to each summand Bz
⊕
⊆ BxBs is a multiple of the

intersection form on Bz with sign (−1)(`(x)+1−`(z))/2. By RHR(≤xs, y), L0,b satisfies
relative Hodge–Riemann on BxBsBy for any b > 0 (it is an exercise to confirm that the
signs are correct). Thus La,b satisfies relative hard Lefschetz for all a ≥ 0 and b > 0
and satisfies relative Hodge–Riemann for a = 0, b > 0. We can now appeal to the
principle of conservation of signs to conclude that relative Hodge–Riemann is satisfied
for all a ≥ 0, b > 0. Thus RHR(x, s, y) holds. ut

The previous proof uses the special case a = 0, b > 0 to deduce the general case a > 0,
b > 0. Here we go the other way:
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Proposition 4.12. Suppose x, y ∈ W , s ∈ S and that sy > y. Assume RHR(x, s, y) and
RHL(x,≤sy). Then RHR(x, sy) holds.

Proof. Let La,b denote the Lefschetz operator considered in the previous proof. By our
assumptions, La,b satisfies Hodge–Riemann for a > 0, b > 0 and hard Lefschetz for
a > 0, b = 0. By the principle of conservation of signs, Hodge–Riemann is also satisfied
for a > 0, b = 0. Now BxBsy is a summand of BxBsBy and the intersection form on
BxBsBy restricts to a positive multiple of the intersection form on BxBsy . We conclude10

that La,0 satisfies Hodge–Riemann on BxBsy , which is what we wanted. ut

Proposition 4.13. Let x, y ∈ W and s ∈ S be such that xs < x. Assume HL(x, s, y) and
HR(x, y). Then HR(x, s, y) holds.

The proof of Proposition 4.13 is more complicated than that of Proposition 4.11, and will
occupy the rest of this section. Here is a sketch of our approach. We fix a decomposition
BxBs = Bx(1)⊕Bx(−1) and explicitly calculate the Lefschetz operator and forms in the
decomposition

BxBsBy = BxBy(1)⊕ BxBy(−1)
in terms of the corresponding operators on BxBy . Appealing to RHR(x, y) we will see
that the signs are correct for b � a > 0. By the principle of conservation of signs (which
is applicable by our RHL(x, s, y) assumption) we deduce that RHR(x, s, y) holds, which
is what we wanted to show.

For simplicity we assume ρ(α∨s ) = 1 for all s ∈ S.

Lemma 4.14. The map r 7→ (∂s(−rs(ρ)), ρ∂s(r)) gives an isomorphism

R = Rs ⊕ ρRs (4.1)

of Rs-bimodules.

Proof. R is free as an Rs-module with basis {1, γ } where γ ∈ R2 is any degree 2 ele-
ment which is not s-invariant. In particular we can take γ = ρ. Under the map as in the
statement of the lemma we have

1 7→ (∂s(−sρ), ρ∂s(1)) = (1, 0),
ρ 7→ (∂s(−ρs(ρ)), ρ∂s(ρ) = (0, ρ),

and so our map sends a basis to a basis, and the lemma follows. ut

By [Wil11, Proposition 7.4.3] there exists an (R,Rs)-bimodule Bsx (a “singular Soergel
bimodule”) and a canonical isomorphism

Bsx ⊗Rs R = Bx . (4.2)

Our choice of isomorphism (4.1) yields a decomposition

BxBs = B
s
x ⊗Rs R ⊗Rs R(1) = Bx(1)⊕ Bx(−1). (4.3)

Now consider the endomorphism BxρBs : BxBs → BxBs(2).

10 We are using the fact that relative Hodge–Riemann is preserved under taking polarized direct
summands. See [Wil16, Lemma 4.5] for a related situation.
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Lemma 4.15. With respect to the decomposition (4.3) the degree 2 endomorphism
BxρBs is given by the matrix(

0 Bx(−ρ(sρ))

Bx Bx(ρ + sρ)

)
: Bx(1)⊕ Bx(−1)→ Bx(3)⊕ Bx(1). (4.4)

Proof. We identify Bx with Bsx ⊗Rs R, and write an element of it as b ⊗ f for b ∈ Bsx
and f ∈ R. Similarly, we identify BxBs with Bsx ⊗Rs R ⊗Rs R(1).

