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Abstract. In this paper, we study flows of hypersurfaces in hyperbolic space, and apply them to
prove geometric inequalities. In the first part of the paper, we consider volume preserving flows by a
family of curvature functions including positive powers of k-th mean curvatures with k = 1, . . . , n,
and positive powers of p-th power sums Sp with p > 0. We prove that if the initial hypersurface
M0 is smooth and closed and has positive sectional curvatures, then the solution Mt of the flow
has positive sectional curvature for any time t > 0, exists for all time and converges to a geodesic
sphere exponentially in the smooth topology. The convergence result can be used to show that
certain Alexandrov–Fenchel quermassintegral inequalities, known previously for horospherically
convex hypersurfaces, also hold under the weaker condition of positive sectional curvature.

In the second part of this paper, we study curvature flows for strictly horospherically convex
hypersurfaces in hyperbolic space with speed given by a smooth, symmetric, increasing and de-
gree one homogeneous function f of the shifted principal curvatures λi = κi − 1, plus a global
term chosen to impose a constraint on the quermassintegrals of the enclosed domain, where f is
assumed to satisfy a certain condition on the second derivatives. We prove that if the initial hyper-
surface is smooth, closed and strictly horospherically convex, then the solution of the flow exists for
all time and converges to a geodesic sphere exponentially in the smooth topology. As applications
of the convergence result, we prove a new rigidity theorem on smooth closed Weingarten hyper-
surfaces in hyperbolic space, and a new class of Alexandrov–Fenchel type inequalities for smooth
horospherically convex hypersurfaces in hyperbolic space.

Keywords. Volume preserving flow, Alexandrov–Fenchel inequalities, hyperbolic space, horo-
spherically convex hypersurfaces
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1. Introduction

LetX0 : M
n
→ Hn+1 be a smooth embedding such thatM0 = X0(M) is a closed smooth

hypersurface in the hyperbolic space Hn+1. We consider a smooth family of immersions
X : Mn

× [0, T )→ Hn+1 satisfying
∂

∂t
X(x, t) = (φ(t)−9(x, t))ν(x, t),

X(·, 0) = X0(·),

(1.1)

where ν(x, t) is the unit outward normal of Mt = X(M, t), 9 is a smooth curvature
function evaluated at the point (x, t) of Mt , and the global term φ(t) is chosen to impose
a constraint on the enclosed volume or quermassintegrals of Mt .

The volume preserving mean curvature flow in hyperbolic space was first studied by
Cabezas-Rivas and Miquel [12] in 2007. By imposing horospherical convexity (the con-
dition that all principal curvatures exceed 1, which will also be called h-convexity) on
the initial hypersurface, they proved that the solution exists for all time and converges
smoothly to a geodesic sphere. Some other mixed volume preserving flows were consid-
ered in [23, 32] with speed given by degree one homogeneous functions of the principal
curvatures. Recently Bertini and Pipoli [11] succeeded in treating flows by more general
functions of mean curvature, including in particular any positive power of mean curva-
ture. In a recent paper [10], the first and third authors proved the smooth convergence
of quermassintegral preserving flows with speed given by any positive power of a de-
gree one homogeneous function f of the principal curvatures for which the dual function
f∗(x1, . . . , xn) = (f (x

−1
1 , . . . , x−1

n ))−1 is concave and approaches zero on the boundary
of the positive cone. This includes in particular the volume preserving flow by positive
powers of k-th mean curvature for h-convex hypersurfaces. Note that in all the above
mentioned work, the initial hypersurface is assumed to be h-convex.

One reason to consider constrained flows of the kind considered here is to prove geo-
metric inequalities: In particular, the convergence of the volume preserving mean curva-
ture flow to a sphere implies that the area of the initial hypersurface is no less than that of
a geodesic sphere with the same enclosed volume, since the area is non-increasing while
the volume remains constant under the flow. The same motivation lies behind [32], where
inequalities between quermassintegrals were deduced from the convergence of certain
flows.

In this paper, we make the following contributions:

(1) In the first part of the paper, we weaken the horospherical convexity condition, allow-
ing instead hypersurfaces for which the intrinsic sectional curvatures are positive. We
consider the flow (1.1) for hypersurfaces with positive sectional curvature and with
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speed 9 given by any positive power of a smooth, symmetric, strictly increasing and
degree one homogeneous function of the Weingarten matrix W of Mt . Here we say
a hypersurface M in hyperbolic space has positive sectional curvature if its sectional
curvatures satisfy RMijij > 0 for any 1 ≤ i < j ≤ n, which by the Gauss equation is
equivalent to the principal curvatures of M satisfying κiκj > 1 for 1 ≤ i 6= j ≤ n.
This is a weaker condition than h-convexity. As a consequence we deduce inequali-
ties between volume and other quermassintegrals for hypersurfaces with positive sec-
tional curvature, extending inequalities previously known only for horospherically
convex hypersurfaces.

(2) In the second part of this paper, we consider flows (1.1) for strictly h-convex hyper-
surfaces in which the speed9 is homogeneous as a function of the shifted Weingarten
matrix W − I of Mt , rather than the Weingarten matrix itself. Using these flows we
are able to prove a new class of integral inequalities for horospherically convex hy-
persurfaces.

(3) In order to understand these new functionals we introduce some new machinery for
horospherically convex regions, including a horospherical Gauss map and a horo-
spherical support function. We also develop an interesting connection (closely related
to the results of [15]) between flows of h-convex hypersurfaces in hyperbolic space
by functions of principal curvatures, and conformal flows of conformally flat met-
rics on Sn by functions of the eigenvalues of the Schouten tensor. This allows us to
translate our results to convergence theorems for metric flows, and our isoperimet-
ric inequalities to corresponding results for conformally flat metrics. We expect that
these will prove useful in future work.

We will describe our results in more detail in the rest of this section.

1.1. Volume preserving flow with positive sectional curvature

Suppose that the initial hypersurface M0 has positive sectional curvature. We consider a
smooth family of immersions X : Mn

× [0, T )→ Hn+1 satisfying
∂

∂t
X(x, t) = (φ(t)− F α(W))ν(x, t),

X(·, 0) = X0(·),

(1.2)

where α > 0, ν(x, t) is the unit outward normal of Mt = X(M, t), F is a smooth,
symmetric, strictly increasing and degree one homogeneous function of the Weingarten
matrix W of Mt . The global term φ(t) in (1.2) is defined by

φ(t) =
1
|Mt |

∫
Mt

F α dµt (1.3)

such that the volume of �t remains constant along the flow (1.2), where dµt is the area
measure on Mt with respect to the induced metric.

Since F(W) is symmetric with respect to the components of W , by a theorem of
Schwarz [27] we can write F(W) = f (κ) as a symmetric function of the eigenvalues
of W . We assume that f satisfies the following assumption:



2470 Ben Andrews et al.

Assumption 1.1. Suppose f is a smooth symmetric function defined on the positive cone
0+ := {κ = (κ1, . . . , κn) ∈ Rn : κi > 0, ∀i = 1, . . . , n}, and satisfies

(i) f is positive, strictly increasing, homogeneous of degree one and is normalized such
that f (1, . . . , 1) = 1;

(ii) for any i 6= j , (
∂f

∂κi
κi −

∂f

∂κj
κj

)
(κi − κj ) ≥ 0; (1.4)

(iii) for all (y1, . . . , yn) ∈ Rn,∑
i,j

∂2 log f
∂κi∂κj

yiyj +

n∑
i=1

1
κi

∂ log f
∂κi

y2
i ≥ 0. (1.5)

Examples satisfying Assumption 1.1 include f = n−1/kS
1/k
k (k > 0) and f = E1/k

k (see,
e.g., [16, 18]), where

Ek =

(
n

k

)−1

σk(κ) =

(
n

k

)−1 ∑
1≤i1<···<ik≤n

κi1 · · · κik , k = 1, . . . , n,

is the (normalized) k-th mean curvature of Mt and Sk(κ) =
∑n
i=1 κ

k
i is the k-th power

sum of κ for k > 0. The inequalities (1.4) and (1.5) are equivalent to the statement that
logF is a convex function of the components of logW , which is the map with the same
eigenvectors as W and eigenvalues log κi . In particular, if f1 and f2 are two symmetric
functions satisfying (1.4) and (1.5), then the function f α1 with α > 0 and the product f1f2
also satisfy (1.4) and (1.5). Note that the Cauchy–Schwarz inequality and (1.5) imply that
any symmetric function f satisfying (1.5) must be inverse concave, i.e., its dual function

f∗(z1, . . . , zn) = f (z
−1
1 , . . . , z−1

n )−1

is concave with respect to its argument.
The first result of this paper is the following convergence result for the flow (1.2):

Theorem 1.2. Let X0 : M
n
→ Hn+1 be a smooth embedding such that M0 = X0(M) is

a closed hypersurface in Hn+1 (n ≥ 2) with positive sectional curvature. Assume that f
satisfies Assumption 1.1, and either

(i) f∗ vanishes on the boundary of 0+, and

lim
x→0+

f

(
x,

1
x
, . . . ,

1
x

)
= +∞, (1.6)

and α > 0, or
(ii) n = 2, f = (κ1κ2)

1/2 and α ∈ [1/2, 2].

Then the flow (1.2) with global term φ(t) given by (1.3) has a smooth solution Mt for
all time t ∈ [0,∞), and Mt has positive sectional curvature for each t > 0 and con-
verges smoothly and exponentially to a geodesic sphere of radius r∞ determined by
Vol(B(r∞)) = Vol(�0) as t →∞.
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Remark 1.3. Examples of functions f satisfying Assumption 1.1 and condition (i) of
Theorem 1.2 include:

(a) n ≥ 2, f = n−1/kS
1/k
k with k > 0;

(b) n ≥ 3, f = E1/k
k with k = 1, . . . , n;

(c) n = 2, f = (κ1 + κ2)/2.

Remark 1.4. We remark that the contracting curvature flows for surfaces with positive
scalar curvature in hyperbolic 3-space H3 have been studied by the first two authors in a
recent work [7].

As a key step in the proof of Theorem 1.2, we prove in §3 that the positivity of sectional
curvatures of the evolving hypersurface Mt is preserved along the flow (1.2) with any f
satisfying Assumption 1.1 and any α > 0. In order to show that the positivity of sectional
curvatures are preserved, we consider the sectional curvature as a function on the frame
bundle O(M) over M , and apply a maximum principle. This requires a rather delicate
computation, using inequalities for the Hessian on the total space of O(M) to show the
required inequality for the time derivative at a minimum point. The argument is related
to that used by the first author to prove a generalised tensor maximum principle in [4,
Theorem 3.2], but cannot be deduced directly from that result. The argument combines the
ideas of the generalised tensor maximum principle with those of vector bundle maximum
principles for reaction-diffusion equations [8, 20].

We remark that the flow (1.2) with

f =

(
Ek

E`

) 1
k−`

, 1 ≤ ` < k ≤ n, (1.7)

and any power α > 0 does not preserve positive sectional curvatures: Counterexamples
can be produced in the spirit of the constructions in [9, Sections 4–5].

The remaining parts of the proof of Theorem 1.2 will be given in §4. In §4.1, we will
derive a uniform estimate on the inner radius and outer radius of the evolving domains�t
along the flow (1.2). Recall that the inner radius ρ− and outer radius ρ+ of a bounded
domain � are defined as

ρ− = sup
⋃
p∈�

{ρ > 0 : Bρ(p) ⊂ �}, ρ+ = inf
⋃
p∈�

{ρ > 0 : � ⊂ Bρ(p)},

where Bρ(p) denotes the geodesic ball of radius ρ centred at some point p in hyper-
bolic space. All the previous papers [10–12, 23, 32] on constrained curvature flows in
hyperbolic space focus on horospherically convex domains, which have the property that
ρ+ ≤ c(ρ− + ρ

1/2
− ) (see e.g. [12, 23]). However, no such property is known for hyper-

surfaces with positive sectional curvature. Our idea to overcome this obstacle is to use an
Alexandrov reflection argument to bound the diameter of the domain �t enclosed by the
flow hypersurface Mt . Then we project the domain �t to the unit ball in the Euclidean
space Rn+1 via the Klein model of hyperbolic space. The upper bound on the diameter
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of �t implies that this map has bounded distortion. This together with the preservation of
the volume of �t gives a uniform lower bound on the inner radius of �t .

Then in §4.2 we adapt Tso’s technique [31] to derive an upper bound on the speed
if f satisfies Assumption 1.1, where the positivity of sectional curvatures of Mt will be
used to estimate the zero order terms of the evolution equation of the auxiliary function.
In §4.3, we will complete the proof of Theorem 1.2 by obtaining uniform bounds on the
principal curvatures. In case (i) of Theorem 1.2, the upper bound of f together with the
positivity of sectional curvatures imply the uniform two-side positive bound of the prin-
cipal curvatures of Mt . In case (ii) of Theorem 1.2, the estimate 1 ≤ κ1κ1 = f (κ)

2
≤ C

does not prevent κ2 from going to infinity. Instead, we will obtain the estimate on the
pinching ratio κ2/κ1 by applying the maximum principle to the evolution equation of
G(κ1, κ2) = (κ1κ2)

α−2(κ2 − κ1)
2 with α ∈ [1/2, 2]. This idea has been applied by the

first two authors in [2,6] to prove the pinching estimate for the contracting flow by powers
of Gauss curvature in R3. Once we have the uniform estimate on the principal curvatures
of the evolving hypersurfaces, higher regularity estimates can be derived by a standard
argument. A continuation argument then yields the long time existence of the flow, and
the Alexandrov reflection argument as in [10, §6] implies the smooth convergence of the
flow to a geodesic sphere.

1.2. Alexandrov–Fenchel inequalities

The volume preserving curvature flow is a useful tool in the study of hypersurface geom-
etry. We will illustrate an application of Theorem 1.2 in the proof of Alexandrov–Fenchel
type inequalities (involving the quermassintegrals) for hypersurfaces in hyperbolic space.
Recall that for a convex domain � in hyperbolic space, the quermassintegral Wk(�) is
defined as follows (see [26, 28]):1

Wk(�) =
ωk−1 · · ·ω0

ωn−1 · · ·ωn−k

∫
Lk
χ(Lk ∩�) dLk, k = 1, . . . , n, (1.8)

where Lk is the space of k-dimensional totally geodesic subspaces Lk in Hn+1 and ωn
denotes the area of the n-dimensional unit sphere in Euclidean space. The function χ is
defined to be 1 if Lk ∩� 6= ∅ and to be 0 otherwise. Furthermore, we set

W0(�) = |�|, Wn+1(�) = |Bn+1
| =

ωn

n+ 1
.

