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Abstract. We provide new estimates on the best constant of the Lieb–Thirring inequality for the
sum of the negative eigenvalues of Schrödinger operators, which significantly improve the so far
existing bounds.
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1. Introduction

In 1975, Lieb and Thirring [19, 20] proved that the sum of all negative eigenvalues of
a Schrödinger operator −1 + V in L2(Rd), with a real-valued potential V : Rd → R,
admits the bound

Tr[−1+ V ]− ≤ L1,d

∫
Rd
V (x)

1+d/2
− dx (1)

for a finite constant L1,d > 0 depending only on the dimension, for all d ≥ 1. Here we
use the convention that t± = max {±t, 0}.

Inequality (1) should be compared with Weyl’s law [18, Theorem 12.12]

Tr[−h21+V ]− ≈
1

(2π)d

∫∫
Rd×Rd

[|hk|2+V (x)]− dk dx = Lcl
1,dh

−d

∫
Rd
V (x)

1+d/2
− dx

(2)
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where
Lcl

1,d =
2

d + 2
·
|B1|

(2π)d

with |B1| the volume of the unit ball in Rd . While (2) is only correct in the semiclassical
limit h→ 0, the Lieb–Thirring inequality (1) is a universal bound for all finite parameters.

A simpler version of (1) is the following bound for a single eigenvalue:∫
Rd

(
|∇u(x)|2 + V (x)|u(x)|2

)
dx ≥ −LSo

1,d

∫
Rd
V (x)

1+d/2
− dx, (3)

which is a consequence of Sobolev’s inequality, namely some sort of uncertainty prin-
ciple. This inequality is essentially due to Keller [14]; see also [4] for a stability analysis.
The Lieb–Thirring inequality (1) extends Sobolev’s inequality (3) by taking the exclusion
principle into account.

The Lieb–Thirring conjecture [20] concerns the best constant in (1) and states that
this is given by

L1,d = max {Lcl
1,d , L

So
1,d} =

{
Lcl

1,d if d ≥ 3,

LSo
1,2 if d = 1, 2,

(4)

with LSo
1,d being the best constant in (3). While the lower bound L1,d ≥ max {Lcl

1,d , L
So
1,d}

is obvious, proving the matching upper bound is a major challenge in mathematical
physics.

The original proof of Lieb and Thirring [19] gave L1,d/L
cl
1,d ≤ 4π in d = 3. Since

then, there have been many contributions devoted to improving the upper bound on L1,d
[17, 8, 3, 13, 6]. The currently best-known result is

L1,d/L
cl
1,d ≤ π/

√
3 = 1.814 . . . (5)

which was proved for d = 1 by Eden–Foias [8] in 1991 and then extended to all d ≥ 1
by Dolbeault, Laptev and Loss [6] in 2008.

Our new result is

Theorem 1. For all d ≥ 1, the best constant in the Lieb–Thirring inequality (1) satisfies

L1,d/L
cl
1,d ≤ 1.456.

Our estimate is a significant improvement over (5), but in one dimension is still about
26% bigger than the expected value LSo

1,1/L
cl
1,1 = 2/

√
3 = 1.155 . . . in [20].

Historically, the Lieb–Thirring inequality was invented to prove the stability of mat-
ter [19]. In this context, it can be stated as a lower bound on the fermionic kinetic energy,

Tr(−1γ ) ≥ Kd

∫
Rd
γ (x, x)1+2/d dx. (6)

Here γ is an arbitrary one-body density matrix onL2(Rd), i.e. 0 ≤ γ ≤ 1 with Tr γ <∞,
and γ (x, x) is the diagonal part of the kernel of γ (which can be defined properly by the
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spectral decomposition). By a standard duality argument, (1) is equivalent to (6), and the
corresponding best constants are related by

Kd(1+ 2/d) = [L1,d(1+ d/2)]−2/d . (7)

In particular, Kd should be compared with the semiclassical constant

Kcl
d =

(2π)2

|B1|2/d
·

d

d + 2
,

which emerges naturally from the lowest kinetic energy of the Fermi gas in a finite vol-
ume.

In 2011, Rumin [23] found a direct proof of (6), without using the dual form (1). His
method has been used to derive several new estimates, e.g. a positive density analogue
of (6) in [10], and it will also be the starting point of our analysis. Note that Rumin’s
original proof [23] gives Kd/Kcl

d ≥ d/(d + 4), and hence

L1,d/L
cl
1,d ≤

[
d + 4
d

]d/2
, (8)

so L1,1/L
cl
1,1 ≤

√
5 = 2.236 . . . when d = 1 and worse estimates in higher dimensions.