Consider an element of the form b ⊗ 1 ∈ Bx . We calculate the action of BxρBs on
the summand Bx(1):

Bx(1)
(4.2)
↪−→ BxBs

BxρBs
−−−→ BxBs

(4.2)
−−→ Bx(1)⊕ Bx(−1),

b ⊗ 1 7→ b ⊗ 1⊗ 1 7→ b ⊗ ρ ⊗ 1.

Similarly we calculate the action on the summand Bx(−1):

Bx(−1)
(4.3)
↪−→ BxBs

BxρBs
−−−→ BxBs

(4.3)
−−→ Bx(1)⊕ Bx(−1),

b ⊗ 1 7→ b ⊗ ρ ⊗ 1 7→ b ⊗ ρ2
⊗ 1 7→ (b ⊗ (−ρs(ρ)), b ⊗ (ρ + sρ)).

The lemma follows. ut

Lemma 4.16. The singular Soergel bimodule Bsx admits a unique invariant form

〈−,−〉Bsx : B
s
x × B

s
x → Rs

such that 〈−,−〉 ⊗Rs R agrees with the intersection form under the identification (4.2).

Here and in the following proof, an invariant form on an (R,Rs)-bimodule means a
graded bilinear form 〈−,−〉 : Bsx × B

s
x → Rs which satisfies 〈rb, b′〉 = 〈b, rb′〉 and

〈br ′, b′〉 = 〈b, b′r ′〉 = 〈b, b′〉r ′ for all b, b′ ∈ Bsx , r ∈ R, r ′ ∈ Rs .

Proof of Lemma 4.16. Let sBx−1 denote the (Rs, R)-bimodule obtained from Bsx by
interchanging left and right actions. Then sBx−1 agrees with the indecomposable sin-
gular Soergel bimodule parametrized by the coset of x−1 in 〈s〉 \ W , as described in
[Wil11, Theorem 7.4.2]. Soergel’s conjecture and [Wil11, Theorem 7.4.1] imply that
Hom(sBx−1 ,D(sBx−1)) is one-dimensional. (We denote by D the duality functor on sin-
gular Soergel bimodules defined in [Wil11, §6.3].) We can regard elements in this Hom
space as maps Bsx → Hom−Rs (Bsx, R

s) and hence as invariant forms

〈−,−〉 : Bsx × B
s
x → Rs .

We conclude that Bsx admits an invariant form which is unique up to scalar. Given any
such form 〈−,−〉, 〈−,−〉 ⊗Rs R is a non-degenerate form on Bx , and hence agrees with
the intersection form on Bx up to scalar. The lemma follows. ut

Our fixed decomposition (4.3) gives the basic identification

BxBsBy = BxBy(1)⊕ BxBy(−1). (4.5)

The following is immediate from the definitions:
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Lemma 4.17. Under (4.5) the invariant form is given by

〈(b1, b2), (b
′

1, b
′

2)〉 = 〈b1, b
′

2〉 + 〈b2, b
′

1〉 + 〈ρb2, b
′

2〉.

We now put the above calculations together. Until the end of the section let us in addition
fix z ∈ W and set

V • := H •z (BxBy).

Then V • is equipped with a symmetric form 〈−,−〉V • and a Lefschetz operator L :
V • → V •+2. This data satisfies Hodge–Riemann, by our assumption HR(x, y). Our
identification (4.5) fixes an isomorphism

H •z (BxBsBy) = V
•(1)⊕ V •(−1). (4.6)

Proposition 4.18. Under the identification (4.6):

(1) The invariant form is given by

〈(v1, v2), (v
′

1, v
′

2)〉 = 〈v1, v
′

2〉 + 〈v2, v
′

1〉 + 〈Lv2, v
′

2〉 (4.7)

for v1, v
′

1 ∈ V
•(1) and v2, v

′

2 ∈ V
•(−1).

(2) The operator induced by La,b := Bx(aρ)BsBy + BxBs(bρ)By is given by

a

(
0 X

id Y

)
+ b

(
L 0
0 L

)
(4.8)

for certain (unspecified) maps X : V (−1)→ V (1) and Y : V (−1)→ V (−1).

Proof. (1) (resp. (2)) is an immediate consequence of Lemma 4.17 (resp. Lemma 4.15).
ut

Proposition 4.19. Assume HR(x, y). Then for b � a > 0 the operator La,b satisfies HR
on V •(1)⊕ V •(−1).