If the boundary of � is smooth, we can define the principal curvatures κ = (κ1, . . . , κn)

and the curvature integrals

Vn−k(�) =

∫
∂�

Ek(κ) dµ, k = 0, 1, . . . , n, (1.9)

1 Note that the definition (1.8) is differs from the definition in [28] by a constant multiple n+1−k
n+1 .
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of the boundary M = ∂�. The quermassintegrals and the curvature integrals of a smooth
convex domain � in Hn+1 are related by the following equations (see [28]):

Vn−k(�) = (n− k)Wk+1(�)+ kWk−1(�), k = 1, . . . , n− 1, (1.10)
Vn(�) = nW1(�) = |∂�|, (1.11)
V0(�) = ωn + nWn−1(�). (1.12)

In [32], Wang and Xia proved the Alexandrov–Fenchel inequalities for a smooth h-convex
domain � in Hn+1, which state that

Wk(�) ≥ fk ◦ f
−1
` (W`(�)) (1.13)

for any 0 ≤ ` < k ≤ n, with equality if and only if � is a geodesic ball, where
fk : R+ → R+ is an increasing function defined by fk(r) = Wk(B(r)), the k-th
quermassintegral of the geodesic ball of radius r . The proof in [32] is by applying the
quermassintegral preserving flow for smooth h-convex hypersurfaces with speed given
by the quotient (1.7) and α = 1, and is similar to the Euclidean analogue considered by
McCoy [24]. The inequality (1.13) implies the inequality∫

∂�

Ek dµ ≥ |∂�|(1+ (|∂�|/ωn)−2/n)k/2 (1.14)

for smooth h-convex domains, which compares the curvature integral (1.9) and the bound-
ary area. Note that the inequality (1.14) with k = 2 was proved earlier by the third author
with Li and Xiong [22] for star-shaped and 2-convex domains using the inverse curvature
flow in hyperbolic space. For the other even k, the inequality (1.14) was also proved for
smooth h-convex domains using the inverse curvature flow by Ge, Wang and Wu [17]. It
is an interesting problem to prove the inequalities (1.13) and (1.14) under an assumption
weaker than h-convexity.

Applying the result in Theorem 1.2, we show that the h-convexity assumption for the
inequality (1.13) can be replaced by the weaker assumption of positive sectional curvature
in the case ` = 0 and 1 ≤ k ≤ n.

Corollary 1.5. LetM = ∂� be a smooth closed hypersurface in Hn+1 which has positive
sectional curvature and encloses a smooth bounded domain �. Then for any n ≥ 2 and
k = 1, . . . , n, we have

Wk(�) ≥ fk ◦ f
−1
0 (W0(�)), (1.15)

where fk : R+ → R+ is an increasing function defined by fk(r) = Wk(B(r)), the k-th
quermassintegral of the geodesic ball of radius r . Moreover, equality holds in (1.15) if
and only if � is a geodesic ball.

The quermassintegral Wk(�t ) of the evolving domain �t along the flow (1.2) with
F = E

1/k
k satisfies (see Lemma 2.3)

d

dt
Wk(�t ) =

∫
Mt

Ek(φ(t)− E
α/k
k ) dµt ,



2474 Ben Andrews et al.

which is non-positive for each α > 0 by the choice (1.3) of φ(t) and the Hölder inequality.
This means that Wk(�t ) is decreasing along the flow (1.2) with F = E1/k

k unless Ek is
constant on Mt (which is equivalent to Mt being a geodesic sphere). Then Corollary 1.5
follows from the monotonicity of Wk and the convergence result in Theorem 1.2.

1.3. Volume preserving flow for horospherically convex hypersurfaces

In the second part of this paper, we will consider the flow of h-convex hypersurfaces in hy-
perbolic space with speed given by functions of the shifted Weingarten matrix W− I plus
a global term chosen to preserve modified quermassintegrals of the evolving domains. Let
us first define the following modified quermassintegrals:

W̃k(�) :=

k∑
i=0

(−1)k−i
(
k

i

)
Wi(�), k = 0, . . . , n, (1.16)

for an h-convex domain � in hyperbolic space. Thus W̃k is a linear combination of the
quermassintegrals of �. In particular, W̃0(�) = |�| is the volume of �. The modified
quermassintegrals defined in (1.16) satisfy the following property:

Proposition 1.6. The modified quermassintegral W̃k is monotone with respect to inclu-
sion for h-convex domains: if �0 and �1 are h-convex domains with �0 ⊂ �1, then
W̃k(�0) ≤ W̃k(�1).

This property is not obvious from the definition (1.16) and its proof will be given in §5.
We will first investigate some of the properties of horospherically convex regions in hy-
perbolic space Hn+1. In particular, for such regions we define a horospherical Gauss map,
which is a map to the unit sphere, and we show that each horospherically convex region
is completely described in terms of a scalar function u on the sphere Sn which we call
the horospherical support function. There are interesting formal similarities between this
situation and that of convex Euclidean bodies. We show that the h-convexity of a region�
is equivalent to the matrix

Aij = ∇̄j ∇̄kϕ −
|∇̄ϕ|2

2ϕ
ḡij +

ϕ − ϕ−1

2
ḡij

on the sphere Sn being positive definite, where ḡij is the standard round metric on Sn,
ϕ = eu and u is the horospherical support function of �. The shifted Weingarten matrix
W − I is related to the matrix Aij by

Aij = ϕ
−1
[(W − I)−1

]
k
i ḡkj . (1.17)

Using this characterization of h-convex domains, for any two h-convex domains �0
and �1 with �0 ⊂ �1 we can find a foliation of h-convex domains �t which is ex-
panding from �0 to �1. This can be used to prove Proposition 1.6 by computing the
variation of W̃k . We expect that the description of horospherically convex regions which
we develop here will be useful in further investigations beyond the scope of this paper.
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The flow we will consider is the following:
∂

∂t
X(x, t) = (φ(t)− F(W − I))ν(x, t),

X(·, 0) = X0(·),

(1.18)

for a smooth and strictly h-convex hypersurface in hyperbolic space, where F is a smooth,
symmetric, degree one homegeneous function of the shifted Weingarten matrix W − I =
(h
j
i − δ

j
i ). For simplicity, we denote Sij = h

j
i − δ

j
i . Note that the eigenvalues of (Sij )

are the shifted principal curvatures λ = (λ1, . . . , λn) = (κ1 − 1, . . . , κn − 1). Again by a
theorem of Schwarz [27], F(W − I) = f (λ), where f is a smooth symmetric function of
n variables λ = (λ1, . . . , λn). We choose the global term φ(t) in (1.18) as

φ(t) =

(∫
Mt

El(λ) dµt

)−1 ∫
Mt

El(λ)F dµt , l = 0, . . . , n, (1.19)

such that W̃l(�t ) remains constant, where �t is the domain enclosed by the evolving
hypersurface Mt .

We will prove the following result for the flow (1.18) with φ(t) given in (1.19).

Theorem 1.7. Let n ≥ 2 and X0 : M
n
→ Hn+1 be a smooth embedding such that

M0 = X0(M) is a smooth closed and strictly h-convex hypersurface in Hn+1. If f is a
smooth, symmetric, increasing and degree one homogeneous function, and either

(i) f is concave and f approaches zero on the boundary of the positive cone 0+, or
(ii) f is concave and inverse concave, or

(iii) f is inverse concave and its dual function f∗ approaches zero on the boundary
of 0+, or

(iv) n = 2,

then the flow (1.18) with the global term φ(t) given by (1.19) has a smooth solution Mt

for all time t ∈ [0,∞), and Mt is strictly h-convex for any t > 0 and converges smoothly
and exponentially to a geodesic sphere of radius r∞ determined by W̃l(B(r∞)) = W̃l(�0)

as t →∞.

Constrained curvature flows in hyperbolic space by degree one homogeneous, concave
and inverse concave function of the principal curvatures were studied by Makowski [23]
and Wang and Xia [32]. The quermassintegral preserving flow by any positive power of a
degree one homogeneous function f of the principal curvatures, which is inverse concave
and its dual function f∗ approaches zero on the boundary of the positive cone 0+, was
studied recently by the first and third authors [10]. Note that the speed function f of the
flow (1.18) in Theorem 1.7 is not a homogeneous function of the principal curvatures κi
and there are essential differences in the analysis compared with the previously mentioned
work [10, 23, 32].

The key step in the proof of Theorem 1.7 is a pinching estimate for the shifted prin-
cipal curvatures λi . That is, we will show that the ratio of the largest shifted principal
curvature λn to the smallest shifted principal curvature λ1 is controlled by its initial value



2476 Ben Andrews et al.

along the flow (1.18). For the proof, we adapt methods from the proof of pinching esti-
mates of the principal curvatures for contracting curvature flows [1, 4, 5, 9] and the con-
strained curvature flows in Euclidean space [24, 25]. In particular, in case (iii) we define
the tensor Tij = Sij − εFδ

j
i and show that the positivity of Tij is preserved by applying

the tensor maximum principle (proved by the first author [4]). The inverse concavity is
used to estimate the sign of the gradient terms. This case is similar to the pinching esti-
mate for the contracting curvature flow in Euclidean case [9, Lemma 11]. Although the
proof there is given in terms of the Gauss map parametrisation of the convex solutions of
the flow in Euclidean space, which is not available in hyperbolic space, we can deal with
the gradient terms directly using the inverse concavity of f .

To prove Theorem 1.7, we next show that the inner radius and outer radius of the
enclosed domain �t of the evolving hypersurface Mt satisfy a uniform estimate 0 <

C−1 < ρ−(t) ≤ ρ+(t) ≤ C for some positive constant C. This relies on the preserva-
tion of W̃l(�t ) and the monotonicity of W̃l under inclusion of h-convex domains stated
in Proposition 1.6. With the estimate on the inner radius and outer radius, the technique
of Tso [31] yields the upper bound on F and the Harnack inequality of Krylov and Sa-
fonov [21] yields the lower bound on F . The pinching estimate then gives the estimate
on the shifted principal curvatures λi . The long time existence and the convergence of the
flow follow by a standard argument.

The result in Theorem 1.7 is useful in the study of the geometry of hypersurfaces. The
first application of Theorem 1.7 is the following rigidity result.

Corollary 1.8. Let M be a smooth, closed and strictly h-convex hypersurface in Hn+1

with principal curvatures κ = (κ1, . . . , κn) satisfying f (λ) = C for some constant
C > 0, where λ = (λ1, . . . , λi) with λi = κi − 1 and f is a symmetric function sat-
isfying the condition of Theorem 1.7. Then M is a geodesic sphere.

The second application of Theorem 1.7 is a new class of Alexandrov–Fenchel type in-
equalities between quermassintegrals of h-convex hypersurface in hyperbolic space.

Corollary 1.9. Let M = ∂� be a smooth, closed and strictly h-convex hypersurface
in Hn+1. Then for any 0 ≤ l < k ≤ n,

W̃k(�) ≥ f̃k ◦ f̃
−1
l (W̃l(�)) (1.20)

with equality holding if and only if� is a geodesic ball. Here the function f̃k : R+→ R+
is defined by f̃k(r) = W̃k(B(r)), which is an increasing function by Proposition 1.6; and
f̃−1
l is the inverse function of f̃l .

The inequality (1.20) can be obtained by applying Theorem 1.7 with

f =

(
Ek(λ)

El(λ)

) 1
k−l

, 0 ≤ l < k ≤ n, (1.21)

in the flow (1.18). We see that along the flow (1.18) with this f , the modified quer-
massintegral W̃l(�t ) remains a constant and W̃k(�t ) is decreasing in time by the Hölder
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inequality. In fact, by Lemma 2.4 the modified quermassintegral evolves by

d

dt
W̃k(�t ) =

∫
Mt

Ek(λ)

(
φ(t)−

(
Ek(λ)

El(λ)

) 1
k−l
)
dµt . (1.22)

Applying the Hölder inequality to the equation (1.22) shows that W̃k(�t ) is decreasing in
time unless Ek(λ) = CEl(λ) on Mt (which is equivalent to Mt being a geodesic sphere
by Corollary 1.8). Since the flow exists for all time and converges to a geodesic sphere Br ,
the inequality (1.20) follows from the monotonicity of W̃k(�t ) and the preservation
of W̃l(�t ).

Remark 1.10. We remark that the inequalities (1.20) are new and can be viewed as an
improvement of the inequalities (1.13). For example, the inequality (1.20) with l = 0
implies that

k∑
i=0

(−1)k−i
(
k

i

)(
Wi(�)− fi ◦ f

−1
0 (W0(�))

)
≥ 0. (1.23)

By induction on k, (1.23) implies that each Wi(�) − fi ◦ f
−1
0 (W0(�)) is non-negative

for h-convex domains. Thus our inequalities (1.20) imply that the linear combinations of
Wi(�)− fi ◦ f

−1
0 (W0(�)) as in (1.23) are also non-negative for h-convex domains.

2. Preliminaries

In this section we collect some properties of smooth symmetric functions of n variables,
and recall the evolution equations of geometric quantities along the flows (1.2) and (1.18).

2.1. Properties of symmetric functions

For a smooth symmetric function F(A) = f (κ(A)), where A = (Aij ) ∈ Sym(n) is a
symmetric matrix and κ(A) = (κ1, . . . , κn) gives the eigenvalues of A, we denote by Ḟ ij

and F̈ ij,kl the first and second derivatives of F with respect to the components of its
argument, so that

∂

∂s
F (A+ sB)

∣∣∣∣
s=0
= Ḟ ij (A)Bij ,

∂2

∂s2F(A+ sB)

∣∣∣∣
s=0
= F̈ ij,kl(A)BijBkl

for any two symmetric matrices A,B. We also use the notation

ḟ i(κ) =
∂f

∂κi
(κ), f̈ ij (κ) =

∂2f

∂κi∂κj
(κ)

for the first and second derivatives of f with respect to κ . At any diagonal A with distinct
eigenvalues κ = κ(A), the first derivative of F satisfies

Ḟ ij (A) = ḟ i(κ)δij ,
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and the second derivative of F in direction B ∈ Sym(n) is given in terms of ḟ and f̈ by
(see [4])

F̈ ij,kl(A)BijBkl =
∑
i,j

f̈ ij (κ)BiiBjj + 2
∑
i>j

ḟ i(κ)− ḟ j (κ)

κi − κj
B2
ij . (2.1)

This formula makes sense as a limit in the case of any repeated values of κi .
From the equation (2.1), we have

Lemma 2.1. Suppose A has distinct eigenvalues κ = κ(A). Then F is concave at A if
and only if f is concave at κ and

(ḟ k − ḟ l)(κk − κl) ≤ 0, ∀k 6= l. (2.2)

In this paper, we also need the inverse concavity of f in many cases. We include the
properties of inverse concave functions in the following lemma.