Therefore, new ideas are needed to push forward the bound.
Our proof of Theorem 1 contains several main ingredients:

• First, we will modify Rumin’s proof by introducing an optimal momentum decompo-
sition. This gives L1,1/L

cl
1,1 ≤ 1.618 . . . in d = 1, which is already an improvement

over the best-known result (5) in d = 1.
• Second, we use the Laptev–Weidl lifting argument to extend the bound L1,d/L

cl
1,d ≤

1.618 . . . to arbitrary dimension d , which is an improvement over the best-known re-
sult (5). The idea of lifting with respect to dimension is by now classical [16, 13, 6],
but its combination with Rumin’s method is not completely obvious and requires an
improvement of the bound in [9].
• Third, we take into account a low momentum averaging. This improves further the

bound to L1,1/L
cl
1,1 ≤ 1.456 in d = 1 (and worse estimates in higher dimensions). This

is one of our key ideas and deviates substantially from Rumin’s original argument.
• Finally, we transfer the one-dimensional bound in the last step to higher dimensions by

the lifting argument again.

These steps will be explained in the next four sections. For the proof of Theorem 1 only
the last two sections are relevant, but we feel that a slow presentation of the various new
ideas might be useful.

As a by-product of our method we obtain Lieb–Thirring inequalities for fractional
Schrödinger operators. The inequalities we are interested in have the form

Tr[(−1)σ + V ]− ≤ L1,d,σ

∫
Rd
V (x)

1+ d
2σ

− dx (9)
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and

Tr((−1)σγ ) ≥ Kd,σ

∫
Rd
γ (x, x)1+2σ/d dx. (10)

Again, a duality argument shows that the optimal constants in these two inequalities sat-
isfy the relation

Kd,σ

(
1+

2σ
d

)
=

[
L1,d,σ

(
1+

d

2σ

)]−2σ/d

. (11)

Finally, the semiclassical constants are given by

Kcl
d,σ =

d

d + 2σ

(
(2π)d

|B1|

)2σ/d

,

Lcl
1,d,σ =

2σ
d + 2σ

|B1|

(2π)d
.

(12)

The main ingredients of the proof of Theorem 1, except the lifting argument, apply
equally well to the fractional case. This gives

Theorem 2. For all d ≥ 1 and σ > 0, the best constant in the Lieb–Thirring inequality
(10) satisfies

Kd,σ /K
cl
d,σ

≥ max
{

d

d + 4σ

[
(d + 2σ)2 sin

( 2πσ
d+2σ

)
2πσd

]1+2σ/d

,
d

d + 2σ

(
2σ

d + 2σ

)4σ/d

C−2σ/d
d,σ

}
where

Cd,σ := inf
{(∫

∞

0
ϕ2
) d

2σ d

2σ

∫
∞

0

(1−
∫
∞

0 ϕ(s)f (st) ds)2

t1+
d

2σ
dt
}

(13)

with the infimum taken over all functions f, ϕ : R+→ R+ satisfying
∫
∞

0 f 2
= 1.

In particular, when σ = 1/2 and d = 3, we have C3,1/2 ≤ 0.046737 and hence

K3,1/2/K
cl
3,1/2 ≥ 0.826.

The proof of Theorem 2 is presented in the last section; see also Remark 7 in Section 3.
For σ = 1 and d > 1, the bound from Theorem 2 is not as good as the lower bound in

Theorem 1. For all other cases, Theorem 2 yields the best known constants. In particular in
the physically relevant case σ = 1/2 and d = 3, i.e., the ultra-relativistic Schrödinger op-
erator in three dimensions, where Kcl

3,1/2 =
3
4 (6π

2)1/3 = 2.923 . . . , our result improves
significantly the bounds K3,1/2/K

cl
3,1/2 ≥ 0.6 in [23, p. 586] and K3,1/2/K

cl
3,1/2 ≥ 0.558

in [5, Eq. (3.4)].
An immediate consequence of Theorem 2 is
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Corollary 3. For every fixed σ > 0, in the limit of large dimensions we have

lim sup
d→∞

L1,d,σ /L
cl
1,d,σ ≤ e. (14)

Indeed, from (11) we have L1,d,σ /L
cl
1,d,σ = (K

cl
d,σ /Kd,σ )

d/(2σ). So (14) follows from the
first lower bound in Theorem 2 and the fact that (sin(t)/t)1/t → 1 as t → 0. Note that
Rumin’s original proof gives a bound similar to (14) but with e replaced by e2 (see (8)).

As a consequence of (14), we also have

lim
d→∞

Kd,σ /K
cl
d,σ = 1. (15)

The lower bound lim infd→∞Kd,σ /Kcl
d,σ ≥ 1 follows from (14), and the upper bound

Kd,σ /K
cl
d,σ ≤ 1 is well-known [9].