Proof. We roll up our sleeves and calculate everything in a basis.
Fix a degree−d ≤ 0. By [EW14, Lemma 5.2] it is enough to show that for b � a > 0

the signature of the Lefschetz form on the degree −d piece of V •(1)⊕ V •(−1) is equal
to the signature of the Lefschetz form on the primitive subspace

P−d+1
:= kerLd : V −d+1

→ V d+1.

To this end let us fix bases

x1, . . . , xm for V −d−1, p1, . . . , pn for P−d+1.

Because L satisfies hard Lefschetz on V we deduce that

Lx1, . . . , Lxm, p1, . . . , pn is a basis for V −d+1.

Thus a basis for (V •(1)⊕ V •(−1))d = V d+1
⊕ V d−1 is given by

(0, x1), . . . , (0, xm), (Lx1, 0), . . . , (Lxm, 0), (p1, 0), . . . , (pn, 0).
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Let us write
La,b = aA+ bB

where

A =

(
0 X

id Y

)
and B =

(
L 0
0 L

)
are the matrices appearing in Proposition 4.8. We calculate the leading terms of the Lef-
schetz form (v,w) 7→ 〈v, Lda,bw〉 in the above basis with respect to the parameter b. We
have

〈(0, xi), Lda,b(0, xj )〉 = b
d
〈Lxi, L

dxj 〉V •+O(b
d−1) = bd〈xi, L

d+1xj 〉V •+O(b
d−1),

〈(Lxi, 0), Lda,b(0, xj )〉 = b
d
〈Lxi, L

dxj 〉V •+O(b
d−1) = bd〈xi, L

d+1xj 〉V •+O(b
d−1),

〈(Lxi, 0), Lda,b(Lxi, 0)〉 = bd〈(Lxi, 0), (Ld+1xi, 0)〉+O(bd−1) = O(bd−1)

where O(bk) denotes a polynomial in b and a in which all powers of b are bounded by k.
Using Ldpi = 0 we have

〈(0, xi), Lda,b(pi, 0)〉 = dabd−1
〈Lxi, L

d−1pi〉 +O(b
d−2) = O(bd−2),

〈(Lxi, 0), Lda,b(pi, 0)〉 = dabd−1
〈Lxi, L

d−1pi〉 +O(b
d−2) = O(bd−2),

〈(pi, 0), Lda,b(pi, 0)〉 = dabd−1
〈pi, L

d−1pi〉 +O(b
d−2).

Thus if we define matrices

R := (〈xi, L
dxj 〉)1≤i,j≤m and Q := (〈pi, L

dpj 〉)1≤i,j≤n

then we can write the Gram matrix of the Lefschetz form (v,w) 7→ 〈v, Lda,bw〉 as a block
matrix with entriesbdR +O(bd−1) bdR +O(bd−1) O(bd−2)

bdR +O(bd−1) O(bd−1) O(bd−2)

O(bd−2) O(bd−2) dabd−1Q+O(bd−2)

 .
For b � a > 0 this matrix has the same signature as the matrixR R 0

R 0 0
0 0 Q

 .
Now the submatrix

(
R R
R 0

)
is easily seen to be non-degenerate with signature 0. Thus for

b � a > 0 our matrix has the same signature as Q. We have already remarked that by
[EW14, Lemma 5.2] this is what we wanted to know. ut

Thus Proposition 4.13 holds (see the remarks immediately after the statement of the
proposition).

5. Ridigity

We briefly recall Lusztig’s notion of two-sided cells and the a-function, in the language
of Soergel bimodules; for more details see [Lus14]. There is a preorder≤LR onW , where
z ≤LR x if and only if there exist some y, y′ ∈ W for which some shift of Bz is a direct
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summand of ByBxBy′ . The equivalence classes under this preorder are called two-sided
cells. For z ∈ W one defines a(z) to be the maximal integer k (or equivalently, −a(z) is
the minimal integer k) such that Bz(k) is a direct summand of BxBy for any x, y ∈ W .
It is a non-trivial fact (a consequence of Soergel’s conjecture) that the a-function is well
defined for any Coxeter group [Lus15, §10.1]. A theorem of Lusztig guarantees that the
a-function is constant on two-sided cells.

Fix a two-sided cell c ⊂ W and let a be its a-value and J =
⊕

x∈c Zjx the J -ring
associated to c (J is denoted J c in [Lus14, §18.3]). Following Lusztig [Lus15, §10], we
define a semisimple monoidal category J (J is denoted Cc in [Lus14, §18.5]), which
categorifies J .

