© 2021 European Mathematical Society

Published by EMS Press. This work is licensed under a CC BY 4.0 license.



Rupert L. Frank · Dirk Hundertmark · Michal Jex · Phan Thành Nam

# The Lieb-Thirring inequality revisited

Received August 27, 2018

**Abstract.** We provide new estimates on the best constant of the Lieb-Thirring inequality for the sum of the negative eigenvalues of Schrödinger operators, which significantly improve the so far existing bounds.

Keywords. Lieb-Thirring inequality, Schrödinger operator, Sobolev inequality

### 1. Introduction

In 1975, Lieb and Thirring [19, 20] proved that the sum of all negative eigenvalues of a Schrödinger operator  $-\Delta + V$  in  $L^2(\mathbb{R}^d)$ , with a real-valued potential  $V : \mathbb{R}^d \to \mathbb{R}$ , admits the bound

$$\text{Tr}[-\Delta + V]_{-} \le L_{1,d} \int_{\mathbb{R}^d} V(x)_{-}^{1+d/2} dx$$
 (1)

for a finite constant  $L_{1,d} > 0$  depending only on the dimension, for all  $d \ge 1$ . Here we use the convention that  $t_{\pm} = \max \{\pm t, 0\}$ .

Inequality (1) should be compared with Weyl's law [18, Theorem 12.12]

$$\operatorname{Tr}[-h^{2}\Delta + V]_{-} \approx \frac{1}{(2\pi)^{d}} \iint_{\mathbb{R}^{d} \times \mathbb{R}^{d}} [|hk|^{2} + V(x)]_{-} dk dx = L_{1,d}^{\operatorname{cl}} h^{-d} \int_{\mathbb{R}^{d}} V(x)_{-}^{1+d/2} dx$$
(2)

- R. L. Frank: Department of Mathematics, LMU Munich, Theresienstrasse 39, 80333 München, Germany, and Mathematics 253-37, Caltech, Pasadena, CA 91125, USA; e-mail: rlfrank@caltech.edu
- D. Hundertmark: Department of Mathematics, Institute for Analysis, Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany, and Department of Mathematics, Altgeld Hall, University of Illinois at Urbana-Champaign, 1409 W. Green Street, Urbana, IL 61801, USA; e-mail: dirk.hundertmark@kit.edu
- M. Jex: Department of Mathematics, Institute for Analysis, Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany; on leave from Department of Physics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 11519 Praha, Czech Republic; e-mail: michal.jex@fjfi.cvut.cz
- P. T. Nam: Department of Mathematics, LMU Munich, Theresienstrasse 39, 80333 München, Germany; e-mail: nam@math.lmu.de

Mathematics Subject Classification (2020): Primary 35P15; Secondary 81Q10

where

$$L_{1,d}^{\text{cl}} = \frac{2}{d+2} \cdot \frac{|B_1|}{(2\pi)^d}$$

with  $|B_1|$  the volume of the unit ball in  $\mathbb{R}^d$ . While (2) is only correct in the semiclassical limit  $h \to 0$ , the Lieb-Thirring inequality (1) is a universal bound for all finite parameters.

A simpler version of (1) is the following bound for a single eigenvalue:

$$\int_{\mathbb{R}^d} (|\nabla u(x)|^2 + V(x)|u(x)|^2) \, \mathrm{d}x \ge -L_{1,d}^{\text{So}} \int_{\mathbb{R}^d} V(x)_-^{1+d/2} \, \mathrm{d}x,\tag{3}$$

which is a consequence of Sobolev's inequality, namely some sort of uncertainty principle. This inequality is essentially due to Keller [14]; see also [4] for a stability analysis. The Lieb–Thirring inequality (1) extends Sobolev's inequality (3) by taking the exclusion principle into account.

The Lieb-Thirring conjecture [20] concerns the best constant in (1) and states that this is given by

$$L_{1,d} = \max\{L_{1,d}^{\text{cl}}, L_{1,d}^{\text{So}}\} = \begin{cases} L_{1,d}^{\text{cl}} & \text{if } d \ge 3, \\ L_{1,2}^{\text{So}} & \text{if } d = 1, 2, \end{cases}$$

$$(4)$$

with  $L_{1,d}^{\text{So}}$  being the best constant in (3). While the lower bound  $L_{1,d} \ge \max\{L_{1,d}^{\text{cl}}, L_{1,d}^{\text{So}}\}$  is obvious, proving the matching upper bound is a major challenge in mathematical physics.

The original proof of Lieb and Thirring [19] gave  $L_{1,d}/L_{1,d}^{cl} \le 4\pi$  in d=3. Since then, there have been many contributions devoted to improving the upper bound on  $L_{1,d}$  [17, 8, 3, 13, 6]. The currently best-known result is

$$L_{1,d}/L_{1,d}^{\text{cl}} \le \pi/\sqrt{3} = 1.814\dots$$
 (5)

which was proved for d=1 by Eden–Foias [8] in 1991 and then extended to all  $d \ge 1$  by Dolbeault, Laptev and Loss [6] in 2008.

Our new result is

**Theorem 1.** For all  $d \ge 1$ , the best constant in the Lieb-Thirring inequality (1) satisfies

$$L_{1,d}/L_{1,d}^{\text{cl}} \le 1.456.$$

Our estimate is a significant improvement over (5), but in one dimension is still about 26% bigger than the expected value  $L_{1,1}^{\text{So}}/L_{1,1}^{\text{cl}}=2/\sqrt{3}=1.155\ldots$  in [20].

Historically, the Lieb-Thirring inequality was invented to prove the stability of matter [19]. In this context, it can be stated as a lower bound on the fermionic kinetic energy,

$$\operatorname{Tr}(-\Delta \gamma) \ge K_d \int_{\mathbb{R}^d} \gamma(x, x)^{1+2/d} \, \mathrm{d}x.$$
 (6)

Here  $\gamma$  is an arbitrary one-body density matrix on  $L^2(\mathbb{R}^d)$ , i.e.  $0 \le \gamma \le 1$  with  $\text{Tr } \gamma < \infty$ , and  $\gamma(x,x)$  is the diagonal part of the kernel of  $\gamma$  (which can be defined properly by the

spectral decomposition). By a standard duality argument, (1) is equivalent to (6), and the corresponding best constants are related by

$$K_d(1+2/d) = [L_{1,d}(1+d/2)]^{-2/d}.$$
 (7)

In particular,  $K_d$  should be compared with the semiclassical constant

$$K_d^{\text{cl}} = \frac{(2\pi)^2}{|B_1|^{2/d}} \cdot \frac{d}{d+2},$$

which emerges naturally from the lowest kinetic energy of the Fermi gas in a finite volume.

In 2011, Rumin [23] found a direct proof of (6), without using the dual form (1). His method has been used to derive several new estimates, e.g. a positive density analogue of (6) in [10], and it will also be the starting point of our analysis. Note that Rumin's original proof [23] gives  $K_d/K_d^{cl} \ge d/(d+4)$ , and hence

$$L_{1,d}/L_{1,d}^{\text{cl}} \le \left\lceil \frac{d+4}{d} \right\rceil^{d/2},$$
 (8)

so  $L_{1,1}/L_{1,1}^{\rm cl} \le \sqrt{5} = 2.236...$  when d = 1 and worse estimates in higher dimensions. Therefore, new ideas are needed to push forward the bound.