Lemma 2.2 ([4, 10]). (i) If f is inverse concave, then
n∑

k,l=1

f̈ klykyl + 2
n∑
k=1

ḟ k

κk
y2
k ≥ 2f−1

( n∑
k=1

ḟ kyk

)2
(2.3)

for any y = (y1, . . . , yn) ∈ Rn, and

ḟ k − ḟ l

κk − κl
+
ḟ k

κl
+
ḟ l

κk
≥ 0, ∀k 6= l. (2.4)

(ii) If f = f (κ1, . . . , κn) is inverse concave, homogeneous of degree one and normalized
by f (1, . . . , 1) = 1, then

n∑
i=1

ḟ iκ2
i ≥ f

2. (2.5)

2.2. Evolution equations

Along any smooth flow
∂

∂t
X(x, t) = ϕ(x, t)ν(x, t) (2.6)

of hypersurfaces in the hyperbolic space Hn+1, where ϕ is a smooth function on the
evolving hypersurfaces Mt = X(Mn, t), we have the following evolution equations for
the induced metric gij , the induced area element dµt and the Weingarten matrix W =
(h
j
i ) of Mt :

∂

∂t
gij = 2ϕhij , (2.7)

∂

∂t
dµt = nE1ϕ dµt , (2.8)

∂

∂t
h
j
i = −∇

j
∇iϕ − ϕ(h

k
i h
j
k − δ

j
i ). (2.9)
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From the evolution equations (2.8) and (2.9), we can derive the evolution equation of the
curvature integral Vn−k:

d

dt
Vn−k(�t ) =

d

dt

∫
Mt

Ek dµt =

∫
Mt

(
∂

∂t
Ek + nE1Ekϕ

)
dµt

=

∫
Mt

(
−
∂Ek

∂h
j
i

∇
j
∇iϕ − ϕ

∂Ek

∂h
j
i

(hki h
j
k − δ

j
i )+ nE1Ekϕ

)
dµt

=

∫
Mt

ϕ
(
(n− k)Ek+1 + kEk−1

)
dµt , (2.10)

where we used integration by parts and the fact that ∂Ek

∂h
j
i

is divergence free. Since the

quermassintegrals are related to the curvature integrals by (1.10)–(1.12), applying an in-
duction argument to (2.10) yields

Lemma 2.3 (cf. [10,32]). Along the flow (2.6), the quermassintegralWk of the evolving
domain �t satisfies

d

dt
Wk(�t ) =

∫
Mt

Ek(κ)ϕ dµt , k = 0, . . . , n.

We can also derive the following evolution equation for the modified quermassintegrals.

Lemma 2.4. Along the flow (2.6), the modified quermassintegral W̃k of the evolving do-
main �t satisfies

d

dt
W̃k(�t ) =

∫
Mt

Ek(λ)ϕ dµt , k = 0, . . . , n,

where λ = (λ1, . . . , λn) = (κ1−1, . . . , κn−1) are the shifted principal curvatures ofMt .

Proof. Firstly, we derive the formula for σk(λ) in terms of σi(κ), i = 0, . . . , k. By the
definition of the elementary symmetric polynomials, we have

n∏
i=1

(t + λi) =

n∑
k=0

σk(λ)t
n−k.

On the other hand,

n∏
i=1

(t + λi) =

n∏
i=1

(t − 1+ κi) =
n∑
l=0

σl(κ)(t − 1)n−l

=

n∑
l=0

σl(κ)

n−l∑
i=0

(
n− l

i

)
t i(−1)n−l−i

=

n∑
k=0

( k∑
i=0

(
n− i

k − i

)
(−1)k−iσi(κ)

)
tn−k.
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Comparing the coefficients of tn−k , we have

σk(λ) =

k∑
i=0

(
n− i

k − i

)
(−1)k−iσi(κ) =

k∑
i=0

(
n− i

k − i

)
(−1)k−i

(
n

i

)
Ei(κ)

=

(
n

k

) k∑
i=0

(−1)k−i
(
k

i

)
Ei(κ).

Equivalently,

Ek(λ) =

(
n

k

)−1

σk(λ) =

k∑
i=0

(−1)k−i
(
k

i

)
Ei(κ). (2.11)

Then by the definition (1.16) of W̃k and Lemma 2.3,

d

dt
W̃k(�t ) =

k∑
i=0

(−1)k−i
(
k

i

)
d

dt
Wi(�t )

=

k∑
i=0

(−1)k−i
(
k

i

)∫
Mt

Ei(κ)ϕ dµt =

∫
Mt

Ek(λ)ϕ dµt . ut

If we consider the flow (1.2), i.e., ϕ = φ(t)−9(W), using (2.9) and Simons’ identity we
have the evolution equations for the curvature function 9 = 9(W) and the Weingarten
matrix W = (hji ) of Mt (see [10]):

∂

∂t
9 = 9̇kl∇k∇l9 + (9 − φ(t))(9̇

ijhki h
j
k − 9̇

ij δ
j
i ) (2.12)

and

∂

∂t
h
j
i = 9̇

kl
∇k∇lh

j
i + 9̈

kl,pq
∇ihkl∇

jhpq + (9̇
klhrkhrl + 9̇

klgkl)h
j
i

− 9̇klhkl(h
p
i h

j
p + δ

j
i )+ (9 − φ(t))(h

k
i h
j
k − δ

j
i ), (2.13)

where ∇ denotes the Levi-Civita connection with respect to the induced metric gij onMt ,
and 9̇kl, 9̈kl,pq denote the derivatives of 9 with respect to the components of the Wein-
garten matrix W = (hji ).

If we consider the flow (1.18) of h-convex hypersurfaces, i.e., ϕ = φ(t)− F(W − I),
we have the similar evolution equation for the curvature function F :

∂

∂t
F = Ḟ kl∇k∇lF + (F − φ(t))(Ḟ

ijhki h
j
k − Ḟ

ij δ
j
i ), (2.14)

and a parabolic-type equation for the Weingarten matrix W = (hji ) of Mt :

∂

∂t
h
j
i = Ḟ

kl
∇k∇lh

j
i + F̈

kl,pq
∇ihkl∇

jhpq + (Ḟ
klhrkhrl + Ḟ

klgkl)h
j
i

− Ḟ klhkl(h
p
i h

j
p + δ

j
i )+ (F − φ(t))(h

k
i h
j
k − δ

j
i ). (2.15)
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However, we observe that Ḟ kl, F̈ kl,pq in (2.14) and (2.15) denote the derivatives of F with
respect to the components of the shifted Weingarten matrix W − I, so the homogeneity
of F implies that Ḟ kl(hlk − δ

l
k) = F . Denote the components of the shifted Weingarten

matrix by Sij = h
j
i − δ

j
i . Then the equation (2.15) implies that

∂

∂t
Sij = Ḟ

kl
∇k∇lSij + F̈

kl,pq
∇ihkl∇

jhpq + (Ḟ
klSkrSrl + 2F − 2φ(t))Sij

− (φ(t)+ Ḟ klδlk)SikSkj + Ḟ
klSkrSrlδ

j
i . (2.16)

2.3. A generalised maximum principle

In §6.1, we will use the tensor maximum principle to prove the pinching estimate along
the flow (1.18). For the convenience of the readers, we include here the statement of the
tensor maximum principle, which was first proved by Hamilton [19] and was generalised
by the first author [4].

Theorem 2.5 ([4]). Let Sij be a smooth time-varying symmetric tensor field on a com-
pact manifold M , satisfying

∂

∂t
Sij = a

kl
∇k∇lSij + u

k
∇kSij +Nij ,

where akl and u are smooth, ∇ is a (possibly time-dependent) smooth symmetric connec-
tion, and akl is positive definite everywhere. Suppose that

Nijv
ivj + sup

3

2akl(23pk∇lSipv
i
−3

p
k3

q
l Spq) ≥ 0 (2.17)

whenever Sij ≥ 0 and Sijvj = 0. If Sij is positive definite everywhere on M at t = 0 and
on ∂M for 0 ≤ t ≤ T , then it is positive on M × [0, T ].

3. Preserving positive sectional curvature

In this section, we will prove that the flow (1.2) preserves the positivity of sectional cur-
vature if α > 0 and f satisfies Assumption 1.1.

Theorem 3.1. If the initial hypersurfaceM0 has positive sectional curvature, then along
the flow (1.2) in Hn+1 with f satisfying Assumption 1.1 and any power α > 0 the evolving
hypersurface Mt has positive sectional curvature for t > 0.

Proof. The sectional curvature defines a smooth function on the Grassmannian bundle
of two-dimensional subspaces of TM . For convenience we lift it to a function on the
orthonormal frame bundle O(M) over M: Given a point x ∈ M and t ≥ 0, and a frame
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O = {e1, . . . , en} for TxM which is orthonormal with respect to g(x, t), we define

G(x, t,O) = h(x,t)(e1, e1)h(x,t)(e2, e2)− h(x,t)(e1, e2)
2
− 1.

We consider a point (x0, t0) and a frame O0 = {ē1, . . . , ēn} at which a new minimum
of the function G is attained, so that G(x, t,O) ≥ G(x0, t0,O0) for all x ∈ M , all
t ∈ [0, t0], and all O ∈ F(M)(x,t). The fact that O0 achieves the minimum of G over
the fibre F(M)(x0,t0) implies that ē1 and ē2 can be rotated so as to be the eigenvectors
of h(x0.t0) corresponding to κ1 and κ2, where κ1 ≤ · · · ≤ κn are the principal curvatures
at (x0, t0). SinceG is invariant under rotation in the subspace orthogonal to ē1 and ē2, we
can assume that h(ēi, ēi) = κi and h(ēi, ēj ) = 0 for i 6= j .

The time derivative of G at (x0, t0,O0) is given by (2.13), noting that the frame O(t)
for TxM defined by d

dt
ei(t) = (F α − φ)W(ei) remains orthonormal with respect to

g(x, t) if ei(t0) = ēi for each i. This yields

∂

∂t
G

∣∣∣∣
(x0,t0,O0)

= κ1
∂

∂t
h2

2 + κ2
∂

∂t
h1

1

= κ19̇
kl
∇k∇lh22 + κ29̇

kl
∇k∇lh11 + κ19̈(∇2h,∇2h)+ κ29̈(∇1h,∇1h)

+ 2(9̇klhrkhrl + 9̇
klgkl)κ1κ2 − (α − 1)9κ1κ2(κ1 + κ2)

− (α + 1)9(κ1 + κ2)− φ(t)(κ1κ2 − 1)(κ1 + κ2). (3.1)

Since 9 = f α , the zero order terms in (3.1) satisfy

2(9̇klhrkhrl + 9̇
klgkl)κ1κ2 − (α − 1)9κ1κ2(κ1 + κ2)

− (α + 1)9(κ1 + κ2)− φ(t)(κ1κ2 − 1)(κ1 + κ2)

= 2αf α−1
∑
k

ḟ k(κk − κ2)(κk − κ1)

+G
(
f α−1

∑
k

ḟ kκk(2ακk − (α − 1)(κ1 + κ2))− φ(t)(κ1 + κ2)
)

≥ −CG,

where C is a bound for the smooth function in the last bracket. To estimate the remaining
terms in (3.1), we consider the second derivatives of G along a curve on O(M) defined
as follows: We let γ be any geodesic of g(t0) in M with γ (0) = x0, and define a frame
O(s) = (e1(s), . . . , en(s)) at γ (s) by taking ei(0) = ēi for each i, and∇sei(s) = 0ij ej (s)
for some constant antisymmetric matrix 0. Then we compute

d2

ds2G(x(s), t0,O(s))
∣∣∣
s=0
= κ2∇

2
s h11+ κ1∇

2
s h22+ 2(∇sh22∇sh11− (∇sh12)

2)

+ 4
∑
p>2

01pκ2∇sh1p + 4
∑
p>2

02pκ1∇sh2p

+ 2
∑
p>2

02
1pκ2(κp − κ1)+ 2

∑
p>2

02
2pκ1(κp − κ2). (3.2)
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Since G has a minimum at (x0, t0,O0), the right-hand side of (3.2) is non-negative for
any choice of 0. Minimizing over 0 gives

0 ≤ κ2∇
2
s h11 + κ1∇

2
s h22 + 2(∇sh22∇sh11 − (∇sh12)

2)

− 2
∑
p>2

κ2

κp − κ1
(∇sh1p)

2
− 2

∑
p>2

κ1

κp − κ2
(∇sh2p)

2, (3.3)

with the terms on the last line regarded as vanishing if the denominators vanish (since the
corresponding component of ∇h vanishes in that case). This gives

∂

∂t
G

∣∣∣∣
(x0,t0,O0)

≥ κ19̈(∇2h,∇2h)+κ29̈(∇1h,∇1h)−2
∑
k

9̇k(∇kh22∇kh11−(∇kh12)
2)

+ 2
∑
k

9̇k
(∑
p>2

κ2

κp − κ1
(∇kh1p)

2
+

∑
p>2

κ1

κp − κ2
(∇kh2p)

2
)
− CG. (3.4)

The right-hand side can be expanded using 9 = f α and the identity (2.1):

f 1−α

α

(
d

dt
G+ CG

)
≥ κ2

(∑
k,l

f̈ kl∇1hkk∇1hll + (α − 1)
(∇1f )

2

f
+

∑
k 6=l

ḟ k − ḟ l

κk − κl
(∇1hkl)

2
)

+ κ1

(∑
k,l

f̈ kl∇2hkk∇2hll + (α − 1)
(∇2f )

2

f
+

∑
k 6=l

ḟ k − ḟ l

κk − κl
(∇2hkl)

2
)

− 2
∑
k

ḟ k(∇kh22∇kh11 − (∇kh12)
2)

+ 2
∑
k

ḟ k
(∑
p>2

κ2

κp − κ1
(∇kh1p)

2
+

∑
p>2

κ1

κp − κ2
(∇kh2p)

2
)
.

Note that by assumption the function f satisfies the inequalities (1.4) and (1.5). By the
inequality (1.4), for any k 6= l we have

ḟ k − ḟ l

κk − κl
+
ḟ k

κl
=
ḟ kκk − ḟ

lκl

(κk − κl)κl
≥ 0.