Finally, we note that in 2013, Lundholm and Solovej [21] found another direct proof
of the kinetic estimate (6). Their approach is based on a local version of the exclusion
principle, which is inspired by the first proof of the stability of matter by Dyson and
Lenard [7]. Recently, the ideas in [21] have been developed further in [22] to show that

Tr(−1γ ) ≥ (Kcl
d − ε)

∫
Rd
γ (x, x)1+2/d dx − Cd,ε

∫
Rd
|∇
√
γ (x, x)|2 dx (16)

for all d ≥ 1 and ε > 0 (the gradient error term is always smaller than the kinetic
term [11]). Note that from (16), as well as from all existing proofs of the Lieb–Thirring
inequality (including the present paper), the real difference between dimensions is not
visible. Therefore, new ideas are certainly needed to attack the full conjecture (4).

2. Optimal momentum decomposition

In this section, we use a modified version of Rumin’s proof in [23] to prove

Proposition 4. For d ≥ 1, the best constant in the Lieb–Thirring inequality (6) satisfies

Kd/K
cl
d ≥

d

d + 4

[
(d + 2)2 sin

( 2π
d+2

)
2πd

]1+2/d

.

In particular, when d = 1 we get K1/K
cl
1 ≥

2187
√

3
320π3 ≥ 0.381777 and L1,1/L

cl
1,1 ≤

1.618435.

Proof. Let γ be an operator on L2(Rd) with 0 ≤ γ ≤ 1. By a density argument, it
suffices to consider the case when γ is a finite-rank operator with smooth eigenfunctions.
For any function f : R+→ R+ with

∫
∞

0 f 2
= 1, using the momentum decomposition

−1 = p2
=

∫
∞

0
f 2(s/p2) ds, p = −i∇,
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and Fubini’s theorem we can write

Tr(−1γ ) =
∫
∞

0
Tr[f (s/p2)γf (s/p2)] ds

=

∫
Rd

[∫
∞

0
(f (s/p2)γf (s/p2))(x, x) ds

]
dx. (17)

Next, we estimate the kernel of f (s/p2)γf (s/p2). Using Cauchy–Schwarz and 0 ≤
γ ≤ 1, for every ε > 0 we have the operator inequalities

γ ≤ (1+ ε)f (s/p2)γf (s/p2)+ (1+ ε−1)(1− f (s/p2))γ (1− f (s/p2))

≤ (1+ ε)f (s/p2)γf (s/p2)+ (1+ ε−1)(1− f (s/p2))2. (18)

This inequality implies for any x ∈ Rd the kernel bound

γ (x, x) ≤ (1+ ε)(f (s/p2)γf (s/p2))(x, x)+ (1+ ε−1)(1− f (s/p2))2(x, x). (19)

Optimizing over ε > 0 we obtain√
γ (x, x) ≤

√
(f (s/p2)γf (s/p2))(x, x)+

√
(1− f (s/p2))2(x, x). (20)

Moreover, it is straightforward to see that

(1− f (s/p2))2(x, x) =
1

(2π)d

∫
Rd
(1− f (s/k2))2 dk = sd/2

|B1|

(2π)d
Af , (21)

where

Af :=
d

2

∫
∞

0

(1− f (t))2

t1+d/2
dt. (22)

Consequently, we deduce from (20) that

(f (s/p2)γf (s/p2))(x, x) ≥

[√
γ (x, x)−

√
sd/2
|B1|

(2π)d
Af

]2

+

. (23)

Next, inserting (23) into (17) and integrating over s > 0 lead to

Tr(−1γ ) ≥
(∫

Rd
γ (x, x)1+2/d dx

)(
|B1|

(2π)d
Af

)−2/d
d2

(d + 2)(d + 4)
. (24)

Thus,

Kd/K
cl
d ≥

d

d + 4
A
−2/d
f . (25)
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Finally, it remains to minimize Af under the constraint
∫
∞

0 f 2
= 1. We note that the

proof in [23] corresponds to f (t) = 1(t ≤ 1) (although the representation there is rather
different), which gives Af = 1 but this is not optimal. From Lemma 5 below we have

inf
f
Af =

[
d

d + 2

2π
d+2

sin
( 2π
d+2

)]1+d/2

.

Inserting this into (25) we conclude the proof of Proposition 4. ut

In the previous proof we needed the following solution of a minimization problem.

Lemma 5. For any constant β > 1,

inf
{∫
∞

0
(1− f (t))2t−β dt : f : R+→ R+,

∫
∞

0
f 2 dt = 1

}
=
(β − 1)β−1

ββ

(
π/β

sin(π/β)

)β
and equality is achieved if and only if

f (t) =
1

1+ µtβ
with µ =

[
β − 1
β
·

π/β

sin(π/β)

]β
.