Our proof of Theorem 1 contains several main ingredients:

- First, we will modify Rumin's proof by introducing an *optimal momentum decomposition*. This gives  $L_{1,1}/L_{1,1}^{\text{cl}} \le 1.618\ldots$  in d=1, which is already an improvement over the best-known result (5) in d=1.
- Second, we use the Laptev-Weidl *lifting argument* to extend the bound  $L_{1,d}/L_{1,d}^{cl} \le 1.618...$  to arbitrary dimension d, which is an improvement over the best-known result (5). The idea of lifting with respect to dimension is by now classical [16, 13, 6], but its combination with Rumin's method is not completely obvious and requires an improvement of the bound in [9].
- Third, we take into account a *low momentum averaging*. This improves further the bound to  $L_{1,1}/L_{1,1}^{\rm cl} \le 1.456$  in d=1 (and worse estimates in higher dimensions). This is one of our key ideas and deviates substantially from Rumin's original argument.
- Finally, we transfer the one-dimensional bound in the last step to higher dimensions by the *lifting argument* again.

These steps will be explained in the next four sections. For the proof of Theorem 1 only the last two sections are relevant, but we feel that a slow presentation of the various new ideas might be useful.

As a by-product of our method we obtain Lieb-Thirring inequalities for fractional Schrödinger operators. The inequalities we are interested in have the form

$$\operatorname{Tr}[(-\Delta)^{\sigma} + V]_{-} \le L_{1,d,\sigma} \int_{\mathbb{R}^d} V(x)_{-}^{1 + \frac{d}{2\sigma}} dx \tag{9}$$

and

$$\operatorname{Tr}((-\Delta)^{\sigma}\gamma) \ge K_{d,\sigma} \int_{\mathbb{R}^d} \gamma(x,x)^{1+2\sigma/d} \, \mathrm{d}x. \tag{10}$$

Again, a duality argument shows that the optimal constants in these two inequalities satisfy the relation

$$K_{d,\sigma}\left(1 + \frac{2\sigma}{d}\right) = \left[L_{1,d,\sigma}\left(1 + \frac{d}{2\sigma}\right)\right]^{-2\sigma/d}.$$
 (11)

Finally, the semiclassical constants are given by

$$K_{d,\sigma}^{\text{cl}} = \frac{d}{d+2\sigma} \left( \frac{(2\pi)^d}{|B_1|} \right)^{2\sigma/d},$$

$$L_{1,d,\sigma}^{\text{cl}} = \frac{2\sigma}{d+2\sigma} \frac{|B_1|}{(2\pi)^d}.$$
(12)

The main ingredients of the proof of Theorem 1, except the lifting argument, apply equally well to the fractional case. This gives

**Theorem 2.** For all  $d \ge 1$  and  $\sigma > 0$ , the best constant in the Lieb–Thirring inequality (10) satisfies

$$K_{d,\sigma}/K_{d,\sigma}^{\text{cl}} \ge \max\left\{\frac{d}{d+4\sigma}\left[\frac{(d+2\sigma)^2\sin\left(\frac{2\pi\sigma}{d+2\sigma}\right)}{2\pi\sigma d}\right]^{1+2\sigma/d}, \frac{d}{d+2\sigma}\left(\frac{2\sigma}{d+2\sigma}\right)^{4\sigma/d}C_{d,\sigma}^{-2\sigma/d}\right\}$$

where

$$C_{d,\sigma} := \inf \left\{ \left( \int_0^\infty \varphi^2 \right)^{\frac{d}{2\sigma}} \frac{d}{2\sigma} \int_0^\infty \frac{(1 - \int_0^\infty \varphi(s) f(st) \, \mathrm{d}s)^2}{t^{1 + \frac{d}{2\sigma}}} \, \mathrm{d}t \right\}$$
(13)

with the infimum taken over all functions  $f, \varphi : \mathbb{R}_+ \to \mathbb{R}_+$  satisfying  $\int_0^\infty f^2 = 1$ . In particular, when  $\sigma = 1/2$  and d = 3, we have  $C_{3,1/2} \le 0.046737$  and hence

$$K_{3,1/2}/K_{3,1/2}^{\text{cl}} \ge 0.826.$$

The proof of Theorem 2 is presented in the last section; see also Remark 7 in Section 3. For  $\sigma=1$  and d>1, the bound from Theorem 2 is not as good as the lower bound in Theorem 1. For all other cases, Theorem 2 yields the best known constants. In particular in the physically relevant case  $\sigma=1/2$  and d=3, i.e., the ultra-relativistic Schrödinger operator in three dimensions, where  $K_{3,1/2}^{\rm cl}=\frac{3}{4}(6\pi^2)^{1/3}=2.923\ldots$ , our result improves significantly the bounds  $K_{3,1/2}/K_{3,1/2}^{\rm cl}\geq 0.6$  in [23, p. 586] and  $K_{3,1/2}/K_{3,1/2}^{\rm cl}\geq 0.558$  in [5, Eq. (3.4)].

An immediate consequence of Theorem 2 is

**Corollary 3.** For every fixed  $\sigma > 0$ , in the limit of large dimensions we have

$$\limsup_{d \to \infty} L_{1,d,\sigma} / L_{1,d,\sigma}^{\text{cl}} \le e. \tag{14}$$

Indeed, from (11) we have  $L_{1,d,\sigma}/L_{1,d,\sigma}^{cl}=(K_{d,\sigma}^{cl}/K_{d,\sigma})^{d/(2\sigma)}$ . So (14) follows from the first lower bound in Theorem 2 and the fact that  $(\sin(t)/t)^{1/t} \to 1$  as  $t \to 0$ . Note that Rumin's original proof gives a bound similar to (14) but with e replaced by  $e^2$  (see (8)).

As a consequence of (14), we also have

$$\lim_{d \to \infty} K_{d,\sigma} / K_{d,\sigma}^{\text{cl}} = 1. \tag{15}$$

The lower bound  $\liminf_{d\to\infty} K_{d,\sigma}/K_{d,\sigma}^{\rm cl} \geq 1$  follows from (14), and the upper bound  $K_{d,\sigma}/K_{d,\sigma}^{\rm cl} \leq 1$  is well-known [9].

Finally, we note that in 2013, Lundholm and Solovej [21] found another direct proof of the kinetic estimate (6). Their approach is based on a local version of the exclusion principle, which is inspired by the first proof of the stability of matter by Dyson and Lenard [7]. Recently, the ideas in [21] have been developed further in [22] to show that

$$\operatorname{Tr}(-\Delta \gamma) \ge (K_d^{\operatorname{cl}} - \varepsilon) \int_{\mathbb{R}^d} \gamma(x, x)^{1 + 2/d} \, \mathrm{d}x - C_{d, \varepsilon} \int_{\mathbb{R}^d} |\nabla \sqrt{\gamma(x, x)}|^2 \, \mathrm{d}x \qquad (16)$$

for all  $d \ge 1$  and  $\varepsilon > 0$  (the gradient error term is always smaller than the kinetic term [11]). Note that from (16), as well as from all existing proofs of the Lieb-Thirring inequality (including the present paper), the real difference between dimensions is not visible. Therefore, new ideas are certainly needed to attack the full conjecture (4).

### 2. Optimal momentum decomposition

In this section, we use a modified version of Rumin's proof in [23] to prove

**Proposition 4.** For  $d \ge 1$ , the best constant in the Lieb-Thirring inequality (6) satisfies

$$K_d/K_d^{\text{cl}} \ge \frac{d}{d+4} \left\lceil \frac{(d+2)^2 \sin(\frac{2\pi}{d+2})}{2\pi d} \right\rceil^{1+2/d}.$$

In particular, when d=1 we get  $K_1/K_1^{\text{cl}} \geq \frac{2187\sqrt{3}}{320\pi^3} \geq 0.381777$  and  $L_{1,1}/L_{1,1}^{\text{cl}} \leq 1.618435$ .