The inequality (1.5) is equivalent to

∑
k,l

f̈ klykyl ≥ f
−1
( n∑
k=1

ḟ kyk

)2
−

n∑
k=1

ḟ k

κk
y2
k
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for all (y1, . . . , yn) ∈ Rn. These imply that

f 1−α

α

(
dG

dt
+ CG

)
≥ κ2(α

(∇1f )
2

f
−

n∑
k=1

ḟ k

κk
(∇1hkk)

2
−

∑
k 6=l

ḟ k

κl
(∇1hkl)

2)

+ κ1

(
α
(∇2f )

2

f
−

n∑
k=1

ḟ k

κk
(∇2hkk)

2
−

∑
k 6=l

ḟ k

κl
(∇2hkl)

2
)

+ 2
∑
k

ḟ k
(
−∇kh11∇kh22 + (∇kh12)

2
)
+ 2

n∑
k=1

∑
p>2

ḟ k

κp
(κ2(∇1hkp)

2
+ κ1(∇2hkp)

2)

= κ2α
(∇1f )

2

f
+ κ1α

(∇2f )
2

f
+

n∑
k,p=3

ḟ k

κp
(κ2(∇1hkp)

2
+ κ1(∇2hkp)

2)

− κ2

(
ḟ 1

κ1
(∇1h11)

2
+
ḟ 2

κ2
(∇1h22)

2
+
ḟ 1

κ2
(∇1h12)

2
+
ḟ 2

κ1
(∇1h21)

2
)

− κ1

(
ḟ 1

κ1
(∇2h11)

2
+
ḟ 2

κ2
(∇2h22)

2
+
ḟ 1

κ2
(∇2h12)

2
+
ḟ 2

κ1
(∇2h21)

2
)

+ 2ḟ 1(−∇1h11∇1h22 + (∇1h12)
2)+ 2ḟ 2(−∇2h11∇2h22 + (∇2h12)

2)

+ 2ḟ 1
∑
p>2

(
κ2

κp
(∇1h1p)

2
+
κ1

κp
(∇2h1p)

2
)
+ 2ḟ 2

∑
p>2

(
κ2

κp
(∇1h2p)

2
+
κ1

κp
(∇2h2p)

2
)

+ 2
∑
k>2

ḟ k(−∇kh11∇kh22 + (∇kh12)
2). (3.5)

Since (x0,O0) is a minimum point of G at time t0, we have ∇iG = 0 for i = 1, . . . , n,
so

κ2∇ih11 + κ1∇ih22 = 0, i = 1, . . . , n. (3.6)

After substituting (3.6) into (3.5), the second to the fourth lines on the right of (3.5) vanish,
the last line becomes 2

∑
k>2 ḟ

k
(
κ1
κ2
(∇kh22)

2
+ (∇kh12)

2)
≥ 0, and the remaining terms

are non-negative.
We conclude that ∂

∂t
G ≥ −CG at a spatial minimum point, and so by the maximum

principle [20, Lemma 3.5] we have G ≥ e−Ct inft=0G > 0 under the flow (1.2). ut

4. Proof of Theorem 1.2

In this section, we will give the proof of Theorem 1.2.

4.1. Shape estimate

First, we show that the preservation of the volume of �t , together with a reflection ar-
gument, implies that the inner radius and outer radius of �t are uniformly bounded from
above and below by positive constants.
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Lemma 4.1. Denote by ρ−(t), ρ+(t) the inner radius and outer radius of�t , the domain
enclosed by Mt . Then there exist positive constants c1, c2 depending only on n,M0 such
that

0 < c1 ≤ ρ−(t) ≤ ρ+(t) ≤ c2 (4.1)

for all time t ∈ [0, T ).

Proof. We first use the Alexandrov reflection method to estimate the diameter of �t . In
[10], the first and third authors have already used the Alexandrov reflection method in the
proof of convergence of the flow. Let γ be a geodesic line in Hn+1, and let Hγ (s) be the
totally geodesic hyperbolic n-plane in Hn+1 which is perpendicular to γ at γ (s), s ∈ R.
We use the notation H+s and H−s for the half-spaces in Hn+1 determined by Hγ (s):

H+s :=
⋃
s′≥s

Hγ (s′), H−s :=
⋃
s′≤s

Hγ (s′).

For a bounded domain � in Hn+1, denote �+(s) = �∩H+s and �−(s) = �∩H−s . The
reflection map across Hγ (s) is denoted by Rγ,s . We define

S+γ (�) := inf {s ∈ R | Rγ,s(�+(s)) ⊂ �−(s)}.

It has been proved in [10] that for any geodesic line γ in Hn+1, S+γ (�t ) is strictly decreas-
ing along the flow (1.2) unless Rγ,s̄(�t ) = �t for some s̄ ∈ R. Note that to prove this
property, we only need the convexity of the evolving hypersurface Mt = ∂�t , which is
guaranteed by the positivity of the sectional curvature. The readers may refer to [13, 14]
for more details on the Alexandrov reflection method.

Fig. 1. �t cannot leave BR .
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Choose R > 0 such that the initial domain �0 is contained in some geodesic ball
BR(p) of radius R and centred at some point p in hyperbolic space. The above reflec-
tion property implies that �t ∩ BR(p) 6= ∅ for any t ∈ [0, T ). If not, there exists some
time t such that �t does not intersect the geodesic ball BR . Choose a geodesic line γ (s)
with the property that there exists a geodesic hyperplane 5 = Hγ (s0) which is perpen-
dicular to γ (s) and is tangent to the geodesic sphere ∂BR , and the domain �t lies in
the half-space H+s0 . Then Rγ,s0(�

+

0 ) = ∅ ⊂ �−0 . Since S+γ (�t ) is decreasing, we have
Rγ,s0(�

+
t ) ⊂ �−t . However, this is not possible because �−t = �t ∩ H

−
s0
= ∅ and

Rγ,s0(�
+
t ) is obviously not empty.

Fig. 2. Diameter of �t is bounded.

For any t ∈ [0, T ), let x1, x2 be points on Mt = ∂�t such that d(p, x1) =

min{d(p, x) : x ∈ Mt } and d(p, x2) = max{d(p, x) : x ∈ Mt }, where d(·, ·) is
the distance in hyperbolic space. Since �0 is contained in the geodesic ball BR(p) and
�t ∩ BR(p) 6= ∅, we deduce from |�t | = |�0| that x1 ∈ BR(p). If x2 ∈ BR(p), then
the diameter of �t is bounded from above by R. Therefore it suffices to study the case
x2 /∈ BR(p). Let γ (s) be the geodesic line passing through x1 and x2, i.e., there are
s1 < s2 ∈ R such that γ (s1) = x1 and γ (s2) = x2. We choose the geodesic plane
5 = Hγ (s0) for some s0 ∈ (s1, s2) such that 5 is perpendicular to γ and is tangent to
the boundary of BR(p) at p′ ∈ ∂BR(p). Let q = γ (s0) be the intersection point γ ∩5.
By the Alexandrov reflection property, d(x2, q) ≤ d(q, x1). Then the triangle inequality
implies

d(p, x2) ≤ d(p, x1)+ d(x1, x2) ≤ d(p, x1)+ 2d(q, x1)

≤ d(p, x1)+ 2(d(q, p′)+ d(p′, p)+ d(p, x1)) ≤ 7R,

where we used the fact x1 ∈ BR(p). This shows that the diameter of �t is uniformly
bounded along the flow (1.2).
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To estimate the lower bound of the inner radius of �t , we project the domain �t in
the hyperbolic space Hn+1 to the unit ball in the Euclidean space Rn+1 as in [10, §5].
Denote by R1,n+1 the Minkowski spacetime, that is, the vector space Rn+2 endowed with
the Minkowski spacetime metric 〈·, ·〉 given by 〈X,X〉 = −X2

0+
∑n
i=1X

2
i for any vector

X = (X0, X1, . . . , Xn) ∈ Rn+2. Then the hyperbolic space is characterized as

Hn+1
= {X ∈ R1,n+1

| 〈X,X〉 = −1, X0 > 0}.

An embedding X : Mn
→ Hn+1 induces an embedding Y : Mn

→ B1(0) ⊂ Rn+1 by

X =
(1, Y )√
1− |Y |2

.

The induced metrics gXij and gYij of X(Mn) ⊂ Hn+1 and Y (Mn) ⊂ Rn+1 are related by

gXij =
1

1− |Y |2

(
gYij +

〈Y, ∂iY 〉〈Y, ∂jY 〉

(1− |Y |2)

)
.

Let �̃t ⊂ B1(0) be the corresponding image of �t in B1(0) ⊂ Rn+1, and observe that
�̃t is a convex Euclidean domain. Then the diameter bound of �t implies the diameter
bound on �̃t . In particular, |Y | ≤ C < 1 for some constant C. This implies that the
induced metrics gXij and gYij are comparable. So the volume of �̃t is also bounded below
by a constant depending on the volume of �0 and the diameter of �t . Let ωmin(�̃t )

be the minimal width of �̃t . Then the volume of �̃t is bounded by a constant times
ωmin(�̃t )(diam(�̃t )n, since �̃t is contained in a spherical prism of height ωmin(�̃t ) and
radius diam(�̃t ). It follows thatωmin(�̃t ) is bounded from below by a positive constantC.
Since �̃t is strictly convex, an estimate of Steinhagen [29] implies that the inner radius
ρ̃−(t) of �̃t is bounded below by ρ̃−(t) ≥ c(n)ωmin ≥ C > 0, from which we obtain the
uniform positive lower bound on the inner radius ρ−(t) of�t . This finishes the proof. ut

By (4.1), the inner radius of �t is bounded below by a positive constant c1. This implies
that there exists a geodesic ball of radius c1 contained in�t for each t ∈ [0, T ). The same
argument as in [10, Lemma 4.2] yields the existence of a geodesic ball with fixed centre
enclosed by the flow hypersurface on a suitable fixed time interval.

Lemma 4.2. Let Mt be a smooth solution of the flow (1.2) on [0, T ) with the global
term φ(t) given by (1.3). For any t0 ∈ [0, T ), let Bρ0(p0) be an inball of �t0 , where
ρ0 = ρ−(t0). Then

Bρ0/2(p0) ⊂ �t , t ∈ [t0,min{T , t0 + τ }), (4.2)

for some τ depending only on n, α,�0.
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4.2. Upper bound of F

Now we can use the technique of Tso [31] as in [10] to prove the upper bound of F along
the flow (1.2) provided that F satisfies Assumption 1.1. The inequality (1.4) and the fact
that each Mt has positive sectional curvature are crucial in the proof.

Theorem 4.3. Assume that F satisfies Assumption 1.1. Then along the flow (1.2) with
any α > 0, we have F ≤ C for any t ∈ [0, T ), where C depends on n, α,M0 but not
on T .

Proof. For any given t0 ∈ [0, T ), let Bρ0(p0) be the inball of �t0 , where ρ0 = ρ−(t0).
Consider the support function u(x, t) = sinh rp0(x)〈∂rp0 , ν〉 of Mt with respect to the
point p0, where rp0(x) is the distance function in Hn+1 from the point p0. Since Mt is
strictly convex, by (4.2),

u(x, t) ≥ sinh(ρ0/2) =: 2c (4.3)

on Mt for any t ∈ [t0,min{T , t0 + τ }). On the other hand, the estimate (4.1) implies that
u(x, t) ≤ sinh(2c2) onMt for all t ∈ [t0,min{T , t0+τ }). Recall that the support function
u(x, t) evolves by

∂

∂t
u = 9̇kl∇k∇lu+ cosh rp0(x)(φ(t)−9 − 9̇

klhkl)+ 9̇
ijhki hkju, (4.4)

as we computed in [10], where 9 = F α(W). Define the auxiliary function

W(x, t) =
9(x, t)

u(x, t)− c
,

which is well-defined on Mt for all t ∈ [t0,min{T , t0 + τ }). Combining (2.12) and (4.4),
we have

∂

∂t
W = 9̇ij

(
∇j∇iW +

2
u− c

∇iu∇jW

)
−
φ(t)

u− c

(
9̇ij (hki h

j
k − δ

j
i )+W cosh rp0(x)

)
+

9

(u− c)2
(9 + 9̇klhkl) cosh rp0(x)−

c9

(u− c)2
9̇ijhki h

j
k −W9̇

ij δ
j
i .

By homogeneity of 9 and the inverse concavity of F , we have 9 + 9̇klhkl = (1+ α)9
and 9̇ijhki h

j
k ≥ αF

α+1. Moreover, by (1.4) and the fact that κ1κ2 > 1,

9̇ij (hki h
j
k − δ

j
i ) = αf

α−1
n∑
i=1

ḟ i(κ2
i − 1) ≥ αf α−1(ḟ 2(κ2

2 − 1)+ ḟ 1(κ2
1 − 1)

)
≥ αf α−1ḟ 1

(
κ1

κ2
(κ2

2 − 1)+ (κ2
1 − 1)

)
= αf α−1ḟ 1κ−1

2 (κ1κ2 − 1)(κ1 + κ2) ≥ 0,
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where we used κi ≥ 1 for i = 2, . . . , n in the first inequality. Then we arrive at

∂

∂t
W ≤ 9̇ij

(
∇j∇iW +

2
u− c

∇iu∇jW

)
+ (α + 1)W 2 cosh rp0(x) − αcW

2F. (4.5)

The remaining proof of Theorem 4.3 is the same as in [10, §4]. We include it here for
convenience of the readers. Using (4.3) and the upper bound rp0(x) ≤ 2c2, we find from
(4.5) that

∂

∂t
W ≤ 9̇ij

(
∇j∇iW +

2
u− c

∇iu∇jW

)
+W 2((α + 1) cosh(2c2)− αc

1+1/αW 1/α) (4.6)

on [t0,min{T , t0 + τ }). Let W̃ (t) = supMt
W(·, t). Then (4.6) implies that

d

dt
W̃ (t) ≤ W̃ 2((α + 1) cosh(2c2)− αc

1+1/αW̃ 1/α),
from which it follows by the maximum principle that

W̃ (t) ≤ max
{(

2(1+ α) cosh(2c2)

α

)α
c−(α+1),

(
2

1+ α

) α
1+α
c−1(t − t0)

−
α

1+α

}
. (4.7)

Then the upper bound on F follows by (4.7) and the facts that

c = 1
2 sinh(ρ0/2) ≥ 1

2 sinh(c1/2)

and u− c ≤ 2c2, where c1, c2 are the constants in (4.1) depending only on n,M0. ut

4.3. Long time existence and convergence

In this subsection, we complete the proof of Theorem 1.2. Firstly, in the case (i) of Theo-
rem 1.2, we can directly deduce a uniform estimate on the principal curvatures of Mt . In
fact, since f (κ) is bounded from above by Theorem 4.3,

C ≥ f (κ1, κ2, . . . , κn) ≥ f (κ1, 1/κ1, . . . , 1/κ1), (4.8)

where in the second inequality we used the facts that f is increasing in each argument
and κiκ1 > 1 for i = 2, . . . , n. Combining (4.8) and (1.6) gives κ1 ≥ C > 0 for some
uniform constant C. Since the dual function f∗ of f vanishes on the boundary of the
positive cone 0+ and f∗(τi) = 1/f (κi) ≥ C > 0 by Theorem 4.3, the upper bound on
τi = 1/κi ≤ C gives a lower bound on τi , which is equivalent to an upper bound on κi .
In summary, we obtain a uniform two-sided positive bound on the principal curvatures
of Mt along the flow (1.2) in case (i) of Theorem 1.2.