Proof. Heuristically, the optimizer can be found by solving the Euler–Lagrange equation,
but to make this rigorous one would have to prove that a minimizer exists. This can be
easily done by setting h(t) = (1− f (t))t−β/2, so the minimization problem is equivalent
to

inf
{∫
∞

0
h(t)2 dt : h ∈ ∂C

}
where ∂C = {h : R+ → R :

∫
∞

0 (1 − tβ/2h(t))2 dt = 1} is the boundary of the strictly
convex set C = {h : R+ → R :

∫
∞

0 (1 − tβ/2h(t))2 dt ≤ 1}. Since C is closed, which
follows easily from Fatou’s lemma, and does not contain the zero function, it contains a
function h∗ of minimal length. Necessarily h∗ ∈ ∂C, otherwise h∗ would be in the interior
of C and we could shrink it, thus reducing its length a little bit, which is impossible.
So h∗(t) = (1 − f∗(t))t−β/2 has minimal L2 norm under all f with

∫
∞

0 f (t)2 dt =∫
∞

0 (1− tβ/2h(t))2 dt = 1. Hence f∗ is a minimizer which must obey the Euler–Lagrange
equation.

A more direct solution is as follows: Let f∗(t) = (1+ (µ∗t)β)−1 with

µ∗ =

∫
∞

0

dt
(1+ tβ)2

,

so that t−β(1− f∗(t)) = µ
β
∗f∗(t) and∫

∞

0
f∗(t)

2 dt =
∫
∞

0

dt
(1+ (µ∗t)β)2

= µ−1
∗

∫
∞

0

dt
(1+ tβ)2

= 1.
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We see that for any f : R+→ R+ with
∫
∞

0 f (t)2 dt = 1,∫
∞

0
t−β(1− f (t))2 dt −

∫
∞

0
t−β(1− f∗(t))2 dt

= 2
∫
∞

0
t−β(1− f∗(t))(f∗(t)− f (t)) dt +

∫
∞

0
t−β(f (t)− f∗(t))

2 dt

= 2µβ∗

∫
∞

0
f∗(t)(f∗(t)− f (t)) dt +

∫
∞

0
t−β(f (t)− f∗(t))

2 dt

= µ
β
∗

∫
∞

0
(f∗(t)− f (t))

2 dt +
∫
∞

0
t−β(f (t)− f∗(t))

2 dt ≥ 0.

Here we have used t−β(1 − f∗(t)) = µ
β
∗f∗(t) in the second identity and

∫
∞

0 f 2
∗ =∫

∞

0 f 2
=

1
2

∫
f 2
∗ +

1
2

∫
∞

0 f 2 in the last one. This shows that the infimum is attained if
and only if f = f∗.

It remains to compute the infimum and µ∗. Both follow from the formula [1, 6.2.1
and 6.2.2] ∫

∞

0

uζ

(1+ u)2
du = 0(1+ ζ )0(1− ζ ) if −1 < Re ζ < 1.

Alternatively one can use a keyhole type contour encircling the positive real axis and the
residue theorem [2, Section 11.1.III] to directly evaluate

∫
∞

0
uζ

(1+u)2 du.

Letting u = tβ , we have

µ∗ =

∫
∞

0

dt
(1+ tβ)2

=
1
β

∫
∞

0

u1/β−1 du
(1+ u)2

=
0(1/β)0(2− 1/β)

β

The functional equations 0(1+z) = z0(z) and 0(z)0(1−z) = π
sin(πz) , the last one again

valid for −1 < Re z < 1, yield

µ∗ =
1
β

(
1−

1
β

)
0(1/β)0(1− 1/β) =

(
1−

1
β

)
π/β

sin(π/β)
.

Moreover,∫
∞

0
(1− f∗(t))2t−β dt = µβ∗

∫
∞

0

(µ∗t)
β dt

(1+ µ∗tβ)2
= µ

β−1
∗

∫
∞

0

tβ dt
(1+ tβ)2

and∫
∞

0

tβ dt
(1+ tβ)2

=
1
β

∫
∞

0

u1/β du
(1+ u)2

=
0(1+ 1/β)0(1− 1/β)

β
=
0(1/β)0(1− 1/β)

β2

=
1
β

π/β

sin(π/β)
.

This proves the claimed formula. ut
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3. Lifting to higher dimensions. I

In dimension d = 1 Proposition 4 yields L1,1/L
cl
1,1 ≤ 1.618435, which is better than for

instance the bound in dimension d = 3, namely L1,3/L
cl
1,3 ≤ 1.994584. In this section

we use a procedure of Laptev and Weidl [15, 16] to show that the higher-dimensional
fraction L1,d/L

cl
1,d is at least as good as the low-dimensional one.

The idea is to consider potentials V on Rd that take values in the self-adjoint operators
on some separable Hilbert space H. We are looking for an inequality of the form

Tr[−1+ V ]− ≤ L
op
1,d

∫
Rd

tr(V (x)1+d/2− ) dx, (26)

where tr denotes the trace in H, Tr the trace in L2(Rd;H) = L2(Rd) ⊗H, the operator
−1 is interpreted as−1⊗1H, and where, by definition, the constant Lop

1,d is independent
of H. Taking H one-dimensional we see that (26) coincides with (1) and therefore

L1,d ≤ L
op
1,d . (27)

It is not known whether L1,d and Lop
1,d coincide, but in this section we will show that the

upper bound on L1,d from Proposition 4 is, in fact, also an upper bound on Lop
1,d .