*Proof.* Let  $\gamma$  be an operator on  $L^2(\mathbb{R}^d)$  with  $0 \leq \gamma \leq 1$ . By a density argument, it suffices to consider the case when  $\gamma$  is a finite-rank operator with smooth eigenfunctions. For any function  $f: \mathbb{R}_+ \to \mathbb{R}_+$  with  $\int_0^\infty f^2 = 1$ , using the momentum decomposition

$$-\Delta = p^2 = \int_0^\infty f^2(s/p^2) \, \mathrm{d}s, \quad p = -i \nabla,$$

and Fubini's theorem we can write

$$\operatorname{Tr}(-\Delta \gamma) = \int_0^\infty \operatorname{Tr}[f(s/p^2)\gamma f(s/p^2)] \, \mathrm{d}s$$
$$= \int_{\mathbb{R}^d} \left[ \int_0^\infty (f(s/p^2)\gamma f(s/p^2))(x,x) \, \mathrm{d}s \right] \, \mathrm{d}x. \tag{17}$$

Next, we estimate the kernel of  $f(s/p^2)\gamma f(s/p^2)$ . Using Cauchy–Schwarz and  $0 \le \gamma \le 1$ , for every  $\varepsilon > 0$  we have the operator inequalities

$$\gamma \le (1+\varepsilon)f(s/p^2)\gamma f(s/p^2) + (1+\varepsilon^{-1})(1-f(s/p^2))\gamma (1-f(s/p^2)) 
\le (1+\varepsilon)f(s/p^2)\gamma f(s/p^2) + (1+\varepsilon^{-1})(1-f(s/p^2))^2.$$
(18)

This inequality implies for any  $x \in \mathbb{R}^d$  the kernel bound

$$\gamma(x,x) \le (1+\varepsilon)(f(s/p^2)\gamma f(s/p^2))(x,x) + (1+\varepsilon^{-1})(1-f(s/p^2))^2(x,x). \tag{19}$$

Optimizing over  $\varepsilon > 0$  we obtain

$$\sqrt{\gamma(x,x)} \le \sqrt{(f(s/p^2)\gamma f(s/p^2))(x,x)} + \sqrt{(1-f(s/p^2))^2(x,x)}.$$
 (20)

Moreover, it is straightforward to see that

$$(1 - f(s/p^2))^2(x, x) = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} (1 - f(s/k^2))^2 dk = s^{d/2} \frac{|B_1|}{(2\pi)^d} A_f,$$
 (21)

where

$$A_f := \frac{d}{2} \int_0^\infty \frac{(1 - f(t))^2}{t^{1 + d/2}} \, \mathrm{d}t.$$
 (22)

Consequently, we deduce from (20) that

$$(f(s/p^2)\gamma f(s/p^2))(x,x) \ge \left[\sqrt{\gamma(x,x)} - \sqrt{s^{d/2} \frac{|B_1|}{(2\pi)^d} A_f}\right]_+^2.$$
 (23)

Next, inserting (23) into (17) and integrating over s > 0 lead to

$$\operatorname{Tr}(-\Delta \gamma) \ge \left( \int_{\mathbb{R}^d} \gamma(x, x)^{1+2/d} \, \mathrm{d}x \right) \left( \frac{|B_1|}{(2\pi)^d} A_f \right)^{-2/d} \frac{d^2}{(d+2)(d+4)}. \tag{24}$$

Thus,

$$K_d/K_d^{\text{cl}} \ge \frac{d}{d+4} A_f^{-2/d}$$
. (25)

Finally, it remains to minimize  $A_f$  under the constraint  $\int_0^\infty f^2 = 1$ . We note that the proof in [23] corresponds to  $f(t) = \mathbb{1}(t \le 1)$  (although the representation there is rather different), which gives  $A_f = 1$  but this is not optimal. From Lemma 5 below we have

$$\inf_{f} A_{f} = \left[ \frac{d}{d+2} \frac{\frac{2\pi}{d+2}}{\sin\left(\frac{2\pi}{d+2}\right)} \right]^{1+d/2}.$$

Inserting this into (25) we conclude the proof of Proposition 4.

In the previous proof we needed the following solution of a minimization problem.

**Lemma 5.** For any constant  $\beta > 1$ ,

$$\inf \left\{ \int_0^\infty (1 - f(t))^2 t^{-\beta} \, \mathrm{d}t : f : \mathbb{R}_+ \to \mathbb{R}_+, \int_0^\infty f^2 \, \mathrm{d}t = 1 \right\}$$
$$= \frac{(\beta - 1)^{\beta - 1}}{\beta^\beta} \left( \frac{\pi/\beta}{\sin(\pi/\beta)} \right)^\beta$$

and equality is achieved if and only if

$$f(t) = \frac{1}{1 + \mu t^{\beta}}$$
 with  $\mu = \left[\frac{\beta - 1}{\beta} \cdot \frac{\pi/\beta}{\sin(\pi/\beta)}\right]^{\beta}$ .

*Proof.* Heuristically, the optimizer can be found by solving the Euler–Lagrange equation, but to make this rigorous one would have to prove that a minimizer exists. This can be easily done by setting  $h(t) = (1 - f(t))t^{-\beta/2}$ , so the minimization problem is equivalent to

$$\inf \left\{ \int_0^\infty h(t)^2 \, \mathrm{d}t : h \in \partial C \right\}$$

where  $\partial C = \{h: \mathbb{R}_+ \to \mathbb{R}: \int_0^\infty (1-t^{\beta/2}h(t))^2 \,\mathrm{d}t = 1\}$  is the boundary of the strictly convex set  $C = \{h: \mathbb{R}_+ \to \mathbb{R}: \int_0^\infty (1-t^{\beta/2}h(t))^2 \,\mathrm{d}t \leq 1\}$ . Since C is closed, which follows easily from Fatou's lemma, and does not contain the zero function, it contains a function  $h_*$  of minimal length. Necessarily  $h_* \in \partial C$ , otherwise  $h_*$  would be in the interior of C and we could shrink it, thus reducing its length a little bit, which is impossible. So  $h_*(t) = (1-f_*(t))t^{-\beta/2}$  has minimal  $L^2$  norm under all f with  $\int_0^\infty f(t)^2 \,\mathrm{d}t = \int_0^\infty (1-t^{\beta/2}h(t))^2 \,\mathrm{d}t = 1$ . Hence  $f_*$  is a minimizer which must obey the Euler–Lagrange equation.

A more direct solution is as follows: Let  $f_*(t) = (1 + (\mu_* t)^{\beta})^{-1}$  with

$$\mu_* = \int_0^\infty \frac{\mathrm{d}t}{(1+t^\beta)^2},$$

so that  $t^{-\beta}(1 - f_*(t)) = \mu_*^{\beta} f_*(t)$  and

$$\int_0^\infty f_*(t)^2 dt = \int_0^\infty \frac{dt}{(1 + (\mu_* t)^\beta)^2} = \mu_*^{-1} \int_0^\infty \frac{dt}{(1 + t^\beta)^2} = 1.$$

We see that for any  $f: \mathbb{R}_+ \to \mathbb{R}_+$  with  $\int_0^\infty f(t)^2 dt = 1$ ,

$$\int_{0}^{\infty} t^{-\beta} (1 - f(t))^{2} dt - \int_{0}^{\infty} t^{-\beta} (1 - f_{*}(t))^{2} dt$$

$$= 2 \int_{0}^{\infty} t^{-\beta} (1 - f_{*}(t)) (f_{*}(t) - f(t)) dt + \int_{0}^{\infty} t^{-\beta} (f(t) - f_{*}(t))^{2} dt$$

$$= 2 \mu_{*}^{\beta} \int_{0}^{\infty} f_{*}(t) (f_{*}(t) - f(t)) dt + \int_{0}^{\infty} t^{-\beta} (f(t) - f_{*}(t))^{2} dt$$

$$= \mu_{*}^{\beta} \int_{0}^{\infty} (f_{*}(t) - f(t))^{2} dt + \int_{0}^{\infty} t^{-\beta} (f(t) - f_{*}(t))^{2} dt \ge 0.$$

Here we have used  $t^{-\beta}(1-f_*(t))=\mu_*^\beta f_*(t)$  in the second identity and  $\int_0^\infty f_*^2=\int_0^\infty f^2=\frac{1}{2}\int f_*^2+\frac{1}{2}\int_0^\infty f^2$  in the last one. This shows that the infimum is attained if and only if  $f=f_*$ .