The examples of f satisfying Assumption 1.1 and condition (i) of Theorem 1.2 in-
clude

(a) n ≥ 2, f = n−1/kS
1/k
k with k > 0;

(b) n ≥ 3, f = E1/k
k with k = 1, . . . , n;

(c) n = 2, f = (κ1 + κ2)/2.
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We next consider case (ii) of Theorem 1.2, i.e., n = 2, f = (κ1κ2)
1/2. In general, the

estimate 1 ≤ κ1κ2 = f (κ) ≤ C cannot prevent κ2 from going to infinity. Instead, we
will prove that the pinching ratio κ2/κ1 is bounded from above along the flow (1.2) with
f = (κ1κ2)

1/2 and α ∈ [1/2, 2]. This together with the estimate 1 ≤ κ1κ2 ≤ C yields a
uniform estimate on κ1 and κ2.

Lemma 4.4. In the case n = 2, f = (κ1κ2)
1/2 and α ∈ [1/2, 2], the principal curvatures

κ1, κ2 of Mt satisfy

0 < 1/C ≤ κ1 ≤ κ2 ≤ C, ∀t ∈ [0, T ), (4.9)

for some positive constant C along the flow (1.2).

Proof. In this case, 9(W) = ψ(κ) = Kα/2, where K = κ1κ2 is the Gauss curvature.
The derivatives of ψ with respect to κi are listed in the following:

ψ̇1
=
α

2
Kα/2−1κ2, ψ̇2

=
α

2
Kα/2−1κ1, (4.10)

ψ̈11
=
α

2

(
α

2
− 1

)
Kα/2−2κ2

2 , ψ̈22
=
α

2

(
α

2
− 1

)
Kα/2−2κ2

1 , (4.11)

ψ̈12
= ψ̈21

=
α2

4
Kα/2−1. (4.12)

Then

9̇ijhki h
j
k =

n∑
i=1

ψ̇ iκ2
i =

α

2
Kα/2H, (4.13)

9̇ij δ
j
i =

n∑
i=1

ψ̇ i =
α

2
Kα/2−1H, 9̇ijh

j
i = αK

α/2, (4.14)

where H = κ1 + κ2 is the mean curvature.
To prove (4.9), we define

G = Kα−2(H 2
− 4K)

and aim to prove that G(x, t) ≤ maxM0 G(x, 0) by the maximum principle. Using (4.13)
and (4.14), the evolution equations (2.12) and (2.13) imply that

∂

∂t
K = 9̇kl∇k∇lK +

(
α

2
− 1

)
K−19̇kl∇kK∇lK + (K

α/2
− φ(t))(K − 1)H (4.15)

and
∂

∂t
H = 9̇kl∇k∇lH + 9̈

kl,pq
∇ihkl∇

ihpq

+Kα/2−1
(
K +

α

2
(1−K)

)
(H 2
− 4K)+ 2Kα/2(K − 1)

− φ(t)(H 2
− 2K − 2). (4.16)
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By a direct computation using (4.15) and (4.16), we obtain the evolution equation of G:

∂

∂t
G = 9̇kl∇k∇lG− 2(α − 2)K−19̇kl∇kK∇lG

+ (α − 2)(3α/2− 2)Kα−49̇kl∇kK∇lK(H
2
− 4K)

− 2Kα−29̇kl∇kH∇lH − 2(α − 2)Kα−39̇kl∇kK∇lK

+ 2HKα−29̈kl,pq∇ihkl∇
ihpq

+ 2HK3α/2−3(H 2
− 4K)−HKα−3(H 2

− 4K)(αK + 2− α)φ(t). (4.17)

We will apply the maximum principle to prove that maxMt G is non-increasing in time
along the flow (1.2). We first look at the zero order terms of (4.17), i.e., the terms in the
last line of (4.17), which we denote by Q0. Since K = κ1κ2 > 1 by Theorem 3.1, we
have

φ(t) =
1
|Mt |

∫
Mt

Kα/2
≥ 1 and αK + 2− α > 2.

We also have H 2
− 4K = (κ1 − κ2)

2
≥ 0. Then

Q0 ≤ 2HK3α/2−3(H 2
− 4K)−HKα−3(H 2

− 4K)(αK + 2− α)

= HKα−3(H 2
− 4K)(2Kα/2

− αK + α − 2).

For any K > 1, denote f (α) = 2Kα/2
− αK + α − 2. Then f (2) = f (0) = 0 and f (α)

is a convex function of α. Therefore f (α) ≤ 0 and Q0 ≤ 0 provided that α ∈ [0, 2].
At the critical point of G, we have ∇iG = 0 for all i = 1, 2, which is equivalent to

2H∇iH =
(
4(α − 1)− (α − 2)K−1H 2)

∇iK. (4.18)

Then the gradient terms (denoted by Q1) of (4.17) at the critical point of G satisfy

Q1K
3−α
=

(
−8(α − 1)2

K

H 2 − 2(α − 1)(α − 2)+ (α − 1)(α − 2)
H 2

K

)
× 9̇kl∇kK∇lK + 2HK9̈kl,pq∇ihkl∇ihpq . (4.19)

Using (4.10)–(4.12), we have

9̇kl∇kK∇lK =
α

2
Kα/2−1(κ2(∇1K)

2
+ κ1(∇2K)

2),

9̈kl,pq∇ihkl∇
ihpq =

α

2

(
α

2
− 1

)
Kα/2−2

2∑
i=1

(κ2
2 (∇ih11)

2
+ κ2

1 (∇ih22)
2)

+
α2

2
Kα/2−1

2∑
i=1

∇ih11∇ih22 − αK
α/2−1

2∑
i=1

(∇ih12)
2

=
α

2

(
α

2
− 1

)
Kα/2−2((∇1K)

2
+ (∇2K)

2)

+ αKα/2−1(
∇1h11∇1h22−(∇1h12)

2
+∇2h11∇2h22−(∇2h12)

2).
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The equation (4.18) implies that ∇ih11 and ∇ih22 are linearly dependent, i.e., there exist
functions g1, g2 such that

g1∇ih11 = g2∇ih22. (4.20)

The functions g1, g2 can be expressed explicitly as follows:

g1 = 2HK − (4(α − 1)K + (2− α)H 2)κ2,

g2 = −2HK + (4(α − 1)K + (2− α)H 2)κ1.

Without loss of generality, we can assume that both g1 and g2 are non-zero at the critical
point of G. In fact, if g1 = 0, then

0 = g1 =
(
(α − 2)(H 2

− 4K)+ 2Hκ1 − 4K
)
κ2

=
(
(α − 2)(κ1 − κ2)+ 2κ1

)
(κ1 − κ2)κ2. (4.21)

Since α ≤ 2, we have (α − 2)(κ1 − κ2) + 2κ1 ≥ 2κ1 > 0. Thus (4.21) is equivalent to
κ2 = κ1 and we have nothing to prove.

By (4.20), we have

(∇1K)
2
= (κ2 + g

−1
2 g1κ1)

2(∇1h11)
2
= g−2

2 4H 2K2(H 2
− 4K)(∇1h11)

2,

(∇2K)
2
= (κ2g

−1
1 g2 + κ1)

2(∇2h22)
2
= g−2

1 4H 2K2(H 2
− 4K)(∇2h22)

2.

In view of the Codazzi identity, the equation (4.20) also implies that

∇1h11∇1h22 − (∇1h12)
2
+∇2h11∇2h22 − (∇2h12)

2

= ∇1h11∇1h22 − (∇1h22)
2
+∇2h11∇2h22 − (∇2h11)

2

= g−2
2 g1(g2 − g1)(∇1h11)

2
+ g−2

1 g2(g1 − g2)(∇2h22)
2

= (2− α)(H 2
− 4K)

(
g−2

2 g1(∇1h11)
2
+ g−2

1 g2(∇2h22)
2).

Therefore we can write the right-hand side of (4.19) as a linear combination of (∇1h11)
2

and (∇2h22)
2:

2
α
Q1K

4−3α/2
= q1g

−2
2 (∇1h11)

2
+ q2g

−2
1 (∇2h22)

2, (4.22)

where the coefficients q1, q2 satisfy

q1 =

(
−8(α − 1)2

K2

H 2 + 2(α − 1)(α − 2)K + (α − 2)H 2
)

4H 2K(H 2
− 4K)κ2

+ 4(2− α)H 3K2(H 2
− 4K)

= −32(α − 1)2K3(H 2
− 4K)κ2 − 4(2− α)(2α − 1)H 2K2(H 2

− 4K)κ2

− 4(2− α)H 2K(H 2
− 4K)κ3

2



Volume preserving flow 2493

and

q2 = −32(α − 1)2K3(H 2
− 4K)κ1 − 4(2− α)(2α − 1)H 2K2(H 2

− 4K)κ1

− 4(2− α)H 2K(H 2
− 4K)κ3

1 .

It can be checked directly that q1 and q2 are both non-positive if α ∈ [1/2, 2]. Thus
the gradient terms Q1 of (4.17) are non-positive at a critical point of G if α ∈ [1/2, 2].
The maximum principle implies that maxMt G is non-increasing in time. It follows that
G(x, t) ≤ maxM0 G(x, 0). Since 1 < K ≤ C for some constant C > 0 by Theorems 3.1
and 4.3, we have

H 2
= 4K +Kα−2G ≤ C. (4.23)

Finally, the estimate (4.9) follows from (4.23) and K > 1 immediately. ut

Now we have proved that the principal curvatures κi of Mt satisfy the uniform estimate
0 < 1/C ≤ κi ≤ C for some constant C > 0, which is equivalent to the C2 estimate
for Mt . Since the functions f we considered in Theorem 1.2 are inverse concave, we can
apply an argument similar to that in [10, §5] to derive higher regularity estimates. The
standard continuation argument then implies the long time existence of the flow, and the
argument in [10, §6] implies the smooth convergence to a geodesic sphere as time goes
to infinity.

5. Horospherically convex regions

In this section we will investigate some of the properties of horospherically convex re-
gions in hyperbolic space (that is, regions which are given by the intersection of a collec-
tion of horoballs). In particular, for such regions we define a horospherical Gauss map,
which is a map to the unit sphere, and we show that each horospherically convex region
is completely described in terms of a scalar function on the sphere which we call the
horospherical support function. There are interesting formal similarities between this sit-
uation and that of convex Euclidean bodies. For the purposes of this paper the main result
we need is that the modified quermassintegrals are monotone with respect to inclusion
for horospherically convex domains. However we expect that the description of horo-
spherically convex regions which we develop here will be useful in further investigations
beyond the scope of this paper.

We remark that a similar development is presented in [15], but in a slightly different
context: In that paper the ‘horospherically convex’ regions are those which are intersec-
tions of complements of horoballs (corresponding to principal curvatures greater than−1
everywhere, while we deal with regions which are intersections of horoballs, correspond-
ing to principal curvatures greater than 1. Our condition is more stringent but is more
useful for the evolution equations we consider here.

5.1. The horospherical Gauss map

The horospheres in hyperbolic space are the submanifolds with constant principal curva-
tures equal to 1 everywhere. If we identify Hn+1 with the future time-like hyperboloid
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in the Minkowski space Rn+1,1, then the condition of constant principal curvatures equal
to 1 implies that the null vector ē := X−ν is constant on the hypersurface, since we have
W = I, and hence

Dv ē = Dv(X − ν) = DX((I−W)(v)) = 0

for all tangent vectors v. Then we observe that

X · ē = X · (X − ν) = −1,

from which it follows that the horosphere is the intersection of the null hyperplane {X |
X · ē = −1} with the hyperboloid Hn+1. The horospheres are therefore in one-to-one
correspondence with points ē in the future null cone which are given by {ē = λ(e, 1) |
e ∈ Sn, λ > 0}, and there is a one-parameter family of these for each e ∈ Sn. For
convenience we parametrise these by their signed geodesic distance s from the ‘north
pole’ N = (0, 1) ∈ Hn+1, satisfying −1 = λ(cosh(s)N + sinh(s)(e, 0)) · (e, 1) = −λes .
It follows that λ = e−s . Thus we denote byHe(s) the horosphere {X ∈ Hn+1

| X·(e, 1) =
−es}. The interior region (called a horoball) is denoted by

Be(s) = {X ∈ Hn+1
| 0 > X · (e, 1) > −es}.

A region � in Hn+1 is horospherically convex (or h-convex for convenience) if every
boundary point p of ∂� has a supporting horoball, i.e. a horoball B such that � ⊂ B

and p ∈ ∂B. If the boundary of � is a smooth hypersurface, then this implies that every
principal curvature of ∂� is greater than or equal to 1 at p. We say that � is uniformly
h-convex if there is δ > 0 such that all principal curvatures exceed 1+ δ.

Let Mn
= ∂� be a hypersurface which is the boundary of a horospherically convex

region �. Then the horospherical Gauss map e : M → Sn assigns to each p ∈ M
the point e(p) = π(X(p) − ν(p)) ∈ Sn, where π(x, y) = x/y is the radial projection
from the future null cone onto the sphere Sn × {1}. We observe that the derivative of e is
non-singular if M is uniformly h-convex: If v is a tangent vector to M , then

De(v) = Dπ |X−ν((W − I)(v)).

Here ṽ = (W− I)(v) is a non-zero tangent vector toM since the eigenvalues κi of W are
greater than 1. In particular ṽ is spacelike. On the other hand the kernel of Dπ |X−ν is the
line R(X − ν) consisting of null vectors. Therefore Dπ(ṽ) 6= 0. Thus De is an injective
linear map, hence an isomorphism. It follows that e is a diffeomorphism from M to Sn.