We show this by using the classical duality argument. This shows the analogue of (7),
that is,

K
op
d (1+ 2/d) = [Lop

1,d(1+ d/2)]
−2/d , (28)

where Kop
d denotes the best constant in the inequality

Tr(−1γ ) ≥ Kop
d

∫
Rd

tr(γ (x, x)1+2/d) dx (29)

for all operators γ on L2(Rd;H) satisfying 0 ≤ γ ≤ 1, where H is an arbitrary (sep-
arable) Hilbert space. For such γ , one can consider γ (x, x) as a non-negative operator
in H.

The following proof improves upon an argument from [9].

Proposition 6. For d ≥ 1, the best constant in the Lieb–Thirring inequality (29) satisfies

K
op
d /K

cl
d ≥

d

d + 4

[
(d + 2)2 sin

( 2π
d+2

)
2πd

]1+2/d

.

In particular, when d = 1 we get Kop
1 /K

cl
1 ≥ 0.381777 and Lop

1,d/L
cl
1,d ≤ 1.618435.

Proof. Let γ be an operator on L2(Rd;H) with 0 ≤ γ ≤ 1. By a density argument
we may assume that H is finite-dimensional and that γ is finite rank and with smooth
eigenfunctions. The analogue of (17) is

Tr(−1γ ) =
∫
Rd

tr
[∫
∞

0
(f (s/p2)γf (s/p2))(x, x) ds

]
dx (30)
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for any f : R+ → R+ with
∫
∞

0 f 2
= 1. The operator inequality (18) implies that for

any x ∈ Rd one has (19), understood as an operator inequality in H. Denoting by λn(T )
the n-th eigenvalue, in decreasing order and taking multiplicities into account, of a non-
negative operator T , we infer from (19), the variational principle and the computation
(21) that for any n ∈ N,

λn(γ (x, x)) ≤ (1+ ε)λn
(
(f (s/p2)γf (s/p2))(x, x)

)
+ (1+ ε−1)sd/2

|B1|

(2π)d
Af .

At this stage we can optimize over ε > 0 and obtain√
λn(γ (x, x)) ≤

√
λn
(
(f (s/p2)γf (s/p2))(x, x)

)
+

√
(1− f (s/p2))2(x, x). (31)

Thus,

λn
(
(f (s/p2)γf (s/p2))(x, x)

)
≥

[√
λn(γ (x, x))−

√
sd/2
|B1|

(2π)d
Af

]2

+

. (32)

For fixed n (and x) we obtain, after integration over s,∫
∞

0
λn
(
(f (s/p2)γf (s/p2))(x, x)

)
ds

≥ λn(γ (x, x))
1+2/d

(
|B1|

(2π)d
Af

)−2/d
d2

(d + 2)(d + 4)
.

Summing over n and integrating with respect to x we obtain, by (30),

Tr(−1γ ) ≥
∫
Rd

∑
n

∫
∞

0
λn
(
(f (s/p2)γf (s/p2))(x, x)

)
ds dx

≥

∫
Rd

tr(γ (x, x)1+2/d) dx
(
|B1|

(2π)d
Af

)−2/d
d2

(d + 2)(d + 4)
.

The proposition now follows in the same way as Proposition 4. ut

Remark 7. The same proof yields the operator-valued analogue of Theorem 2. Since
there seems to be no analogue of the following proposition for (−1)σ with σ 6= 1, we do
not write this out.

In order to obtain good constants in higher dimensions we recall the following bound
which is essentially due to Laptev and Weidl [16]. The extension to d1 ≥ 2, which is not
needed here, but is interesting in its own right, is due to [12].

Proposition 8. For any integers 1 ≤ d1 < d,

L
op
1,d/L

cl
1,d ≤ L

op
1,d1

/Lcl
1,d1

.

In particular, taking d1 = 1 and using the bound from Proposition 6 together with (27)
we obtain the following bound.
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Corollary 9. For any d ≥ 1, L1,d/L
cl
1,d ≤ L

op
1,d/L

cl
1,d ≤ 1.618435.

The proof of Proposition 8 is by now standard, but we sketch it for the sake of complete-
ness. We need the following more general family of Lieb–Thirring inequalities:

Tr[−1+ V ]α− ≤ L
op
α,d

∫
Rd

tr(V (x)α+d/2− ) dx, (33)

as well as the semiclassical constant

Lcl
α,d =

1
(2π)2

∫
Rd
(η2
− 1)α+d/2− dη =

0(α + 1)
(4π)d/20(α + d/2+ 1)

,

where again V takes now values in the self-adjoint operators on some auxiliary separable
Hilbert space H and its negative part V (x)− is in the α + d/2 von Neumann–Schatten
ideal, tr denotes the trace over H, and Tr the trace over L2(Rd;H) = L2(Rd)⊗H.