We first consider the full subcategory B≤c ⊂ B, consisting of all direct sums of shifts
of Bz with z ≤LR c. By definition of ≤LR , B≤c is closed under tensor products with
arbitrary objects of B, and thus inherits a monoidal structure (without unit). One can
define B<c similarly.

Let Ic denote the tensor ideal in B consisting of all morphisms which factor through
objects in B<c. Thus the quotient of additive categories B′c := B/Ic inherits the structure
of a graded additive monoidal category. We denote the image of Bx in B′c by Bc

x . We
set Bc to be the full graded additive subcategory generated by Bc

x with x ∈ c; in other
words, it is the image of B≤c inside B/Ic. The objects Bc

x(m) with x ∈ W and x 6< c
(resp. x ∈ c) give representatives for the isomorphism classes of indecomposable objects
in B′c (resp. Bc). Moreover Bc is a graded additive monoidal category (without unit unless
c = {id}).

The (obvious analogues of the) crucial vanishing statements (2.1) and (2.2) still hold
in B′c and Bc, and hence the perverse filtration and perverse cohomology functors descend
to B′c and Bc. We denote them by the same symbols. It is immediate from the definition
of the a-function that, for all x, y ∈ c,

H i(Bc
xB

c
y) = 0 if |i| > a. (5.1)

Remark 5.1. Note that the tensor product BxBy in B might have objects Bz(k) with
|k| > a as direct summands, but only for z < c, not for z ∈ c (as follows from the
definition of a). Thus (5.1) only holds in Bc, not in B. Similarly, (2.2) implies that

HomBc(B
c
x, H

−a(Bc
yB

c
z ))
∼= HomBc(B

c
x, B

c
yB

c
z (−a)) (5.2)

canonically, for any x, y, z ∈ c. The analogous statement in B is false.

We now come to the definition of J . It is a full subcategory of Bc, although with a
different monoidal structure. The objects of J are given by direct sums (without shifts)
of Bc

x with x ∈ c, and thus by (2.1) the category is semisimple. The monoidal product is
given by

B ∗ B ′ := H−a(BB ′) ∈ Bc

(the lowest potentially non-zero degree, by (5.1)). Lusztig proves that J is a semisimple
monoidal category (this result relies in an essential way on [EW14]), and that the map
jx → [B

c
x] induces an isomorphism J

∼
−→ [J ], where [J ] denotes the Grothendieck

group of J .
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Remark 5.2. The reader is warned that in general J is a “monoidal category without
unit”, i.e. it has an associator but no unit. In general, Lusztig conjectures [Lus14, §13.4]
that the a-function is bounded (i.e. a(z) ≤ N for all z ∈ W and some fixed constant N ,
which he describes explicitly). This boundedness is known to hold for finite and affine
Weyl groups. Under the assumption of this conjecture, it turns out that J has a unit if and
only if c contains finitely many left cells (as is always the case in finite and affine type). In
this case Lusztig proves [Lus14, §18.5] that the object

⊕
x∈D∩c B

c
x is a unit for J (here

D ⊂ W denotes the set of distinguished involutions). When c contains infinitely many
left cells, J is still “locally unital” (under the same boundedness assumption). For any
given object B ∈ J , only finitely many Bc

x with x ∈ D ∩ c satisfy Bc
x ∗ B 6= 0. The

formal direct sum
⊕

x∈D∩c B
c
x , while not an object in J when D ∩ c is infinite, acts on

any object, and it will act as a monoidal identity would.

Our aim in this section is to show that the relative hard Lefschetz theorem for Soergel
bimodules implies

Theorem 5.3. J is a rigid, pivotal monoidal category.

Remark 5.4. For finite and affine Weyl groups the rigidity of J has been proved by
Bezrukavnikov, Finkelberg and Ostrik [BFO09, §4.3] (using the geometric Satake equiv-
alence). Lusztig has also proven rigidity for Weyl groups (see [Lus15, §9.3] and [Lus14,
§18.19]). His techniques probably extend to crystallographic Coxeter groups. Lusztig also
conjectured the rigidity to hold for any finite Coxeter group [Lus15, §10], in which case
he expects the Drinfeld center Z(J ) to be related to the “unipotent characters” ofW . Os-
trik has informed us that for the interesting case of the two-sided cell inH4 with a-value 6,
he has been able to verify the rigidity of J by other means.

Remark 5.5. As we will see, the pivotal structure on J will depend on our fixed choice
of regular dominant element ρ ∈ h∗. We do not know if the structure varies in an interest-
ing way with ρ. It is possible that the Hodge–Riemann relations might allow one to show
that J is unitary, and hope to address this question in future work.