5.2. The horospherical support function

Let Mn
= ∂� be the boundary of a compact h-convex region. Then for each e ∈ Sn we

define the horospherical support function of � (or M) in direction e by

u(e) := inf {s ∈ R | � ⊂ Be(s)}.
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Alternatively, define fe : Hn+1
→ R by fe(ξ) = log(−ξ · (e, 1)). This is a smooth

function on Hn+1, and we have the alternative characterisation

u(e) = sup {fe(ξ) : ξ ∈ �}. (5.1)

The function u is called the horospherical support function of the region�, and Be(u(e))
is the supporting horoball in direction e. The support function completely determines a
horospherically convex region �, as an intersection of horoballs:

� =
⋂

e∈Sn
Be(u(e)). (5.2)

5.3. Recovering the region from the support function

If the region is uniformly h-convex, in the sense that all principal curvatures are greater
than 1, then there is a unique point of M in the boundary of the supporting horoball
Be(u(e)). We denote this point by X̄(e). We observe that X̄ = X ◦ e−1, so ifM is smooth
and uniformly h-convex (so that e is a diffeomorphism) then X̄ is a smooth embedding.

We will show that X̄ can be written in terms of the support function u, as follows:
Choose local coordinates {xi} for Sn near e. We write X̄(e) as a linear combination of the
basis consisting of the two null elements (e, 1) and (−e, 1), together with (ej , 0), where
ej = ∂e

∂xj
for j = 1, . . . , n:

X̄(e) = α(−e, 1)+ β(e, 1)+ γ j (ej , 0)

for some coefficients α, β, γ j . Since X̄(e) ∈ Hn+1 we have |γ |2 − 4αβ = −1, so that
β =

1+|γ |2
4α . We also know that X̄(e) · (e, 1) = −eu(e) since X̄(e) ∈ He(u(e)), implying

that α = 1
2 eu. This gives

X̄(e) = 1
2 eu(e)(−e, 1)+ 1

2 e−u(e)(1+ |γ |2)(e, 1)+ γ j (ej , 0).

Furthermore, the normal to M at the point X̄(e) must coincide with the normal to the
horosphere He(u(e)), which is given by

ν = X̄ − ē = X̄ − e−u(e)(e, 1). (5.3)

Since |X̄|2 = −1 we have ∂j X̄ · X̄ = 0, and hence

0 = ∂j X̄ · ν = ∂j X̄ · (X̄ − e−u(e, 1)) = −e−u∂jX · (e, 1).

Observing that (e, 1) · (e, 1) = 0 and (ei, 0) · (e, 1) = 0, and that ∂j ei = −ḡij e and
∂j e = ej , the condition becomes

0 = ∂jX · (e, 1) =
( 1

2 euuj (−e, 1)− γj (e, 0)
)
· (e, 1) = −euuj − γj ,

where γj = γ i ḡij and ḡ is the standard metric on Sn. It follows that we must have
γj = −euuj . This gives the following expressions for X̄:

X̄(e) =
(
−eu∇̄u+

( 1
2 eu|∇̄u|2 − sinh u

)
e, 1

2 eu|∇̄u|2 + cosh u
)

(5.4)

= −euupḡpg(eq , 0)+ 1
2 (e

u
|∇̄u|2 + e−u)(e, 1)+ 1

2 eu(−e, 1). (5.5)
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5.4. A condition for horospherical convexity

Given a smooth function u, we can use the expression (5.4) to define a map to hyperbolic
space. In this section we determine when the resulting map is an embedding defining a
horospherically convex hypersurface.

In order for X̄ to be an immersion, we require the derivatives ∂j X̄ to be linearly
independent. Since we have constructed X̄ in such a way that ∂jX is orthogonal to the
normal vector ν to the horosphere Be(u(e)), ∂j X̄ is a linear combination of the basis for
the space orthogonal to ν and X̄ given by the projections Ek of (ek, 0), k = 1, . . . , n.
Computing explicitly, we find

Ek = (ek, 0)− uk(e, 1). (5.6)

The immersion condition is therefore equivalent to invertibility of the matrix A defined
by

Ajk = −∂j X̄ · Ek.

Given that A is non-singular, we infer that X̄ is an immersion with unit normal vector
ν(e), and we can differentiate the equation X − ν = e−u(e, 1) to obtain

−(h
p
j − δ

p
j )∂pX = −uj e−u(e, 1)+ e−u(ej , 0).

Taking the inner product with Ek using (5.6), we obtain

(h
p
j − δ

p
j )Apk = e−uḡjk. (5.7)

It follows that A is non-singular precisely when W − I is non-singular, and is given by

Ajk = e−u[(W − I)−1
]
p
j ḡpk. (5.8)

In particular, A is symmetric, and W − I is positive definite (corresponding to uniform
h-convexity) if and only if the matrix A is positive definite. We conclude that if u is
a smooth function on Sn, then the map X defines an embedding to the boundary of a
uniformly h-convex region if and only if the tensorA computed from u is positive definite.

Computing A explicitly using (5.5), we obtain

Ajk =
(
(∇̄j (eu∇̄u), 0)− euuj (e, 0)− 1

2∂j (e
u
|∇̄u|2 + e−u)(e, 1)

−
1
2 euuj (−e, 1)−

( 1
2 eu|∇u|2 − sinh u

)
(ej , 0)

)
· ((ek, 0)− uk(e, 1))

= ∇̄j (eu∇̄ku)− 1
2 eu|∇̄u|2ḡjk + sinh uḡjk.

It is convenient to write this in terms of the function ϕ = eu:

Ajk = ∇̄j ∇̄kϕ −
|∇̄ϕ|2

2ϕ
ḡjk +

ϕ − ϕ−1

2
ḡjk. (5.9)
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5.5. Monotonicity of the modified quermassintegrals

We will prove that the modified quermassintegrals W̃k are monotone with respect to in-
clusion by making use of the following result:

Proposition 5.1. Suppose that �1 ⊂ �2 are smooth, strictly h-convex domains in Hn+1.
Then there exists a smooth map X : Sn × [0, 1] → Hn+1 such that
(1) X(·, t) is a uniformly h-convex embedding of Sn for each t;
(2) X(Sn, 0) = ∂�0 and X(Sn, 1) = ∂�1;
(3) the hypersurfaces Mt = X(S

n, t) are expanding, in the sense that ∂X
∂t
· ν ≥ 0, equiv-

alently, the enclosed regions �t are nested: �s ⊂ �t for each s ≤ t in [0, 1].
Proof. Let u0 and u1 be the horospherical support functions of �0 and �1 respectively,
The inclusion �0 ⊂ �1 implies that u0(e) ≤ u1(e) for all e ∈ Sn, by (5.1).

We define X(e, t) = X̄[u(e, t)] according to (5.4), where

eu(e,t) = ϕ(e, t) := (1− t)ϕ0(e)+ tϕ1(e),

where ϕi = eui for i = 0, 1. Then u(e, t) is increasing in t , and it follows that the
regions �t are nested, by (5.2).

We check that each �t is a strictly h-convex region, by showing that the matrix A
constructed from u(·, t) is positive definite for each t : We have

Ajk[u(·, t)] = ∇̄j ∇̄kϕt −
|∇̄ϕt |

2

2ϕt
ḡjk +

ϕt − ϕ
−1
t

2
ḡjk

= (1− t)Ajk[u0] + tAjk[u1]

+
1
2

(
−
|(1− t)∇̄ϕ0 + t∇̄ϕ1|

2

(1− t)ϕ0 + tϕ1
+ (1− t)

|∇̄ϕ0|
2

ϕ0
+ t
|∇̄ϕ1|

2

ϕ1

)
ḡjk

+
1
2

(
−

1
(1− t)ϕ0 + tϕ1

+
1− t
ϕ0
+

t

ϕ1

)
ḡjk

= (1− t)Ajk[u0] + tAjk[u1] + t (1− t)
|ϕ0∇̄ϕ1−ϕ1∇̄ϕ0|

2
+ |ϕ1−ϕ0|

2

2ϕ0ϕ1((1− t)ϕ0+ tϕ1)
ḡjk

≥ (1− t)Ajk[u0] + tAjk[u1].

Since Ajk[u0] and Ajk[u1] are positive definite, so is Ajk[ut ] for each t ∈ [0, 1], and we
conclude that the region �t is uniformly h-convex. ut

Corollary 5.2. The modified quermassintegral W̃k is monotone with respect to inclusion
for h-convex domains: if�0 and�1 are h-convex domains with�0 ⊂ �1, then W̃k(�0) ≤

W̃k(�1).
Proof. We use the map X constructed in Proposition 5.1. By Lemma 2.4 we have

d

dt
W̃k(�t ) =

∫
Mt

Ek(λ)
∂X

∂t
· ν dµt .

Since each Mt is h-convex, we have λi > 0 and hence Ek(λ) > 0, and from Propo-
sition 5.1 we have ∂X

∂t
· ν ≥ 0. It follows that d

dt
W̃k(�t ) ≥ 0 for each t , and hence

W̃k(�0) ≤ W̃k(�1) as claimed. ut
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5.6. Evolution of the horospherical support function

We end this section with the following observation that the flow (1.18) of h-convex hyper-
surfaces is equivalent to an initial value problem for the horospherical support function.

Proposition 5.3. The flow (1.18) of h-convex hypersurfaces in Hn+1 is equivalent to the
following initial value problem:

∂

∂t
ϕ = − F((Aij )

−1)+ ϕφ(t),

ϕ(·, 0) = ϕ0(·)

(5.10)

on Sn × [0, T ), where ϕ = eu and Aij is the matrix defined in (5.9).

Proof. Suppose that X(·, t) : M → Hn+1, t ∈ [0, T ), is a family of smooth, closed
and strictly h-convex hypersurfaces satisfying the flow (1.18). Then as explained in §5.1,
the horospherical Gauss map e is a diffeomorphism from Mt = X(M, t) to Sn. We can
reparametriseMt so that X̄ = X◦e−1 is a family of smooth embeddings from Sn to Hn+1.
Then

∂

∂t
X̄(z, t) =

∂

∂t
X(p, t)+

∂X

∂pi

∂pi

∂t
,

where z ∈ Sn and p = e−1(z) ∈ Mt . Since ∂X
∂pi

is tangent to Mt , we have

∂

∂t
X̄(z, t) · ν(z, t) =

∂

∂t
X(p, t) · ν(z, t) = φ(t)− F(W − I). (5.11)

On the other hand, by (5.3) we have

X̄(z, t)− ν(z, t) = e−u(z,t)(z, 1), (5.12)

where u(·, t) is the horospherical support function of Mt and (z, 1) ∈ Rn+1,1 is a null
vector. Differentiating (5.12) in time gives

∂

∂t
X̄(z, t)−

∂

∂t
ν(z, t) = −e−u(z,t)

∂u

∂t
(z, 1).

Then

∂

∂t
X̄(z, t) · ν(z, t) = −e−u(z,t)

∂u

∂t
(z, 1) · ν(z, t)

= −e−u(z,t)
∂u

∂t
(z, 1) · (X̄(z, t)− e−u(z,t)(z, 1))

= −e−u(z,t)
∂u

∂t
(z, 1) ·

1
2

eu(z,t)(−z, 1)

=
∂u

∂t
, (5.13)
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where we used (5.3) and (5.5). Combining (5.11) and (5.13) implies that

∂u

∂t
= φ(t)− F(W − I). (5.14)

Therefore ϕ = eu satisfies

∂ϕ

∂t
= euφ(t)− F(eu(W − I)) = ϕφ(t)− F((Aij )−1) (5.15)

with Aij defined in (5.9).
Conversely, suppose that we have a smooth solution ϕ(·, t) of the initial value problem

(5.10) with Aij positive definite. Then by the discussion in §5.4, the map X̄ given in (5.5)
using the function u = logϕ defines a family of smooth h-convex hypersurfaces in Hn+1.
We claim that we can find a family of diffeomorphisms ξ(·, t) : Sn → Sn such that
X(z, t) = X̄(ξ(z, t), t) solves the flow equation (1.18). Since

∂

∂t
X(z, t) =

∂

∂t
X̄(ξ, t)+ ∂iX̄

∂ξ i

∂t

=

(
∂

∂t
X̄(ξ, t) · ν(ξ, t)

)
ν(ξ, t)+

(
∂

∂t
X̄(ξ, t)

)>
+ ∂iX̄

∂ξ i

∂t

= (φ(t)− F(W − I ))ν(ξ, t)+
(
∂

∂t
X̄(ξ, t)

)>
+ ∂iX̄

∂ξ i

∂t
,

where (·)> denotes the tangential part, it suffices to find a family of diffeomorphisms
ξ(·, t) : Sn→ Sn such that (

∂

∂t
X̄(ξ, t)

)>
+ ∂iX̄

∂ξ i

∂t
= 0,

which is equivalent to (
∂

∂t
X̄(ξ, t)

)>
· Ej − Aij

∂ξ i

∂t
= 0. (5.16)

By the assumption that Aij is positive definite on Sn × [0, T ), the standard theory of
ordinary differential equations implies that the system (5.16) has a unique smooth solution
for the initial condition ξ(z, 0) = z. This completes the proof. ut

6. Proof of Theorem 1.7

In this section, we will give the proof of Theorem 1.7.

6.1. Pinching estimate

Firstly, we prove the following pinching estimate for the shifted principal curvatures of
the evolving hypersurfaces along the flow (1.18).
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Proposition 6.1. LetMt be a smooth solution to the flow (1.18) on [0, T ) and assume that
F satisfies the assumption in Theorem 1.7. Then there exists a constant C > 0 depending
only on M0 such that

λn ≤ Cλ1 (6.1)

for all t ∈ [0, T ), where λn = κn − 1 is the largest shifted principal curvature and
λ1 = κ1 − 1 is the smallest shifted principal curvature.

Proof. We consider the four cases of F separately.
(i) F is concave and F vanishes on the boundary of the positive cone 0+. Define

G = F−1 tr(S) on M × [0, T ). Then (2.14) and (2.16) imply that

∂

∂t
G = F−1 ∂

∂t
tr(S)−F−2 tr(S)

∂

∂t
F

= Ḟ kl∇k∇lG+ 2F−1Ḟ kl∇kF∇lG+F
−1

n∑
i=1

F̈ kl,pq∇ihkl∇
ihpq

+φ(t)f−2
(

tr(S)
∑
k

ḟ kλ2
k−f |S|

2
)
+f−1

(
n
∑
k

ḟ kλ2
k−|S|

2
∑
k

ḟ k
)
. (6.2)

Since F is concave, by the inequality (2.2) we have

tr(S)
∑
k

ḟ kλ2
k − f |S|

2
=

∑
k,l

(ḟ kλ2
kλl − ḟ

kλkλ
2
l )

=
1
2

∑
k,l

(ḟ k − ḟ l)(λk − λl)λkλl ≤ 0,

and

n
∑
k

ḟ kλ2
k − |S|

2
∑
k

ḟ k =
∑
k,l

(ḟ kλ2
k − ḟ

kλ2
l )

=
1
2

∑
k,l

(ḟ k − ḟ l)(λ2
k − λ

2
l ) ≤ 0.