The celebrated result by Laptev and Weidl [16] says thatLop
α,d = L

cl
α,d for any α ≥ 3/2

and any d ≥ 1. (For d = 1, α = 3/2 and in the scalar case, this was shown in the original
paper of Lieb and Thirring [20].)

Proof of Proposition 8. We follow the argument in [12] closely: Let d = d1 + d2 and
decompose accordingly x = (x1, x2) with x1 ∈ Rd1 and x2 ∈ Rd2 and−1 = −11−12.
Let V be a function on Rd taking values in the self-adjoint operators in some Hilbert
space H. For any x1 ∈ Rd1 we can consider W(x1) = −12 + V (x1, ·) as a self-adjoint
operator in H̃ = L2(Rd;H). Thus, by the operator-valued LT inequality on Rd1 ,

Tr[−1+ V ]− = TrL2(Rd1 )[−11 +W ]− ≤ L
op
1,d1

∫
Rd1

TrL2(Rd2 ;H)(W(x1)
1+d1/2
− ) dx1.

Since 1+ d1/2 ≥ 3/2, the bound from [16] implies, for any x1 ∈ Rd1 ,

TrL2(Rd2 ;H)(W(x1)
1+d1/2
− ) ≤ Lcl

1+d1/2,d2

∫
Rd2

tr(V (x1, x2)
1+d/2
− ) dx2.

Combining the last two inequalities and observing that

Lcl
1,d1

Lcl
1+d1/2,d2

= Lcl
1,d

(see [12] for a non-computational proof of this identity), we obtain the claimed inequality.
ut

4. Low momentum averaging

Our main idea to improve the estimate in Proposition 4 is to average over low momenta
s ≤ E before using the Cauchy–Schwarz inequality (18). We will actually push forward
this idea by adding a weight function. This leads to
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Proposition 10. For d ≥ 1, the best constant in the Lieb–Thirring inequality (6) satisfies

Kd/K
cl
d ≥

d 24/d

(d + 2)1+4/dC2/d
d

, (34)

where

Cd := inf
{(∫

∞

0
ϕ2
)d/2

d

2

∫
∞

0

(1−
∫
∞

0 ϕ(s)f (st) ds)2

t1+d/2
dt
}
, (35)

with the infimum taken over all functions f, ϕ : R+→ R+ satisfying
∫
∞

0 f 2
= 1.

In particular, when d = 1 we have K1/K
cl
1 ≥ 0.471851 and L1,1/L

cl
1,1 ≤ 1.455786.

Note that for the infimum in (35) to be finite we need
∫
∞

0 ϕ2 <∞ and, if f is continuous
near 0, also

∫
∞

0 ϕ = 1/f (0). (The latter implies that
∫
∞

0 ϕ(s)f (st) ds → 1 as t → 0.)

Proof of Proposition 10. Let f, ϕ : R+ → R+ with
∫
∞

0 f 2
= 1. Recall the momentum

decomposition (17). We have for any ψ ∈ L2(Rd), s, s′ ∈ (0,∞),

〈ψ, f (s/p2)γf (s′/p2)ψ〉 ≤
√
〈ψ, f (s/p2)γf (s/p2)ψ〉

√
〈ψ, f (s′/p2)γf (s′/p2)ψ〉,

and therefore, for every E > 0,∫
∞

0

∫
∞

0
ϕ(s/E)〈ψ, f (s/p2)γf (s′/p2)ψ〉ϕ(s′/E) ds ds′

≤

(∫
∞

0
ϕ(s/E)

√
〈ψ, f (s/p2)γf (s/p2)ψ〉 ds

)2

≤

(∫
∞

0
ϕ(s/E)2 ds

)(∫
∞

0
〈ψ, f (s/p2)γf (s/p2)ψ〉 ds

)
.

This implies that we have the operator inequality(∫
∞

0
ϕ(s)2 ds

)(∫
∞

0
f (s/p2)γf (s/p2) ds

)
= E−1

(∫
∞

0
ϕ(s/E)2 ds

)(∫
∞

0
f (s/p2)γf (s/p2) ds

)
≥ E−1

(∫
∞

0
ϕ(s/E)f (s/p2) ds

)
γ

(∫
∞

0
ϕ(s/E)f (s/p2) ds

)
= Eg(E/p2)γg(E/p2) (36)

with

g(t) :=

∫
∞

0
ϕ(s)f (st) ds. (37)
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Next, by the Cauchy–Schwarz estimate similarly to (18) (thanks to 0 ≤ γ ≤ 1) we have

γ ≤ (1+ ε)g(E/p2)γg(E/p2)+ (1+ ε−1)(1− g(E/p2))2 (38)

for every ε > 0. Combining (36) and (38) we get

Eγ ≤ (1+ ε)
(∫
∞

0
ϕ2
)(∫

∞

0
f (s/p2)γf (s/p2) ds

)
+ (1+ ε−1)E(1− g(E/p2))2.