It remains to compute the infimum and  $\mu_*$ . Both follow from the formula [1, 6.2.1 and 6.2.2]

$$\int_0^\infty \frac{u^{\zeta}}{(1+u)^2} du = \Gamma(1+\zeta)\Gamma(1-\zeta) \quad \text{if } -1 < \operatorname{Re} \zeta < 1.$$

Alternatively one can use a keyhole type contour encircling the positive real axis and the residue theorem [2, Section 11.1.III] to directly evaluate  $\int_0^\infty \frac{u^{\zeta}}{(1+u)^2} du$ .

Letting  $u = t^{\beta}$ , we have

$$\mu_* = \int_0^\infty \frac{\mathrm{d}t}{(1+t^\beta)^2} = \frac{1}{\beta} \int_0^\infty \frac{u^{1/\beta - 1} \, \mathrm{d}u}{(1+u)^2} = \frac{\Gamma(1/\beta)\Gamma(2 - 1/\beta)}{\beta}$$

The functional equations  $\Gamma(1+z)=z\Gamma(z)$  and  $\Gamma(z)\Gamma(1-z)=\frac{\pi}{\sin(\pi z)}$ , the last one again valid for -1<Re z<1, yield

$$\mu_* = \frac{1}{\beta} \left( 1 - \frac{1}{\beta} \right) \Gamma(1/\beta) \Gamma(1 - 1/\beta) = \left( 1 - \frac{1}{\beta} \right) \frac{\pi/\beta}{\sin(\pi/\beta)}.$$

Moreover,

$$\int_0^\infty (1 - f_*(t))^2 t^{-\beta} dt = \mu_*^\beta \int_0^\infty \frac{(\mu_* t)^\beta dt}{(1 + \mu_* t^\beta)^2} = \mu_*^{\beta - 1} \int_0^\infty \frac{t^\beta dt}{(1 + t^\beta)^2}$$

and

$$\begin{split} \int_0^\infty \frac{t^\beta \, \mathrm{d}t}{(1+t^\beta)^2} &= \frac{1}{\beta} \int_0^\infty \frac{u^{1/\beta} \, \mathrm{d}u}{(1+u)^2} = \frac{\Gamma(1+1/\beta)\Gamma(1-1/\beta)}{\beta} = \frac{\Gamma(1/\beta)\Gamma(1-1/\beta)}{\beta^2} \\ &= \frac{1}{\beta} \frac{\pi/\beta}{\sin(\pi/\beta)}. \end{split}$$

This proves the claimed formula.

### 3. Lifting to higher dimensions. I

In dimension d=1 Proposition 4 yields  $L_{1,1}/L_{1,1}^{\rm cl} \leq 1.618435$ , which is better than for instance the bound in dimension d=3, namely  $L_{1,3}/L_{1,3}^{\rm cl} \leq 1.994584$ . In this section we use a procedure of Laptev and Weidl [15, 16] to show that the higher-dimensional fraction  $L_{1,d}/L_{1,d}^{\rm cl}$  is at least as good as the low-dimensional one.

The idea is to consider potentials V on  $\mathbb{R}^d$  that take values in the self-adjoint operators on some separable Hilbert space  $\mathcal{H}$ . We are looking for an inequality of the form

$$\text{Tr}[-\Delta + V]_{-} \le L_{1,d}^{\text{op}} \int_{\mathbb{R}^d} \text{tr}(V(x)_{-}^{1+d/2}) \, \mathrm{d}x,$$
 (26)

where tr denotes the trace in  $\mathcal{H}$ , Tr the trace in  $L^2(\mathbb{R}^d;\mathcal{H}) = L^2(\mathbb{R}^d) \otimes \mathcal{H}$ , the operator  $-\Delta$  is interpreted as  $-\Delta \otimes \mathbb{1}_{\mathcal{H}}$ , and where, by definition, the constant  $L_{1,d}^{\text{op}}$  is independent of  $\mathcal{H}$ . Taking  $\mathcal{H}$  one-dimensional we see that (26) coincides with (1) and therefore

$$L_{1,d} \le L_{1,d}^{\text{op}}.$$
 (27)

It is not known whether  $L_{1,d}$  and  $L_{1,d}^{\text{op}}$  coincide, but in this section we will show that the upper bound on  $L_{1,d}$  from Proposition 4 is, in fact, also an upper bound on  $L_{1,d}^{\text{op}}$ .

We show this by using the classical duality argument. This shows the analogue of (7), that is,

$$K_d^{\text{op}}(1+2/d) = [L_{1,d}^{\text{op}}(1+d/2)]^{-2/d},$$
 (28)

where  $K_d^{op}$  denotes the best constant in the inequality

$$\operatorname{Tr}(-\Delta \gamma) \ge K_d^{\operatorname{op}} \int_{\mathbb{D}^d} \operatorname{tr}(\gamma(x, x)^{1+2/d}) \, \mathrm{d}x \tag{29}$$

for all operators  $\gamma$  on  $L^2(\mathbb{R}^d;\mathcal{H})$  satisfying  $0 \leq \gamma \leq 1$ , where  $\mathcal{H}$  is an arbitrary (separable) Hilbert space. For such  $\gamma$ , one can consider  $\gamma(x,x)$  as a non-negative operator in  $\mathcal{H}$ .

The following proof improves upon an argument from [9].

**Proposition 6.** For  $d \ge 1$ , the best constant in the Lieb-Thirring inequality (29) satisfies

$$K_d^{\text{op}}/K_d^{\text{cl}} \ge \frac{d}{d+4} \left[ \frac{(d+2)^2 \sin(\frac{2\pi}{d+2})}{2\pi d} \right]^{1+2/d}.$$

In particular, when d = 1 we get  $K_1^{\text{op}}/K_1^{\text{cl}} \ge 0.381777$  and  $L_{1,d}^{\text{op}}/L_{1,d}^{\text{cl}} \le 1.618435$ .

*Proof.* Let  $\gamma$  be an operator on  $L^2(\mathbb{R}^d; \mathcal{H})$  with  $0 \leq \gamma \leq 1$ . By a density argument we may assume that  $\mathcal{H}$  is finite-dimensional and that  $\gamma$  is finite rank and with smooth eigenfunctions. The analogue of (17) is

$$\operatorname{Tr}(-\Delta \gamma) = \int_{\mathbb{R}^d} \operatorname{tr} \left[ \int_0^\infty (f(s/p^2)\gamma f(s/p^2))(x, x) \, \mathrm{d}s \right] \mathrm{d}x \tag{30}$$

for any  $f: \mathbb{R}_+ \to \mathbb{R}_+$  with  $\int_0^\infty f^2 = 1$ . The operator inequality (18) implies that for any  $x \in \mathbb{R}^d$  one has (19), understood as an operator inequality in  $\mathcal{H}$ . Denoting by  $\lambda_n(T)$  the n-th eigenvalue, in decreasing order and taking multiplicities into account, of a nonnegative operator T, we infer from (19), the variational principle and the computation (21) that for any  $n \in \mathbb{N}$ ,

$$\lambda_n(\gamma(x,x)) \le (1+\varepsilon)\lambda_n\left((f(s/p^2)\gamma f(s/p^2))(x,x)\right) + (1+\varepsilon^{-1})s^{d/2}\frac{|B_1|}{(2\pi)^d}A_f.$$