Thus the zero order terms on the right of (6.2) are always non-positive. The concavity
of F also implies that the third term there is non-positive. Then we have

∂

∂t
G ≤ Ḟ kl∇k∇lG+ 2F−1Ḟ kl∇kF∇lG. (6.3)

The maximum principle implies that the supremum of G over Mt is decreasing in time
along the flow (1.18). The assumption that f approaches zero on the boundary of the
positive cone 0+ then guarantees that the region {G(t) ≤ supt=0G} ⊂ 0+ does not
touch the boundary of 0+. Since G is homogeneous of degree zero with respect to λi ,
this implies that λn ≤ Cλ1 for some constant C > 0 depending only on M0 for all
t ∈ [0, T ).

(ii) F is concave and inverse concave. Define a tensor Tij = Sij − ε tr(S)δji , where ε
is chosen such that Tij is positive definite initially. Clearly, 0 < ε ≤ 1/n. The evolution
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equation (2.16) implies that
∂

∂t
Tij = Ḟ

kl
∇k∇lTij + F̈

kl,pq
∇ihkl∇jhpq − ε

( n∑
i=1

F̈ kl,pq∇ihkl∇
ihpq

)
δ
j
i

+

( n∑
k=1

ḟ kλ2
k + 2f − 2φ(t)

)
Tij −

(
φ(t)+

n∑
k=1

ḟ k
)
(T ki Tkj + 2ε tr(S)Tij )

+ ε
(
φ(t)+

n∑
k=1

ḟ k
)
(|S|2 − ε(tr(S))2)δji +

n∑
k=1

ḟ kλ2
k(1− εn)δ

j
i . (6.4)

We will apply the tensor maximum principle in Theorem 2.5 to show that Tij is positive
definite for t > 0. If not, there exists a first time t0 > 0 and some point x0 ∈ Mt0 such
that Tij has a null vector v ∈ Tx0Mt0 , i.e., Tijvj = 0 at (x0, t0). The second line of
(6.4) satisfies the null vector condition and can be ignored. The last line of (6.4) is also
non-negative, since 0 < ε < 1/n and |S|2 ≥ (tr(S))2/n. For the gradient terms in (6.4),
Theorem 4.1 of [4] implies that

F̈ kl,pq∇ihkl∇jhpqv
ivj − ε

( n∑
i=1

F̈ kl,pq∇ihkl∇
ihpq

)
|v|2

+ sup
3

2akl(23pk∇lTipv
i
−3

p
k3

q
l Tpq) ≥ 0

for the null vector v provided that F is concave and inverse concave. Thus by Theo-
rem 2.5, the tensor Tij is positive definite for t ∈ [0, T ). Equivalently,

λ1 ≥ ε(λ1 + · · · + λn)

for any t ∈ [0, T ), which implies the pinching estimate (6.1).
(iii) F is inverse concave and F∗ approaches zero on the boundary of 0+. In this case,

we define Tij = Sij − εFδ
j
i , where ε is chosen such that Tij is positive definite initially.

By (2.14) and (2.16),
∂

∂t
Tij = Ḟ

kl
∇k∇lTij + F̈

kl,pq
∇ihkl∇

jhpq + (ḟ
kλ2
k + 2f − 2φ(t))Sij

− (φ(t)+

n∑
k=1

ḟ k)SikSkj + ḟ
kλ2
kδ
j
i − ε(F − φ(t))ḟ

kλk(λk + 2)δji . (6.5)

Suppose v = e1 is the null eigenvector of Tij at (x0, t0) for some first time t0 > 0. Denote
the zero order terms of (6.5) by Q0. At the point (x0, t0), εF is the smallest eigenvalue
of Sij with corresponding eigenvector v. Then

Q0v
ivj = (ḟ kλ2

k + 2f − 2φ(t))εf |v|2 + (f − φ(t)− ḟ kκk)ε2f 2
|v|2

+ ḟ kλ2
k|v|

2
− ε(f − φ(t))ḟ kλk(λk + 2)|v|2

= ḟ kλ2
k(1+ εφ(t))|v|

2
− ε2f 2

(∑
k

ḟ k + φ(t)
)
|v|2

= |v|2
(
ḟ kλkε(λk − εf )φ(t)+

∑
k

ḟ k(λ2
k − ε

2f 2)
)
≥ 0.



2502 Ben Andrews et al.

By Theorem 2.5, to show that Tij remains positive definite for t > 0, it suffices to show
that

Q1 := F̈
kl,pq
∇1hkl∇1hpq + 2 sup

3

Ḟ kl(23pk∇lT1p −3
p
k3

q
l Tpq) ≥ 0.

Noting that T11 = 0 and ∇kT11 = 0 at (x0, t0), the supremum over 3 can be computed
exactly as follows:

2Ḟ kl(23pk∇lT1p −3
p
k3

q
l Tpq) = 2

n∑
k=1

n∑
p=2

ḟ k(23pk∇kT1p − (3
p
k )

2Tpp)

= 2
n∑
k=1

n∑
p=2

ḟ k
(
(∇kT1p)

2

Tpp
−

(
3
p
k −
∇kT1p

Tpp

)2

Tpp

)
.

It follows that the supremum is obtained by choosing 3pk =
∇kT1p
Tpp

. The required inequal-
ity for Q1 becomes

Q1 = F̈
kl,pq
∇1hkl∇1hpq + 2

n∑
k=1

n∑
p=2

ḟ k
(∇kT1p)

2

Tpp
≥ 0.

Using (2.1) to express the second derivatives of F and noting that ∇kT1p = ∇kh1p −

ε∇kFδ
p

1 = ∇kh1p at (x0, t0) for p 6= 1, we have

Q1 = f̈
kl
∇1hkk∇1hll + 2

∑
k>l

ḟ k − ḟ l

λk − λl
(∇1hkl)

2
+ 2

n∑
k=1

n∑
l=2

ḟ k

λl − εF
(∇1hkl)

2. (6.6)

Since f is inverse concave, the inequality (2.3) implies that the first term of the right-hand
side of (6.6) satisfies

f̈ kl∇1hkk∇1hll ≥ 2f−1
( n∑
k=1

ḟ k∇1hkk

)2
− 2

∑
k

ḟ k

λk
(∇1hkk)

2

= 2f−1(∇1F)
2
− 2

∑
k

ḟ k

λk
(∇1hkk)

2.

Then

Q1 ≥ 2f−1(∇1F)
2
− 2

∑
k

ḟ k

λk
(∇1hkk)

2

+ 2
∑
k>l

ḟ k − ḟ l

λk − λl
(∇1hkl)

2
+ 2

n∑
k=1

n∑
l=2

ḟ k

λl − εF
(∇1hkl)

2

≥ 2f−1(∇1F)
2
− 2

ḟ 1

λ1
(∇1h11)

2
− 2

∑
k>1

ḟ k

λk
(∇1hkk)

2

+ 2
∑
k>1

ḟ k − ḟ 1

λk − λ1
(∇kh11)

2
− 2

∑
k 6=l>1

ḟ k

λl
(∇1hkl)

2

+ 2
∑
k>1

ḟ 1

λk − εF
(∇kh11)

2
+ 2

∑
k>1,l>1

ḟ k

λl − εF
(∇1hkl)

2
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= 2f−1(∇1F)
2
− 2

ḟ 1

λ1
(∇1h11)

2
+ 2

∑
k>1

ḟ k

λk − λ1
(∇kh11)

2

+ 2
∑

k>1,l>1

ḟ k
(

1
λl − εF

−
1
λl

)
(∇1hkl)

2

≥ 2
(

1
ε2F
−
ḟ 1

λ1

)
(∇1h11)

2
= 2

(∑n
k=1 ḟ

kλk

ε2F 2 −
ḟ 1

λ1

)
(∇1h11)

2
≥ 0,

where we used λ1 = εF and ∇kh11 = ε∇kF at (x0, t0), and the inequality in (2.4) due
to the inverse concavity of f . Theorem 2.5 implies that Tij remains positive definite for
t ∈ [0, T ). Equivalently,

1
λ1
≤

1
ε
f (λ)−1

=
1
ε
f∗

(
1
λ1
, . . . ,

1
λn

)
(6.7)

for all t ∈ [0, T ). Since f∗ approaches zero on the boundary of the positive cone 0+, the
estimate (6.7) and Lemma 12 of [9] give the pinching estimate (6.1).

(iv) n = 2. In this case, we do not need any second derivative condition on F . Define

G =

(
λ2 − λ1

λ2 + λ1

)2

.

Then G is homogeneous of degree zero in the shifted principal curvatures λ1, λ2. The
evolution equation (2.16) implies that

∂

∂t
G = Ḟ kl∇k∇lG+ (Ġ

ij F̈ kl,pq − Ḟ ij G̈kl,pq)∇iSkl∇
jSpq

−

(
φ(t)+

∑
k

ḟ k
)
ĠijSikSkj +

(∑
k

ḟ kλ2
k

)
Ġij δ

j
i . (6.8)

The zero order terms of (6.8) are equal to

Q0 = −4G
λ1λ2

λ1 + λ2

(
φ(t)+

∑
k

ḟ k
)
−

4G
λ1 + λ2

∑
k

ḟ kλ2
k ≤ 0.

The same argument as in [5] shows that the gradient terms of (6.8) are non-positive at the
critical point ofG. Then the maximum principle implies that the supremum ofG overMt

is non-increasing in time along the flow (1.18). This gives the pinching estimate (6.1) and
the strict h-convexity of Mt for all t ∈ [0, T ). ut

6.2. Shape estimate

Denote by ρ−(t), ρ+(t) the inner radius and outer radius of �t . Then there exist two
points p1, p2 ∈ Hn+1 such that Bρ−(t)(p1) ⊂ �t ⊂ Bρ+(t)(p2). By Corollary 5.2, the
modified quermassintegral W̃l is monotone under inclusion of h-convex domains in Hn+1.
This implies that

f̃l(ρ−(t)) = W̃l(Bρ−(t)(p1)) ≤ W̃l(�t ) ≤ W̃l(Bρ+(t)(p2)) = f̃l(ρ+(t)).
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Along the flow (1.18), W̃l(�t ) = W̃l(�0) is a fixed constant. Therefore,

ρ−(t) ≤ C ≤ ρ+(t),

where C = f̃−1
l (W̃l(�0)) > 0 depends only on l, n and �0.

On the other hand, since each �t is h-convex, the inner radius and outer radius of �t
satisfy ρ+(t) ≤ c(ρ−(t)+ ρ−(t)1/2) for some uniform positive constant c (see [12, 23]).
Thus there exist positive constants c1, c2 depending only on n, l,M0 such that

0 < c1 ≤ ρ−(t) ≤ ρ+(t) ≤ c2 (6.9)

for all t ∈ [0, T ).

6.3. C2 estimate

Proposition 6.2. Under the assumptions of Theorem 1.7 with φ(t) given in (1.19), we
have F ≤ C for any t ∈ [0, T ), where C depends on n, l,M0 but not on T .

Proof. For any given t0 ∈ [0, T ), let Bρ0(p0) be the inball of �t0 , where ρ0 = ρ−(t0).
Then a similar argument to that in [10, Lemma 4.2] yields

Bρ0/2(p0) ⊂ �t , t ∈ [t0,min{T , t0 + τ }), (6.10)

for some positive τ depending only on n, l,�0. Consider the support function u(x, t) =
sinh rp0(x) 〈∂rp0 , ν〉 of Mt with respect to the point p0. Then (6.10) implies that

u(x, t) ≥ sinh(ρ0/2) =: 2c (6.11)

on Mt for any t ∈ [t0,min{T , t0 + τ }). On the other hand, the estimate (6.9) implies that
u(x, t) ≤ sinh(2c2) on Mt for all t ∈ [t0,min{T , t0 + τ }). Define the auxiliary function

W(x, t) =
F(W − I)
u(x, t)− c

on Mt for t ∈ [t0,min{T , t0 + τ }). Combining (2.14) and the evolution equation (4.4) for
the support function, we see that the function W evolves by

∂

∂t
W = Ḟ ij

(
∇j∇iW +

2
u− c

∇iu∇jW

)
−
φ(t)

u− c

(
Ḟ ij (hki h

j
k − δ

j
i )+W cosh rp0(x)

)
+

F

(u− c)2
(F + Ḟ klhkl) cosh rp0(x)−

cF

(u− c)2
Ḟ ijhki h

j
k −WḞ

ij δ
j
i . (6.12)

The second line of (6.12) involves the global term φ(t) and is clearly non-positive by
the h-convexity of the evolving hypersurface. By the homogeneity of f with respect to
λi = κi − 1, we have F + Ḟ klhkl = 2F +

∑n
k=1 ḟ

k and

Ḟ ijhki h
j
k = ḟ

k(λk + 1)2 = ḟ kλ2
k + 2f +

∑
k

ḟ k ≥ Cf 2,
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where the last inequality is due to the pinching estimate (6.1). The last term of (6.12) is
non-positive and can be thrown away. In summary, we arrive at

∂

∂t
W ≤ 9̇ij

(
∇j∇iW +

2
u− c

∇iu∇jW

)
+W 2

(
2+ F−1

n∑
k=1

ḟ k
)

cosh rp0(x)− c
2CW 3.

Noting that ḟ k is homogeneous of degree zero, the pinching estimate (6.1) implies that
each ḟ k is bounded from above and below by positive constants. Then without loss of
generality we can assume that F−1∑n

k=1 ḟ
k
≤ 1 since otherwise F ≤

∑n
k=1 ḟ

k
≤ C

for some constant C > 0. By the upper bound rp0(x) ≤ 2c2, we obtain the estimate

∂

∂t
W ≤ 9̇ij

(
∇j∇iW +

2
u− c

∇iu∇jW

)
+W 2(3 cosh(2c2)− c

2CW)

on [t0,min{T , t0+τ }). Then the maximum principle implies thatW is uniformly bounded
from above and the upper bound on F follows by the upper bound on the outer radius
in (6.9). ut

Proposition 6.3. There exists a positive constant C, independent of time T , such that
F ≥ C > 0.