(39)

Transferring (39) to a kernel bound, using the same computation as in (21)–(22), and then
optimizing over ε > 0 we obtain(∫

∞

0
ϕ2
)∫

∞

0
(f (s/p2)γf (s/p2))(x, x) ds ≥

[√
Eγ (x, x)−

√
E1+d/2 |B1|

(2π)d
Ag

]2

+

.

(40)

Then optimizing over E > 0 leads to(∫
∞

0
ϕ2
)∫

∞

0
(f (s/p2)γf (s/p2))(x, x) ds

≥ sup
E>0

E

[√
γ (x, x)−

√
Ed/2

|B1|

(2π)d
Ag

]2

+

= γ (x, x)1+2/d (2π)
2

|B1|2/d
·

24/dd2

(d + 2)2+4/dA
2/d
g

.

(41)

Inserting this into (17) we conclude that

Tr(−1γ ) ≥
(∫

Rd
γ (x, x)1+2/d dx

)
(2π)2

|B1|2/d
·

24/dd2

(d + 2)2+4/dA
2/d
g (

∫
∞

0 ϕ2)
, (42)

so the best constant in (6) satisfies

Kd/K
cl
d ≤

24/dd

(d + 2)1+4/dA
2/d
g (

∫
∞

0 ϕ2)
·

Optimizing over f, ϕ leads to (34).
When d = 1, using the upper bound C1 ≤ 0.373556 in Lemma 11 below, we obtain

K1/K
cl
1 ≥ 0.471851 . . . and L1,1/L

cl
1,1 ≤ 1.455785 . . . . ut

We end this section with

Lemma 11. When d = 1, the constant Cd in (35) satisfies

1/3 ≤ C1 ≤ 0.373556.

Proof. Let f, ϕ : R+→ R+ with
∫
∞

0 f 2
= 1. Take g as in (37) and a :=

∫
∞

0 ϕ2. By the
Cauchy–Schwarz inequality,

g(t) =

∫
∞

0
ϕ(s)f (st) ds ≤

(∫
∞

0
ϕ(s)2 ds

)1/2(∫ ∞
0

f (ts)2 ds
)1/2

=
√
a/t.
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Therefore, when d = 1 we get the desired lower bound

a1/2
∫
∞

0

(1− g(t))2

2t3/2
dt ≥ a1/2

∫
∞

0

[1−
√
a/t]2+

2t3/2
dt =

1
3
.

The upper bound on C1 requires an explicit choice of (f, ϕ). The analysis from Sec-
tion 2 suggests the choice

f (t) = (1+ µt3/2)−1, µ =

[
4π

9
√

3

]3/2

, ϕ(t) = 5(1− t1/4)1(t ≤ 1),

which gives C1 ≤ 0.381378. We can do slightly better by taking

f (t) = (1+ µ0t
4.5)−0.25, ϕ(t) = c0

(1− t0.36)2.1

1+ t
1(t ≤ 1)

with µ0 and c0 determined by
∫
∞

0 f 2
=
∫
∞

0 ϕ = 1, leading to C1 ≤ 0.373556. ut

5. Lifting to higher dimensions. II

In this section we proceed analogously to Section 3 to extend Proposition 10 to the
operator-valued case.

Proposition 12. For d ≥ 1, the best constant in the Lieb–Thirring inequality (29) satis-
fies

K
op
d /K

cl
d ≥

d24/d

(d + 2)1+4/dC2/d
d

(43)

with Cd from (35). In particular, when d = 1 we have Kop
1 /K

cl
1 ≥ 0.471851 and

L
op
1,1/L

cl
1,1 ≤ 1.455786.

Combining this proposition with Proposition 8 (for d1 = 1) and (27) we obtain Theo-
rem 1. It remains to prove the proposition.

Proof. Let f, ϕ : R+ → R+ satisfy
∫
∞

0 f 2
=
∫
∞

0 ϕ = 1 and take g as in (37). We
follow the proof of Proposition 10 to arrive at the operator inequality (39). As in the proof
of Proposition 6 this implies, for any x ∈ Rd and n ∈ N,

Eλn(γ (x, x))

≤ (1+ε)
(∫
∞

0
ϕ2
)
λn

(∫
∞

0
(f (s/p2)γf (s/p2))(x, x) ds

)
+(1+ε−1)E1+d/2 |B1|

(2π)d
Ag.

Optimizing over ε > 0 we obtain(∫
∞

0
ϕ2
)
λn

(∫
∞

0
(f (s/p2)γf (s/p2))(x, x) ds

)
≥

[√
Eλn(γ (x, x))−

√
E1+d/2 |B1|

(2π)d
Ag

]2

+

.
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Finally, optimizing over E > 0 leads to(∫
∞

0
ϕ2
)
λn

(∫
∞

0
(f (s/p2)γf (s/p2))(x, x) ds

)
≥ sup
E>0

E

[√
λn(γ (x, x))−

√
Ed/2

|B1|

(2π)d
Ag

]2

+

= λn(γ (x, x))
1+2/d (2π)

2

|B1|2/d
·

24/dd2

(d + 2)2+4/dA
2/d
g

.