At this stage we can optimize over  $\varepsilon > 0$  and obtain

$$\sqrt{\lambda_n(\gamma(x,x))} \le \sqrt{\lambda_n((f(s/p^2)\gamma f(s/p^2))(x,x))} + \sqrt{(1-f(s/p^2))^2(x,x)}.$$
 (31)

Thus.

$$\lambda_n \left( (f(s/p^2)\gamma f(s/p^2))(x,x) \right) \ge \left[ \sqrt{\lambda_n(\gamma(x,x))} - \sqrt{s^{d/2} \frac{|B_1|}{(2\pi)^d} A_f} \right]_+^2. \tag{32}$$

For fixed n (and x) we obtain, after integration over s,

$$\int_{0}^{\infty} \lambda_{n} \left( (f(s/p^{2})\gamma f(s/p^{2}))(x,x) \right) ds$$

$$\geq \lambda_{n} (\gamma(x,x))^{1+2/d} \left( \frac{|B_{1}|}{(2\pi)^{d}} A_{f} \right)^{-2/d} \frac{d^{2}}{(d+2)(d+4)}.$$

Summing over n and integrating with respect to x we obtain, by (30),

$$\operatorname{Tr}(-\Delta \gamma) \ge \int_{\mathbb{R}^d} \sum_n \int_0^\infty \lambda_n \left( (f(s/p^2) \gamma f(s/p^2))(x, x) \right) ds dx$$

$$\ge \int_{\mathbb{R}^d} \operatorname{tr}(\gamma(x, x)^{1+2/d}) dx \left( \frac{|B_1|}{(2\pi)^d} A_f \right)^{-2/d} \frac{d^2}{(d+2)(d+4)}.$$

The proposition now follows in the same way as Proposition 4.

**Remark 7.** The same proof yields the operator-valued analogue of Theorem 2. Since there seems to be no analogue of the following proposition for  $(-\Delta)^{\sigma}$  with  $\sigma \neq 1$ , we do not write this out.

In order to obtain good constants in higher dimensions we recall the following bound which is essentially due to Laptev and Weidl [16]. The extension to  $d_1 \ge 2$ , which is not needed here, but is interesting in its own right, is due to [12].

**Proposition 8.** For any integers  $1 \le d_1 < d$ ,

$$L_{1,d}^{\text{op}}/L_{1,d}^{\text{cl}} \leq L_{1,d_1}^{\text{op}}/L_{1,d_1}^{\text{cl}}.$$

In particular, taking  $d_1 = 1$  and using the bound from Proposition 6 together with (27) we obtain the following bound.

**Corollary 9.** For any  $d \ge 1$ ,  $L_{1,d}/L_{1,d}^{cl} \le L_{1,d}^{op}/L_{1,d}^{cl} \le 1.618435$ .

The proof of Proposition 8 is by now standard, but we sketch it for the sake of completeness. We need the following more general family of Lieb-Thirring inequalities:

$$\operatorname{Tr}[-\Delta + V]_{-}^{\alpha} \le L_{\alpha,d}^{\operatorname{op}} \int_{\mathbb{R}^d} \operatorname{tr}(V(x)_{-}^{\alpha + d/2}) \, \mathrm{d}x, \tag{33}$$

as well as the semiclassical constant

$$L_{\alpha,d}^{\text{cl}} = \frac{1}{(2\pi)^2} \int_{\mathbb{R}^d} (\eta^2 - 1)_-^{\alpha + d/2} \, \mathrm{d}\eta = \frac{\Gamma(\alpha + 1)}{(4\pi)^{d/2} \Gamma(\alpha + d/2 + 1)},$$

where again V takes now values in the self-adjoint operators on some auxiliary separable Hilbert space  $\mathcal H$  and its negative part  $V(x)_-$  is in the  $\alpha+d/2$  von Neumann–Schatten ideal, tr denotes the trace over  $\mathcal H$ , and  $\mathrm{Tr}$  the trace over  $L^2(\mathbb R^d;\mathcal H)=L^2(\mathbb R^d)\otimes\mathcal H$ .

The celebrated result by Laptev and Weidl [16] says that  $L_{\alpha,d}^{op} = L_{\alpha,d}^{cl}$  for any  $\alpha \ge 3/2$  and any  $d \ge 1$ . (For d = 1,  $\alpha = 3/2$  and in the scalar case, this was shown in the original paper of Lieb and Thirring [20].)

*Proof of Proposition 8.* We follow the argument in [12] closely: Let  $d = d_1 + d_2$  and decompose accordingly  $x = (x_1, x_2)$  with  $x_1 \in \mathbb{R}^{d_1}$  and  $x_2 \in \mathbb{R}^{d_2}$  and  $-\Delta = -\Delta_1 - \Delta_2$ . Let V be a function on  $\mathbb{R}^d$  taking values in the self-adjoint operators in some Hilbert space  $\mathcal{H}$ . For any  $x_1 \in \mathbb{R}^{d_1}$  we can consider  $W(x_1) = -\Delta_2 + V(x_1, \cdot)$  as a self-adjoint operator in  $\tilde{\mathcal{H}} = L^2(\mathbb{R}^d; \mathcal{H})$ . Thus, by the operator-valued LT inequality on  $\mathbb{R}^{d_1}$ ,

$$\operatorname{Tr}[-\Delta + V]_{-} = \operatorname{Tr}_{L^{2}(\mathbb{R}^{d_{1}})}[-\Delta_{1} + W]_{-} \leq L_{1,d_{1}}^{\operatorname{op}} \int_{\mathbb{R}^{d_{1}}} \operatorname{Tr}_{L^{2}(\mathbb{R}^{d_{2}};\mathcal{H})}(W(x_{1})_{-}^{1+d_{1}/2}) dx_{1}.$$

Since  $1 + d_1/2 \ge 3/2$ , the bound from [16] implies, for any  $x_1 \in \mathbb{R}^{d_1}$ ,

$$\operatorname{Tr}_{L^2(\mathbb{R}^{d_2};\mathcal{H})}(W(x_1)^{1+d_1/2}_-) \le L^{\operatorname{cl}}_{1+d_1/2,d_2} \int_{\mathbb{R}^{d_2}} \operatorname{tr}(V(x_1,x_2)^{1+d/2}_-) dx_2.$$

Combining the last two inequalities and observing that

$$L_{1,d_1}^{\text{cl}} L_{1+d_1/2,d_2}^{\text{cl}} = L_{1,d}^{\text{cl}}$$

(see [12] for a non-computational proof of this identity), we obtain the claimed inequality.

## 4. Low momentum averaging

Our main idea to improve the estimate in Proposition 4 is to average over low momenta  $s \le E$  before using the Cauchy–Schwarz inequality (18). We will actually push forward this idea by adding a weight function. This leads to

**Proposition 10.** For  $d \ge 1$ , the best constant in the Lieb-Thirring inequality (6) satisfies

$$K_d/K_d^{\text{cl}} \ge \frac{d \, 2^{4/d}}{(d+2)^{1+4/d} \mathcal{C}_d^{2/d}},$$
 (34)

where

$$C_d := \inf \left\{ \left( \int_0^\infty \varphi^2 \right)^{d/2} \frac{d}{2} \int_0^\infty \frac{(1 - \int_0^\infty \varphi(s) f(st) \, \mathrm{d}s)^2}{t^{1 + d/2}} \, \mathrm{d}t \right\},\tag{35}$$

with the infimum taken over all functions  $f, \varphi : \mathbb{R}_+ \to \mathbb{R}_+$  satisfying  $\int_0^\infty f^2 = 1$ . In particular, when d = 1 we have  $K_1/K_1^{cl} \ge 0.471851$  and  $L_{1,1}/L_{1,1}^{cl} \le 1.455786$ .