Proof. Since the evolving hypersurface Mt is strictly h-convex, for each time t0 ∈ [0, T )
there exists a point p ∈ Hn+1 and x0 ∈ Mt0 such that �t0 ⊂ Bρ+(t0)(p) and �t0 ∩
Bρ+(t0)(p) = x0. By the estimate (6.9) on the outer radius, the value of F at the point
(x0, t0) satisfies

F(x0, t0) ≥ coth ρ+(t0) ≥ coth c2.

Recall that the function F satisfies the evolution equation (2.14):

∂

∂t
F = gikḞ ij∇k∇jF + (F − φ(t))(Ḟ

ijhki h
j
k − Ḟ

ij δ
j
i ). (6.13)

By the pinching estimate (6.1) and the upper bound on the curvature proved in Propo-
sition 6.2, the equation (6.13) is uniformly parabolic and the coefficient of the gradient
terms and the lower order terms in (6.13) have bounded C0 norm. Then there exists r > 0
depending only on the bounds on the coefficients of (6.13) such that we can apply the
Harnack inequality of Krylov and Safonov [21] to (6.13) in a space-time neighbourhood
Br(x0) × (t0 − r

2, t0] of x0 and deduce the lower bound F ≥ CF(x0, t0) ≥ C > 0 in a
smaller neighbourhood Br/2(x0)× (t0 − r

2/4, t0]. Note that the diameter r of the space-
time neighbourhood is independent of the point (x0, t0). Consider the boundary point
x1 ∈ ∂Br/2(x0). We can look at the equation (6.13) in a neighborhoodBr(x1)×(t0−r

2, t0]

of the point (x1, t0). The Harnack inequality implies that F ≥ CF(x1, t0) ≥ C > 0 in
Br/2(x1) × (t0 − r

2/4, t0]. Since the diameter of each Mt0 is uniformly bounded from
above, after a finite number of iterations we conclude that F ≥ C > 0 on Mt0 for a uni-
form constant C independent of t0. ut
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The pinching estimate (6.1) together with the bounds on F proven in Propositions 6.2 and
6.3 implies that the shifted principal curvatures λ = (λ1, . . . , λn) satisfy

0 < C−1
≤ λi ≤ C

for some constant C > 0 and t ∈ [0, T ). This gives the uniform C2 estimate of the
evolving hypersurfaces Mt . Moreover, the global term φ(t) given in (1.19) satisfies 0 <
C−1
≤ φ(t) ≤ C for some constant C > 0.

6.4. Long time existence and convergence

If F is inverse concave, by applying a similar argument to [10, 25] (see also [30]) to the
equation (5.10), we can first derive a C2,α estimate and then a Ck,α estimate for all k ≥ 2.
If F is concave or n = 2, we write the flow (1.18) as a scalar parabolic PDE for the radial
function as follows: Since each Mt is strictly h-convex, we write Mt as a radial graph
over a geodesic sphere for a smooth function ρ on Sn. Let {θ i}, i = 1, . . . , n, be a local
coordinate system on Sn. The induced metric on Mt0 from Hn+1 takes the form

gij = ∇̄iρ∇̄jρ + sinh2 ρḡij ,

where ḡij denotes the round metric on Sn. Up to a tangential diffeomorphism, the flow
equation (1.18) is equivalent to the scalar parabolic equation

∂

∂t
ρ = (φ(t)− F(W − I))

√
1+ |∇̄ρ|2/sinh2 ρ (6.14)

for the smooth function ρ(·, t) on Sn. The Weingarten matrix W = (hji ) can be expressed
as

h
j
i =

coth ρ
v

δ
j
i +

coth ρ

v3 sinh2 ρ
∇̄
jρ∇̄iρ −

σ̃ jk

v sinh2 ρ
∇̄k∇̄iρ,

where

v =

√
1+ |∇̄ρ|2/sinh2 ρ and σ̃ jk = σ jk −

∇̄
jρ∇̄kρ

v2 sinh2 ρ
.

Thus we can apply an argument as in [3,24] to derive a higher regularity estimate. There-
fore, for any F satisfying the assumption of Theorem 1.7, the solution of the flow (1.18)
exists for all time t ∈ [0,∞) and remains smooth and strictly h-convex. Moreover, the
Alexandrov reflection argument as in [10, §6] implies that the flow converges smoothly
as t → ∞ to a geodesic sphere ∂Br∞ which satisfies W̃l(Br∞) = W̃l(�0). This finishes
the proof of Theorem 1.7.

7. Conformal deformation in the conformal class of ḡ

In this section we mention an interesting connection (closely related to the results of
[15]) between flows of h-convex hypersurfaces in hyperbolic space by functions of prin-
cipal curvatures, and conformal flows of conformally flat metrics on Sn. This allows us to
translate some of our results to convergence theorems for metric flows, and our isoperi-
metric inequalities to corresponding results for conformally flat metrics.
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The crucial observation is that there is a correspondence between conformally flat
metrics on Sn satisfying a certain curvature inequality, and horospherically convex hy-
persurfaces. To describe this, we recall that the isometry group of Hn+1 coincides with
O+(n+ 1, 1), the group of future preserving linear isometries of Minkowski space. This
also coincides with the Möbius group of conformal diffeomorphisms of Sn, by the fol-
lowing correspodence: If L ∈ O+(n+ 1, 1), we define a map ρL from Sn to Sn by

ρL(e) = π(L(e, 1)),

where π(x, y) = x/y is the radial projection from the future null cone to the sphere at
height 1. This defines a group homomorphism fromO+(n+ 1, 1) to the group of Möbius
transformations. We have the following result:

Proposition 7.1. If L ∈ O+(n+1, 1) andM ⊂ Hn+1 is a horospherically convex hyper-
surface with horospherical support function u : Sn→ R, denote by uL the horospherical
support function of L(M). Then ρL is an isometry from e−2uḡ to e−2uL ḡ. That is,

e−2u(e)ḡe(v1, v2) = e−2uL(ρL(e))ḡρL(e)(DρL(v1),DρL(v2))

for all e ∈ Sn and v1, v2 ∈ TeS
n.

Proof. We compute

e−u(e) = −X · (e, 1) = −L(X) · L(e, 1)
= −L(X) · µ(eL, 1) where µ = |L(e, 1) · (0, 1)|

= µe−uL(eL).

On the other hand, the Möbius transformation ρL is a conformal transformation with
conformal factor µ = |L(e, 1) · (0, 1)|. The result follows directly. ut

Corollary 7.2. Isometry invariants of a horospherically convex hypersurface M are
Möbius invariants of the conformally flat metric g̃ = e−2uḡ, and vice versa. In particular,
Riemannian invariants of g are isometry invariants of M .

Computing explicitly, we find that for n > 2 the Schouten tensor

S̃ij =
1

n− 2

(
R̃ij −

R̃

2(n− 1)
g̃ij

)
of g̃ (which completely determines the curvature tensor for a conformally flat metric) is
given by

S̃ij =
1
2 ḡij + ∇̄i∇̄ju+ uiuj −

1
2 |∇̄u|

2ḡij = e−uAij + 1
2 g̃ij

= [(W − I)−1
]
p
i g̃pk +

1
2 g̃ij .

It follows that the eigenvalues of S̃ij (with respect to g̃ij ) are 1
2 +

1
λi

, where λi = κi − 1.

When n = 2 the tensor S̃ij defined by the right-hand side of the above equation is by
construction Möbius-invariant, and so gives a Möbius invariant of g̃ which is not a Rie-
mannian invariant. This tensor still has the same relation to the principal curvatures of the
corresponding h-convex hypersurface.
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We observe that this connection between the Schouten tensor of g̃ and the Wein-
garten map of the hypersurface leads to a coincidence between the corresponding evolu-
tion equations: If a family of h-convex hypersurfaces Mt = X(M, t) evolves according
to a curvature-driven evolution equation of the form

∂X

∂t
= −F(W − I, t)ν

then the metric g̃ satisfies S̃ > 1
2 g̃, and evolves according to the parabolic conformal flow

∂g̃

∂t
= 2F

((
S̃ −

1
2
g̃

)−1

, t

)
g̃.

In particular the convergence theorems for hypersurface flows correspond to convergence
theorems for the corresponding conformal flows, and the resulting geometric inequalities
for hypersurfaces imply corresponding geometric inequalities for the metric g̃.

Acknowledgments. This research was supported by Australian Laureate Fellowship FL150100126
of the Australian Research Council. The second author was also supported by the Fundamental
Research Funds for the Central Universities. The second author is grateful to the Mathematical
Sciences Institute at the Australian National University for its hospitality during his visit, when
some of this work was completed.

References

[1] Andrews, B.: Contraction of convex hypersurfaces in Euclidean space. Calc. Var. Partial Dif-
ferential Equations 2, 151–171 (1994) Zbl 0805.35048 MR 1385524

[2] Andrews, B.: Gauss curvature flow: the fate of the rolling stones. Invent. Math. 138, 151–161
(1999) Zbl 0936.35080 MR 1714339

[3] Andrews, B.: Fully nonlinear parabolic equations in two space variables. arXiv:0402235
(2004)

[4] Andrews, B.: Pinching estimates and motion of hypersurfaces by curvature functions. J. Reine
Angew. Math. 608, 17–33 (2007) Zbl 1129.53044 MR 2339467

[5] Andrews, B.: Moving surfaces by non-concave curvature functions. Calc. Var. Partial Differ-
ential Equations 39, 649–657 (2010) Zbl 1203.53062 MR 2729317

[6] Andrews, B., Chen, X.: Surfaces moving by powers of Gauss curvature. Pure Appl. Math.
Quart. 8, 825–834 (2012) Zbl 1263.53058 MR 2959911

[7] Andrews, B., Chen, X.: Curvature flow in hyperbolic spaces. J. Reine Angew. Math. 729,
29–49 (2017) Zbl 1371.53060 MR 3680369

[8] Andrews, B., Hopper, C.: The Ricci Flow in Riemannian Geometry. Lecture Notes in Math.
2011, Springer, Heidelberg (2011) Zbl 1214.53002 MR 2760593

[9] Andrews, B., McCoy, J., Zheng, Y.: Contracting convex hypersurfaces by curvature. Calc. Var.
Partial Differential Equations 47, 611–665 (2013) Zbl 1288.35292 MR 3070558

[10] Andrews, B., Wei, Y.: Quermassintegral preserving curvature flow in hyperbolic space. Geom.
Funct. Anal. 28, 1183–1208 (2018) Zbl 1401.53047 MR 3856791

[11] Bertini, M. C., Pipoli, G.: Volume preserving non-homogeneous mean curvature flow in hy-
perbolic space. Differential Geom. Appl. 54, 448–463 (2017) Zbl 1372.53064 MR 3693942

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0805.35048&format=complete
http://www.ams.org/mathscinet-getitem?mr=1385524
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0936.35080&format=complete
http://www.ams.org/mathscinet-getitem?mr=1714339
http://arxiv.org/abs/math/0402235
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1129.53044&format=complete
http://www.ams.org/mathscinet-getitem?mr=2339467
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1203.53062&format=complete
http://www.ams.org/mathscinet-getitem?mr=2729317
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1263.53058&format=complete
http://www.ams.org/mathscinet-getitem?mr=2959911
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1371.53060&format=complete
http://www.ams.org/mathscinet-getitem?mr=3680369
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1214.53002&format=complete
http://www.ams.org/mathscinet-getitem?mr=2760593
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1288.35292&format=complete
http://www.ams.org/mathscinet-getitem?mr=3070558
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1401.53047&format=complete
http://www.ams.org/mathscinet-getitem?mr=3856791
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1372.53064&format=complete
http://www.ams.org/mathscinet-getitem?mr=3693942


Volume preserving flow 2509

[12] Cabezas-Rivas, E., Miquel, V.: Volume preserving mean curvature flow in the hyperbolic
space. Indiana Univ. Math. J. 56, 2061–2086 (2007) Zbl 1130.53045 MR 2359723

[13] Chow, B.: Geometric aspects of Aleksandrov reflection and gradient estimates for parabolic
equations. Comm. Anal. Geom. 5, 389–409 (1997) Zbl 0899.53044 MR 1483984

[14] Chow, B., Gulliver, R.: Aleksandrov reflection and nonlinear evolution equations. I.
The n-sphere and n-ball. Calc. Var. Partial Differential Equations 4, 249–264 (1996)
Zbl 0851.58041 MR 1386736

[15] Espinar, J. M., Gálvez, J. A., Mira, P.: Hypersurfaces in Hn+1 and conformally invariant
equations: the generalized Christoffel and Nirenberg problems. J. Eur. Math. Soc. 11, 903–
939 (2009) Zbl 1203.53057 MR 2538508

[16] Gao, S., Li, H., Ma, H.: Uniqueness of closed self-similar solutions to σα
k

-curvature flow. Non-
linear Differential Equations Appl. 25, art. 45, 26 pp. (2018) Zbl 1409.53057 MR 3845754

[17] Ge, Y., Wang, G., Wu, J.: Hyperbolic Alexandrov–Fenchel quermassintegral inequalities II.
J. Differential Geom. 98, 237–260 (2014) Zbl 1301.53077 MR 3263518

[18] Guan, P., Ma, X.-N.: The Christoffel–Minkowski problem. I. Convexity of solutions of a Hes-
sian equation. Invent. Math. 151, 553–577 (2003) Zbl 1213.35213 MR 1961338

[19] Hamilton, R. S.: Three-manifolds with positive Ricci curvature. J. Differential Geom. 17,
255–306 (1982) Zbl 0504.53034 MR 664497

[20] Hamilton, R. S.: Four-manifolds with positive curvature operator. J. Differential Geom. 24,
153–179 (1986) Zbl 0628.53042 MR 862046

[21] Krylov, N. V., Safonov, M. V.: A property of the solutions of parabolic equations with mea-
surable coefficients. Izv. Akad. Nauk SSSR Ser. Mat. 44, 161–175, 239 (1980) (in Russian)
Zbl 0464.35035 MR 563790

[22] Li, H., Wei, Y., Xiong, C.: A geometric inequality on hypersurface in hyperbolic space. Adv.
Math. 253, 152–162 (2014) Zbl 1316.53077 MR 3148549

[23] Makowski, M.: Mixed volume preserving curvature flows in hyperbolic space.
arXiv:1208.1898 (2012)

[24] McCoy, J. A.: Mixed volume preserving curvature flows. Calc. Var. Partial Differential Equa-
tions 24, 131–154 (2005) Zbl 1079.53099 MR 2164924

[25] McCoy, J. A.: More mixed volume preserving curvature flows. J. Geom. Anal. 27, 3140–3165
(2017) Zbl 1079.53099 MR 3708009
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