Inserting this into (17) we conclude that

Tr(−1γ ) ≥
(∫

Rd
tr(γ (x, x)1+2/d) dx

)
(2π)2

|B1|2/d
·

24/dd2

(d + 2)2+4/dA
2/d
g (

∫
∞

0 ϕ2)
.

Finally, it remains to optimize over f, ϕ to obtain (43). The numerical values when d = 1
are obtained from the upper bound on C1 in Lemma 11. ut

6. Bounds with fractional operators

The proof of Theorem 2 is essentially the same as that of Theorem 1 (except we do not
use the lifting argument) and we only sketch the major steps.

Proof of Theorem 2. Let f : R+ → R+ satisfy
∫
∞

0 f 2
= 1. We have the analogue

of (17),

Tr((−1)σγ ) =
∫
Rd

[∫
∞

0
(f (s/|p|2σ )γf (s/|p|2σ ))(x, x) ds

]
dx. (44)

Using the Cauchy–Schwarz inequality as in (18) with a parameter ε > 0 and optimizing
over this parameter we obtain a generalization of (20),√

γ (x, x) ≤
√
(f (s/|p|2σ )γf (s/|p|2σ ))(x, x)+

√
(1− f (s/|p|2σ ))2(x, x) (45)

for all x ∈ Rd . We now compute

(1− f (s/|p|2σ ))2(x, x) = s
d

2σ
|B1|

(2π)d
A
(σ )
f , (46)

where

A
(σ )
f :=

d

2σ

∫
∞

0

(1− f (t))2

t1+
d

2σ
dt. (47)

Consequently, we deduce from (45) that

(f (s/|p|2σ )γf (s/|p|2σ ))(x, x) ≥

[√
γ (x, x)−

√
s
d

2σ
|B1|

(2π)d
A
(σ )
f

]2

+

. (48)
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Inserting (48) into (44) and integrating over s > 0 leads to

Tr((−1)σγ ) ≥
(∫

Rd
γ (x, x)1+2σ/d dx

)(
|B1|

(2π)d
A
(σ )
f

)−2σ/d
d2

(d + 2σ)(d + 4σ)
. (49)

Thus,

Kd,σ /K
cl
d,σ ≥

d

d + 4σ
(A

(σ )
f )−2σ/d . (50)

Lemma 5 provides the minimium value of A(σ )f optimized over f with
∫
∞

0 f 2
= 1. This

leads to the first desired bound

Kd,σ /K
cl
d,σ ≥

d

d + 4σ

[
(d + 2σ)2 sin

( 2πσ
d+2σ

)
2πσd

]1+2σ/d

. (51)

Next, we introduce ϕ : R+ → R+ satisfying
∫
∞

0 ϕ = 1 and define g as in (37). Then
proceeding as in (39) we have the operator inequality

Eγ ≤ (1+ ε)
(∫
∞

0
ϕ2
)(∫

∞

0
f (s/|p|2σ )γf (s/|p|2σ ) ds

)
+ (1+ ε−1)E(1− g(E/|p|2σ ))2.

Transferring the latter to a kernel bound, using the same computation as in (46)–(47), and
optimizing over ε > 0 and then E > 0, we obtain the following analogue of (41):(∫

∞

0
ϕ2
)∫

∞

0
(f (s/|p|2σ )γf (s/|p|2σ ))(x, x) ds

≥ sup
E>0

E

[√
γ (x, x)−

√
E

d
2σ
|B1|

(2π)d
A
(σ )
g

]2

+

= γ (x, x)1+2σ/d
(
|B1|

(2π)d
A(σ )g

)−2σ/d(
d

d + 2σ

)2( 2σ
d + 2σ

)4σ/d

. (52)

Inserting (52) into (44), and then optimizing over f, ϕ, we arrive at

Kd,σ /K
cl
d,σ ≥

d

d + 2σ

(
2σ

d + 2σ

)4σ/d

(A(σ )g )−2σ/d
(∫
∞

0
ϕ2
)−1

Optimizing over f, ϕ gives the second desired estimate

Kd,σ /K
cl
d,σ ≥

d

d + 2σ

(
2σ

d + 2σ

)4σ/d

C−2σ/d
d,σ (53)

with Cd,σ given in (13).
Finally, in the physical case σ = 1/2 and d = 3, by taking the trial choice

f (t) = (1+ µ0t
10)1/4, ϕ(t) = c0(1− t2)41(t ≤ 1)
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with µ0 and c0 determined by
∫
∞

0 f 2
=
∫
∞

0 ϕ = 1, we obtain Cd,σ ≤ 0.046736, which
implies Kd,σ /Kcl

d,σ ≥ 0.826297 by (53). ut
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