Because J does not have a unit in general the standard definition of rigidity does not make
sense. We will prove the following (which is equivalent to the usual notion of rigidity if
J has a unit, see Remark 5.8 below):

Proposition 5.6. There exists a contravariant functor B 7→ B∨ on J which satisfies the
following properties:

(1) For B,X, Y ∈ J we have canonical isomorphisms

HomJ (X,B ∗ Y )
φX,Y
−−→ HomJ (B

∨
∗X, Y ),

HomJ (X, Y ∗ B)
χX,Y
−−→ HomJ (X ∗ B

∨, Y )

functorial in X and Y .



2578 Ben Elias, Geordie Williamson

(2) For B,X, Y,Z ∈ J the following diagrams commute:

HomJ (X,B ∗ Y )

HomJ (B∨ ∗X, Y )

HomJ (X ∗ Z,B ∗ Y ∗ Z)

HomJ (B∨ ∗X ∗ Z, Y ∗ Z)

φX,Y φX∗Z,Y∗Z

(−) ∗ Z

(−) ∗ Z

(5.3)

HomJ (X, Y ∗ B)

HomJ (X ∗ B∨, Y )

HomJ (Z ∗X,Z ∗ Y ∗ B)

HomJ (Z ∗X ∗ B∨, Z ∗ Y )

χX,Y χZ∗X,Z∗Y

Z ∗ (−)

Z ∗ (−)

(5.4)

(3) We have a canonical isomorphism B
∼
−→ (B∨)∨.

We make some remarks before turning to the proof. It is easy to see that Bs ∈ B is self-
dual (this is immediate in the language of [EW16], where the cup and cap maps provide
the unit and counit). Note also that if M and N are rigid (i.e. if M∨ and N∨ exist) then
one has (MN)∨ = N∨M∨. It follows that any Bott–Samelson module is rigid. Hence B
is rigid (taking the Karoubi envelope preserves rigidity). Let us denote by B 7→ B∨ the
duality on B. It is easy to see that this structure is even pivotal (i.e. we have a canonical
isomorphism B

∼
−→ (B∨)∨). Note also that B∨x ∼= Bx−1 canonically, and thus (−)∨

preserves two-sided cells, and B≤c is also a rigid, pivotal monoidal category.
As quotients of a rigid, pivotal monoidal category, the monoidal categories Bc and B′c

are rigid and pivotal. We abuse notation and also denote the duality on Bc by B 7→ B∨.

Proof of Proposition 5.6. Note that (Bc
x)
∨ ∼= Bc

x−1 , so the objects of J are closed under
the duality of Bc. Let us show that this definition of (−)∨ satisfies the desired conditions:
(3) is immediate, it remains to check (1) and (2).

We first establish (1). We will construct the isomorphism φX,Y , as the construction of
χX,Y is similar. LetX, Y,B ∈ J . We have canonical identifications (by definition and the
analogue for Bc of (2.4))

HomJ (X,B ∗ Y ) = HomBc(X,H
−a(BY )) = HomBc(X,BY(−a))

= HomBc(B
∨X, Y (−a)) = HomBc(H

a(B∨X), Y ).

Precomposing with the isomorphism H−a(B∨X)
∼
−→ H a(B∨X) given by relative hard

Lefschetz gives an isomorphism

HomBc(H
a(B∨X), Y )

∼
−→ HomBc(H

−a(B∨X), Y ) = HomJ (B
∨
∗X, Y ).

The composition of these isomorphisms defines our isomorphism φX,Y . It is immediate
to check that this isomorphism is natural in X and Y .

We now turn to (2). As before we only establish the commutativity of (5.3), with (5.4)
being similar. Choose f ∈ HomJ (X,B ∗ Y ) and let fNE (resp. fSW ) denote the image
of f in HomJ (B∨ ∗ X ∗ Z, Y ∗ Z) obtained by passing through the north-east (resp.
south-west) corner of (5.3). We must prove that fSW = fNE .
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Via HomJ (X,B ∗ Y ) = HomBc(X,BY(−a)) we may regard f as a map

f : X→ BY(−a).