Note that for the infimum in (35) to be finite we need  $\int_0^\infty \varphi^2 < \infty$  and, if f is continuous near 0, also  $\int_0^\infty \varphi = 1/f(0)$ . (The latter implies that  $\int_0^\infty \varphi(s) f(st) \, \mathrm{d}s \to 1$  as  $t \to 0$ .)

*Proof of Proposition 10.* Let  $f, \varphi : \mathbb{R}_+ \to \mathbb{R}_+$  with  $\int_0^\infty f^2 = 1$ . Recall the momentum decomposition (17). We have for any  $\psi \in L^2(\mathbb{R}^d)$ ,  $s, s' \in (0, \infty)$ ,

$$\langle \psi, f(s/p^2) \gamma f(s'/p^2) \psi \rangle \leq \sqrt{\langle \psi, f(s/p^2) \gamma f(s/p^2) \psi \rangle} \sqrt{\langle \psi, f(s'/p^2) \gamma f(s'/p^2) \psi \rangle},$$

and therefore, for every E > 0,

$$\begin{split} \int_0^\infty \int_0^\infty \varphi(s/E) \langle \psi, f(s/p^2) \gamma f(s'/p^2) \psi \rangle \varphi(s'/E) \, \mathrm{d}s \, \mathrm{d}s' \\ & \leq \left( \int_0^\infty \varphi(s/E) \sqrt{\langle \psi, f(s/p^2) \gamma f(s/p^2) \psi \rangle} \, \mathrm{d}s \right)^2 \\ & \leq \left( \int_0^\infty \varphi(s/E)^2 \, \mathrm{d}s \right) \left( \int_0^\infty \langle \psi, f(s/p^2) \gamma f(s/p^2) \psi \rangle \, \mathrm{d}s \right). \end{split}$$

This implies that we have the operator inequality

$$\left(\int_{0}^{\infty} \varphi(s)^{2} ds\right) \left(\int_{0}^{\infty} f(s/p^{2}) \gamma f(s/p^{2}) ds\right) 
= E^{-1} \left(\int_{0}^{\infty} \varphi(s/E)^{2} ds\right) \left(\int_{0}^{\infty} f(s/p^{2}) \gamma f(s/p^{2}) ds\right) 
\ge E^{-1} \left(\int_{0}^{\infty} \varphi(s/E) f(s/p^{2}) ds\right) \gamma \left(\int_{0}^{\infty} \varphi(s/E) f(s/p^{2}) ds\right) 
= Eg(E/p^{2}) \gamma g(E/p^{2})$$
(36)

with

$$g(t) := \int_0^\infty \varphi(s) f(st) \, \mathrm{d}s. \tag{37}$$

Next, by the Cauchy–Schwarz estimate similarly to (18) (thanks to  $0 \le \gamma \le 1$ ) we have

$$\gamma \le (1+\varepsilon)g(E/p^2)\gamma g(E/p^2) + (1+\varepsilon^{-1})(1-g(E/p^2))^2 \tag{38}$$

for every  $\varepsilon > 0$ . Combining (36) and (38) we get

$$E\gamma \le (1+\varepsilon) \left( \int_0^\infty \varphi^2 \right) \left( \int_0^\infty f(s/p^2) \gamma f(s/p^2) \, \mathrm{d}s \right) + (1+\varepsilon^{-1}) E(1 - g(E/p^2))^2. \tag{39}$$

Transferring (39) to a kernel bound, using the same computation as in (21)–(22), and then optimizing over  $\varepsilon > 0$  we obtain

$$\left(\int_{0}^{\infty} \varphi^{2}\right) \int_{0}^{\infty} (f(s/p^{2})\gamma f(s/p^{2}))(x,x) \, \mathrm{d}s \ge \left[\sqrt{E\gamma(x,x)} - \sqrt{E^{1+d/2} \frac{|B_{1}|}{(2\pi)^{d}}} A_{g}\right]_{+}^{2}. \tag{40}$$

Then optimizing over E > 0 leads to

$$\left(\int_{0}^{\infty} \varphi^{2}\right) \int_{0}^{\infty} (f(s/p^{2})\gamma f(s/p^{2}))(x,x) ds$$

$$\geq \sup_{E>0} E \left[\sqrt{\gamma(x,x)} - \sqrt{E^{d/2} \frac{|B_{1}|}{(2\pi)^{d}} A_{g}}\right]_{+}^{2} = \gamma(x,x)^{1+2/d} \frac{(2\pi)^{2}}{|B_{1}|^{2/d}} \cdot \frac{2^{4/d} d^{2}}{(d+2)^{2+4/d} A_{g}^{2/d}}.$$
(41)

Inserting this into (17) we conclude that

$$\operatorname{Tr}(-\Delta \gamma) \ge \left( \int_{\mathbb{R}^d} \gamma(x, x)^{1+2/d} \, \mathrm{d}x \right) \frac{(2\pi)^2}{|B_1|^{2/d}} \cdot \frac{2^{4/d} d^2}{(d+2)^{2+4/d} A_g^{2/d} (\int_0^\infty \varphi^2)}, \tag{42}$$

so the best constant in (6) satisfies

$$K_d/K_d^{\text{cl}} \le \frac{2^{4/d}d}{(d+2)^{1+4/d}A_g^{2/d}(\int_0^\infty \varphi^2)}$$

Optimizing over  $f, \varphi$  leads to (34).

When d=1, using the upper bound  $\mathcal{C}_1 \leq 0.373556$  in Lemma 11 below, we obtain  $K_1/K_1^{\rm cl} \geq 0.471851\ldots$  and  $L_{1,1}/L_{1,1}^{\rm cl} \leq 1.455785\ldots$ 

We end this section with

**Lemma 11.** When d = 1, the constant  $C_d$  in (35) satisfies

$$1/3 \le C_1 \le 0.373556$$
.

*Proof.* Let  $f, \varphi : \mathbb{R}_+ \to \mathbb{R}_+$  with  $\int_0^\infty f^2 = 1$ . Take g as in (37) and  $a := \int_0^\infty \varphi^2$ . By the Cauchy–Schwarz inequality,

$$g(t) = \int_0^\infty \varphi(s) f(st) \, \mathrm{d}s \le \left( \int_0^\infty \varphi(s)^2 \, \mathrm{d}s \right)^{1/2} \left( \int_0^\infty f(ts)^2 \, \mathrm{d}s \right)^{1/2} = \sqrt{a/t}.$$

Therefore, when d = 1 we get the desired lower bound

$$a^{1/2} \int_0^\infty \frac{(1 - g(t))^2}{2t^{3/2}} dt \ge a^{1/2} \int_0^\infty \frac{[1 - \sqrt{a/t}]_+^2}{2t^{3/2}} dt = \frac{1}{3}.$$

The upper bound on  $C_1$  requires an explicit choice of  $(f, \varphi)$ . The analysis from Section 2 suggests the choice

$$f(t) = (1 + \mu t^{3/2})^{-1}, \quad \mu = \left[\frac{4\pi}{9\sqrt{3}}\right]^{3/2}, \quad \varphi(t) = 5(1 - t^{1/4})\mathbb{1}(t \le 1),$$

which gives  $C_1 \leq 0.381378$ . We can do slightly better by taking

$$f(t) = (1 + \mu_0 t^{4.5})^{-0.25}, \quad \varphi(t) = c_0 \frac{(1 - t^{0.36})^{2.1}}{1 + t} \mathbb{1}(t \le 1)$$

with  $\mu_0$  and  $c_0$  determined by  $\int_0^\infty f^2 = \int_0^\infty \varphi = 1$ , leading to  $C_1 \le 0.373556$ .

### 5. Lifting to higher dimensions. II

In this section we proceed analogously to Section 3 to extend Proposition 10 to the operator-valued case.

**Proposition 12.** For  $d \ge 1$ , the best constant in the Lieb–Thirring inequality (29) satisfies

$$K_d^{\text{op}}/K_d^{\text{cl}} \ge \frac{d2^{4/d}}{(d+2)^{1+4/d}C_d^{2/d}}$$
 (43)

with  $C_d$  from (35). In particular, when d=1 we have  $K_1^{\text{op}}/K_1^{\text{cl}} \geq 0.471851$  and  $L_{1,1}^{\text{op}}/L_{1,1}^{\text{cl}} \leq 1.455786$ .

Combining this proposition with Proposition 8 (for  $d_1 = 1$ ) and (27) we obtain Theorem 1. It remains to prove the proposition.

*Proof.* Let  $f, \varphi : \mathbb{R}_+ \to \mathbb{R}_+$  satisfy  $\int_0^\infty f^2 = \int_0^\infty \varphi = 1$  and take g as in (37). We follow the proof of Proposition 10 to arrive at the operator inequality (39). As in the proof of Proposition 6 this implies, for any  $x \in \mathbb{R}^d$  and  $n \in \mathbb{N}$ ,

$$E\lambda_n(\gamma(x,x))$$

$$\leq (1+\varepsilon)\left(\int_0^\infty \varphi^2\right)\lambda_n\left(\int_0^\infty (f(s/p^2)\gamma f(s/p^2))(x,x)\,\mathrm{d}s\right) + (1+\varepsilon^{-1})E^{1+d/2}\frac{|B_1|}{(2\pi)^d}A_g.$$

Optimizing over  $\varepsilon > 0$  we obtain

$$\left(\int_{0}^{\infty} \varphi^{2}\right) \lambda_{n} \left(\int_{0}^{\infty} (f(s/p^{2})\gamma f(s/p^{2}))(x,x) \, \mathrm{d}s\right)$$

$$\geq \left[\sqrt{E\lambda_{n}(\gamma(x,x))} - \sqrt{E^{1+d/2} \frac{|B_{1}|}{(2\pi)^{d}} A_{g}}\right]_{+}^{2}.$$

Finally, optimizing over E > 0 leads to

$$\left(\int_{0}^{\infty} \varphi^{2}\right) \lambda_{n} \left(\int_{0}^{\infty} (f(s/p^{2})\gamma f(s/p^{2}))(x, x) \, \mathrm{d}s\right) \\
\geq \sup_{E>0} E \left[\sqrt{\lambda_{n}(\gamma(x, x))} - \sqrt{E^{d/2} \frac{|B_{1}|}{(2\pi)^{d}}} A_{g}\right]_{+}^{2} \\
= \lambda_{n} (\gamma(x, x))^{1+2/d} \frac{(2\pi)^{2}}{|B_{1}|^{2/d}} \cdot \frac{2^{4/d} d^{2}}{(d+2)^{2+4/d} A_{g}^{2/d}}.$$

Inserting this into (17) we conclude that

$$\operatorname{Tr}(-\Delta \gamma) \ge \left( \int_{\mathbb{R}^d} \operatorname{tr}(\gamma(x,x)^{1+2/d}) \, \mathrm{d}x \right) \frac{(2\pi)^2}{|B_1|^{2/d}} \cdot \frac{2^{4/d} d^2}{(d+2)^{2+4/d} A_g^{2/d} (\int_0^\infty \varphi^2)}.$$

Finally, it remains to optimize over f,  $\varphi$  to obtain (43). The numerical values when d=1 are obtained from the upper bound on  $C_1$  in Lemma 11.

### 6. Bounds with fractional operators

The proof of Theorem 2 is essentially the same as that of Theorem 1 (except we do not use the lifting argument) and we only sketch the major steps.

*Proof of Theorem 2.* Let  $f: \mathbb{R}_+ \to \mathbb{R}_+$  satisfy  $\int_0^\infty f^2 = 1$ . We have the analogue of (17),

$$\operatorname{Tr}((-\Delta)^{\sigma}\gamma) = \int_{\mathbb{R}^d} \left[ \int_0^{\infty} (f(s/|p|^{2\sigma})\gamma f(s/|p|^{2\sigma}))(x,x) \, \mathrm{d}s \right] \mathrm{d}x. \tag{44}$$

Using the Cauchy–Schwarz inequality as in (18) with a parameter  $\varepsilon > 0$  and optimizing over this parameter we obtain a generalization of (20),

$$\sqrt{\gamma(x,x)} \le \sqrt{(f(s/|p|^{2\sigma})\gamma f(s/|p|^{2\sigma}))(x,x)} + \sqrt{(1-f(s/|p|^{2\sigma}))^2(x,x)}$$
(45)

for all  $x \in \mathbb{R}^d$ . We now compute

$$(1 - f(s/|p|^{2\sigma}))^{2}(x, x) = s^{\frac{d}{2\sigma}} \frac{|B_{1}|}{(2\pi)^{d}} A_{f}^{(\sigma)}, \tag{46}$$

where

$$A_f^{(\sigma)} := \frac{d}{2\sigma} \int_0^\infty \frac{(1 - f(t))^2}{t^{1 + \frac{d}{2\sigma}}} dt.$$
 (47)

Consequently, we deduce from (45) that

$$(f(s/|p|^{2\sigma})\gamma f(s/|p|^{2\sigma}))(x,x) \ge \left[\sqrt{\gamma(x,x)} - \sqrt{s^{\frac{d}{2\sigma}}} \frac{|B_1|}{(2\pi)^d} A_f^{(\sigma)}\right]_+^2. \tag{48}$$

Inserting (48) into (44) and integrating over s > 0 leads to

$$\operatorname{Tr}((-\Delta)^{\sigma}\gamma) \ge \left(\int_{\mathbb{R}^d} \gamma(x,x)^{1+2\sigma/d} \, \mathrm{d}x\right) \left(\frac{|B_1|}{(2\pi)^d} A_f^{(\sigma)}\right)^{-2\sigma/d} \frac{d^2}{(d+2\sigma)(d+4\sigma)}. \tag{49}$$

Thus,

$$K_{d,\sigma}/K_{d,\sigma}^{\text{cl}} \ge \frac{d}{d+4\sigma} (A_f^{(\sigma)})^{-2\sigma/d}.$$
 (50)

Rupert L. Frank et al.