From f we obtain the following maps in Bc:

f ′ : B∨X→ Y (−a), ϕ := H a(f ′) : H a(B∨X)→ Y,

g := fZ : XZ→ BYZ(−a),

g′ := f ′Z : B∨XZ→ YZ(−a), γ := H 2a(g′) : H 2a(B∨XZ)→ H a(YZ),

h : H−a(XZ)→ BH−a(YZ)(−a), h′ : B∨H−a(XZ)→ H−a(YZ)(−a).

Here f ′ (resp. g′, h′) are obtained from f (resp. g, h) using the dual pair (B, B∨)
in Bc, and h is uniquely determined by H 0(h) = H−a(g) (note that H−a(BYZ(−a)) =
H 0(BH−a(YZ)(−a))).

Consider the diagram given in Figure 1. The maps which have not been defined above
are given as follows:

(1) All maps labelled ∼ are relative hard Lefschetz isomorphisms (given by our fixed
choice of ρ ∈ h∗). At the top and bottom of the middle square we use the canonical
identifications

H 2a(B∨XZ) = H a(H a(B∨X)Z) = H a(B∨H a(XZ)),

H−2a(B∨XZ) = H−a(H−a(B∨X)Z) = H−a(B∨H−a(XZ)).

(2) We set l := H−a(ϕZ) and r := H a(h′).

H a(B∨H−a(XZ))

H−2a(B∨XZ)

H−a(H a(B∨X)Z)

H 2a(B∨XZ)

H−a(YZ)H−a(YZ)

H a(YZ)H a(YZ)

∼∼

∼∼

rl

∼ ∼

γγ

fSW fNE

Fig. 1. Diagram for the proof of Proposition 5.6(2).

It is straightforward but tedious to check that all squares and triangles in Figure 1
commute (see also Remark 5.7 below). If q denotes the relative hard Lefschetz isomor-
phism q : H−a(YZ)→ H a(YZ) we deduce from the commutativity of the diagram that
q ◦ fNE = q ◦ fSW , and hence fNE = fSW , which is what we wanted to show. ut
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Remark 5.7. All the squares and triangles in Figure 1 commute for roughly the same
reason, which we now explain. Relative hard Lefschetz provides us with a family of iso-
morphisms

θMN : H
−a(MN)

∼
−→ H a(MN)

for all M,N ∈ Bc, which were used to produce the maps labelled ∼. However, these iso-
morphisms have the special property that they were induced by “middle multiplication”
by a polynomial (independent of the choice of M and N ) on the bimodule MN . For a
triple tensor product MNP , this implies (very loosely stated) that θMNP should com-
mute with MθNP : this is effectively why the square in the middle of Figure 1 commutes.
More generally, θNP will commute with any bimodule morphism involving the bimod-
ule MN , and vice versa, which explains the other parts of this commutative diagram. In
other words, middle multiplication on MN will commute with all bimodule operations
involving N ⊗ (−) or (−)⊗M , and this property is at the heart of the proof.

The reader will notice that we do not use the full strength of relative hard Lefschetz
to establish Theorem 5.3. “All” that is needed is a family of isomorphisms θMN which
satisfy a host of commutativity properties. That said, it is hard to imagine isomorphisms
θMN which satisfy these properties but do not come from middle multiplication. This is a
very strong motivation for using hard Lefschetz to attack the question of rigidity.

Remark 5.8. Suppose that c contains finitely many left cells. Then J has a unit (see
Remark 5.2), which we denote by 1. Applying the isomorphisms of Proposition 5.6 to
the identity maps in HomJ (B, B) and HomJ (B∨, B∨), we obtain morphisms ε : 1 →
B ∗B∨ and µ : B∨ ∗B → 1. For f : X→ B ∗ Y , φX,Y (f ) is given by the composition

B∨ ∗X
B∨∗f
−−−→ B∨ ∗ B ∗ Y

µ∗Y
−−→ 1 ∗ Y = Y.

To see this, use Proposition 5.6(2) to show that φB∗Y,Y (idB∗Y ) = µ∗Y . Then, by natural-
ity of Proposition 5.6(1) under precomposition with f , one obtains the desired equality.
Similarly, the inverse of φX,Y sends g : B∨ ∗X→ Y to

X = 1 ∗X
ε∗X
−−→ B ∗ B∨ ∗X

B∗g
−−→ B ∗ Y.

From this (replacing f by ε and g by µ) one easily deduces that B∨ (and ε, µ) is left
dual to B. Similarly, one deduces that B∨ is right dual to B. Hence J is rigid in the usual
sense. Finally, the canonical isomorphism B

∼
−→ (B∨)∨ shows that J is pivotal.
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