Lemma 5 provides the minimium value of  $A_f^{(\sigma)}$  optimized over f with  $\int_0^\infty f^2 = 1$ . This leads to the first desired bound

$$K_{d,\sigma}/K_{d,\sigma}^{\text{cl}} \ge \frac{d}{d+4\sigma} \left[ \frac{(d+2\sigma)^2 \sin\left(\frac{2\pi\sigma}{d+2\sigma}\right)}{2\pi\sigma d} \right]^{1+2\sigma/d}.$$
 (51)

Next, we introduce  $\varphi: \mathbb{R}_+ \to \mathbb{R}_+$  satisfying  $\int_0^\infty \varphi = 1$  and define g as in (37). Then proceeding as in (39) we have the operator inequality

$$E\gamma \le (1+\varepsilon) \left( \int_0^\infty \varphi^2 \right) \left( \int_0^\infty f(s/|p|^{2\sigma}) \gamma f(s/|p|^{2\sigma}) \, \mathrm{d}s \right)$$
  
+ 
$$(1+\varepsilon^{-1}) E(1-g(E/|p|^{2\sigma}))^2.$$

Transferring the latter to a kernel bound, using the same computation as in (46)–(47), and optimizing over  $\varepsilon > 0$  and then E > 0, we obtain the following analogue of (41):

$$\left(\int_{0}^{\infty} \varphi^{2}\right) \int_{0}^{\infty} \left(f(s/|p|^{2\sigma})\gamma f(s/|p|^{2\sigma})\right)(x,x) \, \mathrm{d}s$$

$$\geq \sup_{E>0} E \left[\sqrt{\gamma(x,x)} - \sqrt{E^{\frac{d}{2\sigma}} \frac{|B_{1}|}{(2\pi)^{d}} A_{g}^{(\sigma)}}\right]_{+}^{2}$$

$$= \gamma(x,x)^{1+2\sigma/d} \left(\frac{|B_{1}|}{(2\pi)^{d}} A_{g}^{(\sigma)}\right)^{-2\sigma/d} \left(\frac{d}{d+2\sigma}\right)^{2} \left(\frac{2\sigma}{d+2\sigma}\right)^{4\sigma/d}. \tag{52}$$

Inserting (52) into (44), and then optimizing over f,  $\varphi$ , we arrive at

$$K_{d,\sigma}/K_{d,\sigma}^{\text{cl}} \ge \frac{d}{d+2\sigma} \left(\frac{2\sigma}{d+2\sigma}\right)^{4\sigma/d} (A_g^{(\sigma)})^{-2\sigma/d} \left(\int_0^\infty \varphi^2\right)^{-1}$$

Optimizing over  $f, \varphi$  gives the second desired estimate

$$K_{d,\sigma}/K_{d,\sigma}^{\text{cl}} \ge \frac{d}{d+2\sigma} \left(\frac{2\sigma}{d+2\sigma}\right)^{4\sigma/d} \mathcal{C}_{d,\sigma}^{-2\sigma/d}$$
 (53)

with  $C_{d,\sigma}$  given in (13).

Finally, in the physical case  $\sigma = 1/2$  and d = 3, by taking the trial choice

$$f(t) = (1 + \mu_0 t^{10})^{1/4}, \quad \varphi(t) = c_0 (1 - t^2)^4 \mathbb{1}(t \le 1)$$

with  $\mu_0$  and  $c_0$  determined by  $\int_0^\infty f^2 = \int_0^\infty \varphi = 1$ , we obtain  $C_{d,\sigma} \leq 0.046736$ , which implies  $K_{d,\sigma}/K_{d,\sigma}^{\text{cl}} \geq 0.826297$  by (53).

*Acknowledgments*. We thank Sabine Boegli for helpful discussions and Simon Larson for remarks that helped improve the manuscript. This work was partially supported by U.S. NSF grants DMS-1363432 and DMS-1954995 (R.L.F.), the Alfried Krupp von Bohlen und Halbach Foundation, and the Deutsche Forschungsgemeinschaft (DFG) through CRC 1173 (D.H.).

#### References

- [1] Abramowitz, M., Stegun, I. A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards Appl. Math. Ser. 55, U.S. Government Printing Office, Washington, DC (1964) Zbl 0171.38503 MR 0167642
- Bak, J., Newman, D. J.: Complex Analysis. 3rd ed., Undergrad. Texts in Math., Springer, New York (2010) Zbl 1205.30001 MR 2675489
- [3] Blanchard, P., Stubbe, J.: Bound states for Schrödinger Hamiltonians: phase space methods and applications. Rev. Math. Phys. **8**, 503–547 (1996) Zbl 0859.35101 MR 1405763
- [4] Carlen, E. A., Frank, R. L., Lieb, E. H.: Stability estimates for the lowest eigenvalue of a Schrödinger operator. Geom. Funct. Anal. 24, 63–84 (2014) Zbl 1291.35145 MR 3177378
- [5] Daubechies, I.: An uncertainty principle for fermions with generalized kinetic energy. Comm. Math. Phys. 90, 511–520 (1983)
   Zbl 0946.81521
   MR 719431
- [6] Dolbeault, J., Laptev, A., Loss, M.: Lieb-Thirring inequalities with improved constants. J. Eur. Math. Soc. 10, 1121–1126 (2008) Zbl 1152.35451 MR 2443931
- [7] Dyson, F. J., Lenard, A.: Stability of matter. I, II. J. Math. Phys. 8, 423–434 (1967) and 9, 698–711 (1968)
   Zbl 0948.81665(I)
   MR 2408896(I)
   Zbl 0948.81666(II)
   MR 2408897(II)
- [8] Eden, A., Foias, C.: A simple proof of the generalized Lieb-Thirring inequalities in one-space dimension. J. Math. Anal. Appl. 162, 250–254 (1991) Zbl 0792,46021 MR 1135275
- [9] Frank, R. L.: Cwikel's theorem and the CLR inequality. J. Spectr. Theory 4, 1–21 (2014) Zbl 1295.35347 MR 3181383
- [10] Frank, R. L., Lewin, M., Lieb, E. H., Seiringer, R.: A positive density analogue of the Lieb– Thirring inequality. Duke Math. J. 162, 435–495 (2013) Zbl 1260.35088 MR 3024090
- [11] Hoffmann-Ostenhof, M., Hoffmann-Ostenhof, T.: "Schrödinger inequalities" and asymptotic behavior of the electron density of atoms and molecules. Phys. Rev. A (3) 16, 1782–1785 (1977) MR 471726
- [12] Hundertmark, D.: On the number of bound states for Schrödinger operators with operator-valued potentials. Ark. Mat. 40, 73–87 (2002) Zbl 1030.35129 MR 1948887
- [13] Hundertmark, D., Laptev, A., Weidl, T.: New bounds on the Lieb-Thirring constants. Invent. Math. 140, 693-704 (2000) Zbl 1074.35569 MR 1760755
- [14] Keller, J. B.: Lower bounds and isoperimetric inequalities for eigenvalues of the Schrödinger equation. J. Math. Phys. 2, 262–266 (1961) Zbl 0099.06901 MR 121101
- [15] Laptev, A.: Dirichlet and Neumann eigenvalue problems on domains in Euclidean spaces. J. Funct. Anal. 151, 531–545 (1997) Zbl 0892.35115 MR 1491551
- [16] Laptev, A., Weidl, T.: Sharp Lieb-Thirring inequalities in high dimensions. Acta Math. 184, 87-111 (2000) Zbl 1142.35531 MR 1756570
- [17] Lieb, E. H.: On characteristic exponents in turbulence. Comm. Math. Phys. 92, 473–480 (1984) Zbl 0598.76054 MR 736404
- [18] Lieb, E. H., Loss, M.: Analysis. 2nd ed., Grad. Stud. Math, 14, Amer. Math. Soc., Providence, RI (2001) Zbl 0966.26002 MR 1817225

- [19] Lieb, E. H., Thirring, W. E.: Bound on kinetic energy of fermions which proves stability of matter. Phys. Rev. Lett. 35, 687–689 (1975)
- [20] Lieb, E. H., Thirring, W. E.: Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities. In: Studies in Mathematical Physics, Princeton Univ. Press, 269–303 (1976) Zbl 0342.35044
- [21] Lundholm, D., Solovej, J. P.: Hardy and Lieb-Thirring inequalities for anyons. Comm. Math. Phys. 322, 883–908 (2013) Zbl 1270.81248 MR 3079335
- [22] Nam, P. T.: Lieb-Thirring inequality with semiclassical constant and gradient error term. J. Funct. Anal. 274, 1739–1746 (2018) Zbl 1414.35185 MR 3758547
- [23] Rumin, M.: Balanced distribution-energy inequalities and related entropy bounds. Duke Math. J. 160, 567–597 (2011) Zbl 1239.47019 MR 2852369